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Abstract: The classification of pancreatic cyst fluids can provide a basis for the early detection of pan-
creatic cancer while eliminating unnecessary procedures. A candidate biomarker, gastricsin (pepsin
C), was found to be present in potentially malignant mucinous pancreatic cyst fluids. A gastricsin
activity assay using a magnetic bead-based platform has been developed using immobilized pep-
tide substrates selective for gastricsin bearing a dimeric rhodamine dye. The unique dye structure
allows quantitation of enzyme-cleaved product by both fluorescence and surface enhanced Raman
spectroscopy (SERS). The performance of this assay was compared with ELISA assays of pepsinogen
C and the standard of care, carcinoembryonic antigen (CEA), in the same clinical sample cohort.
A retrospective cohort of mucinous (n = 40) and non-mucinous (n = 29) classes of pancreatic cyst
fluid samples were analyzed using the new protease activity assay. For both assay detection modes,
successful differentiation of mucinous and non-mucinous cyst fluid was achieved using 1 µL clin-
ical samples. The activity-based assays in combination with CEA exhibit optimal sensitivity and
specificity of 87% and 93%, respectively. The use of this gastricsin activity assay requires a minimal
volume of clinical specimen, offers a rapid assay time, and shows improvements in the differentiation
of mucinous and non-mucinous cysts using an accurate standardized readout of product formation,
all without interfering with the clinical standard of care.

Keywords: pancreatic cancer; early detection; minimal volume; mucinous; non-mucinous; matrix
effects; surface-enhanced Raman spectroscopy (SERS)

1. Introduction

Occurrences of pancreatic cancer are projected to become the second leading cause of
cancer-related death by 2030 [1]. Pancreatic cancer has a dismal 5-year survival rate of 11%
and its incidence continues to increase [1,2]. This grim outlook arises in part because the
disease is most commonly diagnosed at late metastatic stages [3–6]. Nevertheless, early
diagnosis remains difficult because the early stages of the disease are poorly characterized
and are largely asymptomatic.

The detection and classification of pancreatic cysts and cystic lesions is an important
strategy toward early diagnosis of pancreatic cancer [7]. Pancreatic cysts are incidentally
detected in almost half of the patients undergoing magnetic resonance imaging (MRI)
and in 2.6% of patients undergoing computed tomography (CT) scans [8,9]. Studies have
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shown that between 10 and 60 percent of cysts, particularly intraductal papillary mucinous
neoplasms (IPMN) and mucinous cystic neoplasms (MCN), have significant potential to
develop into malignant cancer [10–13]. Patients presenting with likely mucinous cysts are
candidates for surgical resection, which carries a 2–4% mortality risk, as well as a 21% risk
of post-surgical new onset diabetes [14,15]. Disappointingly, surgical interventions are often
performed for cysts that are later found to be benign, while patients with non-mucinous
cysts could (if accurately classified) be spared costly long-term surveillance [14]. Accurate
classification of pancreatic cysts as pre-cancerous mucinous cysts, IPMNs and MCNs, and
non-mucinous benign cysts, such as serous cystic neoplasms (SCN), is essential to avoiding
misdiagnosis and unwarranted interventions [16–19].

Biomarker analysis of fine needle aspirate (FNA) fluid collected from pancreatic cysts
offers great potential for high accuracy diagnosis of mucinous cysts. The FNA biomarker
used most commonly in current clinical assessments is carcinoembryonic antigen (CEA) im-
munoassay, which has a reported pooled diagnostic sensitivity of 60.4% (95% CI 57.7–62.9)
and specificity of 88.6% (95% CI 85.9–90.9) using a 192 ng/mL cutoff level [20]. With room
for diagnostic improvement, other biomarkers have also been studied for this purpose.
The more intensive analysis of extracted genomic DNA for KRAS and GNAS mutations
shows a pooled 94% sensitivity and specificity of 91% for IPMNs based upon a recent meta-
analysis [21]. A recent biomarker discovery effort of cyst fluids identified pepsinogen C
(PGC) in mucinous pancreatic cyst [22]. This discovery prompted development of a marker
assay based upon the activation of PGC to gastricsin (also known as pepsin C) followed by
catalytic turnover of a synthetic substrate tailored for detection by fluorescence resonance
energy transfer (FRET) [23]. This assay format was used to discriminate mucinous versus
non-mucinous cyst fluid samples from a small retrospective cohort with sensitivity 93%,
specificity 100%, and diagnostic accuracy of 95% [22].

