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Abstract The prediction and control of COVID-19 is
critical for ending this pandemic. In this paper, a non-
local SIHRDP (S-susceptible class, I-infective class
(infected but not hospitalized), H-hospitalized class, R-
recovered class,D-death class andP-isolated class) epi-
demicmodel with longmemory is proposed to describe
the multi-wave peaks for the spread of COVID-19.
Based on the basic reproduction number R0, which
is completely controlled by fractional order, the sta-
bility of the proposed system is studied. Furthermore,
the numerical simulation is conducted to gauge the
performance of the proposed model. The results on
Hunan, China, reveal that R0 < 1 suggests that the
disease-free equilibrium point is globally asymptoti-
cally stable. Likewise, the situation of the multi-peak
case in China is presented, and it is clear that the
nonlocal epidemic system has a superior fitting effect
than the classical model. Finally an adaptive impulsive
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vaccination is introduced based on the proposed sys-
tem. Then employing the real data of France, India,
the USA and Argentina, parameters identification and
short-term forecasts are carried out to verify the effec-
tiveness of the proposedmodel in describing the case of
multiple peaks. Moreover, the implementation of vac-
cine control is expected once the hospitalized popula-
tion exceeds 20% of the total population. Numerical
results of France, Indian, the USA and Argentina shed
light on the varied effect of vaccine control in different
countries. According to the vaccine control imposed
on France, no obvious effect is observed even consider
reducing human contact. As for India, although there
will be a temporary increase in hospitalized admissions
after execution of vaccination control, COVID-19 will
eventually disappear. Results on the USA have seen
most significant effect of vaccine control, the number
of hospitalized individuals drops off and the disease is
eventually eradicated. In contrast to the USA, vaccine
control in Argentina has also been very effective, but
COVID-19 cannot be completely eradicated.

Keywords COVID-19 · Fractional-order integral ·
Nonlocal epidemic system · Adaptive impulsive
vaccination

1 Introduction

A dangerous infectious disease COVID-19 caused
by severe acute respiratory syndrome coronavirus 2
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(SARS-CoV-2) was discovered at the end of 2019.
Soon after, the number of confirmed cases continues to
increase from day to day. As of January 1, 2021, a total
of 83561252 cases have been diagnosed worldwide
resulting in 1820668 deaths [1]. The rapid increase in
infection cases indicates that the transmission capacity
of COVID-19 is strictly stronger than that of MERS-
CoV and SARS coronavirus [2,3]. OnMarch 11, 2020,
COVID-19 has been declared a pandemic by World
Health Organization. Meanwhile, multiple peaks of
disease transmission have appeared around the world.
For example, somecountries are experiencing recurrent
outbreaks. A better understanding and insight of the
pandemic’s trend with the aid of mathematical model
can provide a guideline for government and individuals
to take appropriate actions to control the return of the
epidemic.

The study of epidemiology, which deals with the
dynamic evolution of diseases in a population, has
attracted widespread attention in recent years [4–6].
The first model, introduced by Kermack and McK-
endrick, is SIR (susceptible-infected-recovered) model
[7]. In this simplest SIR epidemic model, a basic
assumption is that an individual’s time interval of
staying in a compartment won’t have an influence
on its transition out. This assumption is mathemati-
cally equivalent to a memoryless Markov process in
which time is exponentially distributed at each inter-
val. However, Angstmann et al. derived a fractional-
order infected model, which may be adapted to any
compartment model where the transition out of a com-
partment is dependent on the length of time since enter-
ing this compartment. Also, they pointed out that for
some diseaseswith a chronic incubation period, such as
human papiliomavirus (HPV), the distribution of infec-
tion time is a power-law tails [8]. Its behavior repre-
sents a much slower decay in time than an exponential
decay, which is called nonlocal model with long mem-
ory. Thus, it is of much interest to consider nonlocal
model to understand and control complex processes.
Under this circumstance, many researchers established
the nonlocal model, such as non-Markovian jump pro-
cesses, Levy flights [9–11], fractional differential oper-
ators [12–14] and so on.

However, in the existing literature of nonlocal sys-
tem, the kernel function is required to be integrable,
or the kernel function is controlled by a decreasing
exponential function, which results in system stabil-
ity not being affected by delays. This suggests that the

kernel function decays faster in time than the expo-
nential distribution, see [15–22] and references therein.
Zhang et al. investigated the dynamics of an SIR epi-
demic disease model with distributed times delay and
the kernel function f(t) = ae−at [15]. The dynamics
of multi-group SEIR epidemic models with distributed
and infinite delay are investigated by Shu et al. [16]
and the kernel function

∫ ∞
0 f (τ )dτ < ∞. Further-

more, Muroya et al. successfully established a delayed
multi-group SIS epidemic model with nonlinear inci-
dence rates and patch structure, and they found the inci-
dence time and the migration time did not alter the
quality of the disease dynamics [21]. Hethcote et al.
developed a epidemic model for which infection con-
fers permanent immunity. The system was expressed
by nonlinear Volterra integral equations of convolu-
tion type and the results showed that the distributed
time also didn’t change the asymptotic behaviors of
their model [22]. However, because COVID-19 has an
incubation period of 7-14 days and is highly infectious
during the incubation period, it is highly unreasonable
to limit the kernel function. Meanwhile, little is known
about COVID-19 as it is first transmitted in humans
and different countries are going through this variety of
multi-peak conditions, so policy formulation and action
are strictly dependent on the history of disease trans-
mission at different peak stages. Plus the precaution of
people is also based on their knowledge on the primary
course of COVID-19. In order to properly describe
the multiple stages of this disease transmission, it is
important to consider the kernel function of long-term
memory. Few works have been devoted to studying the
nonlocal epidemic model [23,24]. Motivated by this,
we focus on memory effects in this work, which means
arbitrarily long history can be included.

Meanwhile, many countries have taken different
measures to control the spread of COVID-19, such as
sealing cities, wearing masks and keeping safe dis-
tances and so on. But as the epidemic continues to
develop, the world is experiencing a resurgence of
COVID-19. To scale back the possibilities of multi-
ple transmission, the other suggested measures are the
start of vaccination, the use of antiviral drugs, and the
awareness about the risks of disease transmission, of
which vaccination is considered to be one of the most
effectiveway to control the spread of COVID-19. Thus,
research into vaccines has become a paramount task.
However, considering public opinion, diplomacy, eco-
nomics, public health, and so on, an efficient vaccine
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allocation strategy appears to be equally compelling.
Emanuel et al. offered a more ethically defensible and
practical proposal for the fair distribution of COVID-
19 vaccine: the Fair PriorityModel [25]. Santiago et al.
proposed a control strategy for SIRS epidemic model
[26]. The model has been demonstrated to be stable
for such vaccination strategy. Asier et al. presented a
sliding mode controller for SEIR epidemic model [27].
Sultan et al. devoted to a stochastic model on the spread
of COVID-19 and used the supermartingale approach
to investigate a bound managing of which also leads
to decrease of the number of infected individuals [28].
Rohith et al. proposed an appropriate threshold by a
synthesis of government control variable, and a closed-
loop control approach using sliding mode was adapted
to control the COVID-19 pandemic [29].

Based on the above analysis, a nonlocal epidemic
model with long memory is proposed for modeling
the spread of COVID-19, where the infection of time
conforms to a power-law tails distribution. Meanwhile
based on the proposed model, an adaptive impulsive
vaccination strategy with reference to the number of
hospitalized populations is designed. The main contri-
butions of this study are as follows:

• The dynamic behaviors of the proposed system
are analyzed by demonstrating the existence and
uniqueness of the nonnegative solution, the global
stability of the disease-free equilibrium point and
the endemic equilibrium point.

