
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Model-based reinforcement learning for cooperative multi-agent planning: exploiting
hierarchies, bias, and temporal sampling

Permalink
https://escholarship.org/uc/item/38t1p18j

Author
Ma, Aaron

Publication Date
2020

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/38t1p18j
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Model-based reinforcement learning for cooperative multi-agent planning: exploiting
hierarchies, bias, and temporal sampling

A Dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Engineering Sciences (Mechanical Engineering)

by

Aaron Ma

Committee in charge:

Jorge Cortés, Chair
Nikolay Atanasov
Mauricio De Oliveira
Kenneth Kreutz-Delgado
Sonia Martinez
Mike Ouimet

2020

Copyright

Aaron Ma, 2020

All rights reserved.

The dissertation of Aaron Ma is approved, and it is ac-

ceptable in quality and form for publication on microfilm

and electronically:

Chair

University of California San Diego

2020

iii

DEDICATION

To my parents.

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . viii

List of Tables . ix

Acknowledgements . x

Vita . xiii

Abstract of the Dissertation . xiv

Chapter 1 Introduction . 1
1.1 Literature review . 4

1.1.1 Multi-agent deployment 4
1.1.2 Potential games and online stochastic optimization 6
1.1.3 Reinforcement learning 6
1.1.4 Imitation learning in tree search 9

1.2 Contributions . 10
1.2.1 Multi-agent planning in massive environments . . . 11
1.2.2 Trajectory search via simulated annealing 12
1.2.3 Biased tree search for multi-agent deployment . . . 12

1.3 Organization . 13

Chapter 2 Preliminaries . 15
2.1 Notation . 15
2.2 Markov chains . 16
2.3 Simulated annealing . 17
2.4 Potential games . 18
2.5 Markov decision processes 19
2.6 Model-based reinforcement learning 21
2.7 Submodularity . 23
2.8 Scenario optimization . 26

Chapter 3 Dynamic domain reduction planning 28
3.1 Problem statement . 29
3.2 Abstractions . 30

3.2.1 Single-agent abstractions 30
3.2.2 Multi-agent abstractions 35

v

3.3 Dynamic Domain Reduction for Multi-Agent Planning . . 39
3.4 Convergence and performance analysis 42

3.4.1 TaskSearch estimated value convergence 43
3.4.2 Sub-environment search by a single agent 44
3.4.3 Sequential multi-agent deployment 51

3.5 Empirical validation and evaluation of performance 56
3.5.1 Illustration of performance guarantees 57
3.5.2 Comparisons to alternative algorithms 59
3.5.3 Effect of multi-agent interaction 61

3.6 Conclusions . 63

Chapter 4 Cooperative dynamic domain reduction planning 65
4.1 Problem statement . 66
4.2 Cooperative dynamic domain reduction planning 67

4.2.1 Abstractions and definitions 68
4.2.2 DDRP algorithms and task generation for communi-

cation . 71
4.2.3 Joint DDRP via simulated annealing 73

4.3 Performance of selection schemes: ‘flat’ vs. ‘weighted’ . . . 76
4.4 Conclusions . 77

Chapter 5 Temporal sampling schemes for receding horizon cooperative task
planning . 80
5.1 Problem statement . 81
5.2 Task scheduling with recycled solutions 82
5.3 Sampling schemes for task scheduling 84

5.3.1 Sampling matrix structure 84
5.3.2 Geometric sampling 85
5.3.3 Inference-based sampling 91

5.4 Cooperative orienteering 93
5.4.1 Single shift stationary distribution 95
5.4.2 Probability in optimal Nash equilibrium 98
5.4.3 Full trial cooperative reward 99
5.4.4 Keeping promises 100

5.5 Conclusions . 101

Chapter 6 Cascading agent tree search . 103
6.1 Problem statement . 104
6.2 Multi-agent tree search and bias exploitation 105

6.2.1 Multi-agent informed policy construction 105
6.2.2 Cascading agent tree search 106
6.2.3 Online and offline deployment 109

6.3 Convergence of CATS to optimal value 110
6.3.1 Cascaded MDPs . 110

vi

6.3.2 Convergence to optimal state value 114
6.4 Implementation on 2D environments 118

6.4.1 Performance vs. allotted simulation time (Perf. vs.
∆t) . 120

6.4.2 Performance vs. number of agents (Perf. vs. |A|) . 120
6.4.3 Simulation time to threshold value (Time to threshold)121

6.5 Conclusions . 121

Chapter 7 Conclusions . 125

Bibliography . 130

vii

LIST OF FIGURES

Figure 1.1: A depiction of a multi-agent heterogeneous UxV deployment. . . 3

Figure 3.1: Workflow of the proposed hierarchical algorithm. 29
Figure 3.2: Probability distribution function of fω(Xω)/fω(X∗ω). 58
Figure 3.3: Probability distribution function of fϑ(Xϑ)/fϑ(X∗ϑ). 58
Figure 3.4: Performance of DDRP, DDRP-OO, and MCTS. 60
Figure 3.5: Performance of ACKTR . 60
Figure 3.6: The trajectories generated from MCTS, DDRP, and ACKTR. . . . 61
Figure 3.7: Performance of DDRP, DDRP-OO, and MCTS. 62
Figure 3.8: Performance of ACKTR in a static environment. 62
Figure 3.9: Performance of multi-agent deployment using DDRMAP. 63

Figure 4.1: Example use of CDDRP. 66
Figure 4.2: Workflow of DDRP and CooperativeTrajectorySearch. 71
Figure 4.3: Pseudocode of CooperativeTrajectorySearch 76
Figure 4.4: Results and simulations. 78

Figure 5.1: A matrix that illustrations action schedule generation. 86
Figure 5.2: Cooperative orienteering environment and relative view. 94
Figure 5.3: The average reward per step (single shift experiment). 97
Figure 5.4: The KL-divergence (single shift experiment). 97
Figure 5.5: The expected reward (single shift). 98
Figure 5.6: Percentage of being in optimal Nash equilibrium set. 99
Figure 5.7: The average reward per step vs. iterations. 99
Figure 5.8: The average reward per step vs. allowed time. 100
Figure 5.9: Probability of breaking promises. 101

Figure 6.1: 2D multi-agent enviroments. 104
Figure 6.2: Flowchart of the iterative process, MIPC. 105
Figure 6.3: Original and cascaded MDP depictions. 111
Figure 6.4: Results from the experiments in each environment. 119

viii

LIST OF TABLES

Table 4.1: Parameters used in the simulations. 76

Table 6.1: Parameters of each environment and experiment. 124

ix

ACKNOWLEDGEMENTS

First and foremost, I would like to thank Professor Jorge Cortés. Professor

Cortés made a profound effect on my life and career by first accepting me as a Mas-

ters student in 2014, where I was introduced to the world of research and robotics.

Nearing my graduation, Prof. Cortés motivated me to pursue a PhD. I cannot thank

Prof. Cortés enough for the work that he has put into developing and finding my

potential as a researcher by meeting weekly and going over the fundamentals and

nuances of research with patience and understanding. Prof. Cortés takes special care

to make sure his pupils are well rounded in terms of presentation and knowledge of

the material. Furthermore, he provided the opportunity for me to work and mentor

undergraduates in the Multi-agent Robotics lab, where I found my passion and ap-

preciation for the development of robots in both hardware and software. Thank you

for everything.

Dr. Mike Ouimet, deserves a huge thanks for being a great mentor, role-model,

and friend. I first met Mike as a Masters student in the Multi-agent Robotics lab at

UCSD. He taught me how to interface with robotics hardware and the importance

of programming using ROS and Python. Mike was a mentor to program and acted

as a liason in order to bridge the gap between UCSD and SPAWAR. Mike played a

large part in my decision to pursue a PhD. He often inspired me with his creativity,

imagination, and interest in the field of reinforcement learning and played a critical

role in finding a research grant from the Office of Naval Research. I cannot thank

both Prof. Cortés and Dr. Ouimet for all of the hardwork they have put into our

collaboration.

A special thanks goes to my commitee: Prof. Sonia Martínez, Prof. Nikolay

x

Atansov, Prof. Mauricio De Oliveira, and Prof. Kenneth Kreutz-Delgado for taking

time to attend my Senate and Final Defense presentations. The feedback that we

received is invaluable.

I want to thank SPAWAR for granting me internship over the summers of my

PhD. I enjoyed all the time spent there, especially due to Mike Tall, who was in charge

of many of the projects that we worked on. Mike Tall worked tirelessly to enable us

interns to gather valuable experience in robotics. Special thanks to everyone I met

at SPAWAR as well, since they made the experience a lot of fun.

I want to express the deepest gratitude towards my family because they pushed

me with love and support to pursue a life that I am passionate about, ultimately

leading me to where I am today.

Lastly, a big thanks to the Office of Naval research for awarding me the grant

which ultimately enabled me to pursue a PhD. Especially Maria Madeiros and Chris

Duarte, who are program officers at ONR and sponsored my participation. Maria and

Chris provided an amazing experience with my experiences during my PhD includ-

ing the annual Naval Undersea Research Program, where participants present their

research material and its possible future relevance to the Navy.

Chapter 1 is coauthored with Cortés, Jorge. The dissertation author was the

primary author of this chapter.

Chapter 2, is coauthored with Cortés, Jorge and Ouimet, Mike. The disserta-

tion author was the primary author of this chapter.

Chapter 3, is coauthored with Cortés, Jorge and Ouimet, Mike in full, is a

reprint of the material as it appears in Autonomous Robotics 44 (3-4) 2020, 485-503,

Ma, Aaron; Ouimet, Mike; Cortés Jorge. The dissertation author was the primary

xi

author of this chapter.

Chapter 4, in full, is a reprint of the material as it appears in Distributed

Autonomouos Robotic Systems: The 14th International Symposium, Springer Pro-

ceedings in Advanced Robotics, vol. 9, pp.499-512, Ma, Aaron; Ouimet, Mike; Cortés

Jorge. The dissertation author was the primary author of this chapter.

Chapter 5, in full is currently being prepared for submission for publication of

the material. Ma, Aaron; Ouimet, Mike; Cortés Jorge. The dissertation author was

the primary investigator and author of this paper.

Chapter 6, in full, is a reprint of the material as it appears in IEEE Robotics

and Autonation Letters 5 (2) 2020, 1819-1826. Ma, Aaron; Ouimet, Mike; Cortés

Jorge. The dissertation author was the primary investigator and author of this paper.

Chapter 7 is coauthored with Cortés, Jorge. The dissertation author was the

primary author of this chapter.

xii

VITA

2012 Bachelor of Science in Mechanical Engineering, University of
California Santa Barbara

2016 Master of Science in Engineering Sciences (Mechanical Engineer-
ing), University of California San Diego

2020 Doctor of Philosophy in Engineering Sciences (Mechanical En-
gineering), University of California San Diego

PUBLICATIONS

Journal publications:

• A. Ma, M. Ouimet, and J. Cortés. Hierarchical reinforcement learning via dy-
namic subspace search for multi-agent planning. Autonomous Robots, 2020. To
appear

• A. Ma, M. Ouimet, and J. Cortés. Exploiting bias for cooperative planning in
multi-agent tree search. IEEE Robotics and Automation Letters, 2020. To appear

• A. Ma and J. Cortés. Distributed multi-agent deployment for full visibility of
1.5D and 2.5D polyhedral terrains. Journal of Intelligent and Robotic Systems,
2019. Submitted

Conference proceedings:

• A. Ma and J. Cortés. Visibility-based distributed deployment of robotic teams in
polyhedral terrains. In ASME Dynamic Systems and Control Conference, Min-
neapolis, MN, October 2016. DSCC2016-9820

• A. Ma, M. Ouimet, and J. Cortés. Dynamic domain reduction for multi-agent
planning. In International Symposium on Multi-Robot and Multi-Agent Systems,
pages 142–149, Los Angeles, CA, 2017

• A. Ma, M. Ouimet, and J. Cortés. Cooperative dynamic domain reduction. In
Distributed Autonomous Robotic Systems: The 14th International Symposium,
volume 9 of Springer Proceedings in Advanced Robotics, pages 499–512. Springer,
New York, 2019

xiii

ABSTRACT OF THE DISSERTATION

Model-based reinforcement learning for cooperative multi-agent planning: exploiting
hierarchies, bias, and temporal sampling

by

Aaron Ma

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2020

Jorge Cortés, Chair

Autonomous unmanned vehicles (UxVs) can be useful in many scenarios in-

cluding disaster relief, production and manufacturing, as well as carrying out Naval

missions such as surveillance, mapping of unknown regions and pursuit of other hos-

tile vehicles. When considering these scenarios, one of the most difficult challenges

is determining which actions or tasks the vehicles should take in order to most effi-

ciently satisfy the objectives. This challenge becomes more difficult with the inclusion

of multiple vehicles, because the action and state space scale exponentially with the

number of agents. Many planning algorithms suffer from the curse of dimensionality ;

xiv

as more agents are included, sampling for suitable actions in the joint action space

becomes infeasible within a reasonable amount of time. To enable autonomy, meth-

ods that can be applied to a variety of scenarios are invaluable because they reduce

human involvement and time.

Recently, advances in technology enable algorithms that require more com-

putational power to be effective but work in broader frameworks. We offer three

main approaches to multi-agent planning which are all inspired by model-based re-

inforcement learning. First, we address the curse of dimensionality and investigate

how to spatially reduce the state space of massive environments where agents are

deployed. We do this in a hierarchical fashion by searching subspaces of the environ-

ment, called sub-environments, and creating plans to optimally take actions in those

sub-environments. Next, we utilize game-theoretic techniques paired with simulated

annealing as an approach for agent cooperation when planning in a finite time horizon.

One problem with this approach is that agents are capable of breaking promises with

other agents right before execution. To address this, we propose several variations

that discourage agents from changing plans in the near future and encourages joint

planning in the long term. Lastly, we propose a tree-search algorithm that is aided by

a convolutional neural network. The convolutional neural network takes advantage

of spatial features that are natural in UxV deployment and offers recommendations

for action selection during tree search. In addition, we propose some design features

for the tree search that target multi-agent deployment applications.

xv

Chapter 1

Introduction

Unmanned vehicles are increasingly deployed in a wide range of challenging

scenarios such as use in disaster response, tools for production in factories, and to

carry out missions in military applications. A couple examples of tasks that benefit

from autonomy include surveillance of an area, search and rescue, pick-up and deliv-

ery, and mapping of an unknown and hard to get to area. The use of autonomous

vehicles can keep human lives away from dangerous areas, aid in tedius and mundane

tasks, and improve performance in areas that are difficult for humans to do as an

operator. With the inclusion of multiple agents, more scenarios become relevant that

require cooperation and competition amongst agents to perform well. The ability for

multiple agents to plan and cooperate is critical across these robotic applications.

In many scenarios, these unmanned vehicles are controlled by one or, more often

than not, multiple human operators. Reducing UxV dependence on human effort

enhances their capability in scenarios where communication is expensive, low band-

width, delayed, or contested, as agents can make smart and safe choices on their

own. An example of heterogeneous multi-agent deployment with UxVs is depicted in

1

Figure 1.1. Generally, in this scenario a large team of human operators are required

to send commands to underwater vehicles via communication network of surface and

aerial vehicles. This is a domain in which communication is costly and unreliable, so

UxVs benefit greatly with increased autonomous capability.

One example of an autonomous deployment scenario where the environment

is complex with many uncertain properties is the DARPA Subterranean Challenge.

In the challenge, vehicles are tasked with exploring, mapping, and navigating under-

ground tunnels, passages, and facilities. In these harsh, GPS-denied environments

there are often multiple levels and vertical passages. Furthermore, unknown changes

to the environment are expected to occur, such as closing doors and segments of caves

collapsing. One of the goals of the challenge is to inspire innovation in autonomous al-

gorithms for increasing situational awareness, which requires an autonomy framework

that is flexible when it comes to environmental assumptions.

In the past, algorithms for multi-agent deployment typically have a narrow

scope regarding the task at hand. Algorithms are typically designed to handle a par-

ticular mission and are built with many assumptions and dynamics that are relevant

to the targeted task. The need for algorithms that are able to handle more generalized

tasks are becoming important as many of the tasks that we are interested in have

unknown or changing environmental parameters. Logistically, it is time consuming to

design, test, and debug algorithms for UxVs, especially in harsh environments where

testing could lead to loss or destruction of the vehicle. Because of this, algorithms

that are capable of being applied to a variety of scenarios are of great interest to

those who use UxVs because it is time consuming to handcraft algorithms for each

deployment scenario.

2

Figure 1.1: A depiction of a multi-agent heterogeneous UxV deployment.
In this mission there are multiple objectives. The underwater vehicles are
tasked with mapping the seafloor, maintaining communication connectivity
amongst themselves, and seeking objects of interest such as mines. Aerial and
surface vehicles are tasked with maintaining connectivity to the underwater
vehicles to provide localization and commands from a human operator.

Reinforcement learning has become a compelling strategy for multi-agent de-

ployment because it has the capability of generating policies when just given the

environment and time. In terms of development time, models of the environment

that the agents are to be deployed in can be done on a case-by-case basis. Once

that is complete, one of many reinforcement learning algorithms can be trained of-

fline, with little human intervention, in order to generate a policy for agents to follow

during online deployment. However, there are many challenges associated with re-

inforcement learning. For example, given an environment that is generalized into a

Markov decision process (MDP), it can be difficult to find optimal policies, which

often requires a massive amount of sampling. This problem becomes much worse

when multiple agents need to coordinate to develop an optimal joint plan because

their action spaces become joint as well. For this reason, the topic of multi-agent

planning is particularly interesting and difficult.

Recently, rise in computational power and the miniturization of microcon-

3

trollers and single board computers are enabling the use of algorithms for multi-agent

deployment. Online sampling methods for finding optimal routes can be run on mi-

crocontrollers/single board computers on the vehicle itself. Specialized hardware that

specifically target popular neural network structures are being manufactured in an-

ticipation of use on smart cars and unmanned vehicles so that inference for machine

learning can be done on the vehicle itself. This progress in technology makes the

field of multi-agent robotics promising as the computational needs that were once

prohibitive, may now be feasible to compute. One example of this is where reinforce-

ment learning has recently been applied to a multitude of competitive games on a

professional level such as Chess and Go, and multi-agent games such as such as Dota

2 and Starcraft 3. Inspired by recent technology, we propose several algorithms which

utilize offline learning algorithms to aid online sampling algorithms which can now

be ran onboard vehicles.

1.1 Literature review

We introduce state-of-the-art strategies that are used for single and multi-

agent task planning. We begin with a short overview of general multi-agent deploy-

ment algorithms and then move to strategies that treat the environment as a Markov

process.

1.1.1 Multi-agent deployment

Multi-agent deployment is a broad term that spans any algorithm that can be

used to control a two or more agents. Many of these algorithms target a particular

problem such as finding the optimal path in path planning or patrolling an area.

4

Recent algorithms for decentralized methods of multi-agent deployment and path

planning enable agents to use local information to satisfy some global objective. A

variety of decentralized methods can be used for deployment of robotic swarms with

the ability to monitor spaces, see e.g., [GM04, BCM09, ME10, DM12, DPH+15, CE17]

and references therein. To structure the multi-agent planning algorithm, we draw mo-

tivation from coordination strategies in swarm robotics where the goal is to satisfy

some global objective [GM04, BCM09, ME10, DM12, DPH+15, CE17]. These al-

gorithms utilize interaction and communication between neighboring agents to act

cooperatively.

The mentioned algorithms are generally powerful when applied to the scenario

that they are designed for. These algorithms are designed for specific tasks and take

advantage of particular geometric or structural assumptions that can be made about

the environment. Exploiting these assumptions often yield strong theoretical results,

however, this makes some algorithms difficult to be applied to a multitude of scenarios

or to be applied to uncertain and unstructured environments where algorithms that

can generalize often perform well. That being said, one of our motivations is to

improve the accessibility of robots being applied to a variety of situations. Currently,

if one wants to deploy agents for multiple scenarios, they also have to implement an

algorithm that targets each particular scenario, which takes a lot of time. Because

of this, we look to algorithms that can applied to many different scenarios which are

able to develop policies that are specific to each environment. Such algorithms are

generally computationally costly, however as computation power steadily increases

these algorithms become more relevant.

5

1.1.2 Potential games and online stochastic optimization

Game theory provides some powerful tools which can used to as a tool for

multi-agent planning. In particular, we are interested in the field of cooperative,

where the goal for agents are to maximize utility by employing strategic interac-

tions. One can design the deployment and interactions of multiple agents as a game.

Doing so can be powerful because analysis of the agents strategies under particular

games and conditions can lead to interesting properties such as agents reaching a

Nash equilibrium. Of these frameworks we are particularly interested in potential

games [MS96], where the agents’ incentive to change strategies are expressed by a

global potential function. With a proper potential function, agents reach Nash equi-

librium in finite time by incrementally choosing actions that improve their utility,

albiet this Nash equilibrium may not be a global optimizer. Potential games have

been utilized for cooperative control [MAS09] as well as for cooperative task plan-

ning [CMKJ09]. One strategy that agents can utilize in potential games is spatial

adaptive play [MAS09, B+93, You98], where an agent at random changes its strategy

with respect to a stochastic policy that balances exploration vs exploitation.

Methods that cast multi-agent task planning problems as games benefit by

gaining access to properties such as Nash equilibrium convergence. Some of these

algorithms however have no guarantee that given enough time, the plans that the

agents decide on will be optimal.

1.1.3 Reinforcement learning

Reinforcement learning is relevant in multi-agent task planning because it en-

ables planning in generalized scenarios. Reinforcement learning algorithms commonly

6

use Markov decision processes (MDP) as the standard framework for temporal plan-

ning. Variations of MDPs exist, such as semi-Markov decision processes (SMDP) and

partially-observable MDPs (POMDP). These frameworks are invaluable for planning

under uncertainty, see e.g. [SPS99, BNS08, Put14, How60]. Given a (finite or infinite)

time horizon, the MDP framework is conducive to constructing a policy for optimally

executing actions in an environment [PT87, Lov91, Bel13]. Reinforcement learning

contains a large ecosystem of approaches. We separate them into three classes with

respect to their flexibility of problem application and their ability to plan online vs

the need to be trained offline prior to use.

The first class of approaches are capable of running online, but are tailored to

solve specific domain of objectives, such as navigation. The work [BSR16] introduces

an algorithm that allows an agent to simultaneously optimize hierarchical levels by

learning policies from primitive actions to solve an abstract state space with a cho-

sen abstraction function. Although this algorithm is implemented for navigational

purposes, it can be tailored for other objective domains. The dec-POMDP frame-

work [OA16] incorporates joint decision making and collaboration of multiple agents

under uncertain and high-dimensional environments. Masked Monte Carlo Search

is a dec-POMDP algorithm [OAmAH15] that determines joint abstracted actions

in a centralized way for multiple agents that plan their trajectories in a decentral-

ized POMDP. Belief states are used to contract the expanding history and curse

of dimensionality found in POMDPs. Inspired by Rapidly-Exploring Randomized

Trees [LK00], the Belief Roadmap [PR10] allows an agent to find minimum cost

paths efficiently by finding a trajectory through belief spaces. Similarly, the algo-

rithm in [AmCA11] creates Gaussian belief states and exploits feedback controllers

7

to reduce POMDPs to MDPs for tractability in order to find a trajectory. Most of

the algorithms in this class are not necessarily comparable to each other due to the

specific context of their problem statements and type of objective. For that reason,

we are motivated to find an online method that is still flexible and can be utilized for

a large class of objectives.

Another class of approaches have flexible use cases and are most often com-

puted offline. These formulations include reinforcement learning algorithms for value

or policy iteration. In general, these algorithms rely on MDPs to examine conver-

gence, although the model is considered hidden or unknown in the algorithm. An

example of a state-of-the-art reinforcement model-free learner is Deep Q-network

(DQN), which uses deep neural networks and reinforcement learning to approximate

the value function of a high-dimensional state space to indirectly determine a policy

afterwards [MKS+15]. Policy optimization reinforcement algorithms focus on directly

optimizing a policy of an agent in an environment. Trust Region Policy Optimization

(TRPO) [SLA+15] enforces constraints on the KL-divergence between the new and

old policy after each update to produce more incremental, stable policy improvement.

Actor-Critic using Kronecker-factored Trust Region (ACKTR) [WMG+17] is a hybrid

of policy optimization and Q-learning which alternates between policy improvement

and policy evaluation to better guide the policy optimization. These techniques were

successfully applied to a range of Atari 2600 games, with results similar to advanced

human players. Offline, model-free reinforcement algorithms are attractive because

they can reason over abstract objectives and problem statements, however, they do

not take advantage of inherent problem model structure. Because of this, model-

free learning algorithms usually produce good policies more slowly than model-based

8

algorithms, and often require offline computation.

