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Abstract 
The three-space theory of problem solving predicts that the 
quality of a learner’s model and the goal specificity of a task 
interact on knowledge acquisition: Learners having a good 
model should learn more with a nonspecific than a specific 
goal, which should not apply to learners having a poor model. 
This study tested this prediction using a computer based 
learning task on torques. Participants (N = 77 psychology 
students) either had to test hypotheses with a simulation of a 
lever system (nonspecific goal), or to produce given values 
for variables in this simulation (specific goal). In the good 
model condition but not in the poor model condition they saw 
the torque depicted as an area. Results revealed the predicted 
interaction. A nonspecific goal only resulted in better learning 
when a good model of torques was provided but not with a 
poor model. Our findings support the three-space theory. 
They emphasize the importance of understanding in studying 
problem solving and stress the need to study underlying 
processes. 

Keywords: goal specificity, problem solving, three-space 
theory, scientific discovery learning 

Introduction 

Explaining Goal Specificity Effects 
Multiple studies with a variety of tasks have demonstrated 
that people learn better when they work on tasks with 
nonspecific goals than on tasks with specific goals (e.g., 
Ayres, 1993; Geddes & Stevenson, 1997; Paas, Camp, & 
Rikers, 2001; Sweller & Levine, 1982; Vollmeyer & Burns, 
2002). For example, in Sweller and Levine’s finger maze 
task the blindfolded participants either had one finger at the 
finish point (i.e., specific goal) or had no information about 
the location of the finish point (i.e., nonspecific goal). Those 
with the nonspecific goal performed better. In this paper we 
will try to clarify the mechanism underlying goal specificity 
effects and in doing so explain and test a theory of when 
nonspecific goals will and will not help learning. In 
particular this theory emphasizes the role of the participants’ 
general understanding of the task, which we refer to as their 
model. 

A possible mechanism for the goal specificity effect 
draws on Cognitive Load Theory (Sweller, 1988; Sweller, 

Ayres, & Kalyuga, 2011). Sweller proposed that when a 
specific goal is given people tend to use means-ends 
strategies to solve the task; that is, they try to reduce the 
difference between the current state and the goal state. Thus, 
they have to keep in memory a lot of information, such as 
the goal state, the actual state, the relation between these 
states, and potential sub goals, which leads to high cognitive 
load (Ayres & Sweller, 1990; Owen & Sweller, 1985; 
Wirth, Künsting, & Leutner, 2009). As a consequence a 
reduced amount of working memory is available for 
learning through schema construction or concept 
development. In contrast, in tasks with nonspecific goals 
people do not need to make comparisons with a given goal 
state. Therefore cognitive load is lower, and thus capacity 
for learning is increased. 

Our own explanation for the mechanism by which goal 
specificity affects learning emphasizes that the nature of the 
goal alters the strategy learners take. This perspective comes 
from dual-space theories of problem solving (Klahr & 
Dunbar, 1988; Simon & Lea, 1974), which describe 
problem solving as search of two interacting problem 
spaces: experiment space/instance space and hypothesis 
space/rule space. Experiment space contains all possible 
experiments that can be conducted within a task, that is, 
transformations of the task elements. Hypothesis space 
consists of all possible hypotheses or rules about the task. 
These can be tested by running experiments (i.e., movement 
in experiment space) and as a result of experimenting 
hypotheses can be confirmed or rejected and rules can be 
derived (i.e., movement in hypothesis space). From dual-
space theories it can be inferred that tasks with specific 
goals can be solved by moving in experiment space whereas 
nonspecific goals may encourage an additional search of 
hypothesis space. Indeed, it has been shown that nonspecific 
goals induce a search of hypothesis space in terms of 
hypothesis testing (Burns & Vollmeyer, 2002; Künsting, 
Wirth, & Paas, 2011). Learners who do not focus on 
reaching a given goal in experiment space are more likely to 
explore a task thoroughly by testing hypotheses, and this 
can explain their better learning results. 