The promising results of this previous gastricsin assay is an example of the poten-
tial clinical utility of protease activity in cancer diagnostics. As demonstrated for the
gastricsin assay, an internally quenched fluorescent substrate offers a general approach
to fluorescent signals upon cleavage by target proteases in homogenous solutions such
as ADAMTS13 [22,24,25]. A number of additional protease assay platforms have been
reported, each with potential utility for clinical applications. Examples including quan-
tum dot-based quenched-fluorescent systems have been successfully used for multiplex
protease assays [26]. Nanoparticle-bound fluorescent peptide substrates have been used
to measure metalloprotease activity in vivo toward the diagnosis of colorectal cancer [27].
Similarly, substrate-masked antibodies were used to profile metalloprotease activity in
cancerous tissues [28]. High sensitivity detection technologies have also been applied to
protease activities, including mass spectrometry and surface-enhanced Raman spectroscopy
(SERS) [29–32].

This work demonstrates a gastricsin assay using a magnetic bead-based platform, with
both fluorescent and SERS detection modes. The method incorporates a single ultrasensitive
dye to enable the detection of low turnover numbers and a highly selective peptide substrate
for discrimination of gastricsin activity over other proteases in samples [22,33]. These
features have enabled rapid 7 min measurements without significant matrix effects in
complex clinical samples, including cyst fluid. Importantly, the concentration of released
proteolytic product can easily be assessed, allowing for the quantitative activity analysis
rather than the previous FRET cutoff-based readout. Finally, it was demonstrated, using
banked cyst fluid samples, that this assay can differentiate mucinous and non-mucinous
pancreatic cysts consuming only 1 µL of cyst fluid.

2. Materials and Methods
2.1. Materials

Synthetic procedures for the dimeric rhodamine 6G dye used in the present study
are reported previously [33]. This dye was coupled to the N-terminus of resin-bound
biotinylated peptides, purchased from GenScript (Piscataway, NJ, USA). 2-(6-Chloro-1H-
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benzotriazole-1-yl)-1,1,3,3-tetramethylaminium hexafluorophosphate (HCTU, NC0576737),
dichloromethane (DCM, MK-4879-4), trifluoroacetic acid (TFA, AC139720025), diethyl ether
(AC12399-0050), acetonitrile for HPLC (A998), and water for HPLC (600-30-13) were all
purchased from Fisher Scientific (Pittsburgh, PA, USA). N,N′-diisopropylethylamine (DIEA,
D125806), N,N′-dimethylformamide (DMF, 319937), hemoglobin (Hb, H7379) and sodium
chloride (NaCl, S9625-1KG) were purchased from Sigma Aldrich (St. Louis, MO, USA).
Triisopropylsilane (TIPS, A187865) was purchased from Ambeed (Arlington Heights, IL,
USA). Tween® 20 (97062-332) was purchased from VWR (Radnor, PA, USA). pH 2 buffer
(LC122201) was purchased from LabChem (Zelionople, PA, USA). To prepare gastricsin
standards, a recombinant human pepsinogen C (6186-AS-010) was purchased from R&D
Systems (Minneapolis, MN, USA). Mock cyst fluid samples were prepared using an artificial
mucus matrix, supplemented with pancreatic enzymes, and set to a viscosity of 1.5 cen-
tipoise (cP), prepared by Biochemazone (Edmonton, AB, Canada). Streptavidin-blocked
sera-mag speed beads (21152104011150) were manufactured by Cytiva (Marlborough, MA,
USA). Pepstatin A (S7381) was purchased from Selleckchem (Houston, TX, USA). Trypsin
(Research Products International, Mount Prospect, IL, USA, cat. no. T70010-1.0), pepsin
(R&D Systems, 6186-AS-010), thrombin (Cayman Chemical Company, Ann Arbor, MI,
USA, cat no. 13188), and bovine serum albumin (Sigma Aldrich, A7906-50G) were pur-
chased from their manufacturers. 50 nm citrate-capped silver nanoparticles (1 mg/mL,
AGCB50-5M) were purchased from nanoComposix (San Diego, CA, USA). All reagents and
proteins required for immunoassay of gastricsin were purchased as part of a kit (DY6186-05)
sold by R&D systems. 384 shallow-well, black, flat bottom plate (Thomas Scientific, Swedes-
boro, NJ, USA, cat. no. 1230M76), and 0.5 mL sterile centrifuge tubes (MTC Bio, Sayreville,
NJ, USA, cat. no. C2007) were used. All assay samples were heated on an incubator (VWR,
75838-270), equipped with a 30-tube block (VWR, 13259-000) and a temperature control
probe (VWR, 11301-112). All fluorescence readings were measured on a Biotek Synergy
H1 Plate Reader. SERS spectra were obtained using a probe-based Raman spectrometer
(Wasatch Photonics Inc., Logan, UT, USA model WP-532-SR-IC) with a 532 nm laser source,
50 mW laser power, 25 µm slit width, and standard lenses at 11 mm working distance using
20–30 ms integration time.