The last class of algorithms are flexible in application and can be used on-

line. Many of these algorithms require a model in the form of a MDP, or other

variations. Standard algorithms include Monte Carlo tree searches (MCTS) [Ber95]

and modifications such as the upper confidence bound tree search [KS06]. Many

works under this category attempt to address the curse of dimensionality by

lowering the state space through either abstracting the state space [HF00], the

history in POMDPs [MB96], or the action space [TK04]. Simulated annealing

(SA) [KGV83, LA87, MGPO89, Haj88, SK06] fits in this category being a sampling

approach for finding a state or action with optimal value in a Markov chain that bor-

rows the idea of annealing from nature and is capable of handling high-dimensional,

nonconvex problems.

1.1.4 Imitation learning in tree search

The process of training a policy to mimic the actions of another policy is called

imitation learning [HGEJ17]. The policy can also be trained to mimic the value of

taking actions at a given state [DLM09]. These techniques have been applied to tree

searches in various ways. UCT has been used to generate data for a final policy

constructed through imitation learning and deployed on Atari games [GSL+14]. Tree

search actions are sometimes used to construct a default policy which helps simulate

rollouts in UCT [GS07a]. A variation on this is to train a policy to reflect values of

certain actions at a given state in UCT, which are used instead of rollouts [SHM+16].

Recently policies have been trained to reflect the distribution of actions selected

during a state in the tree search. These policies are then used to influence the selection

9

of actions in future tree searches in both AlphaZero [SSS+17], MuZero [SAH+19],

and Expert Iteration (ExIt) [ATB17]. This improves planning in large action spaces

because agents focus on more promising choices based on previous experiences. In

both AlphaZero and ExIt, agents play against a version of themselves to improve

without human intervention.

Deep learning can be utilized to create trained policies which can predict the

actions of other agents and to aid an individual agent’s own search [RCN18, HLKT19].

Multi-agent Markov decision processes (MMDPs) [Bou96] are used to describe Markov

decision processes using joint actions from multiple agents. Another approach to

multi-agent tree search is DEC-MCTS [BCP+19], where agents communicate com-

pressed forms of their tree searches. In contrast, we are interested in the sce-

nario where agents do not communicate their intentions during runtime. The

work [PRHK17] combines components of linear temporal logic and hierarchical plan-

ning using MCTS with options learned from reinforcement learning, and demonstrates

them on simulated autonomous driving. The work [KGKG15] uses tree search to cre-

ate artificial cyclic policies which improve convergence in the multi-agent patrolling

problem.

1.2 Contributions

Of the previously mentioned algorithms, we are most interested in methods

which function in a variety environments and are able to take advantage of online

computation. Monte-Carlo tree search fits that category well as it has proven results in

games of varying structure such as Chess and Go. As we are interested in multi-agent

deployment in large, multi-dimensional environments, we first present a variation on

10

Monte-Carlo tree search that addresses the ‘curse of dimensionality’ by optimizing

actions in subspaces of the environment.

1.2.1 Multi-agent planning in massive environments

In this segment, we aim to address problems that occur in massive environ-

ments where the possible outcomes in actions and states make it difficult to effectively

sample online. We provide a framework that remains general enough to reason over

multiple objective domains, while taking advantage of the inherent spatial structure

and known vehicle model of most robotic applications to efficiently plan. Our goal is

to synthesize a multi-agent algorithm that enables agents to abstract and plan over

large, complex environments taking advantage of the benefits resulting from coordi-

nating their actions. We determine meaningful ways to represent the environment and

develop an algorithm that reduces the computational burden on an agent to determine

a plan. We introduce methods of generalizing positions of agents, and objectives with

respect to proximity. We rely on the concept of ‘sub-environment’, which is a subset

of the environment with respect to proximity-based generalizations, and use high-level

actions, with the help of low-level controllers, designed to reduce the action space and

plan in the sub-environments. The main contribution of the chapter is an algorithm

for splitting the work of an agent between dynamically constructing and evaluating

sub-environments and learning how to best act in that sub-environment. We also

introduce modifications that enable multi-agent deployment by allowing agents to

interact with the plans of other team members. We provide convergence guarantees

on key components of our algorithm design and identify metrics to evaluate the per-

formance of the sub-environment selection and sequential multi-agent deployment.

11

Using tools from submodularity and scenario optimization, we establish formal guar-

antees on the suboptimality gap of these procedures. We illustrate the effectiveness of

dynamically constructing sub-environments for planning in environments with large

state spaces through simulation and compare our proposed algorithm against Monte

Carlo tree search techniques.

1.2.2 Trajectory search via simulated annealing

In Chapter 4, we strive to enable a swarm of UxVs to cooperate and complete

a large variety of objectives in massive environments. Inspired by simulated anneal-

ing, we provide sampling matrix, which determines the probability that an agent will

sample an action schedule given that its current solution is another actions schedule.

The structure of the sampling matrix that we provide is novel in that the placement

of action schedule elements are determined with respect to a finite time horizon. Tak-

ing this sampling matrix structure we provide a hand-designed matrix and provide

proofs regarding stationary distributions and convergence to Nash equilibrium, when

used in the multi-agent case. Inspired by recent work in tree searches guided by neu-

ral networks, we utilize convolutional neural networks to generate efficient sampling

matrices given the state of the environment. Performance and theoretical results are

validated with metrics tested in several environments.

1.2.3 Biased tree search for multi-agent deployment

In Chapter 5, we provide two novel contributions that work together as a

refinement of existing state-of-the-art model-based reinforcement learning techniques.

The first contribution, Multi-agent informed policy construction (MIPC), is a process

12

where we use deep imitation learning to build a heuristic offline, called informed

policy, that guides the agents’ tree search. Our strategy is to develop an informed

policy for a small number of agents and use that informed policy to accelerate the tree

search for environments with more agents. The second contribution, Cascading agent

tree search (CATS), is a variation on tree search with an action selection that is biased

by the informed policy and is catered for multiple agents. We prove convergence

to optimal values of the Markov decision process under the Bellman operation. To

evaluate the performance of this algorithm, we train a deep neural network as an

informed policy, deploy the algorithm distributively across agents, and evaluate the

performance across several metrics in the environments of Figure 6.1. In a comparison

with similar tree search and model-free reinforcement learning approaches, CATS

excels when the number of agents increase and when search time is limited to realistic

time constraints for online deployment.

1.3 Organization

In Chapter 2, we introduce the notation and preliminary information that we

use in the dissertation. Chapter 3 first introduces Dynamic domain reduction planning

which is an algorithm that can be applied for multi-agent planning in massive state

environments. Next, in Chapter 4 we present Cooperative dynamic domain reduction

planning. In this chapter we discuss problems that arise in Dynamic domain reduction

planning and propose a solution in the framework of a potential game. In Chapter 5 we

create a variant of Monte-Carlo tree search which uses imitation learning to produce

a bias for future action sampling. In contrast to previous state-of-the-art algorithms

that do this, we modify the action selection process for the multi-agent case. Finally,

13

Chapter 6 summarizes our contributions and proposes future work which may address

some of the shortcomings that were discovered during the development of this work.

Chapter 1 is coauthored with Cortés, Jorge. The dissertation author was the

primary author of this chapter.

14

Chapter 2

Preliminaries

2.1 Notation

We introduce here essential concepts and tools for the rest of the dissertation,

beginning with some notation. We use Z and R to denote integers and real num-

bers, respectively. An objective-oriented approach with the use of tuples is present

throughout the dissertation: for an arbitrary tuple a = 〈b, c〉, the notation a.b means

that b belongs to tuple a. Last, |Y| indicates the cardinality of a set Y . In what

follows, we will use t to denote a discrete time step in which an event occurs. We use

the notation π to denote significant probability distributions.

Because most of the dissertation is concerned with multi-agent deployment,

we universally refer to agents as α ∈ A. Agents will be able to select actions aα ∈ Aα.

The combination of agents actions is the joint action a ∈ A. In some cases we will

use the notation −α, which means all other agents, e.g. a−α means the set of all other

agents actions. We use the notation P to denote the probability of an occurrence.

15

2.2 Markov chains

A Markov chain describes a sequence of states such that the probability of

transitioning from one state to another only depends on the current state. We define

a Markov chain as a tuple 〈S, P s〉 of states s ∈ S and probability P s(s′|s) that s

transitions to s′. Every transition of states in a Markov chain satisfies the Markov

property

P (st+1|st, st−1, . . . , s0) = P (st+1|st),

for all s, which implies that the probability of transitioning to st+1 from st

is independent of the sequence of states leading up to t. If we assign states of the

Markov chain to nodes, and positive state transition probabilities P s(st+1|st) > 0 to

edges, we can create a graph of the Markov chain. The state transition matrix P s is

a row-stochastic matrix of dimension |S| × |S| where an element P s
st+1,st

= P s(st+1|st)

such that st+1 corresponds to the i-th row and st corresponds to the j-th column. As

Markov chains evolve in time with respect to P s the probability of a particular state

being active converges. The row eigenvector that is associated with the eigenvalue 1

is called the stationary distribution

πsP s = πs,

which describes the long term distribution of states in the Markov chain. A

value can be associated to each state s in a Markov chain, V (s) ∈ R, allowing us

16

to order nodes in the graph vertically with respect to their value, creating an or-

dered graph as shown in Figure 4.3. Define H ∈ R such that H ≤ V (s) for any s.

The following properties of a Markov chain are important and can be analyzed by

visualization of an ordered graph:

(i) Strong irreducibility: there exists a path from s to s′ for all s′.

(ii) Weak reversibility: if s can be reached by s′ at height H, then there exists a

path from s′ to s at height H as well.

2.3 Simulated annealing

Let the tuple 〈S, P, V 〉 define a Markov chain with value associated to its

state. Simulated annealing seeks to determine argmaxsV (s), which is generally a

combinatorial problem. Algorithm 1 outlines the process of simulated annealing,

where K ∈ R.

Algorithm 1: Simulated annealing
1 Initialize s, T
2 for k = 1 to k = K
3 Sample new state s′ from P g

4 if V (s′) > V (s) or Random(0,1) < e
V (s′)−V (s)

T :
5 s = s′

6 Update T

As the temperature of the system T is incrementally decreased, the probability

that a new solution with lower value is accepted decreases. Simulated annealing yields

strong results [KGV83, LA87, Haj88, SK06] and converges to the global optimal if

17

the temperature is decreased sufficiently slowly. The cooling rate

Tk =
c

log (k)
, (2.1)

is shown [Haj88] to be a necessary and sufficient condition for the algorithm to con-

verge in probability to a set of states that globally optimize V when the underlying

Markov chain has both strong irreducible and weak reversible properties.

2.4 Potential games

In a game theoretic framework agents select strategies, which we will denote

as aα for agent α, in order to maximize their utility uα : aα × a−α → R for selecting

a particular strategy, aα while the set of actions that other agents have selected is

a−α. The set of strategies that agents select is a Nash equilibrium when no agent can

select a strategy that unilaterally improves their utility given the strategies of other

agents, more formally

u(aα, a−α) ≥ u(a′α, a−α) ∀ α ∈ A, a′α ∈ A.

In a potential game, the incentive for any agent to change their strategy is

represented by a single function called the potential function denoted Φ. In this

dissertation we are most interested in exact potential games which have a potential

function of the form

18

Φ(aα, a−α)− Φ(a′α, a−α) = u(aα, a−α)− u(a′α, a−α),

such that Φ : aα × a−α → R. We will take advantage of the wonderful life

utility

uα(aα, a−α) = Φ(aα, a−α)− Φ(0/, a−α),

where 0/ is the null strategy of agent α in which α does not contribute to the

completion of any objective in the game. The wonderful life utility is a measure

of the marginal gain that an agent contributes when selecting a given action. It is

straightforward to see realize that the wonderful life utility is one possible type of

utility that yields a potential game. Generally, potential games yield at least 1 pure

Nash equilibrium. An improvement path is any sequence of strategies att=0,1,... such

that u(at+1) > u(at) wherever actiont+1 is defined. A finite improvement path is

an improvement path that terminates at a Nash equilibrium. Exact and weighted

potential games have finite improvement paths.

2.5 Markov decision processes

A Markov decision process (MDP) is a tuple 〈A, S,R, P s, γ〉, where s ∈ S and

a ∈ A are state and action spaces respectively; P s(s′|s, a) is the transition function

which encodes the probability of the next state being s′ given current state s and

19

action a. After every transition, a reward is obtained according to the reward function

R : s′, a, s → r ∈ R. A policy π specifies the actions given a state according to

π : s, a→ (0, 1) such that
∑

a∈A πs,a = 1.

Given a policy π, the state value is

V π
s =

∑
a∈A

πs,a

∑
s′∈S

P s(s′|s, a)
(
Rs′,a,s + γV π

s′

)
,

where γ ∈ [0, 1] is a discount factor. The state-action value is the value of taking an

action at state is

Qπ
s,a =

∑
s′∈S

P s(s′|s, a)
(
Rs′,a,s + γV π

s′

)
.

Usual methods for obtaining π∗ require a tree search of the possible states

that can be reached by taking a series of actions. The rate at which the tree of states

grows is called the branching factor. This search is a challenge for solving MDPs

with large state spaces and actions with low-likelihood probabilistic state transitions.

A technique often used to decrease the size of the state space is state abstractions,

where a collection of states are clustered into one in some meaningful way. This can be

formalized with a state abstraction function of the form φs : s→ sφ. Similarly, actions

can be abstracted with an action abstraction function φa : a → aφ. Abstracting

actions is used to decrease the action space, which can make π∗ easier to calculate. In

MDPs, actions take one time step per action. However, abstracted actions may take a

probabilistic amount of time to complete, P t(t|aφ, s). When considering the problem

using abstracted actions aφ ∈ Aφ in 〈S,Aφ, P
s,R, P t〉, the process becomes a semi-

Markov Decision Process (SMDP), which allows for probabilistic time per abstracted

20

action. The loss of precision in the abstracted actions means that an optimal policy

for an SMDP with abstracted modifications may not be optimal with respect to the

original MDP.

Amongst several extensions of MDPs are multi-agent Markov decision pro-

cesses (MMDP). A MMDP is a tuple 〈S,A, {Aα}α∈A, P s, R〉, similar to a MDP with

the addition of agents α ∈ A, where each agent has an action space {Aα}. With this

modification, the state transition function P s maps the probability of state transition

with respect to the joint actions of agents in A. One strategy for multi-agent coop-

eration is to reason over the joint action space as in MMDPs. This solution does not

scale with the number of agents, as the joint action space increases and the problem

dimension grows exponentially.

2.6 Model-based reinforcement learning

This section introduces basic preliminaries on Markov decision processes and

Monte-Carlo tree searches. We also discuss imitation learning and its use to bias tree

searching in multi-agent environments to improve performance.

When the transition function of the MDP is known, a popular method for

approximating the optimal policy is Monte-Carlo tree search [BPW+12]. There are

four major steps in MCTS: selection, expansion, simulation, and backpropagation.

During the selection process, actions are chosen from A to transition the MDP until

a state has been reached for the first time, where it then expands the tree by one node.

The next step is to use a predefined rollout policy to simulate future moves until a

specified depth or state. If no information is known regarding the environment, it is

common for the rollout policy to return a random move. Finally, rewards obtained

21

during the tree traversal are backpropagated to update the estimated values for taking

actions at the visited states.

Upper confidence bound tree search (UCT) [KS06] executes the first step with

the following action selection policy

argmax
a∈A

(
Q̂s,a + c1

√
lnNs

Ns,a

)
. (2.2)

Here the first term, Q̂s,a is the empirical value estimation for choosing action a at

state s, which is exploitive and influences the action selection towards actions that

yielded higher rewards in previous iterations of the tree search. In the second term,

Ns and Ns,a are the number of times that the state has been visited and the number of

times that a particular action has been chosen at that state, respectively. The second

term is explorative and biases the search towards actions that have been selected least

often at a state. The probability that the optimal action is selected by UCT goes to

1 as shown in rigorous finite-time analysis [KSW06, ACBF02].

Tree search bias via imitation learning

Deep learning has also been used [GSL+14, GS07a, SSS+17, SHM+16, ATB17]

to predict which actions to take in a never before visited state. We call the resulting

network an informed policy, π̂, which specifies that training used data created from

previous iterations of tree search on the environment. In both ExIt [ATB17] and

AlphaZero [SSS+17], an informed policy is trained to resemble the action selection

distribution Ns,a/Ns. The informed policy is then used to improve future tree searches

22

by biasing the action selection of the tree search as follows

argmax
a∈A

(
Q̂s,a + c1

√
lnNs

Ns,a

+ c2
π̂s,a

Ns,a

)
, (2.3)

where c2 weights the neural networks influence on action selection. Our algorithm

builds on this idea to modify the action selection by tempering the explorative term

using a sequential process in order to balance exploitation versus exploration. In

the multi-agent domain, the informed policy can be used to enable distributed tree

searches. To do this, one agent will search using its own action space (as opposed to

the joint action space amongst all agents) while other agents essentially become part

of the environment and are modeled by taking the max-likelihood action according

to π̂.

2.7 Submodularity

In the analysis of our algorithms, we rely on the notion of submodular set

functions and the characterization of the performance of greedy algorithms, see

e.g., [CABP16, BBKT17]. Even though some processes of our algorithms are not

completely submodular, we are able to invoke these results by resorting to the con-

cept of submodularity ratio [DK11], that quantifies how far a set function is from

being submodular, using tools from scenario optimization [CGP09].

We review here concepts of submodularity and monotonicity of set functions

following [CABP16]. A power set function f : 2Ω → R is submodular if it satisfies the

23

property of diminishing returns,

f(X ∪ {x})− f(X) ≥ f(Y ∪ {x})− f(Y), (2.4)

for all X ⊆ Y ⊆ Ω and x ∈ Ω \ Y . The set function f is monotone if

f(X) ≤ f(Y), (2.5)

for all X ⊆ Y ⊆ Ω. In general, monotonicity of a set function does not imply

submodularity, and vice versa. These properties play a key role in determining near-

optimal solutions to the cardinality-constrained submodular maximization problem

defined by

max f(X)

s.t. |X| ≤ k.

(2.6)

In general, this problem is NP-hard. Greedy algorithms seek to find a suboptimal

solution to (2.6) by building a set X one element at a time, starting with |X| = 0 to

|X| = k. These algorithms proceed by choosing the best next element,

max
x∈Ω\X

f(X ∪ {x}),

to include in X. The following result [CABP16, NWF78] provides a lower bound on

the performance of greedy algorithms.

Theorem 2.7.1. Let X∗ denote the optimal solution of problem (2.6). If f is mono-

tone, submodular, and satisfies f(∅) = 0, then the set X returned by the greedy

24

algorithm satisfies

f(X) ≥ (1− e−1)f(X∗).

An important extension of this result characterizes the performance of a greedy

algorithm where, at each step, one chooses an element x that satisfies

f(X ∪ {x})− f(X) ≥ α(f(X ∪ {x∗})− f(X)),

for some α ∈ [0, 1]. That is, the algorithm chooses an element that is at least an

α-fraction of the local optimal element choice, x∗. In this case, the following re-

sult [GS07b] characterizes the performance.

Theorem 2.7.2. Let X∗ denote the optimal solution of problem (2.6). If f is mono-

tone, submodular, and satisfies f(∅) = 0, then the set X returned by a greedy algo-

rithm that chooses elements of at least α-fraction of the local optimal element choice

satisfies

f(X) ≥ (1− e−α)f(X∗).

A generalization of the notion of submodular set function is given by the

submodularity ratio [DK11], which measures how far the function is from being sub-

modular. This ratio is defined as largest scalar λ ∈ [0, 1] such that

λ ≤

∑
z∈Z

f(X ∪ {z})− f(X)

f(X ∪ Z)− f(X)
, (2.7)

25

for allX,Z ⊂ Ω. The function f is called weakly submodular if it has a submodularity

ratio in (0, 1]. If a function f is submodular, then its submodularity ratio is 1. The

following result [DK11] generalizes Theorem 2.7.1 to monotone set functions with

submodularity ratio λ.

Theorem 2.7.3. Let X∗ denote the optimal solution of problem (2.6). If f is mono-

tone, weakly submodular with submodularity ratio λ ∈ (0, 1], and satisfies f(∅) = 0,

then the set X returned by the greedy algorithm satisfies

f(X) ≥ (1− e−λ)f(X∗).

2.8 Scenario optimization

Scenario optimization aims to determine robust solutions for practical prob-

lems with unknown parameters [BTN98, GOL98] by hedging against uncertainty.

Consider the following robust convex optimization problem defined by

RCP: min cTγ
γ∈Rd

subject to: fδ(γ) ≤ 0, ∀δ ∈ ∆,

(2.8)

where fδ is a convex function, d is the dimension of the optimization variable, δ is an

uncertain parameter, and ∆ is the set of all possible parameter values. In practice,

solving the optimization (2.8) can be difficult depending on the cardinality of ∆.

One approach to this problem is to solve (2.8) with sampled constraint parameters

from ∆. This approach views the uncertainty of situations in the robust convex

optimization problem through a probability distribution Prδ of ∆, which encodes

26

either the likelihood or importance of situations occurring through the constraint

parameters. To alleviate the computational load, one selects a finite number NSCP

of parameter values in ∆ sampled according to Prδ and solves the scenario convex

program[CGP09] defined by

SCPN :min
γ∈Rd

cTγ

s.t. fδ(i)(γ) ≤ 0, i = 1, . . . , NSCP.

(2.9)

The following result states to what extent the solution of (2.9) solves the original

robust optimization problem.

Theorem 2.8.1. Let γ∗ be the optimal solution to the scenario convex program (2.9)

when NSCP is the number of convex constraints. Given a ‘violation parameter’, ε, and

a ‘confidence parameter’, $, if

NSCP ≥
2

ε
(ln

1

$
+ d)

then, with probability 1−$, γ∗ satisfies all but an ε-fraction of constraints in ∆.

Chapter 2, is coauthored with Cortés, Jorge and Ouimet, Mike. The disserta-

tion author was the primary author of this chapter.

27

Chapter 3

Dynamic domain reduction planning

Recent technology has enabled the deployment of UxVs in a wide range of

applications involving intelligence gathering, surveillance and reconnaissance, disas-

ter response, exploration, and surveying for agriculture. In many scenarios, these

unmanned vehicles are controlled by one or, more often than not, multiple human

operators. Reducing UxV dependence on human effort enhances their capability in

scenarios where communication is expensive, low bandwidth, delayed, or contested,

as agents can make smart and safe choices on their own. In this chapter we design

a framework for enabling multi-agent autonomy within a swarm in order to satisfy

arbitrary spatially distributed objectives. Planning presents a challenge because the

computational complexity of determining optimal sequences of actions becomes ex-

pensive as the size of the swarm, environment, and objectives increase.

28

Figure 3.1: Workflow of the proposed hierarchical algorithm. A sub-
environment is dynamically constructed as series of spatial-based state ab-
stractions in the environment in a process called SubEnvSearch. Given this
sub-environment, an agent performs tasks, which are abstracted actions con-
strained to properties of the sub-environment, in order to satisfy objectives.
Once a sub-environment is created, the process TaskSearch uses a semi-
Markov decision process to model the sub-environment and determine an
optimal ‘task’ to perform. Past experiences are recycled for similar look-
ing sub-environments allowing the agent to quickly converge to an optimal
policy. The agent dedicates time to both finding the best sub-environment
and evaluating that sub-environment by cycling through SubEnvSearch and
TaskSearch.

3.1 Problem statement

Consider a set of agents A indexed by α ∈ A. We assume agents are able to

communicate with each other and have access to each other’s locations. An agent oc-

cupies a point in Zd, and has computational, communication, and mobile capabilities.

A waypoint o ∈ Zd is a point that an agent must visit in order to serve an objective.

Every waypoint then belongs to a class of objective of the form Ob = {o1, . . . , o|Ob|}.

Agents are able to satisfy objectives when waypoints are visited such that o ∈ Ob is

removed from Ob. When Ob = ∅ the objective is considered ‘complete’. An agent

receives a reward rb ∈ R for visiting a waypoint o ∈ Ob. Define the set of objectives

to be O = {O1, . . . ,O|O|}, and assume agents are only able to service one Ob ∈ O at

a time. We consider the environment to be E = O ×A, which contains information

29

about all objectives and agents. The state space of E increases exponentially with

the number of objectives |O|, the cardinality of each objective |Ob|, for each b, and

the number of agents |A|.

