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We consider the detennination of an unknown quantity-for example, the concentration of a par-
ticular chemical in a given sample or samples-using controlled calibration. Here several samples
are prepared with concentrations chosen to cover a required range, and these are used to establish
the relationship between concentration and the measured response to an assay method. This rela-
tionship is then used to estimate the concentration in the unknown samples from their measured
responses. Confidence intervals for the estimated concentrations can usually be calculated by in-
verting a prediction interval, but in some situations this method becomes intractable. We explore
the use of the bootstrap as an alternative in linear, nonlinear, and multivariate controlled calibra-
tion, using both simulation and real datasets from the field of immunoassay. We also discuss the
alternatives afforded by replication of the design points. The bootstrap is found to be comparable to
the standard method in simple situations and is easy to apply even in complex situations in which
standard approaches perform poorly or are intractable.

KEY WORDS: Confidence intervals; ELISA; Immunoassay; Inverse estimation; Nonlinear
multivariate regression; Replication.

We are concerned with the application of an assay sys-
tem that, given a sample with concentration x, produces a
response Y whose relationship to x has the form

Y = f(x,O) + E:, (1)

where f is a f~tiOD, assumed_~~scribiriithe'iela~
tionship (perhaps a scientific or empirical law), 0 is a vector
of unknown parameters, and E: is a term representing ex-
perimental error, which might be assumed to follow some
known distribution. This includes, for example, the simple
linear model

Y = a + bx + E, (2)

in which a and b are the unknown intercept and slope pa-
rameters and E: is assumed to follow a normal distribution
with constant variance and zero mean. In Section 4 we dis-
cuss a multivariate extension in which both x and Y are
vectors and f(.,.) is nonlinear.

The data for such an experiment consist of two parts,
"standards" and "unknowns." The standards are prepared
samples having known concentrations carefully chosen by
the experimenter to cover a required range of x values. We
assume here that the preparations are without error-that is,
that these x values are exact [but see Racine-Poon, Weihs,
and Smith (1991) for the case of dilution errors]. Appli-
cation of the assay procedure now yields data (Xi,~) for
i = 1, ..., n. Often the standards are replicated so that some
of the Xi are equal, to enable examination of the appropri-
ateness of the chosen f(., .).

The data for the unknowns consist of observed Y values
only, from which we attempt to estimate their unknown
concentrations. We consider first the case of one unknown
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sample with concentration xo, giving a response Yo. In many
cases this would also be replicated and we would have sev-
eral responses YOl,"', YOr.

The classical method of estimating xo is to first use the
standards to estimate the parameter () by applying an ap-
propriate re~s~:~Je. This gives tbeSOi!ealJed~"-ibration CurVe --:~?~':c:: -:~ --"- -~.~=--:~

Y = l(x,6), (3)

where 0 is the regression estimate of the parameters. Given
the response Yo from a sample with unknown concentration
xo (or an appropriate mean response if replication is used),
then, provided that 1(.,.) is monotonic and Yo lies in the
range of f(., .), we can always invert the calibration curve to
produce an estimate Xo for xo. For example, in the simple
linear model [Eq. (2)] we get

, Yo -II.
Xo = -'--' (4)

b

There are other ways of obtaining an estimate. Krutchkoff
(1967) advocated regressing x on Y to get a prediction equa-
tion for xo; Brown (1982) suggested that this method is
justifiable in the linear case even though x is not random,
because the resulting estimator is Bayesian with respect to
a particular prior distribution on x. This approach may not
be appropriate for nonlinear calibration, however, especially
when, as is the case in our examples, f(.,.) has horizontal
asymptotes. Another alternative is the maximum likelihood
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estimator (MLE) of Xo, possibly derived through the profile
likelihood as in the work of Brown and Sundberg (1987).
The MLE is identical to the classical estimator except in the
case of multivariate calibration when the dimension of the
vector response y is greater than that of the unknown x.
True maximum likelihood estimation then becomes prob-
lematic if many unknowns are calibrated from a single set
of standards, as is the case in our examples, because all
unknowns must be estimated simultaneously. We are con-
cerned here mainly with methods of producing bootstrap
datasets in the controlled calibration setting: Once these
datasets have been generated, any chosen estimator can be
applied to them. Thus, we use the classical estimator Xo,
as given previously, in our investigation.

