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Abstract 
Adapting agroecosystems to water scarcity: Dry farming and crop rotation as transitions to 

diversified farming systems in California and the US Midwest 
 

By 
 

Yvonne Socolar 
 

Doctor of Philosophy in Environmental Science, Policy, and Management 
 

University of California, Berkeley 
 

Professor Timothy Bowles, Chair 
 

As climate change gives rise to water shortages and unstable growing conditions in California and 
across the United States, agricultural systems must be able to adapt to increasingly extreme 
environmental stressors. Diversified farming systems, which incorporate biodiversity across 
multiple temporal and spatial scales to support ecosystem services, offer an alternative to the 
fragility of the current industrialized regime that dominates US agriculture. When small-scale, 
thought-intensive, diversified farming systems are supported by research and socio-political 
movements that defend them and advocate for their wider adoption, food production will 
transition towards a science, practice, and movement known as agroecology. While many argue 
that agroecological transitions are necessary to achieve stable food production and climate, 
economic, and political justice in the US agricultural system, state and federal policies do not 
reliably support diversified farming systems. In order to craft effective policy interventions, we must 
have an intimate knowledge of how and why diversified farming practices work to properly support 
their success and spread. In my dissertation I explore two regional examples of diversified farming 
practices and their potential for wider adoption given current and possible future policy landscapes. 
In corn-based crop rotations in the US Midwest and tomato dry farming on California’s Central 
Coast, climate shocks have sparked a need for dramatic change, opening an opportunity for policy 
to guide agriculture towards an agroecological future. With the help of farmer collaborators, I ask 
how each of these systems functions, how policy has failed them, and where it may yet succeed. 
 
The first chapter of my dissertation examines the political and physical landscapes in which farmers 
grow corn-based rotations in the US Midwest, asking what factors lead farmers towards complex 
vs simplified rotations. I used publicly available, remotely sensed datasets to look at relationships 
between rotational complexity, and biophysical (land capability, precipitation) and policy-driven 
(distance to the nearest biofuel plant) factors on 1.5 million fields in the region, using bootstrapped 
linear mixed models to account for spatial autocorrelation. I found that policy and economic 
incentives continue to lead farmers towards simplified crop rotations, such as corn-soy and even 
corn monoculture. In particular, amidst already elevated corn prices from crop insurance 
structures and livestock feed, I saw that proximity to biofuel plants–where corn prices tend to be 
higher due to the federal biofuel mandate–encourages farmers to grow corn in as many years as 
possible. These policy and economic factors then play out in biophysical landscapes as well, where 
fields with the highest quality soils and precipitation–which can tolerate degradative soil practices 
without compromising yields in the near term–tend towards the most simplified rotations. 
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The second and third chapters of my dissertation explore diversified farm management on 
California’s Central Coast in dry farm tomato systems, which rely on diversified farming practices 
(cover cropping, compost application, organic management, etc.) to build soil water holding 
capacity and fertility. Dry farming allows farmers to grow produce with little to no irrigation water, 
relying instead on water held in soils from winter rains to support crops through rain-free summers. 
As climate change increases water scarcity in California, farmers, advocacy groups and 
policymakers have begun looking to dry farming as a potential solution to the state’s overextended 
water budget. However, little research has been done on vegetable dry farming in the state, and 
no coordinated effort has been made to understand the policy conditions that would allow 
vegetable dry farming to thrive. 
 
In my second chapter, I collaborated with six dry farm operations in a participatory process, 
coming up with research questions that the farmers who most intimately understand tomato dry 
farming were eager to answer. After a season of intensive soil and harvest sampling on seven dry 
farm fields on California’s Central Coast, we were able to come to a better understanding of how 
the system functions, and develop concrete management suggestions for farmers to consider. We 
found that, due to quickly drying surface soils, harvest outcomes were only impacted by nutrients 
below 30-60cm in the soil profile, upending soil fertility management paradigms on irrigated fields, 
where focus is almost entirely on the top 30cm of soil. We were also able to caution against 
arbuscular mycorrhizal fungal (AMF) inoculants, which have been marketed to farmers with 
increasing intensity but, if anything, harm harvest outcomes in dry farm systems (as opposed to 
resident AMF communities, which are fostered through diversified management and typically 
improve harvest outcomes). Lastly we showed that dry farm soils develop a signature in their fungal 
communities that supports fruit quality, suggesting that farmers would likely benefit from 
developing full dry farm rotations where soils are kept irrigation-free for multiple years.  
 
In my third chapter, I conducted semi-structured interviews with the same farmers who 
participated in the field study to better understand the full context in which tomato dry farming 
operates on the Central Coast. As farmers, researchers, and policymakers consider an expansion 
of dry farm vegetable production in California, I wanted to ask how farmers understand the 
practice and what its environmental and economic constraints are. I emerged with a synthesis of 
farmer-stated environmental constraints that I used to create a map of California cropland that 
could be suitable for future dry farm production. As I considered an expansion of dry farming onto 
these new lands, I drew on farmers’ experience to explore how to maintain dry farming’s history 
as an agroecological alternative to the industrial style of farming that dominates the region. 
Farmers had a clear message about the small operations and direct-to-consumer marketing styles 
that have been the foundation of dry farming success, and that must serve alongside soil health 
practices as a model for an agroecological transition towards water savings in California. I 
identified policies such as publicly funded demonstration farms, participatory breeding programs, 
and public procurement that could promote dry farm expansion while preserving its fuller context 
and identity, rather than stoking a shift toward an industrial cooptation of the practice that could 
edge small growers out of dry farm markets. 
 
Taken together, this dissertation follows on-farm diversification practices–especially those that can 
help farms guard against water scarcity–through an arc of past and possible future policy. I ask 
how policy has discouraged crop rotational complexity, and how policy might foster an 
environment in which dry farming could thrive as a model for an agroecological transition towards 
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water resiliency. I strive to understand dry farming through the eyes of those who practice it to 
make management and policy recommendations that are grounded in deep knowledge of the 
system. Through these examples of how complex ecological and policy interactions play out in two 
separate regions, I highlight the resilience and importance of diversified farm systems, and the 
possibilities and pitfalls in policy interventions that attempt to prepare our agricultural system for 
changing climates.
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Introduc)on 
 
Amidst an increasingly industrialized food system, farmers and activists the world over have 
advocated and struggled to move agricultural production towards diversified farming systems1–6. 
Agroecology–a form of agriculture based in small-scale, thought-intensive, diversified farming 
systems and the socio-political movements necessary to defend them and advocate for their wider 
adoption–has emerged as a combination of science, practice, and movement that can lead farming 
systems towards ecological, economic, and social sustainability7–9. As climate, economic, and 
political injustices accelerate in the food system, transitions towards agroecology are increasingly 
urgent; however, these transitions have been slow to gain traction in dominant political and 
economic regimes10,11. 
 
The current era of climate change is creating shocks that open windows for food systems transition, 
forcing farmers, researchers, and policy makers to consider new approaches to farming and food 
production. My own work has focused on water scarcity, which is perhaps the most salient climate 
shock in California where my home institution is located, and a key agricultural concern across the 
nation and globe12–14. In California, the 2020–2022 drought caused the estimated loss of 15,000 
jobs and $3 billion in agricultural output, and followed a similarly devastating drought in 2011-
2016, calling attention to an urgent need to address future water scarcity in the state15,16. 
Meanwhile, 60% of US farms experienced drought in 2012, with extreme drought in the 
Midwestern US causing price spikes and yield declines, followed by extensive flooding in 201917,18. 
In response, local, state, and national advocacy groups and policymakers have begun to call for 
and implement policy with the intention of making farm systems more resilient to water 
shortages19,20.  For example, the Sustainable Groundwater Management Act in California now 
calls for groundwater basin water budgets to be balanced by 2042; however, there is considerable 
debate surrounding how to achieve such a goal. Given the complexities of the systems in which 
these policies operate, implementation can be difficult, and even the best-intended policies can act 
to either create or curtail opportunities for transitions towards agroecology21. 
 
In my own work, I have seen climate-motivated policies in the US–in this case the biofuel 
mandate–lead farmers in the Midwest towards degradative soil practices, while farmers in 
California respond to water scarcity by growing the tastiest tomatoes chefs have ever encountered. 
As farmers navigate a complex web of physical, biological, political, and economic environments, 
they arrive at a wide array of outcomes that reflect both a unique local context and influences that 
act on entire regions and nations22. Yet current economic and political structures have 
overwhelmingly led US farmers to make choices that have moved agricultural towards the input-
intensive, large-scale production that now defines the country’s dominant agriculture1,23. 
 
Two key questions exist when designing policy to target agricultural water resiliency. First, what 
are the farming practices that actually improve farms’ capacity to adapt to water scarcity without 
jeopardizing farmer livelihoods? And second, can policies support an agroecological transition 
towards these practices that does not allow their cooptation towards an industrial agriculture–and 
conversely, what policies are leading our country towards input-intensive industrialized systems 
even in the face of changing climates? These questions play out in many ways across different 
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agricultural landscapes, and I do not begin to tackle them in their entirety. Instead this dissertation 
explores both of these questions in two distinct systems: large-scale corn-based rotations in the US 
Midwest, and tomato dry farming in small-scale, diversified operations on the northern edge of 
California’s Central Coast region.  
 
In my attempts to answer these questions, I have tried to use the tools at my disposal to center 
farmers and their experience, wisdom, and intimate knowledge of the lands they work. From 
participatory research, to farmer interviews, to simply trying to understand farmers as complex 
actors in complex systems, my work has led me to see farmers as adept scientists, and I hope to 
honor and complement their skills with a few of my own. Given farmers’ limited access to time and 
resources, I have used mapping, lab analyses, field data collection, and statistics to help farmers 
answer the questions they find most pressing and garner the policy support needed to let diversified 
farming systems thrive. 
 
I begin in my first chapter, Biophysical and policy factors predict simplified crop rotations in the US Midwest, 
by asking what policy and environmental factors push farmers towards diversifying vs. simplifying 
their crop rotations in the US Midwest. After the 2012 drought, there is more reason than ever to 
shift this historically homogenized, highly input intensive agricultural region towards more 
complex rotations, which promote soil health24–27 and stabilize yields in times of environmental 
stress including drought28–30. However, while soil health benefits give farmers every reason to 
explore complex rotations, there has been a continued trend towards rotation simplification in the 
region over the past century. I therefore explored how policy was reshaping this system, asking 
how top-down policy pressures combine with biophysical conditions to create fine-scale 
simplification patterns that threaten the quality and long-term productivity of the United States' 
most fertile soils. Given the availability of public, spatially explicit data, I developed a novel 
indicator of crop rotational complexity and applied it to 1.5 million fields across the US Midwest, 
using bootstrapped linear mixed models to regress field-level rotational complexity against 
biophysical (land capability, precipitation) and policy-driven (distance to the nearest biofuel plant 
and grain elevator) factors. 
 
The second and third chapters explore water resiliency in California, using tomato dry farming in 
the Central Coast region as a case study. Dry farming–a management system that relies on 
diversified farming practices (cover cropping, compost application, organic management, etc.) to 
build soil water holding capacity and fertility–allows farmers to grow crops with little to no 
irrigation and has quickly garnered interest from farmers and policymakers as an alternative to the 
irrigation-intensive farming that is nearly ubiquitous in the rest of the state. While dry farming is 
an ancient practice with rich histories in many regions, perhaps most notably the Hopi people in 
Northeast Arizona31, vegetable dry farming emerged more recently in California, with growers 
first marketing dry farm tomatoes as such in the Central Coast region in the early 1980’s. In a 
lineage that likely traces back to Italian and Spanish growers32, dry farming on the Central Coast 
relies on winter rains to store water in soils that plants can then access throughout California’s rain-
free summers, allowing farmers to grow produce with little to no external water inputs. While this 
system holds great interest and promise for farmers in California, no peer-reviewed research has 
been published to date on vegetable dry farming in the state. 
 
In my second chapter, Deep nutrients and fungal communities support tomato fruit yield and quality in dry farm 
management systems, I collaborated with farmers to identify and answer key management questions 
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in the dry farm community. This participatory-based process allowed me to build relationships 
with farmers and begin to coalesce a community of practice that farmers were excited to connect 
to. As advocacy groups begin to shine a light on dry farming as a potential key to California’s water 
resilient future33–36, it felt crucial to engage with the farmers who champion this system to 
collectively come to a deeper understanding of how dry farming functions and the farming 
practices that can best support its success.  
 
Growers were primarily concerned with fruit yield and quality, with fruit quality being of particular 
interest due to the quality-based price premiums that farmers rely on when growing in a region 
with some of the highest agricultural land values in the nation. Managing soils to promote quality 
and yields presents a unique challenge in dry farm systems, as the surface soils that farmers typically 
target for fertility management in irrigated systems dry down quickly to a point where roots will 
likely have difficulty accessing  nutrients and water.  
 
As deficit irrigation and drought change microbial community composition in agricultural and 
natural systems37–39, farmers were also interested in how dry farm management might shift fungal 
communities, and if that in turn would improve tomato harvest outcomes. Beyond general shifts 
in fungal communities, farmers were specifically curious about arbuscular mycorrhizal fungi (AMF) 
inoculants, which are increasingly available from commercial sellers. Recent research has shown 
that AMF can help plants tolerate water stress40–42, and that inoculation can improve harvest 
outcomes in some agricultural systems43–45. Farmers therefore wanted to test commercial AMF 
inoculants’ potential benefits in the dry farm context. 
 
After a collaborative process, we arrived at three questions that farmers wanted to prioritize for 
immediate research: 

1. Which depths of nutrients (and which nutrients) are most influential in determining fruit 
yield and quality in dry farm tomato systems?  

2. Are fungal inoculants that are known to decrease plant water stress effective in this system? 
And more broadly,  

3. How can farmers best support high-functioning soil fungal communities to improve harvest 
outcomes? 

I collected soil and root samples on participating farms throughout the 2021 growing season, as 
well as weekly harvest and fruit quality data, to answer these questions. 
 
Finally, in my third chapter, Vegetable dry farming as an agroecological model for California’s drought resilient 
future: Farmers’ perspectives and experiences, I interviewed all of the farmers involved in my second 
chapter, along with several others, to better understand how this agroecological system might serve 
as a model for a transition to low-water agriculture in California. In a system that seems to be on 
the cusp of a strong push for wider adoption, I wanted to understand how farmers view what makes 
the system successful, and how policy might build on farmers’ collective wisdom to better support 
dry farming as an opportunity for an agroecological transition to low-water farming in California. 
I focused my interview synthesis on two main questions. First, what business and land stewardship 
practices characterize successful tomato dry farming on California’s Central Coast? And second, 
what is the potential for dry farming to expand beyond its current adoption while maintaining its 
identity as a diversified practice that benefits small-scale operations? 
 
In many ways, my dissertation work can be boiled down to my attempts to answer three questions: 
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1. How does policy go wrong, leading farms towards simplification and industrialized growing 

practices when there is an increasingly urgent need to diversify farming systems?  
2. How do these diversified systems function ecologically, and what management practices 

might enhance their performance, particularly in the face of water scarcity? And,  
3. How could policy go right, supporting agroecological transitions as climate shocks open 

opportunities for food systems change?  
 

I leave this dissertation fundamentally convinced that these questions are not the niche specialty of 
a PhD, but at the heart of and hope for a just and sustainable system of agricultural production in 
this country. Though my work ultimately tackles only slivers of the answers to these questions, I fill 
the following pages with a place-based approach, grounded in farmer experience, in the hope that 
offering concrete examples and directions can advance current and future research collaborations, 
management exploration, and movement building towards an agroecological future in the United 
States. 
 
References 
 
1. Kremen C, Iles A, Bacon C. Diversified Farming Systems: An Agroecological, Systems-based 

Alternative to Modern Industrial Agriculture. Ecology and Society. 2012;17(4). Accessed January 
22, 2020. https://www.jstor.org/stable/26269193 

2. Iles A, Marsh R. Nurturing Diversified Farming Systems in Industrialized Countries: How 
Public Policy Can Contribute. Ecology and Society. 2012;17(4). Accessed July 8, 2023. 
https://www.jstor.org/stable/26269239 

3. Valencia V, Wittman H, Blesh J. Structuring Markets for Resilient Farming Systems. Agron 
Sustain Dev. 2019;39(2):25. doi:10.1007/s13593-019-0572-4 

4. Giraldo OF, McCune N. Can the state take agroecology to scale? Public policy experiences 
in agroecological territorialization from Latin America. Agroecology and Sustainable Food Systems. 
2019;43(7-8):785-809. doi:10.1080/21683565.2019.1585402 

5. Anderson CR, Maughan C. “The Innovation Imperative”: The Struggle Over Agroecology 
in the International Food Policy Arena. Frontiers in Sustainable Food Systems. 2021;5. Accessed 
July 8, 2023. https://www.frontiersin.org/articles/10.3389/fsufs.2021.619185 

6. Le Coq JF, Sabourin E, Bonin M, et al. Public policy support for agroecology in Latin 
America: Lessons and perspectives. Global Journal of Ecology. Published online 2020. 
doi:10.17352/gje.000032 

7. Gliessman S. Defining Agroecology. Agroecology and Sustainable Food Systems. 2018;42(6):599-
600. doi:10.1080/21683565.2018.1432329 

8. Altieri MA. Agroecology: A new research and development paradigm for world agriculture. 
Agriculture, Ecosystems & Environment. 1989;27(1):37-46. doi:10.1016/0167-8809(89)90070-4 

9. Wezel A, Bellon S, Doré T, Francis C, Vallod D, David C. Agroecology as a science, a 
movement and a practice. A review. Agron Sustain Dev. 2009;29(4):503-515. 
doi:10.1051/agro/2009004 

10. Vanloqueren G, Baret PV. How agricultural research systems shape a technological regime 
that develops genetic engineering but locks out agroecological innovations. Research Policy. 
2009;38(6):971-983. doi:10.1016/j.respol.2009.02.008 



 
viii 

11. Holt-Giménez E, Altieri MA. Agroecology, Food Sovereignty, and the New Green 
Revolution. Agroecology and Sustainable Food Systems. 2013;37(1):90-102. 
doi:10.1080/10440046.2012.716388 

12. Trenberth KE, Dai A, Schrier G van der, et al. Global warming and changes in drought. 
Nature Climate Change. 2014;4(1):17-22. doi:10.1038/nclimate2067 

13. Hatfield JL, Boote KJ, Kimball BA, et al. Climate Impacts on Agriculture: Implications for 
Crop Production. Agronomy Journal. 2011;103(2):351-370. doi:10.2134/agronj2010.0303 

14. Cayan DR, Maurer EP, Dettinger MD, Tyree M, Hayhoe K. Climate change scenarios for 
the California region. Climatic Change. 2008;87(1):21-42. doi:10.1007/s10584-007-9377-6 

15. Howitt R, MacEwan D, Medellín-Azuara J, Lund J, Sumner D. Economic Analysis of the 
2015 Drought For California Agriculture. Published online August 17, 2015:31. 

16. Medellín-Azuara J, Escriva-Bou A, Rodríguez-Flores JM, et al. Economic Impacts of the 2020–
22 Drought on California Agriculture. Water Systems Management Lab.; 2022. 
http://drought.ucmerced.edu 

17. Mallya G, Zhao L, Song XC, Niyogi D, Govindaraju RS. 2012 Midwest Drought in the 
United States. Journal of Hydrologic Engineering. 2013;18(7):737-745. 
doi:10.1061/(ASCE)HE.1943-5584.0000786 

18. Kraft LL, Villarini G, Czajkowski J. Characterizing the 2019 Midwest Flood: A Hydrologic 
and Socio-Economic Perspective. Weather, Climate, and Society. 2023;1(aop). 
doi:10.1175/WCAS-D-22-0065.1 

19. Morris KS, Bucini G. California’s drought as opportunity: Redesigning U.S. agriculture for a 
changing climate. Elem Sci Anth. 2016;4(0):000142. doi:10.12952/journal.elementa.000142 

20. Brown TC, Mahat V, Ramirez JA. Adaptation to Future Water Shortages in the United 
States Caused by Population Growth and Climate Change. Earth’s Future. 2019;7(3):219-234. 
doi:10.1029/2018EF001091 

21. Ong TWY, Liao W. Agroecological Transitions: A Mathematical Perspective on a 
Transdisciplinary Problem. Frontiers in Sustainable Food Systems. 2020;4. Accessed May 29, 
2023. https://www.frontiersin.org/articles/10.3389/fsufs.2020.00091 

22. Elias M, Marsh R. Innovations in agricultural and food systems sustainability in California. 
Case Studies in the Environment. 2020;4(1):1-14. 

23. Vogeler I. The Myth Of The Family Farm: Agribusiness Dominance Of U.s. Agriculture. CRC Press; 
2019. 

24. Venter ZS, Jacobs K, Hawkins HJ. The impact of crop rotation on soil microbial diversity: A 
meta-analysis. Pedobiologia. 2016;59(4):215-223. doi:10.1016/j.pedobi.2016.04.001 

25. Riedell WE, Pikul JL, Jaradat AA, Schumacher TE. Crop Rotation and Nitrogen Input 
Effects on Soil Fertility, Maize Mineral Nutrition, Yield, and Seed Composition. Agronomy 
Journal. 2009;101(4):870-879. doi:10.2134/agronj2008.0186x 

26. Triberti L, Nastri A, Baldoni G. Long-term effects of crop rotation, manure and mineral 
fertilisation on carbon sequestration and soil fertility. European Journal of Agronomy. 2016;74:47-
55. doi:10.1016/j.eja.2015.11.024 

27. Ball BC, Bingham I, Rees RM, Watson CA, Litterick A. The role of crop rotations in 
determining soil structure and crop growth conditions. Can J Soil Sci. 2005;85(5):557-577. 
doi:10.4141/S04-078 

28. Bowles TM, Mooshammer M, Socolar Y, et al. Long-Term Evidence Shows that Crop-
Rotation Diversification Increases Agricultural Resilience to Adverse Growing Conditions in 
North America. One Earth. 2020;2(3):284-293. doi:10.1016/j.oneear.2020.02.007 



 
ix 

29. Renard D, Tilman D. National food production stabilized by crop diversity. Nature. 
2019;571(7764):257-260. doi:10.1038/s41586-019-1316-y 

30. Gaudin ACM, Tolhurst TN, Ker AP, et al. Increasing Crop Diversity Mitigates Weather 
Variations and Improves Yield Stability. PLOS ONE. 2015;10(2):e0113261. 
doi:10.1371/journal.pone.0113261 

31. Wall D, Masayesva V. People of the Corn: Teachings in Hopi Traditional Agriculture, 
Spirituality, and Sustainability. American Indian Quarterly. 2004;28(3/4):435-453. 

32. Runwal P. California’s ‘dry farmers’ grow crops without irrigation. Santa Cruz Sentinel. 
https://www.santacruzsentinel.com/2019/02/10/californias-dry-farmers-grow-crops-
without-irrigation. Published February 10, 2019. Accessed April 4, 2023. 

33. Bland A. To Grow Sweeter Produce, California Farmers Turn Off The Water. NPR. 
Published August 28, 2013. Accessed February 2, 2021. 
https://www.npr.org/sections/thesalt/2013/08/23/214884366/to-grow-sweeter-produce-
california-farmers-turn-off-the-water 

34. CAFF. Dry Farming in California: Saving Water, Making Great Wine. Community Alliance with 
Family Farmers; 2015. https://caff.org/wp-content/uploads/2015/04/Fact_Sheet.pdf 

35. DeLonge MS. In California’s Central Valley, Drought Is a Growing Threat to Farms, Food, 
and People. Union of Concerned Scientists: The Equation. Published March 15, 2022. 
Accessed April 24, 2023. https://blog.ucsusa.org/marcia-delonge/in-californias-central-
valley-drought-is-a-growing-threat-to-farms-food-and-people/ 

36. Pottinger L, Peterson C. Can Dryland Farming Help California Agriculture Adapt to Future 
Water Scarcity? Public Policy Institute of California. Published April 19, 2021. Accessed 
April 24, 2023. https://www.ppic.org/blog/can-dryland-farming-help-california-agriculture-
adapt-to-future-water-scarcity/ 

37. Rodriguez-Ramos JC, Turini T, Wang D, Hale L. Impacts of deficit irrigation and organic 
amendments on soil microbial populations and yield of processing tomatoes. Applied Soil 
Ecology. 2022;180:104625. doi:10.1016/j.apsoil.2022.104625 

38. Schmidt PA, Schmitt I, Otte J, et al. Season-Long Experimental Drought Alters Fungal 
Community Composition but Not Diversity in a Grassland Soil. Microb Ecol. 2018;75(2):468-
478. doi:10.1007/s00248-017-1047-2 

39. Toberman H, Freeman C, Evans C, Fenner N, Artz RRE. Summer drought decreases soil 
fungal diversity and associated phenol oxidase activity in upland Calluna heathland soil. 
FEMS Microbiology Ecology. 2008;66(2):426-436. doi:10.1111/j.1574-6941.2008.00560.x 

40. Bowles TM, Barrios-Masias FH, Carlisle EA, Cavagnaro TR, Jackson LE. Effects of 
arbuscular mycorrhizae on tomato yield, nutrient uptake, water relations, and soil carbon 
dynamics under deficit irrigation in field conditions. Science of The Total Environment. 2016;566-
567:1223-1234. doi:10.1016/j.scitotenv.2016.05.178 

41. Augé RM. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. 
Mycorrhiza. 2001;11(1):3-42. doi:10.1007/s005720100097 

42. Bakr J, Pék Z, Prof. Dr.Helyes L, Posta K. Mycorrhizal Inoculation Alleviates Water Deficit 
Impact on Field-Grown Processing Tomato. Polish Journal of Environmental Studies. 
2018;27:1949-1958. doi:10.15244/pjoes/78624 

43. Köhl L, Lukasiewicz CE, van der Heijden MGA. Establishment and effectiveness of 
inoculated arbuscular mycorrhizal fungi in agricultural soils. Plant, Cell & Environment. 
2016;39(1):136-146. doi:10.1111/pce.12600 



 
x 

44. Pellegrino E, Bedini S, Avio L, Bonari E, Giovannetti M. Field inoculation effectiveness of 
native and exotic arbuscular mycorrhizal fungi in a Mediterranean agricultural soil. Soil 
Biology and Biochemistry. 2011;43(2):367-376. doi:10.1016/j.soilbio.2010.11.002 

45. Verbruggen E, van der Heijden MGA, Rillig MC, Kiers ET. Mycorrhizal fungal 
establishment in agricultural soils: factors determining inoculation success. New Phytologist. 
2013;197(4):1104-1109. doi:10.1111/j.1469-8137.2012.04348.x  



 
xi 

Acknowledgements 
 
It is difficult to imagine what this dissertation would have looked like without the collaboration, 
mentorship, and friendship of my advisor, Timothy Bowles. Working with Tim has been one of 
the greatest joys, privileges, and teachers of my career, and his influence can be seen in every corner 
of the ideas and approaches in these pages. Tim’s example is one I want to follow wherever I go, 
whether it be his drive to include justice and equity in conversations of science, his thoughtful and 
generous approach to any collaboration, or his commitment to honoring family, friends, art, and 
his own wellbeing alongside the demands of an academic lifestyle.  
 
My thanks also go to Todd Dawson and Eoin Brodie, who generously served on my committee, 
leant me all sorts of fun field and lab equipment, invited me to lab meetings, and provided valuable 
gut checks all along the research process. Todd’s enthusiasm for understanding plant-AMF 
symbioses has been contagious, and I so appreciate our conversations and the excitement they 
breathed back into me when I was mired in research logistics. Eoin continues to surprise me with 
his ability to glance at my results and understand them better than I do, and my work is certainly 
better for it. 
 
Little of this research would have been possible without Jim Leap. As far as I’m aware, Jim knows 
every dry farmer in the state of California, and he connected me to nearly every farmer I worked 
with.  I’m honored to consider him a friend and a mentor, and delighted every time I get to visit 
his farm. Jim is limitless in his capacity to teach and learn about diversified farm management, and 
also in his ability to guide me towards joy in this work. 
 
Of course literally none of the dry farm work in this dissertation would have been possible without 
the brilliant farmers I was able to collaborate with. Though of course I won’t out them all here for 
privacy reasons, I hope they know that they are both the reason I do this work, and the reason I 
can do this work. 
 
Of all the farms I have gotten to connect to over the course of my dissertation, I want to give Brisa 
Ranch an extra dose of gratitude. Verónica Mazariegos-Anastassiou, Cole Mazariegos-
Anastassiou, and Claire Woodard have taught me what agroecology can look like, and their farm 
has been the inspiration for much of the research I have done in this PhD. It was always such a gift 
to stop by after a long field day and remember what this work is all about. 
 
The undergraduates I worked with in the lab and field were also a source of inspiration. Rose 
Curley, Alex Dhond, Melanie Rodríguez, Javier Matta, and Bethany Andoko (in chronological 
order) were at my side for the work that has built the foundation of my research. Amidst sample 
collection and analysis that at times seemed interminable, you kept me afloat with your careful 
diligence and enthusiasm, and allowed me to grow with you as we explored our way through the 
research process. My gratitude also goes to the many other undergraduates whose work made this 
research possible: Karly Ortega, Grace Santos, Yordi Gil-Santos, Amiri Taylor, Moe Sumino, 
Gisel De La Cerda, and Joey Mann. 
 
Also at my side throughout this work were the members of the Berkeley Agroecology Lab: Cole 
Rainey, Kenzo Esquivel, Miguel Ochoa, Paige Stanley, Aidee Guzman, Ansel Klein, Hannah 



 
xii 

Waterhouse, Janina Dierks, Franz Bender, Maria Mooshammer, Khondoker Dastogeer, Jennifer 
Thompson, Kait Libbey, and Kangogo Sogomo have created a community that I could rely on, 
learn from, and grow with. From before day one, Cole has shown up for me as a friend, sounding 
board, teacher, and mood-lifter, and I can say beyond a shadow of a doubt that the trajectory of 
my career is better for their influence. Kenzo is a joy to work, cook, organize, and make music 
with, and his friendship has buoyed me along this ride. Ben Goldstein, though not technically part 
of the lab, holds a similar place in my heart, and has become an invaluable colleague as well as 
friend. Hannah’s mentorship has been invaluable at inflection points in my PhD process, and I 
can’t overstate how lucky her new grad students will be to have her as an advisor.  
 
I feel incredibly privileged to have the community support of more people than I can thank 
individually without making my acknowledgements longer than my dissertation. Communities that 
have given me particular encouragement, joy, and solace include the 2018 ESPM cohort, 
Friendship Village, the Sunset/Pomona/floating/CCST crew, my Park Palace queens, my sweet 
childhood (and now adulthood) friends, and every last Sheline and Socolar. You all make me feel 
connected to something I want to be accountable to.  
 
Within these communities, a few people stand out as being particularly instrumental in helping me 
thrive throughout this PhD. 
 
The folks at Rat Village–Abby, Alli, Brendan, and Charley–made a beautiful house into a beautiful 
home. You taught me how organization and communication can create abundance, and gave new 
meaning to what it can mean to live communally. Everything from fridge leftovers to card nights 
to casual kitchen encounters carried me through this experience, and I hope you will see my use of 
the term “Rat Village” in my dissertation as indicative of the lengths I am willing to go to to express 
my gratitude. 
 
Two dear friends, Erin Curtis Nacev and Claire Woodard, have been cornerstones of my PhD 
experience. They were both my gateway to the Bay Area–I would never even have arrived here if 
Berkeley hadn’t felt like the homecoming that you created. Through med school, residency, and 
raising a child, Erin found time for visits and calls, and is my–and perhaps the entire world’s–best 
model for what a can-do attitude can be. She is generous, loyal, principled, a source of such joy, 
and capable of everything. Plus she and Zach made Evie, which is really the highest praise you can 
give a person. 
 
Of the narratives I have watched unfold over the course of my PhD, few have made me happier 
than watching Claire transform from the best of friends to the best of collaborators. It was her 
overwhelming loyalty as a friend and endless capacity for hard work that brought her to my first 
tomato field, and my own incredible luck that has kept her farming ever since. I marvel that the 
person I’m most likely to call crying on the phone is the same person I’m most likely to call about 
transplanting techniques. Claire’s accompaniment through this entire experience has been so 
thorough that it’s alarming to remember there was a time before Claire was a farmer, and to 
imagine what my field seasons would have looked like without her there.  
 
I have also been lucky to have the deep support of many family members on this journey.  That 
my brother, sister-in-law, and sister-cousin all had PhDs when I arrived at Berkeley meant that my 
PhD did not have to be demystified, but rather was never mystified in the first place. Jacob, 



 
xiii 

Bethanne, and Annelle’s guidance, encouragement, and commiseration have been the sweetest set 
of bumper rails as I ricocheted through this experience. Jacob in particular has fielded enough “hi 
how are you, but actually can we talk about statistics?” phone calls from me that you might think 
“random effect” is a family member we desperately need to gossip about. Luckily my niece, 
Isabelle, has been the most brilliant distraction when things get too heady–my heart remembers to 
refocus when I see her shining eyes. 
 
Though none of my grandparents are here to read this dissertation, I can see the way their faces 
would beam if I could show it to them. Their influences are almost comically obvious in my career 
choices–Grandpa Ray’s determination and proclivity for natural sciences, Grandma Yvonne’s 
steadfast commitment to social justice, Grandpa Milt’s philosophy and politics, and Grandma 
Molly’s effortless ability to connect to everyone she met. From antiracism to interviews, DNA work 
to policy ideas, they have created a foundation that I want to build on, and their obvious pride in 
me has given me the confidence to start building. 
 