2.2. Clinical Samples

De-identified clinical samples were obtained under an approved IRB from the UCSF
Medical Center and analyzed prior to release of clinical diagnostic information. Samples
were banked in collaboration with several medical centers as part of a EDRN study, and no
patient eligibility requirements were established for this study to expand the sample pool.
The clinical sample diagnoses were established by each institution and clinicians and these
data were appended to the sample pool after unblinding along with clinically relevant
information including CEA measurements and physical features of the cyst. If clinical
information was not available, it was excluded in the data analysis. Briefly, cyst fluid was
obtained at the time of operative resection and at the time of endoscopic ultrasound guided
(EUS) aspiration. For operative cases, resected specimens underwent cyst aspiration within
30 min of resection. Aspiration was performed by a surgeon, pathologist, or technician.
Cyst fluid samples were obtained with an 18-gauge to 21-gauge needle, divided into 100 µL
aliquots, and stored at −70 ◦C or colder. No additives or centrifugation were performed
prior to freezing and total time between excision and freezing was <60 min. For EUS
obtained samples, aspiration was performed at the time of endoscopy. Cyst fluid was
initially allocated for clinically needed tests for care of the patient and any remaining fluid
was stored for research purposes. The remaining fluid samples were divided into 100 µL
aliquots, and stored at –70 ◦C. No additives or centrifugation were performed prior to
freezing and specimens were frozen within 60 min of aspiration.
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2.3. Preparation of Assay Buffer

Tween® 20 (0.1%) and NaCl (100 mM) were added to commercial pH 2 Buffer. Assay
Buffer preparations were mixed by vortexing and prepared fresh before each assay.

2.4. Magnetic Bead Preparation

Synthetic details and characterization of the peptide substrate, VS001 (Figure S1),
are given in the Supplementary Information. Streptavidin-coated magnetic beads were
loaded with VS001 in bulk. First, an aliquot of beads was twice washed with Assay Buffer,
vortexed vigorously, and the beads were separated via magnetic separation with a magnetic
rack. The washed beads were then incubated with a volume of 0.05 mM VS001 equal to
the starting bead aliquot at room temperature for 15 min with occasional mixing via brief
vortexing. After incubation, the beads were washed four times with Assay Buffer using
5× original bead aliquot volume and again isolated via magnetic separation after vigorous
vortexing to remove unbound peptide. After the final wash, VS001-loaded beads were
resuspended in Assay Buffer to original bead aliquot volume to maintain 10 mg/mL
bead concentration.

2.5. Assay Buffer Sample Preparation

1 µL recombinant human PGC was diluted with 28.3 µL of Assay Buffer and incubated
at room temperature to activate for 10 min. After activation, the 15 µg/mL gastricsin
solution was then further diluted to desired concentrations using Assay Buffer prior to
protease assay.