The standard method of producing a confidence interval
for Xo is due to Fieller (1954). The regression procedure that
produces the calibration curve can also be used to calcu-
late prediction limits [YL(X), Yu(x)], which when inverted
give the required confidence region {x : Yo E [YL, Yu]}.
This method will work in the univariate case provided that
the slope of the calibration line is sufficiently large relative
to statistical uncertainty, a condition that has implications
for our simulation study as noted in Section 2. The situ-

y
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-
x

Yf.~

""-;.
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-:'-1

x

Figure 1. The Standard Method of Producing a Confidence Interval
Given a Response Yo, Using the Prediction Limits From Regression
(dashed lines). In (a), the slope of the calibration curve is sufficient to
produce an interval. The method fails in (b) when the slope of the cali-
bration curve is too shallow relative to the statistical uncertainty.
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from this pool to create the bootstrap datasets. Details are Bootstrap responses, Y* for a standard and Yo* for an
given in Section 2. unknown, are then given by

The second aspect to consider is the way in which the Y* -f( 0) R* ( )
bootstrap data are used. The simplest, the percentile boot- -x, + 5

strap, involves simply calculating the estimate )(0 for each and
bootstrap dataset and then taking the appropriate percentiles
of this distribution. Hall (1992) suggested that this is equiv-
alent to "looking up the wrong table backwards" (p. 36)
and that a better approach is to use some form of piv-
otal statistic, a bootstrap t. Gruet and Jolivet (1993) ex-
amined two methods of doing this, the usual pivot based
on the asymptotic distribution of )(0 and the predictive
pivot based on that of Yo -f(xo, 0). The two are easily
seen to be exactly equivalent in univariate linear calibra-
tion. For the univariate nonlinear case, we investigate both
alternatives, together with the naive percentile method. We ./ -,
find that pivoting is indeed superior for small datasets with V n -p

few unknowns and is probably better than the standard, where n is the number of points and p the number of pa-
nonbootstrap method when the error distribution is non- rameters, adjusts the residuals to allow for this known un-
normal. With a moderate number of replicated unknowns, dervariability. This adjustment factor may differ between
however, the percentile bootstrap can be surprisingly com- standards and unknowns and between unknowns having dif-
petitive, provided that the residuals are adjusted before re- ferent numbers of replicates; not to use it would create im-
sampling in a manner described later. This result is partic- balance in the resampling plan. One could go further and
ularly useful in nonlinear multivariate calibration in which adjust each regression residual by its standard error, but this
the asymptotic approaches do not appear to be very reliable would greatly increase the complexity, therefore the time,
and pivoting becomes mathematically or computationally of the analysis, and simulations suggest that it does not sig-
intractable. nificantly change the properties of the bootstrap intervals.

We first discuss the method of generating of bootstrap In the case of nonlinear regression, the residuals may not
datasets in controlled calibration. Then we examine the use add to 0: In this case it is necessary (Freedman 1981) to
of our proposed methods in the production of confidence center the regression residuals before proceeding.
intervals for calibration in the simple linear case [Eq. (2)], This method assumes that the mean response is modeled;~:
ear calibration, using both simulation and real data. Finally to achieve constant variance, we simply work with the trans-
we consider, using a real dataset. a difficult nonlinear mul- formed data and model; if on the other hand the variance
tivariate problem in which the simple percentile bootstrap is a known function of x, as in Bonate's (1993) example,
outperforms the asymptotic methods. then the residuals can be adjusted appropriately using the

known x values for the standards and the estimated )(0 for
-~ ~ --the unknown. For example if the standard error of the re-

sponse Y is thought to be proportional to the concentration
x we would use weights 1/ X2 in the regression and obtain
residuals

Yo' = Yo + R., (6)

where R. represents random drawings with replacement
from the residual pool.

We also suggest adjusting the residuals as described, for
example, by Efron and Tibshirani (1993, p. 122). The resid-
ual variation around a sample mean or fitted curve is too
small, by a known factor, to accurately reflect the variation
in responses. Multiplying by the appropriate factor,

r-n- (7)

1. BOOTSTRAP DATASETS

Efron (1979) illustrated the use of the bootstrap method
for setting confidence limits. The bootstrap examines the
variability of an estimate by using the existing data. together
with some assumptions about how they were generated, to
produce new, but plausible, "pseudodatasets" by the pro-
cess of resampling. In controlled calibration the structure
of the data allows several different methods of resampling,
as noted previously. Our proposal is to use both parts of the
data, standards and unknowns, to create a "residual pool,"
then to use resampling from this pool to create our boot-
strap datasets. In the case of the standards, the regression
used to estimate the calibration curve also provides resid-
uals ~ -f(Xi'O), which are placed in the pool. For an
unknown, provided that more than one replicate exists, we
take as residuals the deviation YOi -Yo of each replicate
from the mean response. If the unknown is not replicated,
it will not contribute to the pool, although it will receive
from the pool when the bootstrap data are produced. We
discuss later a technical issue concerning this case.

TECHNOMETRICS. AUGUST 1999. VOL. 41. NO.3
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x~= (8)

from the standards and

R; = ~~~ (9)
Xo

from the unknowns. A more complicated situation arises
if the variance-stabilizing transformation is estimated from
the data (as in the Box-Cox approach) or if the variance
function contains parameters to be estimated. The effect
of estimating these transformation or weighting parameters
on prediction intervals was noted by Carroll and Ruppert
(1991). They suggested a bootstrap adjustment to the usual
intervals. The effect on calibration confidence intervals was
shown by Zeng and Davidian (1997), with a similar proposal
for bootstrap adjustment. An approach to the bootstrapping
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of heteroscedastic data, using the "wild bootstrap," that does
not require estimation of a variance function was given by
HardIe and Mammen (1991). For further details, see Mam-
men (1992, pp. 13-17).

