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Abstract 

We introduce a biosensing platform combining surface-enhanced Raman spectroscopy (SERS) 

and machine learning for combating COVID-19 and potentially future occurrence of similar 

pandemics of viral infection in nature. Compared to the RT-PCR and rapid antigen test, our 

platform can detect SARS-CoV-2 in human saliva with reliable accuracy and in a short time 

duration. Cross-validation and blind test are performed to identify SARS-CoV-2 virus against 

close-related particles including SARS-CoV-1 and extracellular vesicles. Simulated clinical 

samples with SARS-CoV-2 spiked saliva specimens are tested for building the SARS-CoV-2 

identifier, 90% sensitivity and 80% specificity are achieved respectively. Clinical samples 

composed of 5 COVID patients and 5 healthy controls are tested blindly and render 100% 

sensitivity and 80% specificity based on the trained classifier. Targeting to become a better 

public pandemic monitoring tool, our platform simplifies the sample harvest and processing 

procedures and can release test results within five hours. Our study indicates the possibility of 

inventing a better rapid test compared with RT-PCR and more accurate test compared with 

antigen test with less cost and complexity.  
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1. Introduction 

Since the emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-

2) in December 2019, more than 620 million cases and 6 million deaths have been reported till 

November 2022, as declared by World Health Organization (WHO) [1]. The typical symptoms 

include fever, fatigue, severe respiratory illness, pneumonia as well as dyspnea. Recently, long-

term damage to brain and heart have also been reported [2]. More SARS-CoV-2 variants have 

been emerging globally, such as the ones in the United Kingdom (B.1.1.7), the United States 

(B.1.429, Washington, B.1.1.529 or Omicron and Omicron BA.2) and India (B.1.617.2 or Delta) 

causing more rapid and wider spread of the pandemic around the world [3]. Currently, the 

SARS-CoV-2 strain Omicron BA.5 makes up around 62% of the COVID cases [4]. Though the 

mortality of the more recent variants has been much lower than the original strains [5], the 

transmissibility has significantly increased [6, 7].  

 

SARS-CoV-2 belongs to the family of coronavirus of 60-140nm in vesicle size. It is composed 

of single-strand RNA, lipid bilayer membrane and structural proteins (spike protein, envelop 

protein, membrane protein and nucleocapsid protein) [3]. Currently the prevalent diagnostic 

technologies are RT-PCR and antigen test, which detect the viral RNA and the protein 

biomarkers (e.g., spike protein) [8]. As SARS-CoV-2 belongs to the family of the single-

stranded RNA viruses, RT-PCR is the most widely used detection tool due to its high accuracy, 

sensitivity, and Limit of Detection (LoD). The LoD of around 100 particles/mL, sensitivity 

above 80% and specificity above 95% have been reported [8, 9]. It is worth noting that there are 

drawbacks of RT-PCR preventing it from becoming the optimal diagnostic technology for 

targeting highly mutable and contagious viruses. For most of the nucleic acid-based tests, highly 
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specific primers are required in the reverse transcription step, therefore specific new primers are 

needed to deal with the mutated variants [10]. RT-PCR is also extremely sensitive to the viral 

load of the samples thus the viral concentration fluctuation of Nasopharyngeal swab specimens 

or salivary specimens could result in false positive/negative cases [11]. Moreover, sophisticated 

equipment, costly regents as well as professional operators are required for collection and 

analysis, which inevitably increases the time and consumption cost. In contrast, the faster test 

tool, antigen test, could generate results in 15-30 minutes. However, it is less reliable due to 

worse sensitivity and specificity (around 50% and 90%, respectively) [12]. Fast, accurate and 

non-invasive detection tools are still needed to monitor the pandemic and potentially identify 

other highly infectious viruses in the future. In this report, we present the feasibility of applying 

surface-enhanced Raman spectroscopy (SERS) for rapid identification of viruses. A schematic 

procedure is provided in figure 1. 

Figure 1 Schematic of SERS-based biosensing platform for virus detection 

 

The development of Surface-enhanced Raman spectroscopy (SERS) in biosensing has 

attracted a lot of attention due to its fingerprinting capability, excellent sensitivity, label-free 



© Engineered Science Publisher LLC 2023 | 5  

 

properties, and biocompatibility [13]. SERS has demonstrated its ability to fingerprint small 

molecules such as chemical dyes [14], mineral ingredients [15], larger molecules such as 

peptides and DNAs/RNAs [16, 17, 18]. The single molecule characterization capability with 

specially designed SERS substrate attracts people’s attentions [19]. Moreover, in the past few 

decades, SERS-based profiling has been utilized for investigating biological specimens including 

cells [20], bacteria [21], viruses [22], and extracellular vesicles [23]. The application of SERS-

based technologies for detecting multiple types of viruses, such as influenza virus [24], Hepatitis 

B virus [25], respiratory virus [26], have been demonstrated recently with competitive detection 

accuracy.  

