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Simple Summary: Male fertility is often estimated by simple sperm assessment, and therefore, it
is crucial to establish species-specific baselines for normal sperm parameters. In this paper, sperm
physiology, function, and common abnormalities in stallions will be reviewed.

Abstract: As the use of assisted reproductive technologies (ART) and in vitro embryo production
(IVP) expand in the equine industry, it has become necessary to further our understanding of semen
physiology as it applies to overall fertility. This segment of our two-section review will focus on
normal sperm parameters, beginning with development and extending through the basic morphology
of mature spermatozoa, as well as common issues with male factor infertility in IVP. Ultimately, the
relevance of sperm parameters to overall male factor fertility in equine IVP will be assessed.

Keywords: stallion; fertility; sperm; assisted reproductive techniques

1. Introduction

During natural breeding, a stallion will deposit millions of sperm within the intra-
uterine environment of the mare [1]. Among this population of sperm there is a wide
array of sperm “quality”, which represents the ability of the sperm to fertilize an oocyte
and produce viable offspring [2]. Although some variation in sperm morphology and
physiology between either individuals of the same species or within an ejaculate will not
affect fertilization and embryo development outcomes, some parameters are correlated
with fertilization, embryo development, and pregnancy outcomes.

This significant diversity in sperm fertility within an ejaculate becomes more perti-
nent when applied to in vitro embryo production (IVP), during which a smaller number
of sperm are generally selected for either in vitro fertilization (IVF) or intracytoplasmic
sperm injection (ICSI). Thus, it becomes necessary to understand which physiological and
functional parameters are the biggest contributors to sperm fertility. This allows us to select
the highest quality sperm within an ejaculate for IVP.

Studies of equine sperm fertility encompass sperm biogenesis [3,4], motility and
metabolism [5,6], morphology [7], sperm ultrastructure [8], and biochemical elements of
sperm function [9–12], including sperm interactions with accessory sex gland
secretions [13–15]. The wholistic picture of sperm fertility is integral to the maximiza-
tion of IVP outcomes, and, therefore, in Section I of this review we will focus on equine
spermatogenesis, sperm morphology, and common sperm abnormalities leading to infertility.

2. Spermatogenesis

Adequate production of high-quality sperm by the male is critical to both natural
and artificial reproductive processes. Therefore, it is critical to understand the pathways
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by which male gametes are derived. This process, known as spermatogenesis, occurs in
the germinal epithelium of the seminiferous tubules of the testis, and is initiated during
puberty (Figure 1) [3]. Cross sections of the seminiferous tubules reveal adjacent cellular
associations that produce sperm in a cyclic manner, repeating approximately every 12 days
in the stallion for the constant production of spermatozoa [3,16–18].
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Figure 1. Schematic presentation of spermatogenesis. Facilitated by the nurturing Sertoli cells, basal spermatogonia replicate
and differentiate into primary spermatocytes, and sequentially develop into secondary spermatocytes, spermatids, and the
morphologically distinct spermatozoa during spermatogenesis. Spermatozoa are released into the lumen of the seminiferous
tubule of the testis during spermiation.

The seminiferous tubule is divided into a basal and an adluminal layer, which is fully
surrounded by a basal lamina [3,19]. Leydig cells, which are stimulated by Luteinizing
Hormone (LH) to produce sex hormones, including testosterone, are key for regulating
spermatogenesis as well as being responsible for the male phenotype [20,21]. Leydig cells
occupy the interstitial space of the testes between adjacent seminiferous tubules and serve
as a key regulator of Sertoli cell function [21]. Within the seminiferous tubules, Sertoli
cells span both the basal and adluminal layers, and their role is to host germ cells as
they undergo meiosis and differentiation [22–24]. Specifically, Sertoli cells are stimulated
by pituitary Follicle Stimulating Hormone (FSH) and secrete a variety of proteins that
play a role in germ cell nourishment and development [22,24]. In the stallion, it has been
shown that seasonal fertility is partially attributed to changes in the number of Sertoli
cells in the testis, which is directly correlated with the numbers of spermatozoa ultimately
produced [25,26].

