
UCLA
UCLA Previously Published Works

Title
An automated lung segmentation approach using bidirectional chain codes to improve 
nodule detection accuracy

Permalink
https://escholarship.org/uc/item/38t544bj

Authors
Shen, Shiwen
Bui, Alex AT
Cong, Jason
et al.

Publication Date
2015-02-01

DOI
10.1016/j.compbiomed.2014.12.008
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/38t544bj
https://escholarship.org/uc/item/38t544bj#author
https://escholarship.org
http://www.cdlib.org/


An automated lung segmentation approach using bidirectional 
chain codes to improve nodule detection accuracy

Shiwen Shena,b,*, Alex A.T. Buib, Jason Congc, William Hsub

aDepartment of Bioengineering, University of California, Los Angeles, CA, USA
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Abstract

Computer-aided detection and diagnosis (CAD) has been widely investigated to improve 

radiologists’ diagnostic accuracy in detecting and characterizing lung disease, as well as to assist 

with the processing of increasingly sizable volumes of imaging. Lung segmentation is a requisite 

preprocessing step for most CAD schemes. This paper proposes a parameter-free lung 

segmentation algorithm with the aim of improving lung nodule detection accuracy, focusing on 

juxtapleural nodules. A bidirectional chain coding method combined with a support vector 

machine (SVM) classifier is used to selectively smooth the lung border while minimizing the over-

segmentation of adjacent regions. This automated method was tested on 233 computed 

tomography (CT) studies from the lung imaging database consortium (LIDC), representing 403 

juxtapleural nodules. The approach obtained a 92.6% re-inclusion rate. Segmentation accuracy 

was further validated on 10 randomly selected CT series, finding a 0.3% average over-

segmentation ratio and 2.4% under-segmentation rate when compared to manually segmented 

reference standards done by an expert.

Keywords

Lung segmentation; Juxtapleural nodule; Chain code; Support vector machine; Computer aided 
diagnosis

1. Introduction

Computed tomography (CT) is the de facto imaging modality used to diagnose and 

characterize pulmonary nodules. Compared to conventional chest radiography, CT generates 

high resolution, volumetric datasets that are able to resolve small and/or low-contrast 

nodules [1]. However, reading CT images can require the review of a large, often complex 

volumetric dataset, with the potential to overlook some nodules [4]. In addition, less 

experienced radiologists may have increased variability in detecting (subtle) lung cancers, as 
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interpretation heavily relies on past experience. In response, computer-aided diagnosis 

(CAD) [25,30–35] systems have been explored, establishing the potential to improve 

diagnostic accuracy. Previous studies have shown that CAD increases lung nodule detection 

rates [44]; decreases false-positive rates [13]; and compensates for deficient reader 

performance in the detection of the smallest lesions and of nodules without vascular 

attachment [5]. Indeed, over the past two decades, the ability to accurately and consistently 

detect lung nodules has been an active area of research in medical image analysis 

[5,6,15,30–37,46]. The development of automated CAD for lung nodules is now further 

motivated by the imminent launch of lung cancer screening programs given the findings of 

the landmark national lung screening trial (NLST), which demonstrated a 20% mortality 

reduction for individuals with lung cancer who underwent screening using low-dose CT 

relative to plain chest radiography [2]. Based on this evidence, the United States preventive 

services task force (USPSTF) recently gave a Grade B recommendation that annual 

screening for lung cancer with low-dose CT be performed in adults aged 55–80 who have a 

30 pack-year (number of packs of cigarettes smoked per day multiplied by the number of 

years an individual has smoked) smoking history and currently smoke or have quit within 

the past 15 years [11]. The American Society of Clinical Oncologists (ASCO) suggests 

similar guidelines [3].

Lung segmentation is an important preprocessing step occurring before nodule detection and 

the generation of a region of interest (ROI) for subsequent analysis (i.e., the lung field). 

Pulmonary nodules can be grouped into three categories (Fig. 1): isolated, juxtapleural, and 

juxtavascular. Isolated and juxtavascular nodules lie within the center of the ROI and are 

typically segmented without issue. But when lung segmentation fails to correctly define the 

lung boundaries, juxtapleural (or pleura-connected) nodules can be missed, and normal chest 

tissue outside of the lung can be included incorrectly as part of the ROI. In point of fact, 

recent evaluation of a CAD system found that 17% of all true nodules are missed due to poor 

lung segmentation [7]. Accurate lung segmentation is thus imperative in ensuring accurate 

CAD system performance: the ability to identify true nodules ultimately sets the upper 

bound on CAD performance [6].