2.6. Mock Sample Preparation

Mock samples were prepared by diluting 1 µL recombinant human PGC with 28.3 µL
Artificial Mucus Matrix to create a 15 µg/mL solution. The mock sample was further
diluted with the Artifical Mucus Matrix to desired concentrations, then 1 µL of each Mock
Sample was activated by dilution with 99 µL of Assay Buffer followed by gentle mixing
and incubation at room temperature for 10 min prior to protease assay.

2.7. Clinical Sample Preparation

Clinical samples were thawed on ice and divided into 1 µL aliquots without any
additives or centrifugation prior to assay. A single 1 µL aliquot of each sample was diluted
with 99 µL of Assay Buffer and gently mixed via pipetting. Samples were then activated
for 10 min at room temperature.

2.8. Hb Sample Preparation and Assay

Mock samples and Assay Buffer were prepared as described previously. Hemoglobin
was hydrated in distilled water before it was spiked to a final concentration of 1.5 mg/mL
in an aliquot of freshly prepared Assay Buffer. Mock Samples were run after activation
with either standard Assay Buffer or with Assay Buffer supplemented with 1.5 mg/mL of
hemoglobin. Whichever buffer was used for activation was used throughout the protease
assay and data collection.

2.9. General Protease Assay

The protease activity assay was performed in 0.5 mL sterile microtubes where 7.5 µL of
VS001 loaded on magnetic beads were added to sample tubes containing 7.5 µL of activated
gastricsin sample and gently vortexed before immediate placement on an incubator heated
to 37◦C for 7 min. After incubation they were promptly placed on a magnetic bead rack
to isolate the resulting product solution. Each 15 µL reaction was divided into three 4 µL
subsamples pipetted into individual wells of a 384 shallow-well, black, flat bottom plate.
Fluorescence intensity was measured in triplicate then the plate was sealed to prevent
evaporation prior to SERS analysis.
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2.10. Protease Comparison Assay

Proteases were hydrated in distilled water according to manufacturers’ specifications
before dilution in the Assay buffer. Proteases were activated and assayed according to the
General Protease Assay conditions. Reported concentrations are the final concentrations in
the assay mixture.

2.11. Pepstatin Protease Assay

Two sets of Assay Buffers were prepared as described previously wherein one buffer
was spiked with 50 nM of pepstatin A while the other served as a control. Samples con-
taining combinations of 150 ng/mL of gastricsin, and/or 30 nM pepsin in Artificial Mucus
Matrix were run normally under General Protease Assay conditions with either Assay
Buffer or with Assay Buffer supplemented with 50 nM pepstatin and analyzed concurrently.

2.12. Raman Spectroscopy

4 µL of a suspension of silver nanoparticles was added to 4 µL of protease assay
sample in a 384 shallow-well plate. The fresh colloid aggregate samples were immediately
subjected to Raman spectroscopy to obtain the SERS data. Spectral data were processed
and the area under the curve (AUC) was analyzed using OPUS 8.2.28 software (Bruker
Optics, Inc., Billerica, MA, USA). Graphs of the data were prepared using GraphPad Prism
as described in the Data Analysis section. Error bars represent the standard deviation from
triplicate measurements.

2.13. Enzyme-Linked Immunosorbent Assay (ELISA)

PGC mass was measured by ELISA according to the manufacturer’s specifications.
The total mass of the PGC was measured in all clinical samples using a commercial sand-
wich ELISA assay for human Pepsinogen C/gastricsin (R&D Systems, Minneapolis, MN,
USA), following the manufacturer’s instructions. Optical density was measured with a
Biotek Synergy H1 plate reader at 450 nm using wavelength correction at 540 nm. Sample
concentration was interpolated from a standard curve of recombinant gastricsin using a
4-parameter logistic regression.