Compared to antigen test, SERS extracts SARS-CoV-2 biomarkers from multiple 

components, including structural protein, lipid bilayer and RNA strand [27]. Hereby, SERS has 

the advantages of drawing a more thorough picture over antigen test. Unlike nucleic acid based 

detecting technologies, SERS does not require complicated primers and regents nor special 

specimen treatment, therefore the estimated cost per test would be lower. Besides, SERS 

specimens can be isolated from different biofluids such as saliva, serum, urine and 

bronchoalveolar fluid, allowing for simple and non-invasive sample harvesting. Furthermore, 

SERS characterization for each sample requires a maximum of 1 to 6 hours, which makes it a 

more feasible “rapid-testing” method for SARS-CoV-2 compared to RT-PCR [9, 27]. Label-free 

of SERS-based test also makes it more amenable to scale up and adaption to more SARS-CoV-2 

variants study.  

SERS-based detection has been implemented for COVID detection. Improved detecting 

efficiency and limit of detection have been reported with uniquely designed biosensor setup [28]. 

To prepare highly concentrated virus samples for SERS characterization, Sequential 
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centrifugation and filtration are typically applied to isolate viruses from cell culture media [29]. 

It has been reported that exosomes have similar size and density as viruses (30-150nm, 1.08–

1.19 g/ml) [30, 31], therefore It is inevitable to exclude exosomes during virus isolation, which 

could lead to confusion in fingerprinting viruses. To establish the genuine fingerprint, exosomes’ 

signatures need to be subtracted during either sample preparation or data processing. 

In this paper, we demonstrate the feasibility of our SERS and machine learning- based 

fingerprinting and signature identification platform as being a potentially accurate and rapid 

saliva-based SARS-CoV-2 detection technique that could replace the current antigen test as a 

pandemic monitoring tool. Figure 2 demonstrates the basic workflow. Briefly, SARS-CoV-2 

virus samples were compared with SARS-CoV-1 virus and Vero-TMPRSS2 cell line- derived 

exosome samples and were successfully identified with 80% accuracy. We subsequently 

evaluated the diagnostic capabilities by comparing SARS-CoV-2 spiked human salivary samples 

versus healthy control. 10 SARS-CoV-2 spiked human salivary samples and 10 healthy controls 

salivary samples were applied to build the identifier. 90% sensitivity and 80% specificity were 

achieved afterward in blind test with the 20 samples. Using the above identification model, 5 

COVID patients versus 5 healthy controls saliva samples were tested and 9 out of the ten 

individuals are identified correctly. Finally, we provide detailed estimation of the advances and 

theoretical analysis of the feasibility of our platform. 
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Figure 2 Schematic working flow of SERS characterization of SARS-CoV-2 specimens 

2. Methods and materials 

2.1 Virus samples preparation 

The virus samples were produced, inactivated, and validated by the Institutional 

Biosafety Committee (IBC) for the University of California, San Diego. Vero-TMPRSS2 cells 

are infected with viruses (either SARS-CoV-2 or SARS-CoV-2). Sequential centrifuge and 

filtration were used to isolate and purify the virus from cell culture media then the viruses were 

diluted in cell culture media (DMEM + 1% FBS + 10mM HEPES + 50 units/ml Penicillin and 50 

µg/ml Streptomycin). Virus samples were then inactivated by heat (65°C for 30 minutes) [32] or 

UV (400 mJ/cm2 delivered at UV 254nm) [33]. After inactivation, 108 to 1010 viruses per ml 

were estimated by ddPCR (RNA). Figure 3 shows a typical Transmission Electron Microscopy 

(TEM, FEI TF20 High-resolution EM, USA) image of the specimen. Individual virus particles of 

about 50 nm diameter with the characteristic corona are clearly visible. 
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Figure 3 TEM image of SARS-CoV-2 specimen 

2.2 SARS-CoV-2 spiked human salivary samples preparation 

The isolated and purified virus samples were used for preparing the SARS-CoV-2 spiked 

human salivary samples. The virus samples and salivary samples of healthy control were mixed 

with the volume ratio that keeps the viral concentration around 108 particles/mL. Then the spiked 

salivary samples were aliquoted for multiple SERS testing.  

2.3 SARS-CoV-2 clinical samples preparation 

Archived saliva samples were obtained from an observational cohort study of 

hospitalized patients with COVID-19 from April 2020 until February 2021. The study was 

approved by the UCLA Institutional Review Board (#20-000473). Informed consent was 

obtained from all study participants. Patients with confirmed positive SARS-CoV-2 RT-PCR 

nasopharyngeal swabs were enrolled in an observational cohort study within 72 hours of 

admission. Exclusion criteria included pregnancy, hemoglobin < 8g/dL, or inability to provide 

informed consent. Blood specimens, nasopharyngeal swabs, and saliva were collected 
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throughout hospitalization for up to 6 weeks. Demographic and clinical data, including 

laboratory results and therapeutics, were collected from the electronic medical records. Clinical 

severity was scored using the NIAID 8-point ordinal scale. A total of 10 samples were included 

in this study. Whole saliva was collected by passive drool into a cryovial. Samples were 

transported to the laboratory and immediately placed in -80 °C freezer for storage. 

2.4 Surface-enhanced Raman spectroscopy 

SERS biosensing platform are based on Raman scattering, in which the incident photon 

undergoes inelastic scattering on interaction with the target analyte that produces unique 

vibrational modes from its components [34]. The localized surface plasmon resonance (LSPR) 

on the SERS substrate surface originates from the interaction between electromagnetic field of 

the incident light and electrons in metal, which significantly enhance the detectability of low 

concentration components in the analytes. Due to the high specificity of excitation-emission 

photon energy shift during Raman scattering process, the analyte of interest is able to generate a 

unique spectrum as the fingerprint, which can serve as a reference in the identification.  