In this paper, a novel method is proposed for delineating the lung field ROI by automatically 

segmenting the lung lobe, correcting the border to avoid excluding nodules close to the lung 

boundary while minimizing possible over-segmentation. The focus of this algorithm is to 

address issues related to juxtapleural nodules. A bidirectional chain encoding method is used 

to detect both vertical and horizontal critical point pairs. A support vector machine is then 

employed to predict whether the concave region formed by a point pair should be corrected 

based on positional information, concavity rate, and distance information. To test the 

proposed method, 233 CT scans from the Lung Imaging Database Consortium (LIDC) 

dataset were used. This paper is divided as follows. Section 2 reviews previous related 

works, comparing and contrasting our proposed approach with earlier research. In Section 3, 

the methodology is presented in three steps: image preprocessing, inflection point detection, 

and border correction. Results of the evaluation are presented in Section 4. Finally, we 

conclude in Section 5 with a comparison to other works, discussion of the limitations of our 

method, and future work.

Shen et al. Page 2

Comput Biol Med. Author manuscript; available in PMC 2020 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. Related work

While many algorithms [7–10,18–20,23,24,26–29,47] perform automatic lung segmentation 

of thoracic CT images, only a few explicitly handle juxtapleural nodules; however, 

evaluation is often lacking [8] or employs a small test set not fully representative of the 

range of appearance of such nodules (e.g., variations in size, shape). Semi-automated 

segmentation methods [12] have been previously employed to overcome under-segmentation 

problems caused by juxtapleural nodules, but the process of having an individual review 

each study is time consuming and arguably not scalable.

Hu et al. [14] present a fully automated lung segmentation method using combinations of 

morphological operations to ensure the inclusion of juxtapleural nodules. The effectiveness 

of the morphological operations is dependent on the shape and the size of the selected 

structuring element. As juxtapleural nodules vary in size and shape, selecting an optimal size 

and shape that works well in all cases is difficult. For instance, a smaller sized structuring 

element will fail to capture larger-sized juxtapleural nodules; conversely, a large structuring 

element will cause over-segmentation and distortion of the local region. Similarly, a “rolling 

ball” method has also been used [6,7,15–17], comprising a morphological close operator 

with a round-shape structuring element. Likewise, the size of the ball is hard to optimize 

across the variation observed in juxtapleural nodules, as noted in [8,21].

Pu et al. [8] propose a point-wise lung segmentation algorithm, called adaptive border 

marching (ABM), designed to address juxtapleural nodules. An inclusion criterion is defined 

based on the ratio between the Euclidean distance of two points on the boundary and the 

maximum height perpendicular to their connecting line segment. This ratio is used to 

adaptively adjust the size of a search step for choosing point pairs by comparing itself to a 

fixed threshold. For all point pair candidates inside one concave region, only the outermost 

one (which forms the biggest convex hull) is connected (this process is equivalent to the gift-

wrapping algorithm [45]). Selecting a threshold parameter to control over-segmentation 

across all cases is problematic. Varshini et al. [42] extends ABM by merging two lung 

segmentations obtained using a small threshold and a large threshold separately, but provide 

no evaluation.

Kim et al. [21] also present a contour-marching method to avoid peripheral nodule exclusion 

near the lung boundary. This method tracks the lobe boundary to detect suspicious areas 

with texture features similar to a true nodule. A region growing method is applied to each 

identified area to re-include it as part of the lung region. Markedly, texture features alone are 

unable to detect all juxtapleural nodule regions along a boundary. Defining the search 

window and threshold for region growing method are also inherent challenges to this 

approach.