2.14. Data Analysis

All data analyses and graph preparations were conducted using GraphPad Prism
9.3. Each sample assay raw fluorescence intensity or SERS AUC was converted to the
corresponding product concentration according to the appropriate standard curve as
shown in Supplementary Figure S3. Each sample was analyzed in triplicate and the mean
and standard deviations were calculated and plotted for each point. For samples with
both fluorescence and SERS measurements, paired sample results were plotted against
each other to visualize the optical interferences resulting from the external milieu and
the linear relationship between the two measurements was calculated. The grey bars
in these graphs represent the 95% confidence interval, and the slope is proportional to
optical interference of one or both measurements. Unblinded clinical results were plotted
according to their diagnosis as either non-mucinous or mucinous, and receiver operating
characteristic (ROC) curves were prepared with noted cutoffs, AUC, sensitivities, and
specificities. The significance of clinical sample discrimination was analyzed using the
Mann–Whitney test for each measurement described, and the p-values are listed in the
figure caption.

3. Results

The assay design is described in Figure 1. The substrate peptide sequence used was
based on previous work [22]. This peptide sequence, selected by multiplex substrate profil-
ing, was shown to be selectively cleaved at low pH by gastricsin without interference from
any other proteins found in cyst fluid. To the C-terminus of this peptide, a biotinylated
lysine residue was appended and separated from the substrate sequence by a diethylene
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glycol spacer. At the N-terminus, a dimeric rhodamine 6G (R6G)-based dye was attached,
which was previously developed as an ultrasensitive and stable reporter for SERS de-
tection [33]. The resulting substrate was immobilized on magnetic beads coated with
streptavidin and used for assaying gastricsin activity. The magnetic beads were loaded
with gastricsin substrate, and any unbound material was washed away. Gastricsin samples
(standard or clinical) were activated by incubation at pH 2 at room temperature prior to
mixing with substrate-loaded beads. Equal volumes of enzyme solution and bead suspen-
sion were mixed and incubated at 37◦C for 7 min, then the beads were removed with a
magnetic tube rack. The resulting solution contained enzyme and reaction product at pH 2,
which can be quantified by either fluorescence or SERS measurements.
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Figure 1. Scheme for conditional gastricsin activity assay. Briefly, magnetic beads are loaded with
gastricsin substrate, and any unbound material is washed away. Gastricsin samples (research or
clinical) are activated by incubation at pH 2 at room temperature prior to mixing with substrate-loaded
beads. Equal volumes of enzyme solution and bead suspension are mixed for a predetermined amount
of time, then the beads are removed with a magnetic tube rack. The resulting solution contains enzyme
and reaction product at pH 2, which is quantified by either fluorescence or SERS measurements.

These assays were responsive to varying amounts of gastricsin (Figure 2). Fluorescence
measurements were performed using a 384-well plate in a plate reader. SERS measurements
were performed in the same plate after addition of silver nanoparticles. Signals in both
detection modes showed a linear dependence with gastricsin concentration in these assays,
allowing for direct quantitation of enzymatic activity. Furthermore, results calculated from
each of the detection methods correlated well with each other, as evidenced by the linear
slope of 1.075 in a plot of SERS vs. fluorescence results, suggesting that both methods were
equally well-suited for analysis of gastricsin turnover (Figure 2C). Gastricsin is known to
have a broad substrate specificity but cleaves the designed peptide between the alanine and
tryptophan residues, as demonstrated previously [22,34]. Using standard curves (Figure S3)
made from varying concentrations of a pre-synthesized proteolysis product (Figure S2),
the assay was standardized for the product production. As such, it was possible to calculate
turnover number and activity in product per unit time.

