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Prospects of nonparametric modeling �

Jianqing Fan

Department of Statistics, University of California, Los Angeles, CA 90095

Abstract

This article briey summarizes key developments in nonparametric function estimation over

the past three decades. It highlights some potentially fruitful areas of future research on non-

parametric modeling and its applications.

1 Introduction

Modern computing facilities allow statisticians to explore �ne data structures that were unimag-

inable two decades ago. Driven by many sophisticated applications, demanded by the need of

nonlinear modeling and fueled by modern computing power, many computationally intensive data-

analytic modeling techniques have been invented to exploit possible hidden structures and to reduce

modeling biases of traditional parametric methods. These data-analytic approaches are also referred

to as nonparametric techniques. For an introduction to these nonparametric techniques, see the

books by Devroye and Gy�or� (1985), Silverman (1986), Eubank (1988), M�uller (1988), Gy�or�,

H�ardle, Sarda and View (1989), Hastie and Tibshirani (1990), Wahba (1990), Scott (1992), Green

and Silverman (1994), Wand and Jones (1995), Fan and Gijbels (1996), Simono� (1996), Bow-

man and Azzalini (1997), Hart (1997), Ramsay and Silverman (1997), Ogden (1997), Bosq (1998),

Efromovich (1999), Vidakovic (1999), among others.

An aim of nonparametric techniques is to reduce possible modeling biases of parametric models.

Such parametric models are simple and convenient linear models to facilitate computational expe-

diency before 1980s'. They are typically not derived from physical laws and can not be expected

to �t all data well. An erroneous parametric model can create excessive modeling biases and leads

to wrong conclusions. Nonparametric techniques intend to �t a much larger class of models to

reduce modeling biases. They allow data to search appropriate nonlinear forms that best describe

the available data. They also provide useful tools for parametric nonlinear modeling and for model

diagnostics.

Over the past three decades, intensive e�orts have been devoted to nonparametric function

estimation. Many new nonparametric models have been introduced and a vast array of new tech-

niques have been invented. Many new phenomena have been unveiled and deep insights have been

gained. The �eld of nonparametric modeling has progressed steadily and dynamically. This trend

will continue for decades to come. With the advance of information and technology, more and

more complicated data mining problems emerge. The research and applications of data-analytic

techniques will be proven to be even more fruitful in the next millennium.

The �eld of nonparametric modeling is vast. It has taken many books to describe a part of the

art. Indeed, most of parametric models have their nonparametric counterpart. It is impossible to
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give a complete survey of this wide �eld. Rather, the aim of this article is to highlight some of

the important achievements and outline some potentially fruitful topics of research. For a more

complete review of the literature, see the aforementioned books and the references therein.

2 Overview of developments

2.1 Density estimation and nonparametric regression

Density estimation summarizes data distributions via estimating underlying densities and non-

parametric regression smoothes scatterplots via estimating regression functions. They provide the

simplest setup for understanding nonparametric modeling techniques and serve as useful building

blocks for high-dimensional modeling. They are relatively well developed and understood.

Many useful techniques have been proposed for univariate smoothing. Among those, kernel

methods (Rosenblatt 1956; Gasser and M�uller 1979; M�uller 1988; Wand and Jones, 1995), local

polynomial methods (Stone 1977; Cleveland 1979; Fan, 1993; Fan and Gijbels, 1996), spline meth-

ods (Wahba 1977; Eubank 1988; Nychka 1988; Wahba, 1990; Green and Silverman, 1994; Stone, et

al. 1997), Fourier methods (Efromovich and Pinsker, 1982, Efromovich, 1999) and wavelet methods

(Donoho and Johnstone 1994; Donoho, Johnstone, Kerkyacharian and Picard 1995; Hall and Patil

1995; Ogden, 1997, Antoniadis, 1999; Vidakovic, 1999). Di�erent techniques have their own merits.

Chapter 2 of Fan and Gijbels (1996) gives an overview of these techniques.

Each nonparametric technique involves selection of smoothing parameters. Several data-driven

methods have been developed. Cross-validation (Allen 1974; Stone 1974; Rudemo 1982) and gen-

eralized cross-validation (Wahba, 1977) are generally applicable methods. Yet, their resulting

bandwidths can vary substantially (Hall and Johnstone, 1991). Plug-in methods are more stable.

In addition to the methods surveyed in Jones, Marron and Sheather (1996), the pre-asymptotic

substitution method by Fan and Gijbels (1995) and the empirical-bias method by Ruppert (1997)

provide useful alternatives. See also Marron and Padgett (1987).

