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SPECTRUM, DIMENSION AND POLYMER ANALOGIES IN FLUID TURBULENCE 

ABSTRACT 

The relation between fractal dimension and inertial exponents in three dimensional 

incompressible fluid turbulence is analyzed. Several polymer analogies are explained, and 

an application to the numerical modeling of turbulence is presented. 
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It has long been noted that fully developed turbulence in a three dimensional fluid 

has fractal properties 1•
2

•
3

, and that the stretched vortex structures that are its carriers 

resemble polymers4 •5 • However, the quantitative relations between vortices, polymers, 

their dimensions and characteristic exponents, have not been properly understood and as 

a result the qualitative insight has not led to significant progress in turbulence modeling 

and computation. 

The energy spectrum E(k) of homogeneous turbulence is calculated by integrating the 

Fourier transform of the trace of the velocity correlation tensor over the the sphere of radius 

k = liJ, where i is the wave vector dual to the separation .!i the mean energy at a point, 

~!,2 , where the bar denotes an average and.!:! is the velocity, equals ~ J0
00 E(k)dk. Similarly, 

if { = curl..,!t denotes the vorticity, then £_2 = J0
00 

Z(k)dk, where Z(k) is the vorticity 

spectrum. An elementary calculation6 yields Z = k 2 E for homogeneous incompressible 

flow. The inertial range is the range of scales k- 1 small compared with the scales on which 

the fluid is stirred but large compared to dissipation scales. This range is the locus of an 

energy cascade from large to small scales, generated by vortex stretching. It is generally 

believed that in the inertial range E(k) - k-"1, when 1 is the universal inertial exponent. 

Kolmogorov obtained for 1 the value 1 = 5/3; a derivation of this result on the basis of a 

plausible cartoon of the equations of motion can be found in reference 7. 

Vortex tubes stretch non-uniformly, and it can readily be seen that the portions that 

are stretched most contribute most to €2 • Thus a small portion of the volume available ,...., 
to the flow contains more than its share of vorticity. Consider a single realization of the 

flow, pick out a finite portion V of the volume it occupies, and define the e-support of the 

vorticity to be the smallest set A in V such that 

Assume that the flow is described by Euler's equations, which are appropriate in the 

inertial range8 • It is plausible and compatible with numerical results and available theory 

to assume that there exists a time T such that for t > T the limit D = lim e-o dim A exists 

with probability one, where dim denot~ Hausdorff dimension. D is the universal fractal 

dimension of turbulence. The limiting set lime-o A, if it exists, is the essential support of 
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the vorticity. The usual guess forD is D,..., 2.5 (see, for example, reference 1). We shall 

be assuming in this letter that vortex tubes remain approximately tubes as they stretch, 

and we shall ignore the added complexity that arises when sheet-like structures form as 

vortex tubes approach each other9 • The evidence that this is a legitimate approximation 

is quoted, e.g., in reference 5. 

One may well wonder whether there is a logical relation between 1 and D, and further 

whether there is a functional relation between them. It may well be that there exists a single 

pair (/,D) typical of Euler's equations, rather than a function 1 = 1(D). In, the polymer 

problem we shall describe below a function 1(D) can indeed be defined, and provides 

qualitative information about the hydrodynamical situation. A relation between 1 and D 

has been derived in references 1 and 2. The derivation contains the correct observation 

that as the energy cascades to high k. the "active" (presumably highly vortical) portion of 

the volume shrinks. If the "active volume" shrinks by f3 < 1 when the scale is halved, then 

f3 = 2(D- 3 ). This observation, together with other assumptions, leads to the relation 

1 = 5/3 + (3- D)/3. ( 1) 

Equation (1) is widely quoted, but it cannot be right: (i) One expects d1/dD > 0, contrary 

to what happens in equation (1), for as D decreases, the support of € decreases, € becomes - -
more singular, it acquires a longer spectral tail and 1 decreases. (ii) The assumption that 

1 = 5/3 when D = 3 is false: if D = 3, € is well behaved, (€(x + r)- €(x))2 remains ,... ... ,._ ,.,.,-

bounded 10 as r = l!:l -+ 0 and a Fourier transform yields 1 ;:::: 3; conversely, we shall see 

below that if there is an energy cascadeD< 3, thus D < 3 when 1- 5/3. Note that these 

remarks are self-consistent: if 1 ;:::: 3 when D = 3, and d1 / dD > 0, then it is possible that 

1(D = 2.5) = 5/3. (iii) The polymer analogy will show that 1 and D should depend on 

the integral constraints that are obeyed by the motion: conservation of volume, helicity, 

circulation, connectivity of vortex lines and energy. These do not appear in the argument 

that leads to equation ( 1). 