To ensure the selectivity of this assay for gastricsin, a panel of common proteins and
proteases were examined using only the fluorescence readout (Figure 3). While the assay
was very selective in this protease panel, some activity was observed with high levels of the
structurally similar digestive enzyme pepsin. For the application of classifying pancreatic
cysts, this interference is not of concern because pepsin has not been found in cyst fluid
to the best of our knowledge [35,36]. However, in matrices containing both gastricsin and
pepsin this assay will present limitations. A remedy was to evaluate gastricsin activity
in the presence and absence of the selective pepsin inhibitor pepstatin. These results
showed that gastricsin was not inhibited by pepstatin, while the activity of pepsin was
completely abrogated (Figure 3B). Therefore, in matrices where pepsin is suspected to be
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present, pepstatin can be used to isolate the signal from gastricsin activity for analysis.
This principle was further confirmed by testing several clinical samples activated with
and without pepstatin in the pH 2 Assay Buffer. Despite some differences in the positive
controls, the clinical samples themselves did not show a change in signal intensity which
suggests that these samples did not contain pepsin as expected.
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Figure 2. Gastricsin activity assay in pH 2 buffer. (A) The product formation is calculated from fluo-
rescence measurement at each concentration of gastricsin as indicated on the x-axis. (B) The product
formation calculated from SERS measurements at each concentration of gastricsin. The samples in
(A) were used for these measurements after addition of silver. Error bars represent the standard
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rescence measurements from paired reaction samples. The grey area is the 95% confidence interval
from a linear regression analysis with a slope = 1.075 and R2 = 0.914.
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Figure 3. Specificity of assay for gastricsin. (A) Activity of VS001 substrate loaded onto beads
with proteolytic enzymes and bovine serum albumin (BSA). Concentrations for each analyte are
listed in parentheses. (B) Impact of 50 nM pepstatin on activity of 150 ng/mL gastricsin and/or
1 µg/mL pepsin in assay as indicated in the table below where “+” indicates addition of analyte.
(C) Impact of the addition of pepstatin to assay buffer for clinical sample analysis. Controls are
mock samples prepared with gastricsin at 150 ng/mL. Error bars represent standard deviation of
triplicate measurements.

Prior to studies of patient samples, a mock pancreatic cyst fluid preparation was
prepared for assay testing and validation (Figure 4). This mixture consisted of an artificial
mucus matrix product to which pancreatic enzyme extracts were added. The viscosity of
this matrix was adjusted to 1.5 cP, based on previous rheology studies of pancreatic cyst
fluid [37]. Recombinant pepsinogen C was diluted with this matrix at varied concentrations
and used for gastricsin activity assays. While fluorescence measurements decreased in
intensity, SERS analyses showed no matrix effects (Figure 4B). Furthermore, the relationship
between product calculated using fluorescence and SERS is skewed, as indicated by the
linear slope of 1.293 in Figure 4C. This suggests that, due to decreased fluorescence related
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to optical interference from the mock matrix, SERS measurements can provide a more
accurate analysis of enzyme activity and prove to be more reliable in clinical applications.
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creatic enzymes with a viscosity of 1.5 cP to simulate a pancreatic cyst fluid sample. (A) Measured
product formation calculated from fluorescence measurement at each concentration of gastricsin
as indicated on the x-axis. (B) Measured product formation calculated from SERS measurement at
each concentration of gastricsin as indicated on the x-axis. The samples are the exact same from
panel (A). Error bars represent the standard deviation of triplicate measurements. (C) Correlation of
product formation between SERS and fluorescence measurements from paired reaction samples. The
grey area is the 95% confidence interval from a linear regression analysis with a slope = 1.293 and
R2 = 0.836.