The process by which mature spermatozoa are generated is a highly regulated process
spanning across multiple domains of the testis. A non-committed store of A-spermatogonial
cells exists at the basal layer and remains undifferentiated due to the expression of the
Neurogenin 3 (NGN3) gene [27–29]. However, A-spermatogonia exist both to replenish the
population of gametic stem cells and differentiate for continuation of spermatogenesis, and,
therefore, a subpopulation of A-spermatogonia become committed to differentiation [27,30].
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The basal store of cells begin as single cells (Asingle) and undergo either a complete mitotic
division forming two single daughter cells, or several rounds of incomplete mitosis in
order to create paired (Apaired) and aligned (Aaligned) cell groups connected by intercel-
lular bridges [30]. Aaligned spermatogonia then undergo differentiation into committed
A1-spermatogonia, which also reside in the basal compartment [31]. However, A1 cells do
not express NGN3 and, therefore, will undergo several rounds of mitosis and differentiation
while remaining connected by intercellular bridges (A1, A2, A3, B1, B2 stages) [3,4,27,32].
This period of cell replication is known as spermatocytogenesis and, ultimately, produces
preleptotene primary spermatocytes [4]. These primary spermatocytes then enter the meio-
sis phase, where they pass into the adluminal compartment and participate in two meiotic
divisions, first becoming haploid secondary spermatocytes and, ultimately, producing
haploid spermatids [3,4].

Following spermatocytogenesis, the final stage of spermatogenesis is the morpho-
logical shift denoted as spermiogenesis. Here, the sperm cell acquires its characteristic
shape, including a species-specific streamlined head containing penetrative enzymes, a
structured midpiece, a propelling tail, and the condensation of the male genome [4]. In
most cells, nuclear DNA is organized by histone proteins [33]. However, during spermio-
genesis, somatic histones are replaced by protamines, the dominant nuclear proteins of
mature spermatozoa [33]. The strict compaction of protamine-DNA complexes prevents
transcription, provides translational control, and promotes stability in the genome until
penetration of the oocyte [33]. This final form produced via spermiogenesis is known as a
spermatozoon and is released into the lumen of the seminiferous tubule during the event
of spermiation [4,32]. The entire process of spermatogenesis takes approximately 57 days
in the stallion [3,7].

Following spermatogenesis, spermatozoa are exposed to a variety of proteinic and
non-proteinic substances secreted by the accessory sex glands which aid in the acquisition
of mature male fertility and sperm survival during transportation through the male tract
and into the female tract [13–15,34]. However, the remainder of this review will be focusing
on the mature ejaculated spermatozoa and its relation to IVP, a process during which
seminal plasma is largely removed, and, thus, we will not be elaborating on the significance
of accessory sex glands and their secretions.

3. Sperm Morphology

The length of the equine spermatozoa from head to tail is approximately 60 µm [35]. A
spermatozoa consists of three main components: a headpiece, midpiece, and tail which are
fully encapsulated by a plasma membrane (Figure 2) [7]. The sperm head is an elongated,
oval shape that is also relatively flat, with some variation on an individual basis [7,36,37].
The head consists of the acrosome, the post-acrosomal lamina, and the nucleus. The
acrosome covers the anterior portion of the sperm head and contains hydrolytic enzymes
which are released in order for the sperm to penetrate an oocyte [35]. In addition, it is
theorized that the proteases and hydrolases contained within the acrosome play a role in
the penetration of the oocyte cumulus complex, in addition to the zona pellucida [38,39].
The post-acrosomal lamina covers the caudal nucleus, which contains the highly condensed
male genome [7,35]. Species specific traits of the stallion sperm head include a characteristic
asymmetrical head, a paraxially inserted tail, and a small acrosome relevant to other
species [40].
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Figure 2. Anatomy of spermatozoa. A spermatozoon consists of three major components: head,
midpiece, and tail. The sperm head is overlaid by a plasma membrane, and an acrosomal compart-
ment containing enzymes to aid in fertilization. The nucleus, surrounded by the nuclear envelope,
contains the compacted male genome. The head is connected to the midpiece by the connecting
piece. The midpiece consists of the proximal centriole, the mitochondrial sheath, and an inner dense
fiber structure. The tail points distally, is also covered by a plasma membrane, surrounding the
structural axoneme.