Ye et al. [37] use a Freeman chain code to correct the contour of a lung lobe. For all pixels 

along the boundary, chain codes are used to detect critical points by examining the transition 

between concave and convex points, determined by a predefined threshold value. All critical 

point pairs are then connected to form a revised border. Using a preset threshold to define 

concave/convex regions may not be effective across the natural variation seen in imaging 
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studies and anatomy; and connecting all detected critical point pairs may lead to over-

segmentation. Choi et al. [36] detail a similar chain code method, but rather than detecting 

transitions to find critical points, gradient information is extracted from the chain code and 

only connecting point pairs whose change in gradient value is below a given threshold value 

are considered. Both methods detect convexity changes in only the horizontal (or vertical) 

direction, which is in general not sufficiently robust to correct under-segmentation (as 

illustrated in Section 3.2). Ko et al. [22] use a curvature-based method to correct the initial 

lung mask. The curvature for each point on the boundary is calculated to detect a rapid 

change and a segment is inserted to correct such regions.

As can be seen from the above methods, all rely upon one (or more) predefined parameters 

(which may vary between CT scans), making algorithm performance sensitive to the 

normally observed distribution in lung nodule shape and size. Moreover, little validation is 

given on the effectiveness of the proposed border correction methods on clinical data. Our 

proposed method, presented subsequently and assessed over a large dataset, eliminates the 

need for predefined parameters (i.e., it is parameter-free) in order to operate on the full 

spectrum of nodule sizes/shapes.

3. Method

The proposed method mainly consists of three steps (Fig. 2): (1) preprocessing to generate 

an initial lung lobe mask using adaptive thresholding (Fig. 2d, e); (2) detecting inflection 

points (both horizontally and vertically) to obtain all major concave and convex points along 

the lung lobe boundary (Fig. 2f, g); and (3) correcting the lung boundary border using a 

support vector machine (SVM) to identify relevant pairwise connections (Fig. 2h) based on 

extracted features. The details for each step are described as follows.

3.1. Preprocessing

Preprocessing uses Otsu’s adaptive thresholding [39] method to automatically obtain an 

initial lung mask based on the pixel intensity distribution of the input CT image. This 

method uses discriminate analysis to exhaustively search for a threshold value that 

minimizes the intra-class variance between two regions of an image. For a given image, let L 
represent the grey level of all the pixels [1, 2, …, L]. By choosing a threshold at grey level k, 

the pixels are divided into object class C0 and background class C1. Let w0 and w1 be the 

probabilities of C0 and C1 separated by a defined threshold and let σ2
0 and σ2

1 be the 

variances of these two classes. The intra-class variance is defined as the weighted sum of 

these two variances: The optimal threshold T is calculated as the value minimizing

σIntra
2 k = ω0 k * σ0

2 k + ω1 k * σ1
2 k (1)

The optimalthreshold T is calculatedasthevalueminimizing σIntra
2 k

T = argmin
k ∈ 1, L

σIntra
2 k (2)
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After thresholding, a flood filling method combined with 3D labeling is adopted to produce 

an initial lung lobe mask (Fig. 3b–e). During initial segmentation testing, the CT imaging 

studies were found to have extremely low background pixel values (Fig. 3a) that formed a 

peak pattern (Fig. 3b) influencing the optimal threshold calculation. The calculated optimal 

threshold will not be able to differentiate the lung region from the background due to the 

influence of this peak pattern, leading to segmentation failure. Therefore, background pixel 

values are removed before calculating the intra-class variance.

3.2. Inflection point detection

Preprocessing generates a binary mask of the lung lobe region. To selectively revise the 

initial lung segmentation to re-include juxtapleural nodules, the boundary is first 

characterized using a bidirectional differential chain (BDC) encoding method to help 

identify inflection points. Inflection points are defined as the points where the convexity of 

the boundary changes. Concavities are then detected based on these inflection points. This 

step maximizes the sensitivity in detecting areas with juxtapleural nodules. A process for 

selecting critical point pairs is then followed to reduce the false positives and minimize over-

segmentation.

The original application of chain codes was for lossless compression of grey-scale images 

[40]. The basic principle is to separately encode the boundary coordinates (chains of pixels) 

for each connected component in an image. The chain is a sequence of direction codes from 

one pixel to the adjacent one. There are eight possible directions between two adjacent 

pixels. The code word c (i) for a BDC is the number corresponding to the direction from one 

pixel (i) to the next (i+1) in a chain, c(i)∈{0, 1, −1}, where i represents the index value for 

the pixel. The assigned code word for each direction is based on the encoding coordinate 

system (Fig. 4). To detect both horizontal and vertical inflection points, this method uses two 

different coordinate systems for horizontal and vertical encoding. The detection of the 

inflection points from the BDC encoding proceeds based on the following steps:

1. Initial boundary generation. The lung lobe boundary pixels are extracted from 

the binary mask for the left and right lobes, separately.