We strive to design a decentralized algorithm that allows the agents in A to

individually approximate the policy π∗ that optimally services objectives in O in

scenarios where E is very large. To tackle this problem, we rely on abstractions that

reduce the stochastic branching factor to find a good policy in the environment. We

begin our strategy by spatially abstracting objectives in the environment into convex

sets termed ‘regions’. We dynamically create and search subsets of the environment to

reduce dimensions of the state that individual agents reason over. Then we structure

a plan of high-level actions with respect to the subset of the environment. Finally,

we specify a limited, tunable number of interactions that must be considered in the

multi-agent joint planning problem, leading up to the Dynamic Domain Reduction

for Multi-Agent Planning algorithm to approximate the optimal policy.

3.2 Abstractions

In order to leverage dynamic programming solutions to approximate a good

policy, we reduce the state space and action space. We begin by introducing methods

of abstraction with respect to spatial proximity for a single agent, then move on to

the multi-agent case.

3.2.1 Single-agent abstractions

To tackle the fact that the number of states in the environment grows expo-

nentially with respect to the number of agents, the number of objectives, and their

30

cardinality, we cluster waypoints and agent locations into convex sets in space, a pro-

cess we term region abstraction. Then, we construct abstracted actions that agents

are allowed to execute with respect to the region abstractions.

Region abstraction

We define a region to be a convex set ω ⊆ Rd. Let Ωω be a set of disjoint

regions where the union of all regions in Ωω is the entire space that agents reason over

in the environment. We consider regions to be equal in size, shape, and orientation,

so that the set of regions creates a tessellation of the environment. This makes the

presentation simpler, albeit our framework can be extended to handle regions that are

non-regular by including region definitions for each unique region in consideration.

Furthermore, let Obi be the set of waypoints of objective Ob in region ωi, i.e.,

such that Obi ⊆ ωi. We use an abstraction function, φ : Obi → sbi , to get the abstracted

objective state, sbi , which enables us to generalize the states of an objective in a region.

In general, the abstraction function is designed by a human user that distinguishes

importance of an objective in a region. We define a regional state, si = (s1
i , . . . , s

|O|
i),

to be the Cartesian product of sbi for all objectives, Ob ∈ O, with respect to ωi.

Action abstraction

We assume that low-level feedback controllers allowing for servicing of way-

points are available. We next describe how we use low-level controllers as components

of a ‘task’ to reason over. We define a task to be τ = 〈sbi , s′bi , ωi, ωj, b〉, where sbi and

s′bi are abstracted objective states associated to ωi, ωj is a target region, and b is the

index of a target objective. Assume that low-level controllers satisfy the following

31

requirements:

• Objective transition: low-level controller executing τ drives the state transition,

τ.sbi → τ.s′bi .

• Regional transition: low-level controller executing τ drives the agent’s location

to ωj after the objective transition is complete.

Candidates for low-level controllers include policies determined using the ap-

proaches in [BSR16, KS06] after setting up the region as a MDP, modified traveling

salesperson [BCK+07], or path planning-based algorithms interfaced with the dynam-

ics of the agent. Agents that start a task are required to continue working on the task

until requirements are met. Because the tasks are dependent on abstracted objectives

states, the agent completes a task in a probabilistic time, given by P t(t|τ), that is

determined heuristically. The set of all possible tasks is given by Γ. If an agent begins

a task such that the following properties are not satisfied, then P t(∞|τ) = 1 and the

agent never completes it.

Sub-environment

In order to further alleviate the curse of dimensionality, we introduce sub-

environments, a subset of the environment, in an effort to only utilize relevant regions.

A sub-environment is composed of a sequence of regions and a state that encodes

proximity and regional states of those regions. Formally, we let the sub-environment

region sequence, −→ω , be a sequence of regions of length up to Nε ∈ Z≥1. The kth

region in −→ω is denoted with −→ω k. The regional state of −→ω k is given by s−→ω k . For

example, −→ω = [ω2, ω1, ω3] is a valid sub-environment region sequence with Nε ≥ 3,

the first region in −→ω is −→ω 1 = ω2, and the regional state of −→ω 1 is s−→ω 1
= sω2 . In order

32

to simulate the sub-environment, the agent must know if there are repeated regions

in −→ω . Let ξ(k,−→ω), return the first index h of −→ω such that −→ω h = −→ω k. Define the

repeated region list to be ξ−→ω = [ξ(1,−→ω), . . . , ξ(Nε,
−→ω)]. Let φt(ωi, ωj) : ωi, ωj → Z

be an abstracted amount of time it takes for an agent to move from ωi to ωj, or ∞

if no path exists. Let s = [s−→ω 1
, . . . , s−→ω Nε] × ξ−→ω × [φt(

−→ω 1,
−→ω 2), . . . , φt(

−→ω Nε−1,,
−→ω Nε)]

be the sub-environment state for a given −→ω , and let Sε be the set of all possible

sub-environment states. We define a sub-environment to be ε = 〈−→ω , s〉.

In general, we allow a sub-environment to contain any region that is reachable

in finite time. However, in practice, we only allow agents to choose sub-environments

that they can traverse within some reasonable time in order to reduce the number

of possible sub-environments and save onboard memory. In what follows, we use the

notation ε.s to denote the sub-environment state of sub-environment ε.

Task trajectory

We also define an ordered list of tasks that the agents execute with respect to

a sub-environment ε. Let −→τ = [−→τ 1, . . . ,
−→τ Nε−1] be an ordered list of feasible tasks

such that −→τ k.ωi = ε.−→ω k, and −→τ k.ωj = ε.−→ω k+1 for all k ∈ [Nε − 1], where ωi and ωj

are the regions in the definition of task −→τ k. Agents generate this ordered list of tasks

assuming that they will execute each of them in order. The probability distribution

on the time of completing the kth task in −→τ (after completing all previous tasks in −→τ)

is given by
−→
P t

k. We define
−→
P t = [

−→
P t

1, . . . ,
−→
P t

Nε−1] to be the ordered list of probability

distributions. We construct the task trajectory to be ϑ = 〈−→τ ,
−→
P t〉, which is used to

determine the finite time reward for a sub-environment.

33

Sub-environment SMDP

As tasks are completed, the environment evolves, so we denote E ′ as the envi-

ronment after an agent has performed a task. Because the agents perform tasks that

reason over abstracted objective states, there are many possible initial, and outcome

environments. The exact reward that an agent receives when acting on the environ-

ment is a function of E and E ′, which is complex to determine by our use of abstracted

objective states. We determine the reward an agent receives for completing τ as a

probabilistic function P r that is determined heuristically. Let rε be the abstracted

reward function, determined by

rε(τ) =
∑
r∈R

P r(r|τ)r, (3.1)

which is the expected reward for completing τ given the state of the sub-environment.

Next we define the sub-environment evolution procedure. Note that agents must begin

in the region ε.−→ω 1 and end up in region ε.−→ω 2 by definition of task. Evolving a sub-

environment consists of 2 steps. First, the first element of the sub-environment region

sequence is removed. The length of the sub-environment sequence ε.−→ω is reduced by

1. Next, the sub-environment state ε.s is recalculated with the new sub-environment

region sequence. To do this, we draw the sub-environment state from a probability

distribution and we determine the sub-environment after completing the task

ε′ = 〈−→ω = [−→ω 2, . . . ,
−→ω Nε], s = P s(ε′.s|ε.s, τ)〉. (3.2)

Finally, we can represent the process of executing tasks in sub-environments

as the sub-environment SMDP M = 〈Sε,Γ, P sε , rε, P t〉. The goal of the agent is to

34

determine a policy π : ε.s→ τ that yields the greatest rewards inM. The state value

under policy π is given by

V π
ε.s= rε+

∑
tε∈R

P tεγt
ε
∑
ε.s∈Sε

P sV π
ε.s′ (3.3)

We strive to generate a policy that yields optimal state value

π∗ε.s = argmax
π

V π
ε.s,

with associated optimal value V π∗
ε.s = max

π
V π
ε.s.

Remark 3.2.1 (Extension to heterogeneous swarms). The framework described above

can also handle UxV agents with heterogeneous capabilities. In order to do this,

one can consider the possibility of any given agent having a unique set of controls

which allow it to complete some tasks more quickly than others. The agents use our

framework to develop a policy that maximizes their rewards with respect to their own

capability, which is implicitly encoded in the reward function. For example, if an agent

chooses to serve some objective and has no low level control policy that can achieve

it,
−→
P t

k(∞) = 1, and the agent will never complete it. In this case, the agent would

naturally receive a reward of 0 for the remainder of the trajectory. •

3.2.2 Multi-agent abstractions

Due to the large environment induced by the action coupling of multi-agent

joint planning, determining the optimal policy is computationally unfeasible. To

reduce the computational burden on any given agent, we restrict the number of cou-

pled interactions. In this section, we modify the sub-environment, task trajectory,

35

and rewards to allow for multi-agent coupled interactions. The following discussion

is written from the perspective of an arbitrary agent labeled α in the swarm, where

other agents are indexed with β ∈ A.

Sub-environment with interaction set

Agent α may choose to interact with other agents in its interaction set Iα ⊆ A

while executing −→τ α in order to more effectively complete the tasks. The interaction

set is constructed as a parameter of the sub-environment and indicates to the agent

which tasks should be avoided based on the other agents’ trajectories. Let N be a

(user specified) maximum number of agents that an agent can interact with (hence

|Iα| ≤ N at all times). The interaction set is updated by adding another agent β and

their interaction set, Iα = Iα ∪ {β} ∪ Iβ. If |Iα ∪ {β} ∪ Iβ| > N , then we consider

agent β to be an invalid candidate. Adding β’s interaction set is necessary because

tasks that affect the task trajectory ϑβ may also affect all agents in Iβ. Constraining

the maximum interaction set size reduces the large state size that occurs when agents’

actions are coupled. To avoid interacting with agents not in the interaction set, we

create a set of waypoints that are off-limits when creating a trajectory.

We define a claimed regional objective as θ = 〈Ob, ωi〉. The agent creates a

set of claimed region objectives Θα = {θ1, . . . , θNε−1} that contains a claimed region

objective for every task in its trajectory and describes a waypoint in Ob in a region

that the agent is planning to service. We define the global claimed objective set to be

ΘA = {Θ1, . . . ,Θ|A|}, which contains the claimed region objective set for all agents.

Lastly, let Θ′α = ΘA \
{⋃

β∈Iα Θβ

}
be the complete set of claimed objectives

an agent must avoid when planning a trajectory. The agent uses Θ′α to modify its

36

perception of the environment. As shown in the following function, the agent sets the

state of claimed objectives in Θ′α to 0, removing appropriate tasks from the feasible

task set.

sbΘ′α,−→ω k =

0 if 〈Ob, εα.−→ω k〉 ∈ Θ′α,

sb−→ω k otherwise.
(3.4)

Let
−→
S Θ′α,

−→ω =
−→
S Θ′α,

−→ω 1
× . . .×

−→
S Θ′α,

−→ω Nε , where
−→
S Θ′α,

−→ω k = (sO
1

Θ′α,
−→ω k , . . . , s

O|O|
Θ′α,
−→ω k).

In addition to the modified sub-environment state, we include the partial trajectories

of other agents being interacted with. Consider β’s trajectory ϑβ and an arbitrary

εα. Let ϑpβ,k = 〈ϑβ.−→τ k.s
b
i , ϑβ.

−→τ k.b〉. The partial trajectory, ϑpβ = [ϑpβ,1, . . . , ϑ
p
β,|ϑβ |]

describes β’s trajectory with respect to εα.
−→ω . Let ξ(k, εα, εβ) return the first in-

dex of εα.−→ω , h, such that εβ.
−→ω h = εα.

−→ω k, or 0 if there is no match. Each

agent in the interaction set creates a matrix Ξ of elements, ξ(k, εα, εβ), for k ∈

{1, . . . , Nε} and β ∈ {1, . . . , |Iα|}. We finally determine the complete multi-agent

state, s =
−→
S Θ′α,

−→ω ×
{
〈ϑp1,Ξ1〉 , . . . , 〈ϑp|Iα|,Ξ|Iα|〉

}
× [φt(

−→ω 1,
−→ω 2), . . . , φt(

−→ω Nε−1,
−→ω Nε)].

With these modifications to the sub-environment state, we define the (multi-agent)

sub-environment as εα = 〈−→ω , s, Iα〉.

Multi-agent action abstraction

We consider the effect that an agent α has on another agent β ∈ A when

executing a task that affects sbi in β’s trajectory. Some tasks will be completed

sooner with two or more agents working on them, for instance. For all β ∈ Iα,

let tβ be the time that β begins a task that transitions sbi → s′bi . If agent β does

not contain such a task in its trajectory, then tβ = ∞. Let TAIα = [t1, . . . , t|Iα|].

37

We denote by P t
Iα(t|τ, TAIα) the probability that τ is completed at exactly time t if

other agents work on transitioning sbi → s′bi . We redefine here the definition of
−→
P t

in Section 3.2.1, as
−→
P t = [

−→
P t

1,Iα , . . . ,
−→
P t

Nε−1,Iα], which is the probability time set

of α modified by accounting for other agents trajectories. Furthermore, if an agent

chooses a task that modifies agent α’s trajectory, we define the probability time set

to be
−→
P t′ = [

−→
P t′

1,Iα , . . . ,
−→
P t′

Nε−1,Iα]. With these modifications, we redefine the task

trajectory to be ϑ =
〈−→τ ,−→P t

〉
. Finally, we designate Xϑ to be the set that contains

all trajectories of the agents.

Multi-agent sub-environment SMDP

We modify the reward abstraction so that each agent takes into account agents

that it may interact with. When α interacts with other agents, it modifies the ex-

pected discounted reward gained by those agents. We define the interaction reward

function, which returns a reward based on whether the agent executes a task that

interacts with one or more other agents. The interaction reward function is defined

as

rφ(τ,Xϑ) =

R(τ,Xϑ) if τ ∈ ϑpβ for any β,

rε(τ) otherwise.
(3.5)

Here, the term R represents a designed reward that that the agent receives for com-

pleting τ when it is shared by by other agents. This expression quantifies the effect

that an interacting task has on an existing task. If a task helps another agent trajec-

tory in a significant way, the agent may choose a task that aids the global expected

reward amongst the agents. Let the multi-agent sub-environment SMDP be defined

38

as the tuple M = 〈Sε,Γ, P s, rφ, P t
Iα〉. The state value from (4.2) is updated using

(3.5)

V π
ε.s=rφ+

∑
tε∈R

P tεγt
ε
∑
ε.s∈S′ε

P sV π
ε.s′ . (3.6)

We strive to generate a policy that yields optimal state value

π∗ε.s = argmax
π

V π
ε.s,

with associated optimal value V π∗
ε.s = max

π
V π
ε.s. Our next section introduces an algo-

rithm for approximating this optimal state value.

3.3 Dynamic Domain Reduction for Multi-Agent

Planning

This section describes our algorithmic solution to approximate the optimal

policy π∗. The Dynamic Domain Reduction for Multi-Agent Planning algorithm con-

sists of three main functions: DDRMAP, TaskSearch, and SubEnvSearch1. Algorithm 2

presents a formal description in the multi-agent case, where each agent can interact

with a maximum of N other agents for planning purposes. In the case of a single

agent, we take N = 0 and refer to our algorithm as Dynamic Domain Reduction

Planning (DDRP). In what follows, we first describe the variables and parameters em-

ployed in the algorithm and then discuss each of the main functions and the role of

the support functions.
1pseudocode of functions denoted with † is omitted but described in detail

39

Algorithm 2: : Dynamic Domain Reduction for Multi-Agent Planning
1 Ωω =

⋃
{x} ∀x

2 E ← current environment
3 ΘA ←

⋃
Θβ, ∀β ∈ A

4 Q̂, Vω, Nε.s, Nb ← loaded from previous trials

5 DDRMAP (Ωω, Nε, E ,ΘA, Q̂, Vω, Nε.s, Nb,M):
6 Yϑ = ∅
7 while run time < step time:
8 ε←SubEnvSearch (Ωω, E ,ΘA, Vω)

9 TaskSearch (Q̂,Nε.s, Nb, ε)
10 Yϑ = Yϑ ∪ {MaxTrajectory(ε)}
11 return Yϑ

12 TaskSearch (Q̂,Nε.s, Nb, ε)
13 if ε.−→ω is empty
14 return 0

15 τ ← max
τ∈M.Γ

{
Q̂[ε.s][τ.b] + 2Cp

√
lnNε.s[ε.s]
Nb[ε.s][τ.b]

}
16 t← Sample† M.P t(t|τ, ε)
17 ε′ = 〈[ε.−→ω 2 . . . , ε

−→ω Nε],Sample
† M.P rs(ε.s, τ)〉

18 r =M.rε(τ, ε)+γtTaskSearch (Q̂,Nε.s, Nb, ε
′)

19 TaskValueUpdate (Q̂,Nε.s, Nb, ε.s, τ.b, r)
20 return r

21 TaskValueUpdate (Nε.s, Nb, Q̂, ε.s, τ.b, r)
22 Nε.s[ε.s] = Nε.s[ε.s] + 1
23 Nb[ε.s][τ.b] = Nb[ε.s][τ.b] + 1

24 Q̂[ε.s][τ.b] = Q̂[ε.s][τ.b] + 1
Nb[ε.s][τ.b]

(r − Q̂[ε.s][τ.b])

25 SubEnvSearch (Ωε, E ,ΘA, Vω)
26 Xω = ∅
27 while |Xω| < Nε:
28 for x ∈ Ωε:
29 if Vω[Xω ∪ {x}] is empty:
30 Vω[Xω ∪ {x}] =

{
max
τ∈M.Γ

Q̂[InitSubEnv(Xω, E ,ΘA).S][τ]
}

31 x = argmax
x∈Ωε

Vω[Xω ∪ {x}]

32 Xω = Xω ∪ {x}
33 return InitSubEnv(Xω, E ,ΘA)

34 InitSubEnv (Xω, E ,ΘA)
35 −→ω = argmax

−→ω ∈
(
Xω
|Xω |

)
\Vε

{
max
τ∈M.Γ

Q̂[GetSubEnvState(−→ω ,ΘA)][τ]

36 ε = 〈−→ω , GetSubEnvState(−→ω ,ΘA)〉
37 return ε

40

The following variables are common across the multi-agent system: the set of

regions Ωω, the current environment E , the claimed objective set ΘA, and the multi-

agent sub-environment SMDPM. Some variables can be loaded, or initialized to zero

such as the number of times an agent has visited a state Nε.s, the number of times an

agent has taken an action in a state Nb, the estimated value of taking an action in a

state Q̂, and the estimated value of selecting a region in the sub-environment search

process Vω. The set Vε contains sub-environments as they are explored by the agent.

The main function DDRMAP structures Q-learning with domain reduction of

the environment. In essence, DDRMAP maps the environment into a sub-environment

where it can use a pre-constructed SMDP and upper confidence bound tree search

to determine the value of the sub-environment. DDRMAP begins by initializing the

set of constructed trajectories Yϑ as an empty set. The function uses SubEnvSearch

to find a suitable sub-environment from the given environment, then TaskSearch is

used to evaluate that sub-environment. MaxTrajectory constructs a trajectory using

the sub-environment, which is added to Yϑ. This process is repeated for an allotted

amount of time. The function returns the set of constructed trajectories Yϑ.

TaskSearch is a modification on Monte Carlo tree search. Given sub-

environment ε, the function finds an appropriate task ϑ to exploit and explore the

SMDP. On line 15 we select a task based on the upper confidence bound of Q̂. We sim-

ulate executing the task by sampling P t for the amount of time it takes to complete the

task. We then evolve the sub-environment to get ε′ by following the sub-environment

evolution procedure (3.2). On line 18, we get the discounted reward of the sub-

environment by summing the reward for the current task using (3.1,3.5) and the

reward returned by recursively calling TaskSearch with the sampled evolution of the

41

sub-environment ε′ at a discount. The recursive process is terminated at line 13 when

the sub-environment no longer contains regions in ε.−→ω . TaskValueUpdate is called

after each recursion and updates Nε.s, Nb, and Q̂. On line 24, Q̂ is updated by recal-

culating the average reward over all experiences given the task and sub-environment

state, which is done by using N−1
b as the learning rate. The time complexity of

TaskSearch is O(|Γ|Nε) due to the task selection on Line 15 and the recursive depth

of the size of the sub-environment Nε.

We employ SubEnvSearch to explore and find the value of possible sub-

environments in the environment. The function InitSubEnv maps a set of regions

Xω ⊆ Ωω (we use subindex ‘ω’ to emphasize that this set contains regions) to the

sub-environment with the highest expected reward. We do this by finding the se-

quence of regions −→ω given a Xω that maximizes maxτ∈Γ Q̂[ε.s][τ] on line 35. We

keep track of the expected value of choosing Xω and the sub-environment that is

returned by InitSubEnv with Vω. SubEnvSearch begins by initializing Xω to empty.

The region that increases the value Vω the most when appended to Xω is then ap-

pended to Xω. This process is repeated until the length of Xω is Nε. Finally, the

best sub-environment given Xω is returned with InitSubEnv. The time complex-

ity of InitSubEnv and SubEnvSearch is O(N !) and O(|Ωω|Nε log(Nε!)), respectively.

InitSubEnv requires iteration over all possible permutations of Xω, however in prac-

tice we use heuristics to reduce the time of computation.

3.4 Convergence and performance analysis

In this section, we look at the performance of individual elements of our al-

gorithm. First, we establish the convergence of the estimated value of performing a

42

task determined over time using TaskSearch. We build on this result to characterize

the performance of the SubEnvSearch and of sequential multi-agent deployment.

3.4.1 TaskSearch estimated value convergence

We start by making the following assumption about the sub-environment

SMDP.

Assumption 3.4.1. There always exists a task that an agent can complete in finite

time. Furthermore, no task can be completed in zero time steps.

Assumption 3.4.1 is reasonable because if not true, then the agent’s actions

are irrelevant and the scenario is trivial. The following result characterizes long term

performance of the function TaskSearch which is necessary for the analysis of other

elements of the algorithm.

Theorem 3.4.2. Let Q̂ be the estimated value of performing a task determined over

time using TaskSearch. Under Assumption 3.4.1, Q̂ converges to the optimal state

value V ∗ε of the sub-environment SMDP with probability 1.

Proof. SMDP Q-learning converges to the optimal value under the following condi-

tions [PR98], rewritten here to match our notation:

(i) State and action spaces are finite;

(ii) Var{rε} is finite;

(iii)
∞∑
p=1

κp(ε.s, τ) =∞ and
∞∑
p=1

κ2
p(ε.s, τ) <∞ uniformly over ε.s, τ ;

(iv) 0 < Bmax = max
ε.s∈Sε,τ∈Γ

∑
P t(t|ε.sτ)γt < 1 .

43

In the construction of the sub-environment SMDP, we assume that sub-environment

lengths and number of objectives are finite, satisfying (i). We reason over the ex-

pected value of the reward in R, that is determined heuristically, which implies

that Var{rε} = 0 satisfying (ii). From TaskValueUpdate on line 24, we have

that αp(ε.s, τ) = 1/p if we substitute p for Nb. Therefore, (iii) is satisfied because
∞∑

Nb=1

1
Nb

= ∞ and
∞∑

Nb=1

(1
Nb

)2 = π2/6 (finite). Lastly, to satisfy (iv), we use Assump-

tion 3.4.1 (there always exists some τ such that P t(∞|ε.s, τ) < 1) and the fact that

γ ∈ (0, 1) to ensure that Bmax will always be greater than 0. We use Assumption 3.4.1

(for all ε.s, τ P t(t > 0|ε.sτ) = 1) to ensure that Bmax is always less than 1. •

In the following, we consider a version of our algorithm that is trained offline

called Dynamic Domain Reduction Planning:Online+Offline (DDRP-OO). DDRP-OO uti-

lizes data that it learned from previous experiments in similar environments. In order

to do this, we train DDRP offline and save the state values for online use. We use the

result of Theorem 3.4.2 as justification for the following assumption.

Assumption 3.4.3. Agents using DDRP-OO are well-trained, i.e., Q̂ = V ∗ε.

In practice, we accomplish this by running DDRP on randomized environments

until Q̂ remains unchanged for a substantial amount of time, an indication that it has

nearly converged to V ∗ε. The study of DDRP-OO gives insight on the tree search aspect

of finding a sub-environment in DDRP and gives intuition on its long-term performance.