2.2 Multivariate nonparametric modeling

Univariate smoothing techniques can be extended in a straightforward manner to multivariate

settings. But such extensions are not useful due to so-called \curse-of-dimensionality". Many

powerful models have been proposed to avoid using \saturated" nonparametric models and hence

attenuate the problems of the \curse-of-dimensionality". Di�erent models incorporate di�erent

knowledge into data analyses and explore di�erent aspects of data. Examples include additive

models (Breiman and Friedman, 1985; Hastie and Tibshirani 1990; Stone, 1994), varying coeÆcient

models (Cleveland, et al, 1991, Hastie and Tibshirani, 1993), low-dimensional interaction models

(Friedman 1991; Gu and Wahba, 1993; Stone, et al 1997), multiple-index models (H�ardle and Stoker

1989, Li 1991), and partially linear models (Speckman 1988; Green and Silverman 1994), and their

hybrids (Carroll, et al. 1997; Fan et al 1998), among others. See also semiparametric models in

Bickel et al. (1994). They together form useful tool kits for processing data that arise from many

scienti�c disciplines and for checking adequacy of commonly-used parametric models.

The area of multivariate data-analytic modeling is very dynamic. A vast array of innovative
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ideas have been proposed. Each method relies on certain univariate smoothing techniques as

building blocks. To name a few, back�tting methods (Hastie and Tibshirani, 1990) and average

regression surface methods (Tj�ostheim, 1991, Linton and Nielsen, 1995) for additive modeling,

sliced inverse regression method (Duan and Li, 1991 and Li, 1991) and average derivative methods

(H�ardle and Stoker 1990 and Samarov, 1993) for multiple-index models, and combinations of these

methods (Carroll, et al., 1997), among others. Polynomial splines and smoothing splines can be

directly applied to low-dimensional interaction models.

Tree-based regression models (Friedman, et al, 1993; Zhang and Signer 1999) are based on

di�erent ideas. They are also powerful tools for nonparametric multivariate regression and classi-

�cation.

Nonparametric regression problems arise often from other statistical contexts such as general-

ized linear models and the Cox proportional hazards model. While they is some theory and meth-

ods available, nonparametric techniques are relatively underdeveloped for likelihood and pseudo-

likelihood models.

2.3 Theoretical developments

Apart from creative technological inventions, many foundational insights have been gained, and

many new phenomena in in�nite dimensional spaces have been discovered. It is now well known

that many nonparametric functions can not be estimated at a root-n rate (Farrell 1972; Donoho

and Liu 1991), while some functionals such as integrated square densities (Bickel and Ritov, 1988;

Fan, 1991) can be estimated at a root-n rate. These optimal rates of convergence depend on the

smoothness of the function classes. Adaptive procedures have been constructed so that they are

nearly optimal for each given smoothness of a class of functions. See Lepski (1991, 1992), Donoho,

Johnstone, Kerkyacharian and Picard (1995), Brown and Low (1996), among others. Adaptive

estimation based on penalized least-squares can be found in Andrew, Birg�e and Massart (1999).

Optimal rates for hypothesis testing have also been developed. See Ingster (1993) and Spokoiny

(1996).

Optimal rates for multivariate ANOVA types of nonparametric models o�er valuable theoretical

insights into high-dimensional function estimation problems (Stone, 1994, Huang, 1999). It was

shown that asymptotically estimating a component in additive separable models is just as hard as

the case when the other components are known (Fan, Mammen and H�ardle, 1998). This property

is not shared by parametric models.

3 Future research

With increasing complexity of statistical applications and the need for re�nements of traditional

techniques, the future of nonparametric modeling and its applications is bright and prosperous.

Cross-fertilization of parametric and nonparametric techniques will be fruitful and powerful. Ap-

plications of nonparametric techniques to other scienti�c and engineering disciplines are increasingly

demanding. While some areas of research are outlined here, they are far from exhaustive.
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3.1 Nonparametric inferences

Maximum likelihood estimation, likelihood ratio statistics and the bootstrap o�er generally ap-

plicable tools for parametric analysis. Yet, there are no generally applicable principles available

for nonparametric inference. Consider the example of additive models. How can one construct

simultaneous con�dence bands for estimated functions? Are a set of variables signi�cant in the

models? Does a given nonlinear parametric model adequately �t the data or is a given nonpara-

metric model over parametrized? While there are many collective e�orts and much progress, the

area still requires intensive research and widely applicable methods should be sought. Recently,

Fan et al (1999) made a start in this direction via proposing a sieve likelihood ratio method and

demonstrated that it possesses various good statistical properties..

3.2 High-dimensional nonparametric modeling

Many interesting statistical problems are multivariate and high-dimensional, with a mix of discrete

and continuous variables. While they are a number of creative nonparametric models, they can not

be expected to handle all of these statistical problems. A lack of inference tools and availability

of software have hampered their applications. High-dimensional classi�cation problems are in

increasing demand. Applications of nonparametric modeling techniques to other statistical contexts

need further developing.