If all the standard concentrations are replicated, we also
have the possibility of using residuals from each replicate
set, calculated as for the unknowns, instead of the regres-
sion residuals. New responses for the standards are then
obtained by adding a resampled residual onto the mean of
the replicates, as was done for the unknowns. This simpler,
more symmetrical arrangement does not make the assump-
tion that the model used in the analysis is in fact correct: We
need only to assume independence and a known variance
structure for the errors. An additional advantage is that the
residuals are automatically centered at o.

2. LINEAR CALIBRATION
We now investigate the characteristics of 90% confidence

intervals derived from our proposed bootstrapping method
in the case of the simple linear model. To this end, we sim-
ulated from the model in Equation (2) with a = 0, b = 5
and with errors E: having zero mean and standard deviation
0' = 1. Note that fixing the values of a and b(# 0) is without
loss of generality because of equivariance, but the value of
blO' affects the accuracy of the calibration. Nine calibration
standards were used comprising concentrations of 1, 1, 1,
3, 3, 3, 5, 5, 5. The calibration line a + bx was estimated
using ordinary least squares regression. Because the stan-
dard method fails if the estimated slope is too shallow, it
would be necessary to reject any datasets for which b was

not. signifIcant.1Y.~~~,..(?~A~::.~~J}41:4~ ,~hQSen
deSIgn and parameter valUes en~e ~~_tbil~~~tremely
unlikely.

The prediction limits are given by

./1 ..1 , (x -X)2a + bx::l:: t8V ~ + ;I +-'-- -SS;;-, (10)

where x is the mean and SSx the sum of squares of the
n standard concentrations, r is the number of replicates of
the unknown, t is a percentage point of the appropriate t
distribution, and 8 is an estimate of the standard deviation
of the errors. If s is taken as the square root of the mean
squared error from the calibration curve estimation, it has
n -2 df; a better approach is to combine estimates from this
and from the replicates of the unknown, giving n + r -3
dr. Then, for a 90% prediction interval, t is the 95th per-
centile of the tn+r-3 distribution. T4e standard confidence
interval for an unknown with mean response Yo is calcu-
lated by finding the values of x that make either predic-
tion limit equal to fio. On rearranging, this gives quadratic
equations for the lower and upper limits, which are easily
solved.

For the bootstrap, ordinary least squares regression of the
standards data gives nine regression residuals ~ -a -bXi,
which are multiplied by the adjustment factor (here ,;917)
and placed in the residual pool. The unknown has three
replicates and so contributes three residuals Y OJ -Yo, each of
which is multiplied by .fil2. We then create our bootstrap

Xo 

-Xo

se(Yo* -f(xo)). \,"vlThe 

presence ot- Xo III the denominator makes the preced-ing 
form very difficult to use. Gruet and Jolivet (1993) sug-gested 

substituting the estimate )(00 in which case

Yo-a-bxo -f1'7\
-t,-/1 1 ~

Sy r + n + (Xo -X)2jSSx
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dataset of responses,

Y[*=a+bxi+R;, i=1,...,9, (11)

for the standards and

Yoj=Yo+Rj, j=1,...,3, (12)

for the unknown, where Ri and Rj represent random draw-
ings with replacement from the residual pool. An alternative
procedure, given that here the standard concentrations are
themselves in triplicates, would be to treat the standards in
the same way as the unknowns, using only their respective
means to get the residuals and to calculate their bootstrap
responses. This second method of using only residuals from
within replicates is "model-free" in the sense that it does
not use the assumption of linearity or the parameters of the
fitted model.

Once a bootstrap dataset has been produced, we estimate
the bootstrap calibration line parameters a* and b* from
the bootstrap standards and hence the bootstrap estimate
Xo = (Yo* -a*)/b*. For the ordinary percentile bootstrap,
1,000 such values can be used to produce a 90% confi-
dence interval for Xo by sorting and finding the 5th and
95th percentage points. As an alternative, we also consider
the bootstrap t. Here we use, instead of Xo, the asymptotic
"pivotal" statistic

t =:, \J.JI
se(Xo)

which is analogous to the usual t statistic in normal the-
ory statistics. We require se(Xo), the standard error of Xo,
~:~~ately in the present~~ not exist;.
causeXohas infinite variarice:Ttares:-nowever:lia~
nite asymptotic variance given by the delta method (Stuart
and Ord 1987, pp. 323-329) as

~ ( XA ) "'" ~,!I...:-~..:.~;~~~;~}~.l ~ ~~ /1 A \
se 0 -A + + 55 ,- ,b r n x

Bootstrap datasets are generated as previously, each yield-
ing a bootstrap-t value t*. The 5th and 95th percentage
points (t~05' t~95) are found and the confidence interval
(XL, Xu) calculated as

A ~ A A A

XL = Xo -t~95se(Xo), Xu = Xo -t~05se(XO). (15)

Theory suggests (Hall 1992) that these intervals should
achieve greater coverage accuracy than the ordinary per-
centile bootstrap, provided that the scale parameter se(Xo)
can be well estimated.

