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Summary
The upcoming exascale computing systems Frontier and Aurora will draw much of their com-
puting power from GPU accelerators. The hardware for these systems will be provided by AMD
and Intel, respectively, each supporting their own GPU programming model. The challenge for
applications that harness one of these exascale systems will be to avoid lock-in and to preserve
performance portability.
We report here on our results of using Kokkos to accelerate a real-world application on NERSC’s
Perlmutter Phase 1 (using NVIDIA A100 accelerators) and Crusher, the testbed system for
OLCF’s Frontier (using AMDMI250X). By porting to Kokkos, we successfully ran the same X-ray
tracing code on both systems and achieved speed-ups between 13% and 66% compared to the
original CUDA code. These results are a highly encouraging demonstration of using Kokkos to ac-
celerate production science code.
KEYWORDS:
cross compilation, code optimization, Kokkos, Nvidia GPU, AMDGPU

1 INTRODUCTION
The upcoming high-performance computing (HPC) systems Frontier and Aurora will be the first exascalemachines. Both are capable of performing
more than 1018 floating point operations per second. Themajority of this computing power comes from theGPUaccelerators of these systems.Due
to their massive parallelism, GPUs are well suited for repetitive tasks.
Using GPUs requires vendor specific programmingmodels, such as CUDA for NVIDIA or HIP for AMD. This makes portability between different

systems challenging. As an alternative, programming models such as OpenMP offloading or Kokkos 1 provide an abstraction layer between the
source code and the GPU hardware. With these abstraction layers, the same code can be compiled for different architectures, thus combining
portability with high performance.

2 SCIENTIFIC BACKGROUND
X-ray crystallography is an indispensable tool to study the structure ofmolecules, with applications ranging frommaterials science 2 to understand-
ing the function of proteins 3. In crystallography, small crystals of an unknown sample (e.g. a proteinwhosemolecular structure is to be determined)
are placed in an x-ray beam. Bymeasuring how the x-rays are scattered, the position of each atom in the sample can be determined. Amajor applica-
tion of x-ray crystallography is determining molecular structures of proteins. Knowing the protein structure is crucial to understand how a protein
interacts. From this understanding, drugs can be designed to, e.g., treat infections by blocking specific interactions.
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Figure 1 Left: Experimental setup for serial femtosecond x-ray crystallography (SFX). Awater jet delivers the protein crystals to the x-ray beam. For
each x-ray pulse, the imaging detector records the scattered x-rays. Right: Two detector close-ups. Top: Small scattering angles close to the beam
axis. Bottom: Large scattering angles at the edge of the detector.

Because the molecules inside the crystals are arranged in a long-range repeating order, the crystals scatter x-rays only into certain directions –
i.e., scattering only occurs at those angles, which allow for positive interference from the x-rays scattered by different atoms. The x-rays scattered
into these discrete directions form Bragg spots on the imaging detector (the right panels in Fig. 1 illustrate one possible pattern). Mathematically
speaking, amolecular structure is representedusing a list of complex numbers called structure factors,where eachBragg spot is associatedwith one
such structure factor. Reconstructing the protein structure is therefore a two step process: first, the structure factor amplitudes are determined
from the Bragg spots. Then, they are used to reconstruct the protein structure by Fourier transformation. If more Bragg spot measurements are
available for the reconstruction, the atomic positions can be determined more accurately. Generally, larger crystals or a more intense x-ray beam
are required to increase the signal of weak Bragg spots. However, many protein crystals are challenging to crystallize and grow only tomicroscopic
size. Scientists therefore opt for increasing beam intensities. However, as proteins are sensitive to radiation damage, they are quickly destroyed by
high intensity x-ray beams.
Serial femtosecond x-ray crystallography (SFX) avoids the problemof radiation damage by using ultra-short x-ray pulses fromx-ray free-electron

lasers (XFELs), called “shots”. In essence, the pulses are so short that the Bragg spots can bemeasured before beamdamage has had time to degrade
the sample. Each x-ray pulse lasts only a few tens of femtoseconds, fast enough to freeze all atomic motion and capture a snapshot of the crystal
before any damage becomes visible. Still, this process will destroy the sample, so fresh crystals must be constantly fed in before each x-ray pulse,
see Fig. 1. Measuring a complete dataset requires tens of thousands of crystals, each producing only a single scattering image.
Most crystallographymethods determine the structure factor amplitudes by simply integrating the number of photons in each Bragg spot. Apart

from the structure factors, the intensity of a Bragg spot is also influenced by the orientation of the crystal, how the crystal is composed from
smallermosaic blocks, and how the energy spectrumof the photons fluctuates from shot to shot. By averagingmultiple images, each under different
conditions, these influences can be averaged out. For SFX, this requires tens of thousands of scattering images.
Instead of simply integrating each Bragg spot, x-ray tracing aims to simulate the photon intensity of every detector pixel by creating a physical