The neck piece connects the sperm head to the tail and is made up of the connecting
piece, the proximal centriole, and mitochondria. The neck serves as a connection point
as well as orienting the tail distally [7]. The midpiece is made up of the cytoskeletal
axoneme, which contains cylindrically arranged contractile microtubule doublets with
attached dynein arms, which serve to facilitate tail movement. Each doublet is surrounded
by dense fibers, which are, in turn, surrounded by a double spiral of mitochondria. The
mitochondrial helix is critical for supplying energy to the sperm tail, allowing for the
motility that is necessary in fertilization events. The end of the midpiece is defined as the
caudal end of the mitochondrial sheath where the annulus, a ring of dense filaments, is
located to separate the mitochondria and the sperm tail [7].
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The principal piece of the propelling tail consists of the continuation of the axoneme
and tapering dense fibers. The distinguishing feature of the principal piece is a protein-
rich fibrous sheath that provides structure and flexibility for tail movements. The end of
the fibrous sheath indicates transition from the principal piece to the end piece, which
solely consists of the axoneme. All of these components are covered superficially by the
sperm plasma membrane. Although parameters of a morphologically normal sperm may
vary significantly on an individual basis, abnormalities in the sperm anatomy may be an
indication of subfertility or a problem with spermatogenesis [7].

The outer plasma membrane can be partitioned into the acrosomal, post-acrosomal,
neck, midpiece, and principal piece domains [41]. Each region of the membrane can be char-
acterized by a phospholipid bilayer of heterogeneously expressed lipids, proteins, carbo-
hydrates, and cholesterol that is primarily established during spermatogenesis [33,41–43].
The cell surface is additionally covered by a glycocalyx, a network of glycoproteins and
glycolipids attached to a matrix of oligosaccharides and polysaccharides, that is known to
aid in the proper function of sperm, as well as survival as it passes through the female re-
productive tract [43,44]. However, spermatozoa in several species, including the ram, bull,
rat, boar, buck, man, and stallion have been documented to undergo significant remodeling
to the lipid and protein compositions during epididymal maturation [41,45–50].

Due to the compaction of the sperm genome and the reduction in transcription, signif-
icant changes in protein, lipid, and sugar contents are thought to be a result of the uptake
of epididymal epithelial secretions [51]. Although the mechanisms of proteomic alteration
are not well understood, several corresponding hypotheses exist, including (a) the reor-
ganization of proteins into membrane specific domains [52], (b) the secretion of soluble
proteins into the epididymal lumen by the epithelium and their subsequent absorption
and integration into the plasma membrane [52], (c) the release of extracellular vesicles
such as epididymosomes and proteasomes from the epididymis contributing micro and
transfer RNAs as well as proteins [53–55], and (d) the potential direct anchoring of sperm
heads to the epididymal epithelium for protein transfers via an unknown mechanism [56].
Specific proteomic changes to the sperm have been associated with various sperm func-
tions including motility (flagellar, signaling cascade, and metabolic modifications) [57–60],
capacitation (uptake of capacitation linked kinases) [61], acrosome reaction (modifications
to the scaffolding proteins involved in acrosomal fusion and synapse) [62], and fertilization
(facilitation of sperm-zona pellucida and sperm-oocyte interactions) [51,63–66].

In the stallion, remodeling of the plasma membrane has been partially described
through the domain-specific patterning of filipin–sterol complexes acquired during epi-
didymal maturation as well as changes in intermembrane proteins [40]. Changes in protein
composition have been thoroughly described in several species, and a majority of studies
focus on the acquisition of epididymal secretory proteins between the caput and caudal
epididymis [41]. Through freeze-fracture analysis, altered quantities and distributions of
various intramembrane particles were observed over the course of epididymal transit in the
equine testis, which is hypothesized to play a role in the establishment of various functional
domains [50,67]. It is hypothesized that functional domains assist the sperm cell in adapt-
ing to new conditions in the seminal plasma and female reproductive tract [41]. Specifically,
changes in the binding affinity between sugar-binding lectins and the sperm glycocalyx
indicate an altered exposure of terminal saccharide residues in the sperm membrane—thus
altering the ability of the sperm to interact with its environment, such as within the uterus
and oviduct, or with an oocyte [43,68].

One of the physiological outcomes of membrane protein modifications is the overall
change in net surface charge. This characteristic can be estimated through the measurement
of zeta potential, or electrophoretic mobility: an electrostatic potential at the slipping plane
of the cell [69,70]. The slipping plane can be described as the distance from the cell at
which surrounding fluid particles are no longer bonded or attached to the cell, but are
completely mobile and free, and the charge at this location is proportional to surface-charge
density [71,72]. Zeta potential of sperm cells has been investigated in men, rats, bulls,
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rabbits, golden hamsters, guinea pigs, and mongoose [69,73–76]. The source of the net
negative charge is due to the addition of negatively charged sialoglycoproteins to the
glycocalyx, such as the bipolar glycopeptide CD52, that appear in the sperm membrane
during epididymal maturation [43,69,77,78]. These proteins, as well as the total glyco-
proteic population in the plasma membrane, undergo compositional changes throughout
maturation, capacitation, and acrosome reaction, and are thought to play a physiological
role in these processes as well as in fertilization [41,77,79]. Thus, membrane charge is both
a revealing and complex trait to accurately measure and interpret.