2.5 SERS substrate fabrication 

The platform implementing surface enhancement is fabricated primarily based on 

polystyrene sphere lithography [35], the product possesses a 2D periodic pyramidal structure that 

allows for a significantly enhanced electromagnetic field to be localized at the ‘waist’ of each Au 

pyramid. Polystyrene spheres (Thermo Fisher Scientific, USA) were first applied to construct a 

monolayer on SiO2/Si wafer (MSE Supplies, USA) surface via self-assembly to create 

hexagonal patterns. Subsequently, the substrate was dry etched by O2 plasma under 200W for 50 

s to shrink the polystyrene sphere size. The reduced polystyrene spheres act as the mask in the 

plasma etching process to remove the SiO2 layer under exposure. Subsequently, the substrate 
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was etched in 60% KOH solution (Sigma Aldrich, USA) for 2 mins to form periodic pyramidal 

reciprocal structures on the Si layer with patterned SiO2 as a mask. A 200nm Au film was 

deposited on the mode and finally, epoxy was used to peel off the Au film which was attached to 

a new Si wafer. On the fabricated platform, Au nano-pyramids with base length of 200 nm, 

height of 200 nm were obtained. These were utilized for profiling of exosomal and viral liquid 

biopsies. Figure 4a shows the Scanning Electron Microscopy (SEM, FEI Nova NanoSEM 230, 

USA) image of the SERS substrate. A periodic hexagonal pattern is formed. Considering the 

dimension of the nano-pyramid and the spacing between them, our platform provides appropriate 

room for exosomes/virus to fit in the hot-spots, which mainly lay on the lateral faces. Figure 4b 

indicates the landing position of analytes on the pyramidal surface, the obscure imaging is due to 

the presence of crystallization after the sample buffer (mostly PBS) evaporates. SEM images are 

taken with FEI Nova NanoSEM 230. 

 

Figure 4 SEM imaging of the platform. a) SEM image of the SERS gold nanopyramids 

substrate; b) SEM image showing the existence of viruses (orange circles) on the substrate after 

specimen solution drying 
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2.6 Method of obtaining SERS spectral signatures 

In terms of the acquisition of SERS spectral signatures of the specimen, we implemented 

a single bioparticle scanning protocol. Specifically, a droplet of about 5 μL of the liquid sample 

was pipetted onto the surface of the SERS platform and dried under room ambient or in a 

vacuum desiccator typically within 15 minutes. Raman spectral data were immediately recorded 

using Raman spectrometer (Renishaw inVia Confocal Raman spectrometer, UK) under ambient 

conditions (20 °C, 1 atm), which is manually controlled by WiRE4.4 PC software. A laser with 

excitation wavelength of 785 nm was selected to suppress fluorescence background while 

maintaining a strong localized surface plasmon resonance. The map image acquisition function 

incorporated in the software was primarily used to collect numerical spectral data. A large square 

map (searching map) covering an area of 300 μm x 300 μm with each pixel dimension of 10 μm 

x 10 μm was implemented to search for the positions with micro-vesicles. Those positions were 

then characterized by a small square map (obtaining map) of 5 μm x 5 μm with 1 um x 1 um 

pixel size. Laser power of 50mW, and acquisition time of 0.1s was chosen for the searching map 

while 10mW, 0.5s were for the obtaining map to avoid overheating and acquire spectra with high 

signal-to-noise ratio. The obtaining map yielded candidate spectra through which a spectra-

selecting program traverses for establishing the spectral database. The rate of characterizing 

analytes is around 10-40 analytes/hour. According to our current spectral dataset size, 

approximately 1-6 hours are needed. As demonstrated by figure 5, the spectra obtained have 

explicit Raman ranges with high signal-to-noise ratios. Peak assignments are given in Table S1.  
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Figure 5 Spectra of Vero-TMPRSS2 exosome, SARS-CoV-1, SARS-CoV-2. Highly uniform 

spectra from the particles (gray lines) and averaged spectra (blue lines) demonstrate different 

patterns of different particles. 

2.7 Method of spectral processing and data analysis 

Approximate 50 to 300 signal spots (depending on the particle concentration) were 

obtained for each sample to produce spectra that have 1023 Raman shifts in the range from 553 

to 1581 cm-1. Preprocessing steps are applied to alleviate the spectral signature fluctuations 

caused by sample variations, SERS platform heterogeneity, and instrument fluctuation. To 

elaborate, Fluorescence background subtraction and noise reduction are performed by batch 

processing based on asymmetric least square fitting [36] and Savitzky-Golay filtering [37], 

followed by min-max normalization that proportionally compresses the original intensity range 

to [0, 1]. A predictive model established by supervised learning or classification is the core of the 

proposed technology. It requires appropriate complexity of the classifier to prevent both 

underfitting and overfitting for the purpose of generalizing the characteristic signature 

effectively. We use the conventional but powerful algorithm Support Vector Machine (SVM) for 

the classification tasks. Unsupervised learning or clustering analysis by Hierarchical Clustering 

Analysis was also used as an auxiliary tool. Cross-validations are then applied to pre-evaluate 
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our methodology given the labels and optimize the model settings, followed by tests for 

evaluating diagnostic capability. All the analyses are realized with Python using NumPy, SciPy 

and Scikit-learn modules and take less than 20 minutes to complete.  