2. Boundary encoding. Per lobe, both vertical and horizontal code words are 

obtained using the corresponding encoding coordinate systems. The encoder 

moves along the boundary following a (counter)clockwise path, and at each step 

the direction of this movement is transformed into a code word. The encoding 

process is illustrated in Fig. 4:

a. Horizontal code word generation. Fig. 4b–d depicts the process of 

generating horizontal code words. In Fig. 4b, the blue boxes represent 

pixels along the lung lobe boundary. If A is the starting point, the 

encoder moves along the boundary in a clockwise way.

b. Arrow map generation. An arrow map is generated to represent the 

direction that the encoder moves. For instance, in Fig. 4c the encoder 

moves in the northwest direction when traversing from point A to B.
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c. Code word assignment. A code word is assigned to each arrow 

according to the encoding coordinate system given in Fig. 4a. As shown 

in Fig. 4d, the arrow that points in the northwesterly direction from A to 

B is assigned a code word of ‘1’ based on the encoding coordinate 

system.

d. Vertical code word generation. The vertical code word is generated in a 

similar manner, but using a vertical encoding coordinate system (Fig. 

4f). Fig. 4g–i depicts the process of generating vertical code words.

3. Inflection point calculation. A differential operation is used to generate the 

horizontal and vertical differential chain codes, separately. Non-zero points in the 

differential chain are identified as inflection points. As presented in Fig. 4e and j, 

the differential code is calculated using a clockwise differential operation based 

on the generated code words (i.e., from Steps 2a, 2d). For instance, the 

differential code at point A is 0; the differential code at D is −2. As can be seen, 

pixels D and E are the only points with non-zero differential codes; therefore, D 

is detected as a horizontal inflection point and E is detected as a vertical 

inflection point.

To overcome the influence of the small perturbations in the lobe boundary, a seven-tap 

Gaussian low-pass filter [40] is applied to smooth code words prior to the inflection point 

calculations in Step 3. An operator is then applied to round the smoothed code word to the 

nearest integer (0, 1, or −1). Fig. 5 gives an example of the detected inflection points for a 

right lung lobe using the proposed method with and without the low-pass filter. Fig. 5b 

shows the detected inflection points on the right lung lobe boundary without applying a low-

pass filter. The white circles on the boundary represent the vertical inflection points, and the 

yellow squares represent the horizontal inflection points. Fig. 5b has many more inflection 

points that add unnecessary noise to the inflection detection process. After applying the 

Gaussian low-pass filter (Fig. 5c), only the remaining points are deemed inflection points.

Fig. 6 illustrates the effectiveness of the vertical and horizontal inflection point detection 

process. Fig. 6a shows an original CT slice, and the yellow contour in Fig. 6a, b indicates the 

nodule in the right lung that has been manually outlined by one radiologist. After 

preprocessing, the segmented right lung lobe ROI does not include this nodule region; Fig. 

6c illustrates the under-segmentation problem, from which it can be observed that the 

convexity changes in the nodule region along the boundary are vertical. Using our approach, 

the detected critical horizontal and vertical inflection points are shown in Fig. 6d–f using 

yellow squares and white circles, respectively. By comparing Fig. 6d–f, the nodule region is 

only captured by vertical inflection points, corresponding to the earlier observation. This 

observation suggests that detecting both vertical and horizontal changes simultaneously are 

necessary to robustly correct for under-segmentation. The final segmentation result (after 

border correction described in the next section) is shown in Fig. 6g.

3.3. Border correction

Rather than connect all inflection point pairs, only critical point pairs are connected to 

correct the boundary, thereby minimizing over-segmentation. Three features are used to 
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select critical point pairs: boundary segment concave degree, relative boundary distance, and 

relative position information.