Previous reports of cyst fluid sample contamination with blood during fine needle
aspiration are of considerable importance to activity assay performance [38]. To anticipate
possible optical interferences from hemoglobin in blood-contaminated samples, assays were
performed in buffer containing 1.5 mg/mL hemoglobin (Figure 5). The concentration was
chosen to model that found in hemolyzed blood [39]. Indeed, fluorescence measurements
were decreased in the presence of hemoglobin. Impressively, however, the assay results
using SERS-based detection were not compromised. Combined with the studies using
mock pancreatic cyst fluid, these data suggest that the SERS-based detection can be used
when matrix effects are significant in fluorescence-based activity assays and this hypothesis
is supported by the steep slope of 1.940 shown in Figure 5C.
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Figure 5. Gastricsin activity assay in samples comprised of a mock mucus matrix containing pancre-
atic enzymes with a viscosity of 1.5 cP, while the assay buffer contained the indicated concentration
of Hb to simulate a bloody pancreatic cyst fluid sample. (A) Measured product formation calculated
from fluorescence measurement at each concentration of gastricsin as indicated on the x-axis. (B) Mea-
sured product formation calculated from SERS measurement at each concentration of gastricsin as
indicated on the x-axis. The samples are the exact same from panel (A). Error bars represent the
standard deviation of triplicate measurements. (C) Correlation of product formation between SERS
and fluorescence measurements from paired reaction samples. The grey area is the 95% confidence
interval from a linear regression analysis with slope = 1.940 and R2 = 0.828.
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Finally, a study of a retrospective cohort of 69 cyst fluid samples with known assign-
ments as mucinous or non-mucinous classification was conducted and optimal cutoff values
were established (Table 1, Figure 6). Both fluorescence (AUC = 0.936, 95% CI 0.882–0.990,
Sensitivity = 85%, Specificity = 93% at cutoff of 5.79 pmol product) and SERS (AUC = 0.873,
95% CI 0.791–0.956, Sensitivity = 80%, Specificity = 90% at cutoff of 18.72 pmol product)
assays were able to differentiate between these two classifications. The assay classifies cysts
with better accuracy than the most commonly used biomarker, CEA (AUC = 0.812, 95% CI
0.707–0.918, Sensitivity = 62%, Specificity = 93% at cutoff of 192 ng/mL), as reported in
the clinical records for each sample. The accuracy of the activity-based assay was also
significantly superior to a protein mass-based pepsinogen C immunoassay (AUC = 0.873,
95% CI 0.784–0.900, Sensitivity = 77%, Specificity = 93% at cutoff of log2 = 16.51 pg/mL).
The ROC curve’s AUC is further improved when CEA and gastricsin assays are combined
(AUC = 0.950. 95% CI 0.900–1.000, Sensitivity = 87%, Specificity = 93%), suggesting po-
tentially improved diagnostic power when combining biomarkers in diagnosis of cysts.
Furthermore, the results for the entire 69 sample cohort were collected and analyzed in a
single day, outpacing currently available clinical diagnostics that often require 1–21 days
according to clinical laboratory testing criteria available online.

Table 1. n = 69 clinical sample cohort characteristics. Units are as listed in the row heading.

Non-Mucinous Mucinous

Pseudocyst * SCA MCN IPMN

Samples (n) 15 14 13 27
Age

(Years ± SD) 54.2 ± 18.5 60.1 ± 9.6 53.2 ± 17.3 66.8 ± 11.6

Gender
Female 7 8 10 13
Male 7 6 3 14

Institution

Pittsburgh 4 0 2 4
Indiana 6 9 6 13
Stanford 4 3 5 10

UCSF 0 2 0 0

Collection Method **
Surgery 6 10 13 24

EUS-FNA 8 4 0 2
Cyst Size ***
(mm ± SD) 66.6 ± 33.6 60.2 ± 39.7 54.5 ± 38.1 47.8 ± 32.8

CEA
(ng/mL ± SD) 31 ± 43 7354 ± 27,413 10,773 ± 25,538 5398 ± 16,290

Gastricsin Mass
(ng/mL ± SD) 220 ± 775 10,231 ± 12,485 6972 ± 10,449 10,630 ± 19,431

Gastricsin Activity (pmol prod ± SD) Fluorescence 4.7 ± 1.2 3.9 ± 0.6 56 ± 54 46 ± 47
SERS 16 ± 5.7 13 ± 3.5 36 ± 22 34 ± 21