3. Results and Discussion 

3.1 Single-vesicle techniques for viral detection 

The single-vesicle detectability of SIM brings advantages in COVID detection. There are 

also several challenges originating from the working principle of single-vesicle detection. Most 

importantly, the feasibility of single-vesicle detection is determined by the standard signature of 

the target analyte (e.g., SARS-CoV-2) that we can refer to. The presence of EVs could 

potentially impact the procedure of obtaining the standard SERS spectral signature of SARS-

CoV-2, as shown in figure 6. The sample preparation step, the sample loading step, and the 

characterization step are all supposed to be conducted rigorously to prevent any possibility of 

contamination. The subsequent data processing step is also needed to get rid of irrelevant target 

analyte signatures. Secondly, though SERS dramatically increases the signal intensity of the 

analyte which facilitates much more sensitive detection, the inherent biological variabilities are 

also amplified. The signatures of SARS-CoV-2 from different SERS characterizations instances 

might fluctuate to some extent. Therefore, the intra-class (such as SARS-CoV-2) fluctuations 

versus the inter-class (such as SARS-CoV-2/EVs) differences must be validated to support the 

decision boundary. In addition, Single-vesicle characterization is usually performed in the 

manner of individual scanning, which greatly limits the data throughput. Much effort needs to be 

done to boost the data harvest rate and determine the characterization data size to make a 

sufficiently reliable diagnosis conclusion. Due to the above concerns, we have performed the 

following experiments to establish the capability of SIM for SARS-CoV-2 detection. 
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Figure 6 Schematic plot of multiple types of contents in SARS-CoV-2 specimen. Virus 

(particles with spike protein), exosomes (double-layer particles without spike protein) and free-

floating protein molecules are shown. 

3.2 Differentiation of SARS-COV-2 vs SARS-COV-1 virion in mixture of cell lysate 

As a prerequisite step for establishing SIM identification of SARS-CoV-2 signature, we 

first evaluated the proposed platform in differentiating SARS-CoV-2 from other closely related 

virus types, including other types of virions and extracellular vesicles, of which the dimensions 

are close to the SARS-CoV-2 virus. SARS-CoV-1 is reported to share more than 70% genetic 

similarity with SARS-CoV-2 [38], leading to highly similar structural components such as 

single-stranded RNA and spike protein, while the mutations make the latter less deadly but much 

more transmissible. With SARS-CoV-1 as a candidate, 10 SARS-CoV-1 specimens and 10 

SARS-CoV-2 specimens were prepared and then characterized by SERS following our SERS 

map protocol. 50 to 70 spots rendering spectral signatures with high signal-to-noise ratio were 

collected for each sample, multiple spectra were saved per spot to account for the information of 

spectral intensity fluctuations, which allows for comprehensive training of the model by making 

it less sensitive to the slight changes.  
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In total, 1929 spectra from SARS-CoV-1 samples and 1559 from SARS-CoV-2 samples 

were recorded. Figure 5 are three examples of spectra set belonging to a single particle of Vero-

TMPRSS2, SARS-CoV-1, SARS-CoV-2, respectively, in which multiple Raman ‘snapshots’ on 

different positions of a single particle and the average spectrum are presented. The peak 

assignment information is given in the supplementary material. Peaks in the spectra typically 

originate from the molecular bonds within amino acids, nucleic acid, Amide, C-C stretching or 

CHn deformation etc. Multiple spectral patterns were discovered within each type of specimen 

(e.g., SARS-CoV-1) though the spectral signatures from a single particle are uniform, therefore a 

standard representative signature is lacking. A possible reason is that SERS platform renders a 

superior sensitivity in detecting particles with extremely low concentration, the spectral signature 

is also prone to fluctuate due to the minor structural change of the molecule and the analyte-

hotspot interaction. Hereby, we implemented the supervised and unsupervised learning model for 

building the viral fingerprints, which would be used as a standard for virus identification. 

The virus samples were purified from Vero-TMPRSS2 cells by sequential centrifugation, 

other biological particles with a similar dimension as the virus might be retained, leading to the 

non-ideal purity which could confuse the identifying model. Therefore, we implemented a 

control sample of Vero-TMPRSS2 cells under the same preparation manner expecting infection. 

The spectral signatures from the control act as background signals of the SARS-CoV-1 and 

SARS-CoV-2 spectral datasets. Linear discriminant analysis (LDA) was implemented to reduce 

the dimension of the spectra for clearer visualization of the datapoints distribution, in which the 

original spectra dataset was transformed into points with two-dimensional coordinates. LDA tries 

to group the spectra by maximizing the distance between the centroid of each group to the global 

centroid meanwhile minimizing intra-group variance. The inter-group distance conceptually 
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represents the similarity between the corresponding spectra, as shown in figure 7. It can be 

concluded that SARS-CoV-1 and SARS-CoV-2 clouds overlap with the Vero-TMPRSS2 in 

small portions, which are believed to be the non-virus particles examined in virus samples. 