• Numerical results are presented to verify the theo-
retical results, inwhich the detection ratio is consid-
ered as a piecewise function based on the measures
to strengthen nucleic acid detection.

• Pulse vaccine control is investigated to prevent fur-
ther spread of COVID-19. The basic reproduction
number R(θ, tv) is obtained as a threshold con-
dition to determine whether the disease will be
stamped out.

• Using the real data of France, India, the USA and
Argentina, short-term forecasts of the number of
hospitalized individuals at 7 days are given.

• The adaptive pulse vaccine control is designed to
update the vaccine rate in France, India, the USA
and Argentina, when the hospitalized population
exceeds 20% of the total population.

The rest of this paper is organized as follows:
COVID-19’s SIHRDP nonlocal model with longmem-
ory is established in Sect. 2 and some preliminaries are

also given in this section. Then, some dynamic behav-
iors of the proposed system are analyzed in Sect. 3. In
Sect. 4, some dynamic behaviors of impulsive system
are investigated. In Sect. 5, numerical simulations are
provided to illustrate the theoretical results. Finally, the
conclusions are given in Sect. 6.

2 Preliminaries and problem formulation

With the advent of the digital age, more and more
attention has been paid to non-local models. This is
one reason for the singular/anomalous behavior associ-
ated with complex systems and the increasing number
of nonlocal phenomena. Before presenting the main
result, some necessary preliminaries are introduced.

2.1 Preliminaries

This section begins with some definitions and results.

Definition 1 [30] Anonlocal linear operator is defined
by the following form:

L f (t) =
∫ t

0
β(t, s) f (s)ds,

where β(t, s) is the most general form of the kernel, as
implied by the Schwartz kernel theorem [27].

Definition 2 [32] A Gamma function of α is defined
by:

Γ (α) =
∫ ∞

0
xα−1e−xdx,

where R(α) > 0.

Definition 3 [32] Let Ω = [0,∞] be an infinite inter-
val on the real axis R. The Riemann–Liouville frac-
tional integrals I α

0+ f of order α ∈ C (R(α) > 0) is
defined by

I α
0+ f (t) = 1

Γ (α)

∫ t

0

f (s)

(t − s)1−α
ds,

where Γ (·) is the Gamma function.

Remark 1 When β(t, s) = 1
Γ (α)

(t − s)α−1 in Defini-
tion 1, one has

L f (t) =
∫ t

0
β(t, s) f (s)ds

= 1

Γ (α)

∫ t

0

f (s)

(t − s)1−α
ds

= I α
0+ f (t) ,

(1)
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124 Z. Lu et al.

that is, the Riemann–Liouville fractional integrals is a
special nonlocal operator.

Lemma 1 [33] Suppose that a function f : R+ → R

is twice differentiable and that f < f̄ . Then, there are
sequences (tn) ↑ ∞ and (τn) ↑ ∞ such that

f (tn) → f , f ′(tn) = 0, f ′′(tn) ≤ 0,

and

f (τn) → f̄ , f ′(τn) = 0, f ′′(τn) ≥ 0.

Lemma 2 [32] Let F(s) be the Laplace transform
of a function f (t), then the Laplace transform of the
Riemann–Liouville fractional integral is given by

L{I α
0+ f (t) ; s} = s−αF(s).

Lemma 3 Let ε ∈ (0, 1] and I ε
0+ f (t) denote the

Riemann–Liouville fractional integrals of a function
f (t), then

lim
t→∞ e−αt I ε

0+eαt f (t)

= α−ε lim
t→∞ f (t) − εα−ε−1 lim

t→∞
d f

dt
.

Proof The Laplace transform of the above terms is
firstly considered as follows:

L{e−αt I ε
0+eαt f (t); s} = (s + α)−εF(s).

Expand the above equation using a Taylor series expan-
sion:

(s + α)−ε = α−ε − εα−ε−1s + O(s2).

Then the inverse Laplace variation of both sides can be
obtained as follows:

e−αt I ε
0+eαt f (t)

= L−1[(s + α)−εF(s)]
= L−1[(α−ε − εα−ε−1s + O(s2))F(s)]
= α−ε f (s) − εα−ε−1 d f

dt
+ L−1(O(s2)F(s)).

(2)

Therefore, it can be concluded from Eq. (2) as follows:

lim
t→∞ e−αt I ε

0+eαt f (t)

= α−ε lim
t→∞ f (t) − εα−ε−1 lim

t→∞
d f

dt
.

	


Lemma 4 [34] Consider the following impulsive dif-
ferential equations:
{
ẋ(t) = r − kx(t), t �= nT,

x(t+) = (1 − θ)x(t), t = nT,

where r > 0, k > 0 and 0 < θ < 1. Then there exists a
unique positive periodic solution of the above system:

x∗(t) = r

k
+ (x∗ − r

k
)e−k(t−nT ), nT < t ≤ (n + 1)T,

which is globally asymptotically stable, where

x∗ = r(1 − θ)(1 − e−kT )

k(1 − (1 − θ)e−kT )
.

2.2 Problem formulation

For infectious diseases, information about disease his-
tory does not have the same impact all the time. Also
the time it takes from incubation to infectivity may
vary from person to person. Following the approach of
[35] and taking the time of infection as a parameter,
an SIHRDP epidemic model with distributed delay is
considered as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt = Λ − ρS − βS

∫ t
0 K (t − s)I (s)θ(t, s)ds,

dI
dt = βS

∫ t
0 K (t − s)I (s)θ(t, s)ds − δ I − α I,

ddH
dt = δ I − (λ + κ)H,

dR
dt = λH,

dD
dt = κH,

dP
dt = ρS.

(3)

The population density of a city is classified into S(t),
I (t), H(t), D(t), R(t) and P(t), denoted susceptible,
infective (infected but not hospitalized), hospitalized,
dead, recovered and isolated class, respectively. The
parameter Λ is the inflow rate of susceptible individu-
als; β is the transmission coefficient; λ is the recovery
rate; α is mortality rate; ρ is the protection rate; κ is
the disease-related mortality rate; δ is detection rate.
Let K (s) denote the probability that an infected indi-
vidual remains infectious and θ(t, s) is the probabil-
ity of surviving death from time s to time t , then the
death survival can be written as θ(t, s) = e−α(t−s).∫ t
0 K (t − s)I (s)θ(t, s)ds represents all the infected
individuals I (s) before time t can survive to time t
and remain infective. According to [36], assume that
the probability of remaining in the infected class K (s)
is the step-function given by

K (s) =
{
1, s ≤ τ

0, s > τ
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for finite τ . Then system (3) reduces to the following
delay differential equation system:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt = Λ − ρS − βSI,
dI
dt = βe−αt S(t − τ)I (t − τ) − δ I − α I,
dH
dt = δ I − (λ + κ)H,

dR
dt = λH,

dD
dt = κH,

dP
dt = ρS.

(4)

Moreover, the weak delay kernel function K (s) repre-
sents the impact of past memory on current dynamics
and its form is as follows in [17]:

K (s) = εn+1 s
ne−εs

n! , n = 0, 1, 2, · · · ,

where ε > 0 is the decline rate of the effects of past
memories. Then it is easy to see that the dependence of
system state on historical information is negligible as
time goes by. However, when a disease spreads firstly
between people, an individual’s prior experience or
knowledge of the disease influences their subsequent
response. An appropriate choice, in order to include
long-term memory effects, could be a power-law func-
tion that shows a slow decay, so that the state of the
previous state of the system also contributes to the evo-
lution of the system. Motivated by this, consider the
following power-law correlation function for K (s):

K (s) = sε−1

Γ (ε)
,

inwhich 0 < ε ≤ 1 andΓ (ε) denotes theGamma func-
tion. The choice of the coefficient 1

Γ (ε)
and exponent ε

allowsus to rewrite system (3) to the formofRiemman–
Liouville fractional integrals equations as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt = Λ − ρS − βSθ(t, 0)I ε

0+(I (t)θ(0, t)),
dI
dt = βSθ(t, 0)I ε

0+(I (t)θ(0, t)) − δ I − α I,
dH
dt = δ I − (λ + κ)H,

dR
dt = λH,

dD
dt = κH,

dP
dt = ρS.