model of each crystal 4. Modeling each crystal is an iterative process, in which the current parameter estimates are refined until the simulated
scattering imagematches themeasured one. By recovering the unknown parameters from each crystal, x-ray tracing can accurately determine the
structure factors from an order ofmagnitude fewer scattering images. Asmeasurement time at XFELs is scarce, this allows scientists to studymore
samples or more experimental conditions during the same experiment.
However, while x-ray tracing may require fewer experimental resources, the computational effort to accurately model each pixel grows con-

siderably in comparison to conventional methods. At the same time, quick feedback on the quality of the collected data is critical for XFEL
experiments 5. X-ray tracing therefore faces the challenge of performing amore complex data analysis in less time. ProvidingXFEL experimentswith
quick-turnaround analysis of the terabytes of data requires HPC at the Exascale.
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3 GPUACCELERATIONWITHKOKKOS
To simulate scattering images from a physical model, we have developed the program nanoBragg 6, which is part of the CCTBX software suite 7,8.
CCTBX consists of a high-level workflow written in Python and accelerated kernels written in C++ (interfacing with Python via Boost.Python). This
approachhas beenproven to behighly successful in analyzing large data sets usingHPC resources 5,9. By designing nanoBragg as a kernel compatible
with the CCTBXworkflow, we see it as the first building block of a larger pixel-level XFEL data analysis workflow.
In x-ray tracing, each detector pixel can be simulated nearly independently of all other pixels, making x-ray tracing ideally suited to exploit the

massive parallelism of modern graphic processing units (GPUs). Compared to a 64-core AMDMilan CPU, an NVIDIA A100 GPU is able to simulate
diffraction images ten times faster, using the Kokkos implementation of nanoBragg, and comparing the OpenMP and CUDA backends for Kokkos,
respectively. nanoBragg uses MPI (specifically mpi4py) to distribute tasks (batches of images to simulate) to multiple nodes and GPUs using MPI.
Each GPU then performs work independently. Solving for an unknown molecular structure therefore follows a fork-join parallelism, where each
GPU simulates a batch of parameters independently, followed by a MPI reduction 4. The nanoBragg benchmark discussed here forgoes the final
reduction step, instead saving the simulated images to the file system.
The upcoming exascale systems Frontier (OLCF) and Aurora (ALCF) are essential to obtain rapid feedback during XFEL experiments. However,

the GPUs for these systems will be provided by AMD, and Intel, respectively. As both vendors supply their own alternative to CUDA, nanoBragg
must be adapted to each system. To avoid code duplication and site-specific optimizations, we decided to use Kokkos 1.

3.1 Kokkos
Kokkos is a C++ programmingmodel that allows a single code base to target differentHPCplatforms 1. To achieve this, Kokkos implements abstract
memory and execution spaces. Only during the compilation are the abstract spaces and commands converted toCUDA,HIP, OpenMP, etc. Thisway,
the same Kokkos code can be used on systemswith different GPUs or even systemswith no GPU.
Each execution space is associated with a particular memory space. While the execution space defines where the computation is done, the

computation itself is defined by execution patterns, which are the Kokkos equivalent to kernels in CUDA. Kokkos implements three patterns:
• parallel_for: Corresponds to a for-loopwhereeach iteration is executed independently, for example element-wise additionof twovectors.
• parallel_reduce: A reduction that collects and combines the result of all iterations, for example finding the longest word in a list.
• parallel_scan: A combination of the former two that uses multiple reductions, for example calculating a histogram of an image.
The typical use case for execution patterns is to work on large data arrays. Kokkos provides its own data structure called View. A View is a multi-

dimensional array which can be transferred between different memory spaces and layouts. The last one is important, e.g. in matrix multiplications,
the best performance on amulti-core CPUmight be achieved with a row-major layout and on a GPUwith a column-major layout. Kokkos automat-
ically manages the conversion between layouts when a View is transferred between different memory spaces. This makes it easy to first initialize a
View on the CPU and then transfer it to GPUmemory.

3.2 Porting nanoBragg to Kokkos
The task of porting nanoBragg can be split into two parts: The first part is converting the CUDA kernels to Kokkos execution patterns, the second
part is replacing all CUDA arrays with Kokkos Views. As there is no interaction between the individual detector pixels, all kernels can be replaced
with the parallel_for pattern. Most of the computational work in nanoBragg is done in three kernels:

• nanoBraggSpots: The most complex kernel, containing about 350 lines of code. This kernel simulates the Bragg spots. It takes into account
crystal orientation, mosaicity and photon energy.

• addBackground: The secondmost complex kernel with about 120 lines of code. This kernel simulates the background scattering from the air
andwater that surround the crystal.