3.4.2 Sub-environment search by a single agent

We are interested in how well the sub-environments are chosen with respect to

the best possible sub-environment. In our study, we make the following assumption.

44

Assumption 3.4.4. Rewards are positive. Objectives are uncoupled, meaning that

the reward for completing one objective is independent of the completion of any other

objective. Furthermore, objectives only require one agent’s service for completion.

Our technical approach builds on the submodularity framework, cf. Ap-

pendix 2.7, to establish analytical guarantees of the sub-environment search. The

basic idea is to show that the algorithmic components of this procedure can be cast

as a greedy search with respect to a conveniently defined set function. Let Ωω be

a finite set of regions. InitSubEnv takes a set of regions Xω ⊆ Ωω and returns the

sub-environment made up of regions in Xω in optimal order. We define the power set

function fω : 2Ωω → R, mapping each set of regions to the discounted reward that an

agent expects to receive for choosing the corresponding sub-environment

fω(Xω) = max
τ∈Γ

Q̂[InitSubEnv(Xω).s][τ]. (3.7)

For convenience, let X∗ω = argmaxXω∈Ωω fω(Xω) denote the set of regions that yields

the sub-environment with the highest expected reward amongst all possible sub-

environments. The following counterexample shows that fω is, in general, not sub-

modular.

Lemma 3.4.5. Let fω be the discounted reward that an agent expects to receive for

choosing the corresponding sub-environment given a set of regions, as defined in (3.7).

Under Assumptions 3.4.3-3.4.4, fω is not submodular.

Proof. We provide a counterexample to show that fω is not submodular in general.

Consider a 1-dimensional environment. For simplicity, let regions be singletons, where

Ωω = {ω0 = {0}, ω1 = {−1}, ω2 = {1}, ω3 = {2}}. Assume that only one objective

45

exists, which is to enter a region. For this objective, agents only get rewarded for

entering a region the first time. Let the time required to complete a task be directly

proportional to the distance between region, t = |τ.ωi− τ.ωj|. Let Xω = {x1} ⊂ Yω =

(x1, x3) ⊂ Ωω. fω is submodular only if the marginal gain including {x2} is greater

for Xω than Yω. Assuming that the agent begins in ω0, one can verify that the region

sequences of the sub-environments returned by InitSubEnv are as follows:

InitSubEnv(Xω)→ −→ω = [x1]

InitSubEnv(Xω ∪ {x2})→ −→ω = [x1, x2]

InitSubEnv(Yω)→ −→ω = [x1, x3]

InitSubEnv(Yω ∪ {x2})→ −→ω = [x2, x3, x1]

Assuming that satisfying each task yields the same reward r we can calculate the

marginal gains as

fω(Xω ∪ {x2})− fω(Xω) =

(γt1r + γt1γt2r)− (γt1r) ≈ .73r,

evaluated at t1 = x1−x0 = 1 and t2 = x2−x1 = 2. The marginal gains for appending

{x2} to Yω is

fω(Yω ∪ {x2})− fω(Yω) =

(γt3r + γt3γt4r + γt3γt4γt5r)− (γt1r + γt1γt2r) ≈ .74r,

evaluated at t1 = x1 − x0 = 1, t2 = x3 − x1 = 3, t3 = x2 − x0 = 1, t4 = x3 − x2 = 1,

46

and t5 = x1 − x3 = 3, showing that the marginal gain for including {x2} is greater

for Yω than Xω. Hence, fω is not submodular. •

Even though fω is not submodular in general, one can invoke the notion of

submodularity ratio to provide a guaranteed lower bound on the performance of the

sub-environment search. According to (2.7), the submodularity ratio of a function fω

is the largest scalar λ ∈ [0, 1] such that

λ ≤

∑
z∈Zω

fω(Xω ∪ {z})− fω(Xω)

fω(Xω ∪ Zω)− fω(Xω)
(3.8)

for all Xω, Zω ⊆ Ωω. This ratio measures how far the function is from being submod-

ular. The following result provides a guarantee on the expected reward with respect

to the optimal sub-environment choice in terms of the submodularity ratio.

Theorem 3.4.6. Let Xω be region set returned by the sub-environment search al-

gorithm in DDRP-OO. Under Assumptions 3.4.3-3.4.4, it holds that fω(Xω) ≥ (1 −

e−λ)fω(X∗ω).

Proof. According to Theorem 2.7.3, we need to show that fω is a monotone set func-

tion, that fω(∅) = 0, and that the sub-environment search algorithm has greedy

characteristics. Because of Assumption 3.4.4, adding regions to Xω monotonically

increases the expected reward, hence equation (2.5) is satisfied. Next, we note that

if Xω = ∅, then InitSubEnv returns an empty sub-environment, which implies from

equation (3.7) that fω(∅) = 0. Lastly, by construction, the first iteration of the sub-

environment search adds regions to the sub-environment one at a time in a greedy

fashion. Because the sub-environment search keeps in memory the sub-environment

with the highest expected reward, the entire algorithm is lower bounded by the first

47

iteration of the sub-environment search. The result now follows from Theorem 2.7.3.

•

Algorithm 3: : Submodularity ratio estimation
1 ∆← set of all possible pairs of Xω, Zω.
2 Prδ ← probability distribution of sampling δ from ∆.

3 submodulariyRatioEstimation ($, ε,Ωω,∆, P r
δ)

4 λ+ = 1, d = 1, h = ∅
5 NSCP = 2

ε (ln 1
$ + d)

6 for n = 0;n++;n < NSCP

7 Xω, Zω =Sample† (Prδ)

8 λδ =

∑
z∈Zω

fω(Xω∪{z})−fω(Xω)

fω(Xω∪Zω)−fω(Xω)

9 if λδ < λ+

10 λ+ = λδ

11 h.append(λδ, n)
12 a, b = argmin

a,b∈R

∑
λδ,n∈h

(λ+ − a− bn)2

13 λ̂ = a+ b|∆|
14 return λ̂

Given the generality of our proposed framework, the submodularity ratio of

fω is in general difficult to determine. To deal with this, we resort to tools from

scenario optimization, cf. Appendix 2.8, to obtain an estimate of the submodularity

ratio. The basic observation is that, from its definition, the computation of the sub-

modularity ratio can be cast as a robust convex optimization problem. Solving this

optimization problem is difficult given the large number of constraints that need to

be considered. Instead, the procedure for estimating the submodularity ratio samples

the current environment that an agent is in, randomizing optimization parameters.

The human supervisor chooses confidence and violation parameters, $ and ε, that

are satisfactory. submodulariyRatioEstimation, cf. Algorithm 3, iterates through

randomly sampled parameters, while maintaining the maximum submodularity ratio

48

that does not violate the sampled constraints. Once the agent has completed NSCP

number of sample iterations, we extrapolate the history of evolution of the submod-

ularity ratio to get λ̂, the approximate submodularity ratio. We do this by using a

simple linear regression in lines 12-13 and evaluate the expression at n = |∆|, the

cardinality of the constraint parameter set, to determine an estimate for the robust

convex optimization problem.

The following result justifies to what extent the obtained ratio is a good ap-

proximation of the actual submodularity ratio.

Lemma 3.4.7. Let λ̂ be the approximate submodularity ratio returned by

submodulariyRatioEstimation with inputs $ and ε. With probability, 1−$, up to

ε-fraction of constraints will be violated with respect to the robust convex optimization

problem (2.8).

Proof. First, we show submodulariyRatioEstimation can be formulated as a sce-

nario convex program and that it satisfies the convex constraint condition in Theo-

rem 2.8.1. Lines 6-11 provide a solution, λ+, to the following scenario convex program.

λ+ =argmin
λ−∈R

− λ−

s.t. fδi(λ
−) ≤ 0, i = 1, . . . , NSCP,

where line 8 is a convex function that comes from equation (3.8). Since fδi is a convex

function, we can apply Theorem 2.8.1; with probability, 1 − $, λ+ violates at most

ε-fraction of constraints in ∆.

The simple linear regression portion of the algorithm, lines 12-13, uses data

points λδ, n that are only included in h when λδ < λ+. Therefore, the slope of the

49

linear regression b is strictly negative. On line 13, λ̂ is evaluated at n = NSCP which

implies that λ̂ ≤ λ+ and that with probability, 1 − $, λ̂ violates at most ε-fraction

of constraints in ∆. •

Note that $ and ε can be chosen as small as desired to ensure that λ̂ is

a good approximation of λ. As λ̂ approaches λ, our approximation of the lower

bound performance of the algorithm with respect to fω becomes more accurate. We

conclude this section by studying whether the submodularity ratio is strictly positive.

First, we prove it is always positive in non-degenerate cases.

Theorem 3.4.8. Under Assumptions 3.4.1-3.4.4, fx is a weakly submodular function.

Proof. We need to establish that the submodularity ratio of fx is positive. We reason

by contradiction, i.e., assume that the submodularity ratio is 0. This means that

there exist Xx and Zx such that the righthand side of expression (3.8) is zero (this

rules out, in particular, the possibility of either Xx or Zx being empty). In particular,

this implies that fx(Xx ∪ {z}) − fx(Xx) = 0 for every z ∈ Zx and that fx(Xx ∪

Zx)− fx(Xx) > 0. Assume that InitSubEnv(Xx ∪ {z}) yields an ordered region list

[x1, x2, . . . , z] for each z. Let rx and tx denote the reward and time for completing a

task in a region x conditioned by the generated sub-environment InitSubEnv(Xx ∪

{z}). Then,

fx(Xx) = γtx1rx1 + γtx2rx2 + . . . ,

fx(Xx ∪ {z}) = γtx1rx1 + γtx2rx2 + . . .+ γtzrz,

fx(Xx ∪ {z})− fx(Xx) = γtzrz,

for each z ∈ Zx conditioned by the generated sub-environment InitSubEnv(Xx∪{z}).

50

Under Assumption 3.4.4, the term fx(Xx ∪{z})− fx(Xx) equals 0 when tz is infinite.

On the other hand, let r′x and t′x denote the reward and time for completing a task in

region x conditioned by the generated sub-environment InitSubEnv(Xx ∪ Zz). The

denominator is nonzero when t′z is finite. This cannot hold when tz is infinite for each

z ∈ Zx without contradicting Assumption 3.4.4, concluding the proof. •

The next remark discusses the challenge of determining an explicit lower bound

on the submodularity ratio.

Remark 3.4.9. Beyond the result in Theorem 3.4.8, it is of interest to determine an

explicit positive lower bound on the submodularity ratio. In general, obtaining such a

bound for arbitrary scenarios is challenging and likely would yield overly conservative

results. To counter this, we believe that restricting the attention to specific families

of scenarios may instead lead to informative bounds. Our simulation results in Sec-

tion 3.5.1 later suggest, for instance, that the submodularity ratio is approximately

1 in common scenarios related to scheduling spatially distributed tasks. However,

formally establishing this fact remains an open problem. •

3.4.3 Sequential multi-agent deployment

We explore the performance of DDRP-OO in an environment with multiple

agents. We consider the following assumption for the rest of this section.

Assumption 3.4.10. If an agent chooses a task that was already selected in Xϑ,

none of the completion time probability distributions are modified. Furthermore, the

51

expected discounted reward for completing task τ given the set of trajectories Xϑ is

Ŵ ω
τ,Xϑ

= max
ϑ∈Xϑ

ϑ.
−→
P t

kγ
trφ = max

ϑ∈Xϑ
Ŵ ω
τ,{ϑ}, (3.9)

given that ϑ.−→τ k = τ .

This assumption is utilized in the following sequential multi-agent deployment

algorithm.

Algorithm 4: : Sequential multi-agent deployment
1 Ωω =

⋃
{x} ∀x

2 E ← current environment
3 Q̂, Vω, Nε.s, Nb ← loaded from previous trials

4 Evaluate (ϑ,Xϑ):
5 val = 0
6 for −→τ k in ϑ.−→τ :

7 if Ŵω−→τ k,Xϑ
< ϑ.
−−→
Prtk(t)γ

trφ:

8 val = val + ϑ.
−−→
Prtk(t)γ

trφ − Ŵω−→τ k,Xϑ
9 return val

10 SequentialMultiAgentDeployment (E ,A,Ωω)
11 ΘA = ∅
12 Xϑ = ∅
13 for β ∈ A
14 ΘA = ΘA ∪ {Θβ}
15 Zϑ = DDRMAP (Ωω, Nε, E ,ΘA, Q̂, Vω, Nε.s, Nb,M)
16 ϑα = argmax

ϑ∈Zϑ
Evaluate(ϑ,Xϑ) Xϑ = Xϑ ∪ {ϑα}

17 return Xϑ

In this algorithm, agents plan their sub-environments and task search to deter-

mine a task trajectory ϑ one at a time. The function Evaluate returns the marginal

gain of including ϑ, which is the added benefit of including ϑ in Xϑ. We define

the set function fϑ : 2Ωϑ → R to be a metric for measuring the performance of

52

SequentialMultiAgentDeployment as follows:

fϑ(Xϑ) =
∑
∀τ

Ŵ ω
τ,Xϑ

.

This function is interpreted as the sum of discounted rewards given all a set of trajec-

tories Xϑ. The definition of T from Assumption 3.4.10 allows us to state the following

result.

Lemma 3.4.11. Under Assumptions 3.4.4-3.4.10, fϑ is a submodular, monotone set

function.

Proof. With (3.9) and the fact that rewards are non-negative (Assumption 3.4.4), we

have that the marginal gain is never negative, therefore the function is monotone. For

the function to be submodular, we show that it satisfies the condition of diminishing

returns, meaning that fϑ(Xϑ ∪ {ϑα}) − fϑ(Xϑ) ≥ fϑ(Yϑ ∪ {ϑα}) − fϑ(Yϑ) for any

Xϑ ⊆ Yϑ ⊆ Ωϑ and ϑα ∈ Ωϑ \ Yϑ. Let

G(Xϑ, ϑα) = Ŵ ω
τ,Xϑ∪{ϑα} − Ŵ

ω
τ,Xϑ

=

max
ϑ∈Xϑ∪{ϑα}

Ŵ ω
τ,{ϑ} − max

ϑ∈Xϑ
Ŵ ω
τ,{ϑ}

be the marginal gain of including ϑα in Xϑ. The maximum marginal gain of occurs

when no ϑ ∈ Xϑ share the same tasks as ϑα. We determine the marginal gains

G(Xϑ, ϑα) and G(Yϑ, ϑα) for every possible case and show that G(Xϑ, ϑα) ≥ G(Yϑ, ϑα).

Case 1: ϑα = argmaxϑ∈Xϑ∪{ϑα} Ŵ
ω
τ,{ϑ} = argmaxϑ∈Yϑ∪{ϑα} Ŵ

ω
τ,{ϑ}. This implies

that Ŵ ω
τ,Xϑ∪{ϑα} = Ŵ ω

τ,Yϑ∪{ϑα}.

Case 2: ϑ = argmaxϑ∈Xϑ∪{ϑα} Ŵ
ω
τ,{ϑ} = argmaxϑ∈Yϑ∪{ϑα} Ŵ

ω
τ,{ϑ} such that

53

ϑ ∈ Xϑ. This implies that Ŵ ω
τ,Xϑ∪{ϑα} = Ŵ ω

τ,Yϑ∪{ϑα}.

Case 3: ϑα = argmaxϑ∈Xϑ∪{ϑα} Ŵ
ω
τ,{ϑ}, and ϑ = argmaxϑ∈Yϑ∪{ϑα} Ŵ

ω
τ,{ϑ} such

that ϑ ∈ Yϑ \Xϑ. Thus

G(Xϑ, ϑα) ≥ 0 and G(Yϑ, ϑα) = 0.

For both cases 1 and 2, since the function is monotone, we have Ŵ ω
τ,Yϑ
≥ Ŵ ω

τ,Xϑ
.

Therefore, the marginal gain G(Xϑ, ϑα) ≥ G(Yϑ, ϑα) for all cases. •

Having established that fϑ is a submodular and monotone function, our next

step is to provide conditions that allow us to cast SequentialMultiAgentDeployment

as a greedy algorithm with respect to this function. This would enable us to employ

Theorem 2.7.1 to guarantee lower bounds on fϑ(Xϑ), with Xϑ being the output of

SequentialMultiAgentDeployment.

First, when picking trajectories from line 16 in

SequentialMultiAgentDeployment, all trajectories must be chosen from the

same set of possible trajectories Ωϑ. We satisfy this requirement with the following

assumption.

Assumption 3.4.12. Agents begin at the same location in the environment, share the

same SMDP, and are capable of interacting with as many other agents as needed, i.e.,

N = |A|. Agents choose their sub-environment trajectories one at a time. Further-

more, agents are given sufficient time for DDRP (line 15) to have visited all possible

trajectory sets Ωϑ.

The next assumption we make allows agents to pick trajectories regardless of

order and repetition, which is needed to mimic the set function properties of fϑ.

54

Assumption 3.4.13. R is set to the single agent reward rε. As a result, the multi-

agent interaction reward function is rφ = rε.

This assumption is necessary because, if we instead consider a rewardR that is

dependent on the number of agents acting on τ , the order of which the agents choose

their trajectories would affect their decision making. Furthermore, this restriction sat-

isfies the condition V ar(R) to be finite in Theorem 3.4.2. We are now ready to char-

acterize the lower bound performance of SequentialMultiAgentDeployment with re-

spect to the optimal set of task trajectories. For convenience, letX∗ϑ = argmax
Xϑ∈Ωϑ

fϑ(Xϑ)

denote the optimal set of task trajectories.

Theorem 3.4.14. Let Xϑ be the trajectory set returned by

SequentialMultiAgentDeployment. Under Assumptions 3.4.3-3.4.13, it holds

that fϑ(Xϑ) ≥ (1− e−1)fϑ(X∗ϑ).

Proof. Our strategy relies on making sure we can invoke Theorem 2.7.1 for

SequentialMultiAgentDeployment. From Lemma 3.4.11, we know fϑ is submod-

ular and monotone. What is left is to show that SequentialMultiAgentDeployment

chooses trajectories from Ωϑ which maximize the marginal gain with respect to

fϑ. First, we have that the agents all choose from the set Ωϑ as a direct result

of Assumptions 3.4.3 and 3.4.12. This is because Q̂ and SMDP are equivalent

for all agents and they all begin with the same initial conditions. Now we show

that SequentialMultiAgentDeployment chooses agents which locally maximizes the

marginal gain of fϑ. Given any set Xϑ and ϑα ∈ Ωϑ \Xϑ, the marginal gain is

fϑ(Xϑ ∪ {ϑα})− fϑ(Xϑ) =

55

∑
∀τ

Ŵ ω
τ,Xϑ∪{ϑα} −

∑
∀τ

Ŵ ω
τ,Xϑ

=

∑
∀τ

(Ŵ ω
τ,Xϑ∪{ϑα} − Ŵ

ω
τ,Xϑ

).

The function Evaluate on lines 7 and 8 has the agent calculate the marginal gain

for a particular task, given ϑ and Xϑ. Evaluate calculates the marginal gain for all

tasks as

∑
∀τ∈ϑ.−→τ

max((Ŵ ω
τ,{ϑ}, Ŵ

ω
τ,Xϑ

)− Ŵ ω
τ,Xϑ

),

which is equivalent to
∑
∀τ

(Ŵ ω
Xϑ∪{ϑ}−Ŵ

ω
Xϑ

). Since SequentialMultiAgentDeployment

takes the trajectory that maximizes Evaluate, the result now follows from Theo-

rem 2.7.1. •

3.5 Empirical validation and evaluation of perfor-

mance

In this section we perform simulations in order to validate our theoretical

analysis and justify the use of DDRP over other model-based and model-free methods.

All simulations were performed on a Linux-based workstation with 16 GB of RAM

and a stock AMD Ryzen 1600 CPU. GPU was not utilized in our studies, but could

be implemented to improve sampling speed of some testing algorithms. We first

illustrate the optimality ratio obtained by the sub-environment search in single-agent

and sequential multi-agent deployment scenarios. Next, we compare the performance

of DDRP, DDRP-OO, MCTS, and ACKTR in a simple environment. Lastly, we study

56

the effect of multi-agent interaction on the performance of the proposed algorithm.

3.5.1 Illustration of performance guarantees

Here we perform simulations that help validate the results of Section 3.4. We

achieve this by determining Xω from SubEnvSearch, which is an implementation of

greedy maximization of submodular set functions, and the optimal region set X∗ω, by

brute force computation of all possible sets. In this simulation, we use 1 agent and

1 objective with 25 regions. We implement DDRP-OO by loading previously trained

data and compare the value of the first sub-environment found to the value of the

optimal sub-environment. 1000 trials are simulated by randomizing the initial state

of the environments. We plot the probability distribution function of fω(Xω)/fω(X∗ω)

in Figure 3.2. The empirical lower bound of fω(Xω)/fω(X∗ω) is a little less than

1−e−1, consistent with the result, cf. Theorem 3.4.6, that the submodularity ratio of

SubEnvSearch may not be 1. We believe that another factor for this empirical lower

bound is that Assumption 3.4.3 is not fully satisfied in our experiments. In order to

perform the simulation, we trained the agent on similar environments for 10 minutes.

Because the number of possible states in this simulation is very large, some of the

uncommon states may not have been visited enough for Q̂ to mature.

Next we look for empirical validation for the lower bounds on fϑ(Xϑ)/fϑ(X∗ϑ).

This is a difficult task because determining the optimal set of trajectories X∗ϑ is com-

binatorial with respect to the trajectory size, number regions, and number of agents.

We simulate SequentialMultiAgentDeployment in a 36 region environment with one

type of objective where 3 agents are required to start at the same region and share the

same Q̂, which is assumed to have converged to the optimal value. 1000 trials are sim-

57

Figure 3.2: Probability distribution function of fω(Xω)/fω(X∗ω).

ulated by randomizing the initial state of the environments. As shown in Figure 3.3,

the lower bound on the performance with respect to the optimal set of trajectories is

greater than 1− e−1, as guaranteed by Theorem 3.4.14. This empirical lower bound

may change under more complex environments with an increased number of agents,

more regions, and longer sub-environment lengths. Due to the combinatorial nature

of determining the optimal set of trajectories, it is difficult to simulate environments

of higher complexity.

Figure 3.3: Probability distribution function of fϑ(Xϑ)/fϑ(X∗ϑ).

58

3.5.2 Comparisons to alternative algorithms

In DDRP, DDRP-OO, and MCTS, the agent is given an allocated time to search

for the best trajectory. In ACKTR, we look at the number of simulations needed

to converge to a policy comparable to the ones found in DDRP, DDRP-OO, and MCTS.

We simulate the same environment across these algorithms. The environment has

|O| = 1, where objectives have a random number of waypoints (|Ob| ≤ 15) placed

uniformly randomly. The environment contains 100 × 100 points in R2, with 100

evenly distributed regions. The sub-environment length for DDRP and DDRP-OO are

both 10 and the maximum number of steps that an agent is allowed to take is 100.

Furthermore, the maximum reward per episode is capped at 10. We choose this

environment because of the large state space and action space in order to illustrate

the strength of Dynamic Domain Reduction for Multi-Agent Planning in breaking

it down into components that have been previously seen. Figure 3.4 shows that

MCTS performs poorly for the chosen environment because of the large state space

and branching factor. DDRP initially performs poorly, but yields strong results given

enough time to think. DDRP-OO performs well even when not given much time to

think. Theorem 3.4.6 helps give intuition to the immediate performance of DDRP-OO.

The ACKTR simulation, displayed in Figure 3.5, performs well, but only after several

million episodes of training, corresponding to approximately 2 hours using 10 CPU

cores. This illustrates the inherent advantage of model-based reinforcement learning

approaches when the MDP model is available. Data is plotted to show the average

and confidence intervals of the expected discounted reward of the agent(s) found in

the allotted time. We perform 100 trials per data point in the case studies.

We perform another study to visually compare trajectories generated from

59

Figure 3.4: Performance of DDRP, DDRP-OO, and MCTS in randomized 2D
environments with one objective type.

Figure 3.5: Performance of offline algorithm: ACKTR in randomized 2D
environments with one objective type.