(5)

where I ε
0+(I (t)θ(0, t)) is the Riemman–Liouvier

fractional-order integral of (I (t)θ(0, t)). The decaying
rate of the memory kernel (a time-correlation function)
depends on ε.A smaller ε corresponds to a slower decay
rate (long memory). Therefore, the length of memory
is controlled by ε. As ε → 1, the effect of memory is

Fig. 1 A block diagram of the SIHRDP epidemic model for
COVID-19

minimized: system (5) tends to be a memoryless sys-
tem. A visual representation of the system structure can
be seen in Fig. 1.

3 Model analysis

In this section, some dynamical behaviors of the pro-
posed system (5) are analyzed. Here it can be found
that the susceptible class S(t), the infected class I (t)
and the hospitalization class H(t) are not affected by
the recovered class R(t), the death class D(t) and the
isolated class P(t) of system (5). Hence, we shall focus
our attention on the following reduced system:
⎧
⎪⎨

⎪⎩

dS
dt = Λ − ρS − βSθ(t, 0)I ε

0+(I (t)θ(0, t)),
dI
dt = βSθ(t, 0)I ε

0+(I (t)θ(0, t)) − δ I − α I,
dH
dt = δ I − (λ + κ)H.

(6)

3.1 Nonnegative and boundedness

In this subsection, the existence, uniqueness and
boundedness of a nonnegative solution for system (6)
are considered.

Theorem 1 For any given initial condition (S0, I0,
H0)≥ 0, there exists a unique nonnegative bounded
solution (S(t), I (t), H(t) of system (6) for all t > 0.

Proof According to the hypotheses stated by Miller
[37], it is sufficient to ensure the existence and unique-
ness of solutions of system (6). In addition, it can be
concluded from the first equations in system (6) that

S(t) = S(0)e−
∫ t
0 (ρ+β

∫ s
0 (t−t ′)ε−1 I (t ′)θ(s,t ′)dt ′)ds

+ Λ

∫ t

0
e−

∫ t
s (ρ+β

∫ τ
0 (τ−t ′)ε−1 I (t ′)θ(s,τ ′)dt ′)dτ ds,

(7)

which implies that S(t) > 0 for t ≥ 0.Next the nonneg-
ativity of I (t) and H(t) will be studied. First assume

123
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that I (0) > 0 and claim both I (t) and H(t) are non-
negative for t > 0. If not, there must exist a finite time
τ > 0 such that I (t) ≥ 0 and H(t) ≥ 0 for t ∈ [0, τ ]
and either (i) I (t0) = 0 and İ (τ ) < 0, or (ii) H(τ ) = 0
and Ḣ(τ ) < 0. But when (i) holds, based on the second
equation in system (6), one has

d I

dt
≥ −(δ + α)I, t ∈ [0, τ ],

then this implies that

I (τ ) ≥ I0e
−(α+δ)τ > 0,

which shows that (i) is impossible. Next assume that
(ii) is true. As in (i), one has I (t) > 0 for t ∈ [0, τ ]. The
third equations in system (6) give Ḣ(τ ) = δ I (τ ) > 0
which is contradictory. Therefore, I (t) and H(t) are
nonnegative for all t > 0. In the following, the bound-
edness of system (6) will be discussed. Let μ̌ =
min{ρ, (λ + κ), α} and μ̂ = max{ρ, (λ + κ), α}. Let
N = S + I + H denote the total population. Add all
equations in system (6), it can be yielded that

Λ − μ̂N ≤ dN

dt
= Λ − ρS − α I − (λ + κ)H

≤ Λ − μ̌N ,

then this implies that Λ
μ̂

≤ N ≤ Λ
μ̌
. It is obvious that

S(t), I (t) and H(t) are bounded. 	


3.2 Local stability

In this subsection, the existence of positive equilibrium
points and the locally stability analysis of system (6)
will be discussed.

In general, the basic reproduction number R0 is
‘the expected number of secondary cases from an
infected individual in a fully susceptible population’
[41]. According to Watmough et al. [40], when the
basic reproduction number R0 ≤ 1, each individual
releases on average less than one newly infected indi-
vidual, and the infection cannot grow. Conversely, if
R0 > 1, each infected individual produces more than
one new infected person, and the disease will not die
out. It is therefore important to describe the relationship
between the basic reproduction number and the spread
of infectious diseases. According to the basic repro-
duction number R0, the following results are obtained:

Theorem 2 If R0 = βΛ
ραε(α+δ)

< 1, system (6) has

only a disease-free equilibrium point E0 = (Λ
ρ
, 0, 0)

which is locally asymptotically stable. If R0 > 1, the
disease-free equilibrium point E0 is unstable.

Proof It is easy to see that system (6) has only a disease-
free equilibrium point E0 = (Λ

ρ
, 0, 0). Then the stabil-

ity of the disease-free equilibrium E0 will be discussed.
Linearizing system (6) at the disease-free equilibrium
point E0 gives the characteristic equation as follows:
∣
∣
∣
∣
∣
∣
∣

z + ρ −βΛ
ρ
B(z) 0

0 βΛ
ρ
B(z) − (δ + α) 0

0 δ λ + κ

∣
∣
∣
∣
∣
∣
∣
= 0,

where B(z) = limt→∞
∫ t
0 βθ(t, s)(t − s)ε−1ds. Then

the characteristic equation can be reduced as follows:

(z + ρ)h(z) = 0,

where h(z) = z2 + z(λ + κ + α + δ) + βΛ
ρ
B(z)(λ +

κ + z) + (λ + κ)(δ + α) = 0. Since z = −ρ < 0, it
just needs to be shown that all roots of h(z) = 0 have
negative real parts. Suppose z = x + iy where x ≥ 0
is a root of h(t), and rewrite h(z) = 0 as

z2 + z(λ + κ + α + δ) + (λ + κ)(δ + α)

= −βΛ

ρ
B(z)(λ + κ + z).

It is concluded from x ≥ 0 that

|z2 + z(λ + κ + α + δ) + (λ + κ)(δ + α)|
= |βΛ

ρ
B(z)(λ + κ + z)|

≤ βΛ

ρ
Q|(λ + κ + z)|,

(8)

where Q is calculated according to Lemma 3:

Q = lim
t→∞

∫ t

0
θ(t, s)(t − s)ε−1ds

= lim
t→∞ θ(t, 0)I ε

0+θ(0, t) = α−ε.

Take the square of both sides of Eq. (8), one has

|z2 + z(λ + κ + α + δ)(λ + κ)(δ + α)|2

≤
(

βΛ

ρ
Q|λ + κ + z|

)2

.

Denote F1(x, y) and F2(x, y) to be the left-hand and
right-hand side of the above inequality, respectively.
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Stability analysis of a nonlocal SIHRDP epidemic model 127

Then F1(x, y) ≤ F2(x, y) with

F1(x, y)

= |z2 + z(λ + κ + α + δ) + (λ + κ)(δ + α)|2
= |x2 − y2 + x(λ + κ + α + δ) + (λ + κ)(δ + α)

+ i(2xy + y(λ + κ + αδ))|2
= (x2 − y2 + x(λ + κ + α + δ)

+ (λ + κ)(α + δ))2 + y2(2x + λ + κ + α + δ)2

= y4 − 2y2(x2 + x(λ + κ + α + δ)

+ (λ + κ)(α + δ)) + (x2 + x(λ + κ + α + δ)

+ (λ + κ)(α + δ))2

+ y2(4x2 + 4x(α + δ + λ + κ)

+ (λ + κ + α + δ)2)

= y4 + (x2 + x(λ + κ + α + δ)

+ (λ + κ)(α + δ))2

+ y2(2x2 + 2x(λ + κ + δ + α) + (λ + κ)2

+ (α + δ)2),

and

F2(x, y)

= β2Λ2

ρ2 Q2((x + λ + κ)2 + y2).