The predictive pivot is based on the statistic

t -~ -f(xo, 0) {1~\
p-J

~ ,,- ,- ,c

I

tp = '
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so that in the linear case the predictive pivot gives the same
result as the usual pivot.

We now compare the performance of the standard con-
fidence interval (S), the percentile bootstrap (PB), and the
bootstrap t (BT) using the linear model as described previ-
ously. Results for 10,000 simulations are given in Table 1
for one and three replicates of a single unknown sample, for
various values of the true concentration xo. The estimated
coverage probability (P) is the proportion of intervals con-
taining the true concentration. If the actual coverage is ap-
proximately equal to the nominal coverage (here 90%), then
the estimates of p have a standard error of approximately
.003. PB can be seen to produce confidence intervals with
inadequate coverage, the actual coverage being about 85%-
86%. BT, however, appears to perform much better, with
coverage a little lower than S but slightly shorter intervals.

If we adopt the alternative method of producing bootstrap
datasets, using only residuals from within replicates, the
percentile bootstrap (PBR) and bootstrap t (BTR) change
little in performance. Thus, this simpler procedure seems a
reasonable alternative to the use of residuals from the cali-
bration curve in the case in which standards are replicated.

To investigate the effect of adjusting the residuals as de-
scribed, we repeated the simulation without residual adjust-
ment. The coverage of the percentile bootstrap fell to about
.80 for r = 1 and .81 for r = 3, showing that residual ad-
justment can significantly improve the performance of the
percentile method. The effect on the bootstrap t, however,
was negligible. Any scale factor appears in both the nu-
merator and denominator of Equation (13); hence we could
double all the residuals and the calculated t would be un-
changed. Residual."~~.in~~ case ~,~:
a balancing out of the contnDutions of the standards and
unknowns.

When we repeated the experiment with a larger number
of standards, n = 15 instead of n = 9, we found that now
BT is comparable to S, but although the coverage of PB
improves, it is still short of the target. The results are sum-

TatNe ,. Comparison of Cowrage Probability and Interval Length for
Four Methods and Different Error Distributions (n = 10,000 simulations)

r=1 r=3

8T15A::::::====---~ ~ ~~-;?""-~ 

---oe e ;::

P
0.91

0.90

0.89

0.88
0.87 .

I Q::::::::::=:::~:~= 0.86

0.85 -

1 4 52 3
Number of Replicates

Figure 2. Comparison of Coverage Probabilities Using 9 and 15 Cal-
ibration Standards. p = coverage in 10.000 simulations, averaged over
six concentrations: PB = percentile bootstrap; BT = bootstrap t.

NOTE P = achieved coverage; m = mean length 01 imervai; ad = S1andard deviation 01

imerval length; S = standard method; PB = percentile bootstrap; BT = bootstrap I; PBA = PB

WIth replication reSidualS; BTA = BT with replication residuals
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marized in Figure 2. This is in line with theoretical predic-
tions: The bootstrap t converges more quickly to the target
coverage, but for larger samples both will be approximately
correct.

Because S is designed specifically for the case of nor-
mally distributed errors, it might be expected to fail when
this assumption is incorrect; the bootstrap methods, how-
ever, use the observed errors, so they might be expected to
outperform the standard method when the errors are non-
normal. To test this, we investigated two other error struc-
tures, a lognormal distribution (achieved by exponentiating
and recentering a standard normal) and a t distribution with
6 dr. Results are summarized in Figure 3. With t6 errors,
the coverage is too low even for S when there is only one
replicate of the unknown; for two or more replicates, the
situation reverts to that of normal errors. The lognormal dis-
tribution causes different problems: The coverage becomes
too high, but with BT less seriously affected than S. There
might thus be some advantage in using the bootstrap t in
place of the standard method.

We compared our resampling schemes, in which all resid-
uals are pooled, with the two plans investigated by Gruet
and Jolivet (1993}-namely, resampling from the regression
residuals only or resampling separately for the regression
data and the unknowns. We found that for one unknown
with a small number of replicates (3) there was very little
difference in performance between the methods. In many
applications, however, there are a moderate number of repli-
cated unknowns. With six unknowns, each replicated three
times, our pooling methods performed slightly better for
the bootstrap t. and considerably better for ~e.~r~n~~

,~~~C()veragc being abOUt -~8~~~lJng -.85 without. -

To summarize, the bootstrap t would seem to be a use-
ful method of obtaining confidence intervals in linear re-
gression. There is no need to adjust the residuals, and any
of the resampling schemes considered previously would be
satisfactory provided there are a reasonable number of stan-
dards (e.g., the nine standards used in the simulation). The
simpler percentile bootstrap can also be made to perform
reasonably well if there are many replicated unknowns, but
residual adjustment and pooling should be used.
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(a) ts errors

s

8TI

cur. All processing of the 96 observations on a plate oc-
curs simultaneously. The dose-response curve is typically
sigmoidal with unknown horizontal asymptotes that have
to be estimated. The responses typically show marked het-
eroscedasticity, the variance increasing with the mean re-
sponse, although this aspect is ignored in some commercial
software packages.