A series of experiments have tested goal specificity 
predictions derived from dual-space theories (Burns & 
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Vollmeyer, 2002; Osman & Heyes, 2005; Vollmeyer, 
Burns, & Holyoak, 1996). Learners had to control a 
computer simulation of a linear system (e.g., biology lab or 
water tank) in which they could manipulate input variables 
that affect output variables. The links between those 
variables were unknown. The specific goal was to bring the 
system to specific values whereas the nonspecific goal gave 
them no values to reach but instead encouraged them to find 
the rules underlying the system. Learners with a nonspecific 
goal acquired a better knowledge of the system’s structure 
than learners with a specific goal. Similarly, giving learners 
a hypothesis to test led to better learning compared to 
learners who had the same amount of information but were 
not induced to test a hypothesis (Vollmeyer & Burns, 1996). 
These results can be interpreted in line with dual-space 
theories, supposing that nonspecific goals or hypothesis 
instruction induce search of hypothesis space and thus lead 
to better learning. So the mechanism through which a 
nonspecific goal improves learning is its encouragement of 
search of hypothesis space. 

A Three-Space Theory 
The theoretical perspective of a nonspecific goal as 
encouraging search of hypothesis space led to an important 
question about goal specificity: Should hypothesis testing 
always produce better learning results? Indeed, recent 
studies suggest that the goal specificity effect is not 
uniformly found and might be reversed under certain 
conditions (Pretz & Zimmerman, 2009; Zanga, Richard, & 
Tijus, 2004). There may be situations in which search of 
hypothesis space is unsuccessful, thus nonspecific goals 
may not always facilitate learning. This could be the case 
for someone who starts with a hypothesis space that is 
limited to inappropriate hypotheses. To deal with this Burns 
and Vollmeyer (2000) suggested the theoretical framework 
of a three-space theory. This extended dual-space theories 
by proposing a third space, model space, which contains 
possible models of a task or a domain. 

Empirical evidence that led to the assumption of a model 
space came from studies of learning about linear systems. 
Burns and Vollmeyer (2002) found that some participants 
considered that there might be interactions between 
variables which was not the case. Thus, participants seemed 
to hold a certain model of linear systems which determined 
the hypotheses they took into account and thus defined their 
hypothesis space. 

The three-space theory assumes that model space 
determines hypothesis space just as hypothesis space 
determines the appropriate experiment space. Further we 
assume that for any task a learner always has some model of 
how it might work, but the quality of that model can vary. 
The current state in model space constrains hypothesis space 
and determines the hypotheses that are considered plausible 
to test, so a good model is one that provides a searchable 
hypothesis space containing the appropriate hypotheses. 
Thus, when search of hypothesis space is encouraged, either 
through a nonspecific goal or hypothesis instruction, an 

appropriate model provides a searchable hypothesis space. 
In contrast, an inappropriate (i.e., incorrect or incomplete) 
model can define a set of inapplicable hypotheses to test or 
simply a set of hypotheses too large to search effectively, 
and thus may be misleading and actually hinder learning. 

Our Hypothesis 
An implication of the three-space theory is that we would 
expect an interaction between the quality of a learner’s 
model and goal specificity, if the variation in model quality 
is great enough to have an impact on performance. When 
participants have a good model then their hypothesis space 
is searchable and thus encouragement to do so via a 
nonspecific goal should result in better learning than a 
specific goal, just as we have found before. However, when 
learners have a poor model then encouraging search of a 
poorly defined hypothesis space (via a nonspecific goal) 
should lead to little learning. Instead a learner with a poor 
model may be better off focusing on search of experiment 
space, which a specific goal would encourage. This is 
possible because a focused search of experiment space may 
yield more knowledge than would a haphazard search of 
experiment space produced by attempts to test the wrong 
hypotheses. So we predict an interaction between a 
manipulation of goal specificity and the manipulated quality 
of a learner’s model. Whether learners with a poor model 
would actually learn less with a nonspecific goal than a 
specific goal is hard to predict, because it may depend on 
characteristics of the task. For example, a task, in which 
simply pushing towards the goal helps performance, might 
benefit more from a specific goal than a nonspecific goal 
when the model is poor. It is also possible that if careful 
testing of experiment space could help formation of a better 
model, then such movement in model space would be more 
likely with a specific than a nonspecific goal. Confirmation 
of such an interaction prediction would support the three-
space theory and have implications for when different goals 
lead people to learn most effectively. 