Notice that

F1(x, y)(λ + κ)2

≥ {(λ + κ)(x2 + x(λ + κ + α + δ)

+ (λ + κ)(α + δ))} + (λ + κ)2(2x2 + (λ + κ)2

+ (α + δ)2)y2

≥ {(λ + κ)x(λ + κ + α + δ) + (λ + κ)2(α + δ)}2
+ (λ + κ)2(α + δ)2y2

≥ (λ + κ)2(x + λ + κ)2 + (λ + κ)2(α + δ)2y2

= (λ + κ)2(α + δ)2{(x + λ + κ)2 + y2}.
and

F2(x, y)(λ + κ)2

= (λ + κ)2
β2Λ2

ρ2 Q2((x + λ + κ)2 + y2).

When βΛQ
ρ(α+δ)

< 1, it is obviously to see

F1(x, y)(λ + κ)2 ≤ F2(x, y)(λ + κ)2

< (λ + κ)2(α + δ)2{(x + λ + κ)2

+ y2,

which is a contradiction. Therefore, h(z) = 0 has no
positive real root, and this implies that the disease-free
equilibrium point E0 is locally asymptotically stable
for R0 = βΛ

ραε(α+δ)
< 1.

Assume R0 > 1. To show that the disease-free
equilibrium point E0 is unstable, it is only to show
that h(z) = 0 admits a positive real root. Considering
z = x > 0, it follows from the above equation that

z2 + z(λ + κ + α + δ) + (λ + κ)(δ + α)

z + λ + κ
= βΛ

ρ
B(z).

Let

F3(z) = z2 + z(λ + κ + α + δ) + (λ + κ)(δ + α)

z + λ + κ
,

F4(z) = βΛ

ρ
B(z),

(9)

then one has F3(0) − F4(0) = (α + δ) − βΛ
ρ
Q < 0 by

R0 > 1. Obviously, F3(z) is an increasing function of z
whereas F4(z) is decreasing in terms of z. Thus, F3−F4
is an increasing function of z. Therefore, there must be
a positive x0 such that F3(x0) = F4(x0) and this x0
is a real positive root of h(z). Hence, the disease-free
equilibrium point E0 is unstable if R0 > 1. 	


3.3 Globally stability

In this subsection, the global stability of disease-free
equilibrium point E0 will be considered. Meanwhile,
the existence and stability of the endemic equilibrium
point will also be investigated.

Theorem 3 Consider system (6), if R0 < 1, the
disease-free equilibrium point E0 is globally asymp-
totically stable, else, the disease-free equilibrium point
E0 is unstable.

Proof According to Theorem 2, it has been known that
if R0 < 1, the disease-free equilibrium point E0 is
locally asymptotically stable. To this end, it is only to
show it is globally attractive. Note that system (6) is
bounded, that is S(t), I (t) and H(t) ∈ (Λ

μ̂
, Λ

μ̌
). Then

denote

S∞ = lim sup
t→∞

S(t), I∞ = lim sup
t→∞

I (t),

H∞ = lim sup
t→∞

H(t),

so S∞, I∞ and H∞ exist with Λ
μ̂

≤ S∞ ≤ Λ
μ̌
, Λ

μ̂
≤

I∞ ≤ Λ
μ̌

and Λ
μ̂

≤ H∞ ≤ Λ
μ̌
. By Lemma.1, there
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exists a sequence tn with tn → ∞ as n → ∞ such that

I (tn) → I∞, İ (tn) → 0 (n → ∞).

The second equation of system (6) can be rewritten as

İ (tn) = βS(tn)θ(tn, 0)I
ε
0+(I (tn)θ(0, tn))

−δ I (tn) − α I (tn).

Take the limit of both sides of the above equations, one
has

βS∞ lim sup
n→∞

θ(tn, 0)I
ε
0+(I (tn)θ(0, tn)) = (δ + α)I∞.

that is

βS∞ I∞α−ε = (δ + α)I∞.

If I∞ > 0 and R0 < 1, the above equality yields

S∞ = (α + δ)αε

β
= Λ

R0ρ
>

Λ

ρ
.

On the other hand, consider the first equation of system
(6), one has

Ṡ = Λ − ρS − βSθ(t, 0)I ε
0+(I (t)θ(0, t)) ≤ Λ − ρS,

which implies lim supt→∞ S(t) ≤ Λ
ρ
. This is a con-

tradiction. So it can be concluded I∞ = 0, that is
I (t) → 0. Hence, based on the third equation in system
(6), one has

Ḣ(tn) = δ I (tn) − (λ + κ)H(tn),

Take the limit of both side, one has H∞ = 0, which
implies H(t) → 0. Similarly, it can be proved that
S(t) → Λ

ρ
. Therefore, the disease-free equilibrium

point E0 is globally asymptotically stable if R0 < 1.
When R0 > 1, it can be concluded from Theorem. 2
that the disease-free equilibrium point E0 is unstable.
	

Theorem 4 If R0 > 1, system (6) has a unique
endemic equilibrium point E∗ = (

(δ+α)αε

β
,

Λ−ρS∗
α+δ

,

δ I ∗
λ+κ

) which is globally asymptotically stable.

Proof Take the equilibrium point to be E∗ = (S∗, I ∗,
H∗) such that

S(t) → S∗, I (t) → I ∗, H(t) → H∗ (t → ∞),

one has

Λ − ρS∗ − βS∗ lim
t→∞ θ(t, 0)I ε

0+(I (t)θ(0, t) = 0,

βS∗θ(t, 0)I ε
0+(I (t)θ(0, t) − δ I ∗ − α I ∗ = 0,

δ I ∗ − (λ + κ)H∗ = 0.

(10)

It is obvious that limt→∞ θ(t, 0)I ε
0+(I (t)θ(0, t) =

α−ε I ∗ based on Lemma 3. Therefore, by solving the
above equation, one has S∗ = (δ+α)αε

β
, I ∗ = Λ−ρS∗

α+δ

and H∗ = δ I ∗
λ+κ

. As the population in each compartment
cannot be negative, the endemic equilibrium point can
only exist if Λβ

(δ+α)ραε > 1. Therefore, when R0 > 1,
system (6) has only a unique endemic equilibrium
point. Define the Lyapunov functions

V (t) = V1(t) + V2(t) + V3(t),

where

V1(t) = S(t) − S∗ − S∗ln S(t)

S∗ ,

V2(t) = I (t) − I ∗ − I ∗ln I (t)
I ∗ ,

and

V3(t) = βS∗
∫ ∞

0
[θ(t, s)(t − s)α−1

∫ t

t−s
(I (τ ) − I ∗ − I ∗ln I (τ )

I ∗ )]dτds.

Then the derivative of V1(t) along the solutions of sys-
tem (6) is given by

dV1
dt

=
(

1 − S∗
S

)
dS

dt

=
(

1 − S∗
S

)

(Λ − ρS − βSθ(t, 0)I ε0+(I (t)θ(0, t)))

=
(

1 − S∗
S

)

(−ρS − βSθ(t, 0)I ε0+(I (t)θ(0, t))) + ρS∗

+ β

αε
S∗ I∗

)

= −ρ(S − S∗)2

S

+
(

1 − S∗
S

)

(
β

αε
S∗ I∗ − βSθ(t, 0)I ε0+(I (t)θ(0, t)).