3.3 Functional data analysis

Massive data sets can nowadays easily be collected for each individual in the form of curves or

images. In ophthalmology, for example, images of a patient's cornea maps are recorded along

with other demographic and ophthalmic variables. Interesting questions include studying associa-

tions between cornea shapes and demographic and ophthalmic variables, testing whether there are

any di�erences among two or more clinical groups or treatment methods, and monitoring regres-

sion/progression of clinical surgery. More examples and problems can be found in Kneip and Gasser

(1992), Capra and M�uller (1997), and Ramsay and Silverman (1997). Feature extractions have been

extensively studied (Ramsay and Silverman, 1997). Yet, predictions, modeling and inferences based

on functional data need substantial developments.

3.4 Information engineering and signal processing

Modern telecommunications and information engineering create many challenging statistical prob-

lems and o�er statisticians many golden opportunities. Data (signals or images) compression re-

quires substantial dimensionality reduction techniques and estimation of high-dimensional condi-

tional densities. Nonparametric techniques are vital to image analysis and modeling. Pattern

(speech and character) recognition demands sophisticated nonlinear classi�cation rules. Monitor-

ing network traÆc needs creative visualization tools. Dynamical prediction of an event based on

observed signals such as designing airbag deployments is another challenge to statistics. Research in

these complicated and computationally intensive engineering problems can be fruitful. Innovative

data-analytic tools and interdisciplinary collaborations are needed.
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3.5 Nonlinear time series and �nance modeling

Interest in nonlinear time series has surged during the last decade (Tong, 1990). New features have

been discovered and better predictions can be made (Yao and Tong, 1994). From linear modeling to

nonlinear prediction, there are in�nitely many possibilities. This o�ers nonparametric techniques

a tremendous opportunity to reduce modeling biases and gain prediction power. Nonparametric

multivariate regression techniques can be extended readily to time series setup. They can pro-

vide useful tools for discovery of nonlinear phenomena, understanding underlying dynamics, better

forecasting and model diagnostics.

Modern asset pricing theory allows one to value and hedge contingent claims once a model for

the dynamics of an underlying state variable is given (DuÆe, 1996). Many such models have been

developed, such as the geometric Brownian motion model and the interest-rate models. Most of

these asset pricing models are simple and convenient parametric models. They are not derived

from any economic theory and can not be expected to �t well for all �nancial data. Thus, while

the pricing theory gives spectacularly beautiful formulas when the underlying dynamics is correctly

modeled, it o�ers little guidance neither in choosing a correct model nor in validating a speci�c

model. Hence there is always a danger that misspeci�cation of a model will lead to erroneous

valuation and hedging. Various extensions and relaxing of restrictive assumptions have been made.

Nonparametric approaches have recently been introduced to estimate state price densities, instan-

taneous return and volatility (A�it-Sahalia and Lo 1996 and Stanton 1997). These have immediate

applications to value bond price and stock options. Nonparametric applications to modeling �nan-

cial data and to testing existing �nancial models are also fruitful.

3.6 Nonparametric modeling in biostatistics

Nonparametric smoothing techniques have been applied to estimate hazard functions and to the

Cox proportional hazards model. Yet, there are many possibilities of extending linear models to

multivariate nonparametric models (see x2.2) and there are many other biostatistical models that

require nonparametric ameriolating. Further, there are many di�erent types of incomplete data

collected in epidemiological studies. Inference tools and model diagnostic techniques need further

developments. Simple and powerful diagnostic tools for checking survival time models are useful.

Longitudinal data arise often from biostatistical studies. To monitor disease progression and

to examine time e�ect, various parametric and nonparametric models (Hoover, et al, 1998) have

been developed. Semiparametric modeling of covariance matrices and eÆcient estimation of time-

varying coeÆcient functions are needed. We still lack inference tools to answer clinically important

questions such as detecting if coeÆcients are really time varying or if certain covariate e�ects

become more pronounced over time. Tools for predicting future events based on an individual's

history are needed.

There are many other statistical problems arising from biostatistical and epidemiological appli-

cations. They pose new challenges and o�er new opportunities for nonparametric modeling.
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3.7 Applications to other statistical problems

There are many other statistical problems that require data-analytic tools. They o�er statisticians

enormous opportunities for interdisciplinary collaboration. Context-based applications of nonpara-

metric techniques will be fruitful.

3.8 Software developments

Applications of nonparametric techniques have been hampered by availability of software. While

many nonparametric techniques have been programmed by individual researchers, they were written

in many computer languages and were only tested for \in-house" use. Many modern nonparametric

techniques are not available in commonly-used statistical software packages. Research into fast and

robust implementations of nonparametric techniques and their software developments are needed.
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