DDRP, MCTS, and ACKTR as shown in Figure 3.6. The environment contains three

objectives with waypoints denoted by ‘x’, ‘square’, and ‘triangle’ markers. Visiting

‘x’ waypoints yield a reward of 3, while visiting ‘square’ or ‘triangle’ waypoints yield

a reward of 1. We ran both MCTS and DDRP for 3.16 seconds and ACKTR for

10000 trials, all with a discount factor of γ = .99. The best trajectories found by

MCTS, DDRP, and ACKTR are shown in Figure 3.6 which yield discounted rewards

of 1.266, 5.827, and 4.58, respectively. It is likely that the ACKTR policy converged

60

to a local maximum because the trajectories generated near the ending of the 100000

trials had little deviation. We use randomized instances of this environment to show

a comparison of DDRP, DDRP-OO, and MCTS with respect to runtime in Figure 3.7

and show the performance of ACKTR in a static instance of this environment in

Figure 3.8.

Figure 3.6: The trajectories generated from MCTS, DDRP, and ACKTR are
shown with dashed, solid, and dash-dot lines respectively, in a 100 × 100
environment with 3 objectives. The squares, x’s, and triangles represent
waypoints of three objective types. The agent (represented by a torpedo)
starts at the center of the environment.

3.5.3 Effect of multi-agent interaction

Our next simulation evaluates the effect of multi-agent cooperation in the al-

gorithm performance. We consider an environment similar to the one in Section 3.5.2,

except with 10 agents and |O| = 3, where objectives have a random number of way-

points (|Ob| ≤ 5) that are placed randomly. In this simulation we do not train the

agents before trials, and Dynamic Domain Reduction for Multi-Agent Planning is

used with varying N where agents asynchronously choose trajectories. In Figure 3.9,

61

Figure 3.7: Performance of DDRP, DDRP-OO, and MCTS in randomized 2D
environments with three objective types.

Figure 3.8: Performance of ACKTR in a static 2D environment with three
objective types.

we can see the benefit of allowing agents to interact with each other. When agents

are able to take coupled actions, the expected potential discounted reward is greater,

a feature that becomes more marked as agents are given more time T to think.

62

Figure 3.9: Performance of multi-agent deployment using DDRMAP in 2D
environment.

3.6 Conclusions

We have presented a framework for high-level multi-agent planning leading

to the Dynamic Domain Reduction for Multi-Agent Planning algorithm. Our design

builds on a hierarchical approach that simultaneously searches for and creates se-

quences of actions and sub-environments with the greatest expected reward, helping

alleviate the curse of dimensionality. Our algorithm allows for multi-agent interac-

tion by including other agents’ state in the sub-environment search. We have shown

that the action value estimation procedure in DDRP converges to the optimal value of

the sub-environment SMDP with probability 1. We also identified metrics to quan-

tify performance of the sub-environment selection in SubEnvSearch and sequential

multi-agent deployment in SequentialMultiAgentDeployment, and provided formal

guarantees using scenario optimization and submodularity. We have illustrated our

results and compared the algorithm performance against other approaches in simula-

tion. The biggest limitation of our approach is related to the spatial distribution of

objectives. The algorithm does not perform well if the environment is set up such that

63

objectives cannot be split well into regions. Future work will explore the incorporation

of constraints on battery life and connectivity maintenance of the team of agents, the

consideration of partial agent observability and limited communication, and the re-

finement of multi-agent cooperation capabilities enabled by prediction elements that

indicate whether other agents will aid in the completion of an objective. We also

plan to explore the characterization, in specific families of scenarios, of positive lower

bounds on the submodularity ratio of the set function that assigns the discounted

reward of the selected sub-environment, and the use of parallel, distributed methods

for submodular optimization capable of handling asynchronous communication and

computation.

Acknowledgments

This work was supported by ONR Award N00014-16-1-2836. The authors

would like to thank the organizers of the International Symposium on Multi-Robot

and Multi-Agent Systems (MRS 2017), which provided us with the opportunity to

obtain valuable feedback on this research, and the reviewers.

Chapter 3, is coauthored with Cortés, Jorge and Ouimet, Mike in full, is a

reprint of the material as it appears in Autonomous Robotics 44 (3-4) 2020, 485-503,

Ma, Aaron; Ouimet, Mike; Cortés Jorge. The dissertation author was the primary

author of this chapter.

64

Chapter 4

Cooperative dynamic domain

reduction planning

UxVs are an outlet for the implementation of state-of-the-art algorithms that

pertain to many fields of dynamic systems and machine learning. Recently, particu-

lar interest in the autonomous capability of these vehicles is growing. Characterizing

multiple UxVs that interact with each other is difficult because of the joint number

of possibilities that exist due to the joint state and action spaces. To approach this

challenge, we propose DDRP, a hierarchical algorithm that takes slices of the environ-

ment and models them as a semi-Markov decision process. DDRP lacks a structure

for agents requesting and assisting executing objectives that require more than one

agent to complete. The motivation of this chapter is to extend the DDRP framework

to allow agents to share their requests and to assist others if they deem it beneficial

to the entire swarm.

Figure 4.1 provides an example application scenario of interest. In this exam-

ple, agents are tasked with building structures. Agents are able to gather resources

65

(a) Initial conditions (b) Final trajectories

Figure 4.1: Example use of CDDRP. Agents are tasked with gathering re-
sources and building structures at build sites. The symbols, , , , rep-
resent agents, resources, and build sites respectively. In this specific case,
the build site on the bottom left requires resources 1, 2, and 4, while the
build site on the top right requires resources 3 and 6 to begin construction.
Figure 4.1(a) shows the initial conditions and Figure 4.1(b) illustrates the
trajectories resulting from the algorithm proposed in this chapter.

that are randomly scattered in the environment, but they are only able to carry two

resources at any given time. The agents bring resources to building sites which re-

quire certain combination of resources for construction, a process that is expedited

when agents cooperate.

4.1 Problem statement

Consider a set of agents A indexed by α. The agents seek to service a number

of different objectives, whose objective type is indexed by b. A sub-objective q = 〈w, b〉

contains a waypoint w ∈ Rd and an objective type. An objective o = 〈Q, r〉 consists

of a set of sub-objectives Q and a reward r ∈ R. We let O denote the set of all

objectives. One possibility is to have objectives that require only one agent to be

satisfied, as in [MOC17]. Instead, here we consider objectives with a sub-objective

66

set of cardinality |Q| > 0. In this case, agents need to simultaneously be at specified

waypoints and take actions in q ∈ o.Q in order to complete objective o. Agents use

DDRP to generate a set of potential trajectories, termed V , that they may take to

service objectives in the environment. We strive to extend the capabilities of DDRP

to include handling objectives that need two or more agents to complete. Given N

agents, we determine a structure that allows the agents to share their trajectories and

to distributively determine the joint trajectory that globally maximizes the sum of

future discounted rewards.

4.2 Cooperative dynamic domain reduction plan-

ning

In this section we provide an overview DDRP and extend the framework to deal

with objectives that require more than one agent. We organize this section as follows.

First we review basic definitions from DDRP introduced in our previous work [MOC17].

As we discuss these definitions, we provide modifications to enable the agents to

communicate desire for cooperation from other team members. Next, we present a

high-level overview of algorithms used in DDRP. This sets the basis to introduce the

multi-agent system where agents communicate and search for the joint optimal actions

for deployment on large scale environments with cooperative objectives. We call the

resulting framework Cooperative dynamic domain reduction planning (CDDRP).

67

4.2.1 Abstractions and definitions

We begin with some core definitions in DDRP. First we introduce abstracted

regions and actions, the construction of sub-environments, and task trajectories.

Then we give a high level overview of main algorithms in DDRP, SubEnvSearch and

TaskSearch, and then finish with a new trajectory selection algorithm on the multi-

agent level with some analysis.

Abstracted regions: A region is a convex set x ⊆ Rd such that the union

of all regions are disjoint. The state of a region ω is an abstraction of the objectives

that reside in ω. Let Φx : w → x define the abstraction function that returns the

region that q belongs to. We use this function to map where sub-objectives exist, i.e.,

Φx(q.w) = x. Given a region x, let Qbx = {q : Φx(q.w) = x, q.b = b} be the set of sub-

objectives of objective type b that exist in it. We define the function Φo : Qbx → sbx

to describe the abstracted state of the corresponding type of objective in the region.

Define the regional state to be sω = (s1
x, s

2
x, . . .).

Abstracted tasks: In [MOC17], a task is a tuple τ = 〈sb′ωi , s
b
ωi
, ωi, ωj, b〉,

where ωi is the region that the agent is executing sub-objective of objective type b

in, ωj is the next region that the agent plans to travel, sbωi is the prior state of ωi,

and sb′ωi is the post state of ωi. Here, we augment the notion of task to include the

concept of time abstraction. Mapping the time to an interval allows the agents to

communicate approximate times to complete coordinated tasks by. If the length of

the time intervals is too small, then the number of possible joint actions increases and

the problem may become intractable. On the other hand, if the length of the time

intervals is too big then the execution time of coordinated tasks become less precise.

Let the convex set ς ⊆ R specify a time interval. We specify a sub-task, µ = 〈ωi, b, ς〉,

68

to be a tuple that contains a region ωi that the agent acts in, a objective type b,

and a time interval ς. The modified definition of a task is now τ = 〈µ, sbωi , s
b′
ωi
, ωj〉.

This modification allows agents to communicate the bare minimum information that

is necessary for others to know when they are attempting a coordinated objective.

We denote by T the set of all tasks.

Sub-environments: The DDRP framework takes the environment and gen-

erates sub-environments ε composed of a sequence of abstracted regions and a state

encoding proximity and regional states of those regions. We extend the definition of

sub-environment to include requirements that the agent agrees to satisfy. We do this

by incorporating the requirements into the state of the sub-environment. Let −→ω be a

finite sequence of regions in the environment (e.g., [ω2, ω1, ω3]). We determine a state

of the sub-environment given −→ω . To do this, we need to determine if regions are re-

peated in −→ω . Let ξ(k,−→ω), return the first index h of −→ω such that −→ω h = −→ω k. Another

necessary component is the time that it takes for the agent to travel between regions.

We use d(ωiωj) : ωi, ωj → Z to designate an abstracted amount of time it takes for

an agent to move from ωi to ωj, or ∞ if no path exists. We create sub-environments

with the constraint that agents may need to satisfy some cooperative tasks. Let the

set U = {µ1, µ2, . . .} be a set of subtasks that the agent agreed to partake in the sub-

environment. We define the sub-environment state with the addition of requirements

as

s = [s−→ω 1
, s−→ω 2

, . . .]× [ξ(1,−→ω), ξ(2,−→ω), . . .]× [d(−→ω 1,
−→ω 2), d(−→ω 2,

−→ω 3), . . .] (4.1)

× {µ1, µ2, . . .}.

69

We denote by Sε the set of all possible sub-environment states. A sub-environment

is ε = 〈−→ω , s,U〉.

When an agent performs a task in the sub-environment, it expects the action to

take multiple time steps to complete, the environment to change states, and to receive

some reward. Let Prs and Prt be the probability distributions for state transition

and time of completion for executing a task in a sub-environment, respectively. Also,

let rε designate the expected reward that an agent receives for choosing a task given

the state of a sub-environment. Finally, we can represent the process of executing

tasks in sub-environments as the sub-environment SMDP,M = 〈Sε, T , P rs, rε, P rt〉.

The goal of the agent is to determine a policy π : ε.s → τ that yields the greatest

rewards inM. The state value under policy π is given by

V π
ε.s= rε+

∑
tε∈R

P tεγt
ε
∑
ε.s∈Sε

P sV π
ε.s′ s.t. 0 ≤ γ < 1. (4.2)

Task trajectories: Agents cooperate with others by sharing their current

and prospective plans for the receding time horizon. In DDRP, we call this information

a task trajectory. This is defined as ϑ = 〈[τ1, τ2, . . .], [Pr
1, P r2, . . .]〉, where tasks in

[τ1, τ2, . . .] are executed in order and the completion time of τ1 is according to the

probability density function Pr1(t), etc. Task trajectories are created with respect

to some sub-environment ε and are constrained so that a task in ϑ.τp.ωj must be

ϑ.τp+1.ωi, making it so that the region that agents travel to next is always the active

region of the next task to complete. Here, we redefine the concept of task trajectory to

carry information about what cooperative tasks the agent has. Given the cooperative

tasks in a trajectory, the agent may have some cooperative tasks that it plans on

executing with others, and some cooperative tasks that it might not have found

70

(a) Algorithms of DDRP (b) CooperativeTrajectorySearch

Figure 4.2: Workflow of DDRP and CooperativeTrajectorySearch.
DDRP in Figure ?? is a hierarchical algorithm that dynamically cre-
ates sub-environments with sub-environment search. Sub-environments
are modeled as a semi-Markov decision process where the agent uses
TaskSearch to find tasks which yield the greatest expected discounted re-
ward. CooperativeTrajectorySearch is a process that is run in parallel
with DDRP. With respect to the simulated annealing process, agents asyn-
chronously choose active trajectories ϑaα from a set of trajectories Vα found
in DDRP as shown in Figure ??. The result is a list of active trajectories,
ρ = [ϑa1, ϑ

a
2, . . .].

partners for execution. The agent puts all subtasks in the set U . A task trajectory is

then defined as ϑ = 〈[τ1, τ2, . . .], [Pr
1, P r2, . . .],U〉.

4.2.2 DDRP algorithms and task generation for communication

DDRP is a hierarchical framework which has an algorithm called SubEnvSearch

that generates subsets of the entire environment. The sub-environment that is created

is modeled as an SMDP, and TaskSearch is used to optimally find a policy for it. In

this section, we give a brief description of the algorithmic components SubEnvSearch

and TaskSearch, and introduce some necessary modifications for CDDRP. DDRP orga-

nizes SubEnvSearch and TaskSearch into a hierarchical structure as shown in Fig-

ure ??.

71

Sub-environment search: SubEnvSearch uses the environment as an input

and creates a sub-environment. Using the set of all regions in the environment, we

add one region at a time to a ‘sub-environment set’ until there are Nε regions. As

the sub-environment set is being generated, its value (determined by TaskSearch) is

evaluated. The agent uses this value to add regions that locally maximize the value

of the sub-environment.

We extend the sub-environment search process to now include cooperative

tasks. To do this, first we run SubEnvSearch to get a sub-environment from the

environment. If a cooperative sub-objective q exist in the sub-environment, then

with some probability we include q to the sub-environment sub-task set ε.U as a

requirement for the agent to complete. These cooperative sub-objectives must be

compatible with each other. For example, an agent is not able to create a sub-

environment with two cooperative sub-objectives at the same time interval. After

this, the agent updates the sub-environment state accordingly and sends the created

SMDP to TaskSearch.

Task search: Given a sub-environment ε generated from SubEnvSearch, the

purpose of TaskSearch is to determine the value of taking a task τ . This is done

using upper confidence bound tree search (UCT) [KS06], which is a Monte-Carlo tree

search (MCTS) that uses the upper confidence bound of action values to explore the

SMDP. The agent takes the sub-environment SMDP and runs TaskSearch for many

iterations, where the values of taking a task given the state of the sub-environment

converges to a real number. When choosing which task to take, the agent chooses the

task that maximizes the action value given the state of the sub-environment.

We extend the task search process under the constraint that it must satisfy the

72

cooperative subtasks in the sub-environment. To do this, given the sub-environment

from SubEnvSearch, the agent must obey the constraints of cooperative subtasks in

the sub-environment. At each task selection, the agent chooses from a set of tasks

such that it is still feasible to visit regions in ε.U at the required times. The agent

determines the action value for choosing tasks given the sub-environment state and

satisfying the constraints given to it and returns a task trajectory. This task trajectory

also contains all the cooperative tasks that it was constrained to satisfy as unpaired

cooperative tasks.

4.2.3 Joint DDRP via simulated annealing

In this section we introduce the main contribution of this chapter, aside from

the modifications to DDRP described above. We specify a value for the joint set of

trajectories by determining which objectives can be completed given the planned

sub-tasks of all the agents. Then we introduce the algorithm in which agents use

simulated annealing to search for the best set of joint trajectories.

Agents execute DDRP yielding a set of trajectories V . The trajectory that

an agent currently plans to execute, called the active trajectory, is denoted by ϑa.

Agents share their active trajectories so that they know which cooperative objectives

they can collaborate on. The active trajectories are ordered in a list with respect

to some arbitrary agent ordering to form the active trajectory list ρ = [ϑa1, ϑ
a
2, . . .].

In doing so, agents have access to the subtasks of others. The set of all current

subtasks is the collective subtask set, denoted UA = {µ : µ ∈ ϑ.U , ∀ ϑ ∈ ρ}. We

also create a set of subtasks that are planned to be executed in a given time interval,

UAς = {µ : µ ∈ UA, µ.ς = ς}. For the remainder of the chapter, we assume that agents

73

have access to UA and UAς for all time intervals ς. We say that o is satisfied if all

sub-objectives in o exist in a subtask set at ς such that o.U ⊆ UAς . With knowledge

about UAς for all time intervals ς, agents are able to determine the minimal time

interval in which each objective is expected to be completed. Let the expected time

of completion for an objective be defined as

ςo(UA, ρ) = argmin
ς

∫
ς

γtdt (4.3)

s.t. o.U ⊆ UAς .

or ςo =∞ if there are no time intervals for which o.U ⊆ UAς . Next, we introduce the

joint task trajectory value as

V A(UA, ρ) =
∑
o∈O

∫
ςo(UA,ρ)

γt o.r dt, (4.4)

which corresponds to the cumulative discounted reward of all the agents in the swarm

given ρ.

We are now ready to introduce CooperativeTrajectorySearch (cf. Algo-

rithm 5). This strategy takes as input a set of agents, their respective task trajectory

sets, and the set of all objectives. The agents initially choose active trajectories that

form the active trajectory list and the temperature is initialized to ∞. We use the

notation ρ|ϑα to indicate the resulting active trajectory list that occurs when agent α

chooses a new active trajectory ϑα = ϑaα. This operation simply changes the α-index

element of ρ to be ϑα. An agent at random then chooses to select a trajectory from

its trajectory set with probability distribution Prϑ. This distribution follows one of

74

two schemes. The first is called a flat scheme, where agent α chooses a trajectory ϑ

with respect to the number of trajectories in the set as follows:

Prϑ(ϑ)† =
1

|V|
. (4.5)

The next method of selecting a trajectory that we explore is called a weighted scheme.

In this method, agent α chooses a trajectory with probability with respect to the local

joint task trajectory values as follows:

Prϑ(ϑα)‡ =
V A(UA, ρ|ϑα)∑

ϑiα∈Vα
V A(,UA, ρ|ϑiα)

(4.6)

Once the agent has chosen ϑα from the distribution, it evaluates the marginal

gain of the trajectory given by V A(UA, ρ|ϑα) − V A(UA, ρ). If the marginal gain is

positive, or if the simulated annealing acceptance given by line 8 is satisfied, then

the agent accepts the new trajectory and notifies all other agents of the change.

The temperature decreases by the cooling schedule in (2.1), and the above process

is repeated. CooperativeTrajectorySearch is illustrated in Figure ??. DDRP and

CooperativeTrajectorySearch are run in parallel, where the trajectory set VA for

agents is constantly being updated as trajectories are discovered in DDRP. We call the

resulting framework CDDRP.

This process can be characterized by a Markov chain. The Markov chain is

C = 〈P , P rρ, V A〉 which contains the set of possible active trajectory lists P , the

probability distribution Prρ that encodes the chance of hopping from one active

trajectory length to another, and V A. Figure 4.3 gives an example of the Markov

chain that characterizes our system. For the following analysis we define P∗ = {ρ :

75

Algorithm 5: CooperativeTrajectorySearch
1 CooperativeTrajectorySearch (V,A):
2 ρ = [ϑ0

1, ϑ
0
2, . . .]

3 T =∞
4 for k ∈ [2, 3, . . .]:
5 α←RandomSelection(A)

6 ϑ← sample from Prϑ

7 if V A(ρ|ϑ,Q) > V A(ρ,Q)

8 or Random(0,1) < e
VA(ρ|ϑ,Q)−VA(ρ,Q)

T

9 ρ = ρ|ϑ
10 T = c

log (k)

Figure 4.3: (Left): Pseudocode description of
CooperativeTrajectorySearch. (Right): A graph generated from
the Markov chain 〈ρ, Pr, V 〉. Nodes represent configurations of task trajec-
tory lists and edges represent positive state transition probabilities Pr(ρ, ρ′)
between states ρ and ρ′. The graph is ordered such that the y-component of
a node increases as node value decreases.

ρ ∈ P s.t. argmaxρ∈P V
A(Q, ρ)} as the set of active trajectory lists that maximize

V A (more than one may exist).

4.3 Performance of selection schemes: ‘flat’ vs.

‘weighted’

In this section we show experimental results for two trajectory selection

schemes and show relative performance differences in the same environments. We

perform 3 simulations with the parameters shown in Table 6.1.
Table 4.1: Parameters used in the simulations.

simulation |A| |V| Nε c ∆t total time
1 5 5 5 20 1× 10−4 ∼1s
2 10 10 5 100 2× 10−4 ∼2s
3 100 100 3 800 2× 10−3 ∼20s

In these simulations, we assume that the agents have run DDRP for some time

to generate V and then use CooperativeTrajectorySearch to find ρ. We create the

76

simulation set up with 100 objectives, 50 of which require 2 − 5 agents to complete.

Rewards for satisfying an objective are randomly picked from a range that scales with

the number of agents required to satisfy the objective (which incentivizes collabora-

tion). Varying parameters in the three simulations are number of agents, number of

trajectories in their respective trajectory sets, length of the sub-environments they

create, and approximated c. The average time per step, denoted by ∆t in Table 6.1,

varies because the agent needs to calculate Prϑ. Each simulation is run 100 times for

both the ‘weighted’ and ‘flat’ schemes. We illustrate the results for each simulation

in Figure 4.4. The average time for completion of experiments for cases 1,2 and 3

were 1, 2, and 20 seconds, respectively. In all cases, the maximal value found by the

‘weighted’ scheme approaches the optimal joint trajectory value sooner than the ‘flat’

approach. We find that the ‘flat’ scheme struggles to find joint trajectories with val-

ues comparable to the ‘weighted’ scheme when used for large action spaces. In cases

with low action space, such as simulation 1, the maximal value determined from the

‘flat’ scheme was able to approach the optimal trajectory value. The average value of

both schemes is lower than the maximal value found due to the algorithms propensity

to escape local maximums.

4.4 Conclusions

We have extended the dynamic domain reduction framework for multi-agent

planning over long time horizons and a variety of objectives to scenarios where some

objectives require two or more agents to complete. In order to do this, we have made

modified DDRP to allow for necessary information to be shared amongst agents. These

include the inclusion of time abstractions and cooperative objectives, and modifica-

77

(a) Simulation 1 (b) Simulation 2 (c) Simulation 3

Figure 4.4: Results for simulations. Here the joint trajectory discounted
reward is shown on the y-axis and the number of steps in log-scale base 10 is
shown on the x-axis. We plot the average discounted reward of the current
states in each time step of the simulations which are labeled ‘weighted’ and
‘flat’. The lines that correspond to ‘weighted’ max and ‘flat’ max indicate
the max value that was found in each trial by time step k, averaged over all
trials.

tions to both trajectories and sub-environments. Building on this framework, we have

designed an algorithm based on simulated annealing that allows agents to expedite

the exploration of solutions by increasing the chance that they choose tasks that

help one another. This is important in the distributed setting in order to reduce the

communication needed to find a good solution. Our analysis of the algorithm has

shown that, given enough time, the active trajectory list converges in probability to

an optimal active trajectory. We do this by showing that the Markov chain that char-

acterizes our multi-agent process satisfies weak reversibility and strong irreducibility

properties, and by using a logarithmic cooling schedule. Simulations compare our al-

gorithm with a weighted approach versus our algorithm with a flat approach when it

comes to agent select trajectories. In the future, we plan to develop efficient methods

for the agents to come up with their trajectories during DDRP, examine the trade-offs

in designing how the simulated annealing process can influence the search of trajec-

tories in DDRP, and introduce asynchronous implementations to broaden the utility

78

for real-world scenarios.

Chapter 4, in full, is a reprint of the material as it appears in Distributed

Autonomouos Robotic Systems: The 14th International Symposium, Springer Pro-

ceedings in Advanced Robotics, vol. 9, pp.499-512, Ma, Aaron; Ouimet, Mike; Cortés

Jorge. The dissertation author was the primary author of this chapter.

79

Chapter 5

Temporal sampling schemes for

receding horizon cooperative task

planning

Interest in the autonomous capability of UxVs and their applications to real-

world scenarios is increasing. Problems of interest include mapping of unknown

regions, surveillance, and pursuit of other vehicles. The use of UxVs in these sce-

narios is motivated by keeping people away from danger and for improved effi-

ciency/performance of the task. The ability to complete tasks to satisfy these objec-

tives are largely determined by the vehicle’s capabilities for autonomy and planning.