(11)

Similarly, based on the definition of S∗, the deriva-
tive of V2(t) along the solutions of system (6) is given
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by

dV2
dt

= (1 − I ∗

I
)
dI

dt

= (1 − I ∗

I
)(βSθ(t, 0)I ε

0+(I (t)θ(0, t))

− (δ + α)I )

=
(

1 − I ∗

I

)

(βSθ(t, 0)I ε
0+(I (t)θ(0, t))

− β

αε
S∗ I

)

.

(12)

Then the derivative of V3(t) along the solutions of sys-
tem (6) is given by

dV3
dt

= βS∗ I∗
∫ ∞
0

θ(t, s)(t − s)α−1
(
I (t)

I∗ − I (t − s)

I∗

+ln
I (t − s)

I (t)

) (13)

Add Eqs. (11), (12) and (13), one has

dV

dt
= dV1

dt
+ dV2

dt
+ dV3

dt

= −ρ(S − S∗)2

S
+ βS∗ I∗

∫ t

0

[
e−α(t−s)(t − s)α−1

(

2 − S∗
S(t)

− S(t)I (t − s)

S∗ I (t) + ln
I (t − s)

I (t)

)]

ds

= −ρ(S − S∗)2

S
− βS∗ I∗

∫ t

0

[
θ(t, s)(t − s)α−1

(

g

(
S∗
S(t)

)

+ g

(
S(t)I (t − s)

S∗ I (t)

))]

ds, (14)

where g(x) = x − 1 − lnx > 0 for x > 0 if and only
if g(x) = 0 for x = 1. Therefore, it can be see that
dV
dt ≤ 0 and dV

dt = 0 only and if only S = S∗ and
I = I ∗. Therefore, by LaSalle’s invariance principle,
the endemic equilibrium point E∗ is globally asymp-
totically stable. 	


4 Impulsive vaccination

WhenCOVID-19was first spread, countries around the
world took active measures to effectively contain the
spread of the epidemic. But almost all countries are
now experiencing a secondary spread of the disease.
With unremitting efforts, the development of vaccines
has been remarkably successful. But the question is
how to properly delivery vaccines to control the spread

of COVID-19. This section studies the dynamic behav-
ior of system (6) under the regular impulsive vaccina-
tion.

4.1 Regular impulsive vaccination

The regular impulsive vaccination is characterized by
a constant vaccination rate θ and a constant inter-
vaccination time interval tv . For t �= ktv (k = 1, 2, ...),
consider the following system:
⎧
⎪⎨

⎪⎩

dS
dt = Λ − ρS − βSθ(t, 0)I ε

0+(I (t)θ(0, t)),
dI
dt = βSθ(t, 0)I ε

0+(I (t)θ(0, t)) − δ I − α I,
dH
dt = δ I − (λ + κ)H,

(15)

and for t = ktv , consider the following impulsive vac-
cination:
⎧
⎨

⎩

S(t+) = (1 − θ)S(t),
I (t+) = I (t),
H(t+) = H(t).

(16)

where θ ∈ [0, 1] is vaccination rate; tv is time intervals
between two consecutive impulsive vaccinations. The
dynamics of the auxiliary system (15) and (16) will be
discussed in the following.

Theorem 5 The periodic solution of system (15) and
system (16) is (S∗(t), 0, 0), where
⎧
⎨

⎩

S∗(t) = Λ
ρ + (S∗ − Λ

ρ )e−ρ(t−ktv), ktv < t ≤ (k + 1)tv,

S∗ = Λ(1−θ)(1−e−ρtv )

ρ(1−(1−θ)e−ρtv )
, t = ktv.

(17)

Proof When I (t) and H(t) are entirely absent perma-
nently, i.e., I (t) = H(t) = 0 for all t > 0. It can be
reduced to the following system:
{ dS

dt = Λ − ρS, t �= ktv,
S(t+) = (1 − θ)S(t), t = ktv.

By Lemma.4, one has that the periodic solution of sys-
tem (15) is globally asymptotically stable. 	

Theorem 6 Let (S(t), I (t), H(t)) be any solution of
system (15), then (S∗(t), 0, 0) is locally asymptotically
stable when R(θ, tv) ≤ 1, where

R(θ, tv) = R0(1 − θ(1 − e−ρtv )

tvρ(1 − (1 − θ)e−ρtv )
). (18)

Proof Consider the following system with the small
amplitude perturbations:
⎛

⎝
x(t)
y(t)
z(t)

⎞

⎠ = U (t)

⎛

⎝
x(0)
y(0)
z(0)

⎞

⎠ ,
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where U (t) satisfies

dU

dt
=

⎛

⎝
−ρ −βα−εS∗(t) 0
0 βα−εS∗(t) − (α + δ) 0
0 δ −(λ + κ)

⎞

⎠U (t),

andU (0) = E is a unit matrix. Hence, the fundamental
solution matrix is

U (t) =
⎛

⎜
⎝
e−ρt e

∫ t
0 −βα−ε S∗(s)ds 0

0 e
∫ t
0 βα−ε S∗(s)−(α+δ)ds 0

0 eδt e−(λ+κ)t

⎞

⎟
⎠ .

The linearization of system (15) becomes
⎛

⎝
x(kt+v )

y(kt+v )

z(kt+v )

⎞

⎠ =
⎛

⎝
1 − θ 0 0
0 1 0
0 0 1

⎞

⎠

⎛

⎝
x(ktv)
y(ktv)
z(ktv)

⎞

⎠ .

The stability of the periodic solution (S∗(t), 0, 0) is
determined by the eigenvalues of

W =
⎛

⎝
1 − θ 0 0
0 1 0
0 0 1

⎞

⎠U (tv)

=
⎛

⎝
1 − θ 0 0
0 1 0
0 0 1

⎞

⎠

⎛

⎜
⎝
e−ρtv e

∫ t
0 −βα−ε S∗(s)ds 0

0 e
∫ tv
0 βα−ε S∗(s)−(α+δ)ds 0

0 eδtv e−(λ+κ)tv

⎞

⎟
⎠ .

which λ1 = (1 − θ)e−ρtv < 1, λ2 = e−(λ+κ)tv <

1 and λ3 = e
∫ tv
0 βα−ε S∗(s)ds−(α+δ)tv . Therefore, when

R(θ, tv) ≤ 1,
∫ tv

0
βα−εS∗(s)ds − (α + δ)tv ≤ 0,

that is λ3 < 1, which implies (S∗(t), 0, 0) is locally
stable. 	

Remark 2 If θ = 0 (i.e., in the absence of impulsive
vaccination), then the impulsive reproduction number
R(0, tv) becomes the standard, non-impulsive, repro-
duction number, i.e., R(0, tv) = R0, and implies that
the stability at the disease-free equilibrium point when
R0 ≤ 1 is globally asymptotically stable.

Remark 3 Obviously, the impulsive reproduction num-
ber R (θ, tv) < R0. As a result, there is no need to per-
form pulse vaccine control when the disease is guar-
anteed to be eradicated. However, when the disease is
persistently spread, it can be eliminated by adding pulse
control so as to reduce the basic reproductive number.

4.2 Adaptive impulsive vaccination

According to the analysis in the previous section, when
the basic reproduction number is less than 1, the dis-
ease dies out. However, periodic pulse vaccine control
will lead to a waste of vaccine or fail to achieve the con-
trol purpose, so more complex pulse vaccine strategy
is studied in this subsection.