For my mom and dad, I reach the limits of what I know how to do with words. To say that your 
love and support for me was unwavering suggests the possibility that it might have wavered, and 
the knowledge that that is not possible is baked into the bedrock of my existence. You are the 
people I want to consult with every conundrum that comes my way, and the people who most 
celebrate my every success. Dad, you know it’s not possible to fill the space Mom left in our lives, 
and you fill every space around that. 
 
My luck at having Varun, my partner, in my life can be measured in the mornings I wake up 
happy, my growing ability to process out loud (still a work in progress), the days my grump melts 
into grins, the times I go backpacking, the plants in our living room, the edited drafts of each 
chapter below, the width of our couch, and the number of dissertation-fueling treats in our 
cupboard. He is patient, joyful, loving, smart as all get-out, and an inspiration to me. His curiosity 
has brought a new perspective to the work I do, and I can navigate my decisions more clearly in 
the paths he reflects back to me. Varun, you extend yourself to nurture my growth, and you can 
see that growth written in these pages. I want to be with you everywhere. 
 
My final gratitude is to the land that made this work possible and its generations of stewards. These 
soils continue to inspire, feed, and live through millennia of care, and I am indebted to those who 
built relationship with these places. I want to acknowledge and pay my respect to the Awaswas-
speaking Uypi Tribe and Chochenyo-speaking Ohlone people, whose unceded territory 
encompasses the field sites and laboratories where this work took place. My work has benefited 
from the occupation of this land, and thus, with this land acknowledgement, I affirm Indigenous 
sovereignty. 
 



 
1 

Chapter 1: Biophysical and policy factors predict simplified crop rota)ons 
in the U.S. Midwest1 
 
1.1. Abstract 
 
Over 70% of the 62 million ha of cropland in the Midwestern United States is grown in corn-based 
rotations. These crop rotations are caught in a century-long simplification trend despite robust 
evidence demonstrating yield and soil benefits from diversified rotations. Our ability to explore 
and explain this trend will come in part from observing the biophysical and policy influences on 
farmers’ crop choices at one key level of management: the field. Yet field-level crop rotation 
patterns remain largely unstudied at regional scales and will be essential for understanding how 
national agricultural policy manifests locally and interacts with biophysical phenomena to erode—
or bolster—soil and environmental health, agricultural resilience, and farmers’ livelihoods. We 
developed a novel indicator of crop rotational complexity and applied it to 1.5 million fields across 
the US Midwest. We used bootstrapped linear mixed models to regress field-level rotational 
complexity against biophysical (land capability, precipitation) and policy-driven (distance to the 
nearest biofuel plant and grain elevator) factors. After accounting for spatial autocorrelation, there 
were statistically clear negative relationships between rotational complexity and biophysical factors 
(land capability and precipitation during the growing season), indicating decreased rotation in 
prime growing areas. A positive relationship between rotational complexity and distance to the 
nearest biofuel plant suggests policy-based, as well as biophysical, constraints on regional rotations. 
This novel rotational complexity index is a promising tool for future fine-scale rotational analysis 
and demonstrates that the United States’ most fertile soils are the most prone to degradation, with 
recent policy choices further exacerbating this trend. 
 
1.2. Introduc1on 
 
Biological simplification has accompanied agricultural intensification across the world, resulting in 
vast agricultural landscapes dominated by just one or two crop species. The Midwestern US is a 
prime example1, where corn currently dominates at unprecedented spatial and temporal scales. 
An area the size of Norway is planted in corn in the Midwest in any given year2 with little variation 
in crop sequence; over half of Midwestern cropland is dedicated to corn-soy rotations and corn 
monoculture3. Directly and indirectly, this agricultural homogeneity causes environmental 
degradation that harms ecosystem health4–7 while also contributing to climate change8 and 
increasing vulnerability to climate shocks9. 
 
Agricultural diversification in space and time reverses this trend towards homogeneity with 
practices like crop rotations that vary which harvested crops are grown in a field from year to year. 
Crop rotations are a traditional agricultural practice with ample evidence that complex rotations—
ones that include more species that turn over frequently—benefit farmers, crops, and 
ecosystems10_12. As one of the principles underlying agricultural soil management, diverse crop 

 
1 This chapter was previously published: Socolar Y, Goldstein BR, de Valpine P, Bowles TM. Biophysical and policy 
factors predict simplified crop rotations in the US Midwest. Environ Res Lett. 2021;16(5):054045. doi:10.1088/1748-
9326/abf9ca 
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rotations promote soil properties that provide multiple ecosystem services including boosting soil 
microbial diversity13,14,  enhancing soil fertility15,16, improving soil structure17-20 and reducing pest 
pressur7,21. These soil benefits combine to increase crop yields17,22–24 and stabilize them in times of 
environmental stress25–27. Crop rotations’ environmental and economic benefits typically increase 
with the complexity of the rotation11,28,29 (as defined by the number of species in rotations and the 
frequency of their turnover), while conversely, biophysical aspects like soil structure and microbial 
populations are degraded as rotations are simplified12,20,30,31. 
 
Despite its benefits, crop rotational complexity continues its century-long decline in the 
Midwestern US32–36. Corn-soy rotations increasingly dominate over historical crop sequences that 
included small grains and perennials, with corn monocultures (corn grown every year) also on the 
rise1. This increasing simplification is in part the result of a set of interlocking, long-standing federal 
policies aimed at maximizing production of a handful of commodity crops that distort farmers’ 
economic incentives.  
 
Regional rotation simplification is clear from analyses of crop frequency33,34, county-level data7, 
and farmer interviews35. However, fine-grained patterns that more completely reflect farmers’ 
rotational choices across the region, and how those choices relate to influences from policy and 
biophysical factors that play out across agricultural landscapes, remain largely unstudied. This 
knowledge is essential for understanding how national agricultural policy manifests locally and 
interacts with biophysical phenomena to erode—or bolster—soil and environmental health, 
agricultural resilience, and farmers’ livelihoods. 
 
Biofuel mandates32,37–39 and concerted efforts to craft industrial livestock systems as end-users of 
these corn production systems40,41 make corn lucrative above other commodities, while federal 
crop insurance programs push farmers to limit the number of crops grown on their farms42–44. 
These policies, along with the current corporate food regime45, drive pervasive economic incentives 
to grow corn, and farmers must increasingly choose between growing corn as often as possible to 
provide a source of government guaranteed income35, and maximizing soil benefits and annual 
yields through diversified rotations. These policies both alter agricultural economics at a national 
level by boosting corn prices and manifest locally in grain elevators and biofuel plants that create 
pockets of high corn prices with rising demand closer to each facility37.  
 
Biophysical factors like precipitation and land capability (an area’s capacity to grow crops based 
on soils and geography) that are highly localized and spatially heterogeneous can catalyze or 
impede this simplification trend. For example, increasing rotational complexity is one strategy that 
farmers may employ to manage marginal soils or greater probability of drought, while ideal soil 
and climate conditions allow for rotation simplification to be profitable, at least in the short run5. 
 
As these top-down and bottom-up forces combine, we ask: how do farmers optimize crop rotational 
diversity in complex social-ecological landscapes, with top-down policy pressures to simplify 
intertwined with bottom-up biophysical incentives to diversify? (Figure 1). Because biophysical 
factors and even policy influences (e.g. high prices near biofuel plants) vary greatly at the field scale 
at which management decisions occur, an approach is needed to assess patterns of crop rotation 
that can capture simplification and diversification at this scale. Though remotely sensed data on 
crop types can now show fine-scale crop sequences, previous approaches to quantifying rotational 
complexity have relied on classifying rotations based on how often a certain crop appears in a 
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region over a given time period33,34, aggregating over large areas7, or examining short (3-4 year) 
sequences33,34,46. To date, methods to capture rotational complexity have therefore been unable to 
address management decisions at the field scale (in the case of aggregation), and/or lose valuable 
information about the number of crops present in a sequence and the complexity of their order (in 
the case of crop frequency and short sequences).  At the other end of the spectrum, farmer surveys 
have impressively detailed the economic and biophysical considerations that go into farmers’ 
rotation decisions35, yet are limited by the number of farmers they can reach and who chooses to 
respond. 
 
Here, we explore how aspects of farm landscapes influence field-scale patterns of crop rotational 
complexity across the Midwestern US. We developed the first field-scale dataset of rotational 
complexity in corn-based rotations, covering 1.5 million fields in eight states across the Midwest 
and ranking crop sequences based on their capacity to benefit soils. We examined rotations from 
2012-2017 to coincide with the introduction of the Renewable Fuel Standard, or “biofuel 
mandate,” which took full effect in 2012. We then correlated fields’ rotational complexity with 
biophysical (land capability and rainfall during the growing season) and policy outcomes (proximity 
to biofuel plants and grain elevators) factors, using bootstrapped linear mixed models to account 
for spatial autocorrelation in the data. By identifying spatially explicit predictors of rotational 
complexity, we illuminate how top-down policy pressures combine with biophysical conditions to 
create fine-scale simplification patterns that threaten the quality and long-term productivity of the 
United States’ most fertile soils. 
 
1.3. Methods 
 
We focused our analysis on the eight Midwestern states with the highest corn acreage (Illinois, 
Indiana, Iowa, Kansas, Minnesota, Missouri, Nebraska, Ohio)2. We considered the six-year period 
from 2012 to 2017, which coincides with the introduction of the Renewable Fuel Standard in 2012. 
After deriving a novel field-scale rotational complexity index (RCI), we used spatially blocked 
bootstrapped regression to assess how key landscape factors associated with this indicator. These 
statistical methods account for overly confident parameter estimates that arise in naive models due 
to spatial autocorrelation in the data. All analyses were conducted in R47. 
 
1.3.1. Calcula*on of rota*onal complexity index (RCI)  
We compiled a dataset that shows the crop sequence (cash crops only; cover crops are not 
detected by the Cropland Data Layer) on each field in the study area (see ‘Datasets’ below) and 
used these sequences as a proxy for crop rotation to derive a novel indicator of rotational 
complexity that could be applied at the field scale. To date, no metric exists that can supply both 
the flexibility of quantifying different length rotations that occur in the same time period, and the 
specificity of operating at the field level. 
 
We adapted the rotational diversity index (d) of previous studies25,48 that quantifies the diversity of 
a known rotation as a function of the length of the rotation (l, in years) and the number of crops 
in the rotation (n): 

𝑑 = √𝑛𝑙  (Equation 1) 
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to accommodate large-scale, remotely-sensed data (see supplement for further details). Instead of 
trying to identify common rotations of a known length, we observed a fixed-length sequence (in 
our case, 6 years) of crops in a given field, and replaced rotation length (l) with species turnover 
from year to year (T1), and turnover every two years (T2). For example, in a 6-year crop sequence 
ABABAB, T1 = 5 and T2 = 0, while for ABCABC, T1 = 5 and T2 = 4. We also added a pseudo-
turnover (Tp) equal to the number of times a duplicate perennial appears in a field in two 
consecutive years (e.g. alfalfa-alfalfa), as perennial crops typically provide soil benefits49–52 but 
would otherwise be penalized by the metric for their low turnover. For example, in a 6-year crop 
sequence APPAAA, where A is an annual crop and P is a perennial, T1 = 2, T2 = 3, and Tp = 1 
for a total turnover score of 6, whereas if P were an annual the total turnover would be 5. This 
adjustment makes the turnover term for consecutive perennials equivalent to the turnover if 
different annuals were grown in each year that the perennial is repeated. 
 
The resulting metric: 

Rotational Complexity Index (RCI) = &𝑛 !!"!""!#
#

   (Equation 2) 

 
yields a single value that can compare rotational complexity across any crop sequence of a given 
length and can be applied at fine scales with low computational costs (Figure 2). The metric is 
able to cut through “messy” data with unusual or unexpected crop rotations to sort sequences in 
terms of their expected potential to benefit soils (see representative RCI values in Table 2).  
 
1.3.2. Datasets  
We identified publicly available datasets with a spatial component that might predict rotational 
complexity. Biophysical predictors included land capability, and magnitude and variability of 
precipitation during the growing season; policy predictors included distance from the nearest grain 
elevator and biofuel plant (Table 1). We then compiled rasters from these datasets (Figure S1). 
 
As done in previous analyses59–61, we used the National Commodity Crop Productivity Index 
(NCCPI) as a proxy for inherent land capability. The NCCPI combines soil properties (e.g. cation 
exchange capacity, bulk density, and slope) to form an index that shows agricultural land capacity, 
with submodels for corn/soy, cotton, and small grains62. In the present analysis, we use the highest 
NCCPI value out of the three submodels for each pixel. 
 
1.3.2.1. Cropland Data Layer 
We used the USDA’s Cropland Data Layer (CDL) from 2012-2017 to quantify crop rotational 
complexity in our focal regions63. The CDL uses remote sensing to identify the crop species present 
in a given year on all US cropland at a 30x30m resolution. We aggregated the CDL to 150x150m 
with a majority filter to avoid small-scale accuracy errors inherent in the dataset. From these 
aggregated pixels, we included only “corn-based” rotations, defined as pixels that were categorized 
as corn in at least one of the six years in the study period, in subsequent analyses (71% of total 
cropland).  
 
1.3.2.2. Field-level aggrega*on 
We aggregated the above datasets using a remotely sensed dataset of agricultural field boundaries 
produced by Yan and Roy (2016)57 to avoid overrepresenting large fields. Each variable was 
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averaged over the field (mode for RCI and state, median for rainfall variance, and mean for all 
remaining), and a new field size variable was created by summing the pixels in each field. Fields 
were included if the CDL showed them as being at least 50% corn in one or more of the focal 
years. 
 
1.3.3. Spa*ally Blocked Bootstrap Regression 
To test for a relationship between RCI and predictive factors, all variables were centered and RCI 
was regressed against a set of covariate data (Table 1) in a linear mixed model (LMM) including 
US state as a random effect to account for regional differences (see supplement). We included 
interactions for which we had a priori hypotheses (see Table 3 for full list of terms included). The 
model was estimated using the R package `lme4`64. 
 
Two model assumptions are violated in the above model, requiring updated estimates of the 
parameters’ standard errors. First, because RCI is a derived statistic with an unusual domain, the 
index is not distributed according to a known distribution family and violates the assumption of 
normality in the residuals. Second, residuals showed high spatial autocorrelation at multiple scales 
(Global Moran’s I = 0.23, p-value < 1e-15, 20 nearest neighbors weights matrix) and with an 
unknown structure, necessitating a nonparametric approach. Both violations are likely to shrink 
standard errors of the estimated parameters, leading to overconfident estimates; to illustrate, in the 
case of spatial autocorrelation, if the explanatory variables are randomly located in relation to crop 
rotation, spatial autocorrelation in crop rotation would falsely inflate significance. We used 
nonparametric spatial block bootstrapping to correct for this overconfidence65,66. An algorithm for 
sparsely distributed spatial data, derived by Lahiri 2018, was implemented in R (see supplement). 
 
Spatial block bootstrapping involves iteratively resampling data in spatial blocks to mimic the 
generation of autocorrelated data. Choice of block size is nontrivial, and choosing the optimal 
block is an open question67, but blocks should be larger than the scale at which autocorrelation 
operates. Using the R package `gstat`68,69 to compute a variogram of the residuals generated by 
the naive LMM, we determined that range (distance at which spatial autocorrelation falls off 
sufficiently) was 400815m. We used this as the dimension of each (square) spatial block (Figure S2).  
We repeated this bootstrap with a range of possible spatial block sizes and found that this inference 
on parameters was robust to the choice of block size (Table S1). 
 
1.4. Results 
 
Complexity of Corn-based Rotations in the Midwestern US: RCI values calculated for corn-based 
rotations create the first map, to our knowledge, that quantifies field-scale rotational complexity 
across the Midwestern US (Figure 3). 
 
RCI values from 2012-2017 range from 0-5.2 (median = 2.2), and are positively skewed (Fig 3b). 
Corn monoculture (i.e. corn every year for the six-year period; RCI = 0) accounts for 4.5% of the 
study area and 3.3% of fields, suggesting that larger fields are more likely to be managed as 
monocultures (Table 2). The mode RCI score (2.24) corresponds to a corn-soy rotation and 
dominates the region, covering over half of the study area. Two thirds of the area with this score 
was a CSCSCS or SCSCSC sequence, while the remaining third corresponds to other rotations 
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that yield the same RCI (e.g. substituting soy for another crop, or a three-year perennial followed 
by three years of corn). 
 
1.4.1. Predictors of Rota*onal Complexity 
RCI scores have statistically clear correlations with land capability, mean rainfall, distance to the 
nearest biofuel plant, and field size, as well as with several interactions between these variables 
(Table 3; conditional R2 = 0.14). Standard errors from the spatially blocked bootstrap were much 
larger than uncorrected naive confidence intervals, reflecting that accounting for spatial non-
independence is necessary to estimate uncertainty of parameter estimates. 
 
Rotational complexity decreased with NCCPI, a proxy for land capability. We find that land of 
higher inherent capability (flatter slopes, lower bulk density, etc.) is more likely to be used for lower 
complexity rotations.  
 
Rotational complexity decreased with average rainfall during the growing season. Fields with 
ample precipitation during the growing season are more likely to have simplified rotations. 
 
Though the relationship between the proximity of the nearest grain elevator and a field’s rotational 
complexity is not statistically clear (95% CI includes zero), RCI showed a clear increase with 
distance to the nearest biofuel plant. Fields that are closer to biofuel plants are therefore more likely 
to have simplified rotations. 
 
Rotational complexity decreased with field size, with larger fields being more likely to have 
simplified rotations.  
 
Two of the interactions included in the model show statistically clear relationships. There is a 
positive interaction between land capability and field size, with higher quality land associated with 
decreasing RCI on small fields and slightly increasing RCI on large fields (Figure 4a). The 
interaction between land capability and rainfall variance show a negative effect on RCI, with 
highly variable rainfall accentuating land capability’s impact on RCI (Figure 4b). 
 
Interpretations of the relationship that each variable has with rotational complexity are shown in 
Table 4. Though each change is associated with a small shift in average RCI across the region, 
these can represent massive shifts in regional land management. 
 
1.5. Discussion 
 
As crop rotations continue to simplify in the Midwestern US despite robust evidence demonstrating 
yield and soil benefits from diversified rotations, our ability to explain and understand these trends 
will come in part from observing the biophysical and policy influences on farmers’ crop choices at 
one key scale of management: the field. By developing a novel metric, RCI, that can classify 
rotational complexity over large areas at the field scale, we open the door to regional analyses that 
can address the unique landscape conditions that impact farmers’ field-level management choices 
and their subsequent influence on rotational simplification. We find that as farmers are pushed 
towards simplification by broad federal policies (e.g. the biofuel mandate), physical manifestations 
of these policies like biofuel plants are correlated with intensified simplification pressures. Similarly, 
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we see that the pressure to build soils and boost crop yields through diversified rotations intensifies 
in fields with lower land capability, while conversely the negative effects of cropping system 
simplifications are accentuated on the region's best soils. 
 
1.5.1. Crop rota*onal complexity in the US Midwest at the field scale 
RCI uses the sequence of cash crops on a given field as a proxy for crop rotation, and sorts these 
sequences into scores based on the sequence’s complexity and potential for agro-ecosystem health. 
Because this metric has not been used in previous analyses, we verified RCI’s validity through 
comparisons to previous estimates of rotational prevalence in the region. For example, two separate 
surveys of farmers in the Midwestern US showed that between 24% and 46% report growing 
“diversified rotations”35,70 which we consider to be an RCI of greater than 2.24 (i.e. corn-soybean). 
In the present study, 34% of fields had an RCI greater than 2.24. This and further comparisons of 
RCI to previous work (see supplement) show that RCI is capable of capturing previously-noted 
trends in the region3,34,35,63,71.  
 
1.5.2. Influence of landscape factors on crop rota*onal complexity 
The ability to analyze rotations at the field scale across the entire Midwestern US allows us to ask 
how farmers optimize their rotations in complex economic and biophysical landscapes that include 
pressures to both simplify and diversify. Several biophysical and policy variables show statistically 
clear relationships with rotational complexity: high land capability, high rainfall during the 
growing season, and proximity to biofuel plants are all associated with rotational simplification. 
Given policy incentives, farmers often find that “corn on corn on dark dirt usually pencil out to be 
the way to go,” with farmers growing corn year after year when high quality soil is available35. 
However, when that proverbial “dark dirt” is not available, calculations are not so simple. If 
growing conditions are sufficiently poor (low land capability and low rainfall), these intensive corn 
systems may not be profitable, and farmers will have to rely more heavily on non-corn crops (or 
else inputs that eat into their profits) to maintain crop health and profitability in their fields.  
 
We see this dynamic at play with land capability in the present analysis. Despite—or rather because 
of— the fact that more diverse rotations improve soils, the most degrading cropping systems 
counterintuitively tend to occur on the highest quality land. Highly capable lands can be farmed 
intensively without dipping into a production “danger zone” in years with weather that is 
historically typical for the region, creating a pattern of land use that is likely to degrade these high 
quality lands in the long term and potentially jeopardize future yields, particularly in the face of 
climate change25.  
 
Recent analyses show that enhanced drought tolerance and resilience for crops is one of the key 
benefits of diverse crop rotations25,27,72. In the present analysis, mean rainfall during the growing 
season correlates positively with rotational simplification. Farmers may therefore be employing 
crop rotation in areas of low rainfall to achieve production levels that will keep a farm solvent, as 
was seen with rotational complexity increases in Nebraska during a drought period from 1999 to 
200773. This trend is further accentuated by the negative interaction between land capability and 
rainfall variance in our analysis, where higher rainfall variability leads to even more diverse 
rotations on marginal lands.  
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Proximity to biofuel plants, the main policy indicator in our model, showed a statistically clear 
trend towards rotational simplification, likely due to increased economic profits. Local corn prices 
increase by $0.06 - $0.12/bushel in the vicinity of a biofuel plant, amplifying incentives to grow 
corn more frequently37. Wang and Ortiz Bobea39 were surprised not to find an impact of biofuel 
plant proximity on county-level frequencies of corn cropping in their own analysis, and the present 
analysis—done at a field rather than county scale—shows exactly this expected effect: corn-based 
rotations are simplified when in closer proximity to a biofuel plant. 
 
In the current economic and policy landscape, farmers are pushed to simplify rotations through 
more frequent corn cropping, especially in proximity to biofuel plants, while marginal soils and 
low rainfall pull fields towards more diverse rotations. 
 
1.6. Conclusion 
 
1.6.1. Opportuni*es and Recommenda*ons for Future RCI Use 
RCI’s ability to classify rotational complexity across large regions at the field scale and with low 
computational cost opens doors to future analyses that explore the interplay between localized 
landscape conditions, management choices, and agricultural, environmental, and economic 
outcomes. We see a strong potential to employ this metric not only in new regions, but in analyses 
that address how results from field experiments with crop rotation may scale up to regional levels33. 
 
We also note that the metric should be used with caution. For example, because RCI cannot 
recognize functional groups in crop sequences (e.g. legumes vs. grains), it cannot capture the added 
benefits that diverse functional groups often add to a rotation. In addition, though RCI includes a 
perennial correction that avoids penalizing multiple consecutive years of perennials the metric 
likely still underestimates the benefits of perennials in rotations. RCI is neutral to the soil benefits 
of annuals vs. perennials, while in practice the year-round cover and crop species mixes (which are 
coded as a single crop in the Cropland Data Layer) that often accompany perennials may boost 
soil benefits beyond those of annuals74. Consecutive years of perennials are uncommon in our study 
area (e.g. less than 5% of studied crop area in Iowa), and we encourage caution before applying 
the metric to regions with a more substantial perennial presence. 
 
We therefore recommend using RCI in studies that explore a wide range of cropping sequences 
where large differences in RCI are very likely to be meaningful, rather than as a tool to rank 
sequences that give similar scores. It is also important to note that, though the index can be applied 
to data of any sequence length, RCI values from different sequence lengths cannot be compared 
to each other; a rotation that results in a 2.2 from examining a six-year sequence will not be a 2.2 
when examining a five or seven-year sequence.  
 
We also note that in using crop sequence as a proxy for crop rotation, RCI cannot fully capture 
the cyclical nature of true crop rotations. Because RCI examines a fixed number of years, it may 
“split up” identical rotations in ways that give slightly different scores (for example, an ‘AABB’ 
rotation might appear as either AABBAA (RCI = 2.4) or ABBAAB (RCI = 2.6) in a six-year 
sequence). As these discrepancies will decrease when longer sequences are considered, we 
recommend applying RCI to sequences that are as long or longer than the longest expected 
rotation in the study region. 
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We hope to see RCI used in future analyses that extend beyond the Midwest; however, regional 
and historic patterns of crop production likely influence farmers’ rotational decisions and may 
render RCI scores calculated from disparate geographical regions difficult to interpret when called 
into direct comparison. We therefore see great promise in RCI as a rotational metric, and caution 
against applications that are overly narrow (e.g. comparing very similar RCI scores) and overly 
broad (e.g. comparing RCI scores across regions). 
 
1.6.2. Policy Implica*ons 
The time period chosen in this study, 2012 - 2017, coincides with the introduction of the 
Renewable Fuel Standard, or “biofuel mandate,” which took full effect in 2012. This policy 
mandates that 7.5 billion gallons of biofuel be blended with gasoline annually, and caused biofuel 
plants to open and local corn prices to soar across the Midwestern US75,76. Now in 2021, there is 
significant political pressure both to maintain the biofuel mandate in its current state and to relax 
the standards, and new exemptions to the mandate have already caused several biofuel plants to 
close in the region77,78. Given the link between biofuel plant proximity and rotational complexity, 
our analysis suggests that these closures, if continued, would likely be associated with an increase 
in mean RCI in the Midwestern US. Using our current model, simulations (n = 100) of randomly 
closing 20 of the 198 biofuel plants in the region lead to an increase of 0.003 in average RCI in the 
region, driven by greater distance to the nearest biofuel plant. In turn, increasing average RCI by 
0.003 represents, for instance, the equivalent of 41,000 ha of cropland switching from corn-soy 
rotations to the most diverse rotation possible (6 different crops grown across 6 years). 
 
Rotational simplification near biofuel plants is a pertinent example of the influence that policy can 
have on farm management decisions and its landscape repercussions. Biofuel mandates are one of 
several policies, including crop insurance and research funding priorities79, that currently maintain 
the profitability of corn production; however, these policies need not be the ones that define 
rotational landscapes, and increased funding for policies such as the Conservation Stewardship 
Program could better align farmers’ economic incentives with improved environmental health80 
(Figure 1b).  
 
When strong economic incentives encourage rotational simplification, our analysis suggests that it 
is more likely to occur on land with favorable biophysical conditions for corn growth. With our 
current policy structure, the highest quality lands in the Midwestern US therefore become the most 
prone to degradation through intensive management. 
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1.9. Figures 
 
Figure 1. Schematic of diversification vs. simplification drivers. Schematic of diversification vs. 
simplification drivers in the current policy climate (a), and  if policies are reformed to encourage 
crop system diversification (b). In this study, we ask how farmers optimize crop rotational diversity 
as top-down policy pressures and bottom-up biophysical limits combine on farm fields in the US 
Midwest. 
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Figure 2. Construction of the Rotational Complexity Index (RCI). Example of a small area out 
of the eight focal Midwest US states for which a metric of crop rotation complexity (RCI) was 
calculated. This section of Northwestern Iowa, USA shows six years of crops (a-f), as determined 
by the Cropland Data Layer, grown in the same area. Each individual pixel sequence is combined 
into an RCI score (g) using Equation 2. Any pixel that does not include corn in its sequence in any 
of the six years is not included in the analysis (areas in black). Each pixel represents 2.25 hectares. 
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Figure 3. Rotational complexity in the US Midwest. 
The six-year crop sequence of each pixel in the eight-state focal region was analyzed to produce 
an RCI score (a); 0 indicates monoculture corn, 5.2 indicates a different crop grown in each of the 
six years. Only fields that grew corn in at least one of the six focal years were given a score. The 
area covered by each RCI score (b) shows a small peak at 0 (corn monoculture), and 2.24 (RCI 
value corresponding to a corn-soy rotation). 
 
(a)
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(b) 
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Figure 4. Effects of variable interactions on RCI. The effect of the interaction between field size 
and land capability (a), and rainfall variance and land capability (b) on predicted RCI while holding 
all non-interacted variables constant. Focal variables range from two standard deviations below to 
two standard deviations above their means. 
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1.10. Tables 
 
Table 1. Datasets used in the analysis. 

Variable Description Resolution 
(for rasters) 

Source 

Land capability 
(NCCPI) 

National Commodity Crop 
Productivity Index 
(NCCPI) for corn and soy 

30x30m gSSURGO53 

Grain elevator 
distance (km) 

Distance to the nearest 
grain elevator 

30x30m Businesses with SIC code 
51530100, 51530102, 
51539901, or 51530204 
in the 8 focal and 11 
surrounding states; data 
queried in 201954 

Biofuel distance 
(km) 

Distance to biofuel 
production plant 

30x30m Businesses with NAICS 
code 325193 in focal and 
surrounding states; data 
queried in 201955 

Mean rainfall (in) Mean precipitation during 
the 2012-2017 growing 
seasons 

0.05° CHIRPS56 

Rainfall variance 
(in2) 

Variance in precipitation 
during the growing season 
in the 2012-2017 study 
period 

0.05° CHIRPS56 

Field size (ha) Area of field 30x30m Yan & Roy, 201657 
State US State NA U.S. Census Bureau58 

 
 
 
  



 
21 

Table 2. Summary of RCI values and associated attributes. Across the study area there were 19 
unique RCI values ranging from corn monoculture (0) to a different crop grown in each of the six 
years (5.2). Each RCI value (other than zero) can correspond to multiple crop sequences, e.g. 
CCCCSC, CCSCCC, and CCWCCC would all have an RCI of 1.73. We give an example from 
the dataset of a sequence that corresponds to each RCI level; however, the options are nearly 
limitless. In these example rotations, C = corn, S = soy, O = oats, W = wheat, A = alfalfa 
(perennial), P = pasture (perennial). 
 

RCI RCI Area 
(ha) 

Percent of 
Study Area 

Percent of 
Fields 

Example 
Rotation 

0.00 1,974,302 4.49% 3.26% CCCCCC 

1.41 802,458 1.83% 1.79% CCCCCS 

1.73 1,142,046 2.60% 2.53% CCCCSC 

2.00 2,554,793 5.82% 5.50% CCCCAA 

2.24 24,951,911 56.80% 53.12% CSCSCS 

2.45 4,589,477 10.45% 10.65% CSCSSC 

2.65 82,270 0.19% 0.26% CAAACC 

2.74 305,785 0.70% 0.92% CPCSSS 

2.83 3,201 0.01% 0.01% AACAAC 

3.00 1,941,698 4.42% 5.75% CPCSCS 

3.24 2,038,480 4.64% 6.25% SCPCSC 

3.46 1,134,947 2.58% 3.30% CPPSPP 

3.67 600,854 1.37% 1.53% OCSOCS 

3.74 394,328 0.90% 1.17% CPCOCA 

4.00 725,024 1.65% 2.15% APAACS 

4.24 494,406 1.13% 1.23% COSAAC 

4.47 83,723 0.19% 0.26% PCOASA 

4.74 104,083 0.24% 0.30% SPOACS 

5.20 6,725 0.02% 0.02% CSPOAW 
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Table 3. Regression coefficients. Coefficients from linear mixed models of RCI on various 
biophysical and social variables, with state as a random effect. Estimates are given from a naïve 
(non-bootstrapped) model, while confidence intervals are obtained from spatially blocked 
bootstrap regressions. After running 1000 bootstrapped models, the 2.5 percentile was used as 
the lower limit of the 95% confidence interval, while the 97.5 percentile was the upper limit. 
Interactions were chosen conservatively and a priori by author expectations about possible 
important interaction processes. Because variables were unscaled, magnitudes of coefficients are 
not directly comparable. Coefficients whose 95% confidence interval does not include zero are 
shown in bold. 
 
Variable Estimate 95% CI 

Intercept  2.47e-02 -4.43e-02 –  6.99e-02 

Land capability -2.84e-01 -5.20e-01 – -6.63e-02 

Grain elevator distance 
(km) 

 6.68e-04 -2.21e-03 –  3.63e-03 

Biofuel distance (km)  1.09e-03  2.47e-04 –  1.82e-03 

Mean rainfall (in) -4.12e-02 -5.93e-02 – -1.07e-02 

Mean rainfall squared (in2)  3.82e-03 -2.54e-03 –  9.08e-03 

Rainfall variance (in2)  2.40e-03 -3.04e-03 –  4.12e-03 

Field size (ha) -2.70e-03 -2.99e-03 – -1.93e-03 

Land capability x 
Biofuel distance 

-2.78e-04 -2.86e-03 –  3.81e-03 

Land capability x 
Grain distance 

-3.26e-03 -1.85e-02 –  7.21e-03 

Land capability x 
Mean rainfall 

-8.98e-02 -1.73e-01 –  1.02e-01 

Land capability x 
Rainfall variance 

-1.75e-02 -2.48e-02 – -4.08e-03 

Land capability x 
Field size 

 6.27e-03  1.31e-03 –  7.81e-03 

Biofuel distance x 
Field size 

 5.57e-06 -5.67e-06 –  1.28e-05 

Grain distance x 
Field size 

-1.31e-05 -4.49e-05 –  2.82e-05 

Mean rainfall x 
Rainfall variance 

 1.86e-03 -1.43e-04 –  3.87e-03 

State random effect (𝜎!"#"$% )  4.52e-02  2.52e-02 – 8.59e-02 
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Table 4. Interpretations of regression coefficients. Predicted effect on RCI after changing each 
statistically clear predictor of RCI from its 10th to 90th percentile value in the dataset, while keeping 
all other variables constant (at their median values). We give context to the resulting changes in 
RCI by asking what percent of the study area would need to switch from a corn-soy rotation to the 
most diverse rotation (a different crop grown in each of the six focal years) in order for the predicted 
RCI change to occur. 
 