Let EuclideanDistance(A,B) represent the Euclidean distance between two inflection points, 

A and B. Let SegmentLength(A,B) represent the shortest boundary segment length between 

these two points. As shown in Fig. 7a, ED represents EuclideanDistance(A, B) and SL the 

Segment length (A,B). Let BoundaryLength be the total length of the lung lobe under 

consideration. The concave feature, fconcave, and the length feature, flength, are defined as

fconcave = SegmentLengtℎ A, B
EuclideanDistance A, B (3)

flengtℎ = SegmentLengtℎ A, B
BoundaryLengtℎ (4)

From Eq. (3), fconcave increases as the boundary segment increases given a fixed geometric 

distance, which indicates a larger degree of concavity (Fig. 7a). This observation implies that 

critical points will have larger values of fconcave. In Eq. (4), flength increases as the boundary 

segment increases for a given lung lobe (with fixed total boundary length). The ratio (i.e., 

flength) should be smaller to avoid over-segmentation. By way of illustration, a large flength is 

shown in Fig. 7b, where connecting the two points will cause significant over-segmentation. 

A third feature, fposition, indicates the relative position information of the point pair, and is 

defined as

fposition = EuclideanDistance MidPoint A, B , CentralPoint
AverageDistance2CentralPoint (5)

where MidPoint(A,B) is the midpoint between two inflection points, A and B; and 

CentralPoint is the center of two lung lobe regions. AverageDistance2CentralPoint is the 

average of all distances from lung lobe boundaries to the center.

Based on these three features, an SVM classifier is used to identify critical point pairs 

(instead of a threshold value or parameter). SVMs are supervised, non-parametric learning 

models that perform efficient non-linear classification tasks. SVMs map their inputs into 

higher dimension feature space to separate categories based on decision boundaries learned 

through training data. To train the SVM, 172 point pairs were manually selected from 42 

LIDC studies, labeled as being positive examples (n=91, point pairs that capture a concave 

region of juxtapleural nodule) or negative examples (n=81, point pairs that capture a non-

lung-tissue region). Finally, point pairs classified as critical are connected, resulting in the 

lung boundary. In our experiment, a three order polynomial kernel is chosen for the SVM 

classifier and a 10-fold cross validation is applied to assess the model performance using 

different subsets of features. Cross validation indicates that the highest accuracy (97.7%) is 

achieved when all three features are employed in the training task. It is also shown that 

fconcave and flength are more important compared to fposition. This last observation results 

from the fact that fconcave provides important information that increases sensitivity as the 

inflection point pairs of a juxtapleural nodule usually have larger fconcave value. flength helps 
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to reduce false positive rate due to the limited possible size of juxtapleural nodules. To 

generalize for different datasets, training samples should be collected to retrain the classifier. 

Positive training data should be collected mainly for the juxtapleural nodules and a small 

portion of vessels that attach to the lung wall. Negative training data should comprise non-

lung-tissue regions with a large concave rate and a moderate flength value (as these point 

pairs can easily become false positives).

4. Results

4.1. Evaluation dataset

The proposed method was validated using data from LIDC [38], available through The 

Cancer Imaging Archive (TCIA). LIDC comprises thoracic imaging studies gathered from 

five sites across the United States; for each contributed study, four experienced radiologists 

drew complete outlines for all nodules between 3 and 30 mm in diameter. As part of the 

creation of the LIDC dataset, a two-step review process was conducted to establish ground 

truth annotations [41].

275 Studies with at least one juxtapleural nodule were identified from LIDC by a trained 

graduate student. The entire set of 275 CT scans were divided into two subsets: 42 studies 

for training of the SVM; and 233 studies for testing. A total of 406 juxtapleural nodules 

were found in the test set, serving as the basis for evaluating the method’s ability to correctly 

include juxtapleural nodules in the lung lobe region (i.e., re-inclusion rate [8]). Additionally, 

10 CT studies were randomly selected from the test set and the lung contours were manually 

segmented under the guidance of a practicing thoracic radiologist. The results of the 

manually segmented contours were used as references to validate overall segmentation 

accuracy. To aid in the manual segmentation task, an annotation tool was developed to 

enable the radiologist to automatically generate lung lobe contours first by thresholding, and 

then correcting any inaccuracies in the contour by adjusting the boundary.