To test our interaction hypothesis we used a task in which 
participants manipulate a simulated system of levers and 
forces in order to learn about torques. Kistner, Burns, 
Vollmeyer, and Kortenkamp (2014), using a similar task, 
found that people had different levels of understanding of 
how such systems work, so such a task should be amenable 
to manipulation of a participant’s model quality. In addition 
we found that we could manipulate goal specificity by either 
giving participants a set of questions to answer (specific 
goal) or asking them to test hypotheses (nonspecific goal). 

We tested the interaction hypothesis, which in terms of 
this task was that on a posttest there would be an interaction 
between a manipulation of model quality and goal 
specificity such that participants given a good model would 
learn more with a nonspecific than a specific goal whereas 
those given a poor model would not be affected by goal 
specificity. 
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Method 

Participants 
Participants in the study were 99 first year psychology 
students at the University of Sydney who took part for 
partial course credit. All of the participants had studied 
some physics at high school (64% as part of compulsory 
science classes up to Year 10, 24% chose to study it in the 
last two years of high school, 12% at university). In this 
experiment participants were supposed to work with an 
unfamiliar task to acquire new knowledge in a physics 
domain, so those with high initial knowledge could not be 
expected to gain much from working with our task. 
Therefore we could not test the impact of our manipulations 
on their posttest level. For this reason participants who 
scored high in a pretest (described below) were identified. 
High was defined as one standard deviation above the mean, 
so the 22% scoring more than 3 out of 7 points were 

excluded from further analyses. The resulting sample of 77 
participants had a mean age of 19.94 (SD = 4.65) and 74% 
were female. 

The Computer Simulation 
Participants worked with a computer simulation of a lever 
system (see Figure 1), which was created with the 
interactive geometry software “Cinderella” (Richter-Gebert 
& Kortenkamp, 1999). The simulated lever system consists 
of two lever arms (l1 and l2) on both sides of a fulcrum (A) 
and two forces (F1 and F2). The left side of the lever 
system, consisting of Lever Arm l1 and Force F1, is shown 
as inside a torque meter (grey box). Lever Arm l1 is fixed to 
be 8m in length and the Force F1 adjusts automatically in 
order to keep the lever system balanced as features on the 
right side of the lever system are manipulated. Outside the 
grey box the lever system continues with Lever Arm l2 and 
Force F2.  

 

 

 
 

Figure 1. Illustration of the computer simulation of a lever system. The upper panel shows the simulation in the poor model 
condition. The basic setting of the simulation is shown. The lower panel shows the simulation in the good model condition. 

Lever curve and rope length have been manipulated in this setting. 
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The characteristics of Lever Arm l2 and Force F2 can be 
manipulated by six controllers next to the lever system. 
They allow for adjusting: (1) The length of Lever Arm l2: 
Lever Arm l2 can be made longer or shorter. (2) The 
magnitude of Force F2: Force F2, depicted by the arrow, 
can be made stronger or weaker, which is represented by 
increasing or decreasing the length of the arrow. (3) The 
length of a rope that can be fixed at Point B: By using this 
controller it is possible to integrate a rope into the lever 
system that applies at Point B. Force F2 then is no longer 
applied at Point B, but instead at the end of the rope (see 
Figure 1). (4) The degree of the lever curve: Lever Arm l2 
can be curved by using this controller (see Figure 1). (5) 
The angle of Lever Arm l2 in relation to Lever Arm L1: In 
both panels of Figure 1 l2 is horizontal with l1 but it can 
also be angled upwards or downwards. (6) The angle of 
Force F2 in relation to Lever Arm l2: In both panels of 
Figure 1 F2 pulls in a downward vertical orientation but it 
can also pull in different directions.  

When doing manipulations by using the controllers, the 
values for torque and Force F1 shown in the torque meter 
adjust. Thus, participants can observe the effects of their 
manipulations. By working with this simulation participants 
could acquire some understanding of the domain of torques 
and learn about the variables that determine torques. 