A common method of fitting a calibration curve to such
data is the four-parameter logistic model (Rodbard 1981).
A detailed account of the fitting, estimation of unknown
concentrations, and calculation of the standard confidence
interval was given by O'Connell, Belanger, and Haaland
(1992). They used pseudolikelihood to estimate the variance
function: Our analysis differs slightly in that we assume a
constant coefficient of variation and use a log transforma-
tion of the responses [Jones et al. (1995) and Rocke and
Jones (1997) showed this to be reasonable for these data].
Thus, our model is

P
0.92 ]
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0.90
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0.88 0"",/::: 
i~ ~ A '--6 PBI

0.85 r I .= I I I I
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(b) Lognormal errors
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{
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1181
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( .
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6 14 22
7 15 2~
8 16 24

"'1

3. A NONLINEAR EXAMPLE

If the calibration curve [i.e., the function f(.,.) ofEq. (1)]
is intrinsically nonlinear (Seber and Wild 1989, pp. 4-7),
exact prediction limits cannot usually be calculated and we
have to rely on a delta-method approximation. In such situa-
tions, the standard method of confidence-interval construc-
tion becomes approximate in nature. We now investigate the
usefulness of the bootstrap in nonlinear calibration, taking
as an example the determination of the herbicide atrazine
in water samples by enzyme-linked immunosorbent assay
(ELISA).

ELISA is a form of chemical analysis that uses the spe-
cific reaction of an antibody to a chosen analyte to produce
a response, here an optical density, which depends on the
analyte concentration. Often both standards and unknowns
are processed together on a 96-well microtiter plate (as in
Fig. 4). These plates are blocks of plastic with 96 small
depressions formed into them in which the reactions oc-

I 

oS}) ~

J

tJ

~

P I
0.92

0.91

0.90

0.-

0.- ( )A-D 0.87 log Y = log x B + D + E, (18)

0.. 1+(0)
0.85 ___L .,. ., '." .

1 2 3 4 5

Number of Replicates

Figure 3. Coverage Probabilities for Nonnormal Errors With Nine Cal-
ibration Standards, Using the Standard Method (S), Percentile Bootstrap
(PB), and Bootstrap t (B1).

Finally in this section we note a curious phenomenon that
occurs when there is only one replicate of the unknown: The
distribution of the bootstrap estimates Xo and t* can be
bimodal. ThiS:&c\lrs wneD..therei8-a~'8apfliD'tbe-M~8:;
derived from the standards so that the bootstrap unknown
responses Y 0* divide into two distinct groups. The problem
disappears when there are two or more replicates of the
unknown; it can be remedied in the case of one unknown
by smoothing the empirical distribution of the residuals or
by switching to a parametric approach using the appropriate
normal distribution.

-:::'ccLl

contributes three further residuals to the pool; alternatively
we could use only within-replicate residuals, treating the

~ er ) 1 9 17

~.1 2 1 0 18

p.~ ..3 11 19

1.( 4 12 20

~.( 5 13 21

10 6 14 22

O(~ 7 15 23

~Iaik 8 16 24
Standards Unknowns

Figure 4. Typical ELISA Template, With 24 Unknown Samples in

Triplicates.
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Respawe (00)
0.6 ] I

0.5 .
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0.1 I II ":::::::::: I II 0
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Figure 5. A Typical Dose-Response Curve for ELISA, With Prediction
Limits (dashed lines) and Confidence Interval.

riority of the predictive pivot over the ordinary bootstrap
that this is not borne out in practice here implies that suc
expansions are of limited use when r is small because tt
size of the function derivatives also comes into play. Fc
the large and small concentrations, however, the ordinal
bootstrap t fails when either )(0 or )(0 becomes 0 or inf
nite (or nearly so), whereas the predictive pivot can coI
with these values. The preference for one or the other c
these pivotal methods then depends on the characteristic
of the particular f(.,.) used.