4. Bioenergetics and Generation of Motility

As previously mentioned, the mitochondrial helix is the primary grouping of or-
ganelles responsible for active motility and metabolism in the sperm cell. The number of
mitochondrial gyres in the midpiece of the equine spermatozoa varies between 40 and 50,
and their organization, or more specifically a disrupted organization, has been shown to
play a role in the fertility of stallions through localized ATP production for sperm flagellar
movement [80–82]. In fact, mitochondrial function, which can be approximated by mito-
chondrial membrane potential and electron transport chain (ETC) activity, are known to be
positively correlated with overall sperm function [82–85].

ATP production occurs on the inner mitochondrial membrane within the intermem-
brane space between inner and outer membranes [6,86]. In the process of oxidative phos-
phorylation, the primary mechanism of ATP generation in stallion sperm, a mitochondrial
membrane potential is established as electrons are passaged through the respiratory en-
zyme complexes of the ETC of the inner membrane and energy is stored in the form of a
proton gradient [82,87–89]. Ultimately, ATP synthase uses the proton gradient to generate
ATP [6,88]. The mitochondrial membrane potential must be maintained, as reduced po-
larization can lead to an ATP shortage and cellular damage and hyperpolarization may
produce an over-abundance of reactive oxygen species (ROS) and cause lipid peroxidation,
which can be detrimental to overall cell integrity [6,90]. It is also noteworthy that oxidative
phosphorylation (the primary method of ATP generation in stallion sperm) coupled with
mild oxidative stress is beneficial to sperm functional pathways such as hyperactivation,
capacitation, acrosome reaction, and fertilization [89]. Lesser amounts of ATP may be
produced by glycolysis under oxygen depleted conditions for maintenance of high sperm
velocity [91,92]. Additionally, research in stallions has shown correlations between ROS and
motility, viability, and mitochondrial function [87,91,93], and, thus, it is highly beneficial to
understand mitochondrial mechanisms as they relate to sperm fertility.

5. Common Abnormalities and Issues with Fertility

Sperm analysis is a significant method of infertility diagnoses and is critical in order
to maximize IVP outcomes. Common issues in patients with male factor infertility can be
either obvious or indiscernible to the human eye, and thus the depth of analysis by a techni-
cian depends on the technology immediately available to them. Due to the ease of analysis,
sperm motility, viability, and morphology are the most common sperm assessments.

Sperm motility is essential for in vivo fertilization and in vitro fertilization (IVF), and
is not necessarily required for ICSI where the sperm is manually injected [94–97]. Sperm
motion can be described as either motile or hyperactivated; the latter being a result of ca-
pacitation that is required for oocyte penetration. Generally, clinics use Computer Assisted
Sperm Analysis (CASA) or similar technologies to reduce subjective errors. CASA can
also analyze more complicated motion parameters including the amplitude of lateral head
displacement, average path velocity, straight line velocity, curvilinear velocity, linearity of
the curvilinear path, and beat-cross frequency [98]. Sperm motility measures are widely
considered to be indicative of fertility based on obvious biological functions, despite vari-
able correlations with other sperm quality parameters [97,99]. In the stallion, progressive
motility is used as a general estimate of fertility, with less than 50% progressively motile
in raw semen or less than 10% progressively motile two hours post collection being an
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indicator of potential subfertility [100]. However, stallion fertility may be poor even with
a highly motile population [101], and, thus, it is critical to understand other common
sperm abnormalities.