The simplest polymer analogy is as follows: consider a linear polymer in a solvent. 

The mean end-to-end length r of a polymer chain with N bonds behaves as r- N 1/J"'; p. 

depends on the constraints imposed on the chain 11 • For a free gaussian chain (i.e., an arc 
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of Brownian motion) J.L = 2; for a chain constrained to avoid itself J.L · 5/3 (the inverse 

J.L - 1 of this value of J.L is known as the "Flory exponent"). Once one knows how many 

bonds live in a sphere of radius r, one can find how many live between r and r + dr, and 

thus the two-point correlation function of the bond density can be determined; for small r 

it scales as rJ.L- 3 , and its Fourier transform for large k behaves as k-J.L. On the other hand, 

the Hausdorff dimension of the chain 12 is J.L. If one thinks of the chain as being analogous 

to a vortex tube, the analogue of Z is produced by an integration of the Fol.lrier transform 

over the sphere of radius k that adds a factor ,...._ k 2 , and the analogue of E is then obtained 

by a division by k2 • Thus E(k) ....... k-"f where 1 = D, D =dimension of the chain. Clearly 

d1/dD > 0. Note that 1 and Dare affected by the constraint of self-avoidance. 

For a vortex system things are a little more complicated since €, the vorticity, is a -
vector quantity. If D = 3, we have seen that 1 ~ 3. If the essential support of the vorticity is 

a collection of arcs of Brownian motion, D = 2, i{! + !)i(~) = 5_2S(!) since the increments 

of Brownian motion are independent and,£ is tangent to its support. A 
1

Fourier transform 

then yields 1 = 0. (A note of caution: we do not know, even for tube or filament-like 

supports, that D determines 1 uniquely). The pairs (D = 3,1 ~ 3), (D = 2,1 = 0) are 

compatible with d1jdD > 0 and the usually accepted pair (D ,...._ 2.5,1 = 5/3) interpolates 

nicely between them. 

The polymer analogy shows that it is reasonable to think of a functional relation 

1 = 1(D). The shift in the graph of 1(D) (for example, 1(2) = 2 in the polymer case, 

1(2) = 0 in the vortex case) is due to the vector nature of e, as can best be seen in the case -
D = 2, where the vorticity correlation vanishes for r =f. 0 because the directions of € are ,_ 

independent, while the (scalar) density correlation in the polymer case remains non-zero. 

Note further that the relation 1 = 1(D) does not determine the values of D and 1; these 

depend on the constraints which will be different in the two cases. 

A further relation between polymer theory and vortex theory is revealed by the random 

vortex approximation 13•14 • The motion of vortex tubes and filaments is determined by a 

set of equations that resemble the Kirkwood equations of polymer theory15• The hydrody­

namic interaction between distant bonds is described in the vortex case by the Biot-Savart 

rather than the Stokes kernel, the force between the nea.rby portions of a vortex is the 
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force required to stretch the vortex, and the Brownian bombardment of the polymer by 

the molecules of the solvent is replaced by a Brownian motion with variance proportional 

to viscosity. One can view a vortex in an equilibrium range such as the inertial range as 

being in approximate thermal equilibrium with a potential flow, at a temperature propor­

tional to the viscosity. Thus the comparison between the behavior of exponents relating 

to polymers in thermal equilibrium and the behavior of inertial exponents in turbulence is 

quite reasonable. 

More useful and more quantitative results require a more detailed examination of 

the inertial range. Remember that the energy associated with a single realization of an 

incompressible turbulent flow is 16 

T = .!:_ J u 2dV = ...!:._ J dV J dV'{..(~). ~(,~') 
2 - 811" lx - x'l ' - ,.._ 

(2) 

where .z is the coordinate vector. We shall need the following scaling property of (2) 17 : if all 

spatial dimensions are multiplied by a factor a > 0, and the vorticity is scaled so that the 

circulation is invariant, then T is multiplied by a. Indeed, each of the six space dimensions 

is multiplied by a; each e is multiplied by a-2 by conservation of circulation, and the -
denumerator lx- x'l adds a final factor a- 1 • Assume that the vorticity is contained in a ,.. ,... 
tube of some radius p; then one can write T = TI(p)+T2(p), where TI(p) is the contribution 

of those parts of R3 X R3 where 1!- ~'I < p, and T2(P) is the remainder. If e points in a -
fixed direction in the tube, then T1 (p) > 0 while T2 (p) can change sign. 