Variable Change in 

variable (from 
10th to 90th 
percentile) 

Resulting 
predicted 
effect on RCI 
  

Context for change in RCI 

Land 
capability 

0.35 -0.11 An increase of 0.35 in inherent land 
capability is equivalent to  3.7% of the 
study area (1.6 million ha) switching 
from growing a different crop in 
each year to a corn-soy rotation. 

Mean 
precipitation 

5.2 in -0.21 An increase of 5.2 inches in mean 
precipitation is equivalent to 7.2% of the 
study area (3.2 million ha) switching 
from growing a different crop in 
each year to a corn-soy rotation. 

Biofuel 
distance 

79 km 0.06 An increase of 79 km in distance to the 
nearest biofuel plant is equivalent to 
2.1% of study area (920,000 ha) 
switching from corn-soy rotation to 
growing a different crop in each 
year 

Field size 51 ha -0.12 An increase in field size of 51 ha is 
associated with the equivalent of 4.1% of 
the study area (1.8 million ha) switching 
from growing a different crop in 
each year to a corn-soy rotation. 
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1.11. Supplementary informa1on 
 
S1. Methods 
 
S1.1. Construction of Rotational Complexity Index (RCI) 
 
To accommodate the heterogeneity of crop rotations in the region--and even on a single farm--
such a metric must be able to classify a sequence of crops in a single field, rather than relying on 
data aggregated across larger scales. Due to the long duration of some planned crop rotations and 
the vast number of possible cropping sequences (in our case there are over a trillion possible unique 
combinations) in the region, this metric also needed to be flexible to encompass rotations of varying 
and sometimes protracted lengths, and able to distinguish between successions of crops without 
relying on identifying/classifying individual rotations. In field experiments, rotational studies1,2 
have quantified the diversity of a known rotation with a diversity index (d) that is a function of the 
length of the rotation (l, in years) and the number of crops in the rotation (n): 

𝑑 = √𝑛𝑙     (Equation 1) 
In the above metric, higher scores indicate more complex rotations, which should in turn show 
higher benefits to soils. This diversity index has the crucial benefit of being able to consolidate 
rotations of varying lengths and crop species into a single number that can be compared across 
rotations. However, it is not feasible to apply this metric on large-scale remotely-sensed data where 
there is no known rotation of a set length, crop sequences may be irregular, and pattern recognition 
is extremely computationally expensive.  
 
We therefore adapted the diversity index to use the six-year crop sequence for a given field to 
measure the number of crop species and turnover events from year to year, and combine them to 
calculate a rotational complexity score for the field (Figure 2). We chose a six-year sequence as it 
is highly unusual for farmers in the Midwest to have a planned rotation that lasts longer than five 
years3,4 and it therefore encompasses the full gamut of rotational diversity we might expect to see 
in the Midwest.  
 
We replaced rotation length (which cannot be determined without classifying each sequence as a 
known rotation), with crop species turnover between years to capture the additional complexity of 
longer rotation. We define first order turnover (T1) as a change in crop type between two adjacent 
years (e.g. for a 6-year crop sequence ABABAB, T1 = 5), and second order turnover (T2) as a 
change in crop type every other year (e.g. for ABABAB, T2 = 0; for ABCABC, T2 = 4), and take 
their average to make a proxy that is substituted into Equation 1 for rotation length: 

&𝑛	 !!"!"
#

   (Equation 2) 

Similar to rotation length, this turnover term increases as rotations become more complex, and 
maintains a metric where higher scores reflect more complex rotations.  
 
Perennial crops typically improve soils5–8; however the naive metric will show low turnovers (and 
therefore low scores) when perennials repeat from year to year. Because our aim was to construct 
a metric that reflects the soil benefits provided by more complex rotations, we avoided penalizing 
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repeated instances of perennial plants by including a perennial correction as a pseudo-turnover 
(𝑇(%)) equal to the number of times a duplicate perennial (grass/pasture, alfalfa, other hay/non-
alfalfa, vetch, and clover/wildflowers) appears in two consecutive years in a pixel’s crop sequence, 
giving:  

Rotational Complexity Index (RCI) = &𝑛 !!"!""!(#)
#

   (Equation 3) 

 
 
 
S1.2. Naive linear mixed model 
 
Prior to formal uncertainty quantification, we obtained estimates using a linear mixed model of 
the form 
 
𝑅𝐶𝐼' = 𝛽( + 𝑋'

!𝛽 + 𝛼)*+*,(') + 𝜀', 𝜀' ∼ 𝑁(0, 𝜎-), 𝛼)*+*, ∼ 𝑁(0, 𝜎)*+*,), ∑.	)*+*,)'01 𝛼' = 0 
 
to estimate the covariate effect sizes 𝛽and the standard deviation of the state random effect 𝜎-. A 
full list of the covariates in X can be found in Table 3. 
 
Nonparametric spatial block bootstrap for unevenly distributed data 
Uncertainty quantification based on the standard linear mixed model is overly optimistic in this 
case due to known spatial autocorrelation in the residuals and unmet model assumptions 
(particularly non-continuity in the response domain). We chose to use a spatial block bootstrap for 
uncertainty quantification, which resulted in more conservative and appropriate estimates of the 
distributions of estimated model parameters. 
Because our spatial data were unevenly distributed spatially, a parametric spatial bootstrap 
approach (in which residuals are resampled in a manner preserving their spatial relatedness) was 
inappropriate. We used a nonparametric spatial block bootstrap method tailored to the case of 
uneven data distribution (Lahiri 2018). The algorithm used to quantify uncertainty is as follows. 
 
Given a dataset of N data points spanning study area R, 

1. Define a spatial block size with dimension b and area b^2. 
2. Denote the minimum set of non-overlapping spatial blocks of area b^2 so that the study 

area R is covered by the union of these blocks. Say we have k such homogeneous blocks 
B, uniquely identified by their centers, to cover the study area. 

3. For each bootstrap iteration: 
a. Initialize an empty 0-row data frame df to hold new data. 
b. For each block in the k disjoint blocks: 

i. Identify a random point p within R such that a bounding box with 
dimension b centered on p is contained within the union of the blocks. 

ii. Define a bootstrap block B* centered on p. 
iii. Extract data that fall inside B* and add them to df. 
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c. Fit the naive LMM on df and extract the parameter estimates. (It’s almost certain 
that the number of data points in bootstrap_sampled_pts, N*, does not 
equal N, which is accounted for in the method development.) 

 
The distribution of parameter estimates from the model fits (3c) in each bootstrap approximates 
the asymptotic distribution of the estimators (Lahiri 2018). 
 
S1.3 Choice of bounding box size 
As yet, the optimal choice of bounding box dimension b isn’t known (Lahiri 2018). As b represents 
a unit of spatial interdependence, we chose b conservatively based on an analysis of the scale of 
spatial autocorrelation. Using the package `gstat`, we fit a spatial variogram of the residuals 
obtained from the LMM with a Gaussian decay structure (Figure SX). We found the range of the 
fit variogram to be 400456.1 m, and therefore chose a spatial bounding box of b = 400 km to 
represent the most conservative size at which all spatial interdependence is captured. 
To check for sensitivity of analyses to the size of the bounding box, we ran the complete bootstrap 
procedure over a range of bounding box dimensions (Table S2). 
 
 
S2. Comparison between RCI and previous studies 
 
Though there is some error in crop identification associated with the CDL, the overall accuracy 
(proportion of pixels that were identified correctly) is quite high across the states in our study area 
(e.g. 86% mean overall accuracy in 2017), suggesting a strong correlation between on-the-ground 
rotations and the indices in our analysis9. Importantly, because of the way the RCI metric 
functions, the CDL does not need to correctly identify each crop species for RCI scores to be 
accurate, but rather distinguish if each crop is similar or different from crops grown in previous 
years. Because corn and soy account for over 86% of cropland in the study area, their correct 
identification is key to the metric’s success, and corn/soy show the highest accuracies (over 90% of 
pixels labeled as corn/soy are correctly identified and less than 5% of pixels labeled as not corn/soy 
are misidentified) of any crop type in the studied states9.  
 
We also find it relevant to compare our results to previous studies. First, we find that an RCI of 
zero, which corresponds to corn monoculture, accounts for 4.5% of cropland in the study area 
over the six year period from 2012-2017, while previous estimates in the region give the prevalence 
of four-year monoculture as 7% in 201010, and ten-year monoculture as 2% in 201911. Second, 
previous studies have examined the prevalence of corn-soy rotations in the Midwest, arriving at 
estimates of 53% of land planted in 3-year corn-soy rotations in 1997 12, and 72% of cropland in 
Iowa (4-year rotations, ending in 2016)13. Because these estimates come from sequences of shorter 
duration, they are likely to report higher estimated areas than our six-year sequences. Our analysis 
across the Midwest shows that 37% of the study area was in exactly a CSCSCS or SCSCSC 
sequence, while 57% of the study area (cropland that grew corn in at least one of the six focal years) 
had an RCI of 2.24, the value that corresponds to a corn-soy rotation for a 6-year sequence. 
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S3. Supplemental Tables and Figures  
 
Figure S1. Input rasters used as regression variables, all gathered from publicly available data. 
Land capability (A) from the National Commodity Crop Productivity Index ranging from 0-1, or 
poor to high quality; distance to the nearest biofuel plant (B) from geolocated businesses with 
NAICS code 325193; distance to nearest grain elevator (C) from geolocated businesses with SIC 
codes 51530100, 51530102, 51539901, or 51530204; mean rainfall during the growing season (D) 
from CHIRPS data; and the variance in rainfall during the growing season (E). 
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Figure S2. Semivariogram of LMM residuals used to choose the dimension of the spatial bootstrap 
bounding box. 
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Figure S3. Histograms of bootstrap estimates of each model parameter, 1000 samples per 
parameter. Vertical red lines indicate 0 on the x-axis. 
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Table S1. A comparison of estimated effects and 95% confidence intervals over a range of 
bounding box sizes. Bolded cells are estimates whose 95% CIs do not overlap 0. Inference 
(“significance”) is largely stable across bounding box sizes, with some exceptions due to CIs with 
boundaries close to zero and/or simulation stochasticity. All terms considered significant in the 
final report (indicated by bold parameter name) were estimated as significant across all bounding 
box sizes tested.  
 
 Bounding box size 

Parameter 16 km 40 km 120 km 160 km 320 km 640 km 

(Intercept) 

0.0243 
(0.014, 
0.0345) 

0.0235 
(0.00208, 
0.0462) 

0.023 (-0.0141, 
0.0642) 

0.023 (-0.0222, 
0.0648) 

0.0196 (-
0.0356, 0.0671) 

0.0046 (-0.127, 
0.0487) 

Land 
capability 

-0.284 (-
0.333, -0.231) 

-0.287 (-
0.375, -0.197) 

-0.276 (-
0.434, -0.124) 

-0.275 (-
0.452, -0.11) 

-0.282 (-
0.509, -
0.0775) 

-0.325 (-
0.552, -0.114) 

Distance to 
grain elevator 

0.000659 (-
0.000713, 
0.00203) 

0.000642 (-
0.00153, 
0.0027) 

0.000749 (-
0.00207, 
0.00333) 

0.000784 (-
0.0024, 
0.00339) 

0.000752 (-
0.00242, 
0.00337) 

-0.000115 (-
0.00267, 
0.00264) 

Distance to 
biofuel 
refinery 

0.00108 
(0.000872, 
0.00129) 

0.0011 
(0.000709, 
0.00152) 

0.00105 
(0.000485, 
0.00171) 

0.00104 
(0.000345, 
0.0018) 

0.000944 
(0.000205, 
0.00173) 

0.000981 
(0.000227, 
0.0017) 

Mean 
rainfall 

-0.0413 (-
0.046, -
0.0362) 

-0.0409 (-
0.0518, -
0.0307) 

-0.0397 (-
0.0585, -
0.0218) 

-0.039 (-
0.0603, -
0.0191) 

-0.0387 (-
0.065, -
0.0156) 

-0.0365 (-
0.0673, -
0.0117) 

Mean rainfall 
squared 

0.00388 
(0.00212, 
0.00564) 

0.00396 
(0.000622, 
0.00724) 

0.00393 (-
0.00235, 
0.0097) 

0.00389 (-
0.00296, 
0.0101) 

0.00436 (-
0.00253, 
0.00985) 

0.00381 (-
0.0022, 0.0124) 

Interannual 
variance in 
rainfall 

0.00242 
(0.00165, 
0.00317) 

0.00243 
(0.00103, 
0.00394) 

0.00244 (-
5.71e-06, 
0.00547) 

0.00243 (-
0.00015, 
0.00552) 

0.00193 (-
0.00158, 
0.00469) 

0.00103 (-
0.00566, 
0.00353) 

Field size 

-0.00269 (-
0.00283, -
0.00255) 

-0.0027 (-
0.00294, -
0.00247) 

-0.00269 (-
0.00315, -
0.00229) 

-0.00268 (-
0.00324, -
0.0022) 

-0.00248 (-
0.00304, -
0.002) 

-0.00219 (-
0.00269, -
0.00175) 

(Land 
capability) x 
(distance to 
biofuel refinery) 

-0.000234 (-
0.00159, 
0.00112) 

-0.000254 (-
0.00277, 
0.00204) 

-0.000229 (-
0.0037, 
0.00294) 

-8.91e-05 (-
0.00334, 
0.00335) 

0.000274 (-
0.00317, 
0.00341) 

0.00115 (-
0.00169, 
0.00381) 

(Land 
capability) x 
(distance to 
grain elevator) 

-0.00314 (-
0.0104, 
0.00366) 

-0.00261 (-
0.0134, 
0.00755) 

-0.00263 (-
0.0163, 0.0101) 

-0.00284 (-
0.017, 0.00855) 

-0.00363 (-
0.0171, 
0.00878) 

-0.00782 (-
0.0233, 
0.00389) 

(Land 
capability) x 
(mean rainfall) 

-0.0915 (-
0.12, -0.0623) 

-0.0884 (-
0.139, -
0.0357) 

-0.091 (-
0.168, -
0.00502) 

-0.0966 (-
0.174, 0.00908) 

-0.0908 (-
0.183, 0.0776) 

-0.0109 (-
0.132, 0.163) 
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(Land 
capability) x 
(rainfall 
variance) 

-0.0175 (-
0.0207, -
0.0138) 

-0.0174 (-
0.0236, -
0.0115) 

-0.0169 (-
0.0271, -
0.00726) 

-0.0167 (-
0.0272, -
0.00687) 

-0.0154 (-
0.0254, -
0.00429) 

-0.0132 (-
0.0217, -
0.0012) 

(Land 
capability) x 
(field size) 

0.00628 
(0.0051, 
0.00736) 

0.00634 
(0.00443, 
0.0083) 

0.00643 
(0.00345, 
0.00958) 

0.00625 
(0.00328, 
0.0101) 

0.00479 
(0.00159, 
0.00869) 

0.00275 
(0.000139, 
0.00631) 

(Distance to 
biofuel refinery) 
x (distance to 
grain elevator) 

5.48e-06 
(1.86e-06, 
9.36e-06) 

5.61e-06 (-
5.31e-07, 
1.09e-05) 

4.5e-06 (-4.17e-
06, 1.36e-05) 

4.08e-06 (-
5.11e-06, 
1.42e-05) 

3.86e-06 (-
4.81e-06, 1.5e-
05) 

2.51e-06 (-
5.78e-06, 
1.06e-05) 

(Distance to 
grain elevator) 
x (field size) 

-1.37e-05 (-
3.92e-05, 
1.07e-05) 

-1.45e-05 (-
5.15e-05, 
1.64e-05) 

-1.26e-05 (-
5.31e-05, 
2.48e-05) 

-1.08e-05 (-
5.3e-05, 2.72e-
05) 

-7.27e-06 (-
4.64e-05, 
3.18e-05) 

-2.43e-06 (-
4.01e-05, 
3.96e-05) 

(Mean rainfall) 
x (variance in 
rainfall) 

0.00185 
(0.00141, 
0.0023) 

0.00179 
(0.000906, 
0.00263) 

0.00164 
(0.000219, 
0.00326) 

0.00163 
(0.000117, 
0.00316) 

0.00164 (-
0.000162, 
0.00367) 

0.00186 
(0.000109, 
0.00444) 
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Chapter 2: Deep nutrients and fungal communi)es support tomato fruit 
yield and quality in dry farm management systems. 
 
2.1. Abstract 
 
Changing climates are causing agricultural water shortages at unprecedented scales and 
magnitudes, especially in regions historically reliant on irrigation. Identifying and understanding 
systems of farming that allow continuity in farming operations in times of water scarcity is an 
increasingly urgent need. Vegetable dry farming relies on winter rains stored in soils to reduce 
irrigation to 0-2 events per season and has become prevalent on California’s Central Coast in 
recent decades. Until now, this system has been unexplored in scientific literature beyond extension 
publications, despite its promise as a model for low-water agriculture. Dry farm management 
presents a unique challenge given the low water content in surface soils that restricts nutrient access 
in the areas farmers usually target for irrigated fertility management. Managing soil nutrients at 
depth and potentially the microorganisms that provide plant nutrients and alleviate water stress 
(e.g. arbuscular mycorrhizal fungi, or AMF) could be crucial to dry farm success, and we engaged 
in a collaborative research design process with six farmers managing seven commercial dry farm 
tomato fields to identify and answer three key management questions: 1. What are the depths at 
which nutrients influence harvest outcomes given low water content in surface soils?, 2. Are 
commercially available AMF inoculants effective at improving harvest outcomes?, and 3. How 
does the broader fungal community change in dry farm soils, and do those changes map to harvest 
outcomes? Only soil nitrate and ammonium concentrations below 60cm depth were correlated 
with tomato yield and fruit quality, while blossom end rot negatively correlated with ammonium 
at 30-60cm. Nutrients in surface soil were not correlated with yield or quality. We identified a 
fungal class, Sordariomycetes, as a “signature” fungal group in dry farm soils that distinguished 
them from irrigated management and correlated with positive quality outcomes, while commercial 
AMF inoculation showed little benefit. These findings can inform management practices that 
optimize fruit yield and quality, and can guide farmers and policy makers alike in efforts to 
minimize agricultural water use. 
 
2.2. Introduc1on 
 
 As rainfall becomes more variable with changing climates, farmers around the world are 
contending with droughts that are increasing in both intensity and duration1–4.  For many farmers, 
restricted water use has become a constant and looming threat, forcing the agricultural sector to 
confront a key question: how can we adapt to water scarcity without jeopardizing farmer 
livelihoods?  
 
This question is particularly salient for California’s agricultural system, which  has become 
increasingly fragile in recent decades due to its dependence on a shifting and shrinking water 
supply5,6. Changing climates have caused droughts that not only result in massive financial losses 
(the 2015 drought cost California agriculture $2.7 billion7), but also raise major concerns for 
farmers’ ability to maintain continuity in their farming operations8,9. Because California’s waters 
are over-allocated even in years of typical rainfall, the Sustainable Groundwater Management Act, 
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which requires sustainable groundwater use by 2040,  implies that irrigation will need to be 
discontinued on hundreds of thousands of cropland acres10,11.  
 
In this backdrop, dry farming, a practice in which farmers grow crops with little to no irrigation, 
has quickly garnered interest from farmers and policy-makers around the state. While dry farming 
is an ancient practice with rich histories in many regions, perhaps most notably the Hopi people 
in Northeast Arizona12, dry farming emerged more recently in California, with growers first 
marketing dry farm tomatoes as such  in the Central Coast region in the early 1980’s. In a lineage 
that likely traces back to Italian and Spanish growers13, dry farming on the Central Coast relies on 
winter rains to store water in soils that plants can then access throughout California’s rain-free 
summers, allowing farmers to grow produce with little to no external water inputs. 
 
As water-awareness gains public attention, dry farming has been increasingly mentioned as an 
important piece in California’s water resiliency puzzle14–16, however, while some extension articles 
exist17–19, no peer-reviewed research has been published to date on vegetable dry farming in 
California. We therefore assembled a group of six dry farming operations on the Central Coast to 
collaboratively identify and answer key management questions in the dry farm community. 
Growers identified three main management questions that would benefit from further research: 1. 
Which depths of nutrients (and which nutrients) are most influential in determining fruit yield and 
quality? 2. Are AMF inoculants effective in this low-water system, and more broadly, 3. How can 
farmers best support high-functioning soil fungal communities to improve harvest outcomes?  
 
Growers were primarily concerned with fruit yield and quality, with blossom end rot prevention 
and overall fruit quality being of particular interest due to the water stress and high market value 
inherent to this system. Managing for yields and quality present a unique challenge in dry farm 
systems, as the surface soils that farmers typically target for fertility management in irrigated 
systems dry down quickly to a point where roots will likely have difficulty accessing  nutrients and 
water. Because plants are likely to invest heavily in deeper roots as compared to irrigated crops, we 
hypothesized that nutrients deeper in the soil profile would be more instrumental in determining 
fruit yields and quality.  
 
As deficit irrigation and drought change microbial community composition in other agricultural 
and natural systems20–22, we hypothesized that dry farm management would cause shifts in fungal 
communities in response to dry farm management, which could in turn improve tomato harvest 
outcomes. Beyond general shifts in fungal communities, farmers were specifically interested in 
arbuscular mycorrhizal fungi (AMF) inoculants, which are increasingly available from commercial 
sellers. Recent research has shown that AMF can help plants tolerate water stress23–25, and we 
therefore hypothesized that commercial AMF inoculants might be beneficial26–28 
 
We organized a season-long field experiment  from early spring to late fall of 2021 to answer these 
questions, sampling soils and collecting harvest data from plots on seven dry farm tomato fields (all 
on the six farms involved in research design) on the Central Coast. Each farmer managed the fields 
exactly as they normally would, with AMF inoculation being the only experimental manipulation. 
We sampled soils for nutrients (nitrate, ammonium, and phosphate) and water content at four 
depths down to one meter throughout the growing season to determine which nutrient depths 
influenced harvest outcomes. We also took DNA samples from soils and roots in surface and 
subsurface dry farm soils, as well as nearby irrigated and non-cultivated soils, sequencing the ITS2 
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region to analyze the fungal community to verify inoculation establishment and more broadly 
characterize soil fungal communities to see how fungal communities changed under dry farm 
management (as compared to irrigated and non-cultivated soils) and determine whether these 
changes or the introduction of an inoculant influenced harvest outcomes. We then used Bayesian 
generalized linear mixed models to estimate the effects of nutrient depths and fungal community 
metrics on yield and fruit quality data from 10-20 weekly harvests on each field. Our results 
highlight a tension between managing nutrients for fruit yield and quality, while fungal community 
metrics show promise for increasing fruit quality.  
 
 
2.3. Methods 
 
2.3.1. Field sites.  
The experiment was conducted on seven certified organic dry farm tomato fields in Santa Cruz 
and San Mateo counties in California during the 2021 growing season. Five blocks (10 total 
experimental plots) were established on each field over the course of a full growing season (see 
‘Experimental design’ below), for a total of 70 experimental plots. These fields are managed by six 
farms; one farm contributed two fields at two separate sites. Each farmer continued to manage 
their field for the duration of the experiment according to their typical practices. Each dry farm 
crop was preceded by a crop in the winter prior to the experiment, either in the form of a cover 
crop (6 fields), or continuous winter production (1 field). All fields were disked (~15cm) prior to 
planting, and two fields additionally ripped down to 60-90cm. Each field’s plant and bed spacing, 
plant date, and tomato variety are listed in Table 1, along with amendments added to the soil. 
Fields also varied in their rotational history (Table 2). The mapped soil series, measured texture, 
and soil pH are listed in Table 3. 
 
From March 2 (first transplant) to October 27 (last harvest) there were 15 rain events greater than 
1 mm recorded at the De Laveaga CIMIS weather station (centrally located between all farms), 
none of which occurred between the months of May and October (Table S1). Monthly weather 
data is summarized in Table 4. 
 
2.3.2. Experimental design and inocula*on.  
A nested experimental design was used to account for management and biophysical differences 
across fields. Ten plots were established at each field site (70 plots total) within three days of tomato 
transplant. Each plot contained 12 plants, and plots were divided across two beds with a buffer 
row between (Figure 1). Plots were randomly selected to be inoculated in the first experimental row 
and then paired with a counterpart in the second experimental row that received the opposite 
inoculation condition to achieve a randomized complete block design with five blocks per field. 
Here we refer to a pair of inoculated and control plots as a block. There were three non-inoculated 
buffer plants between each plot and at least twenty buffer plants at the start and end of each 
experimental row.  
 
A commercial AMF inoculant (Valent MycoApply Ultrafine Endo; a four species mix of Glomus 
intraradices, Glomus mosseae, Glomus aggregatum, and Glomus etunicatum) was used to inoculate 
transplants. This inoculum has been shown to impact crop physiology and improve plant water 
status in various field and greenhouse applications29–32. Each of the 12 plants in plots in the 
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inoculation condition received 0.2 g of inoculum, which was mixed with 40 mL of water and then 
poured at the base of the plant within three days of transplanting, as per manufacturer instructions.  
 
2.3.3. Fruit harvests and quality.  
Harvests began when farmers indicated that they were beginning to harvest the portion of their 
field that included the experimental plots. Each field was harvested once per week from its start 
date to its end date, with the exception of Farm 5, which was harvested twice per week, in 
accordance with farmer desires. All red tomatoes were harvested from each plot and sorted into 
marketable, blossom end rot, sunburnt, or “other unmarketable” fruits and then weighed. Harvests 
stopped when there were no remaining tomatoes in the field or when farmers decided to terminate 
the field. 
 
Fruit size and quality were assessed on the third, sixth, and ninth week of harvest at a given field. 
Ten representative marketable tomatoes were taken from each plot, weighed, dried at 70 degrees 
C and then weighed again to establish the percent dry weight (PDW). PDW was used as a proxy 
for fruit quality, with fruits with a lower water content (higher PDW) increasing fruit quality up to 
a certain point. Extension research has linked dry farm fruit quality with lower fruit water content, 
as opposed to specific compounds that are elevated in dry farm tomatoes33,34, and we expect PDW 
to correlate highly with the concentration of flavors previously found to create dry farm fruits’ 
superior quality. After eliciting quality categorization from farmers in the study, we determined 
that fruit quality increases up to a PDW of 8%, peaks between 8 and 12%, and falls above 12%. 
 
2.3.4. Soil water, nutrients, and texture.  
Soil samples were taken three times over the course of the field season: once at transplant (within 
three days after plant date), once mid-season (9 weeks after transplant), and once during harvest 
(18 weeks after transplant). Each time samples were taken from four depths (0-15cm, 15-30cm, 30-
60cm, 60-100cm) at each plot. Samples were homogenized and a subsample was immediately put 
on ice for transport to the lab. Each sample was then divided into fresh soil (N analyses), dried at 
60 degrees C (Olsen P, texture), and dried at 105 degrees C (gravimetric water content). 
 
Ammonium and nitrate levels were measured after using 2M KCl to extract samples from 
transplant (all depths), midseason (0-15cm and 30-60cm), and harvest (0-15cm and 30-60cm) 
samples  using colorimetry35,36.  As soil pH was close to neutral, Olsen P37 was used to measure 
plant-available phosphate on samples from transplant (all depths) and midseason (0-15cm and 30-
60cm). Gravimetric water content was assessed for all samples. Samples from transplant were 
composited by depth at each field, and texture was assessed using a modified pipette method38. 
 
At transplant, a soil core was taken with a bucket auger down to one meter from a central plot in 
each field and used to calculate bulk density at each depth increment. We then took a weighted 
average of GWC at each plot to calculate available water using bulk density and a pedotransfer 
function based on soil texture39 (see Table 3). 
 
Potentially leachable soil nitrate levels were calculated for each field using nitrate concentrations 
from the top 15cm at the harvest sampling event, which occurred within the first three weeks of 
harvest. Though the plants continued to grow for the duration of the harvest, it is unlikely that 
nitrate from the top 15cm were used due to the soil’s low water content, and no precipitation or 
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irrigation occurred for the duration of harvest. Bulk density in the top 15cm was assumed to be 1.2 
g soil/cm3 as experimental bulk density was measured with 1m of soil and likely overestimated the 
bulk density at the surface of the soil. 
 
2.3.5. Soil and root sampling for DNA extrac*ons.  
Soil subsamples taken from 0-15cm and 30-60cm at midseason were set aside for DNA analysis. 
In addition to the experimental plots, samples were also taken from both depths at the nearest 
irrigated crop production areas and non-cultivated soils, such as hedgerows, field sides, etc. (3 sites 
at least 2m apart for each). 
 
Gloves were worn while taking these samples and the auger was cleaned thoroughly with a wire 
brush between each sample. Roots were also collected from one plant per plot and were dug out 
using a trowel from the top 15 cm of soil. These samples (soil and roots) were stored on-site in an 
ice-filled cooler and transferred to a -80 degree C freezer immediately upon returning to the lab 
(within ten hours).  Roots were later washed in PBS Buffer/Tween20 and ground using liquid N. 
 
2.3.6. DNA extrac*ons, quan*fica*on, and sequencing. 
Root DNA was extracted using a NucleoSpin Plant II kit (Macherey-Nagel). Soil DNA was 
extracted using a DNeasy PowerSoil Pro Kit (Qiagen). Two technical replicates were extracted for 
each sample for a total of 0.5g of soil and 0.2g of roots. The technical replicates were combined 
using an equal mass of DNA from each replicate prior to library prep. All samples were sent to the 
University of Minnesota Genomics Center for sequencing using ITS2 primers. 
 
2.3.7. Primer selec*on.  
The ITS2 rRNA region (5.8-Fun/ITS4-Fun) was selected for amplification and fungal community 
analysis. This region has been successfully utilized in recent AMF community  studies40,41. Though 
AMF-specific primers exist (e.g. SSU, LSU), we chose the more general ITS2 fungal primers for 
several key reasons. First, in the field, SSU primers (e.g. Wanda-AML2) detect more taxa in non-
Glomeraceae families but give lower resolution in the Glomeraceae family42,43. Because the four 
species in our inoculant are in the Glomeraceae family and this family is dominant in agricultural 
systems and clay soils44–46, we prioritized species resolution in Glomeraceae over other families. 
More broadly, the higher variability in the ITS2 region can lead to more unassigned taxa, but does 
not run as much of a risk (compared to the SSU or LSU regions) that distinct taxa will be lumped 
together40,47,48.   
 
Third, and of particular importance in our root samples, these primers are better able to select for 
fungal over plant material than other ITS primer options49. Finally, ITS2 allowed us to also 
examine the broader fungal community in our samples, whereas SSU and LSU options are AMF-
specific and cannot be used to characterize other fungi. 
 
2.3.8. Bioinforma*cs.  
Qiime2 was used for all bioinformatics50. Reads without a primer were discarded, and 
primer/adapter sequences were trimmed off reads using cutadapt. Samples were denoised with 
DADA2, and taxonomy was assigned using the UNITE version 9 dynamic classifier for all 
eukaryotes51. Taxa outside of the fungal kingdom were removed from all samples and SRS 
normalization was used to reduce each sample to 7190 reads. 7190 was chosen as a cutoff due to 
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a natural break where no samples fell between 4000 and 7190 reads. Because depths below 4000 
retained less than 90% of sample richness, 7190 was chosen, retaining over 95% of richness. The 
22 samples out of 301 samples that fell below this cutoff were discarded. These samples included 
all 5 blanks, 3 samples from field 1A (all 30-60cm), 4 samples from field 1B (all 30-60cm), 2 samples 
from field 2 (one 0-15cm and one 30-60cm), 4 samples from field 3 (one 0-15cm and three 30-
60cm), and 4 samples from field 4 (one 0-15cm and three 30-60cm). 
 
2.3.9. Sta*s*cal analyses.  
All analyses were done using R Statistical Software (v4.1.2)52. Bayesian mixed models were 
estimated using the R package `brms`53. Permutational multivariate analyses of variance 
(PERMANOVA) were done with the `vegan` package54 using Bray distances and 9999 
permutations. Differential expression analyses were done with the `MicrobiotaProcess` package55. 
 
2.3.9.1. Variable reduc1on.  
Due to the large number of potential covariates (nutrients and water at four depths for each of 
three sampling events, 48 total variables) and high collinearity in each category (see Figure S1), 
variables were grouped by type and depth (nutrients at 0-15cm, 15-30cm, 30-60cm, 60-100cm; 
water at all depths; texture at all depths) and summarized by their principal components (PCs) for 
initial modeling. The variables within each group are listed in Table S2. Enough principal 
components were included to account for at least 55% of the variance in the data.  
 