4.2. Evaluation method

Five metrics were used to measure segmentation performance: (1) the re-inclusion ratio of 

juxtapleural nodules; (2) the over-segmentation rate; (3) the under-segmentation rate; (4) the 

volumetric overlap error ratio; and (5) the cumulative error distance distribution [13,8]. The 

re-inclusion ratio is used to assess per nodule sensitivity. Similar to [8], a trained graduate 

student was tasked with reviewing each study to determine if a juxtapleural nodule was 

correctly included (or not) by identifying errors in the segmentation caused by juxtapleural 

nodules. For voxel-based segmentation accuracy, the volumetric overlap ratio difference, 

over-segmentation, and under-segmentation rates were computed to characterize differences 

between boundaries generated by the proposed approach and the reference boundary 

generated by the manual annotator.

Over-segmentation rate is defined as the number of voxels in a segmented image region that 

are included as part of the ROI but that are not in the reference standard [8]. Let Vauto 

represent the volume of the binary mask generated using our approach and let Vreference be 

the volume of the reference standard. The over-segmentation rate OR(Vauto,Vreference) is
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OR V auto, V reference = V auto\V manual
V manual

(6)

where Vauto\Vmanual represents the relative complement of Vauto in Vmanual. Similarly, the 

under-segmentation rate UR(Vauto; Vreference) is defined as the relative lung volume 

amount that is regarded as lung tissue in the reference standard but not in our method:

OR V auto, V reference = V manual\V auto
V manual

(7)

The volumetric overlap ratio measures the relative overlap between the two binary 

segmentation masks by computing the two volumes’ intersection divided by their union 

[29]:

R V auto, V manual = V auto ∩ V manual
V auto ∪ V manual

(8)

Lastly, to make the overlap ratio measurement consistent with the over-segmentation and 

under-segmentation rates, the volumetric overlap error ratio (DR(Vauto, Vmanual)) is used:

DR V auto, V manual = 1 − R V auto, V manual (9)

To measure the spatial similarity between the lung boundaries generated by our approach 

and that of the reference standard, the cumulative error distance distribution [8] is computed 

to provide a global statistical measurement of the fitting between the lung surfaces generated 

by our method and the lung surfaces in the reference standard. The shortest distance between 

a point on the lung surface obtained by our algorithm and the lung surface of the reference 

standard is used to generate the error distance distribution.

4.3. Results

Using the 233 test studies from LIDC dataset, our experiment shows that 373 juxtapleural 

nodules out of total 406 juxtapleural nodules were correctly included as part of the ROI, 

achieving a 92.6% inclusion rate. After an error analysis, 83.3% of the missing juxtapleural 

nodules were found sitting in between segments of lung tissues, as shown in Fig. 8. In this 

situation, the proposed method fails because each segment is processed separately.

Fig. 9 shows the volume-based segmentation error as assessed by over-segmentation ratio, 

under-segmentation ratio, and overlap ratio difference. The average over-segmentation rate is 

0.3%, while the average under-segmentation ratio is 2.4% and the average overlap ratio 

difference is 2.7%. Fig. 10 shows the cumulative error distance distribution to assess the 

border positioning accuracy. The error bars in Fig. 10 represent the standard deviation 

corresponding to each distance. 93% and 96% lung surfaces obtained by the proposed 

method are within 2–3 mm of the reference standard, respectively. The largest error distance 
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is 22.5 mm. Relatively larger under-segmentation and error distances are mainly due to the 

presence of atelectasis (Fig. 11a, b) or consolidation (Fig. 11c, d).

5. Discussion

5.1. Comparison with other works

Although many methods have been developed to perform automatic lung segmentation, only 

a few explicitly handle juxtapleural nodules and evaluate the method on actual patient data. 