When considering multiple vehicles, task planning can become infeasible to do cen-

tralized because the size of the joint action space of the agents grows exponentially as

the number of agents increase. In this paper, we consider distributed task planning

by modeling the problem as a potential game, where agents utilize stochastic policies

for selecting plans iteratively over a moving time horizon. One common problem

80

that occurs when agents choose their plans in a stochastic manner is that they may

change their action right before execution, leading to the loss of some other agent’s

utility. To address this, we propose a sampling scheme which discourages an agent

from switching actions in the near future and encourages agents to plan for the long

term.

5.1 Problem statement

Consider a scenario with a team of N agents distributively determine a sched-

ule of future actions. Let the agents plan over a finite time horizon where they

must select actions for time steps t = [1, . . . , T]. Agents, indexed by α, have

states represented by sα. They must select actions that alter the environment state

s = (s1, . . . , sN , s
e), where states s1 through sN represents states of agents 1 through

N and se represents the state of the environment. Agent α is able to select actions

according to their individual action space atα ∈ Atα available to it at time t. Each

agent develops an action schedule that plans to execute during the finite time horizon

denoted āα = [a1
α, . . . , a

T
α] ∈ Āα. The joint action plan, ā = {ā1, . . . , ān} is the set of

all agents action schedules. For the sake of notation, let ā−α = ā \ āα. We also use

āt = {at1, . . . , atN} to represent the set of actions that agents plan to select at time t.

Agents receive a reward for taking a joint action at particular states, Rt : st× āt → R,

while RT : sT → R represents a terminal reward the agents get at the final time step

in the finite time horizon. The sum of future rewards gathered by the agents is

81

represented by

Φ(ā) =
T−1∑
t=1

Rst,āt +RsT . (5.1)

The goal of the agents is to maximize their ‘wonderful life utility’ as defined in (??).

5.2 Task scheduling with recycled solutions

We study three components to the evolution of events that occur during de-

ployment in our algorithms. First, agents execute an action. Then, actions are shifted

to represent the step, i.e., ātα becomes āt−1
α for all t ∈ (2, . . . , T) and α ∈ A. The

shifted action schedules will become the initial solution for agents in the next step of

the finite time horizon. However, these action schedules will be missing āTα , so the

third component we consider is the generation of that action. We refer to this process

as recycling solutions.

Here, we propose a deployment strategy, outlined in Algorithm 6, called hori-

zon shift planning (HSP). In HSP, between lines 3-18 agents sample action schedules

with respect to the sampling matrix P g (specific schemes to determin this matrix are

introduced later in Section 5.3, giving rise to different instantiations of HSP). With

probability respective to Pa, the agent accepts the candidate action schedule. The

agent then broadcasts the change in action schedule with some probability. It is

important to note that after agents take actions, and the finite time horizon shifts,

agents recycle their chosen action schedules ā to be used as an initial action schedule

in lines 3-18 for the next time step.

Theorem 5.2.1. (Reaching pure Nash equilibria through HSA): Consider the horizon

82

Algorithm 6: Horizon shift planning
1 HSP(s,A)
2 while deploying is true:
3 for k = 0→ K; Agents α ∈ A do in parallel:
4 āα = HSA(āα, k)
5 executeActions(ā = [ā1, . . . , ā|A|])
6 for t = 0→ (T − 1):
7 st = st+1

8 āt = āt+1

9

10 Let i denote the current action schedule āα
11 Let j denote the candidate action schedule ā′α
12 HSA(i := āα, k)
13 Select j with probability P g

ij

14 ∆ = uj − ui
15 if ∆ > 0 or rand()> e∆/Tk :
16 i← j
17 if rand()> τ :
18 updateAgents(i)
19 return i := āα

shift annealing, HSA, outlined in Algorithm 6 using the linear cooling schedule (??).

Agents that use ‘wonderful life utility’ with potential function given by (5.1) will reach

a pure Nash equilibrium with probability 1 as k goes to infinity.

Proof. We use the fact that exact potential games exhibit the finite improvement

property, meaning that every improvement path, ā1, ā2, . . . such that Φ(āk) > Φ(ā)k−1,

is finite in length. Because of this property, a Nash equilibrium exists. From (??), for

k > c the temperature becomes 0 and agents will only choose action schedules with

positive utility u. Agents then select actions that are along some finite improvement

path until they reach a pure Nash equilibrium.

So long as P g
ā,ā > 0 for all ā, ā, the temperature can be set to 0 initially and

the locally optimal solution can be found given large enough t. The inclusion of a

83

temperature schedule is motivated by the inherent temporal structure of the solutions.

Action schedules likely have similar utilities when their actions are similar. Using a

cooling schedule means that extra pathways in the Markov chain to the optimal action

schedule will exist. The motivation is that by increasing the number of pathways to

the optimal solution, we will increase the probability to find that solution and it will

be found more quickly with a cooling schedule than without.

5.3 Sampling schemes for task scheduling

In this section we design sampling schemes for task scheduling. In general,

the probability P g is not viewed as a design choice in annealing approaches, and is

often a result of existing state transition probabilities in a Markov chain. In our case,

since agents can choose to take an arbitrary action schedule, we design P g to make

sampling more efficient with respect to the finite time horizon and to confront the

issue of agents breaking promises in the near future, which may cause other agents

to lose utility.

5.3.1 Sampling matrix structure

We choose to structure and position the indices of P g with the following con-

ventions. P g is a block matrix with |A| × |A| blocks. A block P g

a1
α,a

1′
α
∈ P g is a

matrix of probabilities of transition for action schedules with first action a1 to action

schedules with first action a1′ . P g

a1,a1′ is also a block matrix with |A| × |A| blocks.

A block P g

a2,a2′ |a1,a1′ is a matrix of probabilities of transition for action schedules first

and second action, a1 and a2, to action schedules with first and second action, a2 and

a2′ .

84

This organization of P g has the following properties

• Diagonal elements are transitions to the same action schedule. Diagonal blocks

are transitions to the same action taken at that time step.

• P g is row-stochastic

• The probability that an agent chooses an element in a block matrix is the

summation of probabilities of elements in that block.

5.3.2 Geometric sampling

Here we introduce the geometric sampling scheme. The idea is inspired by sim-

ulated annealing, however, we modify the probability that actions are sampled based

on their position in the finite time horizon. In particular, the generation probability

for a sampled action schedule geometrically reduced as follows

Pg†
ij =

γT−tij

|Āα|
∑
p 6=j

γT−ti,p

|Āα|

, (5.2)

where γ ∈ (0, 1) and tij is the minimum time where actions deviate in the two action

schedules, i.e., tij = min{t ∈ R | it 6= jt}.

Figure 5.1 illustrates P g given (5.2). In this scheme we force the agents to

sample action schedules that will change actions in the near future less often.

Remark 5.3.1. (Keeping promises with geometrically reduced sampling): Here we

address the issue of agents ‘breaking promises’ with other agents by influencing the

agents to sample action schedules with actions that deviate in the near future, less

85

often. It should be noted that the agents are not decentivized from working together

as searching for cooperative plans is prioritized for future actions. •

Figure 5.1: A matrix that illustrates the probability of action schedule
generation. In this case, the agent has an action space Āt of 3 and is planning
up to T = 3 time steps ahead. In the image, the intensity of the pixel i, j
corresponds to the probability of the agent sampling j := āα,j when its last
solution is i := āα,i. Light and dark pixels correspond to high and low
probabilities of generation, respectively.

Agents recycle their solution from iterations in the time horizon. Agents do

this by the following horizon shift operation for all elements in P g. We define the

‘horizon shift’ operations as σ(P)→ P ′, for any square row-stochastic matrix P such

that

P ′ij = γPij ∀j 6= i

P ′ii = Pii + (1− γ)
∑
j 6=i

Pij ∀i (5.3)

where γ ∈ (0, 1). When this operation is applied to Pg† the probability of all tran-

sitions between differing action schedules in Ptr is reduced by γ. We show how the

eigenvalues of Ptr evolve when (5.3) is applied to P g.

Theorem 5.3.2. Let Pg′ be the output of the ‘horizon shift’ operation on P g as

described in (5.3), and Pa be any acceptance matrix. Let the initial transition matrix

86

Ptr be determined as shown in (??) with P g and the modified transition matrix Ptr′

be determined with Pg′. Also, let λ1, λ2, . . . and λ′1, λ′2, . . . be the eigenvalues of Ptr

and Ptr′, respectively, such that

λ1 ≥ λ2≥ . . . ≥ λ|Āα|

λ′1 ≥ λ′2≥ . . . ≥ λ′|Āα|,

Then,

λ′k = 1 + γλk − γ.

Furthermore, the row-eigenvectors are invariant under the operation.

Proof. We first show that the application of the ‘horizon shift’ operation can be

applied to P g or Ptr to get the same resultant transition matrix Ptr′

Ptr′ = σ(P g)Pa = σ(Ptr). (5.4)

For all Ptr′
ij such that j 6= i

Ptr′
ij = (γP g

ij)P
a
ij

= γPtr
ij .

Thus, all off-diagonal elements are equivalent. Then for all diagonal elements Ptr′
ii

87

from (??)

Ptr′
ii = Pg′

ii +
∑
j 6=i

Pg′
ij(1− Pa

ij)

= (P g
ii + (1− γ)

∑
j 6=i

P g
ij) + γ

∑
j 6=i

P g
ij(1− Pa

ij)

= P g
ii +

∑
j 6=i

P g
ij − γ

∑
j 6=i

P g
ijP

a
ij

= P g
ii +

∑
j 6=i

P g
ij − γ

∑
j 6=i

P g
ijP

a
ij +

∑
j 6=i

P g
ijP

a
ij −

∑
j 6=i

P g
ijP

a
ij

= P g
ii +

∑
j 6=i

P g
ij(1− Pa

ij) + (1− γ)
∑
j 6=i

P g
ijP

a
ij

= Ptr
ii + (1− γ)

∑
ij

Ptr
ij

This means that we can apply (5.3) to either P g or directly to Ptr to get Ptr′.

Now we prove that the stationary distribution is invariant when the ‘horizon shift’

operation is applied directly to Ptr, i.e.

vPtr′ = vPtr = vP = v = [v1, . . . , vN]

Consider the element-wise calculation for vi.

(vPtr′)i =
∑
∀j

vjP
tr′
ji = viP

tr′
ii +

∑
i 6=j

vjP
tr′
ji

We apply (5.3) to the right-hand side to obtain

(viP
tr
ii + (1− γ)

∑
j 6=i

viP
tr
ij) + γ

∑
j 6=i

vjP
tr
ji

88

= (1− γ)viP
tr
ii + γviP

tr
ii + (1− γ)

∑
j 6=i

viP
tr
ij + γ

∑
j 6=i

vjP
tr
ji

= γ(viP
tr
ii +

∑
j 6=i

vjP
tr
ji) + (1− γ)(viP

tr
ii +

∑
j 6=i

viP
tr
ij)

Then we use the fact that viPtr
ii +

∑
j 6=i vjP

tr
ji = λvi and group the terms by γ

γλvi + (1− γ)(viP
tr
ii +

∑
i 6=j

viP
tr
ij)

Next, since Ptr is row-stochastic, we conclude

λ′kvi = γλkvi + (1− γ)vi

λ′k = 1 + γλk − γ,

for all k ∈ {1, . . . , |Āα|}.

The ‘horizon shift’ operation helps to analyze properties of the stationary

distribution as agents execute actions in the environment.

Corollary 5.3.3. (Stationary distribution under ‘horizon shift’): Let Pg′ be the output

of the ‘horizon shift’ operation on P g as described in (5.3), and Pa be any acceptance

matrix. Let the stationary distributions for the transition matrix Ptr and Ptr′ be

denoted v and v′, respectively. Then

vPtr = vPtr′ = v.

The primary motivation behind recycling solutions is to reduce the number

of iterations required for the simulated annealing step of HSA in order to reach the

89

stationary distribution. The distribution of recycled solutions remain close to the

stationary distribution after executing a step in the environment and after the ‘horizon

shift’ operation on P g. Furthermore, by focusing the sampling probability on action

schedules that deviate distant in the future, that sampling aids in the mixing of the

Markov chain for future solutions more efficiently. Another interesting property of

the ‘horizon shift’ operation is its effect on the relaxation time trel.

Corollary 5.3.4. (Relaxation time under ‘horizon shift’): Let Pg′ be the output of

the ‘horizon shift’ operation on P g as described in (5.3), and Pa be any acceptance

matrix. Let the relaxation time for the transition matrix Ptr and Ptr′ be denoted trel

and t′rel , respectively. Then

t′rel =
trel
γ
.

Proof. From Theorem 5.3.2, we have that the maximum eigenvalue that is not 1 is

λ′2 = 1 + γλ2 − γ

The relaxation time follows from (??)

t′rel =
1

γ′
=

1

ργ
=

1

ργ

t′rel =
trel
ρ

This is a useful property to be aware of because the relaxation time yields

bounds found in (??), for the mixing times of the Markov chain induced by the

90

transition matrix. The trade-off for using a smaller γ is that the mixing time increases,

however it does allow for more mixing to take place in future events, which is beneficial

because we recycle solutions for future time steps. We now focus on the multi-agent

aspect of the algorithm by creating recommendations with machine learning.

5.3.3 Inference-based sampling

In this section, we aim to create a sampling matrix that is more efficient in

terms of number of samples necessary in order to reach a Nash equilibria. To do this

we design a process that generates a dataset D that contains inputs which correspond

to images of the environment, and outputs which correspond to real-number values

for selecting action schedules.

Creating a dataset

We train a model on the dataset so that the learned policy can provide rec-

ommendations for sampling during deployment. We take advantage of the fact that

most robotic deployment scenarios are spatial by nature by training our policy to

map a local image, xα,s, of the environment to a vector of values that correspond to

action schedules that the agent can select y ∈ R|Āα|, i.e., π : xα,s → y. The local

image xα,s is translated and rotated with respect to the pose of agent α. We choose

to assign values in y to action schedules according to

yāα = maxā−α∈Ā−α u(āα, ā−α), (5.5)

for all āα ∈ Āα as an incentive to select a joint action schedule that yield high rewards

and cooperates with other agents. Particular high rewarding joint actions that require

91

two or more agents to cooperate may have difficulty being selected because they do

not exist in any available ‘finite improvement path’ from the current solution. In this

case, an agent may have to choose an action that yields less reward in order to escape

local maximums. In order to get a set of inputs and outputs, x and y, we randomize

many states and solve for (5.5) as outlined in Algorithm 7.

Algorithm 7: Creating a dataset
1 CreateDataSet()
2 D = ∅
3 for n = 0→ N :
4 x(s)

5 y ∈ R|Āα|
6 for āα ∈ Āα:
7 yāα = 0
8 for ā−α ∈ Ā−α:
9 if Φ(āα, ā−α)− Φ(∅, ā−α) > yāα

10 yāα = Φ(āα, ā−α)− Φ(∅, ā−α)
11 D.append(input: x, label: y)
12 return D

Generating sampling matrix Pg,π

After collecting the data we train our learned policy π. We use the softmax

function, indicated by Ψ(π(x, s), i) : π(x, s)× i→ R as follows

Ψ(π(x, s), i) =
eπ(x,s)i∑
∀j e

π(x,s)j

92

in order to convert the output values into a probability distribution to be used in the

sampling matrix Pg,π

Pg,π
α,s =

Ψπ(xα,s),1 . . Ψπ(xα,s),|Āα|

. . . .

. . . .

Ψπ(xα,s),1 . . Ψπ(xα,s),|Āα|

(5.6)

With this sampling matrix, the probability of choosing an action schedule is

the same from any other initial action schedule.

Remark 5.3.5. (Keeping promises with inference-based sampling): With the

inference-based sampling scheme, the agents are incentivized to sample action sched-

ules that achieve potentially high ‘wonderful life utility’. Thus the recommended

distribution of actions is weighted more heavily on action schedules that cooperate

with other agents. We propose that this distribution inhibits the probability of break-

ing promises in the near term, as those action schedules will be sampled less often.

•

5.4 Cooperative orienteering

We design an algorithm to test and compare the different generation matrices.

In the cooperative orienteering 2-D environment, agents are tasked with collecting

resources, which may require multiple agents. Resources that require 1 agent yield a

reward of 1 and and resources that require 2 agents yield a reward of 3. The environ-

ment scrolls to the left, but agents always occupy the left-most column where they

93

can choose actions in (up, stay, down). Figure 5.2 shows ‘cooperative orienteering’.

(a) Cooperative orien-
teering

(b) xα,s

Figure 5.2: (a) shows the ‘cooperative orienteering’ environment. In this
environment agents are labeled with and are shown on left column in the
environment. Agents move up and down in order to collect resource , which
requires at least 1 agent on the coordinate that the resource occupies and
yields 1 reward. Agents can also collect which requires 2 agents on the
coordinate and yields a reward of 3. (b) shows the relative view xα,s of the
agent which is used as an input to our learned policy π. In xα,s green pixel
represents resources which require 1 agent to collect and red pixels represent
resources which require 2. The yellow pixel represents the agent α and the
blue pixel represents an agent other than α.

We test the following modifications of HSA using different generation sampling

schemes.

HSA−: Horizon shift annealing with a ‘flat’ distribution Pg− defined as

Pg−
ij =

1

|Āα|
,

for all i and j.

HSA†: Horizon shift planning with a ‘geometrically reduced’ distribution Pg† as defined

in (5.2). For testing in the ‘cooperative orienteering’ we use γ = .25.

HSAπ: Horizon shift planning with the inferred sampling Pg,π as defined in (5.6). For

testing in the ‘cooperative orienteering’ environment we use a random forest

94

classifier with a decision tree depth of 12 with 12 estimators. We convert the

environment to local images for each agent as depicted in Figure 5.2(b). We are

able to achieve 82.3% validation accuracy with a validation loss (KL-divergence)

of 0.1849 when trained on 10, 000 datasamples generated from Algorithm 7.

5.4.1 Single shift stationary distribution

In this section we test several of the presented algorithms by examining the

number of steps that are required in order to reach the stationary distributions defined

by the transition probabilities after a shift in the finite time horizon. In this particular

test we use one agent. To be more precise, we take a scenario from the cooperative

orienteering environment and allow the agent to search for a parameterized number

of steps. The agent then executes their active selected action schedule. Once the

agent acts, the agent begins searching again. We are particularly interested in this

test because it validates our intuition that utilization of recycled action schedules

decreases the number of steps required to reach the stationary distribution. Formally,

the testing process is outlined in Algorithm 8.

The stationary distribution v is determined by calculating the transition prob-

abilities determined with generation and acceptance probabilities. We calculate the

KL-divergence between v and the empirically found distribution v̂ for every iteration

k as follows

Lkv̂k,v = −
M∑
i=0

vki log v̂i +
M∑
i=0

vki log vi. (5.7)

The state of the environment is initially the same for each sample. Agents

95

Algorithm 8: Single shift sampling
1 Nk

āα = 0 for all k ∈ (0, . . . , K2) and āα ∈ Āα

2 for j = 0→ J :
3 environment.initialize(seed=j)
4 āα = random.choice(Āα)
5 for k = 0 : K1:
6 āα = HSA(āα, k)
7 environment.step(āα)
8 for k = 0→ K2:
9 āα = HSA(āα, k)

10 Nk
āα = Nk

āα + 1

11 π̂kāα =
Nk
āα

J
for all k ∈ (0, . . . , K2) and āα ∈ Āα

12 return π̂

iterate through HSA for k ∈ K1 steps and then select an action. We take samples such

that the agent chooses to move straight and discard the rest. After executing the

step in the environment, the stationary distribution of the agent’s next choice is de-

termined. Figure 5.3 illustrates this stationary distribution after the shift. The agent

then plans for k ∈ K2 iterations and the empirical distribution is determined with

respect to k. The resulting KL-divergence between π and π̂ is shown in Figure 5.4.

We also examine the average expected reward of the action schedule selected during

the second step as shown in Figure 5.5.

Let HSA−k1 and HSA†k1 denote that the agent ran HSA−and HSA†, respectively,

for k1 iterations during the first step. Note that the stationary distributions are

slightly different for each of the sampling schemes and that (5.7) is determined with

each of the schemes’ stationary distributions, respectively. As expected, the empirical

distributions converge to the stationary distributions as the number of iterations in

the second step increase. Also, as the first step iterations k1 increase, the second

step iterations k2 required for the KL-divergence to converge is smaller for both

96

Figure 5.3: The average reward per step is shown between the station-
ary distribution and empirical distribution in the single shift experiment.
The y-axis indicates probabilities in the stationary distribution for the cor-
responding action schedules that are indexed 0 through 80 on the x-axis.

Figure 5.4: The KL-divergence is shown for the single shift experiment.
HSA−and HSA†are both ran initialy for 1, 15, and 1000 first step iterations.
The x-axis indicates number of iterations during the second step and the
y-axis indicates the KL-divergence between the stationary distribution and
the empirical distribution during the second step.

sampling schemes. The faster convergence implies that Markov chain induced by

the transition matrix at the second step is being mixed partially by first step, which

compels our choice in recycling solutions. When comparing HSA−and HSA†it is notable

that HSA†performs preferably as k1 increases. Intuitively, this is because the agent

will dedicate more first step iterations for sampling future than sooner ones. This is

undesirable when k1 is low because the second step will not be mixed well and the

97

Figure 5.5: The expected reward is shown for the single shift experiment.
The x-axis indicates number of iterations during the second step and the
y-axis indicates the expected reward for action schedules chosen during the
second step.

mixing time required for HSA† is greater since the ‘relaxation time’ for HSA†is greater.

5.4.2 Probability in optimal Nash equilibrium

For this experiment we are interested in determining how often 2 agents arrive

at a joint action schedule ā that is in the set of optimal Nash equilibriums when

considering a single step (no horizon shift) in the environment. Because we are not

considering horizon shifts, we omit HSA†, which converges slower than HSA−if there is

no ‘pre-shift‘ mixing.

As shown in Figure 5.6, the probability that the current joint action schedule

is in the set of optimal Nash equilibriums increases with the number of iterations. We

see that HSAπyields a higher probability. This is because the learned policy is trained

to output action schedules with high utility more often as determined in (5.5) and

Algorithm 7.

98

Figure 5.6: The percentage of joint action schedules that are in the set of
optimal Nash equilibriums are shown. The y-axis indicates the percentage of
trials where the joint action schedule selected at iteration k, on the x-axis,
was in the set of joint Nash equilibriums.

5.4.3 Full trial cooperative reward

We determine the average reward per step that 2 agents receive when agents

use the algorithms on ‘cooperative orienteering’ for N steps. In this experiment, we

vary the number of iterations per step that agents take during the simulation and

plot the results in Figure 5.7.

Figure 5.7: The average reward per step is shown for full trials vs. allowed
iterations per time step. The y-axis indicates the average expected reward
per step and the x-axis indicates the number of iterations that were allowed
per time step.

Because HSAπ requires inference from π at every time step, we also plot the

results with respect to the amount of time that agents use for each step in Figure 5.8.

99

Figure 5.8: The average reward per step is shown for full trials vs. allowed
time per time step. The y-axis indicates the average expected reward per
step and the x-axis indicates the time in seconds that were allowed per time
step.

As shown in Figure5.7 and Figure 5.8 the average reward gained per step

increases with the number of iterations. As suspected, HSA†performs worse than

HSA−for low number of iterations per step. As the number of iterations increase,

HSA†outperforms HSA−, which may be a consequence its synergy with recycling so-

lutions and its ability to mix future actions more efficiently. HSAπperforms the best

which is likely because it sampled better action schedules more often due to the high

categorical accuracy of the model. HSAπdoes take some time for inference however,

and initially performs worse than the other algorithms when considering real time

per step.

5.4.4 Keeping promises

Lastly, we design a metric for the notion of keeping and breaking ‘promises’.

Given a deployment with two or more agents, we say that there was a ‘promise’ broken

during a time step if all are true

• During iterations of simulated annealing, an agent expects to successfully collect

100

a resource that requires more than one agent.

• Another agent who was required for that resource’s collection chooses a different

action, resulting in the first agents inability to collect the resource.

In this experiment, we run the algorithms on the ‘cooperative orienteering’

environment with 2 agents for N time steps and determine the probability of steps

where a promise was broken between the two agents.