We now examine the real dataset on which the simulatio
was based and find several new problems to be sunnountec
The data were originally produced to examine experimer
tal variation in ELISA curves: A detailed description w~
given by Jones et al. (1995). Thirty-two rnicrotiter plates u!
ing the same template of atrazine concentrations were run I
various times under different experimental conditions. Th
design of the templates consisted of four sets of standard
in triplicates at concentrations of 0, .1, .3, 1,3, 10, 100, an
10,000 ppb. Here we use one set of standards to estimate
calibration curve and regard the others as unknowns, gi,
ing three separate determinations of each of eight unknow
concentrations per plate. Thus we have 32 x 3 = 96 confJ
dence intervals at each concentration level, giving a total (J
768 intervals, which mayor may not contain the true COD

TatNe 2. Simulation Results (1,000 simulations) for Single-Analyte
ELISA With A = .5, B = 1.1, C = .86, 0 = .02, and u = .06

for "Unknown" Concentration x

Method p m

standards in the same way as the unknowns. There are now
96 residuals, and these are resampled to construct the 96
bootstrap observations. Analysis of the bootstrap datasets
now yields a bootstrap estimate Xo, a bootstrap-t value t*,
or a predictive pivot value t; for each of the 24 unknowns. I

First, we consider a simulation, based on a real dataset,
to be examined later, to compare the standard method (5),
the ordinary percentile bootstrap (PB or PBR if within-
replicate-only residuals), the bootstrap t (BT or BTR), and
the predictive pivot bootstrap (PP or PPR). The parameter
values A = .5,B = 1.I,G = .86,D = .02, and 0" = .06
used in the simulation were based on the real data, as were
the standard concentrations. Responses for standards and :
unknowns were simulated using Equation (16). The con-
centrations used for the unknowns 0, .1, .3, 1, 3, 10, 100, .0 S .947 .076 -:"06
and 10,OOOpp~(P~S~~). We
with the very small and very large concentrationsheCause ~~--~ 8T-~ '"'"- -

(X * ) . bo ded th .. d .PP .934 .103 .02
se 0 IS un un as e concentraUon mcreases an Its .1 S .897 .145 .03:
asymptotic approximation breaks down as the concentration PB .896 .140 .021
tends to O. Furthermore, Xo = 0 is at the boundary of the BT ---
parameter space, so the usual asymptotic theory is not as- PP .911 .137 .02:

d fi d .3 S .900 .166 .031
sure. We n that all methods overcover at Xo = 0; perhaps PB .895 .160 .01!

one-sided intervals would be more appropriate and better BT .887 .156 .011
behaved here. Two important points should be noted: First, PP .886 .155 .01!.t .. rt t . I de 0 d hi h .1.0 S .899 .268 .04!
I IS IIDpo an to mc u an very g concentrations PB .894 257 .02.

in the calibration dataset because these are what determine BT .888 254 .02~
the asymptote parameters A and D; second, concentrations PP .887 .253 .021
near 0 and at high levels are very poorly determined anyway 3.0 S .901 .591 .10:

d ld din . 1 be d ...PB .896 .566 .06'
an wou not or an y use m a quanUtaUve way. BT .889 .557 .06'

The results are given in Table 2. Use of within-replicate- PP .888 .555 .06:
only residuals did not significantly affect the performance 10.0 S .899 2.536 .50(
of any of the bootstrap methods, so these results are not :~ :~~ ~:~~~ :;;;
shown. It can be seen that, for the middle range of con- PP .883 2.382 .34~
centrations .3-10 ppb, all four methods achieve approxi- 100.0 S .904 inf -
mately the target coverage of 90% but with the bootstrap PB .897 in! -

intervals slightly shorter and much less variable in length ~~ .;2 ~ =
than the standard method. Interestingly, the percentile boot- 10,000.0 S .868 inf -
strap outperformed both pivotal methods, perhaps because PB .898 in! -

of the inaccuracy of the delta-method approximations used. PBTp -:- -
I ld h th d d f ...889 I"f -

t wou seem t at e expecte a vantage 0 plvoung can ~ -

be lost by not pivoting well. Gruet and Jolivet (1993) used
Edgeworth expansions in powers of r to suggest the supe-

NOTE 

P = achleYed coverage; m = mean length 01 interval; sd = standara deviation of intervalength; 

S = standara method; PB = percentile bootstrap: BT = bootstrap ,; PP = predictive plYOI

bootstrap
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centration they are estimating. A valid procedure should
produce confidence intervals that contain the true concen-
tration 90% of the time, so the number of "successes" at
each concentration should have a mean of 96 x .9 = 86.4.

The original results, using the template shown in Figure
4, gave very poor coverage (about 75%) for the standard
and the bootstrap methods. All methods showed nonunifor-
mity of coverage across concentrations, which might be an
indication of lack-of-fit of the model. An alternative expla-
nation is the presence of spatial effects on the plates. It is
well known to practitioners that spatial effects can some-
times develop, especially in certain locations such as the
edges or comers of a microtiter plate. They are variously
attributed to temperature gradients, dilution errors, inhomo-
geneity of the plate material, bias in the plate-reading de-
vice, and others. Because the same template was used for
each plate, some of the samples could be expected to be
affected more than others. One of the 100 ppb samples was
consistently missed, and it was located in one of the cor-
ners of each plate. To investigate the effect of spatial cor-
relation, we rearranged the template by randomly grouping
the 12 replicates at each concentration level into a cali-
bration triplicate and three triplicated unknowns. The ef-
fect on coverage performance was dramatic, as shown in
Table 3. Most concentrations now achieved greater than
nominal coverage, with the shortfall at the 100 and 10,000
ppb concentrations being due apparently to their comer
positions. The coverage across all concentrations was es-
sentially at the nominal, with slightly lower coverage at
100 and 10,000 ppb and slightly higher compensating cov-
erage at the other concentrations. The bootstrap t (BT*)
could again not.be.u8ed-.forhigh and low conceD~c"

~ ~- ~~-~-

this is not necessarily a serious disadvantage because these
concentrations were known to be beyond the limits of ac-
curate quantitation. Both pivotal methods, however, failed
to outperform the simpler percentile methods, as in the
simulations. Again the use of within-replicate-only resid-
uals made little difference; only PBR is shown here for
comparison.