• addArray: A simple kernel that adds the results from the other two kernels.
We illustrate the porting process by using a simplified version of the addArray kernel:
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1 __global__

2 void addArray(double* lhs , float* rhs , int size) {

3 int j = blockDim.x * blockIdx.x + threadIdx.x;

4 if (j < size) {

5 lhs[j] = lhs[j] + (double) rhs[j];

6 }

7 }

Listing 1: The addArray kernel in CUDA
For the Kokkos version, we replaced the lhs and rhs arrays with Views and the body of the kernel with a parallel_for pattern. As the memory

management of Views is done by Kokkos, we could remove the custom-written CUDA memory management. The parallel_for execution pattern
takes three arguments: an individual name for debugging and profiling purposes, an execution policy and a functor that holds the computational
work. In simple cases like this, we make use of the basic execution policy that simply iterates over size number of elements. The functor can be
integrated into the pattern by using lambda expressions, this way the structuremirrors how kernels are defined:

1 void addArray(Kokkos ::View <double*> lhs , Kokkos ::View <float*> rhs , int size) {

2 Kokkos :: parallel_for("addArray", size , KOKKOS_LAMBDA (const int& j) {

3 lhs(j) = lhs(j) + (double) rhs(j);

4 });

5 }

Listing 2: The addArray kernel in Kokkos
The other kernels were convertedmuch in the sameway, with a few challenges. One of these is an edge case when using lambda expressions for

device code inmember functions of a class. Suppose init() is a member function that initializes the view datawith a certain value:
1 void Container ::init() {

2 Kokkos :: parallel_for("init", size , KOKKOS_LAMBDA (const int& j) {

3 data(j) = m_value;

4 });

5 }

Listing 3: Lambda capture
Since they are class members, the compiler replaces data and m_value during the compilation with this->data and this->m_value. The problem
arises from this being a pointer in CPUmemory. If CUDA is used, this creates an illegal memory access when the GPU tries to access the pointer.
There are multiple ways around this issue: One way is to avoid lambda expressions in this situation and instead explicitly define the functors.

Another option is to copy the specific member variables into local variables before the execution pattern is called. And finally, in C++17 lambda ex-
pressions have been extended so they can explicitly capture the object, not the pointer. Unfortunately, the CCTBX code is currently not compatible
with C++17. Therefore, we choose to use local variables in these situations and otherwiseminimize the use of kernels in member functions.

4 PERFORMANCEANDPORTABILITY
The goal of porting the nanoBragg code toKokkos is to achieve portability between the upcoming Frontier andAurora systems aswell as Perlmutter.
We test the portability on Perlmutter Phase 1 and Crusher, the latest Frontier testbed system. These systems are not production resources, the
performance numbers given here were not always reproducible andwill be different from the final systems.
Increasing the portability of a code can potentially reduce the performance. We therefore also assess on Perlmutter the performance of the

Kokkos port in comparison to the original CUDA version. On Perlmutter, we use the CUDA backend of Kokkos and on Crusher accordingly the HIP
backend.
Each node of Perlmutter Phase 1 is equipped with an AMD EPYC 7763 CPU and four NVIDIA A100 GPUs. On Crusher each node is equipped

with an AMD EPYC 7A53 CPU and four AMDMI250X GPUs. EachMI250X GPU is equipped with two graphic compute dies (GCDs) totalling eight
GCDs per node. These eight GCDs function effectively like eight separate GPUs per node.
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Figure 2 Strong scaling of nanoBragg for the sim-
ulation of 100000 scattering images. The dashed
line shows ideal scalingwhere doubling the number
of nodes halves the simulation time. On Perlmutter
Phase 1, 4MPI ranks per node are used andKokkos
is used with the CUDA backend. On Crusher, 8MPI
rankspernodeareusedandKokkos is usedwith the
HIP backend.
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Figure 3 Time to simulate 100 thousand diffrac-
tion patterns using 64 Perlmutter nodes. In con-
trast to Fig. 2, this benchmark includes the time to
save each image to the file system. For comparison,
the previous times without file saving are indicated
with dashed lines. As the filesystem performance
on Perlmutter can vary (due to it not being a pro-
duction system) at the time of writing, this graph
shows the best performance over several repeated
runs.