Figure 5.9: 1000 trials of ‘cooperative orienteering’ with N = 1000 time
steps where the probability of steps where ‘promises’ are broken is depicted
by the y-axis and the number of iterations per step is depicted by the x-axis.

As shown in Figure 5.9, the probability of breaking promises decreases as the

number of iterations increase for all algorithms. As expected, promises are kept more

often under both the geometrically reduced and inference-based sampling schemes

when compared to the flat sampling scheme.

5.5 Conclusions

In this chapter, we have considered simulated annealing as a method for deter-

mining strategies amongst the agents. In particular, we consider the agents planning

in a finite time horizon and recycle our solutions from one step to the next. We de-

101

sign sampling algorithms to take advantage of the recycled solutions as well as use a

learned model to output sampling probabilities that help us reach optimal Nash equi-

libriums during runtime. We provide analysis for the algorithms to show that given

enough time, at least a local Nash equilibrium is found. Furthermore, we analyze

the properties of our geometrically reduced sampling matrix Pg† with respect to its

stationary distribution as the finite time horizon shifts. In the future, we would like

to extend this work by determining optimal γ to be used in the geometrically reduced

sampling scheme that is dependent on number of iterations that agents have during

each step in the finite time horizon. Futhermore, it may be possible to improve the

learned policy and its ability to influence agents to reach an optimal Nash equilibrium

by training the output conditioned on the current solution of the agents which would

generate different values for Pg,π
ij and Pg,π

kj .

Chapter 5, in full is currently being prepared for submission for publication of

the material. Ma, Aaron; Ouimet, Mike; Cortés Jorge. The dissertation author was

the primary investigator and author of this paper.

102

Chapter 6

Cascading agent tree search

Multi-agent planning is critical across robotic applications in disaster relief

scenarios, exploration, navigation, surveillance, and production. Handling these sce-

narios is difficult due to the large number of possible states and actions that agents can

take. This complexity grows when meeting objectives requires coordination among

the agents. To tackle this, our approach leverages model-based reinforcement learning

to develop efficient algorithms which scale with the number of agents and incorporate

the need to plan cooperatively. We rely on training deep neural networks to predict

promising actions for the purpose of improving the tree search in the future. During

runtime, agents use tree search in a distributed fashion, guided by the previously-

trained policy to complete an objective under time constraints. Figure 6.1 shows

illustrative examples of environments motivating our algorithm design.

103

(a) Ecomm (b) Ecov (c) Eres

Figure 6.1: 2D multi-agent environments. In (a), agents must form a chain
of communication from an operator to a point of interest. Agents are able to
communicate if they are within a certain range of each other and agents are
rewarded if a communication link between the target and operator exists. In
(b), agents are able to detect in a cone-shaped region in front of them. The
agents are tasked to jointly maximize their detection in an area of interest
which is specified by an operator who is tasked to seek the target. In (c),
static resources are scattered in the environment. Agents receive a reward
for collecting a resource based on resource type, and some resources require
two or more agents for collection.

6.1 Problem statement

Consider a scenario where cooperative homogeneous agents seek to maximize

future discounted rewards in an environment modeled as a Markov decision process.

Let A denote the set of agents and si ∈ Rd be the state of agent i. The state of the

environment is then given by s = [s1, . . . , s|A|, s
α] ∈ S, where sα = Rp corresponds to

the non-agent states of the environment. At every time step, each agent i chooses

from a set of discrete actions given by ai ∈ A. Agents act simultaneously according

to a joint action defined as a ∈ A = A1 × . . . × A|A|, which is determined by the

distributed selection of actions amongst agents. Given a joint state s and a joint

action a, the probability that a state transitions to s′ is P s
s′|s,a. Agents receive the

same reward at every step in the environment with R which encodes the success of

cooperative tasks. The goal is to determine a policy that maximizes the state values

for the Markov decision process 〈A, S,R,Pr, γ〉. Achieving this goal is challenging for

multi-agent environments because the joint state and action space grow exponentially

with the number of agents. We are interested in reasoning over environments where

104

the alignment of the joint actions of the agents may have a significant impact on

performance.

6.2 Multi-agent tree search and bias exploitation

In this section we introduce MIPC and CATS, cf. Figure 6.2. First we discuss

MIPC, an algorithm for constructing an informed policy offline. This construction

requires the simulation of environments and data collection, which is performed by

CATS.

Figure 6.2: Flowchart of the iterative process MIPC. First, many environ-
ments are generated parameterized by a specified number of agents. In par-
allel processes, the tree search CATS generates expected state-action values
and action selection distributions for each of the generated environments. A
convolutional neural network is trained to map an image that represents a
local perspective of a single agent to the output of CATS, yielding an informed
policy.

6.2.1 Multi-agent informed policy construction

MIPC is an algorithm that runs offline to iteratively build an informed policy.

There are three main components to it, cf. Figure 6.2: GenerateEnvironment, CATS,

and Train. Let n̄ = [n̄1, n̄2, . . .] be a list with entries, n̄k ∈ R, that correspond to the

number of agents that will be spawned in an environment during the k-th iteration

of MIPC. Hand tuning n̄ allows for the customization of difficulty for each iteration.

105

In practice, we start with a small amount of agents which is slowly incremented with

iterations of MIPC. The function generate_environment(n̄k) creates a randomized

environment with n̄k agents. Iterations of MIPC begin by generating environments

with n1 agents. The environments are simulated in CATS, which gathers data using

tree search. The data collected is used to create an informed policy π̂1 with Train.

On the next iteration, environments are generated with n2 agents and π̂1 is used to

catalyze the data collection in CATS. The new data is used to create a new informed

policy, π̂2. This process iterates up to |n̄| times.

The informed policy is a convolutional neural network that maps an image and

an action to a number, (xα, aα) 7→ π̂xα,aα(xα, aα) ∈ (0, 1), where xαis an image that

represents the local perspective of an agent α during the initial state of the simulation

that is labeled by the action selection distribution determined in CATS. This mapping

from state to an image is translated and rotated for agent α and is low resolution in

practice to allow for fast inference. We map the state to an image for two reasons.

First, the number of dimensions of the full state is dependent on the number of agents.

Mapping the full state to an image results in a state space dimension that is not a

function of the number of agents. Second, many multi-agent deployment problems

are spatial by nature. Relevant spatial information can be captured by convolutional

neural networks.

6.2.2 Cascading agent tree search

CATS is a variation of MCTS which utilizes a neural network to guide the action

selection for multiple agents. Algorithm 9 presents the pseudocode for the main com-

ponents: GenerateBias, Traverse, Expansion, Simulation, and Backpropagation.

106

In GenerateBias we generate an approximation of the neural network evaluated at the

initial state of the simulation that we use to increase tree search speed. In Traverse

we modify the tree traversal and action selection process of the tree search to acco-

modate for multiple agents. Expansion, Simulation and Backpropagation are all

unchanged from the original UCT [KS06]. The tree search is executed from the per-

spective of a single agent. Actions of this agent and others are sampled with respect to

a metric, cascaded agent action selection, where agents choose actions in a sequential

manner. The order that agents choose actions is determined by Ā = [α1, . . . , α|A|],

where the first agent α1 indicates the agent who is executing the tree search. CATS

outputs the following, Q̂,Ns, Ns,a, which are used to train informed policies or to

choose actions during runtime.

Bias generation

Before performing tree search, we generate biases that influence actions se-

lected. Ideally, the bias comes from the evaluation of the informed policy created by

MIPC each time a new state is visited as a forward pass through the neural network.

Unfortunately, this term has to be evaluated O(|A|D) times, restricting its use for

large scale multi-agent systems. To avoid this problem, we devise a fast local approx-

imation of informed policy for each agent before tree search in GenerateBias. To do

this, we evaluate the informed policy at nearby locations for agent i while keeping

all other agents at their original state. This is done for every action in the agent’s

action space. Evaluations are fit using regression and the output is the local bias

(sα, aα) 7→ ψsα,aα(sα, aα) ∈ (0, 1) evaluated at the initial state of the environment.

107

Cascading agent action selection

Our proposed action selection is biased by the informed policy via the local

bias ψ and allows for exploration of joint action spaces. To choose a joint action for the

selection process, an action is chosen for each agent sequentially. Let ā be a cascading

joint action, which is an ordered list of some agents’ actions. The cascading joint

action starts empty and is built sequentially as agents choose actions. We introduce

cascading states to be sc = 〈s, ā〉, which contains the current state of the environment

s and the set of actions already selected by agents ā. Agents choose their actions with

respect to the number of times a cascaded state has been visited, Nsc , implying that

the action selection process is conditioned on the selections of previous agents in the

sequential process. Algorithm 9 outlines the sequential process under the Traverse

pseudocode. The action selection metric is modified accordingly to reflect the change

of Ns → Nsc and Ns,a → Nsc,ai as

fcaas(s
c, ai) = Q̂sc,ai + c1

√
lnNsc

Nsc,ai

+
ψsc.si,aI√
Nsc,ai

.

The maximization of this function leads the agent to choose the action most recom-

mended by ψsc.si,ai when visiting a state-action pair for the first time because Q̂sc,ai

is initialized at 0. The cascading state now transitions both when an agent selects

an action and when all of the agents take a step in the environment, which is a

modification of the Traverse process in the tree search.

Remark 6.2.1. (Advantages of cascaded agent action selection): This method of

action selection has several implications. The cascade effect on agents’ exploration

grants the ability to discover reward signals behind joint actions. If only one agent is

108

allowed to explore its individual action space at a time, then it is committed to plan

strictly under the predictions of other agents. When those predictions do not include

actions necessary for joint cooperation, then certain reward signals will be difficult to

reach. The second advantage of cascading exploration is that agents are able to take a

bad prior informed policy π̂k and create a good post informed policy π̂k+1 given enough

time. This is balanced by the exploitive local bias, which allows for search deep into

the tree for tractability. This algorithm is used to generate a dataset that will train

π̂k+1 for the first agent only. •

Remark 6.2.2. (Cascaded agent action selection vs joint action selection): Our

proposed action selection does not improve the branching factor of the tree search when

compared with the joint case. There are structural advantages that lead to efficient

tree traversal when allowing agents to choose one at a time. A particular case is when

agents receive some rewards based on non-joint actions or partial rewards for joint

actions. •

6.2.3 Online and offline deployment

CATS is meant to be run both offline and online. CATS is used to generate

data for training informed policies offline for MIPC as shown in Figure 6.2, where the

agent order Ā is chosen at random. In the online case, CATS is executed on each of

the agents individually during deployment and all agents take actions simultaneously.

Each of the agent choose themselves as first in Ā, and the rest is chosen heuristically.

109

6.3 Convergence of CATS to optimal value

Here we analyze the convergence properties of CATS. Our technical analysis

proceeds in two steps. We discuss how to properly model the sequence of multi-

agent state transition and action selection in the algorithm execution via cascaded

MDPs and then, building on this construction, we establish that the state-action

value estimate determined by CATS converges to the optimal value of the MDP.

6.3.1 Cascaded MDPs

The sequential action selection process employed by fcaas, cf. Section 38,

requires care in using standard MDPs to model the process of state transition and

action selection. This is because agents choose their actions conditioned on the current

tentative sequence of actions decided by agents which choose earlier in the sequence:

in turn, this is information not contained in states of the originally defined MDP.

To address this issue, we transform the original MDP with multiple agents and joint

action selection into a cascaded MDP. Additionally we show that this transformation

has a unique and convergent state value for every state in the new state space using

value iteration with discount 0 < γ < 1.

Let C = 〈Sc,Ac, P c,Rc, γc〉, where sc ∈ Sc contains states defined in original

MDP as well as cascaded actions ā. The notation scj,n = 〈sj, [a1, a2, . . . , an]〉 specifies

the environment state sj from the original MDP and the actions that are in ā. The set

of allowable actions for each agent is ai ∈ Ai ∈ Ac and P c, Rc, and γc are dependent

on one of two types of state transitions that we distinguish in C. The first type of state

transition, intra-agent transitions, occurs when the current state’s cascaded action is

not full, i.e., scj,n such that n < N − 1. In this situation, the next action that will be

110

picked will not yet complete the sequence of actions (one per agent) so this action will

not yet result in a step in the environment. Picking an action results in a determined

probability of transition, P c
scj,n+1|scj,n,a

= 1. The next state will contain the previously

selected sequence of actions and the newly selected a. The reward given for this

transition is always zero, Rc
scj,n+1,a,s

c
j,n

= 0. Furthermore, the discount factor is always

γc = 1. The second type of state transition, environmental transitions, happens when

the last agent in the sequence chooses an action, i.e., scj,n such that n = N − 1. At

this point, the agents all take their promised action in the environment and the next

state, scj+1,0, contains changes in the environment and an empty cascaded action.

This transition has the corresponding probability of transition in the original MDP,

P c
scj+1,0|scj,N−1,a

= Prsj+1|sj ,ā, given that sc.ā = ā and sc.s = s. The reward under this

transition is determined by the original MDP as well, Rc
scj+1,0,a,s

c
j,N−1

= Rsj+1,ā,sj , such

that sc.s = s. Finally, the discount factor used is the same as the constant discount

factor from the original MDP, γcscs = γ. Figure 6.3 shows the original MDP and

Figure 6.3: Original MDP (left) and associated cascaded MDP (right).
The MDPs start at the root state s0 and sc0,0, respectively. The original
MDP is shown to depth D. Its first step is expanded to show the additional
steps of the cascaded MDP. Transition probability Pr(sc0,1|sc0,0, a1) = 1 in the
green region indicates an intra-agent state transition (dashed line), where the
first agent in the sequence selects action a1. Further down the tree in the
blue region, Pr(sc1,0|sc0,N−1, aN) = Pr(s1|s0, ā) such that ā = [a1, a2, . . . , aN],
represents environment transitions (solid line).

111

the cascaded MDP. The convergence of MDPs under value iteration generally depend

on having the discount factor 0 < γ < 1. Our next result shows that given the

constraints of the probability of transition, reward function, and the discount factor

under intra-agent transitions and environment transitions, the state value converges

under the Bellman operator B defined by

B(Vs) = max
a

(
rs,a + γ

∑
s

Prs′|s,aVs′)

)
.

For 0 < γ < 1, the Bellman operator induces V ∗.

Theorem 6.3.1 (Convergence to V ∗). Consider an MDP and its associated cascaded

MDP, generated as described above. Let V be the estimated state value induced by the

Bellman operator in a cascaded MDP. V converges to the optimal state value of the

original MDP, V ∗. Furthermore, for all sc such that sc.s = s, the state values from

the original MDP and cascaded MDP are equivalent, Vsc = V ∗s .

Proof. We examine the two types of transitions in the cascaded MDP. If scj,n such

that n < N − 1 then an intra-agent transition occurs next. Let Scj,n+1 be the set of

all states that could occur at depth n+ 1, then

B(Vsc) = max
scj,n+1

Vscj,n+1
, (6.1)

Since rscj,n+1,s
c
j,n

= 0, P c
scj,n+1|scj,n,a

= 1, and γc = 1. Therefore, a Bellman operation sets

the state value equal to the next state value for intra-agent transitions. This implies

that in a sequence of intra-agent transitions, all state values become equal to each

112

other under multiple Bellman operations and

BN−1(Vscj,0) = BN−1(Vscj,0) = BN−2(Vscj,1)

= . . . = max
scj,N−1∈Scj,N−1

Vscj,N−1
,

where scj,N−1 is a state prior to all agents choosing their actions. After the last agent

selects an action, an environmental transition occurs and the next state is of the

form scj+1,0. Under N − 1 Bellman operations, scj,0 becomes affected by the next

environmental transition, which can be shown to be a contraction as follows,

|BN−1(Vscj,0)− BN−1(V̄scj,0)|

= |BN−2(Vscj,1)− BN−2(V̄scj,1)|

= |BN−3(Vscj,2)− BN−3(V̄scj,2)|

= . . . = |B(Vscj,N−1
)− B(V̄scj,N−1

)|,

where the derivation of convergence for standard MDPs can be applied. For brevity,

we use Pr to denote Prscj+1,0|scj,N−1,an+1 ,

|B(Vscj,N−1
)− B(V̄scj,N−1

)|

= max
an+1

{rscj,N−1,an+1 + γ
∑
scj+1,0

PrVscj+1,0
}

−max
a′n+1

{rscj,N−1,a
′
n+1

+ γ
∑
scj+1,0

Pr V̄scj+1,0
})

≤ max
an+1

|{rscj,N−1,an+1 + γ
∑
scj+1,0

PrVscj+1,0
}

113

− {rscj,N−1,an+1 + γ
∑
y

Pr V̄scj+1,0
}|

= max
an+1

γ
∑
y

Pr |Vscj+1,0
− V̄scj+1,0

|

≤ max
an+1

γ
∑
s′

Pr ‖V − V̄ ‖∞

= γ ‖V − V̄ ‖∞max
an+1

∑
y

Pr = γ ‖V − V̄ ‖∞.

Finally, because lim
k→∞
Bk(Vsc) = V ∗, state values under Bellman operations converge.

6.3.2 Convergence to optimal state value

Next, we show that the state-action value estimate determined by CATS con-

verges to the optimal value of the MDP. This requires careful consideration of the

effect of the local bias term ψ. Our treatment follows the argumentation in [KSW06]

for the convergence analysis of UCT, noting the necessary differences. First, let Xit

be the payoff rewarded when action i is taken at time t. The average payoff is given

by

X̄im =
1

m

m∑
t=1

Xim.

Let µim = E[X̄im] be the expected payoff for taking action i after m attempts and

define

µi = lim
m→∞

µim. (6.2)

114

Finally, let δim be the drift in the mean payoff,

µim = µi + δim. (6.3)

We make the following assumption.

Assumption 6.3.2 (Bounds on expected payoff). Fix 1 ≤ i ≤ K, where K = |Ac|.

Let {Fit}t be a filtration such that {Xit}t is {Fit}-adapted and Xi,t is conditionally

independent of Fi,t+1,Fi,t2 , . . . given Fi,t−1. Then 0 ≤ Xit ≤ 1 and the limit of µim

exists. Further, we assume that there exist a constant Cp > 0 and an integer Np such

that for m ≥ Np, for any δ > 0, ∆m(δ) = Cp
√
m ln(1/δ), the following bounds hold:

Pr(mX̄is ≥ mE[X̄in] + ∆m(δ)) ≤ δ,

Pr(mX̄is ≤ mE[X̄in]−∆m(δ)) ≤ δ.

We let ∆i = µ∗ − µi, where i and ∗ indicate suboptimal and optimal actions,

respectively. Assumption 6.3.2 implies that δit converges to 0. Therefore, for all ε > 0,

there exists N0(ε) such that if t ≥ N0(ε), then |δit| ≤ ε∆i/2 and |δ∗t | ≤ ε∆i/2, where

|δ∗t | is the drift corresponding to the optimal action. In particular, it follows that

for any optimal action, if t > N0(ε), then δ∗t ≤ ε/2 mini|∆i>0 ∆i. We are ready to

characterize the convergence properties of CATS.

Theorem 6.3.3 (Convergence of CATS). Consider CATS running to depth D where

K = |Ac| is the number of actions available to each agent. Assume that rewards at

115

the leafs are in the interval [0, 1]. Then,

|Q̂sc − V ∗sc | = |δ∗m|+O
(
KND log(m) +KND

m

)
, (6.4)

for any initial state sc. Further, the failure probability at the root converges to zero

as the number of samples grow to infinity.

Proof. The proof follows closely the steps in [KSW06] to establish convergence of

UCT. To determine the expectation on the number of times suboptimal actions are

taken, fix ε > 0 and let Ti(n) denote the number of plays of arm i. Then if i is the

index of a suboptimal arm and assuming that every action is tried at least once, we

bound the Ti using the indicator function, {It = i} , where l is an arbitrary integer,

Ti(m) = 1 +
m∑

t=K+1

{It = i} ≤ l +
m∑

t=K+1

{It = i, Ti(t− 1) ≥ l}

≤ l +
m∑

t=K+1

{X̄∗T ∗(t−1) + ct−1,T ∗(t−1) ≤ X̄i,Ti(t−1)

+ ct−1,Ti(t−1), Ti(t− 1) ≥ l}

≤ l +
m∑

t=K+1

{min
0<z<t

X̄∗z + ct−1,z ≤ max
l≤zi<t

X̄i,zi + ct−1,zi}

≤ l +
∞∑
t=1

t−1∑
z=1

t−1∑
zi=l

{X̄∗z + ct,z ≤ X̄i,zi + ct,zi}.

The last term, X̄∗z + ct,z ≤ X̄i,zi + ct,zi , implies one of three possible cases

X̄∗z ≤ µ∗ − ct,z (6.5a)

X̄i,zi ≥ µi + ct,zi (6.5b)

µ∗ ≤ µi + 2ct,zi , (6.5c)

116

where l represents the number of times (6.5c) occurs, and (6.5a) and (6.5b) are

characterized by Assumption 6.3.2. We proceed by finding upper bounds for each

of these three cases. Under Assumption 6.3.2, we can use the Chernoff-Hoeffding

bounds [SSS95] P(X̄iz ≥ E[X̄im] + c) ≤ e−2c2z and P(X̄iz ≤ E[X̄im] − c) ≤ e−2c2z to

bound cases (6.5a) and (6.5b). We apply c = C
√

ln(t)
z

+ 1√
z
to e−c2z, where C ≥

√
2,

t > 0, and z > 0 to get

P(X̄∗z ≤ µ∗ − ct,z) ≤ e−2c2z

≤ e−2(C
√

ln(t)
z

+1/z)2z ≤ e−2(
√

2
ln(t)
z

)2z = t−4,

and P(X̄i,zi ≥ µi + ct,zi) follows similarly. To bound l we look at (6.5c) where 2ct,z ≤

(1− ε)∆i. Solving for z yields

z ≤ 2(∆i + C2 log(t)− ε∆i)

ε2∆2
i − 2ε∆2

i + ∆2
i

+
2
√
−2εC2∆i log(t) + C4 log2(t) + 2C2∆i log(t))

ε2∆2
i − 2ε∆2

i + ∆2
i

≤WC2 log(t)

(1− ε)2∆2
i

such that some constantW , which can be upper bounded for any t ≥ 2, 0 ≥ ε ≥ 1, and

d > 0. Note that this requires Assumption 6.3.2, where t > Np and t > m > N0(ε).

Therefore l is bounded with

l = max{z,N0(ε), Np} ≤
WC2(ln(t))

(1− ε)2∆2
i

+N0(ε) +Np.

117

Our expected Ti is then

E[Ti(m)] ≤ WCp2(ln(t))

(1− ε)2∆2
i

+N0(ε) +Np

+
∞∑
t=1

t−1∑
s=1

t−1∑
sα=l

1

t4
≤ WC2(ln(t))

(1− ε)2∆2
i

+N0(ε) +Np +
π2

3
,

which is of order O(Cp2 ln(m) + N0). The rest of the proof follows from [KSW06]

where this bound is used to derive the expected regret as well as convergence of the

probability of choosing suboptimal arms to 0. The statement follows via induction on

the depth Dc, noting that Dc = |A||D| as a result of the construction of the cascaded

MDP.

The convergence bound is worse for CATS than for UCT (i.e., the constant

W in (6.4) is larger than the constant in [KSW06]) since the worst-case scenario for

the local bias term has to be accounted for. In practice the local bias term helps the

convergence rate, as we demonstrate in Section 6.4.

6.4 Implementation on 2D environments

In this section we test 3 environments defined in Figure 6.1 and discuss per-

formance of several algorithms in a variety of metrics. Significant parameters of the

experiments are shown in Table 6.1. The following variations of tree search and

reinforcement learning algorithms are implemented.1

CATS The algorithm we propose in Section 6.2 which utilizes the informed

policy generated by MIPC.
1Hyperparameters for the algorithms and environments can be found at

https://github.com/aaronma37/cats_hyperparameters.

118

Figure 6.4: Results from the experiments in each of the environments. Each
datapoint is sampled 100 times and the variance is shown as the shaded
region. Variance of results in trials are affected by parameters on initial
conditions and inherent properties of each of the environments. For Perf. vs.
∆t and Perf. vs. |A| a higher value is better and for Time to threshold a
lower value is better.

CATS-π Our proposed algorithm with cascading action selection but withouts

the bias term from the informed policy.

CATS-APP Our proposed algorithm without use of the local bias approxima-

tion. This algorithm evaluates the informed policy at every newly visited state to

bias tree search.

UCT Monte-Carlo tree search using upper confidence bound for action selec-

tion on the full joint action space.

PPO Proximal policy optimization (PPO), a policy-based model-free reinforce-

ment learning algorithm [SWD+17]. In our adaptation, each agent uses the same

policy to choose actions given their local state image x.