Research Design 
The study followed a 2 (goal specificity: specific goal 

[SG] vs. nonspecific goal [NSG]) x 2 (model quality: good 
vs. poor) design. Participants were randomly assigned to 
one of the four conditions: nonspecific goal with good 
model (NSG/good, n = 20); nonspecific goal with poor 
model (NSG/poor, n = 21); specific goal with good model 
(SG/good, n = 15); and specific goal with poor model 
(SG/poor, n = 21). 
Goal specificity manipulation To vary goal specificity 
participants received two different task assignments. The 
aim of the SG condition was to induce search of experiment 
space, so in this condition participants received seven tasks 
incorporating 16 subtasks on paper sheets. For each task, 
participants first had to adjust the variables in the computer 
simulation according to a given basic setting. Then, they had 
to manipulate the simulation in a specific way, for example, 
to produce certain values for given variables, to read 
resulting values for other variables and to write them down 
in tables provided on their sheets. An example task was 
“Try to adjust force F1 in the torque meter to a value of 5 by 
varying lever arm l2 and force F2. Then, try to adjust it to a 
value of 7. In each case read the approximate values for l2 
and F2 and enter them in the table below.” The seven tasks 
were chosen in a way that they covered all relevant aspects 
that could be discovered with the simulation. 

The aim of the NSG was to induce search of hypothesis 
space. The participants’ task was to formulate and write 
down hypotheses about relationships between the variables 
in the computer simulation and to test them using the 
simulation. Therefore they got an overview of all variables 

and a short introduction on how to formulate the 
hypotheses. Participants wrote down their hypotheses on the 
provided sheets of paper. After testing each hypothesis they 
could mark whether it was confirmed, disproved, or needed 
further investigation. 
Model quality manipulation To implement variation in 
model quality participants worked with two different 
versions of the computer simulation. From Kistner et al. 
(2014) we knew that a good model of torques in the context 
of similar simulations is conceptualizing torque as the area 
of the parallelogram spanned by force and lever arm. Thus, 
in the good model condition this parallelogram was depicted 
in the simulation as a red area, which adjusted when 
variables were manipulated (see Figure 1). So, participants 
could directly observe how the torque was affected when 
they worked with the simulation. Furthermore, when being 
introduced to using the simulation participants were 
informed that the red area was equal to the torque and that 
for a lever to be balanced the torques on both lever arms 
must be equal. This information was missing in the poor 
model condition, which also did not depict the area of the 
parallelogram spanned by force and lever arm (see Figure 
1). 

Assessment Instruments 
Knowledge tests A pretest similar to the one in Kistner et 
al. (2014) was used. This contained four items on factual 
knowledge about torques (Cronbach’s α = .63). Examples 
are participants being asked to state the meaning of the term 
torque and being asked to compute the torques of a given 
lever system. Participants could score up to seven points in 
the pretest. The 17 items of the posttest (Cronbach’s 
α = .80) were of different formats. In addition to the four 
items of the pretest it included 11 multiple choice items that 
presented a specific setting of the computer simulation 
shown in a picture above. Every item began with a 
prediction, for example, “If force F2 increases, then …”, 
and participants could choose from among four statements 
to complete the prediction. In another multiple choice item 
participants had to choose the correct formula(s) for the 
lever rule. Finally, they were asked to state a formula for 
calculating torques. The posttest had a maximum score of 
33 points. 
Manipulation check A manipulation check tested whether 
participants in the good model condition adopted the 
intended model of torque as the area of the parallelogram 
spanned by force and lever arm. Therefore, participants 
were given two figures like Figure 1 (without the red area) 
with the controllers set a certain way, and for each they 
were asked to do three tasks: (1) to draw the torque area 
onto the figure, (2) to compute the torque area, and (3) to 
state the torque magnitude. A maximum of nine points 
could be scored (across all components, Cronbach’s 
α = .87). 
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Procedure 
Participants began by completing the pretest. Then they read 
short introductions to important terms in the context of 
torques (i.e., force, lever, and torque) and were shown a 
graphic of the simulation with an explanation of how to use 
it. Participants then had 30 minutes to work with the 
simulation according to their condition. Participants could 
not proceed until this time was over and they were prompted 
to continue working until the end. Afterwards, they filled 
out the posttest and completed the manipulation check. 
Altogether the procedure took about 60 minutes. 

Results 

Manipulation Check 
To check whether our model quality manipulation was 
effective we first examined the manipulation check. 
Participants in the good model groups obtained significantly 
higher scores (M = 2.54, SD = 3.21) for drawing and 
computing torque parallelograms than participants in the 
poor model groups (M = 0.43, SD = 1.55), F(1,75) = 14.26, 
MSE = 5.99, p < .001, η2 = .16. This is evidence that the 
manipulation indeed provided participants in the good 
model group with the model of torques as the area of a 
parallelogram. 