Sperm viability is a generalized term that can be used to describe a number of traits,
including an intact membrane, metabolic activity, and overall physiological health of
the cell [102]. Generally, in sperm analysis, viability of the population is estimated by
determining the percent of intact membranes using fluorescent dyes such as propidium
iodide (PI) and Hoechst 33528 [103,104]. Although Hoechst is permeable with all cells,
PI is only able to penetrate cells with disrupted plasma membranes. Thus, staining with
two nuclear dyes is necessary for the identification of the non-viable population. Another
double staining fluorescent method for viability used in the equine industry is SYBR-14
and PI for viability [103,105]. Assessment of sperm viability can also be indicative of
early apoptotic changes, which could also be correlated with other severe sperm abnor-
malities or infertilities. Rather than, or in addition to, a viability stain with a permeable
cell marker, another fluorescent dye may be added to expand upon the assessment of
sperm integrity or function. Common fluorescent dyes used for equine sperm assessment
include JC-1 [106,107] or rhodamine 123 [108,109] for mitochondrial membrane potential
(an estimate of mitochondrial function), fluorescently conjugated Annexin-V (detection of
apoptosis) [110,111], or fluorescein isothiocyanate-PNA-Lectin (FITC-PNA) (assessment
of acrosomal status) [112,113]. Fluorescent dyes are a common method of sperm quality
assessment and a more extensive discussion of their use in ARTs can be found in Section II
of this review.

Common morphological abnormalities seen in equine spermatozoa may include bent,
coiled, or broken tails, misshapen heads, flattened or thickened acrosomal matrices over the
apex of the sperm head, nuclear vacuoles, the presence of proximal droplets (an indication
of immaturity), swollen or disrupted midpieces, and double heads or tails (Figure 3) [7].
In humans, morphology has been identified as an indicator of quality, and worsened
morphology is specifically correlated with poor motility, DNA fragmentation, chromatin
immaturity, high levels of ROS, a decreased ability to bind to the oocyte zona pellucida,
and an overall decreased fertilization potential [114–118]. Similarly, studies in stallions
have identified correlations between morphologic features, motility, and pregnancy out-
comes [80,119], indicating that there may be other sperm parameters associated with
morphological abnormalities.

Prior to fertilization, the acrosome undergoes a calcium-dependent exocytotic reaction
(acrosome reaction) as a result of sperm-oocyte binding that is essential for the subsequent
penetration of the oocyte [120]. In equine spermatozoa, the precursor to the acrosome
reaction is sperm activation, or capacitation, which occurs in the female reproductive tract
as the spermatozoa approaches the oocyte. Capacitation can be generally characterized by
the acquisition of both hyperactive motility and the ability to undergo the acrosome reaction
through various molecular pathways and protein phosphorylation cascades [51,121,122].
Capacitation has been successfully performed in vitro in numerous species, including
humans and horses [122]. The acrosome reaction has also been achieved in vitro for
the horse by using various components, including calcium (Ca2+), calcium ionophore,
bicarbonate (HCO3

−), lysophosphatidylcholine, and progesterone leading to calcium
oscillations [11,112,122–124]. Interestingly, sperm from stallions classified as fertile based
on their breeding history are more likely to undergo the acrosome reaction in vitro when
incubated with progesterone than sperm from subfertile stallions [125]. In humans, in vivo-
derived inducers of calcium oscillations leading to the acrosome reaction include follicular
fluid, cumulus oophorus, and the presence of granulosa cells; however, these methods are
not well understood in the horse [122,126–129].
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In the context of fertilization, capacitation involves calcium oscillations that trigger a
complex cascade of intracellular events leading to the binding of specific zona ligands on
the outer plasma membrane with the zona pellucida of the oocyte [130,131]. Subsequently,
the acrosome reaction, or the fusion of the outer acrosomal membrane with the sperm
plasma membrane, is marked by the exocytosis of proteolytic and hydrolytic enzymes from
the acrosomal compartment [132,133]. These enzymes aid in the digestion of the zona pellu-
cida so the sperm can penetrate the zona pellucida using hyperactivated motility acquired
during capacitation. This results in the entrance of the sperm into the perivitelline space
and the fusion of the inner acrosomal membrane and the equatorial region of the sperm
head with the oolemma [133–135]. However, if a sperm cell undergoes the acrosome reac-
tion prematurely, which can occur during cryopreservation or in vitro processing, it loses
its ability to penetrate the cumulus oophorus and zona pellucida for fertilization [136,137].
In human in vitro experiments, a premature acrosome reaction precluded the binding of
sperm to the oocyte, and sperm that were able to bind were less successful in penetra-
tion [131,138]. In horses, it has been demonstrated that sperm from subfertile stallions
bind less frequently to the zona pellucida of the oocyte than sperm from fertile stallions,
and that sperm from subfertile stallions is less likely to undergo acrosome reaction after
binding [139], indicating discrepancies between fertile and subfertile sperm membrane
affinities and compositions. Therefore, it is of interest to remove the prematurely acrosome
reacted spermatozoa during selection procedures.