Subsequently, Hierarchical Clustering Analysis (HCA) was used to cluster similar particles in 

Vero-TMPRSS2 and virus samples. Based on the groups clustered, we label the particles 

originally belonging to virus samples but clustered into Vero-TMPRSS2 as negative (i.e., non-

SARS-CoV-2). We call this “label-correction process”, as shown in figure 8(a), 8(b). Figure 8(c), 

8(d), 8(d) present three similar SERS spectral signatures from different particles belonging to the 

same cluster. The spectrum in Figure 8(c) was originally mislabeled by SARS-CoV-2 which 

would be corrected. Peak assignments are given in Table S2. 
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Figure 7 Linear Discriminant Analysis for dimensionality reduction. Spectral signatures of 

SARS-CoV-1, SARS-CoV-2, exosomes are processed by dimensionality reduction and 

visualized in the 2-dimensional plot. 

 

 

Figure 8 HCA for correcting the mislabeled exosomes. a) Colored oval is the clusters generated 

by HCA. Those clusters mixed by SARS-CoV-2 and exosome denotes the existence of exosomes 

in SARS-CoV-2 specimen. b) Exosomes’ labels in the mixed clusters are corrected. c), d), e) are 

three spectra attributed to different particles from the same cluster, where similar patterns are 

shown. 

 

A binary classification model using support vector machines (SVM, RBF kernel, soft 

margin applied) was used in learning the characteristic fingerprints of SARS-CoV-1 and SARS-

CoV-2. Due to the binary learning and predicting manner, the testing or validation spectra were 
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either recognized as SARS-CoV-1 or SARS-CoV-2, based on the relative population ratio of 

SARS-CoV-1 and SARS-CoV-2 for each sample. Without loss of generality, we chose SARS-

CoV-2 percentages (e.g., 50 found among 200 thus, 40.0%) as the score. Considering the various 

viral concentrations and non-virus particles in the specimens, we assigned the binary labels to 

non-SARS-CoV-2 (or negative) and SARS-CoV-2 (or positive) to avoid confusion and applied a 

threshold to draw the boundary between the score of two types of virions. It is important to 

mention that the threshold was determined practically to maximize the cross-validation 

performance, also the sample threshold will be further applied or updated whenever more 

learning and predicting duties come.  

During the training process, as more training instances are input, the model gradually 

learns the distinguishable features between the positive and the negative. Figure 9 shows the 

training error starts from 35% when 10% of the training process is done, and finally ends up with 

less than 5% after the training process is finished. Additionally, Figure 10 demonstrates a gradual 

separation between the scores of negative instances and positive instances.  
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Figure 9 Model training process; training error gradually decreases as training instances being 

input. 

 

 

 

Figure 10 Model training process; scores of negative and positive instances gradually segregate. 
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As stated before, we incorporated cross-validation for optimizing the classifier 

hyperparameters as well as choosing an appropriate threshold that generates the best predictive 

capability. Furthermore, to genuinely evaluate the predictive capability by alleviating the 

overfitting problem during validation, we applied ‘leave pair of samples out’ (LPSO) cross-

validation. Demonstrated by figure 11, In each round of validation, a pair of samples, one each 

from positive and negative groups respectively, are left out as the validation set while the 

remaining are the training set. The ‘pair’ manner is to ensure the sample balance in both training 

and validation. This process continues until every sample is traversed once as the validation set. 

A score list for all the samples is built once the cross-validation is completed, then the ROC 

curve is plotted together with the information of the true labels by adjusting the threshold.  

 

 

Figure 11 cross validation; Five rounds of cross-validation are conducted; In each round, 

training folds (unfilled blocks) and validation folds (filled blocks) are assigned for training and 

validating respectively. 

 

Following the above protocol, the ROC curve is calculated and shown in figure 12, which 

demonstrates an overall good pattern recognizing capability across all types of viruses. 
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Accordingly, the scores of the samples were shown in the box plot of chart 1, based on the 

statistical properties of each cross-validation round, we applied the mean of positive sample 

quantile Q1 and negative sample quantile Q3 as the threshold to maximize the ‘margin’. Chart 3 

shows the fluctuations of the threshold in cross validations. As indicated in table 1 and chart 1, a 

threshold of 0.300 was finalized which maximizes the average margin in cross-validations.  

 

 

 

 

Figure 12 Individual and mean ROC curves of cross validations 

Chart 1 sample scores (positive vesicle rate of a sample) distribution in the validation folds of 

cross validation rounds 
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Table 1 Q1 and Q3 values of cross validations  

Cross-validation Non-SARS-CoV-2(Q3) SARS-CoV-2(Q1) Q1&Q3 Mean 

R1 0.290 0.316 0.303 

R2 0.299 0.281 0.290 

R3 0.293 0.312 0.302 

R4 0.295 0.282 0.289 

R5 0.314 0.322 0.319 

AVE. - - 0.300 

 

Chart 2 Fluctuations of threshold (mean of Q1 and Q3) versus cross validation rounds 
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A blind test is subsequently performed after the classification model is optimized. 5 

SARS-CoV-2 virus specimens versus 5 SARS-CoV-1 virus specimens were blinded to be given 

predictions. Promising performance was given by the threshold equal to 30.0% and the 

sensitivity/specificity turned out to be 80%/80%. Table 2 shows the test results and chart 2 shows 

the positive ratio generated by the classifier. 