* One pseudocyst sample without patient characteristic information. ** One pseudocyst without sample
collection information, one IPMN collected via endoscopic retrograde cholangiopancreatography (ERCP).
*** Five pseudocyst and two IPMN samples without cyst size data.
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Figure 6. Clinical sample results from a retrospective cohort of 69 pancreatic cyst fluid samples with
known clinical diagnoses. (A) The measured mass of pepsinogen C according to commercial ELISA
kit. (B) ROC curve of ELISA measurement of pepsinogen C mass to distinguish mucinous from
non-mucinous pancreatic cysts (AUC = 0.873, 95% CI 0.794–0.900). (C) Measured product formation
calculated from fluorescence measurement of clinical samples. (D) Measured product formation
calculated from SERS measurement of clinical samples. Sample measurements are paired and both
(C,D) are divided into respective diagnosis category as indicated on the x-axis. (E) Correlation of
product formation between SERS and fluorescence measurements from paired reaction samples.
The grey area is the 95% confidence interval from a linear regression analysis with a slope = 0.348 and
R2 = 0.614. Every measurement represents a single reaction and sample. (F) ROC curve of clinical
samples diagnosed according to the gastricsin activity assay using the product formation calculated
from fluorescence (black, AUC = 0.936, 95% CI 0.882–0.990) or SERS (blue, AUC = 0.873, 95% CI
0.791–0.956), in comparison with clinical CEA measurement (red, AUC = 0.812, 95% CI 0.707–0.918)
and a combination of all three (green, AUC = 0.950, 95% CI 0.900–1.000). **** = p < 0.0001 according
to a Mann–Whitney test of significance.

4. Discussion

These studies demonstrate a highly accurate magnetic bead-based protease assay
platform with both fluorescence and SERS readouts. The work applies the newly developed
assay platform to measure gastricsin activity, which has been found enriched in mucinous
pancreatic cyst fluids collected through fine needle aspiration, either pre- or post-surgical
resection as indicated in Table 1. The gastricsin and CEA analyses can assist clinical
decisions regarding the potential risk of cysts to develop into pancreatic cancer. The first
step for clinical decision-making is to address whether they are dealing with a benign, non-
mucinous, or potentially cancerous, mucinous cyst. Mucinous cysts are significantly more
likely to become cancerous but surgical pancreatic resection can prevent this near-universal
deadly outcome [10]. As such, accurate diagnosis, aided by the assays, will be useful in
determining the risk of the patient developing a pancreatic cancer.

The assay uses a peptide substrate that is selectively cleaved by gastricsin which aims
to prevent false negatives. Notably, the presence of pepsin, which is structurally similar
to gastricsin, can give a false response in the assays. This situation can be remedied by
addition of pepstatin, which selectively inhibits pepsin. While pepsin is not a major concern
in cyst fluid applications, this adaptation may be important in other biological matrices.
Matrix interference with fluorescence readout in assays are common as also encountered
with the gastricsin activity assay in the presence of simulated mucus or hemoglobin. These
matrix effects were not a factor in the SERS based readouts. The 69 retrospective cyst
fluid samples were quantified using two orthogonal detection methods in the same assay
conditions. Impressively, these methods successfully differentiated mucinous and non-
mucinous samples.

An important future direction is to study the performance of the assay using larger
cohorts of cyst fluid samples since 69 has limited statistical power. The current assay
workflow and detection methods offer a robust platform to pursue larger scale clinical
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studies. Current estimates of sample turnaround times for 100 clinical samples are less
than 24 h, even using manual execution. This situation could be greatly improved by
adaptation to automated clinical analyzer systems. Technology improvement efforts will
seek to incorporate this assay platform onto a system capable of magnetic bead purification
and fluorescence readout. Ideally, a system would utilize SERS to remain agnostic to
matrix effects. Finally, ultrasensitive SERS-based detection significantly reduces required
clinical fluids to nano-sized volumes. Future directions could incorporate nanoliter liquid
handling equipment to improve variations. The assay approach offers a suitable platform
for improved early detection of pancreatic cancer in conjunction with current clinical
standards. Moving forward, this assay will be investigated in an analytical validation
study to ensure it is suitable for testing in a CLIA lab setting. Next, the diagnostic accuracy
will be evaluated in a clinical validation study prior to release as a lab developed test for
discriminating non-mucinous from mucinous pancreatic cysts.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/diagnostics12061343/s1, Structures and synthetic procedures of
VS001 (Figure S1, Figure S4) and gastricsin reaction product (Figure S2, Figure S5) are described
and the standard curves of response vs. concentration for the gastricsin reaction product are shown
(Figure S3).
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