2.3.9.2. Model selec1on.  
We modeled all yield and fruit quality data (percent dry weight and blossom end rot) with Bayesian 
generalized mixed effect models. Due to zero-inflated data, we used hurdle models for yields and 
blossom end rot (BER), while percent dry weight (PDW) was always non-zero and therefore did 
not require a hurdle. To pick a model family, we modeled the non-zero data from each outcome 
variable with gaussian, lognormal, and gamma families, using Bayesian leave-one out estimates of 
the expected log pointwise predictive densities to compare model fits. Gamma models showed the 
best fit for each outcome variable and were therefore used for all linear models. 
 
2.3.9.3. Model structure.  
In addition to the variables of interest, each model had a random effect of field and block within 
field. Yields were modeled using the total marketable fruit weight harvested from each plot at each 
harvest point, while BER was modeled using the proportion of fruits that were classified as non-
marketable due to BER from each plot at each harvest point. Yield models and BER models 
treated weekly harvests as repeated measures, adding random effects of plot within block and 
harvest number. For hurdle models, random effects were treated as correlated between the 
conditional and hurdle portions of the model. 
 
Because PDW was measured at three time points, the initial PDW model treated the timepoints as 
a repeated measure and added a random effect of plot within block. However, given the nonlinear 
relationship between PDW and fruit quality described by farmers, further models used only PDW 
at the 6th harvest when fruit quality was at its peak and therefore did not include any repeated 
measures. 
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2.3.9.4. Variable selec1on.  
The initial model for each outcome variable included plant spacing and PC1 for soil texture (both 
field-level effects), along with PC1 for GWC and PCs 1 and 2 for nutrients at all four depths (all 
plot-level effects), as well as  the interaction between texture and GWC. In this initial model, only 
one depth showed a statistically clear relationship with each outcome variable (marketable yield, 
proportion BER, and PDW).  
 
To improve model interpretability, we then replaced the two PC’s from the depth of interest with 
the scaled transplant values of nitrate, ammonium and phosphate at that depth, also adding the 
ratio of nitrate to ammonium and an ammonium-squared term to allow for nonlinearities in 
outcome response to nitrogen levels. Because all nutrient variables (both the remaining PC’s and 
raw values from the depth of interest) had variance inflation factors over 5 in this model (calculated 
by running the hurdle gamma model mixed effect model with the `glmmTMB` package56 and 
checking variance inflation on this model with the `performance` package), we dropped nutrient 
PC’s for each depth that was not of interest, leaving only the transplant nutrient values at the depth 
of interest in the model. All nutrient VIF values were below 5 in the resulting model. Reported 
models were run using unscaled nutrient values for ease of interpretation. 
 
Transplant nutrient levels were used rather than midseason/harvest both because they are the 
most relevant to farmer management and because their interpretation is more clear than later 
timepoints, when low levels can either indicate lower initial nutrient levels, or that plants have more 
thoroughly depleted those nutrients. 
 
2.3.9.5. Adding fungal community correlates to yield and fruit quality models.  
Two fungal community descriptors were calculated for each soil depth and root fungal community: 
the Shannon index and the count of OTUs in the class Sordariomycetes, which was identified as 
an indicator of dry farm soils (see Results). Counts were scaled, and both community descriptors 
were added to the final model described in the “Variable selection” section to determine the impact 
of fungal community structure while controlling for water, nutrients, and texture. Because the 
metrics between roots and the two depths of soil fungal communities were highly correlated, three 
separate models were run: one with both fungal community metrics from 0-15cm, one with metrics 
from 30-60 cm, and one with root community metrics. 
 
2.3.9.6. Priors.  
Weakly informative gaussian priors (mean = 0) were chosen for each fixed effect such that, for 90% 
of the distribution of potential coefficients, a change from the minimum to the maximum value 
observed for the variable of interest would correspond to a change in the outcome variable no 
larger than its full observed range. In other words, priors were specified such that 10% of the 
distribution of potential coefficients would lead to larger changes in the outcome variable than 
what we observed in our dataset. Priors for random effects were student t distributions (df = 3, mu 
= 0, sigma = 2.5), as designated by `brms` package defaults. 
 
For the hurdle portion of the model, when included, priors were set such that 90% of coefficients 
in the distribution (gaussian mean = 0 for fixed effects, student t for random effects) would lead to 
a difference in log odds of a non-zero outcome less than or equal to 4.  
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2.4. Results 
 
2.4.1. Harvests.  
Fruit harvests lasted 10-20 weeks and tended to peak 3-5 weeks after the first harvest (Figure 2A). 
These peaks coincided with when fruit quality was at its highest, as identified by farmers in the 
study and measured by fruit percent dry mass (optimal range is 8-12% dry mass by weight; Figure 
beat B). The cumulative marketable harvest for an individual field ranged from 6.5 - 88.5 T/ha, 
or 1.5 - 4.5 kg/plant, with a mean of 34 T/ha and 2.6 kg/plant. Over the course of the season, on 
average 4.7% (sd = 11%) of the fruits harvested from each experimental plot were unmarketable 
due to blossom end rot (Table 5). 
 
2.4.1.1. Model results.  
After preliminary modeling with principal components (see Methods and Supplement), we 
determined that nutrients at 60-100cm had a statistically meaningful influence on yields and PDW, 
while nutrients at 30-60cm showed an influence on BER. We then regressed inoculation and 
nutrient levels from these depths of interest against each harvest outcome variable–yields, 
proportion BER and percent dry weight–while controlling for other soil and field characteristics 
(GWC, plant spacing, and texture), as well as random effects; see Table 6 and “model structure” 
above.  
 
We also added two fungal metrics (Shannon diversity and Sordariomycetes counts, each at 0-15cm, 
30-60cm, and in roots) to each model (see ‘fungal community’ below). Sordariomycetes counts at 
30-60cm, a signature of dry farmed soils, showed a clear relationship with fruit quality, after 
controlling for all variables in Table 6 (see Table 7). Full results for each model can be found in the 
supplement.  
 
Where indicated, significant and positive coefficients in the hurdle portions of models signify that 
the outcome is more likely to be zero. Specifically, BER was less likely to occur in plots with higher 
ammonium levels (in the regression with proportion of fruits with blossom end rot), and 
Sordariomycetes counts were associated with plots where no marketable tomatoes were harvested 
on a given day (in the marketable yield regression).  
 
2.4.1.2. Yields.  
Squared transplant ammonium concentrations at 60-100cm showed a clear negative relationship 
with yields (95% CI = [-0.24, -0.06]), while nitrate concentrations at 60-100cm showed a 
significant positive relationship (95% CI = [0.03, 0.20]). The hurdle term on Sordariomycetes 
counts indicates that yields on a given harvest day are more likely to be zero in plots with higher 
Sordariomycetes counts (95% CI = [0.35, 3.01]); however, given the low incidence of plots with 
zero yield (<2%), this result is unlikely to influence cumulative yields for a field. 
 
Given the signs of the water and texture principal components, the positive water by texture 
interaction indicates that combined high soil GWC and low clay content are associated with 
increased yields (or low soil water and high clay content, which is exceedingly unlikely given the 
study system). Or, put another way, lower clay content can be beneficial when soil water levels are 
high enough. 
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2.4.1.3. Blossom end rot.  
Squared ammonium concentrations at 30-60cm were associated with a decreased likelihood 
of  BER being present in a plot (95% CI = [0.14, 0.85]). No fungal metrics showed a clear 
relationship with BER. 
 
2.4.1.4. Fruit percent dry weight.  
Fruit percent dry weight (PDW), a proxy for fruit quality, increased from the first harvest to the 
ninth harvest (95% CI = [0.01, 0.13]; Figure 2B). Due to the non-linear relationship between PDW 
and fruit quality (quality increases up to ~10%, while beyond ~12%, quality decreases with 
increasing PDW), only PDW data from the 6th harvest was considered in further models, when 
farmers reported the highest fruit quality and no field averaged above 12%. Squared ammonium 
concentrations at 60-100cm showed a clear positive relationship with PDW (95% CI = [0.01, 
0.07]). In a separate model where scaled marketable yield at 6th harvest was added as a covariate 
(along with the covariates listed in Table 6), it showed a clear negative correlation with fruit quality 
(95% CI = [-0.12, -0.01]). The Sordariomycetes count at 30-60cm was positively associated with 
higher fruit quality (95% CI = [0, 0.06]). 
 
2.4.1.5. Effect of inocula1on. 
 Inoculation was associated with lower fruit quality (95% CI = [-0.09, 0.00]), with inoculated plots 
showing decreased fruit percent dry weight at the sixth harvest. Inoculation did not have a 
statistically clear relationship with yield or blossom end rot. 
 
A power analysis conducted before the study using variances from data collected the previous 
summer suggests that our experimental design could detect an inoculation effect size of ~15% of a 
measured value (e.g. yield) with a power of 0.8 (see supplement for details). We therefore conclude 
that, given our null results, it is improbable that inoculation changed yields by more than +/-15%, 
and the small confidence intervals centered on zero for inoculation coefficients in yield 
models  suggest that the true effect was  likely less than that if present at all. 
 
2.4.2. Nitrogen management.  
Ammonium concentrations showed a nonlinear relationship with yields in our models, with yields 
peaking at roughly 1 ug ammonium-N/g soil, especially when high levels of nitrate were present. 
Nitrate was associated with increasing yields across all ammonium levels. See Figure S2 in 
supplement for further details. 
 
Though these models indicate that yields are highest at the highest observed nitrate concentrations 
in the study, it is important to caution against nitrate maximization. Nitrate entering groundwater 
at a rate of 35 kg/ha/yr is the threshold at which concerns begin to develop for groundwater 
contamination57. At the harvest sampling, three of the seven fields had nitrate levels in the top 
15cm of the soil alone that were above this threshold (Figure S3). 
 
2.4.3. Fungal community.  
After using scaling with ranked subsampling58 to reduce the number of counts in each sample to 
7190, we  found 13,586 fungal taxa across all  samples. Of these, 725 were classified as AMF (in 
the phylum Glomeromycota).  Field was the primary force behind community composition in soils 
and roots (R2 of field was 0.12 in PERMANOVA of soil fungal communities dissimilarities with 
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main effects of field, GWC, depth, and texture, while next largest R2 was 0.02 for texture), as is 
visually apparent in principal coordinates analysis (Figure 3). Field was therefore used as strata in 
all further PERMANOVAs. Phylum level relative abundance is shown for each field in Figure 4. 
 
2.4.3.1. AMF and inocula1on.  
Of the AMF taxa that were identified to the species level in soils and roots, none was a species 
present in the inoculum. After removing samples that did not contain any AMF taxa, 
PERMANOVAs using Bray distances showed a statistically clear difference between community 
composition in inoculation vs. control roots (p < 0.05, 9999 permutations) but not bulk soils (p = 
0.99) when stratifying by field and controlling for water, nutrients, and texture. No AMF taxa were 
significantly enriched in the inoculation or control condition. Taken together, these AMF 
community results suggest that the inoculum (or the medium in which it was delivered) shifted the 
root fungal community at transplant and did not persist in bulk soils for the 9 weeks before DNA 
samples were taken. 
 
2.4.3.2. Non-cul1vated, dry farm, and irrigated soils.   
A PERMANOVA using Bray distances showed statistically clear differences in fungal community 
composition in irrigated, dry farm, and non-cultivated bulk soils as well as communities at 0-15cm 
and 30-60cm (p < 0.0001 for both, 9999 permutations) when stratifying by field and controlling 
for water, texture and their interaction, which also significantly differentiated between 
communities (p < 0.0001, 0.004, and 0.003 respectively, 9999 permutations). Though dry farm, 
non-cultivated and irrigated soils each had (or in the case of irrigated soils, nearly had) more unique 
taxa than taxa shared with another location, dry farm and non-cultivated soils each had nearly 
twice as many unique taxa as taxa shared with a single other location, while irrigated soils had 
more taxa shared with dry farm soils than unique taxa (Figure 5).  
 
Abundance analysis showed that there were 466 taxa that significantly discriminated (were 
enriched or depleted) between the three soil locations. We then set the LDA threshold to 3.75 to 
highlight only the most stark differences, resulting in 13 discriminative taxa (Figure 6). All of the 
taxa identified as being enriched in dry farm soils were sub-taxa of  Sordariomycetes, a fungal class 
that is highly variable in terms of morphology and function. We therefore identified 
Sordariomycetes as a dry farm indicator taxa, or a sort of dry farm “signature”. We included the 
Sordariomycetes count in models as an indication of how much the soil had shifted towards a dry 
farm-influenced community (see below). 
 
AMF taxa were notably absent as discriminative taxa and PERMANOVA did not show a 
difference in AMF community composition between the two depths, suggesting that AMF are not 
limited in their dispersal down to 60cm59. 
 
2.4.3.3. Sordariomycetes.  
After identifying Sordariomycetes as an indicator taxa for dry farming, we further explored 
whether multiple years of dry farming enhance soils’ dry farm signature by comparing fields that 
had not received external water inputs (4 fields, one dry farmed, three fallow in the previous 
summer season) for multiple years and those which had received regular external water inputs the 
summer prior to the study. The extent to which Sordariomycetes were enhanced was measured by 
the difference between counts in dry farm and irrigated soils in the study year (Figure 7A). We 
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found that fields that had not received regular external water inputs the previous year showed a 
significantly higher difference in Sordariomycetes counts between dry farm and irrigated soils 
(Figure 7B), indicating that multiple years without irrigation enhance a soil’s dry farm signature. 
 
2.5. Discussion 
 
On-farm research across seven commercially managed dry farm fields allowed us to observe 
tomato, nutrient and soil fungal community dynamics in situ, opening a window into how dry farm 
systems function on working farms. Given the long-term specialized management that farmers 
have tailored to their dry farm practice and  fields, this on-farm approach facilitated results that 
reflect this management paradigm across the region and are therefore broadly applicable to dry 
farm management choices and outcomes on the Central Coast of California. 
 
2.5.1. Yields.  
Marketable yields per plot (and per plant) surprisingly did not correlate with plant spacing, which 
runs counter to current common wisdom in extension publications18. Because spacing ranged from 
15-48 inches (38-122 cm) between plants (plant density ranged from 2700 - 21000 plants/ha; see 
bed spacing listed in Table 1), relatively consistent yields on a per-plant basis (1.5-5.3 kg/plant) 
contributed to a wide range in yields on a per-area basis (6-89 T/ha). 
 
As there are very few irrigated tomatoes in the Central Coast region due to its cool, moist climate, 
it is difficult to compare dry farm yields to what might be found in an irrigated system in the same 
region. However, in 2015 (the most recent year for which data are available), the statewide average 
fresh market tomato harvest was 39 T/ha, a number that is surprisingly on par with the average 
dry farm yield in this study (34 T/ha, see Table 5). Because there is a clear tradeoff between yield 
and fruit quality–the highest yielding fields also had the lowest fruit quality, and increasing 
ammonium concentrations improve fruit quality while lowering yields–it may be difficult to 
increase yields above the state average while still charging consumers a premium for dry farm 
quality. Growers can currently charge roughly double the price per kg for dry farm-quality 
compared to irrigated tomatoes; therefore, short of doubling yields, current dry farmers may be 
reluctant to shift management to maximize yield over quality. However, these high yields do open 
the possibility that dry farm management could expand to industrial-scale markets that do not rely 
on consumer trust in high quality produce, competing instead with irrigated production if larger 
scale farmers adopt dry farm practices while choosing to intentionally manage for yields over 
quality. 
 
2.5.2. Soil nutrients.  
Only soil nutrients at 30-60cm depth showed correlations with BER, while marketable yields and 
fruit percent dry weight were only influenced by nutrients below 60cm. Specifically, ammonium 
concentrations were associated with increased fruit quality (as measured by percent dry weight) but 
decreased yields and incidence of blossom end rot, while nitrate was associated with  increased 
yields. 
 
Because soils dry down quickly in dry farm fields–available water content on average decreased by 
65% in the top 30cm from transplant to midseason, while decreasing by only 16% below 60cm 
(see Figure S4)–plants likely devote rooting efforts to exploring deeper soils that are not too dry for 



 
44 

efficient nutrient acquisition. Farmers also make an effort to plant transplants as deeply as possible, 
quickly delivering roots to depths below 30 cm. Though tomatoes root adventitiously from their 
stems and can therefore send out roots at shallower depths, rapidly drying surface soils likely limit 
nutrient uptake by adventitious roots, directing resources instead towards deeper rooting.  
 
The importance of soil nutrients at transplant at 30-60cm in predicting BER incidence, as 
compared to 60-100cm for yields/quality, suggests that calcium uptake (which is implicated in 
BER development60) occurs at an earlier stage of plant development when a higher proportion of 
roots were likely present at 30-60cm (and soils were wet enough for roots to extract nutrients; soils 
at 30-60cm on average had 4 cm of plant available water at the midseason sample, which roughly 
coincided with flowering/fruit set, while they had only 2 cm of water at first harvest). Roots likely 
concentrated more heavily in deeper soils during fruit set and development, causing only nutrients 
below 60cm to show a relationship with fruit yields and PDW. 
 
Our results also show a surprising relationship between transplant ammonium levels and fruit 
yields/quality. Though ammonium levels are quite low below 30cm (<5 ug N/g soil in all but one 
field), their negative association with yields suggests that either these low ammonium 
concentrations were still able to inhibit calcium/water uptake and further stress plants, as seen in 
studies with higher ammonium concentrations61,62, or that higher transplant ammonium levels 
were indicative of other soil circumstances that negatively impacted yields. One possibility is that 
wetter (but not waterlogged) transplant soils led to higher rates of nitrification, causing decreased 
ammonium levels and also higher yields due to increased water availability. While GWC was 
included in our models and was not significant, ammonium concentrations could in some ways be 
a better indicator of water availability than GWC if  they more fully reflect the conditions (e.g. soil 
texture, organic matter content, aggregate stability) that lead to nitrification. Transplant 
ammonium also showed a significant positive correlation with clay content (p < 0.03; expected 
given that clays increase CEC and SOM tends to be higher in clays, leading to more microbial 
activity). It is possible that, within the range of textures seen in this study, plots with higher clay 
content at depth inhibited plants’ ability to root deeply or led to decreased plant available water. 
This possibility is supported by the water x texture interaction that links plots with low clay and 
high GWC to increased yields. We  note that the plots with the highest ammonium levels were all 
from one field (Field 5), which exerted a strong influence on results; however, excluding Field 5 
from analyses does not change the direction of nutrient coefficients, or the depth at which nutrients 
show a significant relationship with these outcomes. Additional  research is needed to  understand 
the unexpected relationship between ammonium concentration and harvest outcomes found here.  
 
Because nitrate levels correlate positively with yields and do not show a statistically clear 
relationship with BER or fruit quality, it may be tempting to conclude that farmers should increase 
nitrate availability in dry farm soils. However, risk of nitrate leaching must be taken into account, 
especially in this agricultural region that suffers from severe nitrate pollution of 
groundwater63,64.  Three of the seven fields in our study had nitrate levels at harvest—in just the 
top 15cm—above the threshold (35 kg N/ ha) considered likely to cause groundwater 
contamination if that nitrate were to fully leach out of the rooting zone when it mobilizes in the 
first large rain event of the fall/winter wet season. These levels would likely be further accentuated 
by the Birch effect as soils are rewetted65. Because this first rain event typically occurs after plants 
are terminated, or is the terminating event itself, these systems may be particularly prone to nitrate 
loss when living roots are not present in the soil to recapture it. Though careful cover crop 
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management, which is practiced by all of the farms in this study, can likely attenuate leaching, 
decisions to fertilize should be made with caution. 
 
Taken together, these results highlight two core challenges for dry farmers. First, there is a tension 
between fruit quality and yields, with conditions that lead to high yields decreasing fruit quality 
and vice versa. Second, it is difficult to manage soil fertility deep in the soil profile, especially when 
nutrients are prone to leaching. 
 
2.5.3. Fungal communi*es.  
 
2.5.3.1. Inocula1on.  
While a commercial AMF inoculant applied at tomato transplant  changed AMF community 
composition in roots, it did not provide any benefit to yield outcomes, if anything lowering fruit 
quality. Diversified farm management (cover cropping66–68, crop rotation69,70, etc.) likely made 
AMF communities in these soils more diverse with higher spore counts than would be seen in more 
industrialized systems. Altering the AMF community through inoculation may have disrupted (in 
the case of fruit quality) or simply not altered functions that the endogenous community was as 
well or better-equipped to provide71–74.  This result has been seen repeatedly in field research, 
where commercial inoculants often fail to impact agriculturally relevant outcomes75,76, or local 
AMF communities outperform exogenous ones77–79. It is also possible that, while the inoculum 
established enough to shift the AMF community and lower fruit quality, inocula generally will not 
have a large influence on dry farm tomatoes given that they are applied to surface soils while plants 
focus on deeper rooting, or that the specific species in the inoculant we used were not well-suited 
to this system80. 
 
From a conceptual standpoint, there has been considerable debate in recent decades over how to 
best maintain agricultural productivity while also achieving systems that can maintain long-term 
productivity through resilience to environmental stress81,82. These conversations often pivot around 
the idea of replacing industrial input-intensive agricultural practices with ecologically-based, 
knowledge-intensive systems83. These ecologically-based systems are typically depicted as relying 
on on-farm biological diversity as a mechanism for increasing crops’ resilience to environmental 
conditions, whereas industrial systems are maintained with off-farm inputs. 
 
Even as biological diversification enters the agricultural ethos, there continues to be a pull towards 
achieving these biological outcomes through off-farm inputs. We typically think of chemicals (e.g. 
pesticides) and energy (e.g. fossil fuels) as the off-farm additions to conventional systems; however, 
products that mimic the biological effects of diversification practices (e.g. natural enemies to 
suppress pest populations) can similarly be introduced from external sources rather than fostered 
on the farm84–86.  
 
AMF inoculation is a prime example of how biological outcomes might be realized via 
external  inputs. While AMF inoculation has indeed shown some benefit in more industrially 
managed systems87–90, in the present study we observe that in a more diversified system, 
augmenting a field’s endogenous AMF community does not improve plant outcomes. Rather than 
replacing one external input (in this case irrigation water) with another (AMF inocula), we find that 
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farmers who already practice diversified management will likely have better luck pairing local 
climatic conditions with locally-adapted microbial communities. 
 
2.5.3.2. Soil loca1on and management.  
More broadly, the full fungal community in dry farm, irrigated, and non-cultivated soils were 
distinct, indicating different selective pressures in each soil condition. Irrigation seems to be a filter 
on agricultural soils, resulting in a smaller community that overlaps substantially with dry farm 
soils. Given that in this study only tomatoes were present in dry farm soils, while crops on irrigated 
soils varied from field to field, we likely overestimate the diversity of irrigated soils relative to dry 
farm, making this community shrinkage in irrigated soils even more pronounced. While fungal 
community responses to drought vary widely in the literature21,22,91, there is precedent for deficit 
irrigation shifting bacterial communities in processing tomato fields20, and natural experiments 
with drought conditions have led to increased fungal diversity in cotton rotations92. This lower 
fungal diversity in irrigated systems may be driven by lower soil temperatures that are less 
conducive to fungal growth92, or directly linked to changes in fungal competition induced by water 
stress91 that enhance diversity in dry farm systems. 
 
On the other hand, agricultural soils (dry farm) and non-cultivated soils seem to be distinct 
communities with roughly equal magnitudes of taxa numbers despite high levels of disturbance 
that might act as a narrowing selective pressure. Dry farm fungal diversity may be caused by 
external inputs (e.g. compost, crop residue) that introduce non-endogenous taxa to cultivated soils. 
 
Dry farm soils were not only distinct from the other soil locations, but consistently enriched in taxa 
in the class Sordariomycetes. These indicator taxa formed a dry farm “signature” that was not only 
present in dry farm soils, but increased in magnitude in soils that had gone multiple years without 
external water inputs. This signature showed positive associations with fruit quality outcomes, 
which is of particular importance to farmers in this quality-driven system. Sordariomycetes were 
also associated with an increased likelihood that a plot would not have any marketable tomatoes 
on a given harvest day; however, as this was a rare occurrence that happened almost exclusively 
in the first/last weeks of harvest when yields were low for all plots, we do not expect that farmers 
will see an association between Sordariomycetes and yield declines. If anything, farmers may notice 
a slight truncation of harvest season duration in fields that have been dry farmed for several years. 
 Sordariomycetes themselves may not be causing these outcomes, but rather point to the fact that 
soil microbial communities–possibly including bacteria and other microorganisms in addition to 
fungi–are consistently adapting to dry farm management. Sordariomycetes enrichment may 
indicate other community shifts that are ultimately the cause for enhanced fruit quality. 
 
It is also possible that Sordariomycetes themselves are improving dry farm outcomes. Endophytes 
in the Hypocreales class, which was enriched in dry farm fields, are known to increase drought 
resistance and decrease pest pressure in their hosts93, though none of the specific species known to 
exhibit this behavior (e.g. Trichoderma94) were enriched in dry farm soils. On the other hand, 
Nectriaceae, the family that contains the Fusarium genus, was found to be enriched, though 
similarly no known pathogenic species were enriched in dry farm soils. 
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2.5.4. Caveats and limita*ons.  
Our study explored dry farm management practices and their influence on soil nutrient and fungal 
community dynamics in 7 fields throughout the Central Coast region of California, allowing us to 
explore patterns across a wide range of management styles, soil types, and climatic conditions. 
Though we were able to sample from a large swath of contexts in which tomatoes are dry farmed, 
we are also aware that conditions will vary year to year, especially as climates change and farmers 
can no longer rely on “typical” weather conditions in the region. While we are confident in the 
patterns we observed and the recommendations below, we also encourage further study across 
multiple years to better understand the full scope of the decision space in which dry farm growers 
are acting. 
 
2.5.5. Management and policy implica*ons.  
Given the scope of our current findings, we outline several management and policy implications 
for dry farmers and dry farming. Though we aim these implications towards the context of dry 
farm tomatoes in coastal California, we expect that they are likely to generalize to other dry farm 
crops grown in other regions with Mediterranean climates. 
 
First, given the expense and possibility that it is detrimental to fruit quality, we do not advise AMF 
inoculation for dry farm tomato growers. Second, we note the importance of nutrients below 60cm 
and the complexities of subsurface fertility management, and we recommend experimentation with 
organic amendments and deeply rooted cover crops that may be able to deliver nutrient sources 
that persist at depth, as well as planning several seasons in advance to build nutrients deeper in the 
soil profile. 
 
Finally, given our finding that dry farm soils develop a fungal signature that increases over time 
and its association with improved fruit quality, we encourage farmers to experiment with rotations 
that include only dry farm crops (e.g. winter squash, dry beans, potatoes) and even consider setting 
aside a field to be dry farmed in perpetuity. However, fully dry farmed rotations currently do not 
exist, likely due to a lack of commercially viable options for crops to include in a dry farm rotation.  
 
In order to experiment with potential dry farm rotations, as well as cover crops that can best 
scavenge excess nitrates and soil management regimes that can increase soil fertility at depth, 
farmers must be given both research support and a safety net for their own on-farm 
experimentation. Funding to mitigate the inherent risk in farmers’ management explorations will 
be key in further developing high-functioning dry farm management systems. Expanding land 
access to farmers who are committed to exploring dry farm management can additionally benefit 
these explorations. 
 
2.6. Conclusion 
 
Dry farm tomato systems on the Central Coast point to key management principles that can both 
help current growers flourish and provide guidance for how irrigation can be dramatically 
decreased in a variety of contexts without harming farmer livelihoods. In these systems, managing 
nutrients at depth–at least below 30cm and ideally below 60cm–is necessary to influence outcomes 
in fields where surface soils dry down quickly after transplant. Fostering locally-adapted soil 
microbial communities that are primed for water scarcity can improve fruit quality. Farmers can 
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otherwise manage nutrients to maximize either yields or quality, giving latitude to match local field 
conditions to desired markets. 
 
As water scarcity intensifies in California agriculture and around the globe, dry farm management 
systems are positioned to play an important role in water conservation. Understanding and 
implementing dry farm best management practices will not only benefit fields under strict dry farm 
management, but will provide an increasingly robust and adaptable example for how farms can 
continue to function and thrive while drastically reducing water inputs. 
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2.9. Figures 
 
Figure 1. Sample experimental layout for one field. Seven total fields were included in the study. 
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Figure 2. Harvest outcomes. Marketable fruit yield (kg per experimental plot) in weekly harvests 
are shown in (A). Tomato fruit quality in each experimental plot as measured by percent fruit dry 
matter (g dry mass/g fresh fruit) are shown in (B). 
 

A.  
 

B.  
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Figure 3. Principal coordinate analyses of bulk soil and root communities. The same PCoA is 
shown for each panel in (A), which represents the fungal community  in each bulk soil sample that 
was collected as a single point, positioned by its similarity to the fungal community  in other 
samples. Each sample is colored by a different attribute in the three panels: field, location, and 
depth. Each field is shown separately in (B), and colored by sample location. Root fungal 
communities are shown in (C). 

A.  

B.  

C.  



 
57 

Figure 4. Relative abundance of phyla in each field for bulk soil (A)  and roots (B). Note the low 
relative abundance of Glomeromycota (the phylum containing AMF)  in both bulk soils and 
roots. 
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Figure 5. Venn Diagram depicting the number of distinct OTUs shared between each soil 
location for all bulk soil samples. 
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Figure 6. Taxa found to be significantly enriched in either dry farm, irrigated, or non-cultivated 
bulk soil through differential expression analysis. Of the 466 significantly discriminative taxa, only 
those where the log of the linear discriminant analysis score was greater than 3.75 are shown. 
Lefthand panel shows relative abundance of the taxa for each soil location, while righthand panel 
shows the magnitude of the difference between soil locations. Taxonomic level is denoted by the 
letter in front of the name. See Table 7 for yield outcomes associated with changes in 
Sordariomycetes relative abundance. 
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Figure 7. Sordariomyecetes counts in dry farm, irrigated, and non-cultivated soils on each field. 
For (B) there were 3 fields that received external water inputs in the previous year and 4 that did 
not. 
 

A.  
 

B.  
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2.10. Tables 
 
Table 1. Field and planting characteristics on all farms. Where application rates are not listed, 
they were not known by the farmer. 
 

Field Plant 
Spacing (in) 

Bed 
Spacing, 
center to 
center (in) 

Plant 
date 

Soil amendments 

Farm 1A 15 50 3/2 Compost every other year (not 
applied in study year) 

Farm 1B 15 50 3/25 Compost every other year (not 
applied in study year) 

Farm 2 18 80 3/29 Compost (10-15 T/ac) 
Gypsum (2 T/ac) 
Feather meal 8-5-5- fertilizer 

Farm 3 24 96 4/8 Compost (15 T/ac) 
Pelletized 8-5-1- fertilizer (.4 T/ac) 

Farm 4 18 62 4/10 Pelletized 4-3-3- fertilizer 

Farm 5 48 120 4/25 Compost (2 T/ac) 
Bone meal 

Farm 6 21 72 5/17 Compost (5-10 T/ac) 
Pelletized 8-4-1 fertilizer (40 lb 
N/ac) 
Gypsum 
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Table 2. Crop rotation on each field. 
 

Field Summer 
crop 2  years 
prior 

Summer 
crop 1 
year prior 

Field cover winter 
prior 

Tomato 
variety 

Crop planned for 
following year 

Farm 1A brassicas eggplant Cover crop (bell 
beans, vetch, peas, 
rye) 

Early Girl strawberry/sungolds 

Farm 1B tomato tomato Cover crop (bell 
beans, vetch, peas, 
rye) 

Early Girl tomato 

Farm 2 strawberry brassicas Fall cover crop 
(buckwheat) / 
Winter crop 
(broccoli) 

Early Girl leeks/lettuce/beans/
summer squash 

Farm 3 tomato fallow Cover crop (bell 
beans, vetch, peas, 
oats) 

Early Girl fallow 

Farm 4 fallow fallow Cover crop (grass) Early Girl tomato 

Farm 5 fallow Mixed 
brassicas 

Cover crop (peas, 
vetch, fava, rye) 

New Girl potato 

Farm 6 Winter 
squash 

fallow Cover crop 
(legume mix) 

Dirty Girl onion 
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Table 3. Soil characteristics from each field. Soil series taken from the Web Soil Survey, soil 
texture and pH measured experimentally (see methods). Available water calculated using 
pedotransfer function from Román Dobarco et al., 2019, with analytical error calculated via 
running the same pedotransfer function using lower and upper 95% confidence limits for all model 
parameters. 
 

Field Soil series Soil texture (0-
30cm) 

Soil pH in CaCl2 
at surface (0-
15cm) 

Available water 
in top meter of 
soil at transplant 
(cm) 

Farm 1A Elder Sandy loam 6.9 22 ± 1.8 

Farm 1B Elkhorn Sandy clay loam 6.7 22 ± 2.1 

Farm 2 Elder Clay loam 6.4 22 ± 1.9 

Farm 3 Elkhorn Sandy clay loam 7.0 19 ± 2.0 

Farm 4 Aptos Sandy clay loam 6.9 18 ± 2.1 

Farm 5 Lockwood Clay loam 6.1 21 ± 2.0 

Farm 6 Elkhorn Loam  6.5 11 ± 1.9 
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Table 4. Monthly weather totals for duration of experiment (first transplant to last harvest). Data 
taken from De Laveaga CIMIS weather station (centrally located between all farms). 
 