This result combined with the LDA grouping demonstrates the feasibility of utilizing 

machine learning classifier and SERS to build a SARS-CoV-2 identifier, given that the specimen 

has a low diversity of the content (i.e., viruses and extracellular vesicles from Vero-TMPRSS2) 

and high viral load (108 – 1010 particles/mL). 

We also evaluated the ambiguity of the classifier combined with the threshold by 

visualizing the sample score distribution. Except for the two incorrectly predicted samples, each 

correctly predicted sample has a fair distance from the decision threshold, which means our 
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platform is able to maintain the original level of detection performance given a certain amount of 

fluctuation of the sample viral load as well as the model training. 

 

Table 2 Blind test results of SARS-CoV-1 versus SARS-CoV-2 

Sample ID Negative Positive P.R. Predictions Ground truth 

1 50 10 16.7 Non-CoV-2 Non-CoV-2 

2 54 12 18.2 Non-CoV-2 Non-CoV-2 

3 38 14 26.9 Non-CoV-2 Non-CoV-2 

4 39 12 23.5 Non-CoV-2 Non-CoV-2 

5 39 24 38.1 Cov-2 Non-CoV-2 

6 43 19 31.1 Cov-2 Cov-2 

7 48 8 14.3 Non-CoV-2 Cov-2 

8 33 15 31.2 Cov-2 Cov-2 

9 40 24 37.5 Cov-2 Cov-2 

10 38 18 32.1 Cov-2 Cov-2 

Negative: predicted Non-SARS-CoV-2 particles; Positive: predicted SARS-CoV-2 particles; 

P.R.: Positive ratio (%) 

 

Chart 3 Sample scores of blind test in distinguishing SARS-CoV-1 versus SARS-CoV-2 
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3.3 Detection of SARS-CoV-2 in virus spiked saliva 

Given the capability of identifying SARS-CoV-2, we further evaluated our SERS 

fingerprinting plus SVMs protocol on the specimens with higher biological content complexity 

and closer to the clinical specimens, i.e., virus spiked saliva samples. Specifically, we introduced 

SARS-CoV-2 virus spiked saliva samples and healthy controls saliva samples as negative 

control. The preparation protocol of virus spiked saliva samples is given in the Materials and 

Methods section. A new SVMs classifier was trained using 10 SARS-CoV-2 virus spiked saliva 

samples versus 10 healthy control saliva samples. Around 50 analytes are collected for each 

sample, therefore the training dataset is composed of 999 analytes with 9689 spectra.  

Like the data cleaning step in SARS-CoV-1 and SARS-CoV-2 study, the non-SARS-

CoV-2 particles were subtracted from the SARS-CoV-2 spiked saliva training set by finding the 

spectral signatures overlapping between healthy control and SARS-CoV-2 spiked saliva. HCA 

was again implemented in this background removal process. To ensure the objectivity of the 
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classification and avoid information leakage, background removal is only done to the training 

set, excluding both the validation set and blind test set. The training set compositions before and 

after background removal were compared and shown in figure 13. 

 

Figure 13 Number of training instances before and after label correction by clustering analysis 

 

Before launching into the blind test, LPSO cross-validation was done with SARS-CoV-2 

spiked saliva (or positive) and healthy control (or negative) as the binary groups. As indicated by 

the ROC curve in figure 14, 0.83 AUC was achieved in cross-validation, which showed 

reasonable performance. As the previous cross validations, the statistical analyses of the sample 

scores of cross-validations were presented in chart 4 and table 3, and the mean of positive 

quantile Q1 and negative quantile Q3 was chosen as the threshold that maximizes the margin 

between the two types. Chart 5 shows the threshold fluctuation. The trained model by ten virus 

spiked saliva and ten healthy control individuals were used as classifier, together with a 0.259 as 

the score threshold. 
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Figure 14 Individual and mean ROC curves of cross validations 

 

 

Chart 4 sample scores (positive vesicle rate of a sample) distribution in the validation folds of 

cross validation rounds 
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Table 3 Q1 and Q3 values of cross validations  

Cross-validation Virus Spiked Saliva Healthy Control Q1&Q3 Mean 

R1 0.259 0.235 0.247 

R2 0.240 0.283 0.262 

R3 0.254 0.233 0.244 

R4 0.360 0.228 0.294 

R5 0.230 0.271 0.251 

AVE. - - 0.259 
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Chart 5 Fluctuations of threshold (mean of Q1 and Q3) versus cross validation rounds 

 

 

Having trained the classifier, a blind test round with ten virus spiked saliva samples and 

ten healthy control saliva samples was then conducted. The virus spiked saliva samples were 

prepared following the same protocol as the cross-validation round, but with different healthy 

saliva backgrounds for mixing. This process is to simulate the various non-virus contents in 

human salivary specimens. The predictions and unblinding results are shown in table 4 and chart 

6, and the corresponding decision matrix is presented in table 5. 90% sensitivity and 80% 

specificity were achieved with one virus spiked individual and two healthy control individuals 

predicted incorrectly. The blind test outcome indicates a reasonable performance while trying to 

apply our platform in diagnosis.  