Testing our Hypothesis: Interaction Between Goal 
Specificity and Model Quality 
Based on the three-space theory we predicted that the effect 
of goal specificity would interact with model quality such 
that the difference in performance in the posttest between 
the good model condition and the poor model condition 
would be higher with the NSG than with the SG. 

 
Table 1: Descriptive statistics of pre- and posttest for each 

of the four groups. 
 

 NSG/ 
good 

NSG/ 
poor 

SG/ 
good 

SG/ 
poor 

 M (SD) M (SD) M (SD) M (SD) 
Pretest 1.20 

(1.11) 
0.71 

(0.90) 
0.87 

(1.06) 
0.57 

(0.87) 
Posttest 16.85 

(6.12) 
10.33 
(4.22) 

12.93 
(2.94) 

12.43 
(4.01) 

 
Table 1 shows the results of the four groups in the pre- 

and the posttest. The groups did not differ in their pretest 
scores (no main effects, no interaction effect, all ps > .05). 
Figure 2 illustrates for the posttest the significant interaction 
found with a two-factorial ANOVA between goal specificity 
and model quality, F(1,73) = 8.24, MSE = 20.70, p = .005, 
η2 = .10. Participants with a good model performed better in 
the posttest when they worked with a NSG compared to a 
SG, F(1,33) = 5.21, MSE = 25.26, p = .03, η2 = .14. For 
participants in the poor model conditions goal specificity 
did not make a difference with regard to the posttest, 

F(1,40) = 2.72, MSE = 16.95, p = .11. Looked at another 
way, for participants given a NSG model quality had a large 
impact on the posttest, F(1,39) = 15.87, MSE = 27.42, 
p = .001, η2 = .29, whereas for those given a SG model 
quality was irrelevant, F(1,34) = 0.17, MSE = 13.00, 
p = .68. 

Thus, the results were in line with our hypothesis of an 
interaction between goal specificity and model quality: 
encouragement to search hypothesis space (via a NSG) only 
appeared to help learning when the learner’s model was 
good enough for the hypothesis space to be relatively easily 
searchable. 

 

 
 

Figure 2. Mean posttest scores for each of the four groups 
with standard error bars. 

Discussion 
We started with the question of do nonspecific goals always 
help learning? We found that participants with a good model 
differed in their knowledge acquisition depending on their 
goal specificity, whereas goal specificity played little role 
for participants learning with a poor model. A good model 
should help nonspecific goal learners to develop more and 
better suited hypotheses and therefore they acquire more 
knowledge when encouraged by a nonspecific goal to test 
hypotheses. However, with a poor model a nonspecific goal 
might even hinder knowledge acquisition as nonspecific 
goal learners can get stuck with inappropriate hypotheses. 
Such a negative effect of a nonspecific goal was evident in 
the mean knowledge scores but was not statistically 
significant.  

Our results are in line with the three-space theory from 
which we derived the hypothesis on the interaction between 
the experiment, hypothesis and model spaces. In this theory 
hypothesis testing (i.e., search in hypothesis space) is not 
always more advantageous than pure experimenting (i.e., 
search in experiment space), it depends on model quality. 
Moreover, this study emphasizes that it is not manipulating 
goals per se (i.e., goal specificity) that is responsible for 
learning; instead it depends on the underlying processes.  
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A limitation of the study was that we examined only one 
outcome variable, which was the score in a knowledge test. 
From the expected difference in knowledge we conclude 
that learners with a good model and a nonspecific goal had 
more effective hypothesis testing than learners with a poor 
model and a nonspecific goal. However, we had no direct 
indicator of the learning processes that we were postulating. 
Future research using this task should include mediating 
indicators for the effect of goal specificity and model quality 
on learning outcome. 

If generalizable, the model quality by goal specificity 
interaction has practical implications for learning. Learners 
will always have some model of any task they are given, no 
matter how impoverished it is. Such initial models can be 
expected to vary as they will depend on a learner’s prior 
knowledge. The model by goal specificity interaction 
suggests that prior knowledge may interact with other 
manipulations if those manipulations affect how the learner 
approaches the task. Therefore, the same intervention could 
improve learning for one person and be detrimental for 
another. Thus, the learners’ prior knowledge needs to be 
taken into account when deciding how best to design a 
learning task. 
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