Table 1 compares the proposed method to other lung segmentation algorithms that handle 

juxtapleural nodules. Our method achieves better average overlap ratio compared to Wei’s 

[47] method. This difference is attributed to the fact that our approach implements a point 

pairs selection technique, which reduces the risk of over-segmentation. Our method has 

similar average over-segmentation ratio and average under-segmentation ratio compared to 

Pu’s [8] method. Although both Pu [8] and Wei [47] report a 100% re-inclusion rate, their 

test sets contain a limited set of juxtapleural nodules, 67 and 32 respectively, compared to 

our set of 406 nodules. Similar to the limitation of our approach in detecting missing 

nodules that are between lung segments, Pu’s and Wei’s methods also process each isolated 

lung region separately and thus will likely fail in similar situations. One should note that the 

performance of the oft-cited rolling ball method is highly dependent on the specified 

parameters, which are not consistently included in publications [8]. For example, Kim [21] 

highlights the difficulty in selecting the appropriate fixed ball radius because of the large 

variance in juxtapleural nodule sizes. Therefore, a comparison of our method against 

algorithms that utilize the rolling-ball method would be inconclusive, given that the original 

implementation cannot be replicated effectively. Also, Stelmo et al. [43] point out that a fair 

comparison between two methods would only be possible if the works use the same images 

and acquisition standards (resolution, bits per pixel, etc.); given the unavailability of others’ 

test data, such a formal comparison is not possible. But in general, and as compared to these 

other methods, our described method can accurately segment the lung tissues while robustly 

and correctly including the juxtapleural nodules.

5.2. Effects of the chain code smoothing step

A seven-tap Gaussian low-pass filter is employed to smooth the chain code to overcome the 

influence of the small perturbations in the lobe boundary as described in Section 3.2. This 

step is used to reduce computational complexity as fewer inflection point pairs are inputted 

to the SVM classifier afterwards. Removing this step will not reduce the re-inclusion rate of 

the juxtapleural nodules as the classifier would still identify the same points for re-inclusion 

but would need to consider more points. In our experiment, a Gaussian kernel with variance 

equal to two is employed to perform the smoothing task and a 92.6% re-inclusion rate is 

achieved. By examining the failure cases in our experiment, we found out that none of the 

failure cases were caused due to inflection point detection failure. As such, we believe the 

adoption of this Gaussian low-pass filter did not include additional errors. However, to adapt 

this approach to perform on other datasets, the degree of smoothing strength may be 

adjusted based on preference and dataset standards.
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6. Conclusion

Lung segmentation is an important precursor to many quantitative analysis applications for 

pulmonary disease. While a large number of lung segmentation methods have been proposed 

in the past few years, we present a novel approach to segment the lung using a bidirectional 

differential chain code combined with a machine learning framework. An evaluation 

involving 233 CT studies containing 403 juxtapleural nodules and manual annotations of a 

sample of 10 cases by a radiologist has been conducted to demonstrate the effectiveness of 

our method. The results show that our method is able to correctly include the juxtapleural 

nodules into the lung tissue while minimizing over and under-segmentation.

The average computation time of the proposed method is 0.53 s per CT slice tested on 

MATLAB implemented software using a laptop with Intel Core i7 3 GHz and 8 GB RAM. 

One limitation of the proposed method is that it sometimes fails to re-include the 

juxtapleural nodules sitting in consolidation regions (between lung tissue segments); to 

overcome this problem, future work will integrate some region connection techniques as a 

precursor step for detected consolidation regions before border correction. The proposed 

lung segmentation approach is being explored as part of a novel computer-aided lung nodule 

detection pipeline for lung cancer screening. The screening context presents additional 

challenges such as the presence of smaller nodules and reduced image quality (grainier 

appearance of images due to the low-dose nature of image acquisitions). Preliminary 

exploration of low-dose studies have shown that our proposed approach is capable of 

handling these issues. In addition, the method is generalizable to any tasks that involve 

concave/convex detection. For example, in magnetic resonance angiography, detection of 

concave/convex regions may be able to identify and accurately segment incidental 

aneurysms to assess their risk of rupture.

7. Summary

Computer-aided detection and diagnosis (CAD) has been widely investigated to improve 

radiologists’ diagnostic accuracy in detecting and characterizing lung disease, as well as to 

assist with the processing of increasingly sizable volumes of imaging. Lung segmentation is 

a requisite preprocessing step for most CAD schemes. This paper proposes a parameter-free 

lung segmentation algorithm with the aim of improving lung nodule detection accuracy, 

focusing on juxtapleural nodules. A bidirectional chain coding method combined with a 

support vector machine (SVM) classifier is used to selectively smooth the lung border while 

minimizing the over-segmentation of adjacent regions. This automated method was tested on 

233 computed tomography (CT) studies from the lung imaging database consortium (LIDC), 

representing 403 juxtapleural nodules. The approach obtained a 92.6% re-inclusion rate. 