The poor coverage without randomization shows the dan-
ger of spatial correlation in microplate data. It is perhaps
impractical to expect a technician to pipette each sample
replicate in a random position, but not to do so mems that
the real errors in the estimated concentrations may be very

Ai -Di

1+ 1-(~)B'lIB: + (~)B'2IB:)B:+D'

+ Ci, (19)

where Ai, Bij, Cij, Di are the parameters of the calibration
curve for analyte j with antibody i and B; is the geometric
mean of Bil and Bi2. Two microtiter plates are needed for
the assay, each treated with a different antibody. The two
plates are analyzed separately, so Cl and C2 are indepen-
dent. Two single-analyte calibration curves are run on each
plate, together with unknown samples. We assume that pa-
rameters A and D are common to both curves on the same
plate. Estimates of the unknowns Xl and X2 for each sample
are calculated by solving the system of equations (17) using
the measured responses (Yl, Y2). Because of this complexity
the standard asymptotic methods of producing confidence
intervals for the estimates are mathematically and compu-

i = 1,2,
Table 3. Number of 90% Confidence Intervals Containing the True
Concentration from 96 Samples (expected number should be 86.4)

Confidence interval method

0
.1

.3

1
3
10
100
10,000
Total

95
94
96
91
93
93
68
77
92.1

94
94
96
91
92
93
60
77
90.

94
93
95
91
92
93
60
77
90.!

94
94
95
91
92
93
60
77
90.

-

96
91
91
91

96.1%

NOTE Methods are as in Tat)es , and 2

TECHNOMETRICS, AUGUST 1999, VOL. 41, NO.3

different from what they are often assumed to be. This very
serious problem is beyond the scope of the present article
and remains for further work.

4. NONLINEAR MULTIVARIATE CALIBRATION

Most approaches to multivariate calibration have con-
sidered only the linear case or simple extensions that are
still linear in the model parameters. Brown (1982) extended
Fieller's approach to give confidence regions in multivari-
ate linear calibration. The coverage is exact, but when the
dimension of x is less than that of Y the region may
be empty. Several proposals have been made to overcome
this (Brown and Sundberg 1987; Oman 1988; Mathew and
Kasala 1994; Mathew and Zha 1996). These proposals tend
to be very difficult to implement even in the linear cases
considered by the authors. Clarke (1992) considered a non-
linear model with multivariate Y but univariate x; he needed
simulation to derive the distribution of his suggested statis-
tic. Bootstrapping is thus an attractive possibility here; we
shall demonstrate that it can be done fairly easily even
with complex nonlinear models with multivariate x and
Y. For comparison purposes we also investigate a non-
linear multivariate extension of Fieller's approach and the
likelihood ratio statistic suggested by Brown and Sundberg
(1987).

We use here as an example the analysis of mixtures
of the herbicides atrazine and terbutryn using multiana-
lyte ELISA (MELISA). MELISA uses a panel of antibodies
to detect and quantitate mixtures of analytes which cross-
react in single-antibody assays, by generalizing the four-
parameter logistic model (see Jones et al. 1994; Wortberg,

.~ KNissis. R<x:ke, ~~~ ~ 995}.:~~ 9(
-binary mixtures, we use tWO sUitably chosen antibodies so
that the responses (Yl,Y2) from a mixture with concentra-
tions (Xl, X2) are modeled by

log Yt

= f(x, 8i) + Ei

, ,

= log

% B% 6%
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~kQPwns

tationally difficult; implementation of the percentile boot-
strap as described previously is, however, straightforward:
We generate new bootstrap data for each plate separately
and then calculate the bootstrap estimates (Xl, X2).

To produce a confidence region from many bootstrap
point estimates is more problematic now than in the one-
dimensional case. One alternative is to assume multivariate
normality of the estimator, estimate the mean and covari-
ance matrix, and draw the appropriate elliptical contour.
An alternative, nonparametric approach is to estimate the
multivariate density. We used ASH, or average shifted his-
tograms (Scott 1992), to estimate the bivariate density, then
drew a contour at a level such that the integrated ASH es-
timate inside the contour was 90%. Figure 6 shows the re-
sults of 1,000 bootstrap estimates for one of the unknowns
together with the ASH-derived confidence region (B).