Month Total Precip (mm) Total ETo (mm) Avg Max Air Temp (C) 

March 70 102 16.7 

April 7 117 18.3 

May 2 146 20.7 

June 3 152 23.6 

July 1 134 21.5 

August 2 119 22.4 

September 1 104 23 

October 142 81 21.9 
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Table 5. Tomato yields and fruit quality for each field over the course of the 2021 growing season. 
Fruit percent dry weight is used as a proxy for fruit quality (optimal range 8% - 12%), and is shown 
at the 6th harvest when qualities tend to be at their peak. 
 

Field Cumulative marketable 
yield (T/ha) 

Percent total harvest 
impacted by BER 

Fruit percent dry weight 
at 6th harvest 

Farm 1A 88.5 0.2 5.5 

Farm 1B 45.6 1.3 10.5 

Farm 2 48.6 4.9 7.6 

Farm 3 9.8 15.3 12 

Farm 4 22.0 18.6 11.3 

Farm 5 6.5 3.3 10.2 

Farm 6 19.6 0.1 7.7 
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Table 6.  Variables in bold show a statistically clear relationship with the outcome variable. Depth 
of interest was identified as the only depth where nutrient principal components showed a 
significant correlation with the outcome variable in initial modeling. Hurdle coefficients are only 
shown when significant; full model results, including hurdle estimates and random effects, can be 
found in the supplement.  
 
Outcome 
variable 

Depth of 
interest 

Fixed effect Estimate 95% CI 
lower bound 

95% CI upper 
bound 

Marketable 
Yield 

60 - 100 cm Inoculation -0.05 -0.20 0.09 
  

Plant spacing 0.10 -0.10 0.34   
Texture (PC1) 0.01 -0.91 0.89   
GWC (PC1) 0.11 -.03 0.25   
Texture x GWC 0.05 0.00 0.11   
Ammonium, 60-100cm -0.07 -0.69 0.52   
Ammonium2 -0.15 -0.24 -0.06   
Nitrate, 60-100cm 0.11 0.03 0.20   
Phosphate, 60-100cm 0.00 -0.02 0.01   
Nitrate to Ammonium ratio -0.03 -0.02 0.01 

Proportion of  
fruits with  
blossom end 
rot 

30 - 60 cm Inoculation 0.17 -0.14 0.49 
Plant spacing 0.01 -0.22 0.23  
Texture (PC1) -0.15 -0.96 0.74  
GWC (PC1) 0.13 -0.11 0.39  
Texture x GWC -0.04 -0.14 0.06  
Ammonium, 30-60cm 0.68 -0.64 1.93  
Ammonium2 -0.07 -.035 0.21  
Nitrate, 30-60cm -0.04 -0.22 0.14  
Phosphate, 30-60cm 0.00 -0.03 0.02  
Nitrate to Ammonium ratio 0.02 -0.11 0.15   
Hurdle Ammonium2, 
30-60cm 

0.50 0.14 0.85 

Fruit percent  
dry weight 

60 - 100 cm Inoculation -0.05 -0.09 0.00 
Plant spacing -0.01 -0.10 0.06   
Texture (PC1) 0.02 -0.32 0.37   
GWC (PC1) -0.03 -0.07 0.01   
Texture x GWC -0.01 -0.03 0.01   
Ammonium, 60-100cm -0.10 -0.29 0.10   
Ammonium2 0.04 0.01 0.07   
Nitrate, 60-100cm -0.01 -0.03 0.02   
Phosphate, 60-100cm 0.00 -0.01 0.00   
Nitrate to Ammonium ratio 0.00 -0.02 0.01 
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Table 7.  Fungal community metrics with a statistically clear relationship with the outcome 
variable when controlling for all fixed effects listed in Table 6 and random effects as described in 
“model structure” above. Due to high correlations between fungal metrics across community 
locations (soil at 0-15 and 30-60cm, and roots), separate regressions were run for each community. 
Sordariomycetes counts were scaled before being included in the regression. 
 

Outcome 
variable 

Fungal community metric Estimate 95% CI lower 
bound 

95% CI upper 
bound 

Marketable 
Yield 

Hurdle Sordariomycetes count, 0-
15cm 

1.57 0.35 3.01 

Proportion of  
fruits with  
blossom end rot 

n/a 
   

Fruit percent  
dry weight 

Sordariomycetes count, 30-60cm 0.03 0.00 0.06     
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2.11. Supplementary informa1on 
 
Full model results 
 
Marketable Yield (initial model with principal components to identify depth of interest) 
Group-Level Effects:  
~Field_short (Number of levels: 7)  
                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)                   0.48      0.41     0.02     1.54 1.00      581     1268 
sd(hu_Intercept)                1.24      1.20     0.05     4.58 1.00     1398     1398 
cor(Intercept,hu_Intercept)    -0.10      0.56    -0.96     0.93 1.00     3033     1921 
 
~Field_short:block (Number of levels: 35)  
                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)                   0.15      0.09     0.01     0.33 1.00      327      718 
sd(hu_Intercept)                1.10      0.77     0.04     2.95 1.00      738     1204 
cor(Intercept,hu_Intercept)     0.04      0.55    -0.91     0.95 1.00     1310     1551 
 
~Field_short:block:Plot (Number of levels: 70)  
                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)                   0.28      0.06     0.15     0.41 1.01      496     1261 
sd(hu_Intercept)                1.60      0.78     0.17     3.37 1.00      800      650 
cor(Intercept,hu_Intercept)    -0.58      0.31    -0.98     0.18 1.00     1064     1388 
 
~harvest_number (Number of levels: 20)  
                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)                   0.83      0.15     0.59     1.17 1.00      968     1494 
sd(hu_Intercept)                1.65      0.46     0.93     2.68 1.00     2465     2614 
cor(Intercept,hu_Intercept)    -0.76      0.19    -0.99    -0.30 1.00     1285     1246 
 
Population-Level Effects:  
                       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
Intercept                  0.35      1.25    -2.74     2.48 1.00     1185     1298 
hu_Intercept              -8.13      7.09   -22.54     5.85 1.00     1568     1379 
Inoc_longinoculated       -0.10      0.09    -0.28     0.08 1.00     2415     2564 
plant_spacing              0.01      0.06    -0.09     0.14 1.00     1213     1265 
tex_PC1                    0.27      0.19    -0.11     0.66 1.00     1687     1465 
water_PC1                 -0.03      0.09    -0.20     0.15 1.00     1545     1556 
nutA_PC1                  -0.03      0.07    -0.18     0.11 1.00     2043     1614 
nutA_PC2                   0.06      0.09    -0.11     0.24 1.00     1461     1931 
nutB_PC1                   0.04      0.06    -0.07     0.16 1.00     1952     1968 
nutB_PC2                  -0.02      0.15    -0.30     0.28 1.00     2420     2240 
nutC_PC1                  -0.09      0.09    -0.26     0.08 1.00     2103     2214 
nutC_PC2                   0.12      0.08    -0.03     0.27 1.00     1979     2032 
nutD_PC1                  -0.02      0.07    -0.16     0.12 1.00     2429     2436 
nutD_PC2                  -0.64      0.13    -0.90    -0.40 1.00     1633     1804 
tex_PC1:water_PC1          0.04      0.03    -0.02     0.11 1.00     1305     1686 
hu_Inoc_longinoculated     0.83      0.94    -0.93     2.82 1.00     2651     1837 
hu_plant_spacing           0.07      0.34    -0.63     0.74 1.00     1646     1561 
hu_tex_PC1                -0.35      0.99    -2.41     1.55 1.00     2037     2024 
hu_water_PC1              -0.02      0.65    -1.30     1.30 1.00     1891     1986 
hu_nutA_PC1               -0.32      0.73    -1.77     1.11 1.00     2074     2163 
hu_nutA_PC2                0.33      0.90    -1.57     2.08 1.00     2427     2090 
hu_nutB_PC1               -0.85      0.96    -2.98     0.77 1.00     2911     2084 
hu_nutB_PC2                1.73      1.57    -1.37     4.87 1.00     2215     1716 
hu_nutC_PC1               -0.93      1.05    -3.13     0.98 1.00     2516     2319 
hu_nutC_PC2               -0.16      0.91    -1.82     1.81 1.00     2321     2179 
hu_nutD_PC1               -0.27      0.90    -2.11     1.48 1.00     2524     2106 
hu_nutD_PC2                0.18      1.15    -2.01     2.48 1.00     2723     2306 
hu_tex_PC1:water_PC1       0.07      0.25    -0.44     0.55 1.00     1759     1636 
 
Family Specific Parameters:  
      Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
shape     1.38      0.06     1.26     1.50 1.00     4228     1954 
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Marketable Yield (final model, nutrients at 60-100cm) 
Group-Level Effects:  
~Field_short (Number of levels: 7)  
                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)                   1.40      0.66     0.53     3.05 1.00     1183     1090 
sd(hu_Intercept)                0.88      0.81     0.03     3.00 1.00     1753     1578 
cor(Intercept,hu_Intercept)    -0.02      0.59    -0.95     0.95 1.00     2483     1832 
 
~Field_short:block (Number of levels: 35)  
                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)                   0.08      0.06     0.00     0.21 1.00      689     1252 
sd(hu_Intercept)                0.91      0.62     0.04     2.33 1.00      813     1525 
cor(Intercept,hu_Intercept)    -0.02      0.56    -0.95     0.92 1.00     1260     1465 
 
~Field_short:block:Plot (Number of levels: 70)  
                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)                   0.18      0.06     0.04     0.30 1.00      421      303 
sd(hu_Intercept)                1.45      0.60     0.37     2.74 1.00      754     1022 
cor(Intercept,hu_Intercept)    -0.62      0.33    -0.98     0.23 1.00      737      616 
 
~harvest_number (Number of levels: 20)  
                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)                   0.84      0.16     0.58     1.19 1.00      556     1008 
sd(hu_Intercept)                1.66      0.47     0.91     2.71 1.00     1569     1892 
cor(Intercept,hu_Intercept)    -0.76      0.19    -0.99    -0.28 1.00     1395     1429 
 
Population-Level Effects:  
                          Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
Intercept                    -1.66      2.50    -6.94     3.19 1.00      880      993 
hu_Intercept                 -7.99      4.87   -17.53     2.07 1.00     1540     1589 
Inoc_longinoculated          -0.05      0.08    -0.20     0.09 1.00     2025     1856 
plant_spacing                 0.10      0.11    -0.10     0.34 1.00      881     1046 
tex_PC1                       0.01      0.43    -0.91     0.89 1.00      860     1132 
water_PC1                     0.11      0.07    -0.03     0.25 1.00     2183     2048 
nh4_TD                       -0.07      0.31    -0.69     0.52 1.00     1470     1833 
nh4_sq                       -0.15      0.05    -0.24    -0.06 1.00     1658     2012 
no3_TD                        0.11      0.04     0.03     0.20 1.00     1586     1869 
T_OP_D                       -0.00      0.01    -0.02     0.01 1.00     2260     1613 
nitrate_to_ammonium_TD       -0.03      0.02    -0.08     0.01 1.00     1516     1825 
tex_PC1:water_PC1             0.05      0.03     0.00     0.11 1.00     1930     2226 
hu_Inoc_longinoculated        0.97      0.80    -0.51     2.67 1.00     2639     1522 
hu_plant_spacing              0.14      0.23    -0.33     0.61 1.00     1377     1641 
hu_tex_PC1                   -0.89      0.73    -2.39     0.51 1.00     1692     1881 
hu_water_PC1                 -0.26      0.51    -1.34     0.71 1.00     2011     1921 
hu_nh4_TD                     0.53      2.78    -4.85     6.13 1.00     1850     2285 
hu_nh4_sq                    -0.81      0.94    -2.97     0.60 1.00     1773     1503 
hu_no3_TD                    -0.21      0.48    -1.15     0.74 1.00     1587     1843 
hu_T_OP_D                    -0.03      0.05    -0.13     0.07 1.00     1831     1987 
hu_nitrate_to_ammonium_TD     0.07      0.26    -0.52     0.54 1.00     1623     1507 
hu_tex_PC1:water_PC1         -0.04      0.20    -0.44     0.34 1.00     1475     1298 
 
Family Specific Parameters:  
      Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
shape     1.37      0.06     1.26     1.49 1.00     3155     1945 
 
 
Marketable Yield (fungal metrics - 0-15cm) 
Group-Level Effects:  
~Field_short (Number of levels: 7)  
                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)                   1.35      0.66     0.54     3.04 1.00     1004     1663 
sd(hu_Intercept)                1.00      1.01     0.04     3.56 1.00      718      875 
cor(Intercept,hu_Intercept)    -0.13      0.57    -0.96     0.91 1.00     1882     1681 
 
~Field_short:block (Number of levels: 35)  
                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
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sd(Intercept)                   0.09      0.06     0.01     0.22 1.00      604     1407 
sd(hu_Intercept)                0.97      0.67     0.06     2.58 1.00      640     1011 
cor(Intercept,hu_Intercept)    -0.13      0.58    -0.97     0.92 1.00      794     1679 
 
~Field_short:block:Plot (Number of levels: 67)  
                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)                   0.21      0.07     0.07     0.33 1.00      664      891 
sd(hu_Intercept)                1.22      0.63     0.10     2.61 1.01      617      732 
cor(Intercept,hu_Intercept)    -0.62      0.36    -0.99     0.39 1.00      907      999 
 
~harvest_number (Number of levels: 20)  
                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)                   0.82      0.15     0.57     1.16 1.00      738     1599 
sd(hu_Intercept)                1.65      0.45     0.90     2.70 1.00     1830     2056 
cor(Intercept,hu_Intercept)    -0.77      0.18    -0.99    -0.32 1.00      895      632 
 
Population-Level Effects:  
                          Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
Intercept                    -1.01      2.58    -6.60     3.95 1.00     1005     1114 
hu_Intercept                -12.50     11.51   -35.24    10.24 1.00     1989     1657 
Inoc_longinoculated          -0.04      0.09    -0.21     0.13 1.00     2070     2358 
plant_spacing                 0.10      0.10    -0.09     0.33 1.00      904      949 
tex_PC1                       0.02      0.44    -0.93     0.84 1.00      902     1106 
water_PC1                     0.11      0.08    -0.05     0.26 1.00     2153     2006 
nh4_TD                       -0.09      0.35    -0.79     0.57 1.00     1152     1610 
nh4_TD_sq                    -0.15      0.05    -0.25    -0.04 1.00     1469     1598 
no3_TD                        0.12      0.05     0.02     0.21 1.00      993     1234 
T_OP_D                       -0.00      0.01    -0.02     0.02 1.00     1566     1722 
nitrate_to_ammonium_TD       -0.03      0.02    -0.08     0.01 1.00      943     1429 
sor.count.A.scaled           -0.01      0.06    -0.12     0.10 1.00     1878     1605 
shannon.A                    -0.15      0.26    -0.66     0.37 1.00     2139     2196 
tex_PC1:water_PC1             0.05      0.03    -0.00     0.11 1.00     1393     1583 
hu_Inoc_longinoculated        1.22      0.84    -0.39     2.95 1.00     2120     1968 
hu_plant_spacing              0.20      0.28    -0.36     0.73 1.01     1025      795 
hu_tex_PC1                   -0.94      0.72    -2.48     0.42 1.00     1348     1325 
hu_water_PC1                 -0.31      0.50    -1.37     0.62 1.00     1364     1017 
hu_nh4_TD                     0.12      2.46    -4.69     4.93 1.00     2181     1898 
hu_nh4_TD_sq                 -1.10      0.97    -3.22     0.48 1.00     1586     1728 
hu_no3_TD                     0.13      0.52    -0.87     1.18 1.00     1366     1439 
hu_T_OP_D                    -0.06      0.05    -0.17     0.04 1.00     1502     1569 
hu_nitrate_to_ammonium_TD    -0.08      0.28    -0.67     0.43 1.00     1374     1420 
hu_sor.count.A.scaled         1.57      0.67     0.35     3.01 1.00     1905     1613 
hu_shannon.A                  0.90      2.14    -3.43     5.18 1.00     2981     2288 
hu_tex_PC1:water_PC1         -0.03      0.21    -0.44     0.39 1.01     1148     1143 
 
Family Specific Parameters:  
      Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
shape     1.37      0.06     1.25     1.50 1.00     3451     2371 
 
 
Marketable Yield (fungal metrics - 30-60cm) 
Group-Level Effects:  
~Field_short (Number of levels: 7)  
                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)                   1.31      0.67     0.43     3.05 1.00      857     1081 
sd(hu_Intercept)                0.87      0.80     0.03     2.98 1.00     1645     1520 
cor(Intercept,hu_Intercept)    -0.02      0.58    -0.96     0.94 1.00     3232     1715 
 
~Field_short:block (Number of levels: 34)  
                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)                   0.12      0.08     0.01     0.29 1.00      635     1459 
sd(hu_Intercept)                0.70      0.56     0.03     2.11 1.00     1379     1748 
cor(Intercept,hu_Intercept)    -0.10      0.56    -0.96     0.94 1.00     1986     2046 
 
~Field_short:block:Plot (Number of levels: 57)  
                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
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sd(Intercept)                   0.22      0.07     0.08     0.37 1.00      604      941 
sd(hu_Intercept)                1.42      0.62     0.36     2.81 1.00     1221     1109 
cor(Intercept,hu_Intercept)    -0.61      0.33    -0.99     0.25 1.00     1143     1000 
 
~harvest_number (Number of levels: 20)  
                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)                   0.78      0.15     0.53     1.11 1.00      773     1311 
sd(hu_Intercept)                1.60      0.50     0.78     2.71 1.00     1922     1613 
cor(Intercept,hu_Intercept)    -0.72      0.21    -0.98    -0.20 1.00     1528     1675 
 
Population-Level Effects:  
                          Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
Intercept                    -0.94      2.56    -6.08     4.24 1.00      681      554 
hu_Intercept                 -7.53      5.56   -18.74     3.13 1.00     2105     2086 
Inoc_longinoculated          -0.13      0.10    -0.33     0.06 1.00     2328     1929 
plant_spacing                 0.08      0.11    -0.14     0.32 1.00      693      521 
tex_PC1                       0.09      0.47    -0.85     1.02 1.00      703      569 
water_PC1                     0.14      0.10    -0.05     0.33 1.00     1740     1743 
nh4_TD                       -0.29      0.41    -1.10     0.50 1.00     1345     1777 
nh4_TD_sq                    -0.11      0.06    -0.22     0.00 1.00     1556     1915 
no3_TD                        0.11      0.06     0.00     0.22 1.00     1351     1967 
T_OP_D                       -0.00      0.01    -0.02     0.02 1.00     2082     1957 
nitrate_to_ammonium_TD       -0.04      0.03    -0.09     0.01 1.00     1347     1838 
sor.count.C.scaled           -0.06      0.06    -0.19     0.06 1.00     2544     2345 
shannon.C                    -0.01      0.07    -0.16     0.13 1.00     2340     2018 
tex_PC1:water_PC1             0.04      0.03    -0.02     0.11 1.00     1740     2513 
hu_Inoc_longinoculated        1.41      0.99    -0.40     3.47 1.00     3101     2351 
hu_plant_spacing              0.01      0.26    -0.49     0.51 1.00     1777     1832 
hu_tex_PC1                   -1.15      0.79    -2.79     0.33 1.00     1810     1839 
hu_water_PC1                 -0.13      0.63    -1.42     1.09 1.00     1927     2010 
hu_nh4_TD                    -0.83      2.53    -5.79     4.04 1.00     2572     2582 
hu_nh4_TD_sq                 -0.39      0.80    -2.26     0.88 1.00     1901     1829 
hu_no3_TD                    -0.45      0.58    -1.65     0.70 1.00     1789     1617 
hu_T_OP_D                    -0.06      0.06    -0.17     0.05 1.00     1571     1598 
hu_nitrate_to_ammonium_TD     0.16      0.29    -0.44     0.72 1.00     1935     2008 
hu_sor.count.C.scaled        -1.09      0.64    -2.44     0.03 1.00     2065     1917 
hu_shannon.C                  0.65      0.78    -0.78     2.26 1.00     2481     2176 
hu_tex_PC1:water_PC1         -0.23      0.25    -0.72     0.27 1.00     1451     1704 
 
Family Specific Parameters:  
      Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
shape     1.37      0.07     1.24     1.50 1.00     4510     2081 
 
 

Marketable Yield (fungal metrics - roots) 
Group-Level Effects:  
~Field_short (Number of levels: 7)  
                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)                   1.34      0.65     0.50     3.03 1.00      884     1318 
sd(hu_Intercept)                0.84      0.77     0.03     2.73 1.00     1887     1750 
cor(Intercept,hu_Intercept)    -0.09      0.58    -0.96     0.94 1.00     2823     1762 
 
~Field_short:block (Number of levels: 35)  
                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)                   0.08      0.06     0.00     0.22 1.00      828     1231 
sd(hu_Intercept)                0.79      0.61     0.04     2.25 1.00     1322     1990 
cor(Intercept,hu_Intercept)    -0.02      0.56    -0.93     0.94 1.00     1707     1711 
 
~Field_short:block:Plot (Number of levels: 70)  
                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)                   0.20      0.06     0.08     0.32 1.00      747     1212 
sd(hu_Intercept)                1.41      0.59     0.43     2.75 1.00     1227     1405 
cor(Intercept,hu_Intercept)    -0.70      0.26    -0.99    -0.02 1.00     1386     2000 
 
~harvest_number (Number of levels: 20)  
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                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)                   0.83      0.15     0.59     1.18 1.00      725     1415 
sd(hu_Intercept)                1.69      0.48     0.91     2.77 1.00     2365     2014 
cor(Intercept,hu_Intercept)    -0.76      0.19    -0.99    -0.26 1.00     1620     1868 
 
Population-Level Effects:  
                          Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
Intercept                    -1.38      2.39    -6.45     3.24 1.00     1102     1335 
hu_Intercept                 -3.92      5.29   -13.62     6.62 1.00     1933     1971 
Inoc_longinoculated          -0.05      0.08    -0.22     0.11 1.00     2249     2224 
plant_spacing                 0.10      0.10    -0.10     0.32 1.00      987     1263 
tex_PC1                       0.03      0.43    -0.82     0.90 1.00     1165     1228 
water_PC1                     0.10      0.08    -0.06     0.25 1.00     1864     1445 
nh4_TD                       -0.08      0.31    -0.69     0.52 1.00     1606     1842 
nh4_TD_sq                    -0.15      0.05    -0.24    -0.06 1.00     2159     1999 
no3_TD                        0.12      0.05     0.03     0.21 1.00     1330     1994 
T_OP_D                       -0.00      0.01    -0.02     0.01 1.00     2175     1712 
nitrate_to_ammonium_TD       -0.03      0.02    -0.08     0.01 1.00     1255     1557 
sor.count.R.scaled            0.01      0.05    -0.09     0.10 1.00     2708     2270 
shannon.R                    -0.07      0.11    -0.28     0.13 1.00     2461     2143 
tex_PC1:water_PC1             0.06      0.03     0.00     0.11 1.00     1597     2133 
hu_Inoc_longinoculated        0.93      0.81    -0.63     2.57 1.00     3493     2270 
hu_plant_spacing              0.12      0.24    -0.34     0.60 1.00     1682     1679 
hu_tex_PC1                   -1.14      0.71    -2.60     0.19 1.00     1953     1778 
hu_water_PC1                 -0.29      0.52    -1.32     0.72 1.00     2353     1849 
hu_nh4_TD                     0.54      2.34    -3.96     5.22 1.00     2954     2447 
hu_nh4_TD_sq                 -0.66      0.80    -2.59     0.56 1.00     2226     1947 
hu_no3_TD                    -0.22      0.47    -1.18     0.72 1.00     2187     2038 
hu_T_OP_D                    -0.05      0.05    -0.15     0.05 1.00     1763     1759 
hu_nitrate_to_ammonium_TD     0.10      0.26    -0.46     0.57 1.00     1913     1685 
hu_sor.count.R.scaled         0.74      0.49    -0.21     1.75 1.00     2658     2198 
hu_shannon.R                 -1.28      1.03    -3.43     0.66 1.00     2440     2202 
hu_tex_PC1:water_PC1         -0.11      0.20    -0.51     0.28 1.00     1550     1698 
 
Family Specific Parameters:  
      Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
shape     1.37      0.06     1.26     1.49 1.00     3924     2306 
 
 
Blossom End Rot (initial model with principal components to identify depth of interest) 
Group-Level Effects:  
~Field_short (Number of levels: 7)  
                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)                   1.06      0.50     0.36     2.24 1.00      760     1044 
sd(hu_Intercept)                1.98      0.67     1.02     3.66 1.00     1579     1833 
cor(Intercept,hu_Intercept)    -0.69      0.30    -0.99     0.12 1.00     1397     1714 
 
~Field_short:block (Number of levels: 35)  
                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)                   0.16      0.11     0.01     0.41 1.00      849     1366 
sd(hu_Intercept)                0.26      0.18     0.01     0.66 1.00      938     1335 
cor(Intercept,hu_Intercept)    -0.19      0.56    -0.98     0.89 1.00     1070     1737 
 
~Field_short:block:Plot (Number of levels: 70)  
                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)                   0.33      0.12     0.10     0.55 1.01      596      740 
sd(hu_Intercept)                0.46      0.19     0.06     0.82 1.00      499      414 
cor(Intercept,hu_Intercept)    -0.40      0.41    -0.97     0.62 1.00      695      764 
 
~harvest_number (Number of levels: 20)  
                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)                   0.67      0.19     0.36     1.12 1.00     1023     1110 
sd(hu_Intercept)                1.10      0.26     0.69     1.68 1.00     1399     1981 
cor(Intercept,hu_Intercept)    -0.52      0.25    -0.86     0.07 1.00      718      871 
 
Population-Level Effects:  
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                       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
Intercept                 -1.54      1.99    -5.53     2.39 1.00      902     1291 
hu_Intercept               1.60      3.68    -6.29     8.38 1.00     1329     1561 
Inoc_longinoculated        0.20      0.15    -0.09     0.50 1.00     1775     1824 
plant_spacing             -0.08      0.09    -0.26     0.11 1.00      915     1296 
tex_PC1                   -0.31      0.33    -0.97     0.38 1.00     1085     1420 
water_PC1                  0.04      0.13    -0.21     0.29 1.00     1861     1957 
nutA_PC1                   0.06      0.12    -0.18     0.29 1.00     1422     1532 
nutA_PC2                   0.15      0.13    -0.10     0.39 1.00     1570     1953 
nutB_PC1                  -0.03      0.15    -0.33     0.27 1.00     2135     1992 
nutB_PC2                  -0.09      0.21    -0.48     0.36 1.00     1564     1724 
nutC_PC1                   0.15      0.17    -0.19     0.49 1.00     1319     2069 
nutC_PC2                  -0.31      0.17    -0.65     0.04 1.00     1487     1689 
nutD_PC1                  -0.04      0.12    -0.26     0.19 1.00     2271     1943 
nutD_PC2                   0.34      0.22    -0.07     0.79 1.00     1165     1384 
tex_PC1:water_PC1         -0.09      0.05    -0.18     0.00 1.00     1345     1453 
hu_Inoc_longinoculated     0.20      0.24    -0.24     0.69 1.00     2793     2044 
hu_plant_spacing          -0.04      0.17    -0.36     0.31 1.00     1335     1732 
hu_tex_PC1                -0.63      0.63    -1.93     0.55 1.00     1372     1602 
hu_water_PC1              -0.07      0.20    -0.46     0.33 1.00     2352     1848 
hu_nutA_PC1                0.12      0.20    -0.27     0.51 1.00     1856     1996 
hu_nutA_PC2               -0.07      0.21    -0.49     0.35 1.00     2121     2247 
hu_nutB_PC1               -0.07      0.18    -0.40     0.31 1.00     2471     1816 
hu_nutB_PC2                0.27      0.36    -0.42     0.98 1.00     2116     2067 
hu_nutC_PC1               -0.02      0.26    -0.54     0.52 1.00     1630     1992 
hu_nutC_PC2               -0.48      0.23    -0.96    -0.05 1.00     2495     2103 
hu_nutD_PC1               -0.04      0.18    -0.42     0.32 1.00     2483     1811 
hu_nutD_PC2                0.61      0.35    -0.10     1.33 1.00     1745     1703 
hu_tex_PC1:water_PC1      -0.04      0.08    -0.19     0.11 1.00     1524     1993 
 
Family Specific Parameters:  
      Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
shape     1.72      0.15     1.45     2.02 1.00     2305     2088 
 
 
Blossom End Rot (final model, nutrients at 30-60cm) 
Group-Level Effects:  
~Field_short (Number of levels: 7)  
                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)                   1.27      0.56     0.52     2.71 1.00     1406     1556 
sd(hu_Intercept)                2.08      0.66     1.12     3.69 1.00     2079     1843 
cor(Intercept,hu_Intercept)    -0.64      0.29    -0.98     0.08 1.00     1749     1750 
 
~Field_short:block (Number of levels: 35)  
                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)                   0.13      0.10     0.01     0.37 1.00      994     1377 
sd(hu_Intercept)                0.28      0.17     0.02     0.64 1.00     1223     1657 
cor(Intercept,hu_Intercept)    -0.15      0.57    -0.96     0.91 1.00     1229     1813 
 
~Field_short:block:Plot (Number of levels: 70)  
                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)                   0.37      0.12     0.15     0.60 1.00      653     1141 
sd(hu_Intercept)                0.25      0.16     0.01     0.60 1.00      970     1373 
cor(Intercept,hu_Intercept)    -0.20      0.52    -0.95     0.87 1.00     1936     1777 
 
~harvest_number (Number of levels: 20)  
                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)                   0.62      0.19     0.32     1.07 1.00      787     1133 
sd(hu_Intercept)                1.07      0.25     0.67     1.66 1.00     1798     1850 
cor(Intercept,hu_Intercept)    -0.51      0.25    -0.87     0.07 1.00     1176     1483 
 
Population-Level Effects:  
                          Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
Intercept                    -3.66      2.49    -8.85     1.31 1.00     1182     1474 
hu_Intercept                  5.34      3.90    -2.14    13.25 1.00     1436     1790 
Inoc_longinoculated           0.17      0.16    -0.14     0.49 1.00     2579     2050 
plant_spacing                 0.01      0.11    -0.22     0.23 1.00     1207     1255 
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tex_PC1                      -0.15      0.43    -0.96     0.74 1.00     1328     1090 
water_PC1                     0.13      0.13    -0.11     0.39 1.00     2043     2238 
nh4_TC                        0.68      0.65    -0.64     1.93 1.00     1578     1812 
nh4_TC_sq                    -0.07      0.14    -0.35     0.21 1.00     1611     2026 
no3_TC                       -0.04      0.09    -0.22     0.14 1.00     1933     1778 
T_OP_C                       -0.00      0.01    -0.03     0.02 1.00     1578     1696 
nitrate_to_ammonium_TC        0.02      0.06    -0.11     0.15 1.00     1807     2003 
tex_PC1:water_PC1            -0.04      0.05    -0.14     0.06 1.00     2231     1845 
hu_Inoc_longinoculated        0.24      0.21    -0.16     0.65 1.00     4185     2403 
hu_plant_spacing             -0.17      0.18    -0.53     0.17 1.00     1475     1681 
hu_tex_PC1                   -0.33      0.69    -1.72     1.01 1.00     1368     1378 
hu_water_PC1                 -0.30      0.20    -0.69     0.10 1.00     2532     2326 
hu_nh4_TC                    -1.43      0.81    -3.01     0.16 1.00     1925     2041 
hu_nh4_TC_sq                  0.50      0.18     0.14     0.85 1.00     1964     2066 
hu_no3_TC                     0.10      0.08    -0.04     0.27 1.00     2245     2022 
hu_T_OP_C                    -0.02      0.02    -0.05     0.01 1.00     2919     2316 
hu_nitrate_to_ammonium_TC    -0.07      0.07    -0.21     0.07 1.00     2015     2083 
hu_tex_PC1:water_PC1         -0.11      0.07    -0.26     0.03 1.00     3042     2460 
 
Family Specific Parameters:  
      Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
shape     1.70      0.15     1.42     2.00 1.00     2076     2034 
 
 
Blossom End Rot (fungal metrics - 0-15cm) 
Group-Level Effects:  
~Field_short (Number of levels: 7)  
                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)                   1.26      0.56     0.51     2.69 1.00     1689     2032 
sd(hu_Intercept)                1.98      0.66     1.05     3.60 1.00     2289     2153 
cor(Intercept,hu_Intercept)    -0.64      0.30    -0.99     0.13 1.00     1658     1492 
 
~Field_short:block (Number of levels: 35)  
                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)                   0.17      0.12     0.01     0.43 1.00      809     1402 
sd(hu_Intercept)                0.29      0.18     0.01     0.68 1.00      822      954 
cor(Intercept,hu_Intercept)    -0.24      0.55    -0.98     0.89 1.00     1100     1547 
 
~Field_short:block:Plot (Number of levels: 67)  
                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)                   0.33      0.13     0.09     0.58 1.01      644      664 
sd(hu_Intercept)                0.27      0.17     0.01     0.65 1.00      822     1538 
cor(Intercept,hu_Intercept)    -0.06      0.52    -0.92     0.91 1.00     1386     1761 
 
~harvest_number (Number of levels: 20)  
                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)                   0.62      0.19     0.32     1.06 1.00     1075     1765 
sd(hu_Intercept)                1.06      0.25     0.66     1.66 1.00     1707     2077 
cor(Intercept,hu_Intercept)    -0.48      0.27    -0.88     0.15 1.00      820     1382 
 