Like [40], adaptive pulse vaccine strategy updates
the impulsive vaccination rate θi by using a rule in ref-
erence to the quantity of hospitality class. Based on
Theorem 6, it can be known that the epidemic disease
is guaranteed to be eradicated when R(θ, tv) < 1. So
identified parameters of the system (6) according to the
real data of COVID-19, a fixed value for tv is chosen
such that R(0, tv) ≥ 1 and R(1, tv) < 1, which means
the disease does not die out and persists for a long time
without vaccine control, but when all susceptible peo-
ple are vaccinated, the disease is bound to be stamped
out. Then adatabase of R(θ, tv) for θ ∈ [θmin, 1],where
θmin = arg{θ ∈ [0, 1]|R(θ, tv) = 1},
by taking Eqs. 17 and 18 into account.

The aim of this rule is to increase pulse vaccination
rates, and if the number of hospitalizations exceeds a
predetermined value, to reduce it. To this end, the law
used for updating such as the vaccination rate at each
vaccination time instant is given by:

θi = arg{θ |R(θ, tv) = 1 + gi (R(1, tv) − 1)},
where gi ∈ [0, 1] is an auxiliary value given by:

gi =
⎧
⎨

⎩

1, i f log10H(ti ) > 0,
1 − |log10H(ti )|/ci , i f log10|H(ti )| ∈ [−ci , 0],
0, i f log10|H(ti )| < −ci .

which ci > 0 is a predefined constant.

5 Simulation

Firstly, the validity of the theoretical results is veri-
fied based on real data. However, due to the differ-
ent responses of different countries after the secondary
transmission of COVID-19, for example, the disease
was effectively contained after China experienced the
second peak, but other countries such as France, the
USA, India and Argentina, are facing further rapid
spread of the disease. So this section will consider
China and other countries separately, and control the
spread of COVID-19 through an adaptive vaccine pulse
strategy.
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Table 1 Recovery rate function and mortality function

λ(t) a1
1+ea2(t−a3)

a1
1+e−a2(t−a3) a1 + e−a2(t+a3)

κ(t) b1
eb2(t−b3)+e−b2(t−b3) b1e−b2(t−b3)2 b1 + e−b2(t+b3)

5.1 Data source

The data used in this paper are from the Johns Hopkins
University Center for System Science and Engineer-
ing [1]. The Johns Hopkins University published data
of accumulated and newly confirmed cases, recovered
case and death case of COVID-19 from January 22,
2020. The data of COVID-19 cases of different city
from January 23, 2020, to January 1, 2021, will be
used.

5.2 The description of the stability results

In this subsection, on the basis of system (6), the fitting
effect on the current hospital cases is discussed, and the
accuracy of Theorem 3 is verified.

By analyzing the cure andmortality data ofHunan in
China, the appropriate recovery rate function and mor-
tality function is selected from Table. 1 according to
[41]. Based on the real data of Hunan in China, param-
eter identification is given in Table 2. From Table 2, it
is easy to see that the transmission rate β is higher,
which represents the highly infectious of COVID-19,
but the protection rate ρ = 0.7092 indicates that indi-
viduals have a strong sense of self-prevention. Also,
the fractional-order ε = 0.3068 < 1, which means
that historical information has a very important influ-
ence on the current spread of disease. On the basis of
Table 2, system (6) can effectively fit the confirmed
cases, which can be seen in Fig. 2. Furthermore, it
is found from Fig. 3 that the disease-free equilibrium
point is globally asymptotically stable, which is con-
sistent with Theorem 3.

5.3 The description of multi-wave

5.3.1 The Spread of COVID-19 in China

In order to further measure the long memory of the
spread of COVID-19, the multi-peak in China will
be considered in this subsection. In contrast to the

Table 2 Parameter identification of Hunan

Parameters Hunan(China) Parameters Hunan
(China)

Λ 0.2431 ρ 0.7092

β 1.1525 α 0.5502

δ 0.1424 ε 0.3068

λ a1
1+e−a2(t−a3) [a1, a2, a3] [0.334,

0.0702,
32.6864]

κ b1
eb2(t−b3)+e−b2(t−b3) [b1, b2, b3] [0.0267, 0.09,

30]
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Fig. 2 The number of hospitalization case

long-term memory, the disease only relies on the
current information in the transmission process and
has no dependence on the historical information. In
other words, the memoryless kernel function is consid-
ered [17]:

K (s) = εe−εs (n = 0).

Then system (5) becomes the local epidemic model as
follows:
⎧
⎪⎨

⎪⎩

dS
dt = Λ − ρS − βS

∫ t
0 εe−ε(t−s) I (s)θ(t, s)ds,

dI
dt = βS

∫ t
0 εe−ε(t−s) I (s)θ(t, s)ds − δ I − α I,

dH
dt = δ I − (λ + κ)H.

(19)

COVID-19 was discovered in Wuhan, China at the
end of 2019. But since the end of March, the second
wave of epidemics occurred in Beijing, Heilongjiang,
Guangdong and other cities in China. In addition, due
to the implementation of the CT diagnosis method and

123



132 Z. Lu et al.

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

time (days) 2020   

6

7

8

9

10

11

12

13

N
um

be
r 

of
 s

us
ce

pt
ib

le
 c

as
es

106 Hunan (China)

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

time (days) 2020   

0

50

100

150

200

250

300

350

400

450

N
um

be
r 

of
 in

fe
ct

ed
 c

as
es

Hunan (China)

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

time (days) 2020   

100

200

300

400

500

600

N
um

be
r 

of
  h

os
pi

ta
l c

as
es

Hunan (China)

Fig. 3 On the basis of system (6), the simulation curves of sus-
ceptible individuals, infected individuals and hospitalized indi-
viduals (the reproduction number is R0 = 0.685)

the nucleic acid test method, the number of confirmed
cases increased sharply and reached a peak in early
February. Therefore, we assume that starting from 12
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Fig. 4 The number of confirmed and recovery cases in Hei-
longjiang with two peaks (Nonlocal (above), local (below)

February, the diagnosis rate will reach and maintain
its maximal value. However, since the end of June, the
thirdwave of epidemics occurred inBeijing.According
to the news by Beijing, the detection of nucleic acid
reagents was increased from 17 June. Therefore, the
diagnosis rate do not maintain the maximal value from
17 June, but subject to a new distribution. Like [42],
the diagnosed period 1

δ
of two peaks and three peaks

are described by the following piecewise function:

1

δ
=

{(
1
δ0

− 1
δe

)
e−w1t + 1

δe
, t < t1

1
δe

, t ≥ t1,

and

1

δ
=

⎧
⎪⎪⎨

⎪⎪⎩

(
1
δ0

− 1
δe

)
e−w1t + 1

δe
, t < t1

1
δe

, t1 ≤ t ≤ t2(
1
δe

− 1
δ f

)
e−w2(t−t2) + 1

δ f
, t > t2,
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Fig. 5 The number of confirmed and recovery cases in Guang-
dong with two peaks (nonlocal (above), local (below)

where δ0 is the initial diagnosis rate, δe (δe > δ0) is the
diagnosis rate of individuals and wi (i = 1, 2) are the
decreasing rate of the diagnosed period from symptom
onset to be diagnosed, δ f (δe > δ0) is the maximum
diagnosis rate of individuals, t1 is 13 February, t2 is
17 June. From Figs. 4, 5 and 6, it can be found that
system (6) fits the data better than system (19). Also,
it can be seen from Tables. 3 and 4 that in the case of
Heilongjiang, Guangdong and Beijing, historical infor-
mation on the spread of the disease is very important
to the present, and the impact of historical information
is different at different peak stages. For example, for
Guangdong, the impact of the first phase is greatest,
while for Beijing, the impact of the second stage is the
most obvious. Here εi (i = 1, 2, 3, 4) represents the
fractional order of the peak of the wave in Tables. 3, 4.
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Fig. 6 The number of confirmed and recovery cases in Beijing
with three peaks (nonlocal (above), local (below))