We do also notice some potential pitfall. First, samples 5, 16, 17, 20 are right at the 

threshold decision line as shown in chart 6, which decreases the robustness of the platform since 

the tolerance for statistical fluctuations is limited. Second, a blurrier decision boundary between 
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the positive/negative groups is present in the spiked saliva study compared to the virus in cell 

lysate study. This is demonstrated by the more positive/negative group scores overlapping, 

making it harder to draw an unambiguous decision boundary. The above potential pitfalls are due 

to the higher bioparticle complexity after spiking virus in the human salivary specimens. 

Therefore, decisive SARS-CoV-2 signatures are indispensable in improving the accuracy and 

robustness of our platform. 

 

Table 4 Blind test results of SARS-CoV-2 spiked saliva samples versus healthy control saliva 

samples 

Sample ID Negative Positive P.R. Predictions Ground truth 

1 41 12 22.6 Control Control 

2 38 16 29.1 Virus Virus 

3 34 16 30.2 Virus Virus 

4 53 14 20.6 Control Control 

5 42 16 26.7 Virus Virus 

6 42 7 13.7 Control Control 

7 38 12 23.1 Control Control 

8 41 7 13.7 Control Virus 

9 25 11 29.7 Virus Control 

10 32 13 27.7 Virus Virus 

11 36 16 30.8 Virus Virus 

12 28 18 39.1 Virus Control 

13 35 10 22.2 Control Control 
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14 35 15 30.0 Virus Virus 

15 38 11 22.4 Control Control 

16 37 13 26.0 Virus Virus 

17 37 13 26.0 Virus Virus 

18 36 13 26.5 Virus Virus 

19 40 11 21.6 Control Control 

20 35 12 25.5 Control Control 

 

Chart 6 Sample scores of clinical test in distinguishing SARS-CoV-1 versus SARS-CoV-2 

 

 

Table 5 Confusion matrix of blind test with SARS-CoV-2 spiked saliva samples 

 Predicted Virus Predicted Healthy Control 

True Virus 9 1 
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True Healthy Control 2 8 

 

3.4 Detection of SARS-CoV-2 in human saliva 

All the aforementioned studies are the prerequisites for successfully utilizing our 

platform in clinical diagnosis. Both, the SARS-CoV-2 purified from Vero-TMPRSS2 cell media 

or SARS-CoV-2 spiked salivary specimens are simpler laboratory cases compared to the COVID 

patients’ salivary specimens. Therefore, an additional test with clinical samples is necessary to 

evaluate the practical diagnostic capability.  

Since SARS-CoV-2 spiked saliva samples can serve as a ‘standard’ repository for 

building the training set due to the presence of both SARS-CoV-2 virions and non-SARS-CoV-2 

bioparticles (e.g., proteins, EVs), we applied the same trained classifier in the virus spiked saliva 

study based on the already proven predicting performance. The same threshold of 0.259 is used 

as well.  

The detailed sample scores are shown in table 6 and chart 7. The final sensitivity and 

specificity turn out to be 100% and 80%, with only one healthy control predicted incorrectly. 

Among the correctly predicted samples, SN36’s score is right at the decision boundary which 

will be sensitive to the whole training-predicting system, the remaining are clearly far from the 

decision boundary, as shown in chart 7. Even though the small test set might be prone to 

statistical fluctuations, the preliminary success presents a promising application of the SERS 

platform in SARS-CoV-2 diagnosis. Table 7 is the confusion matrix of the clinical test and figure 

15 shows the corresponding ROC curve. 
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Table 6 Results of blind test with clinical samples 

Sample ID Negative Positive P.R.  Predictions Ground truth Ct Value 

CLE92 177 77 30.3 Patient Control ND 

CLE103 241 77 24.2 Control Control ND 

HOS192 190 75 28.3 Patient Patient 33.43 

SN36 107 37 25.6 Control Control ND 

HOS167 306 137 30.9 Patient Patient ND 

HOS182 285 118 29.3 Patient Patient 31.84 

SN33 137 46 25.1 Control Control ND 

HOS161 159 80 33.5 Patient Patient 36.42 

HOS189 118 47 28.5 Patient Patient 29.36 

SN34 244 67 21.5 Control Control ND 

ND: Not detected 

 

Table 7 Confusion matrix of blind test with clinical samples 

 Predicted Virus Predicted Healthy Control 

True Virus 5 0 

True Healthy Control 1 4 

 

Chart 7 Sample scores of blind test in distinguishing SARS-CoV-1 versus SARS-CoV-2 
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Figure 15 ROC curve of clinical sample blind test 
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4. Discussion  

In this study, we utilized support vector machine incorporated with Radial Basis Function 

(RBF) kernel and soft margin regularization. For the purposes of illustrating the fundamental 

working principle in identifying SARS-CoV-2 SERS spectral signatures, we consider the 

mathematical definition of the RBF and the training process under the hood. Within the RBF 

expression given in equation 1, 

𝑘(𝒙𝑖, 𝒙𝑗) = exp (−𝛾‖𝒙𝑖 − 𝒙𝑗‖
2

) , 𝒙𝑖 , 𝒙𝑗  𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚                         (1) 

Where γ is a constant. The SERS spectrum term ‖𝒙𝑖 − 𝒙𝑗‖
2
 is recognized as the square of 

Euclidean distance. The exponential term allows for attenuation to assign a higher weight to 

closely separated training samples, and to normalize the original squared Euclidean distance to 

zero and one. Therefore, the SVM algorithm essentially searches for an optimal decision 

boundary that minimizes the intra-group distance score (given by the kernel function), and at the 

same time maximizes the inter-group distance score. Consequently, the fundamental principle is 

essentially to analyze the similarity represented by the spectral peak property, which is 

determined by the biochemical content of the analyte. The final classifier is trained to build a 

distinguishing criterion to identify SARS-CoV-2 presence versus other non-SARS-CoV-2 

content such as SARS-CoV-1 or extracellular vesicles. 