Population-Level Effects:  
                          Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
Intercept                    -5.67      2.95   -11.36     0.16 1.00     1625     2264 
hu_Intercept                 10.38      5.20     0.05    20.54 1.00     2094     1873 
Inoc_longinoculated           0.24      0.16    -0.09     0.57 1.00     2713     1974 
plant_spacing                -0.00      0.11    -0.21     0.21 1.00     1157     1417 
tex_PC1                      -0.20      0.41    -1.00     0.60 1.00     1260     1353 
water_PC1                     0.12      0.13    -0.15     0.38 1.00     2206     2180 
nh4_TC                        0.93      0.67    -0.37     2.25 1.00     1690     2067 
nh4_TC_sq                    -0.11      0.14    -0.38     0.17 1.00     1674     2015 
no3_TC                       -0.03      0.09    -0.21     0.16 1.00     1880     2078 
T_OP_C                       -0.00      0.01    -0.02     0.02 1.00     1869     1890 
nitrate_to_ammonium_TC        0.01      0.07    -0.12     0.14 1.00     1886     2342 
sor.count.A.scaled           -0.02      0.11    -0.22     0.19 1.00     2262     2075 
shannon.A                     0.44      0.39    -0.35     1.17 1.00     3610     2586 
tex_PC1:water_PC1            -0.05      0.05    -0.15     0.05 1.00     2222     2072 
hu_Inoc_longinoculated        0.29      0.24    -0.18     0.75 1.00     3843     2414 
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hu_plant_spacing             -0.17      0.16    -0.50     0.15 1.00     1402     1766 
hu_tex_PC1                   -0.23      0.62    -1.51     0.99 1.00     1424     1765 
hu_water_PC1                 -0.22      0.21    -0.61     0.19 1.00     2767     2424 
hu_nh4_TC                    -1.42      0.84    -3.09     0.18 1.00     2013     2079 
hu_nh4_TC_sq                  0.49      0.19     0.13     0.86 1.00     2138     2231 
hu_no3_TC                     0.08      0.08    -0.06     0.26 1.00     1949     2294 
hu_T_OP_C                    -0.01      0.02    -0.04     0.02 1.00     2674     2005 
hu_nitrate_to_ammonium_TC    -0.05      0.07    -0.20     0.10 1.00     1978     2054 
hu_sor.count.A.scaled        -0.06      0.16    -0.37     0.26 1.00     2680     2180 
hu_shannon.A                 -1.19      0.83    -2.88     0.43 1.00     3459     2058 
hu_tex_PC1:water_PC1         -0.11      0.07    -0.26     0.03 1.00     2299     2132 
 
Family Specific Parameters:  
      Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
shape     1.71      0.15     1.43     2.02 1.00     2232     2089 
 
 
Blossom End Rot (fungal metrics - 30-60cm) 
Group-Level Effects:  
~Field_short (Number of levels: 7)  
                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)                   0.97      0.63     0.05     2.48 1.00      643      516 
sd(hu_Intercept)                1.70      0.65     0.66     3.28 1.00     1922     1617 
cor(Intercept,hu_Intercept)    -0.50      0.43    -0.99     0.60 1.00     1037     1172 
 
~Field_short:block (Number of levels: 34)  
                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)                   0.19      0.14     0.01     0.53 1.00      983     1481 
sd(hu_Intercept)                0.29      0.19     0.02     0.72 1.00     1201     1960 
cor(Intercept,hu_Intercept)    -0.20      0.58    -0.97     0.91 1.00     1184     1741 
 
~Field_short:block:Plot (Number of levels: 57)  
                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)                   0.55      0.15     0.28     0.86 1.00      642     1261 
sd(hu_Intercept)                0.40      0.21     0.03     0.85 1.00      790     1398 
cor(Intercept,hu_Intercept)    -0.51      0.41    -0.99     0.61 1.00     1586     1691 
 
~harvest_number (Number of levels: 20)  
                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)                   0.60      0.20     0.28     1.05 1.00      889     1525 
sd(hu_Intercept)                1.12      0.26     0.71     1.74 1.00     1752     2522 
cor(Intercept,hu_Intercept)    -0.43      0.28    -0.84     0.21 1.01     1180     1843 
 
Population-Level Effects:  
                          Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
Intercept                    -3.95      2.40    -8.93     0.45 1.00     1540     1981 
hu_Intercept                  3.40      3.53    -3.38    10.93 1.00     2389     2077 
Inoc_longinoculated           0.19      0.23    -0.26     0.65 1.00     2695     2336 
plant_spacing                 0.03      0.10    -0.17     0.24 1.00     2649     2094 
tex_PC1                      -0.37      0.40    -1.09     0.52 1.00     1434     1972 
water_PC1                    -0.10      0.22    -0.51     0.32 1.00      983     1438 
nh4_TC                        0.94      0.95    -0.98     2.77 1.00     1224     1743 
nh4_TC_sq                    -0.10      0.19    -0.46     0.29 1.00     1054     1641 
no3_TC                       -0.04      0.13    -0.30     0.22 1.00     1926     2048 
T_OP_C                       -0.01      0.02    -0.04     0.02 1.00      858     1334 
nitrate_to_ammonium_TC        0.01      0.10    -0.18     0.19 1.00     1424     1235 
sor.count.C.scaled           -0.03      0.13    -0.28     0.22 1.00     1987     1816 
shannon.C                    -0.04      0.14    -0.33     0.23 1.00     2344     2074 
tex_PC1:water_PC1            -0.00      0.07    -0.14     0.13 1.00     2504     2132 
hu_Inoc_longinoculated        0.42      0.27    -0.09     1.00 1.00     3892     2368 
hu_plant_spacing             -0.22      0.15    -0.54     0.07 1.00     2280     2130 
hu_tex_PC1                   -0.12      0.58    -1.36     0.96 1.00     1865     1992 
hu_water_PC1                 -0.01      0.30    -0.55     0.62 1.00     1849     1474 
hu_nh4_TC                    -0.38      1.05    -2.39     1.73 1.00     1846     1906 
hu_nh4_TC_sq                  0.31      0.22    -0.13     0.74 1.00     1780     2016 
hu_no3_TC                     0.04      0.10    -0.14     0.25 1.00     2629     2175 
hu_T_OP_C                    -0.01      0.02    -0.04     0.03 1.00     1911     2192 
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hu_nitrate_to_ammonium_TC     0.04      0.09    -0.15     0.22 1.00     2443     2600 
hu_sor.count.C.scaled         0.12      0.16    -0.19     0.44 1.00     2841     2391 
hu_shannon.C                  0.32      0.19    -0.04     0.70 1.00     2959     2243 
hu_tex_PC1:water_PC1         -0.17      0.09    -0.34    -0.01 1.00     2756     2393 
 
Family Specific Parameters:  
      Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
shape     1.79      0.18     1.46     2.16 1.00     1790     2295 
 
 
Blossom End Rot (fungal metrics - roots) 
Group-Level Effects:  
~Field_short (Number of levels: 7)  
                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)                   1.29      0.57     0.47     2.68 1.00     1233     1210 
sd(hu_Intercept)                2.09      0.67     1.12     3.77 1.00     2103     2106 
cor(Intercept,hu_Intercept)    -0.64      0.30    -0.98     0.12 1.00     1669     1693 
 
~Field_short:block (Number of levels: 35)  
                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)                   0.14      0.11     0.01     0.41 1.00      895     1315 
sd(hu_Intercept)                0.24      0.17     0.01     0.61 1.00      922     1843 
cor(Intercept,hu_Intercept)    -0.10      0.56    -0.96     0.92 1.00     1717     1791 
 
~Field_short:block:Plot (Number of levels: 70)  
                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)                   0.39      0.12     0.14     0.63 1.01      499      654 
sd(hu_Intercept)                0.27      0.17     0.01     0.63 1.00      840     1294 
cor(Intercept,hu_Intercept)    -0.18      0.51    -0.96     0.87 1.00     1371     1677 
 
~harvest_number (Number of levels: 20)  
                            Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)                   0.62      0.19     0.33     1.07 1.00      935     1835 
sd(hu_Intercept)                1.09      0.26     0.67     1.70 1.00     1652     2173 
cor(Intercept,hu_Intercept)    -0.50      0.26    -0.87     0.11 1.00      837     1578 
 
Population-Level Effects:  
                          Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
Intercept                    -3.84      2.56    -8.92     1.49 1.00     1159     1567 
hu_Intercept                  5.81      3.89    -1.50    13.74 1.00     1208     1609 
Inoc_longinoculated           0.19      0.16    -0.14     0.50 1.00     2184     2258 
plant_spacing                -0.01      0.11    -0.24     0.22 1.00     1152     1429 
tex_PC1                      -0.17      0.42    -0.96     0.69 1.00     1290     1534 
water_PC1                     0.14      0.14    -0.14     0.40 1.00     1376     1834 
nh4_TC                        0.70      0.68    -0.64     2.00 1.00     1481     1578 
nh4_TC_sq                    -0.07      0.15    -0.34     0.23 1.00     1411     1618 
no3_TC                       -0.03      0.10    -0.22     0.16 1.00     1803     2109 
T_OP_C                       -0.00      0.01    -0.03     0.02 1.00     1429     1816 
nitrate_to_ammonium_TC        0.02      0.07    -0.12     0.15 1.00     1699     2052 
sor.count.R.scaled            0.07      0.10    -0.15     0.26 1.00     2064     2047 
shannon.R                     0.12      0.19    -0.26     0.49 1.00     3026     2363 
tex_PC1:water_PC1            -0.05      0.05    -0.15     0.05 1.00     1965     2025 
hu_Inoc_longinoculated        0.22      0.21    -0.18     0.66 1.00     3997     2548 
hu_plant_spacing             -0.15      0.17    -0.49     0.18 1.00     1242     1639 
hu_tex_PC1                   -0.29      0.64    -1.58     0.98 1.00     1444     1754 
hu_water_PC1                 -0.31      0.20    -0.69     0.09 1.00     2917     2186 
hu_nh4_TC                    -1.38      0.81    -2.93     0.24 1.00     1597     1712 
hu_nh4_TC_sq                  0.48      0.18     0.12     0.83 1.00     1489     1833 
hu_no3_TC                     0.10      0.08    -0.04     0.27 1.00     2067     1853 
hu_T_OP_C                    -0.02      0.02    -0.05     0.01 1.00     2860     2279 
hu_nitrate_to_ammonium_TC    -0.07      0.07    -0.21     0.07 1.00     2171     1931 
hu_sor.count.R.scaled        -0.12      0.14    -0.39     0.14 1.00     4102     1964 
hu_shannon.R                 -0.30      0.29    -0.87     0.27 1.00     4218     2041 
hu_tex_PC1:water_PC1         -0.09      0.07    -0.23     0.06 1.00     2001     2361 
 
Family Specific Parameters:  
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      Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
shape     1.71      0.15     1.44     2.03 1.00     1768     1716 
 

Fruit Quality (initial model with principal components to identify depth of interest) 
Group-Level Effects:  
~Field_short (Number of levels: 7)  
              Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)     0.31      0.21     0.05     0.83 1.00      516      512 
 
~Field_short:block (Number of levels: 35)  
              Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)     0.02      0.01     0.00     0.06 1.00     1294     1059 
 
~Field_short:block:Plot (Number of levels: 69)  
              Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)     0.02      0.01     0.00     0.05 1.00     1247     1163 
 
Population-Level Effects:  
                    Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
Intercept               1.95      0.62     0.83     3.37 1.01      888      981 
harvest_codeH6          0.05      0.03    -0.01     0.11 1.00     2982     2603 
harvest_codeH9          0.07      0.03     0.01     0.13 1.00     3071     2496 
Inoc_longinoculated    -0.00      0.03    -0.05     0.05 1.00     3645     2225 
plant_spacing           0.01      0.03    -0.05     0.05 1.00      914      916 
tex_PC1                -0.04      0.11    -0.25     0.18 1.01      847      731 
water_PC1              -0.01      0.02    -0.05     0.04 1.00     1658     1886 
nutA_PC1               -0.03      0.02    -0.07     0.02 1.00     1958     2222 
nutA_PC2               -0.00      0.02    -0.05     0.05 1.00     2181     2005 
nutB_PC1               -0.00      0.01    -0.03     0.03 1.00     3088     2246 
nutB_PC2                0.03      0.05    -0.06     0.12 1.00     1524     1923 
nutC_PC1                0.02      0.03    -0.03     0.08 1.00     1295     1691 
nutC_PC2                0.01      0.02    -0.04     0.05 1.00     1389     1749 
nutD_PC1                0.02      0.02    -0.02     0.06 1.00     1920     1894 
nutD_PC2                0.11      0.04     0.03     0.19 1.00     1518     1265 
tex_PC1:water_PC1      -0.01      0.01    -0.03     0.01 1.00     1474     2002 
 
Family Specific Parameters:  
      Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
shape    34.55      3.62    27.81    41.91 1.00     3679     2134 
 
 
Fruit Quality (final model, nutrients at 60-100cm) 
Group-Level Effects:  
~Field_short (Number of levels: 7)  
              Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)     0.52      0.30     0.20     1.26 1.00     1678     2180 
 
~Field_short:block (Number of levels: 35)  
              Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)     0.03      0.02     0.00     0.07 1.00     1310     2476 
 
Population-Level Effects:  
                       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
Intercept                  2.60      0.92     0.73     4.51 1.00     1697     1909 
Inoc_longinoculated       -0.05      0.02    -0.09     0.00 1.00     5279     3809 
plant_spacing             -0.01      0.04    -0.10     0.06 1.00     1587     2153 
tex_PC1                    0.02      0.17    -0.32     0.37 1.00     1643     2183 
water_PC1                 -0.03      0.02    -0.07     0.01 1.00     2890     3474 
nh4_TD                    -0.10      0.10    -0.29     0.10 1.00     2447     3271 
nh4_TD_sq                  0.04      0.01     0.01     0.07 1.00     2774     3683 
no3_TD                    -0.01      0.01    -0.03     0.02 1.00     3300     3329 
T_OP_D                    -0.00      0.00    -0.01     0.00 1.00     4907     3912 
nitrate_to_ammonium_TD    -0.00      0.01    -0.02     0.01 1.00     2943     3091 
tex_PC1:water_PC1         -0.01      0.01    -0.03     0.01 1.00     4913     3844 
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Family Specific Parameters:  
      Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
shape   121.32     26.41    77.12   180.58 1.00     2322     3022 
 
Fruit Quality (fungal metrics - 0-15cm) 
Group-Level Effects:  
~Field_short (Number of levels: 7)  
              Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)     0.52      0.32     0.19     1.43 1.00      630      585 
 
~Field_short:block (Number of levels: 35)  
              Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)     0.03      0.02     0.00     0.08 1.00      728     1093 
 
Population-Level Effects:  
                       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
Intercept                  2.35      1.04     0.18     4.46 1.00      618      564 
Inoc_longinoculated       -0.06      0.03    -0.11    -0.00 1.00     3378     2324 
plant_spacing             -0.01      0.04    -0.10     0.07 1.00      570      493 
tex_PC1                    0.01      0.18    -0.37     0.38 1.00      576      465 
water_PC1                 -0.03      0.02    -0.08     0.02 1.00     3392     2345 
nh4_TD                    -0.10      0.11    -0.32     0.11 1.00     1586     1837 
nh4_TD_sq                  0.04      0.02     0.01     0.07 1.00     2104     1952 
no3_TD                    -0.01      0.01    -0.04     0.02 1.00     1917     2115 
T_OP_D                    -0.00      0.00    -0.01     0.00 1.00     2140     2228 
nitrate_to_ammonium_TD    -0.00      0.01    -0.02     0.01 1.00     1593     2013 
sor.count.A.scaled        -0.00      0.02    -0.04     0.03 1.00     3298     2310 
shannon.A                  0.06      0.09    -0.11     0.24 1.00     3731     2134 
tex_PC1:water_PC1         -0.01      0.01    -0.03     0.01 1.00     2856     2064 
 
Family Specific Parameters:  
      Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
shape   116.83     27.75    71.29   177.99 1.00     1334     1962 
 
Fruit Quality (fungal metrics - 30-60cm) 
Group-Level Effects:  
~Field_short (Number of levels: 7)  
              Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)     0.57      0.33     0.21     1.50 1.01      644     1153 
 
~Field_short:block (Number of levels: 34)  
              Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)     0.02      0.02     0.00     0.06 1.00     1166      838 
 
Population-Level Effects:  
                       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
Intercept                  2.67      0.93     0.81     4.65 1.00      847      992 
Inoc_longinoculated       -0.02      0.03    -0.08     0.04 1.00     2625     2296 
plant_spacing             -0.02      0.04    -0.11     0.06 1.00      887      922 
tex_PC1                    0.02      0.18    -0.35     0.40 1.00      858     1047 
water_PC1                 -0.03      0.03    -0.09     0.02 1.00     2312     1988 
nh4_TD                    -0.00      0.11    -0.22     0.21 1.00     1134     1501 
nh4_TD_sq                  0.03      0.02    -0.00     0.06 1.00     1362     1795 
no3_TD                    -0.01      0.02    -0.04     0.02 1.00     1472     1873 
T_OP_D                    -0.00      0.00    -0.01     0.00 1.00     3416     2274 
nitrate_to_ammonium_TD     0.00      0.01    -0.01     0.02 1.00     1317     1551 
sor.count.C.scaled         0.03      0.02    -0.00     0.06 1.00     2867     2453 
shannon.C                  0.01      0.02    -0.03     0.05 1.00     3495     2364 
tex_PC1:water_PC1         -0.01      0.01    -0.03     0.01 1.00     2702     2038 
 
Family Specific Parameters:  
      Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
shape   119.43     27.93    71.19   178.15 1.00     2217     2030 
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Fruit Quality (fungal metrics - roots) 
Group-Level Effects:  
~Field_short (Number of levels: 7)  
              Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)     0.52      0.29     0.20     1.27 1.01      693     1050 
 
~Field_short:block (Number of levels: 35)  
              Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
sd(Intercept)     0.03      0.02     0.00     0.07 1.00      815     1151 
 
Population-Level Effects:  
                       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
Intercept                  2.57      0.95     0.59     4.50 1.00      915     1064 
Inoc_longinoculated       -0.05      0.02    -0.09     0.00 1.00     3707     2013 
plant_spacing             -0.01      0.04    -0.10     0.07 1.00      963     1143 
tex_PC1                   -0.00      0.17    -0.38     0.35 1.00     1002     1189 
water_PC1                 -0.03      0.02    -0.07     0.02 1.00     3750     2402 
nh4_TD                    -0.10      0.10    -0.30     0.10 1.00     2046     2057 
nh4_TD_sq                  0.04      0.01     0.01     0.07 1.00     2613     2344 
no3_TD                    -0.01      0.01    -0.03     0.02 1.00     2615     2415 
T_OP_D                    -0.00      0.00    -0.01     0.00 1.00     3217     2637 
nitrate_to_ammonium_TD    -0.00      0.01    -0.02     0.01 1.00     2160     2223 
sor.count.R.scaled         0.01      0.02    -0.02     0.04 1.00     4684     2282 
shannon.R                 -0.01      0.03    -0.07     0.06 1.00     5135     2122 
tex_PC1:water_PC1         -0.01      0.01    -0.03     0.01 1.00     4021     1894 
 
Family Specific Parameters:  
      Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 
shape   118.83     26.62    73.45   180.04 1.00     1675     1930 
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Power Analysis 
 
A power analysis conducted before the study using variances from data collected the previous 
summer suggests that our experimental design could detect an inoculation effect size of ~15% of a 
measured value (e.g. yield) with a power of 0.8. In this analysis we used the model structure 
described in the ‘Model structure’ section in the methods to run a regression in glmmTMB that 
gave the variance for all random effects in the model (field, block, harvest, and residual). We then 
used these variance to generate simulated datasets with a specified effect size for inoculation. We 
picked 20 potential effect sizes, and generated 30 datasets for each. We then fit a model to the 
generated data and, for each effect size, determined what proportion of the p values for inoculation 
were below 0.05 (i.e. power). We plotted effect size against power to determine what effect size 
could be detected with a power of 0.8 (Figure below). 
 

 
Power for simulated data with a set effect size given variances from field data. Black line shows a 
power of 0.80. 
 
This effect size (0.037 kg) was 16% of mean daily plot yields (0.23 kg). 
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Figure S1. Correlation matrix of variables included in variable reduction. For variable names, T, 
M, and H refer to timing of sample event (Transplant, Midseason, Harvest), and A, B, C, D refers 
to depth of sample (A = 0-15cm, B = 15-30cm, C = 30-60cm, D = 60-100cm). OP = Olsen P, gwc 
= gravimetric water content. 
 

 
  



 
82 

 
Figure S2. Predicted response to increasing ammonium levels at 60-100cm for five different levels 
of nitrate, using the models shown in Table zeta. Each panel depicts the mean posterior distribution 
(200 draws) for a given plot (in this case plot 24) across levels of ammonium and nitrate that 
correspond to the minimum and maximum observed values across all plots in the study, and using 
the true values of all other variables for the chosen plot. Though the values predicted for the 
outcome variable will change depending on which plot is chosen, the shape of the relationship 
between nitrate/ammonium and that outcome will remain the same. It is therefore important to 
note that in some plots, as ammonium increases PDW will exceed the 12% threshold beyond which 
fruit quality begins to decrease. 
 

A.  
 

B.  
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Figure S3. Nitrate levels in top 15cm of soil for each field at harvest. Black line indicates the 
threshold for nitrate contamination in groundwater. 
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Figure S4. Available water content in top 30cm and 70-100cm of soil at transplant, midseason and 
harvest. AWC values for 60-100cm were scaled by 0.75 to estimate AWC at 70-100cm in order to easily 
compare them to the top 30cm of the soil. Negative values indicate that water level is below permanent 
wilting point. 
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Table S1. All precipitation events above 1mm that occurred from first transplant to last harvest. 
Data taken from De Laveaga CIMIS weather station (centrally located between all farms). 
 
Date Precip (mm) 

3/5/21 2.9 

3/9/21 4.8 

3/10/21 9.2 

3/11/21 12.1 

3/14/21 13.3 

3/18/21 25.6 

4/25/21 4.4 

4/26/21 2.3 

10/17/21 1.2 

10/20/21 9.2 

10/21/21 2.7 

10/22/21 16.7 

10/23/21 4.3 

10/24/21 83.2 

10/25/21 24 
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Table S2. All variables included in variable reduction and number of principal components 
retained for each. Enough principal components were included to account for at least 55% of the 
variance in the data. 
 

Group Variables Number PCs retained 

Nutrients, 0-15cm Nitrate, Transplant 
Nitrate, Midseason 
Nitrate, Harvest  
Ammonium, Transplant 
Ammonium, Midseason 
Ammonium, Harvest  
Phosphate, Transplant 
Phosphate, Midseason 
N:P, Transplant 
N:P, Midseason 

2 

Nutrients, 15-30cm Nitrate, Transplant 
Ammonium, Transplant 
Phosphate, Transplant 
N:P, Transplant 

2 

Nutrients, 30-60cm Nitrate, Transplant 
Nitrate, Midseason 
Nitrate, Harvest  
Ammonium, Transplant 
Ammonium, Midseason 
Ammonium, Harvest  
Phosphate, Transplant 
Phosphate, Midseason 
N:P, Transplant 
N:P, Midseason 

2 

Nutrients, 60-100cm Nitrate, Transplant 
Ammonium, Transplant 
Phosphate, Transplant 
N:P, Transplant 

2 

Water GWC, 0-15cm, Transplant 
GWC, 0-15cm, Midseason  

1 
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GWC, 0-15cm, Harvest  
GWC, 15-30cm, Transplant 
GWC, 15-30cm, Midseason  
GWC, 15-30cm, Harvest 
GWC, 30-60cm, Transplant 
GWC, 30-60cm, Midseason  
GWC, 30-60cm, Harvest 
GWC, 60-100cm, Transplant 
GWC, 60-100cm, Midseason  
GWC, 60-100cm, Harvest 

Texture Percent Clay, 0-15cm 
Percent Clay, 15-30cm 
Percent Clay, 30-60cm 
Percent Clay, 60-100cm 
Percent Sand, 0-15cm 
Percent Sand, 15-30cm 
Percent Sand, 30-60cm 
Percent Sand, 60-100cm 

1 
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Chapter 3: Vegetable dry farming as an agroecological model for 
California’s drought resilient future: Farmers’ perspec)ves and 
experiences 
 
3.1. Abstract 
 
Small, diversified farms on California’s Central Coast have been dry farming for decades, a 
practice that allows farmers to grow tomatoes and other vegetables with little to no irrigation in 
summers without rainfall, relying instead on water stored in soils from winter rains. Though dry 
farming was originally developed in this region to allow farmers to grow crops on land that had no 
water access, it has thrived from consumer demand for dry farmed tomatoes. Superior flavors have 
enticed customers, allowing farmers to charge a premium for dry farm tomatoes and develop 
markets for this regional specialty. Tomato dry farming in the region has been notably devoid of 
involvement from academic researchers and extension agents; however, policy groups and the 
general public have shown growing interest in dry farming in recent years as water shortages in 
California force a reckoning with the precarity of the state’s agricultural water supply. Amidst 
growing urgency to develop low-water agricultural systems in the state, we interviewed ten Central 
Coast dry farmers, representing over half of the commercial dry farm operations in the region 
where the practice was developed, to collaboratively answer two central research questions: 1. 
What business and land stewardship practices characterize successful tomato dry farming on 
California’s Central Coast? 2. What is the potential for dry farming to expand beyond its current 
adoption while maintaining its identity as a diversified practice that benefits small-scale operations? 
We summarize farmers’ wisdom into nine themes about current dry farm practice, the potential 
for expansion, and future opportunities. We also synthesize farmer-stated environmental 
constraints on where dry farm management may be feasible into a map of areas suitable for dry 
farming in California. As we consider the process by which dry farming might expand to new areas 
and new operations, we highlight dry farming’s history as an agroecological alternative to industrial 
farming in the region and the need for careful policy planning to maintain that identity. Because 
policies that encourage dry farm expansion could change the economic landscape in which dry 
farming operates, we warn against the possibility that well-intentioned policies will edge small 
growers out of dry farm markets. At the same time, we emphasize the opportunity for dry farm 
tomato systems to model an agroecological transition towards water savings in California. 
 
3.2. Introduc1on 
 
“In California, if you want to farm, sometimes you might not have an option other than dry 
farming. [With] the increasing drought, how are we still gonna grow food in a drier climate? And 
whether or not it's even a dry year, I’m thinking about saving water in good and bad years, and 
building up the market for that.”  

~Dry farmer on California’s Central Coast 
 
A dry farmed Early Girl may well be the best tomato you’ve ever tasted. Any shopper at a farmer’s 
market on California’s Central Coast will confirm the sentiment, and these intensely flavorful, 
sweet, firm fruits have become a regional specialty sought after by chefs and shoppers in the nearby 
Bay Area’s famous food scene (Bland, 2013; Nast, 2015).  
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Unlike other forms of dryland farming (e.g. grains), in this region dry farm tomatoes are grown 
over a summer season where there is a near guarantee of no rainfall. Farmers plant tomatoes into 
moisture from winter rains, counting on soils to hold on to enough water to support the crops over 
the course of the entire dry summer and fall. While some farmers irrigate 1-3 times in the first 
month after transplant, severe water restriction is what gives the fruits their intense flavor, and 
farmers trade water cuts that lower yields for price premiums that consumers are more than willing 
to pay for higher quality fruits. 
 
Beyond Bay Area consumer’s enthusiasm for high-quality local produce, dry farm tomatoes also 
trace their origins to a richer food culture of justice-oriented and farmer-centric food distribution 
in the region (Alkon, 2008; Diekmann et al., 2020; Spencer, 2019). From the Black Panther Party’s 
Free Breakfast Program (Lateef & Androff, 2017) to strong community support for worker-owned 
and consumer food cooperatives (Lingane, 2015; Sacharoff, 2016), the Bay Area has become a hub 
of alternative values-based supply chains in a country largely dominated by an industrialized food 
system (Elias & Marsh, 2020; Kremen et al., 2012). Following this tradition, dry farm tomatoes 
originally found their footing in the United States in the Central Coast region 30 miles south of the 
Bay.  In the 1970’s and 1980’s, innovative growers in small-scale cooperatives and teaching farms 
adapted an Italian and Spanish legacy of vegetable dry farming to the region’s Mediterranean 
climate, maritime influence, and high-clay soils (Simmonds, 2016). While these environmental 
features were necessary to grow tomatoes under dry farm management, the movement that 
sparked the reemergence of local farmer’s markets in the 1980’s also provided the access to direct-
to-consumer marketing that small farms needed to win consumer attention and loyalty, allowing 
farmers to both grow and sell this niche product. 
 
With their origins in local food distribution networks and local adaptations to a unique climate, 
dry farm tomatoes are now a signature of small, diversified, organic farms on the Central Coast 
and are a feature of many such operations’ business models. To this point, dry farming has largely 
followed its initial course and is only practiced at a small scale in the region, both in terms of 
geographic scope, and farm size. Dry farming may therefore be to playing a role in an 
agroecological transition in the region, buoying small-scale, thought-intensive management styles 
with access to a steady income source and consumer base. 
 
However, with recent droughts and water shortages in California, dry farming has recently begun 
to take a more prominent role in social and policy visions for the future of the state’s agricultural 
system. From the Sustainable Groundwater Management Act to emergency orders in drought 
years, farmers, researchers, policymakers, and the general public have become acutely aware of 
California’s currently unsustainable agricultural water use and the economic ramifications of water 
shortages (Howitt et al., 2015; Morris & Bucini, 2016). As an option that holds promise for 
maintaining farmer livelihoods while dramatically cutting water use, journalists  and policy groups 
have touted dry farming as an important system to target for significant expansion (Bland, 2013; 
CAFF, 2015; DeLonge, 2022; Pottinger & Peterson, 2021; Runwal, 2019; Simmonds, 2016). 
 
Farmers have been considering how to use dry farming to adapt to drier futures for decades, 
lighting the way for  researchers and policymakers’ more recent interest. However, up to this point, 
farmers’ thoughts and knowledge about dry farming have not been clearly elicited or formally 
incorporated into conversations about the future of the practice. Grounding conversations about 
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future expansion of the practice in the knowledge of those who are most intimately familiar with 
its implementation is essential. At this moment of enthusiasm for dry farming, we look to 
practitioners to better understand the current state of dry farming on the Central Coast and its 
potential for expansion across California, along with the benefits and harms that expansion may 
carry. 
 
We interviewed ten dry farmers, representing over half of the commercial dry farm tomato 
operations on the Central Coast, in order to collaboratively answer two central research questions. 
First, what business and land stewardship practices characterize successful tomato dry farming on 
California’s Central Coast? And second, what is the potential for dry farming to expand beyond 
its current adoption while maintaining its identity as a diversified practice that benefits small-scale 
operations? The majority of these farmers were part of an ongoing participatory research project 
in which field data were collected to better understand soil fungal communities and nutrient 
management in dry farm systems (Chapter 2).  These interviews were extensions of conversations 
and relationships fostered with farmers throughout the research process. 
 
We synthesized farmer insights into nine key themes that broadly describe how dry farming is 
currently practiced on the Central Coast, its potential to expand in scope (geographies, markets, 
crops, etc.), and the opportunities that farmers see as particularly provident for the practice. We 
also used the constraints identified by farmers to map  areas most likely to be suitable for future 
dry farming. At this juncture of a high-functioning, low-water management system and urgent 
political interest in decreasing agricultural water use–in California and across the globe–we 
conclude by asking how dry farming can be a model for developing systems that decrease water 
use, and also how dry farming itself may be scaled out to other small-scale, thought-intensive 
operations without jeopardizing these same farms’ ability to continue profitably growing dry farm 
produce. 
 
3.3. Methods 
 
3.3.1. Study region.  
Interviews were done with farmers who have commercial operations in California’s northern 
Central Coast region (San Mateo and Santa Cruz  counties), as well as one farm with operations 
in Marin and Sonoma counties.  Ranges of coastal mountains govern both climate and land use, 
trapping cool, moist air, and concentrating farming operations in valleys with fertile, alluvial soils. 
The Central Coast is known for its agricultural production–particularly berries, lettuce, and 
artichokes–that thrive in its fertile soils and mild climates that allow for year-round cultivation. 
Agricultural revenue in the region totals over $8 billion annually (CDFA, 2022), making it a larger 
agricultural producer than most countries. This intensive production has led to both high land 
values and environmental degradation–largely in the form of water contamination–that shape both 
farmer decision-making and policy interventions (Dowd et al., 2008; Hall & LeVeen, 1978; Stuart, 
2010). 
 
Within this landscape, farms often operate at industrial scales, though many small farms persist. 
Though cropland is consolidated into fewer, large operations (for example, 20% of farms manage 
well over 80% of farmland in Santa Cruz County, where the majority of our interviews took place; 
(USDA NASS, 2017), many smaller farms have found niches selling to local markets. 
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3.3.2. Interviews.  
After building relationships over the course of a year-long participatory field research process with 
eight tomato dry farmers (representing six growing operations; (Chapter 2), we conducted semi-
structured interviews with all farmers involved in that study. We interviewed two additional dry 
farmers who were not involved in the field project–one whose farm is in Sonoma County (outside 
the initial study area), and one whose farm could not participate in the field study due to extensive 
fire damage–for a total of ten farmers representing eight operations. Interviews were done in person 
(n = 8), over the phone (n = 1), and on Zoom (n = 1) in winter and fall 2022. 
 