Table 3 The fractional-order ε in Heilong jiang and
Guangdong

Fractional-order ε1 ε2 ε3

Heilongjiang 0.1547 0.2296 0.1978

Guangdong 3.2718 × 10−7 0.4023 0.4582

Table 4 The fractional-order ε in Bei jing

Fractional-order ε1 ε2 ε3 ε4

Beijing 7.7659 × 10−5 4.0589 × 10−14 0.2902 0.9022

5.3.2 The spread of COVID-19 in France, India, USA
and Argentina

As of 1 January, the global coronavirus death toll sur-
passed 1.8 million and the confirmed cases reached a
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Table 5 Parameter
identification of France

Parameters France Parameters France

Λ1 4.9035 × 105 ρ1 4.0528 × 10−4

β1 0.9487 α1 0.9158

δ1 0.0484 ε1 1.5329 × 10−6

λ1 a1 + e−a2(t+a3) [a1, a2, a3] [0.0007, 1, 54.6647]

κ1 b1 + eb2(t+b3) [b1, b2, b3] [0.0003, 0.7831, 50.9326]

Λ2 8.0876 × 106 ρ2 0.1002

β2 0.7724 α2 0.7458

δ2 0.0065 ε2 4.4897 × 10−8

λ2 a1 + e−a2(t+a3) [a1, a2, a3] [0.0005, 1, 54.3428]

κ2 b1 + eb2(t+b3) [b1, b2, b3] [0.0002, 0.7835, 51.0205]
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Fig. 7 The number of isolated cases in France

Table 6 Predicted number of confirmed individuals of France

Date Real data Predicted data

1.2 2403680 2390075

1.3 2415841 2402164

1.4 2418734 2414224

1.5 2436782 2426249

1.6 2460267 2438236

1.7 2460267 2450183

1.8 2498130 2462087

total of 83561252. The USA, Argentina, India, France
and so on are among the worst hit by COVID-19 across
the world, where confirmed cases are still rising. In
this subsection, based on the data from January 22,

2020, to January 1, 2021, parameter identification of
the above four countries are carried out through system
(6), respectively.Meanwhile, numerical simulations fit
the real data, and short-term prediction from January 2
to January 8 aremade to comparewith the real reported
data.

France reimposed a second blockade from October
30, 2020, in response to the rapid rebound of COVID-
19. In the second outbreak, COVID-19 has spread at
an alarming rate, surpassing even the most pessimistic
predictions. Therefore, in order to better describe the
spread of COVID-19 in France, the spread process is
analyzed in two phases: January 22–October 29, 2020;
October 30, 2020–January 1, 2021. Parameter identi-
fication is shown in Table.5. And it can be seen from
Table.5 that regardless of the phase, the transmission
rates β in France are high, and the first phase is sig-
nificantly higher than the second phase. Meanwhile,
both the detection rates are very low in France, indi-
cating that France still needs to make further efforts
to effectively control the evaluation of the epidemic.
But compared with the first stage, the self-protection
rate of individuals in the second stage increased signif-
icantly, suggesting that citizens have fully realized the
severity of COVID-19. Furthermore, the second stage
relies more on history (ε1 > ε2). And the mortality
and recovery rates are about the same between the two
stages. In addition, according to the results of parameter
identification, data fitting results and prediction results
are shown in Fig. 7 and Table. 6. At the same time,
based on previous analysis, adaptive pulse control for
the spread of COVID-19 in France is implemented. Set
ci = log0.2, that is, pulse control is implemented from
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Fig. 8 The number of confirmed cases in France with vaccina-
tion and the change of vaccination rate

1 January when the hospital population exceeds 20%
of the total population. The results of the implementa-
tion of control are shown in Fig. 8, which shows that
the implementation of vaccine control can effectively
reduce the spread of the epidemic, but there will be an
upward phase before the down phase. Whereas it also
suggests that vaccine control will not end the epidemic
any time soon. Furthermore, consider the importance
of reducing human contact, such quarantine measures
are divided into four scenarios, as shown in Table 7.
The results of implementing these two measures are
shown in Fig. 9, which shows that the implementation
of quarantine and vaccine can lead to a rapid decline
in the epidemic without any further upward phase, but
the effect of adding quarantine is not obvious, no mat-
ter how strong the quarantine is. It is therefore sug-
gested that restrictions on population movement can

Table 7 The publicmeasures are taken from the FranceCOVID-
19 alert system

Level β (%) Public measures parameters

1(Do nothing) 100 Vaccination and No public
measures

2 (Prevent) 50 Vaccination, School and
workplaces open

3 (Restrict) 25 Vaccination and Learn at
home

4 (Lock-down) 12.5 Vaccination and Instructed to
stay at home

be relaxed at the same time as vaccine controls are in
place. Moreover, if the outbreak is to be completely
eradicated, France will have to take other measures to
deal with the spread of COVID-19.

Meanwhile, as of 1 January, India had the second
largest number of confirmed cases in the world with
a cumulative total of 10256701. Based on real data
from January 22, 2020, to January 1, 2021, parameter
identification is shown in Table. 8. As can be seen from
Table. 8, the sense of self-protection of Indian citizens
is stronger than that of France and the transmission rate
is strictly lower than that of France.Moreover, the trans-
mission of COVID-19 in India is strictly dependent on
historical information and cannot be considered as a
memoryless process. The corresponding fitting results
and forecast results are shown in Fig. 10 and Table. 9.
Similarly, based on previous analysis, adaptive pulse
control for the spread of the outbreak in India from Jan-
uary 1, 2021, is implemented. Set ci = log0.2, that is,
pulse control is implemented when the inpatient popu-
lation exceeds 20% of the total population. As can be
seen from Fig. 11, pulse control also lead to an increase
in the number of diagnoses, but the increase is slight.
And, unlike the cases of France, vaccine control in India
can quickly reduce the spread of COVID-19 and thus
achieve eradication. What’s more, adaptive pulse con-
trol ultimately results in the proportion of vaccine 0.203
that makes the disease disappear.

Furthermore, the USA is now the worst affected
country by COVID-19 in the world, with 220,000 new
confirmed cases in a single day. It becomes necessary
to study how the epidemic will spread in the USA and
predict the number of cases to be confirmed, as well
as to come up with appropriate solutions. Moreover,
the real data are given by [1], which stopped collect-
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Fig. 9 The number of confirmed cases in France with vaccina-
tion and quarantine (0.5β, 0.25β, 0.125β, respectively)

Table 8 Parameter identification of India

Parameters India Parameters India

Λ 6.8481 × 107 ρ 0.2251

β 0.3968 α 0.0979

δ 0.0061 ε 6.6656 × 10−6

λ a1
1+e−a2(t−a3) [a1, a2, a3] [0.0912, 0.5222, 0]

κ b1
eb2(t−b3)+e−b2(t−b3) [b1, b2, b3] [0.0024, 0.0080,

0.0108]

ing recovery data from December 14 in the USA. And
the number of confirmed individuals in the USA has
increased dramatically since October 31, 2020. This
may be due to changes in government policies and indi-
vidual behavior, leading to a surge in the number of
infected people. In order to respond effectively to the
COVID-19 outbreak in the USA, the spread of the out-
break in theUSA is analyzed in two phases: January 22,
2020–October 31, 2020;November 1, 2020–December
13, 2020. Therefore, based on the data from January
22, 2020, to December 13, 2020, the code like [41] is
used for parameter identification, and the results are
shown in Table. 10. As can be seen from Table.10, the
transmission rate β of COVID-19 in the USA is strictly
lower than that in France and India, but the lower self-
protection rate ρ of American citizens, coupled with
insufficient detection efforts,making the disease spread
wantonly in the USA. In addition, the spread of the dis-
ease in the USA is less dependent on historical infor-
mation, which may be due to different measures taken
in the USA at different times. Furthermore, Table. 11
presents the short-term prediction from December 14
to December 20. Compared with the real reported data,
it can be found from Fig. 12 that system (6) has a good
fitting and forecasting effect. Similarly, based on pre-
vious analysis, we implemented adaptive pulse control
for the spread of COVID-19 in the USA from Decem-
ber 14, 2020. As can be seen from Fig. 13, different
from in France and India, vaccine control in the USA
can quickly reduce the spread of the epidemic and thus
achieve eradication. What’s more, adaptive pulse con-
trol ultimately results in the proportion of vaccine 0.243
that makes the disease disappear.