The energy cascade is generated through the stretching of vortex tubes; energy appears 

in ever smaller scales because the vortex radii and the radii of curvature shrink. Suppose 

a specific scale has been reached. Smaller scales will be generated through the stretching 

of some portion of the existing vortex tube by a factor L. (To simplify the discussion, 

we take this factor to be uniform along the stretching portion of the tube - an inessential 

assumption). If L = 1 the cascade stops; if L > 1 the tube fractalizes. The radius of 

the tube decreases by a factor .JI,. Compare T2(P/VL) after the stretching with. T2 (p) 

before the stretching. T2 (p/VL) increases by a factor £ 2 fa, where a is the ratio of the 

old to the new average distances between pieces of the tube. Indeed, the support of e is L -
times longer, I~-~~ is a times shorter, and for 1!-.='1 not very small the contributions of 
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the vorticity in the tube to (2) depend on its circulation but only marginally on its cross­

section 16 • Since presumably T2 is dominated by non-distant interactions it is plausible to 

assume at first a ....., L and thus T2 scales like L. Tr(p/VL) is made up of L../L pieces, 

each L - 112 times smaller than the pieces that made up T1 (p), and thus T1 also scales like 

L. By conservation of energy, T1 + T2 must remain uniformly bounded and thus T2 must 

become negative to cancel the growth in T1 - this is the origin of vortex folding. However, 

T2 contains a positive part- the radius of curvature of the tube decreases a priori like L - 1 

and thus JL of the pieces that make up T1 will be aligned and make a positive contribution 

to T2 • To keep T1 + T2 bounded one must assume that a is smaller than L and/or the 

radius of curvature decreases faster than L - 1 , and thus the tube folds into an ever smaller 

portion of the available volume, characterized by a dimension D'. Clearly D' ~ D, and it 

is plausible that D' = D. The condition that the cascade be allowed to proceed indefinitely 

defines an implicit equation for D' that remains to be solved. However, in a simplified 

lattice model of vortex motion, where the vortex tubes are stretched at random subject to 

all the global constraints, a numerical calculation 18 has yielded D' ....., 2.4. It is comforting 

that D' > 2, since for D = 2 we found above 'Y = 0 and thus an infinite energy per unit 

volume. 

The energy expression (2) explains qualitatively why in the polymer caseD < 2 while 

in the vortex case D > 2. In the polymer case the only constraint imposed is self-avoidance, 

which prevents folding, straightens out the polymer and decreases D. In the vortex case the 

energy must remain bounded and thus as stretching occurs €(x\ and €(x') must sometimes 
~:J ,..,,.. 

point in opposing directions; thus folding is encouraged and D increases. In the framework 

of the analogy between the Kirkwood equations and the random vortex equations, the 

difference resides in the difference between the Stokes and Biot-Savart kernels. The Stokes 

kernel imposes no constraint on the shape of the polymer, while the Biot-Savart kernel 

leads to the expression (2) for the energy. 

The bunching of vortex lines characterized by D' is more important in practice than 

the mere fractalization. It suggests that energy moves across the inertial range by the 

progressive tightening of vortex bundles, down to the scales where viscosity can cancel 

tubes of opposing rotation. This model can be implemented numerically. Vortex calcula-
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tions become expensive when the number of elements grows as a result of stretching and 

folding, and their accuracy decreases as the ratio of smallest scale to time step decreases 8 . 

However, the bunching and subsequent cancellation can be imposed on the calculation 

and results in an efficient renormalization of the calculation - the numerical details will 

be presented elsewhere19 . Note that if o~e views vortex lines as propagators in physical 

space, as is done in polymer theory 12 , then this renormalization amounts to replacing a 

bare propagator by an effective propagator in which a summation over •irreducible loops 

had been carried out. 

We would like to end with a little speculation. One may wonder whether it is mere 

coincidence that the Kolmogorov value "( = 5/3 is the inverse of the Flory exponent 

that corresponds to a self-avoiding random walk. One may argue that the constraints 

of conservation of energy and circulation create tight, renormalizable bundles of vorticity 

with radii near dissipation scales, and thus the more global behaviour of vortex tubes is 

determined by the remaining constraint of conservation of helicity (the fluid analogue of 

self-avoidance20). Since € is a vector, one still has to show that the directions of E(x) and - --
E(~+_:) are correlated when r = l!:J is on that more global scale and J.L = 5/3. This is likely, 

since when J.L = 1 the arcs are smooth and the correlation is ,...... 1 while the correlation is 0 

when J.L = 2, as we have shown above. 

This work was carried out while the author was a Roosevelt Visitor at the Department 

of Mathematics, Harvard University, with partial support from the John Simon Guggen-, 

heim Foundation. 
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