Because there is no official record of tomato dry farmers in the Central Coast region, we used a 
snowball approach to identify farms that might be candidates for inclusion, asking each interviewee 
what other dry farm operations they knew of in the area. We can identify two dry farm tomato 
growers in the region who were not interviewed in this study, and we estimate that our interview 
subjects represented 50-75% of commercial dry farm tomato operations on California’s Central 
Coast.  
 
Interviews lasted 1-2 hours and focused on dry farm management practices, environmental 
constraints, support, water/land access, and economics (full interview guide in Supplement). 
Interviews were recorded and transcribed, then analyzed through an interactive process of open, 
axial, and selective coding (Corbin & Strauss, 1990). Data were grouped into three overarching 
categories (“Current Practice,” “Potential for Expansion,” and “Opening Opportunities”), with 
key themes in each category. Each theme was mentioned in at least half of the interviews. 
 
3.3.3. Suitability.  
In order to identify areas that might be suitable for future tomato dry farm management, we used 
farmer-described constraints to make a suitability map using publicly available datasets. We first 
compiled the environmental constraints on tomato dry farming described in each interview (Table 
2), which fell into three main categories: precipitation, temperature, and soil texture. We limited 
our analysis to California as the region these farmers are most familiar with to avoid extrapolating 
constraints beyond the context in which they were given.  
 
We used PRISM 30-year climate normals (1991-2020, 800m resolution) to characterize 
California’s temperature (PRISM Climate Group at Oregon State University, 2022a) and 
precipitation (PRISM Climate Group at Oregon State University, 2022b). We used the average 
constraint named by the farmers; however, because these normals are a 30 year average and will 
stray significantly from these averages in individual years, particularly in the case of precipitation, 
we expect that we overestimate the extent of suitable areas. As California’s temperatures get hotter 
and precipitation becomes increasingly variable  with climate change (Cayan et al., 2008; Pathak 
et al., 2018), we expect a further systematic overestimation of suitable areas identified based on the 
past 30 years of weather data. 
 
For the suitability analysis we assigned temperature and soil texture to three categories that were 
each associated with a score: good (2), tolerable (1), and intolerable (0), while precipitation was 
divided into ranges that were suitable with no additional irrigation, suitable with additional 
irrigation, and unsuitable. 
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For temperature, we considered the average maximum temperature in the three hottest months of 
the growing season (June, July, August), categorizing them separately with the scores described 
above (Good: < 86o F, Tolerable: 86 - 95o F, Intolerable: >95o F). We then multiplied these three 
categorized scores together and took the cube root to get temperature suitability scores for the 
state, also excluding any areas whose monthly 30-year minimum temperature was above 59o F. 
 
We followed a similar procedure for soil texture, using SSURGO estimates of clay content 
averaged across soil horizons at a 90m resolution (U.S. Department of Agriculture, Natural 
Resources Conservation Service, 2008). Because farmers did not give numeric estimates of how 
much clay was needed in dry farm soils, we made sure our defined ‘tolerable’ range (5-50% clay) 
encompassed the full range of clay content observed in participating farms’ soils (8-40% clay). To 
define the ‘good’ range (10-50%), we excluded the farm with the lowest clay content, which was 
also the only farm where farmers stated that they could not grow tomatoes of a high enough quality 
to consistently market them as “dry farm.”  
 
We multiplied temperature and soil scores to make a preliminary suitability map. This 
multiplication reflects the interaction between temperature and soil texture, in which good texture 
can compensate for higher temperatures by increasing soil water holding capacity, and lower 
temperatures can lessen the evapotranspirative demand that would be particularly problematic for 
plants growing in sandier soils with a lower soil water holding capacity. We then separated the 
dataset into three areas based off of farmers’ understandings of where tomato dry farming could 
occur with no added irrigation (>22” annual rainfall) and where it could occur with supplemental 
irrigation (14-22”), and excluding areas that would not get enough winter rain to grow a suitable 
winter cover crop (<14”). 
 
The final map shows suitability scores in all areas that are categorized a ‘cropland’ in the 2019 
National Land Cover Database (Dewitz & U.S. Geological Survey, 2021). These areas are 
superimposed onto groundwater basins categorized as high priority in California’s Sustainable 
Groundwater Management Act (California Department of Water Resources, 2020). Crop totals 
on land that was deemed suitable for tomato dry farm management in these areas were calculated 
using the 2021 Cropland Data Layer (USDA NASS, 2021). 
 
3.4. Results 
 
We conducted interviews with ten individuals that represented eight dry farm operations (likely at 
least half of the commercial dry farm tomato operations in the region), whose basic characteristics 
are summarized in Table 1. We found four unifying themes across business and management 
practices that led to dry farm success (Dry farming defined: water vs quality, Motivations for dry farming: 
economic, environmental, and place-based, Dry farm tomatoes are a preferred crop, Diversified management is key in 
dry farm success), as well as five themes identifying constraints on and opportunities for expansion 
(Tomatoes hit a sweet spot, Environmental constraints, Economic constraints, Size and scope matter, Opening 
opportunities). To be included, each theme had to be mentioned by at least four farmers, and 
representative quotes were pulled from responses that fit in each theme. 
 
3.4.1. Current prac*ce 
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3.4.1.1. Dry farming defined: water vs quality.  
Though farmers have been dry farming tomatoes on the Central Coast for decades, there is no 
rule book for what that actually means. 
 

What is dry farming? There is no criteria, you know, do this and you'll succeed.  
 
To be completely honest, I sometimes am like, are we dry? Right? ... It's a very, very loose term. 

 
Instead, the practice has been built through a colloquial understanding between both growers and 
customers in the region.  
 
When asked to define dry farming, farmers took two, often overlapping, approaches. As one might 
expect, severe water restriction were at the heart of the concept for all ten of the interviewed 
farmers: 
 

At least for my limited experience, it's like once the fruit is there, like, no, definitely no more water.  
 

with some farmers taking a truly purist approach: 
 

I'm in the camp of legit, like planted into dry, no water ever. I feel like I would  advertise my 
products as dry farmed if they're truly dry farmed. And then if they're not, I would say ‘minimally 
irrigated’ or something like that. 
 

However, farmers were just as likely to approach the question from the opposite direction, with 
eight of the ten farmers defining a dry farm tomato by its small size, thick skin, and concentrated 
flavor, and calling dry farming any means to that end. 
 

But really, when I think of a dry farm tomato, I'm all about the flavor... I don't care that, you know, 
it's a dry farmed tomato but it doesn't taste good. Well, then, for me, there's no point in doing that.  

 
As one farmer succinctly put it,  
 

If you're telling me you're dry farming it, and it tastes like water, then you are not dry farming.  
 

It is worth noting that the situation this farmer describes can occur when a farmer is growing 
tomatoes quite close to the water table, often on sandy soils. In these cases, farmers may never 
irrigate at all (dry farming in its purest sense) and still grow large, watery tomatoes. Similarly, 
farmers noted that if two operations use the same (severely restricted) amount of irrigation water, 
but one irrigates after fruit set and the other does not, the first is likely to have a higher yield of 
more watery tomatoes compared to the second. 
 

So in the beginning, I would do them drier consciously because I knew like when you're trying to 
develop markets, you got to have  the best. And it's worth having less to have the best because you're 
getting new customers and you're trying to grow your base. 
 
We're focused on flavor and not so much on yield. That's where most of our customers are. That's 
what they're attracted to.  
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By focusing on the characteristics that limited water can give a tomato, these farmers highlight a 
recurring theme in understanding the functional definition of dry farming tomatoes. As the Central 
Coast faces increasingly limited water availability, the idea of dry farming has gained traction 
among policymakers purely by virtue of offering a means to continue farming while maintaining a 
restricted water budget. However, these farmers are quick to recognize that dry farming is only a 
management style that they can afford to choose for their operations insofar as it can excite 
customers and return a reasonable profit. In this way, the product that dry farming creates, which 
is valuable enough to consumers that they are willing to pay a significant premium for it, is the 
outcome that defines the management approaches farmers can use.  
 
Farmers know that they could alter the schedule for the minimal irrigation they do put on their 
dry farm tomatoes to increase yields (this would involve watering after fruit set, as the first quote 
alludes to). However, while defining the practice by some maximum threshold of water application, 
and then choosing to allocate irrigation water to maximize yields, may be appealing from a water 
savings perspective, farmers recognize that they must define the practice in terms of outcomes and 
not inputs. Farmers must produce what consumers have come to expect from a dry farm tomato 
if they are going to make dry farming an economically viable choice for their operation. 
 
3.4.1.2. Mo1va1ons for dry farming: economic, environmental, and place-based.  
For nine farmers, the decision to include dry farming in their operations boils down easily to farm 
finances. These growers are quick to acknowledge that their motivations are 
 

Purely economic. I wanted to farm and I wanted to succeed, and that was perfectly obvious the 
crop that would make us get there... [We] wouldn't have much of a customer base without the dry 
farms. 

 
However, seven farmers more holistically pointed out the rewards of dry farming both in terms of 
product quality and environmental benefit. Farmers related strongly to values of land stewardship,  
 

I would consider myself a very ecologically, you know, like a systems oriented grower, right? Not 
just the health of the farm, but also the health of the ecosystem and how we share resources. And, 
you know, this is something that just really fits into that category. And I know there's a lot of growers 
that feel that way too; this responsibility to care for the land that they're on, to make sure they're 
having minimal impact on the surrounding areas. 
 

and also particularly appreciated that tending to this value facilitated growing a high quality 
product: 
 

I really like the tomatoes, and I like growing high quality. And also I like the horticulture, the actual 
farming; dry farming tomatoes, that just appeals to me. Doing it, saving water, saving electricity, 
saving plastic, saving this, saving that, you know, all kinds of stuff. 

 
In our case, it's really related to the quality–or I guess the attributes–of the fruit. And so yes, it's to 
minimize our water use, but it's also to grow the type of food that we want.  
 

Four farmers also found a gestalt to the situation where land stewardship in this particular region 
creates a high quality product, taking pride in a truly place-based regional specialty: 
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You need the microclimate. You need the soil, you need to put it in at the right time, you need to 
navigate the season to make sure that everything's okay. And then in the course of following that 
and really tuning in nature, you grow a really fantastic product. Yeah, you know, and that's kind of 
where I'm at, the niche that I'm at, is like, how do you grow the best of anything?  
 

This satisfaction at mastering a true regional specialty belies not only the success that dry farming 
has had in the region, but a potential inflexibility in translating this success too literally to other 
climates or growing conditions.  

 
3.4.1.3. Dry farm tomatoes are a preferred crop.  
These economic, environmental, and place-based incentives were powerful motivators, and often 
resulted in farmers explicitly calling on dry farm tomatoes as a preferred crop grown on their 
operation.  
 
For eight farmers, decreased labor made dry farm tomatoes preferable to other crops on the farm: 
 

Labor is like a huge part with dry farming. That's honestly the impetus for a lot of farmers, more so 
than the environmental reasons... If you don't irrigate, you don't have weeds. So yeah, weed saving 
and irrigation labor is huge.  
 
You only have to weed 2 or 3 times. It's less weeding; it's a pretty damn easy crop.  
 

Beyond labor, there was a considerable appeal to a lower farming intensity, which differentiates 
dry farm crops from irrigated ones, and also differentiates these farms from the surrounding region, 
which is one of the most intensively managed agricultural landscapes in the world: 
 

One of the things that I like most about it is it's actually asking less input from you than more. 
Whether it be time or whether in the form of actual equipment,... it actually seems like this is sort 
of the best of both worlds. 
 
I think it's just, it's easier, you know, it's easier to manage a dry farm crop... Dry farming is not 
intensive in the way you would look at, like, lettuce and broccoli. 
 

This perceived lack of intensity parallels the fit between region and crop that farmers described as 
a motivation for dry farming. With the right microclimate and soil,  farmers do not have to manage 
intensively to mimic the appropriate conditions for dry farming, as they are already present.  
 
While this could be said of many dry farm crops, farmers were also clear in their preference for 
tomatoes over other potential dry farm crops, again largely for economic reasons: 
 

Economically, it makes a ton of sense to do these dry farm crops, especially because they're so 
productive. You know, if you look at the dry farmed dry beans that we grow, that makes no 
economic sense... Dry farm tomatoes are a total win win. Like your costs are way down. The 
product is really good. And there's definitely a market for it, and we like it in rotation. 
 

For farmers who had experienced water scarcity before, dry farming also provided an important 
aspect of stability for the farm, making it preferred over crops that could be a liability in dry years. 
As one farmer who shifted dramatically towards dry farm crops in their operation described it, 
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We've decreased the water use; I think we use 75% less than the last farmer... I'm kind of scarred 
from not having water. Yeah, I'd rather not max out the pond every year ... I'd rather kind of go 
for consistency. ‘Cause hopefully even if it's less each year, I know that I have a certain amount so 
that I can ... plan a little bit more.  
 

Beyond all these practicalities, six farmers also had a soft spot for appreciating dry farming as an 
impressive and fascinating system: 
 

I don't really want to personally eat or sell non-dry farmed tomatoes. And I just think it's amazing 
to be able to grow stuff without water. That's why I really ... push the limits of the plants and just 
see what can hang without water. Because it's pretty crazy to see something grow all season long 
and not have rain for months.  

 
3.4.1.4. Diversified management is key in dry farm success.  
In addition to having the appropriate microclimate and soil, farmers engage in many management 
practices to successfully grow dry farm tomatoes. Some of these practices (e.g. dust mulches) are 
specific to dry farm management, while others (e.g. trellising) are specific to tomatoes. On the other 
hand, many practices, including cover cropping, crop rotation, and organic matter incorporation, 
are mainstays of diversified farm management and were cited by all farmers as key components of 
dry farm success. 
 
Every farmer highlighted cover cropping as core to their dry farm regime. Though there has been 
considerable debate in California about whether cover crops use more water than they add to soils 
(DeVincentis et al., 2020; Mitchell et al., 2015), there was no doubt that they were necessary in this 
low water system. Among the benefits of cover crops, farmers described improved soil water 
holding capacity and infiltration, as well as general soil improvements. 

 
We disc [the field] and we let it over winter with a cover crop... And that helps the water percolate 
down.  
 
[With] cover cropping and stuff we've gone from like, one point something percent organic [matter] 
to like 3.7% organic. That's the cover crop and tilling that in and all that... The soil got so crummy 
at first, and it was hard to grow things over there. The soil's gotten better.  
 

Four farmers also described using cover crops as an indicator of soil fertility that could help indicate 
a field’s capacity to successfully grow dry farm crops. 
 

If the cover crop sucks and the year before sucks, then get nervous. But like this year, the cover crop 
looks great. We've worked so hard to make it good, so I feel pretty confident. 
 

Because soil nutrients in the top 30cm do not seem to impact dry farm tomato health (Socolar et 
al., n.d.), as their roots quickly move deeper in the soil profile in search of water, it can be difficult 
for farmers to manage fertility in the regions of the soil where dry farm crops access nutrients. 
Rather than using surface-applied amendments, farmers have learned to rely on cover crops as an 
indicator of soil fertility at these lower depths. These cover crops’ roots can also create channels 
that allow tomato roots to penetrate deep into the soil more quickly, allowing faster access to 
subsurface water at a lower metabolic cost (Acevedo et al., 2022).  
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Most farms also included their dry farm tomatoes in a diversified crop rotation, with two notable 
exceptions. For four farmers, rotation was an important measure for disease control. As one farmer 
said of growing dry farm tomatoes repeatedly on the same field, 
 

The disease pressure is the issue there. We haven't had hard and fast rotations, but the tomatoes 
have rotated with both other dry farm crops, like hard squash, and irrigated crops–zucchini or 
peppers. 
 

Beyond the benefits to the tomatoes themselves, dry farm crops are particularly desirable in full 
farm rotations, due to their ability to lower weed pressure: 

 
We like it in rotation. We oftentimes say like, oh, this is where the dry farms were. We'll plant 
something that we want less weed pressure on, right, because we've been able to manage it so well: 
there hasn't been a lot of germination of weeds.  

 
Dry farm crops therefore play an important role in diversified rotations both for the benefit of the 
tomatoes, and to the benefit of the full farm system. 
 
Two farms, however, did not rotate their dry farm crops, but grew them repeatedly (10 years in a 
row and counting), or alternated between tomatoes and fallow. These management decisions to 
maintain fields as dry farmed rather than rotating irrigated crops through are particularly 
compelling in light of recent research on many of the same fields, showing that repeated seasons 
without any external irrigation result in soil microbial communities that are associated with 
improved dry farm tomato performance (Socolar et al., n.d.). To fully capture all of the rotation 
benefits described by farmers, it may therefore be necessary to develop dry farm rotations in which 
all of the included crops are grown with little to no external irrigation. 
 
Eight farmers also described organic management in a more general sense as being necessary to 
optimize soil health and dry farm performance. This management style includes incorporating 
organic soil amendments (rather than synthetic fertilizers), in addition to cover cropping and crop 
rotation. 
 

You know, organic management is actually key, because we had to rehabilitate some of our fields 
at the very beginning... It did take some assiduous basic organic cropping management, a lot of 
years of cover cropping, incorporating a green manure to produce, you know, sort of the peak 
performance and system. 
 

While these organic amendments may be critical for soil rehabilitation, most farmers also described 
using a much lighter fertility regime on their dry farm crops, cutting back on compost and often 
stopping pelleted fertilizers entirely: 
 

Did we do compost at [the field] last spring? No. We skipped the year–it's really expensive and 
seems questionable. No [fertilizers], not in the dry farms. Put the seedlings in and they just grow. 
That's like how it’s supposed to be.  

 
Between the organic amendments/green manures and a general decrease in fertilizer use, farmers 
are able to lower their use of off-farm inputs beyond just water restrictions, relying instead on on-
farm ecology. 
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3.4.2. Poten*al for expansion 
 
While farmers have found a clear and sustainable regional niche for tomato dry farming on the 
Central Coast, policymakers and the public are calling on the possibility of expanding dry farm 
agriculture in California with increasing urgency. Here we discuss the opportunities and possible 
pitfalls of growing dry farm tomatoes–and potentially other crops–on a broader scale. 
 
3.4.2.1. Tomatoes hit a sweet spot.  
When considering the potential for dry farm agriculture to expand beyond its current scope, an 
obvious option would be to increase the number of vegetable crops that are dry farmed. While 
many of the farmers in this study have experimented with other crops (see Table 1) to varying 
degrees of success, none have had the staying power of tomatoes in their operations. 
 
From the very beginning of tomato dry farming and marketing in the Central Coast, dry farm 
tomatoes’ superior quality–and consumers’ response to it–have been integral to dry farm tomato 
success. 
 

That was a fortunate coincidence of ... the spectacular difference in quality of the product flavor 
[versus] the sad state of the rest of tomato culture at the time. 

 
In the 1980’s, farmers were able to build a consumer base around their dry farm products that has 
had an impressive staying power. Growers in this region are now known for these tomatoes, and 
continue to appreciate their charisma. 
 

It's something that we have a niche here on the Central Coast. Coastal growers have... a certain 
reputation. We have a certain customer base that's really looking forward to them... Yeah, it's the 
tomato. 

 
Since the 80’s, farmers have explored dry farming other crop options, but as of yet none have 
compared to tomatoes in their consumer appeal and versatility. 
 

Dry farm tomatoes are more charismatic, you know? I think people–the general public and chefs–
don't care as much if you're like, 'Oh, these are dry farm winter squash'. 
 
You know, you don't want to have summer squash or winter squash every single week. But dry farm 
tomatoes you can have them every day; you can freeze them for winter and make it into sauces. 

 
Though tomatoes have been a clear dry farm vegetable front-runner in the Central Coast region, 
it is important to note that farmers across the state have also found orchard fruits to be a desirable 
option, particularly in Humboldt County. These fruits have a similar charisma in terms of market 
appeal and quality premiums, making them economically viable where the other crops discussed 
by farmers in this study (beans, potatoes, winter squash) may falter. 
 
3.4.2.2. Environmental constraints.  
Due to tomatoes’ particular success in the Central Coast region, we focus the following 
environmental constraints on tomato agriculture; however we also discuss the potential for success 
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in dry farming less charismatic crops when considering policy and public opinion shifts that might 
boost their economic viability (see Economic constraints). 
 
Each farmer was asked what they see as the climatic and soil constraints on dry farming tomatoes. 
Their answers are summarized in Table 2. Farmers consistently noted the importance of wet 
winters, and paid particular attention to the timing of rains, often providing caveats that 20” of soft 
rain over many months would likely sustain a dry farm crop, while the same amount of rainfall in 
short bursts–particularly early or late in the wet season–could easily render dry farming without 
supplemental irrigation infeasible. Farmers were less consistent in providing a temperature 
threshold, but did generally agree on the importance of cool nights and there being some upper 
limit on what temperatures dry farm tomatoes can consistently tolerate. These limits were then 
used to create model constraints for a suitability analysis (see Modeling). 
 
In considering these stated constraints, farmers were also highly aware of changing climates and 
how those violate regional norms that have historically supported dry farming.  
 

The main thing that I'm thinking about in terms of our ecologically based system with climate 
change is that, you know, if we don't have rain at the right times, it really impacts how much biomass 
we can grow on our cover crop, and how long those plants are in the ground and how much root 
activity. I think there's a real potential stressor there that violates the logical foundation for the 
farming system.  
 

Farmers have thus far handled these lapses by adjusting management to mimic historical climate, 
even when it no longer occurs. 
 

That's essentially what we're stuck in, I think now, is trying to manage ... to simulate what we used 
to have.  
 
When I was just starting doing this 20 years ago, dry farming, you know, we had to wait for the soil 
to dry out enough to even disk in the cover crop, right? So it was always the push of trying to get 
them in; the plants are ready. And you're going to disk them and put them in and then you're going 
to get in and you're going to wait and you're going to plant them right before there's a rain. And 
that to me is what I'm trying to simulate, is that general spring shower that waters them in, that 
normally, naturally would occur. But now we're just in the middle of drought. 

 
This move to recreate the climate also opens possibilities that management could mimic the 
Central Coast’s historic climate in regions that currently do not–and never have–met climate 
requirements. In particular, supplemental irrigation may be included in some areas to produce dry 
farm-quality tomatoes and drastically cut back on irrigation compared to other crops that might 
be grown on those fields. 
 
3.4.2.3. Economic constraints.  
While it may be possible to dramatically increase dry farm tomato production from a land 
suitability perspective, it is also crucial to consider the economic repercussions of–and limitations 
on–such an expansion. Dry farming allows farms to decrease labor costs and water inputs, making 
it particularly appealing in areas where water and labor prices are high. Premiums for superior 
quality can further boost revenues, particularly in the face of drought stress-induced yield declines. 
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However, land values are some of the highest in the country due to the high value of crops that are 
typically grown in areas that are suitable for dry farming (Moss & Schmitz, 2008), and large 
revenues are necessary for most farmers in the region to remain profitable. Therefore, if tomatoes 
are grown with little-to-no irrigation inputs but do not possess the classic dry farm characteristics, 
profits will decline and it becomes unrealistic to expect farmers to choose to grow them over a more 
water-intensive and lucrative alternative. Though farmers may ideologically have strong support 
for dry farming, they increasingly find themselves in situations where high returns are essential to 
keep up with rising land prices. 
 

The good farmland is going into berry production because they can get the most dollars per acre 
out of it. You have to put the most dollars in per acre as well, but you get a bigger return. And as a 
result, the rents are skyrocketing... So we have to compete with people that don't have to give a 
damn. 

 
Premiums for dry farm tomatoes are currently entirely supported by consumers, rather than 
policies designed to support low-water agriculture. 
 

The government isn't incentivizing us to do this. It's all the consumer, because they're buying it. 
That's the incentive that we get. 

 
Therefore, any expansion of dry farming onto soils or into climates that result in notably decreased 
fruit quality may not be an economically viable option for farmers, who would instead likely devote 
that land to an irrigated crop with higher returns (e.g. strawberries), or in the absence of water 
might choose not to farm the land at all. Efforts to increase production at the expense of fruit 
quality (e.g. shifting irrigation to after fruit set or growing on soils close to water tables) would likely 
meet a similar end. 
 
Even if farmers are able to maintain quality, too large of a production surge could also topple the 
profits farmers have come to rely on.  
 

All of a sudden some giant growers are doing 500 acre blocks every two weeks or something? Yeah, 
definitely if it's no longer a specialty, then that'd be more of a concern.  
 

Any increased production must therefore also consider whether the consumer demand exists to 
support current prices. 
 
3.4.2.4. Size and scope maUer.  
Farmers were unanimously confident that tomato dry farming would be unlikely to occur at 
industrialized scales given current incentive structures. Interviewees did see potential for more 
small-scale operations to enter the market, though there are geographic limits to such an 
expansion. 
 
All of the farms involved in the study cultivated less than 60 acres and grew less than 10 acres of 
dry farm tomatoes, and none knew of any larger operations. Small-scale farmers have found that 
dry farm tomatoes are a niche–and sometimes a crucial one–that their operations are able to fill. 
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There's always been dry farming involved [in our operation]. Started off smaller percentage, but 
quickly realized it was the ticket for a small farm to succeed in our case. 
 

As to why this niche is so well-suited to small operations, part of the explanation lies in the origins 
of dry farm marketing in the 1980’s. 
 

Wholesalers and retailers had to be trained to understand what this was. And they were forced to 
by their customers who came in and said, 'Hey, I got these at the farmers’ market. Like, can you 
get them? Can I find them here?' So I had to do a lot of training people in the produce business to 
understand that they could actually successfully sell a smaller, great, tasty tomato. 

 
The first farmers to commercially sell dry farm tomatoes in the region relied heavily on direct 
interactions with consumers in order to build loyalty and trust in the superior quality of their 
product. Because the introduction of dry farm tomatoes coincided with the start of Santa Cruz’s 
first farmers’ market, farmers were more easily able to come face-to-face with consumers who 
learned to recognize and appreciate their produce. That consumer interest, along with farmer 
encouragement, was then able to convince local grocers that they could successfully sell more 
expensive tomatoes when shoppers recognized and trusted their increased value. To this day, dry 
farm tomato growers rely heavily on farmers markets, CSAs, and small grocers to sell to consumers 
who will recognize the value in their product, allowing farms to charge a premium for their trusted 
quality (Table 1). 
 
However, there is a limit to both consumers’ interest in expensive tomatoes, and to larger grocers’ 
willingness to test the limits of what consumers might buy. 
 

So with Safeway right now, they're paying probably 60, or 50 cents a pound. Would Safeway be 
willing to pay two bucks a pound? I don't know if that's [something] they're willing to put on the 
consumer... Why would they rock the boat?  
 

There is also a question of order of operations; large farms are unlikely to plant large areas of a 
crop without a guaranteed buyer, while large grocery stores are unlikely to contract a large tomato 
crop without having seen that there is consumer demand to sustain the elevated price. Therefore 
neither operation is able to test the waters before both commit. 
 
Six farmers also pointed to their business models, which are entirely different from industrial-style 
growers.  
 

[Conventional farms] are in it for a different game, right? They want more quantity, more volume. 
And they will not even harvest their tomato ripe. So I think you're dealing with different segments 
of the market for tomato, where quality is not as important. And I think this farming technique is 
very much linked to a quality, appreciation for quality... When that's not your advantage or 
comparative advantage, then why bother? 

 
Finally, there is also a question of capacity and capability. Even if a large farm were to develop an 
interest in growing dry farm tomatoes, they are less likely to use the diversification practices that 
these small farms have found key in dry farm management. Though it may be possible to 
approximate these practices or even commit to a full dry farm regime, the learning curve is steep 
and the product can be finicky. As one farmer put it, 
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Yeah, more people come and compete; there are definitely more people showing up with dry farms. 
And that's inevitable, but most of them still can't do what we do. 
 

and of the farms that are currently growing dry farm tomatoes, none expressed an interest in a 
significant expansion. 

 
Taking over this land four years ago was roughly a double in acreage, and so I feel like we've added 
a market or two since then. And then I feel like I've stabilized. We're at a good spot. 
 
We've just had a really hard time scaling up. I find you scale up with what we do and we have a 
really hard time keeping up quality. 

 
Given that current dry farmers do not have interest in expanding their operations, without deep 
knowledge of dry farm management or the nimbleness that comes with growing and adapting 
management to a small acreage, large farms may simply not be able to produce a quality dry farm 
product at scale. 
 
While scaling up production by increasing the size of individual operations may be unlikely given 
current markets, new small farms could take up the practice in the Central Coast and other regions. 
All of the farmers interviewed for this study agreed that they would not have trouble selling more 
dry farm tomatoes if they were to produce them, suggesting that the market is not yet saturated, 
even on the Central Coast. If small farms in other regions are able to grow dry-farm quality 
tomatoes, it therefore seems likely that the practice could easily expand in geographic scope. 
However, there are environmental constraints to how far the practice can spread (see Modeling 
below), even on small farms that can follow the Central Coast’s economic model.  
 
3.4.3. Modeling 
 
To better understand where tomatoes might conceivably be farmed in California given the 
environmental constraints identified above, we modeled dry farm suitability on California cropland 
as a function of precipitation, temperature, and percent clay in soil. The resulting map shows what 
lands could potentially support a dry farm crop, with and without supplemental irrigation, using 
constraints that are relaxed to encompass the least restrictive farmer-elicited constraints (Figure 1). 
The map therefore errs on the side of including land that is not an ideal candidate for dry farming, 
rather than leaving off land that may potentially be a good fit. With rising temperatures and less 
reliable rainfall, this map, which is based off of 30-year normals, likely also systematically 
overestimates what areas might fall into these thresholds when projecting into future climatic 
conditions. 
 
All areas in blue indicate land that meets a threshold where dry farming could be considered in a 
non-drought year without adding any irrigation. Areas in orange indicate that, while there is likely 
enough rain to sustain a winter cover crop, some amount of irrigation (and therefore water access) 
would often be needed to grow a successful dry farm crop. Areas in darker colors (blue or orange) 
connote land that falls in conditions that are closer to ideal, whereas lighter colors indicate that 
more conditions are tolerable, rather than ideal, for dry farming.  
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It is crucial to note that areas that show up as “suitable” on the map–including the most ideal 
locations–will likely require years of diversified management (cover cropping, organic 
amendments, etc.) for soils to build the water holding capacity and fertility that allow for peak dry 
farm performance. These areas should therefore be considered candidates for long-term dry farm 
management, rather than ready-to-go dry farm fields. 
 
Because the constraints used to build the model were elicited specifically with regard to tomatoes, 
this of course is not a comprehensive map of everywhere that might be considered for dry farming 
non-tomato crops. Particularly when it comes to grains and perennials (e.g. orchards), the range of 
possible locations is likely much broader. In the case of grains, winter varietals can be planted that 
take advantage of rain in winter months, while tree crops have far more extensive root systems that 
can reach water well beyond that which might be available to a tomato, in both cases relaxing the 
temperature and precipitation constraints that tomatoes need to survive without irrigation. 
Tomatoes are likely a better proxy for other vegetable crops (e.g. squash, potatoes), though each 
will have its unique requirements (and economic limitations as discussed above). 
 
As we imagine a shift towards dry farm agriculture in California, it is also important to consider 
how land that is suitable for dry farming is currently being used. Combining areas that are suitable 
for tomato dry farming with and without irrigation, we compiled a list of the top ten crops by area 
(as identified by the 2021 Cropland Data Layer) that are currently grown on these lands (Table 3). 
Some of them (grapes, winter wheat, and of course tomatoes) are currently being dry farmed with 
some regularity in the state and could signal particularly easy targets for a shift to low-water 
practices. Others (almonds, walnuts) are dry farmed in other Mediterranean climates and suggest 
an important opportunity for management exploration in lands that might be particularly forgiving 
to experimentation. The remaining crops (pasture, alfalfa, hay) are some of the most water 
intensive in the state and would therefore lead to substantial water savings if the land could be 
repurposed. 
 
While unrealistic in the near future, calculating potential water savings from a complete conversion 
of suitable lands to dry farming allows for comparison with other water saving strategies. Even 
assuming that an acre-foot of irrigation is added to each acre of dry farm crops every year (an 
overestimate compared to the 0-10 inches that farmers in this study use), if all the land listed in 
Table 3 were converted to dry farming and irrigated to the statewide averages listed in the table 
(California Department of Water Resources, 2010), California would save 700 billion gallons of 
water per year, or nearly half the volume of Shasta Lake, the largest reservoir in the state. Given 
the overlap between suitable dry farm areas and high priority groundwater basins, these potential 
water savings are especially valuable as water districts scramble to balance their water budgets in 
light of SGMA. 
 
Perhaps the largest caveat to these potential water savings–and any analysis of dry farm suitability 
that relies solely on environmental constraints–is the economic reality in which conversions to dry 
farming currently occur. As discussed above, while a dramatic reduction in irrigation inputs might 
be feasible from a crop physiological perspective, whether farms can remain profitable through 
such a transition is an entirely different question. Given a dramatically increased supply of dry 
farm tomatoes, the profits that current dry farmers rely on could easily crumble. When considering 
other, less charismatic crops that could be good candidates for dry farming (that might also thrive 
in these areas), customers’ likely hesitance to pay as steep a premium for high quality produce as 
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they do for tomatoes also casts doubt on the viability of a large-scale dry farm transition given 
current profit structures for farmers. 
 
3.4.4. Opening opportuni*es 
 
Though there are limits to how far tomato dry farming can expand as a regional specialty, and 
with its reliance on consumer excitement to support profits, farmers do also see enormous potential 
for dry farming to improve various aspects of the food system if given the proper support. 
 