Segmentation accuracy was further validated on 10 randomly selected CT series, finding a 

0.3% average over-segmentation ratio and 2.4% under-segmentation rate when compared to 

manually segmented reference standards done by an expert.
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Fig. 1. 
Three pulmonary nodule types: isolated, juxtapleural, and juxtavascular nodules: (a) CT 

slice with isolated nodule A; (b) CT slice with juxtapleural nodule B; (c) CT slice with 

juxtavascular nodule C; (d) magnified view of isolated nodule A; (e) magnified view of 

juxtapleural nodule B; and (f) magnified view of juxtavascular nodule C.

Shen et al. Page 15

Comput Biol Med. Author manuscript; available in PMC 2020 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Diagrams depicting the proposed method and its outputs for a representative case. (a) Flow 

diagram of the proposed method; (b) original image; (c) original image with juxtapleural 

nodule outlined in white; (d) lung boundaries obtained after preprocessing; (e) lung lobe 

mask obtained after preprocessing; (f) detected inflection points shown in yellow-squares/

white-circles; (g) magnified view of inflection points; and (h) results after border correction.
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Fig. 3. 
Basic steps for preprocessing. (a) Original image; (b) histogram generation of pixel value 

intensities; (c) adaptive thresholding to get initial segmentation result; (d) hole filling to 

obtain the lung lobe mask; and (e) corresponding segmented lung lobe region.
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Fig. 4. 
Process of encoding the bi-directional differential chain code. (a)–(e) illustrates the process 

of horizontal differential chain code generation, while (f)–(j) illustrates the process of 

vertical chain code generation. (a) Horizontal encoding coordinate system; (b) initial 

boundary generation; (c) arrow map generation; (d) horizontal code word assignment; (e) 

horizontal differential chain code generation to detect horizontal inflection points; (f) 

vertical encoding coordinate system; (g) initial boundary generation; (h) arrow map 

generation; (i) vertical code word assignment; and (j) vertical differential chain code 

generation to detect vertical inflection points.
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Fig. 5. 
Example of detected inflection points with and without the application of a low-pass filter. 

(a) Right lung lobe mask; (b) detected inflection points without applying low-pass filter, the 

white circles represent the vertical inflection points and the yellow squares represent the 

horizontal inflection points; and (c) detected inflection points after applying Gaussian low-

pass filter.
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Fig. 6. 
Representative results of inflection point detection. (a) Original CT slice with nodule 

outlines annotated by radiologists shown in yellow circle; (b) magnified view of nodule 

region in outlined in (a); (c) right lung mask segmented by preprocessing step; (d) detected 

horizontal inflection points; (e) detected vertical inflection points; (f) magnified view of 

vertical inflection points; and (g) lung segmentation after applying border correction.
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Fig. 7. 
Illustration of feature definition for border correction. (a) Illustration of Euclidean distance 

(ED) and shortest boundary segment length (SL) between points A and B; (b) two infection 

points (white circles) having a large flength; and (c) border correction result.
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Fig. 8. 
Representative case where the proposed method failed to re-include the juxtapleural nodule. 

(a)Original CT slice with a nodule attached to diaphragm and pleura; (b) CT slice with 

nodule outlines annotated by a radiologist shown in yellow circle; (c) magnified view of 

nodule outline annotation; (d) lung segmentation obtained by our method; and (e) reference 

standard lung segmentation.
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Fig. 9. 
The segmentation error computed based on a comparison of lung volume: over-segmentation 

rate, under-segmentation rate and overlap ratio difference from Eqs. (6), (7) and (9). Mean 

errors are 0.3%, 2.4% and 2.7% respectively.
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Fig. 10. 
Cumulative point-wise error distance distribution of the shortest distance from proposed 

lung segmentation surface to lung surface of the reference standard.
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Fig. 11. 
Comparison between lung segmentation obtained by our method and reference standards in 

cases with atelectasis or consolidation. (a) Lung segmentation obtained by our method in an 

atelectasis case; (b) reference standard in an atelectasis case; (c) lung segmentation obtained 

by our method in a consolidation case; (d) reference standard in a consolidation case.
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