As a benchmark, we tested a scenario that simulates 100000 scattering patterns. Due to performance fluctuations of the file system (a conse-
quenceofPerlmutterPhase1andCrusher not beingproduction systems),wedid not include the savingof the simulated images into thebenchmark.
The testswere performedusing 32, 64, and 128nodes, all results are plotted in Fig. 2.OnPerlmutter Phase 1,we used4MPI ranks per node, one for
each NVIDIA A100 GPU. On Crusher, we used 8MPI ranks per node, one for eachMI250XGCD. Every test case shows almost ideal scaling behav-
ior, highlighting how x-ray tracing benefits from parallel computing. On Perlmutter, the Kokkos version is about 13% faster than the original CUDA
version, indicating no loss in performance due to the port to Kokkos. Concerning portability, Kokkos allows nanoBragg to exploit the hardware of
Crusher for amore than 60% faster performance per node, compared to Perlmutter Phase 1.
Next we re-enable file I/O. This introduces workflow latency and dependence on a shared resource (the file system).We observe that the strong

scaling shown in Fig. 2 is preserved – albeit shifted up due to the increased time spent on I/O. CCTBX seeks to hide workflow latency by assigning
more than one MPI rank to each GPU. We observe that this is a largely successful strategy (as total runtime decreases with increasing number
of MPI ranks per GPU). Fig. 3 shows the total runtime to trace 100000 images using 64 Perlmutter nodes. We see that increasing the number
of ranks per GPU increases the total throughput. The throughput reaches a plateau when 3 or more ranks per GPU are used. Interestingly, the
CUDA implementation achieves the highest throughput whenmany (approx. 7 or greater) ranks are sharing the sameGPU. In contrast, the Kokkos
implementation achieves the maximum throughput when only two MPI ranks share the same GPU. For this configuration, the kernel runtimes
coincide, allowing the GPU to seamlessly alternate between the two ranks with no overlap or dead time.
Furthermore, comparing Fig. 2 and Fig. 3, we see that the increased latency due to I/O can be hidden by sharing GPUs accross ranks.

5 KERNEL PROFILING
To determinewhy theKokkos version performs better on Perlmutter than the original CUDAversion, we usedNsight Systems andNsight Compute
to profile both versions. For the three main kernels, the execution times on a NVIDIA A100 GPU are given in Table 1. For all three kernels, Kokkos
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Table 1Kernel run-times.

nanoBraggSpots addBackground addArray
CUDA 8.28ms 1.87ms 0.13ms
Kokkos 6.98ms 1.76ms 0.12ms
Speed-up +15.7% +5.9% +7.7%

Table 2 nanoBraggSpots details.

CUDA Kokkos
Run-time 8.28ms 6.98ms

Compute Throughput 65.05% 77.42%
Memory Throughput 21.05% 21.35%

Registers 130 116
Theoretical Occupancy 18.75% 25%
AchievedOccupancy 16.8% 24.74%

achieves a speed-up ofmore than five percent. As the nanoBraggSpots kernel accounts formost of theGPU computation time, the speed-up ofmore
than 15% for this kernel has a significant impact on the overall run time. On the other end of the complexity spectrum is the addArray kernel.While
it is one of the smallest kernels and any improvements will only have a small influence in the grand scheme, achieving a speed-up of nearly eight
percent even for short kernels is remarkable.
Using Nsight Compute we studied the critical nanoBraggSpots kernel in detail. The results are summarized in Table 2. In the table, the compute

and memory throughput give an overview howmuch of the compute and memory resources of the GPU are utilized by the nanoBraggSpots kernel.
The performance difference between CUDA and Kokkos is mostly a result of the higher compute throughput of the Kokkos kernel, the memory
throughput is nearly identical. The increased compute throughput in Kokkos is made possible by using fewer registers. Each multiprocessor on an
A100 GPU has a total of 65536 32bit-registers for a maximum of 2048 simultaneous threads (64 warps per multiprocessor times 32 threads per
warp). However, the GPU can only run at full occupancy if each thread uses less then 65535/2048=32 registers.With 130 registers, the A100GPU
can run at most 12 warps out of the 64 available. The Kokkos kernel uses 116 registers, which is below the critical threshold of 128 registers, and
can therefore run amaximum of 16warps, 33%more.
The situation for the other kernels is similar. The addBackground kernel goes from 96 to 80 registers and the addArray kernel goes from 25 to 16

registers. Kokkos uses consistently fewer registers than the original CUDA implementation, allowing a higher occupancy and throughput.

6 CONCLUSION
In this paper, we have reported on our work to port nanoBragg to Kokkos. Starting from a CUDA code base, most of the port was straightforward.
Arising difficulties with the port were solved. We have demonstrated that the performance of the code did not suffer from this port and has even
increased by 13%. We have also successfully demonstrated performance portability between Perlmutter Phase 1 (NERSC) and Crusher (OLCF).
We are currently in the process of testing the Aurora test system (ALCF). Until now, we have not used advanced Kokkos features such as nested
parallelism, which should further increase the performance.
As nanoBragg is representative of many scientific codes, our reported findings indicate that Kokkos is a powerful tool to not only achieve perfor-

mance portability in real-world applications, but also to accelerate existing codes.Moreover, we are able to integrate Kokkos into existing scientific
workflowswithout needing to port an entire code base. This allows scientists tomake progress, even if staff time is limited.
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