The mitochondrial helix is a sensitive structure that can be easily damaged under
extreme environmental conditions, including cryopreservation [6]. Disruption of mitochon-
drial integrity, including the depolarization of the membrane, can disrupt ATP production
and cause a sperm cell to become immotile and non-functional [6,90]. Alternatively, hy-
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perpolarization of the mitochondrial membrane will lead to lipid peroxidation and an
over-abundance of ROS, leading to cellular damage [6,90]. Although exact mechanisms
of cryoinjury to equine sperm are poorly understood, potential targets include disrupted
plasma and mitochondrial membranes, increased ROS production, and generation of
apoptotic factors [6,93,140].

Apoptosis is also a common issue seen in sperm samples, especially those that undergo
thermal, oxidative, or osmotic stressors from extending, cooling, or cryopreservation [141,142].
These stressors, as well as abnormal morphology, can initiate a variety of negative effects
such as membrane and mitochondrial damage, plasma membrane restructuring (includ-
ing the externalization of proteins such as phosphatidylserine), generation of ROS, and
subsequent DNA damage [10,12,141–143].

DNA integrity assessment is one of the most valuable assessments of sperm fertil-
ization potential due to the strong correlation with sperm reproductive competence; in
fertilization as well as in subsequent embryo development and offspring phenotype [144].
Poor DNA integrity of sperm, or sperm with increased DNA fragmentation, can, thus, have
detrimental effects on reproductive outcomes. DNA fragmentation is an all-encompassing
term that includes both single- and double-stranded breaks, single base deletions or modi-
fications, various non-desirable cross linkages, and mispackaging errors [145]. Causes of
DNA fragmentation may include the mispackaging of chromatin during spermatogene-
sis [146], apoptosis [147], excessive ROS [146,148], and other environmental factors [144].
The use of spermatozoa with damaged DNA has been associated with compromised fer-
tilization both in vivo and in vitro, as well as negative effects on embryo development,
such as worsened embryo quality and blastocyst rates [144,149]. This could potentially
lead to both miscarriages and altered offspring phenotypes including genetic diseases,
such as Apert syndrome or achondroplasia, conditions thought to arise due to replication
error mutations and cancers [144,150–153]. Thus, DNA integrity of semen can be a good
indication of fertilization potential and the potential effects on embryo development and
offspring characteristics.

Surface composition and the resulting membrane charge are also of interest in sperm
fertility studies. A greater net negative zeta potential, a parameter determined by surface
composition as described previously, is acquired during epididymal maturation through ex-
tensive membrane remodeling and has been correlated with sperm quality in men [154,155].
The acquisition of a net negative charge is primarily based on the extrusion of sialic acid
(sialoglycoproteins) and other charged proteins to the outer membrane of the head region
during epididymal maturation [44,69,77,156]. The charge may also change significantly
as a sperm changes environments, or when it undergoes capacitation or acrosome reac-
tion [41,79]. Specifically, membrane charge increases, or becomes less negative, when the
sperm undergoes capacitation [157]. Externalization of sialoglycans by the sperm has been
shown to play a role in avoidance of the uterine immune systems, as well as playing roles
in capacitation and being an important component of sperm-zona pellucida binding, and,
therefore, fertilization. Thus, charge is a significant factor in sperm fertility [44,77,158,159].
Extrapolating from these data, selecting sperm with a greater net negative zeta potential
will theoretically select for mature, functional, and viable spermatozoa.

6. Conclusions

Thorough interpretation of sperm physiology, despite its complexity, is the best
method for assessing male fertility. In particular, furthering our understanding of the rela-
tionships between sperm morphology, viability, biological composition, and metabolism
for equine sperm will be extremely beneficial in understanding fertility in stallions, as
well as shedding light on associated mechanisms. In addition, characterization of new
biophysical properties, such as zeta potential, will not only aid in our understanding of
what makes a fertile sperm, but will also allow for the development of new semen selection
technologies. For a review of current and prospective sperm selection technologies, please
refer to Section II of this review. In conclusion, sperm physiological assessment is an
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invaluable tool for the equine breeding industry and merits continued consideration in
clinical and research settings.
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