Finally, to further verify the effect of fractional order
on disease development, the transmission of COVID-
19 in Argentina is considered based on data from Jan-
uary 22, 2020, to January 1, 2021. Using the method
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Fig. 10 The number of confirmed cases in India

Table 9 Predicted number of confirmed individuals of India

Date Real data Predicted data

1.2 247220 246728

1.3 243953 243086

1.4 231236 239492

1.5 227546 235945

1.6 228083 232445

1.7 225449 228991

1.8 225449 225583

similar to the other three countries, parameter identifi-
cation is obtained in Table.12, and the transmission of
COVID-19 in Argentina is strictly dependent on his-
torical information and the effect of memory length
is lower than in the other three countries. The corre-
sponding fitting results and forecast results are shown
in Fig.14 and Table.13. Similarly, based on previous
analysis, adaptive pulse control for the spread of the
outbreak in Argentina from January 1, 2021, is imple-
mented. As can be seen from Fig. 15, pulse control
reduces the number of confirmed cases immediately,
but the outbreak can not be eradicated. At the same
time, the proportion of vaccine delivered is not con-
stant, which fluctuates up and down.

6 Conclusion and discussion

Considering themulti-peak situation of epidemic trans-
mission, the nonlocal SIHRDP epidemic model with
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Fig. 11 Thenumber of confirmed cases in Indiawith vaccination
and the change of vaccination rate

memory effect is investigated in this paper. Firstly, the
existence and uniqueness of the nonnegative solution
for system (6) are established. Then the global stabil-
ity of the disease-free equilibrium point E0 is obtained
when the basic reproduction number R0 < 1, andwhen
R0 > 1, the global stability of the endemic equilib-
rium point E∗ is also discussed. Meanwhile, with the
real data from January 22, 2020, to January 1, 2021, in
Hunan, parameter identification is carried out and the
basic reproduction number R0 = 0.685 < 1, which
represents COVID-19 would not spread in Hunan if
the current policy remained unchanged. In addition,
the fractional-order ε = 0.3068 < 1 indicates that the
spread of the disease in Hunan is strictly dependent on
historical information. Besides, in order to verify the
validity of system (6), based on the real data of Bei-
jing, Guangdong and Heilongjiang from January 22,
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Table 10 Parameter identification of the USA

Parameters US Parameters US

Λ 9.8523 × 106 ρ 0.0249

β 0.783 α 0.7725

δ 0.0236 ε 8.5557 × 10−6

λ a1
1+e−a2(t+a3) [a1, a2, a3] [0.008, 0.0497, 137.6922]

κ b1 + e−b2(t+b3) [b1, b2, b3] [0.0003,0.0438,163.1724]

Λ 5.5672 × 106 ρ 0.0088

β 0.1841 α 0.3773

δ 0.017 ε 0.7311

λ a1
1+e−a2(t+a3) [a1, a2, a3] [0.0533, 0.0082, 295.1663]

κ b1 + e−b2(t+b3) [b1, b2, b3] [0.0002, 0.4180, 17.7102]

Table 11 Predicted number of confirmed individuals of theUSA

Date Real data Predicted data

12.14 16279098 15373133

12.15 16474503 15516735

12.16 16718162 15701502

12.17 16952589 15849467

12.18 17199987 15891954

12.19 17393546 15981480

12.20 17581534 16073154

2020, to January 1, 2021, multiple peaks in China are
considered. Since the Chinese government increased
nucleic acid testing, the diagnosis rate δ is considered as
a piecewise function. After fitting the real data through
system (6) and system (19), the results reveal that the
transmission of disease in these three provinces has
shown the memory effect.

At the same time, with the success of the vac-
cine development, how to distribute the vaccine rea-
sonably becomes very important. In this paper, adap-
tive pulse vaccine control is considered based on sys-
tem (6). Firstly, the basic reproduction number R(θ, tv)
under the pulse condition is obtained, and it is proved
that if R(θ, tv) ≤ 1, the disease will die out. Then,
employing the basic reproduction number, an adaptive
pulse control is designed to control the outbreak as
much as possible. Meanwhile, parameter identification
is carried out with real data in France from January
22, 2020, to January 1, 2021. Also it can be seen that
the transmission rate is very high; however, the self-
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Fig. 12 The number of confirmed cases in the USA

protection awareness of citizens is very slack, and the
testing is not sufficiently enforced. Moreover, no mat-
ter in which stage of epidemic transmission, there is
a strict dependence on historical information. More-
over, based on the parameter identification results, the
short-term prediction of COVID-19 in France is made,
and it is found that system (6) not only has a good fit-
ting effect, but also has a good prediction effect. Then
we presumed that when the number of hospitalizations
exceeds 20% of the total population, vaccine control
will be implemented. The numerical results show that
the number of confirmed cases in France will experi-
ence a brief rise and then a decline, but COVID-19 will
not disappear completely. Then, by setting up four quar-
antinemeasures, it can be found that reducing exposure
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Fig. 13 The number of confirmed cases in the USA with vacci-
nation and the change of vaccination rate

under vaccine control conditions not doesn’t make a
radical difference. Therefore, based on the above anal-
ysis, quarantine measures can be relaxed under vac-
cine control; moreover, other effective measures must
be taken in France to eliminate COVID-19. Compared
with France, India has a strong sense of self-protection
among its citizens, and the rate of disease transmis-
sion in India is strictly lower that of France. Similarly,
applying adaptive pulse control to India under the same
conditions, it can be found that the number of confirmed
also experiences a brief rise, but eventually falls to zero.
Varied from the cases in France and India, the number
of confirmed cases in the USA drops to zero as soon as
vaccine control is implemented. But using the adaptive
pulse vaccine to control outbreaks in Argentina, like
those in the USA, would immediately decline, but not
ultimately eradicate. In this paper, themethods used are
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Fig. 14 The number of confirmed cases in Argentina

Table 12 Parameter identification of Argentina

Parameters Argentina Parameters Argentina

Λ 1.9389 × 106 ρ 0.039

β 0.3583 α 0.3049

δ 0.0039 ε 0.0939

λ a1 + e−a2(t+a3) [a1, a2, a3] [0.0161, 0.0127,
207.8303]

κ b1
eb2(t−b3)+e−b2(t−b3) [b1, b2, b3] [0.0045, 0.0214,

2.4528]

Table 13 Predicted number of confirmed individuals of
Argentina

Date Real data Predicted data

1.2 144367 155101

1.3 144276 156772

1.4 147223 158480

1.5 152329 160221

1.6 158147 161992

1.7 161090 1163789

1.8 164283 165610

the least square method and the first differencemethod,
and the research on the optimization of the algorithm
[43] will be our future work.

This paper presents the relationship between mem-
ory anddisease transmission, and thenumerical simula-
tion confirms the derived theory by harnessing real data
of COVID-19. Although this study has a high accuracy
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Fig. 15 The number of confirmed cases in Argentina with vac-
cination and the change of vaccination rate

in predicting the epidemic situation and formulating
reasonablemeasures, it also raises several questions for
further research: how to set up reasonable measures in
France to completely eliminate the epidemic situation;
what to do when the effect and quantity of vaccine is
overestimated; how to set the time arrangement of vac-
cine delivery more reasonable and so on.
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