In an age of changing climates, farmers are all too aware of the challenges they will likely face as 
temperatures rise and water access becomes less reliable. With climate risk looming, farmers are 
looking to dry farm tomatoes as one of the safest bets they can make on their fields: 
 

I think of all the crops that would survive in climate uncertainty, this is the one that would be the 
cornerstone of resiliency.  

 
Given dry farm tomatoes’ ability to offer resiliency to coastal farmers, they are unsurprisingly 
looking to other crops and varieties that might be able to make the transition to dry farming. In 
addition to other crop species, farmers are also searching for tomato varietals (e.g. a dehybridized 
Early Girl called the “Dirty Girl”) that would allow them to save seed and better adapt their crops 
to their local context, as the currently preferred Early Girl varietal is a hybrid and therefore cannot 
support seed saving. 
 

We could be adopting a lot more varieties for dry farming. Because Early Girls is like a fluke that 
they dry farm well, but then Dirty Girls is more intentional selection for dry farming. And we could 
be doing that with way more crops. I think like chili peppers–definitely. And beans for sure. There's 
a lot of stuff we could be pushing, like selection boundaries for a lot more melons. 

 
If somebody was like, 'this is a dry farm winter squash' and save seed from it, we could probably do 
it. But it hasn't been developed, right? And right now, we don't have the programming to support 
it. But I think it'd be really fun. 

 
While this shift may be difficult to make in the current economic landscape, there may soon come 
a time when farmers' options are not between growing tomatoes or a more lucrative irrigated crop, 
but rather between growing a variety of dry farm crops or nothing at all. In the interim, policies 
that would allow farmers to make higher profits on less charismatic dry farm crops, as well as 
research support through breeding programs, could help farmers more smoothly transition to a 
low-water future. 
 
Even in its current scope, dry farming offers farmers access to land that might otherwise not be 
arable, a possibility that will likely only become more appealing as more crops enter fields and 
markets as viable dry farm varietals. Eight farmers in the study had actively farmed in areas that 
would otherwise not be suitable for crop production: 
 

I'm here because I felt like I could dry farm and because there's very insufficient water to produce 
other stuff here. But on dry farming, I feel like all we got to do is water them in, and then we're 
good. You know, so that's a lot of times I take these pieces that have substandard water.  
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It does give you some flexibility to grow things in certain areas where I wouldn't even consider 
growing something else. 

 
This possibility of gaining access to marginal lands for vegetable cropping also opens opportunities 
for incoming and marginalized farmers who otherwise can face extreme difficulties securing fields 
to farm (Carlisle et al., 2019). 
 
Farmers also expressed excitement about ways dry farming can help them better steward their 
land. Rather than use saved water to irrigate other crops, farmers were intrigued by the prospect 
of returning that water to natural ecosystems: 
 

We are rainwater catchment, but we're still diverting–ultimately it's water that would be going to 
the creek, so if we can figure out how much water we really need and it's way less, we could be 
doing more creek releases for fisheries. [It] would be awesome because supposedly there is salmon 
in [the] creek and we do certain creek releases right now with NRDC. Our obligation to do that 
ends next year, but it'd be great if we could keep doing that. 

 
By aligning lands well-suited to dry farming with conservation goals, areas to target for dry farming 
could be optimized to serve non-human interests as well, particularly if the right policy support is 
provided.  
 
Amidst the myriad opportunities and benefits dry farming offers, it also emerged as an important 
avenue for outreach and education. Farmers see dry farming as a key model for what climate 
resilience can look like. 
 

So educationally, that's the easy one. It just totally makes sense... It has roads into climate 
change. It has roads into agronomy, and soil science, and understanding soil water 
dynamics. And so I think it's a really important crop to contrast with the irrigated lands, 
you know, in an era of climate change and really climate unpredictability. 

 
Several farms are already using dry farming as an education tool, and still more have benefited 
from learning about dry farming at organizations like the Center for Agroecology (formerly 
CASFS) that have served as hubs for understanding, refining, and teaching the practice. Eight of 
the farmers in this study could trace their dry farm lineage back to the Center for Agroecology  in 
some way, highlighting the importance of farmer-to-farmer education and farmer field schools. 
 

They learned it from CASFS, I believe... So I feel like there's a lot of good that's come of that 
research hub. 

 
Because tomato dry farming is such a localized specialty, education and research hubs may be all 
the more important in not only teaching farmers the practice in a final or static form, but for 
teaching more versatile principles and forging long-lasting learning communities where farmers 
can continually return and convene to hone the practice to fit new crops and landscapes.  
 
3.5. Discussion  
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As policymakers increasingly focus on dry farming as a solution to California’s water crisis, there 
is significant interest in expanding dry farm management beyond its current scope. Nonprofit 
policy advocacy groups have been calling for increased dry farm production in California (CAFF, 
2015; DeLonge, 2022; Pottinger & Peterson, 2021), beginning conversations about how such a 
transition might be supported. We conclude by exploring how dry farming can act as a model for 
a transition to both low-water agriculture and a more agroecological food system, as well as the 
policies that hold the most promise for dry farm expansion.  
 
3.5.1. Central Coast dry farming as an agroecological transi*on.  
 
As agroecology–a form of agriculture based in small-scale, thought-intensive, diversified farming 
systems and the socio-political movements necessary to defend and advocate for their wider 
adoption–gains recognition as an alternative to industrialized agriculture, questions of how our 
food system might transition towards agroecology have gained considerable attention (Duru et al., 
2015; Gliessman, 2016; Tittonell, 2020). We look at dry farming through the lens of the four key 
dimensions of agroecological transition–changes in production practices, changes in knowledge 
generation and dissemination, changes in social and economic relations, and changes in 
institutional framework (Gliessman et al., 2018)–on the small, diversified operations where it is 
currently practiced, asking how dry farming can further differentiate these farms from an 
industrialized agricultural system.  
 
3.5.1.1. Changes in produc1on prac1ces.  
The specialized management involved in non-irrigated vegetable production is perhaps the most 
obvious change in dry farm systems. From the lack of water inputs to the cover crops and dust 
mulches that allow dry farm tomatoes to thrive, a unique management regime sets dry farming 
apart from irrigated, industrial-style production practices in the region.  
 
3.5.1.2. Changes in knowledge genera1on and dissemina1on.  
Successful dry farming must tailor management decisions to the specific field that is being farmed 
and the weather conditions that year (see ‘Motivations for dry farming’ above). This localized 
knowledge is shared through farmer-to-farmer conversations and teaching farms that mirror the 
rich history of campesino-a-campesino exchange and farmer field schools that exemplify farmer-
led agroecological knowledge exchange throughout the globe (Holt-Giménez, 2006; Waddington 
et al., 2014). 
 
3.5.1.3. Changes in social and economic rela1ons.  
Farmers’ ability to market products directly to consumers–who in turn developed trust in certain 
farms to provide particularly high quality tomatoes–was key to allowing farmers to charge a price 
that made dry farm tomatoes economically feasible to grow. The concurrent development of the 
Slow Food movement in the region, with its focus on local cuisine and calls for quality over 
quantity, and local chefs’ praise for dry farm tomatoes’ intense flavor gave them a staying power 
that farmers might otherwise have had trouble accessing (Waters, 2006). 
 
3.5.1.4. Changes in ins1tu1onal framework.  
Dry farming follows a long history of agroecological transition in spite (rather than because) of 
government policy. As is all too often the case, farmers interviewed for this study could not point 
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to a single government program that assisted in the development or continued viability of dry 
farming as a practice. Water shortages have already begun to encourage policy involvement (e.g. 
SGMA), begging the question of whether such involvement will actively support or undermine an 
agroecologcial transition (as has already been seen with organic strawberry farming in the same 
region; see below). 
 
Thus far, these changes have followed a multi-level perspective in which agroecological transitions 
use exogenous shocks (e.g. water shortages) as windows of opportunity to enter a dominant 
agricultural regime (Blesh et al., 2023; Geels, 2002). With dry farm innovations creating a niche 
that supports small-scale farm diversification, we ask how institutional pathways may lead to a new 
regime of agroecological water saving. 
 
3.5.2. A model for water saving.  
Our suitability map  shows potential for vegetable dry farming to be practiced on California 
croplands that are currently irrigated, though its expansion is inherently limited. Even if markets 
could be adapted to support an influx of dry farmed vegetables, our map indicates that climatic 
constraints will largely require dry farming to be practiced in coastal regions or other microclimates 
that can provide cool temperatures and sufficient rainfall. However, the Central Coast’s tomato 
dry farming offers principles–but not a blueprint–for low water agriculture in other regions. 
 
Based on themes from our interviews, these principles show a cycle of water savings that connect 
reduced inputs, management diversification, and market development (Figure 2). The cycle begins 
with lower irrigation (reducing water inputs), which can be accomplished in concert with soil health 
practices (e.g. cover cropping, adding organic amendments, etc.) that build soil water holding 
capacity and increase long-term fertility. Reduced weed pressure and lower biomass production 
can then lead to reducing other inputs, such as labor and fertilizers, while also allowing for further 
water savings. The combination of reduced inputs and soil health practices then gives rise to a 
product that is unique in its water saving potential, and may also be of unusually high quality. By 
encouraging consumers to appreciate the products, or through novel policy support, farmers can 
develop markets that will provide a premium for these low-water products–or payment for the 
practice itself–which in turn creates an opportunity to expand the practice, further lowering inputs. 
 
3.5.3. A forking path.  
As we ask how policies may impact dry farm production systems, we find a forking path in what 
types of expansion may result from different policies. An increase in production can be 
accomplished through both scaling size (increasing the size of individual dry farm operations) and 
scaling number (increasing the number and geographical scope of dry farm–or dry farm-infomed–
operations). Both options can tap into the water saving cycle to decrease water usage; however, the 
search for just, agroecological transitions has pointed time and again to the need for scaling number 
(Anderson et al., 2019; Ferguson et al., 2019; Gliessman et al., 2018). 
 
On the Central Coast, small, diversified farms have used this water saving cycle to both cut water 
use and develop a specialty product that allows growers to farm in areas with high land values by 
increasing their land access, profits, and resilience to local water shortages. Through these 
principles, small-scale operations have differentiated their management from both industrial farms 
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and even other small farms in the region by creating a system based in localized knowledge, soil 
health practices, and thought-intensive management.  
 
However, it cannot be taken as a given that this water saving cycle will continue to uplift the small-
scale operations on which it started. Recent work highlights the potential for biophysical and socio-
political conditions to combine to shrink–rather than grow–the use and viability of agroecological 
systems (Ong & Liao, 2020). In the case of dry farm tomatoes, socio-political attention is already 
beginning to target the biophysical need to decrease water consumption. If well-intentioned policy 
interventions designed to decrease irrigation water use build markets that value the fact of dry 
farming, rather than the high quality fruits it produces (e.g. labeling and payment for practice 
programs), growers will be able to scale the size of dry farm operations without needing to rely on 
the highly localized knowledge required to produce high quality fruits. As large grocers scale up 
dry farm produce sales without worrying about quality-based markets that may quickly saturate at 
industrial scales, the agroecological systems that originally produced dry farm tomatoes may be 
edged out of the market. On the other hand, if policies build guaranteed markets for small farms 
growing dry farm produce, dry farming may grow by scaling out to more small-scale operations.  
 
Policies focused on water savings may then favor industrial or small-scale farms, depending on how 
interventions shape the “Market Development” aspect of the cycle. We therefore examine this 
cycle not only as a means to save water, but ask if and how it can enhance the viability of non-
industrial farming operations as the food system adapts to restricted water availability. We consider 
the relevant policy recommendations outlined in Blesh et al.’s (2023) analysis of how institutional 
pathways can act synergistically with farmer networks to enable agricultural diversification 
(encourage tracking systems, cost share programs, seed/land access, research/education, and 
public procurement), asking which have the potential to point future dry farming towards scaling 
size vs scope. 
 
3.5.4. The trouble with scaling size.  
 
To better situate these policy options in the local context, we first look to the outcomes of 
institutional intervention in organic strawberry production in a very similar region on the Central 
Coast, and consider the analogous options for dry farm tomatoes.  
 
Similar to dry farm tomatoes, organic strawberry production was launched into the spotlight by 
government-mandated input curtailments (water restrictions in the case of dry farm tomatoes, a 
methyl bromide ban in the case of strawberries). For strawberries, the development of an organic 
strawberry production system also coincided with the adoption of an organic certification process 
by the US Department of Agriculture. Growing public interest in organic strawberries and the 
methyl bromide ban led to the rapid expansion of industrial-scale organic strawberry production–
blatantly scaling size of production (Arcuri, 2015; Guthman, 2016; Jaffee & Howard, 2010). As 
production increased, organic strawberry markets saturated and prices crashed, leaving an 
economic landscape where only the largest operations could remain viable selling strawberries at 
market prices (Guthman, 2004b). At this point, agroecological growers had to redouble their efforts 
to target local consumers with direct marketing strategies, as the organic label no longer added the 
necessary value to profitably sell their product. 
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3.5.4.1. Tracking systems.  
In an analogous case for dry farm tomatoes, it is easy to see the immediate appeal of establishing a 
“dry farm” label that can incorporate the social value added to dry farm tomatoes into the price of 
the product without relying on consumers trusting and paying a premium based solely on higher 
qualities. However, by divorcing dry farm practices from quality premiums and trusting 
relationships with customers, a dry farm label would make it much easier for large-scale growers 
to enter the dry farm market. These larger operations–which may struggle to produce high quality 
fruits or maintain direct relationships with customers but can still decrease water usage enough to 
produce a certified dry farm tomato–could easily grow dry farm produce at large enough scales to 
edge smaller growers out of the label. As has been seen in the organic program, industrial growers 
could also lobby for an official relaxation–a literal watering down–of label standards (Guthman, 
2004a). This sidestep of the dry farm practices described in the above interviews would not only 
further advantage large scale farmers, but would also undermine the very water savings that they 
are meant to encourage. 
 
3.5.4.2. Cost share programs.  
Larger scale growers may also be favored when farmers are paid to implement specific practices. 
Administrative costs involved in enrolling in payment-for-practice programs can be a cumbersome 
barrier to entry, while low payouts at small scales dissuade small farmers who implement the 
practice from enrolling (Cronin, 2023; Reimer & Prokopy, 2014). These patterns are currently 
seen in programs offering cost shares for cover cropping, where farm size is significantly larger for 
participants than non-participants (Sawadgo & Plastina, 2021). 
 
3.5.5. Policy op*ons for scaling the scope of dry farming.  
 
Rather than replay the pitfalls of policies whose design is likely to increase dry farm adoption via 
larger growers entering the market, we ask instead which policies might encourage dry farming to 
“scale number,” increasing production via more crop varieties and accessible land (seed/land 
access), more small growers (education), and more markets for them to sell to (public procurement). 
 
3.5.5.1. Crop varie1es.  
Given farmers’ interest and current experimentation with dry farming non-tomato vegetables, 
expanding the set of crops that can be dry farmed and adapted to local conditions is a clear target 
for future policies. Support for research and participatory breeding programs/variety evaluation 
could spur development of locally-adapted dry farm varietals. By compensating farmers for 
experimentation with diversified dry farm rotations and development of locally adapted varietals, 
policymakers can also absorb some of the risk inherent to on-farm experimentation and encourage 
innovation on the farms that are most familiar with the practice, while simultaneously lowering 
barriers for farmers new to the practice. To create a policy environment where experimentation 
feels more accessible to farmers, minimum lease terms (e.g. 10 years) could be set for farmland, 
allowing farmers to feel more secure in investing in localized practices (Stevens, 2022).  
 
3.5.5.2. Land access.  
Priority could also be given to creating programs that connect farmers–particularly new farmers 
and those who hold underrepresented identities–to available farmland. Without the burden of 
securing water access, lands that would otherwise be impossible to farm with summer crops could 
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become arable, particularly in conjunction with the concurrent support of the other policies 
discussed here. Though many areas will still require some access to water to successfully dry farm 
(i.e. orange areas on suitability map), crops’ need for water coincides with points in the season when 
surface water is most available (Schlenker et al., 2007), making areas with inconsistent water access 
over the course of the season likely candidates for dry farm success. Priority might initially be given 
to areas shown as suitable on the map, but as new and locally adapted crop varieties emerge, access 
may also extend. 
 
3.5.5.3. Farmers.  
In addition to land access, new and transitioning dry farmers will require education and support 
to successfully implement the practice. Funding for field days, demonstration farms, and farmer-
to-farmer networking events can encourage the spread of knowledge to new farms and farmers 
(Carlisle et al., 2019; Teixeira et al., 2018). 
 
3.5.5.4. Markets.  
Finally, increased dry farming must be met with increased capacity for markets to accept dry farm 
produce at prices that support farmer livelihoods. While some market expansion is inherent to a 
geographical expansion beyond the Central Coast region, additional markets throughout the state 
can offer dry farmers more security in a production expansion. Public procurement programs (e.g. 
the Farm to School Incubator Grant Program currently aiming to expand farm to school supply 
chains) could serve to connect dry farmers to guaranteed markets, especially if they are prioritized 
for entry into the program. 
 
3.6. Conclusion 
 
As water shortages are exacerbated by changing climates in California and across the globe, there 
is an increasingly urgent need to adapt agricultural systems to use less water. By nearly or entirely 
cutting irrigation to tomato crops grown in the summer season, dry farming has particular appeal 
as a low-water alternative to irrigation-intensive agricultural systems. While tomato dry farming is 
an inherently localized farming practice, suitable only for implementation in a specific region, it 
also offers a global model for how farming systems might shift towards low-water agriculture. 
Beyond decreasing water use, with the right policy support, dry farming also presents an 
opportunity to support innovation on small, diversified farms, transitioning the food system 
towards an agroecological future. 
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3.9. Figures 
 
 
Figure 1. Dry farm suitability in California. Areas shown in blue indicate cropland that meets all 
farmer-provided constraints for non-irrigated dry farm production. Areas in orange indicate 
cropland that meets all other constraints, but would likely need supplemental irrigation in most 
years. Darker colors (blue and orange) indicate areas that fall within optimal ranges for each 
constraint, while lighter colors indicate that some constraints were tolerable but not ideal. 
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Figure 2. The water saving cycle modeled by dry farm tomato systems. 
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Table 2. Farmer-provided environmental constraints. The table is left blank where farmers either 
did not volunteer information about a given constraint or explicitly stated that they did not feel 
confident in giving an answer. Farmer responses were synthesized into model constraints that were 
relaxed to encompass the least restrictive estimates in order to cover all areas potentially suitable 
for tomato dry farming. 

Farm Precipitation Temperature Soil 

A At least 15” Not more than 90 
consistently in the 
summer 

– 

B – Can’t get above 100-
110  

Clay loam 

C At least 24” (non-irrigated); 
have to do a lot of pre-
irrigation if less than 16”. 
Timing of rain matters. 

Can’t get above 110 Clay is important; too 
much sand relies on 
close water table and 
leads to poor quality 

D 20” (well-timed) Not more than upper 
80’s consistently in 
the summer 

– 

E – Can’t be too hot High enough clay 
content, soil 
management history 

F 19” is our threshold for dry 
farming; timing of rains 
matters a lot. Need enough 
in winter to grow cover 
crop. 

Has to cool off at 
night 

Clay is important; 
would be hard if too 
sandy 

G At least 15” No sustained spells 
>105 

Having clay is 
important, not too 
sandy 

H – Santa Cruz is pushing 
it (too hot); has to be 
warm enough to grow 
tomatoes 

– 

Model 
Constraint 

Suitable without irrigation: 
>22” 
Suitable with supplemental 
irrigation: 14-22” 
Not suitable: <14” 

Max temp 
    Good: <86 
    Tolerable: 86 - 95 
    Intolerable: >95  
Min temp 
    Intolerable: >59 

Good: 10-50% clay 
Tolerable: 5-10% clay 
Intolerable: <5% clay 
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Table 3. Current uses of cropland (as classified by the 2021 Cropland Data Layer) within high priority 
groundwater basins that our analysis indicates as suitable for dry farming. Water usage data from the 
California Department of Water Resources. 
 

Crop Area (ha) Average annual water use 
(Acre-foot/Acre) 

Grass/Pasture 98138 4.05 

Grapes 86340 1.86 

Alfalfa 84520 5.05 

Other Hay/Non Alfalfa 45625 1.39 

Almonds 40507 3.54 

Fallow/Idle Cropland 36240 NA 

Walnuts 33661 3.30 

Winter Wheat 31355 1.39 

Shrubland 26088 NA 

Tomatoes 21878 2.15 
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3.11. Supplementary informa1on 
 

DRY FARM PARTICIPANT INTERVIEWS 
Guide for Semi-Structured Interviews 

 
Part I: Introduction 
1. Thank you for participating! I know some of these questions will be redundant with what we’ve talked 

about this past summer, but trying to get it all in one place. 
2. Brief summary of research project and objectives. We will go over preliminary results before the 

interview! 
1. same goals as we’ve already talked about 
2. Trying to get a sense for who is dry farming and why 

3. You are not obliged to participate at all or answer any questions you do not want to answer, we will not 
share your name with anyone, and we will not associate your answers with your name. 

4. This interview process is completely voluntary and confidential. 
5. We would like your permission to record this interview. Recording allows us to confirm our notes are 

correct and be sure we represent your comments exactly as you say them – they are for backup purposes 
only. We will keep the recordings until the end of the project and then destroy them. Do you mind if 
we record this conversation? 

6. Please know that there will be pauses between questions as I catch up in my notes from your answers. 
 
Part II: Farm history and Dry farm practices  

Farm History  

How long have you been farming; have you always been a farmer? 
 

Farm Characteristics 

Do you have a full crop list of what you grow on your farm (and can I have it)? Any livestock? 
 

Acres managed for crops, by ownership (owned, private leased, public lease, etc.)? 
 

What are the sources of your irrigation water? How reliable are these sources? 
 

What varieties of tomato do you dry farm? How much space do you give to each?  
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Where do you get starts from? 
 

What do you call your style of farming? (organic, regenerative, etc.) 
 

Dry Farm Management 
What does “dry farming” mean to you?  

 

Describe your field and bed prep 
• Typical plant dates (earliest and latest)? How do you decide? 

o Staggered plantings? 
• Bed spacing? 
• Plant spacing? Density (plants per acre)? 
• How large are your fields (min-max)? 
• Do you have a set rotation with your df tomatoes? 

o What crop came before them last year? 
o The year before that? 
o This coming year? 

• What amendments do you add to the soil? 
o When do you add them and how much do you add? 

• How deep do you try to incorporate the amendments? 
• Mulches? 
• Cover cropping? 
• Do you ever fallow? 
• Typical harvest interval? How do you decide when to stop? 

 

Do you dry farm anything besides tomatoes? How does your field/bed prep differ? 
 

Are there crops you aren’t currently dry farming that you think would be good candidates? 
 

Describe your water management 
• What type of irrigation? 
• How many acre inches  of water were applied on your earliest planting last year? (or any info 

you have on irrigation) 
o What was the timing? 

• How do you decide when to water? 

 

How has your dry farm management changed over time? 
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Why does dry farming work well for your farm? (Tomatoes and otherwise) 
 

What do you see as the climatic constraints of dry farming tomatoes? 
 

Management Motivations 
What motivated you to start dry farming? (environment, water concerns, economics, neighbors?) 

 

Do you prefer dry farming to other management styles? Why? 
 

Was it difficult to transition to dry farming? 
 

Do you manage with any ecological goals in mind? If so, please describe.  
 

Management Repercussions 
Have you noticed any changes on your farm since you implemented dry farming practices?  

 

Did you experience any challenges (institutional, social, ecological) to adopting dry farming? Please 
describe 

 

What are the challenges/barriers to adoption that you think are most prevalent among farmers who 
have NOT adopted the practice? 

 

 
Part III. Community, Marketing, Institutions and Policy  

Where did you learn to dry farm? Who taught you/how did you learn? 
 

Where do you go when you have questions?  
• Do you consult with any organization or institution to inform your method of farming?  
• Which organizations?   
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Have you relied on any government, state, or NGO conservation programs to help pay for 
implementation of sustainable practices? 

 

Are you certified organic? Any other certifications? 
 

Do you feel like your farming practices have impacted other farmers’ practices? Have you been 
engaged in learning about and/or spreading new techniques? 

 

 
Part IV: Water and Land Access 
 
Has dry farming changed your ability to access land? 

 

Has dry farming changed how much water your farm uses? 
 

Has dry farming changed the way your farm would respond to a drought/water restrictions? 
 

 
 

Part V: Economics 
 
What are the main markets you target with your produce (DF and otherwise)?  

 

How many farm workers do you hire each year? I.e. how many people are working for you? 
 

Price 
• What price do you typically get for your dry farm tomatoes?  

o Direct to retail 
o Wholesale  

• How does that change over the course of the season?  
• What price do you budget for? 

 

If you grew more dry farmed tomatoes than you do now, could you likely find a market for them at a 
similar price to the ones you grow now? 

 

Is farming your main occupation, or do you have other off-farm jobs?  
 

If you also work off-farm, what proportion of your income comes from on and off the farm?  
 

What percentage of your farm income comes from dry-farmed crops? 
 

 
Part V: Personal Information 
 

Respondent Number 
 

Respondent, Age  
 

Respondent, Gender   

Farm role/title 
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Part VI: Conclusion 

• Is there anything else you would like to add before we conclude the interview? 
• Express appreciation for his/her participation 
• Review permissions for quotes, and any media taken during the interview 
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Conclusion 
 
In my dissertation I demonstrate that locally adapted, diversified management systems can serve 
as a model for shifting agricultural production towards resilience to water scarcity, and that policy 
must be carefully designed if it is to support this transition. I have highlighted the current reality 
that policy, economics, and environment are aligning in ways that constrict agroecological 
transitions in the US Midwest. In listening to farmers’ voices and collaborating on building a 
research program, I have also built a clearer picture of dry farm management on California’s 
Central Coast as an example of an agroecological transition that is at an inflection point when it 
comes to policy support. I have begun to explore the soil health practices and fungal communities 
that allow dry farm systems to thrive, and also the environmental, economic, and policy landscapes 
that dictate the bounds of current production, and where/how it might expand. 
 
These findings have begun to answer the three central research questions that have guided my 
work so far, and that will continue to set the trajectory for my career: 

1.  How does policy go wrong, leading farms towards simplification and industrialized 
growing practices when there is an increasingly urgent need to diversify farming systems?  

2. How do these diversified systems function ecologically, and what management practices 
might enhance their performance, particularly in the face of water scarcity?  

3. How could policy go right, supporting agroecologcial transitions as climate shocks open 
opportunities for food systems change? 

In the above pages, I use mapping, participatory research, field data, lab analyses, and farmer 
interviews to chip away at understanding answers to these questions, as applied to corn-based crop 
rotations in the US Midwest and tomato dry farming on California’s Central Coast. Here I 
highlight key findings in response to each question. 
 
How does policy go wrong? 
In my first chapter, I found that farmers are most likely to implement simplified crop rotations on 
the most fertile soils in the US Midwest. After looking at rotation patterns on over 1.5 million fields 
and accounting for spatial autocorrelation using bootstrapped linear mixed models, clear patterns 
of rotational simplification emerged that clearly mapped onto repercussions of federal policy. Crop 
insurance1 and livestock/biofuel production2 have created an economic environment in which 
corn is more reliably profitable than any other crop that can be grown in the region, incentivizing 
farmers to grow corn as often as possible. Recent biofuel policy has further boosted demand for 
corn, which can be seen in price spikes near biofuel plants3, leading to our finding that there is a 
positive association between simplified rotations and proximity to biofuel plants.  
 
Because crop rotation is a key diversification practice that builds soil health, government programs 
that create conditions that lead to rotation simplification run counter to long-term soil health and 
production stability in the region. As rotation simplification leads farmers to grow fewer crops in a 
given year, they are less able to take advantage of the portfolio effect, whereby farm yield and 
income is stabilized by growing a diversity of crops that respond differently to stressors4. 
Additionally, as soil health benefits accrue, diverse rotations can stabilize yields from a single crop 
in seasons with adverse growing conditions5. The lack of effort to change these incentive structures 
is therefore surprising as changing climates make simplification all the more risky in the region.  
 



 
126 

Nevertheless, policy options do exist that can better align practices that support farm resilience 
with economic incentives. For example, farmers and advocacy groups have pointed to the 
Conservation Stewardship Program as a policy that has successfully increased diversification 
practices, and a target for expansion6,7. I have also begun to work on a project that will adjust 
agricultural lending to account for the risks inherent to simplified rotations, which I hope may 
eventually lead to updated federal crop insurance programs that consider simplification risks. 
These and other policy options must both consider which practices to encourage, and address 
where and how these practices might expand through our agricultural system. 
 
How do diversified systems function ecologically, and what management practices 
might enhance their performance? 
Rotational simplification in the US Midwest is not an isolated story; US policy has overwhelmingly 
led our agricultural system towards industrialized forms of agriculture8,9. Yet pockets of 
diversification exist throughout the country and could flourish with thoughtful policy 
intervention10. In order to understand what practices policy can support to make agriculture more 
resilient to water shortages, I looked to a system that has thus far been relatively untouched by 
targeted policies, growing instead out of farmer innovation, consumer demand, and savvy 
marketing approaches: tomato dry farming on California’s Central Coast. Dry farming allows 
farmers to grow produce with little to no irrigation water, relying instead on winter rains to support 
crops through rain-free summers, and is made possible with careful soil health management. 
 
I asked the farmers who developed and continue to practice dry farming what would be helpful to 
know about the system, and together we explored management-relevant questions in a field 
experiment on these farms. Given that surface soils dry early in the season in these systems, quickly 
forcing roots deep into the soil profile, farmers wanted to know what depths of nutrients impacted 
harvest outcomes. Farmers were also interested in the growing body of research about soil 
microbial communities, and were curious both about symbiotic fungal inoculants that had been 
advertised to them, and also the impact of dry farming on soil fungal communities more broadly. 
In finding that plants only access nutrients below 30-60cm, and that commercial arbuscular 
mycorrhizal inoculants are ineffective on these farms, we were able to provide farmers with 
immediately actionable information about how dry farm systems function and their management 
implications (avoid AMF inoculants, focus on fertility changes below 60cm). We also found that 
dry farm soils develop a fungal signature that supports tomato fruit quality, suggesting a longer 
term goal to develop dry farm rotations that allow soils to be irrigation-free for multiple years in a 
row. 
 
Together, these findings also begin to shed light on policy involvement that could most directly 
benefit dry farming and the farmers that practice it. For example, funding for both farmers and 
researchers could be allocated to explore varieties and support breeding programs through 
community based participatory research that would allow crops beyond tomatoes to be 
incorporated into dry farm rotations (a project that I hope to pursue in my future work). By better 
understanding how dry farm systems function, we can better target policies that are most needed 
and have the highest chance of succeeding as interest in dry farming spreads throughout the state. 
 
How could policy go right? 
Beyond these targeted interventions, it is also crucial to understand the broader environmental and 
economic context in which dry farming arose to create an appropriate climate for its wider 
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adoption. Dry farming is an example of a management system that has allowed small, diversified 
farms to further transition towards agroecology in the absence of policy intervention. The core 
tenants of dry farmings’ context on the Central Coast that allowed it to begin an agroecological 
transition must be preserved to avoid its cooptation towards an industrial model of water savings.  
 
Interviews with the same farmers I developed relationships with in the second chapter gave me 
context to understand the environmental and economic conditions in which dry farming currently 
operates. After synthesizing the themes from these interviews, I created a map that can guide future 
geographic expansion. I also developed a proverbial policy map to guide dry farm expansion 
towards scaling the number of agroecological dry farm operations and their geographical scope, 
rather than scaling the size of a few industrialized operations. A central tenet of both maps was 
maintaining the conditions and principles that originally allowed dry farming to flourish, rather 
than altering physical and economic landscapes to force a practice that does not fit local contexts.  
 
Providing more options for farmers to shorten supply chains (e.g. expanding to new farmers 
markets or connecting farms with farm-to-school programs) allows and incentivizes farmers to 
profit from dry farm tomatoes’ superior quality, while other interventions (e.g. labeling programs 
or payment for practice) create a disconnect between profits and quality. Because an intimate 
understanding of soils and climates is required to grow high quality tomatoes, maintaining profit 
structures based on quality puts a natural cap on a dry farm operation’s size, requiring the practice 
to spread via increasing the number of operations that dry farm and their geographic scope. 
Keeping this in mind, policies that allow growers who are committed to dry farming to more easily 
access land–with everything from minimum lease terms to new farmer entry programs–hold 
particular promise for dry farm expansion. Similarly, funding demonstration farms that can spread 
the practice to more interested farmers can support an increase in dry farmed land and operation 
numbers, rather than the acres that are farmed by a single operation. 
 
 
After thousands of soil samples, thousands of pounds of harvested tomatoes, hundreds of hours 
spent in conversation with farmers, and more long days in the field and late nights in the lab than 
I wish to count, I have constructed a foundation of answers to the questions that guided my 
dissertation research. These answers explore specific, place-based examples of on-farm 
diversification practices, how they work, and how policy can create or curtail opportunities for 
them to serve as the basis of a transition towards agroecology in the United States. In future work, 
I hope to deepen my ties to the farmers, landscapes, and practices I connected to in my dissertation 
research. I also hope to broaden the scope of practices and policies I consider, while maintaining 
accountability to communities of current farmers, hopeful farmers who are excluded from current 
agricultural systems, and eaters whose wellbeing is impacted by the health of our food system.  
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