Figure 6.4 displays results for the following experiments.

119

6.4.1 Performance vs. allotted simulation time (Perf. vs. ∆t)

The sum of rewards per episode vs. ∆t (time allotted for tree search per

step) for L number of steps in the environment during an online deployment. We

find that for each of the environments, CATS and CATS-APP have strong performance

given limited simulation time in the tree search. It is likely that CATS scales better

than CATS-APP in this experiment because evaluation of the local bias takes less time

than a forward pass through π̂ at each node during the tree search. Performance of

CATS-π and UCT both start off low and increase as ∆t increases as expected, however

the cascading action selection structure enables CATS-π to scale better with ∆t. PPO

does not perform tree search so it is shown at constant performance. As ∆t increases,

CATS performs equal or better than PPO in the environments tested.

6.4.2 Performance vs. number of agents (Perf. vs. |A|)

The sum of rewards per episode vs. |A| for L number of steps in an online

deployment is tested. As the number of agents increases, the branching factor in-

creases exponentially. This results in a shallow tree search because of limited time

allotted for simulation. CATS sees superior performance as |A| increases as it is able to

effectively simulate other agents during search under time constraints. Adding agents

means an exponential increase in evaluations of the informed policy in CATS-APP.

In Ecomm, CATS-APP performs poorly and likely would have benefited if it had more

time to explore joint actions during tree search. CATS-π yields better performance

than UCT in some cases where the cascading action selection allows an agent to find

an adequate action when determining the best joint action is difficult under the time

120

constraints. In some cases, PPO performs better than the tested tree search algorithms

as the increased branching factor of tree search inhibits their performance.

6.4.3 Simulation time to threshold value (Time to threshold)

The amount of simulation time vs. depth of tree search (D) required during

simulation to find an adequate solution in the environment, which is determined

when Q̂ is greater than a threshold value. This experiment measures how quickly an

agent finds a satisfactory state in the MDP with respect to distance of that state, in

terms of steps in the environment. CATS-APP performs worse than other algorithms

because the evaluation of the informed policy for each agent at each new state becomes

computationally expensive with respect to tree search depth. Performance in the other

algorithms is influenced by how effectively agents are able to choose actions during

tree search. PPO is omitted since it does not perform tree search.

6.5 Conclusions

We provide two major contributions, first being a scalable approach for de-

termining an informed policy using MIPC to recycle and reduce the amount of time

required for data collection. The second contribution, CATS, is a variation of Monte-

Carlo tree search, which provides a balance of exploitation and exploration that uti-

lizes prior knowledge about the environment and multi-agent scenarios. Agent explore

sequentially allowing for robustness to errors in the prior informed bias enabling them

to distributively determine solutions for cooperative objectives. We show that this

modified MDP converges to the optimal state value and CATS estimates the optimal

state value when using misinformed biases. The efficacy of CATS is shown Our al-

121

gorithm is compared against variations of UCT with a joint action spaces, where it

excels when joint-actions are required for rewards but require low action space size

for tractability.

Chapter 6, in full, is a reprint of the material as it appears in IEEE Robotics

and Autonation Letters 5 (2) 2020, 1819-1826. Ma, Aaron; Ouimet, Mike; Cortés

Jorge. The dissertation author was the primary investigator and author of this paper.

122

Algorithm 9: MIPC and CATS
1 MIPC (N, π̂0)
2 for k = 0 to |n̄|:
3 D = ∅
4 do in parallel:
5 E ← GenerateEnvironment(n̄k)
6 Φs,0, Ns, Ns,a ← CATS (E , π̂k)
7 D.append(Φs,0, Ns, Ns,a)
8 π̂k+1.Train (D)
9 return π̂|n̄k|

10 CATS (E , Ā):
11 for agent i in Ā
12 ψi ← GenerateBias(E , π̂k)
13 for allotted time
14 Traverse(sc, Ā, k)
15 Expansion(. . .)
16 Simulation(. . .)
17 Backpropagation(. . .)

18 GenerateBias (E , π̂k, i):
19 for ai in Ai:
20 for allotted time
21 s′i = sample uniformly nearby si
22 s′ = s such that with s′i replaces si
23 X.append(s′i)
24 Y.append(π̂xi,ai)
25 ψi,si,ai ← regression of X on Y
26 return ψi = (ψi,a1 , . . . , ψi,a|A|)

27 Traverse(sc, Ā, k):
28 if k < |Ā|:
29 sc.ā.append

(
argmaxai∈Ai

fcaas(s
c, ai)

)
30 k = k + 1
31 else:
32 s′ ← evolve environment
33 sc = 〈s′, []〉
34 k = 0
35 if sc is unvisited:
36 return sc
37 else:
38 Traverse (sc, Ā, k)

123

Table 6.1: Parameters for each environment and experiment.

Perf. vs. ∆t Perf. vs. |A|Time to threshold

EcommEcov Eres EcommEcov Eres EcommEcov Eres

∆t — — — .1s .1s .1s — — —
|Ā| 3 3 2 — — — 3 3 3
L 10 10 10 10 10 10 — — —

124

Chapter 7

Conclusions

To fully enable autonomy for UxVs, we have developed algorithms which are

capable of planning in a large variety of scenarios. We are inspired by many state-

of-the-art approaches which work in the framework of Markov chains and Markov

decision processes in order to generalize the environment and system dynamics. Even

though the use of reinforcement learning for robotic planning is a popular researched

topic, task planning is a challenge for many reasons, especially as the state and

action space become large. Furthermore, extending scenarios to the multi-agent case

vastly increases the difficulty as the action and state space become joint and grow

exponentially with the number of agents. In this dissertation we discuss several multi-

agent algorithms that can take advantage of recent advances in computational power.

Our first approach attempts to alleviate the curse of dimensionality by geo-

metrically splitting the environment into regions and by planning in a hierarchical

sense. The hierarchical approach selects sub-environments on the top (slow level)

and optimizes trajectories through those sub-environments on a low (fast level). By

treating sub-environments as a separate problem we are able to formulate them as

125

semi-Markov decision processes. In doing so, we are able to reduce both the state

and action space to a point where we can train the agents offline for quick inference

of the state value during online deployment. Furthermore, being able to quickly in-

fer the state value of a particular sub-environment increases the performance of the

sub-environment selection by selecting environments that are likely to yield better

rewards given the prior knowledge. This approach yields compelling results when

used for planning in massive environments and presents many possibilities for future

extensions. In particular, model-free reinforcement learning could be used to gener-

ate policies for generating sub-environments, as it would greatly benefit from offline

training and is a non-convex optimization problem that could benefit from more ef-

ficient sampling. On the top level, during the search for a sub-environment, there

are many different optimization strategies that are unexplored which may lead to

better performance. In the dissertation, we have proposed a sequential approach that

is based in submodularity in order to guarantee a theoretical lower bound. Other

strategies may be utilized for better performance in an empirical sense. On the low

level, it is difficult to choose what is the best way to find an optimal policy in the

semi-Markov decision process and this is largely determined on a case-by-case basis.

However a variety of reinforcement learning algorithms could be adequate.

Next, we have introduced a finite time horizon simulated annealing based

approach. In this algorithm, we consider previous algorithms which attempt to plan

tasks for agents by distributively sampling their action schedules with respect to a

finite time horizon. We casted the task planning as a potential game, where agents

are able to find a Nash equilibrium by using the ‘wonderful life utility’. We presented

a novel structure for the sampling matrix during the simulated annealing process.

126

This sampling matrix is a block matrix organized with respect to the finite time

horizon. This enabled us to study the properties of the stationary distribution of the

Markov chain associated to the simulated annealing as agents execute steps in the

environment and the finite time horizon shifts. We present an algorithm for agents to

choose their actions and show convergence to a local Nash equilibrium. To improve

the performance of the agents, we trained a convolutional neural network offline in

order to bias the sampling matrix. This algorithm yields great results and is easily

scalable. The weakness of the algorithm is apparant when trying to plan deep into the

future, as it becomes very large and it is not readily clear how to design the generation

probabilities to yield the best results. One problem that arises when trying to plan

deep into the future is that the agents require many more iterations in order to get

close to the stationary distribution. When agents execute an action and move forward

in the finite time horizon when the Markov chain is not well mixed, performance

can actually be worse than if agents were to not recycle their solutions and use our

suggested sampling matrix. More work can be done in the future to determine how

the sampling matrix can be designed when given a fixed number of iterations that

the agents can take during every step in the finite time horizon. Furthermore, in the

future, machine learning could be utilized to determine optimal sampling matrices

that gives the system of agents the greatest possibility of reaching the optimal Nash

equilibrium within a time limit.

In Chapter 5, we are inspired by many recent algorithms that modify up-

per confidence bound tree search by influencing the action selection stage with a

recommendation from a neural network, which we train using MIPC. By influencing

the action selection, we are able to more efficiently sample the action space of the

127

agents in order exploit better actions more often. This is especially important in the

multi-agent case because the joint action space becomes very large and it is imper-

ative to sample efficiently. To fully utilize the imitation learned policy in our action

selection stage, we map the state of the environment to a personalized image for

every agent. We use a convolutional neural network that is trained to classify the

input personalized images to a probability distribution (labels) which match previous

successful action selections in upper confidence bound tree search. The motivation

behind utilizing convolutional neural networks is two-fold. First, mapping the state

of the environment and agents to an image is a method in which we can regulate

the dimensions of the state space. Second, most of the multi-agent deployments are

spatial by nature and convolutional neural networks specialize in recognizing spatial

features that may indicate whether or not an action is preferable to take. In addition

to the use of the imitated policy as a bias for the action selection, we have modi-

fied the action selection process to cater multiple agents by having them select in a

sequential fashion. This sequential action selection modifies the Markov decision pro-

cess that was originally defined. In analysis we show that convergence properties of

the upper confidence bound tree search are maintained. CATS is trained offline to be

used online. One problem that arises when trying to implement CATS is the required

time needed for both creating synthetic data and for training the convolutional neural

network. Fortunately, the data creation is a process that can be fully parallelized. In

the future, we would like to implement CATS on UxVs and take advantage of recent

advances in computational power. Microprocessers and edge-compute devices, such

as TPUs, are now able to compute large neural networks. CATS requires many forward

passes through its convolutional neural network. In order to implement CATS on a

128

real device it is imperative that the neural network is optimized for both accuracy

and speed.

Chapter 7 is coauthored with Cortés, Jorge. The dissertation author was the

primary author of this chapter.

129

Bibliography

[ACBF02] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the
multiarmed bandit problem. Machine Learning, 47(2-3):235–256, 2002.

[AmCA11] A. A. Agha-mohammadi, S. Chakravorty, and N. M. Amato. FIRM:
Feedback controller-based information-state roadmap-a framework for
motion planning under uncertainty. In IEEE/RSJ Int. Conf. on Intel-
ligent Robots & Systems, pages 4284–4291, San Francisco, CA, 2011.

[ATB17] T. Anthony, Z. Tian, and D. Barber. Thinking fast and slow with
deep learning and tree search. In Conference on Neural Information
Processing Systems, pages 5360–5370, 2017.

[B+93] L.E. Blume et al. The statistical mechanics of strategic interaction.
Games and economic behavior, 5(3):387–424, 1993.

[BBKT17] A. A. Bian, J. M. Buhmann, A. Krause, and S. Tschiatschek. Guarantees
for greedy maximization of non-submodular functions with applications.
In International Conference on Machine Learning, volume 70, pages
498–507, Sydney, Australia, 2017.

[BCK+07] A. Blum, S. Chawla, D. R. Karger, T. Lane, A. Meyerson, and
M. Minkoff. Approximation algorithms for orienteering and discounted-
reward TSP. SIAM Journal on Computing, 37(2):653–670, 2007.

[BCM09] F. Bullo, J. Cortés, and S. Martinez. Distributed Control of Robotic Net-
works. Applied Mathematics Series. Princeton University Press, 2009.

[BCP+19] G. Best, O. M. Cliff, T. Patten, R. R. Mettu, and R. Fitch. Dec-
MCTS: Decentralized planning for multi-robot active perception. The
International Journal of Robotics Research, 38(2-3):316–337, 2019.

[Bel13] R. Bellman. Dynamic programming. Courier Corporation, 2013.

[Ber95] D. P. Bertsekas. Dynamic Programming and Optimal Control. Athena
Scientific, 1995.

130

[BNS08] F. Broz, I. Nourbakhsh, and R. Simmons. Planning for human-robot
interaction using time-state aggregated POMDPs. In AAAI, volume 8,
pages 1339–1344, 2008.

[Bou96] C. Boutilier. Planning, learning and coordination in multiagent decision
processes. In Proceedings of the 6th conference on Theoretical aspects of
rationality and knowledge, pages 195–210. Morgan Kaufmann Publishers
Inc., 1996.

[Bou99] C. Boutilier. Sequential optimality and coordination in multiagent sys-
tems. In Proceedings of the 16th international joint conference on Ar-
tifical intelligence (IJCAI), volume 1, pages 478–485, 1999.

[BPW+12] C.B. Browne, E. Powley, D. Whitehouse, S.M. Lucas, P.I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton.
A survey of Monte Carlo tree search methods. IEEE Transactions on
Computational Intelligence and AI in games, 4(1):1–43, 2012.

[BSR16] A. Bai, S. Srivastava, and S. Russell. Markovian state and action
abstractions for MDPs via hierarchical MCTS. In Proceedings of the
Twenty-fifth International Joint Conference on Artificial Intelligence,
IJCAI, pages 3029–3039, New York, NY, 2016.

[BTN98] A. Ben-Tal and A. Nemirovski. Robust convex optimization. Math.
Oper. Res., 23:769–805, 1998.

[CABP16] A. Clark, B. Alomair, L. Bushnell, and R. Poovendran. Submodularity
in Dynamics and Control of Networked Systems. Communications and
Control Engineering. Springer, New York, 2016.

[CE17] J. Cortés and M. Egerstedt. Coordinated control of multi-robot sys-
tems: A survey. SICE Journal of Control, Measurement, and System
Integration, 10(6):495–503, 2017.

[CGP09] M. C. Campi, S. Garatti, and M. Prandini. The scenario approach for
systems and control design. Annual Reviews in Control, 32(2):149–157,
2009.

[CMKJ09] A.C. Chapman, R.A. Micillo, R. Kota, and N.R Jennings. Decentralised
dynamic task allocation: a practical game: theoretic approach. In Pro-
ceedings of The 8th International Conference on Autonomous Agents
and Multiagent Systems-Volume 2, pages 915–922. International Foun-
dation for Autonomous Agents and Multiagent Systems, 2009.

[DK11] A. Das and D. Kempe. Submodular meets spectral: Greedy algo-
rithms for subset selection, sparse approximation and dictionary selec-
tion. CoRR, February 2011.

131

[DLM09] H. Daumés, J. Langford, and D. Marcu. Search-based structured pre-
diction. Machine Learning, 75(3):297–325, 2009.

[DM12] M. Dunbabin and L. Marques. Robots for environmental monitoring:
Significant advancements and applications. IEEE Robotics & Automa-
tion Magazine, 19(1):24–39, 2012.

[DPH+15] J. Das, F. Py, J. B. J. Harvey, J. P. Ryan, A. Gellene, R. Graham, D. A.
Caron, K. Rajan, and G. S. Sukhatme. Data-driven robotic sampling
for marine ecosystem monitoring. The International Journal of Robotics
Research, 34(12):1435–1452, 2015.

[GM04] B. P. Gerkey and M. J. Mataric. A formal analysis and taxonomy of
task allocation in multi-robot systems. International Journal of Robotics
Research, 23(9):939–954, 2004.

[GOL98] L. El Ghaoui, F. Oustry, and H. Lebret. Robust solutions to uncer-
tain semidefinite programs. SIAM Journal on Optimization, 9(1):33–52,
1998.

[GS07a] S. Gelly and D. Silver. Combining online and offline knowledge in UCT.
In Proceedings of the 24th International Conference on Machine Learn-
ing, pages 273–280. ACM, 2007.

[GS07b] P. R. Goundan and A. S. Schulz. Revisiting the greedy approach to
submodular set function maximization. Optimization online, pages 1–
25, 2007.

[GSL+14] X. Guo, S. Singh, H. Lee, R.L. Lewis, and X. Wang. Deep learning for
real-time Atari game play using offline Monte-Carlo tree search plan-
ning. In Conference on Neural Information Processing Systems, pages
3338–3346, 2014.

[Haj88] B. Hajek. Cooling schedules for optimal annealing. Mathematics of
Operations Research, 13(2):311–329, 1988.

[HF00] E. A. Hansen and Z. Feng. Dynamic programming for POMDPs using a
factored state representation. In International Conference on Artificial
Intelligence Planning Systems, pages 130–139, Breckenridge, CO, 2000.

[HGEJ17] A. Hussein, M.M. Gaber, E. Elyan, and C. Jayne. Imitation learn-
ing: A survey of learning methods. ACM Computing Surveys (CSUR),
50(2):21, 2017.

[HLKT19] P. Hernandez-Leal, B. Kartal, and M.E. Taylor. A survey and critique
of multiagent deep reinforcement learning. Autonomous Agents and
Multi-Agent Systems, 33(6):750–797, 2019.

132

[How60] R.A. Howard. Dynamic programming and Markov processes. M.I.T.
Press, 1960.

[KGKG15] B. Kartal, J. Godoy, I. Karamouzas, and S. J. Guy. Stochastic tree
search with useful cycles for patrolling problems. In 2015 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 1289–
1294. IEEE, 2015.

[KGV83] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simu-
lated annealing. Science, 220(4598):671–680, 1983.

[KS06] L. Kocsis and C. Szepesvári. Bandit based Monte-Carlo planning. In
ECML, volume 6, pages 282–293. Springer, 2006.

[KSW06] L. Kocsis, C. Szepesvári, and J. Willemson. Improved Monte-Carlo
search. 2006.

[LA87] P.J.M.V Laarhoven and E.H.L Aarts. Simulated annealing. In Simulated
annealing: Theory and applications, pages 7–15. Springer, 1987.

[LK00] S. M. LaValle and J. J. Kuffner. Rapidly-exploring random trees:
Progress and prospects. In Workshop on Algorithmic Foundations of
Robotics, pages 293–308, Dartmouth, NH, March 2000.

[Lov91] W. S. Lovejoy. A survey of algorithmic methods for partially observed
Markov decision processes. Annals of Operations Research, 28(1):47–65,
1991.

[MAS09] J. R. Marden, G. Arslan, and J. S. Shamma. Cooperative control and
potential games. IEEE Transactions on Systems, Man & Cybernetics.
Part B: Cybernetics, 39:1393–1407, 2009.

[MB96] A. K. McCallum and D. Ballard. Reinforcement learning with selective
perception and hidden state. PhD thesis, University of Rochester. Dept.
of Computer Science, 1996.

[MC16] A. Ma and J. Cortés. Visibility-based distributed deployment of robotic
teams in polyhedral terrains. In ASME Dynamic Systems and Control
Conference, Minneapolis, MN, October 2016. DSCC2016-9820.

[MC19] A. Ma and J. Cortés. Distributed multi-agent deployment for full visi-
bility of 1.5D and 2.5D polyhedral terrains. Journal of Intelligent and
Robotic Systems, 2019. Submitted.

[ME10] M. Mesbahi and M. Egerstedt. Graph Theoretic Methods in Multia-
gent Networks. Applied Mathematics Series. Princeton University Press,
2010.

133

[MGPO89] M. Malek, M. Guruswamy, M. Pandya, and H. Owens. Serial and par-
allel simulated annealing and tabu search algorithms for the traveling
salesman problem. Annals of Operations Research, 21(1):59–84, 1989.

[MKS+15] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, and G. Ostro-
vski. Human-level control through deep reinforcement learning. Nature,
518(7540):529, 2015.

[MOC17] A. Ma, M. Ouimet, and J. Cortés. Dynamic domain reduction for multi-
agent planning. In International Symposium on Multi-Robot and Multi-
Agent Systems, pages 142–149, Los Angeles, CA, 2017.

[MOC19] A. Ma, M. Ouimet, and J. Cortés. Cooperative dynamic domain re-
duction. In Distributed Autonomous Robotic Systems: The 14th In-
ternational Symposium, volume 9 of Springer Proceedings in Advanced
Robotics, pages 499–512. Springer, New York, 2019.

[MOC20a] A. Ma, M. Ouimet, and J. Cortés. Exploiting bias for cooperative plan-
ning in multi-agent tree search. IEEE Robotics and Automation Letters,
2020. To appear.

[MOC20b] A. Ma, M. Ouimet, and J. Cortés. Hierarchical reinforcement learning
via dynamic subspace search for multi-agent planning. Autonomous
Robots, 2020. To appear.

[MS96] D. Monderer and L. S. Shapley. Potential games. Games and Economic
Behavior, 14:124–143, 1996.

[NWF78] G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of the approx-
imations for maximizing submodular set functions. Mathematical Pro-
gramming, 14:265–294, 1978.

[OA16] F. A. Oliehoek and C. Amato. A Concise Introduction to Decentralized
POMDPs. SpringerBriefs in Intelligent Systems. Springer, New York,
2016.

[OAmAH15] S. Omidshafiei, A. A. Agha-mohammadi, C. Amato, and J. P. How.
Decentralized control of partially observable Markov decision processes
using belief space macro-actions. In IEEE Int. Conf. on Robotics and
Automation, pages 5962–5969, Seattle, WA, May 2015.

[PR98] R. E. Parr and S. Russell. Hierarchical control and learning for Markov
decision processes. University of California, Berkeley Berkeley, CA,
1998.

134

[PR10] S. Prentice and N. Roy. The belief roadmap: Efficient planning in linear
POMDPs by factoring the covariance. In Robotics Research, pages 293–
305. Springer, 2010.

[PRHK17] C. Paxton, V. Raman, G. D. Hager, and M. Kobilarov. Combining
neural networks and tree search for task and motion planning in chal-
lenging environments. In 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 6059–6066. IEEE, 2017.

[PT87] C. H. Papadimitriou and J. N. Tsitsiklis. The complexity of Markov
decision processes. Mathematics of Operations Research, 12(3):441–450,
1987.

[Put14] M.L. Puterman. Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, 2014.

[RCN18] F. Riccio, R. Capobianco, and D. Nardi. Q-CP: learning action values
for cooperative planning. In IEEE Int. Conf. on Robotics and Automa-
tion, pages 6469–6475, Brisbane, Australia, 2018.

[SAH+19] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre,
S. Schmitt, A. Guez, E. Lockhart, D. Hassabis, T. Graepel, T. Lilli-
crap, and D. Silver. Mastering Atari, Go, Chess and Shogi by planning
with a learned model. arXiv preprint arXiv:1911.08265, 2019.

[SHM+16] D. Silver, A. Huang, C.J. Maddison, A. Guez, L. Sifre, G. Van Den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-
tot, et al. Mastering the game of go with deep neural networks and tree
search. Nature, 529(7587):484, 2016.

[SK06] B. Suman and P. Kumar. A survey of simulated annealing as a tool
for single and multiobjective optimization. Journal of the Operational
Research Society, 57(10):1143–1160, 2006.

[SLA+15] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust
region policy optimization. In International Conference on Machine
Learning, pages 1889–1897, Lille, France, 2015.

[SPS99] R.S. Sutton, D. Precup, and S. Singh. Between MDPs and semi-MDPs:
A framework for temporal abstraction in reinforcement learning. Arti-
ficial Intelligence, 112(1-2):181–211, 1999.

[SSS95] J.P. Schmidt, A. Siegel, and A. Srinivasan. Chernoff-hoeffding bounds
for applications with limited independence. SIAM Journal on Discrete
Mathematics, 8(2):223–250, 1995.

135

[SSS+17] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, et al. Mastering the
game of go without human knowledge. Nature, 550(7676):354, 2017.

[SWD+17] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Prox-
imal policy optimization algorithms, 2017.

[TK04] G. Theocharous and L. P. Kaelbling. Approximate planning in POMDPs
with macro-actions. In Conference on Neural Information Processing
Systems, pages 775–782, 2004.

[WMG+17] Y. Wu, E. Mansimov, R. B. Grosse, S. Liao, and J. Ba. Scalable trust-
region method for deep reinforcement learning using kronecker-factored
approximation. In Conference on Neural Information Processing Sys-
tems, volume 30, pages 5285–5294, 2017.

[You98] H. P. Young. Individual Strategy and Social Structure: an Evolutionary
Theory of Institutions. Princeton University Press, 1998.

136