The Fieller approach may be regarded as an adjustment
of the squared distance function IIYo-f(xo, 0)1/2 to account
for uncertainty in the parameter estimate O. It was argued
by Jones (1996) that approximately

at~rne:

tert>~ry~
_~t~ndar~~-

I

stanQla--1SJ~

JJDl<hotln$_Uln~nown$

Figure 7. Template for MELISA With Two Analytes. Two such plat,
are used, each treated with a different antibody;

likelihood, to within an added constant, is given by

where nl and n2 give the total number of data points j
each augmented calibration set. We now find the minimizc
Xo of l (Xo) and assume the usual asymptotic result

2(l(xo) -l(io)) N X~ (2:

2
D(Xo) == L (logYO~ -f(Xo,iJ))2 '" 2

i=l ai (1 + Vi) X2, (20)

to get a confidence region. In practice, however, there aI
'. 2 ..considerable computational difficulties both in minimiziD

where u2 IS th: vanan.ce of ~i and Ui Vi the asymptotIc van- l(x:o) and in evaluating it over a grid where the convergenc
ance of f(xo, 8), obtained Via the delta method: Because x of the curve-fitting algorithm may break down for some XI
and Y have the same dimension here, then, proVided that ~e The resulting confidence region is marked L in Figure 6.
are away from the boundary (XOI and XO2 both nonzero), Xo Our full dataset for this example consisted of six paiJ
solves D(x:o) = .O. A confidence reg~on can then ~ ob- of plates, each containing duplicated staqdardsf~~~t
tained by evalu~{Zo )~ver- c&.grid-and COD~'.~ ~ aI1dCe!'bt.!~ t.woipHG:.teeufus an~laDks~~2
the appropriateleveI:S:ucharegion is ShOWfi--'1fi-Pi:g~~~Plicated "unknown" samples of 1 ppb atraZlne with 1 pp
marked F. terbutryn (see Fig. 7). This gave a total of 132 detenmn~

The likelihood ratIo approach IS m prmclple stratght!°r- tions of the 1 + 1 mixture, although results from the sam
ward, provided that we de~ with one unkno~ at. a tIm~. pair of plates are not independent because they use the sam
For a trial value Xo, the pomt (XO, Yoi) (or pomts, if repli- estimated standard curves. To reduce the problem of sp~
cated) is added to the ith calibration set; estimation of the tial effects noted earlier, we randomized the positions of th
curve parameters by least squares. regression .leads to an unknowns, separately for each plate. The number of cor
error sum of squares 55;. Assummg normality, the log- fidence regions containing the true concentrations for eac

---pair of plates by each method is shown in Table 4. Th
-two asymptotic methods (F and L) do not perform we1

the bootstrap confidence regions, however, would seem t
provide a reasonable summary of the uncertainty in eac
estimate.

~
N

"!

t
~ C!S -
D
10...

Table 4. Co\l9rage of Confidence Regions in
Multianalyte ELISA Experiment

Confidence interval method'"
0' Plates Fie/ler L. ratio Bootstrap

14
8
7

14
20
19
74.

0.0 05 10

Atrazine ~

1.5 20

Figure 6. Bootstrap Estimates and Estimated 90% Confidence Re-
gions From MELISA of 1 ppb Atrazine With 1 ppb Terbutryn: B = Boot-
strap Method; F = Fieller Method; L = Likelihood Ratio Method. NOTE Figures show the number of regIons (out of 22 samples on each pair of plates) containlr

"'A ." 'A ~"~""..,~" The expected number at the nominal 90% coverage is 198
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5. CONCLUSION AND DISCUSSION

Our results suggest that bootstrapping can be made to
work reasonably well in controlled calibration experiments
even when the sample size is not large. Pivoting may lead to
better coverage properties in small datasets, but for larger
datasets even the simple percentile bootstrap, with resid-
ual adjustment, can approximate the correct coverage; the
advantage of pivoting may be lost in nonlinear models in
which the standard error must be approximated.

If both standards and unknowns are replicated, the use
of within-replicate residuals is simpler and gives results
comparable with those obtained using regression residuals.
These different approaches correspond to different levels
of assumptions made in constructing the bootstrap datasets.
The use of regression residuals assumes that the mean re-
sponse is modeled correctly and that the correct variance
function is used: Within-replicate residuals assume only the
correct variance function. If the mean response is modeled
incorrectly, this will bias the calibration estimates and the
calculated confidence intervals from either method will be
misleading. In some cases it might be better to estimate
the calibration curve nonparametrically (Knafl, Speigelman,
Sacks, and Ylvisaker 1984). Our bootstrap methodology
could be applied in this case without adaptation.

Another possible failure of assumptions concerns nonin-
dependence of the errors. There may be spatial or tempo-
ral effects that cannot be eliminated by randomization of
the design, resulting again in inadequate coverage of both
standard and bootstrap intervals. In general, false assump-
tions will tend to give misleadingly reassuring intervals, by
whatever method they are produced. The advantage of our
bootstrap methodology is that it is easy to apply even in
quite complex situations, aBd-itgives resultscompm able~
the standard method in simple ones.
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