In addition to the working principle of support vector machine classifier, one more 

prerequisite for successful classification is the need for intra-SARS-CoV-2 group spectral 

differences to be less prominent than the ones between SARS-CoV-2 group and non-SARS-

CoV-2 group. SARS-CoV-2 is believed to have developed many variants with slightly different 

components. Among our studies, Washington strain was used to prepare virus spiked saliva 
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samples while clinical samples were introduced without considering the mutant variant. The 

preliminary test performance provides indirect proof of our assumption. 

Additionally, we translated the spectrum-level predictions given by the support vector 

machine classifier to a sample-level prediction by summarizing the instances belonging to each 

group. Then we chose a rather practical way to set up the decision boundary, which is based on 

cross-validation performance. The implicit reason is that we have quite limited knowledge about 

the viral load as well as the ratio of SARS-CoV-2 versus other particles. Fortunately, we could 

make the initial assumption that the genuine target (i.e., SARS-CoV-2) is present and only 

present in the virus spiked saliva specimens and patient specimens. Therefore, the positive group 

is bound to give higher score than the negative group as long as sufficient number of analytes are 

characterized, due to the presence of the extra distinct SARS-CoV-2 group compared with the 

control group. This initial conclusion ensures that we are able to find the approximate position of 

the decision threshold via ‘big data strategy’, which is the one that optimizes the validation 

performance including 20 specimens in our study. Correspondingly, the threshold contains the 

information on the implicit ratio of the target particles versus non-target particles. It is believed 

that a larger sample set is more advantageous to diagnostic accuracy. 

5. Conclusion 

In conclusion, we demonstrated the feasibility of applying SERS and machine learning 

pattern recognition on SARS-CoV-2 detection by harvesting and analyzing SARS-CoV-2 

isolated from cell culture media and virus spiked saliva samples. Clinical testing with 5 patients 

versus 5 healthy controls was completed with only one false positive, rendering 100% sensitivity 

and 80% specificity.  
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In terms of the advantages of our platform, firstly the label-free manner in fingerprinting 

and identifying SARS-CoV-2 greatly simplifies the reagent, equipment, and specialist 

requirement. Our well-established SERS platform fabrication protocol and automatic Raman 

characterization allow for less human involvement. Therefore, a simpler COVID test procedure 

and lower cost test could be expected compared with RT-PCR. Additionally, like rapid antigen 

tests, the saliva-based specimen harvest protocol is fast and non-invasive. Virus isolation and 

purification are also not needed, which makes the preparation procedure for characterization 

simpler. The whole test duration using our platform is between 1-6 hours, mainly due to Raman 

scanning. Consequently, our platform offers a more accurate test performance than antigen test 

and a more rapid result yield than RT-PCR, those features could enable it to be a better pandemic 

monitoring technique.  

Having demonstrated the feasibility in identifying SARS-CoV-2 Washington strain, 

SERS shows potential in contributing to distinguishing different variants. Multiclass 

classification will be conducted in place of binary classification. We have prepared multiple 

SARS-CoV-2 variants samples including B.1.351, B.1.1.7, BA.1, BA.5.1 etc. and are working on 

designing a supervised learning model appropriate to the multiclass classification task. Many 

algorithms have been reported to be efficient and accurate, such as Random Forest [39], K-

nearest Neighbors [40], Neural Networks [41]. Foreseeing the challenges in differentiating 

SARS-CoV-2 variants with high similarity and the uniqueness of SERS spectrum, the collection 

of representative spectral data, the choice of classifier, model’s parameters and even feature 

selections are supposed to be carefully organized. 

As we mentioned, the clinical test sample size is small, which could only provide a 

preliminary indication of the potential of our platform’s application for COVID tests. More 
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COVID patient samples are definitely required, and appropriate rounds of double-blind tests are 

needed to validate the feasibility. More importantly, due to training data consideration, the 

classifier is built mainly on simulated samples - SARS-CoV-2 spiked saliva samples. Model 

parameters might vary while we are using clinical sample data for the training. Another key 

metrics to evaluate a detection technology is the Limit of Detection, repetitive studies of samples 

with different viral loads have been planned. As a single particle characterization technique, a 

reliable throughput of data collection is needed to ensure the rate of capturing the target analyte. 

We are working on customizing the Raman spectrometer hardware and designing computer 

controlling software to enable automatic single particle characterization. All the above factors 

present challenges along the path of implementing SERS’s advantages in COVID tests. 

Corresponding improvements and validations are being conducted.  
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