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ABSTRACT OF THE DISSERTATION 

 

Cloud-based Analysis and Integration of Proteomics and Metabolomics Datasets 

by 

Jeong Ho (Howard) Choi 

Doctor of Philosophy in Bioinformatics 

University of California, Los Angeles, 2019 

Professor Peipei Ping, Chair 

 

 

Our capabilities to define cardiovascular health and disease using highly multivariate “omics” 

datasets have substantially increased in recent years. Advances in acquisition technologies as 

well as bioinformatics methods have paved the way for ultimately resolving every biomolecule 

comprising various human “omes”. Understanding how different “omes” change and interact 

with one another temporally will ultimately unveil multi-omic molecular signatures that inform 

pathologic mechanisms, indicate disease phenotypes, and identify new therapeutic targets. 

Herein we describe a thesis project that creates novel, contemporary data science methods and 

workflows to extract temporal molecular signatures of disease from multi-omics analyses, and 

develops integrated omics knowledgebases for the cardiovascular community at-large.  

 

Chapter 1 provides an overview of cardiac physiology and pathophysiology involved in cardiac 

remodeling and heart failure (HF). A description of the systematic characterization of cardiac 

proteomes and metabolomes is included, including methodologies for multi-omics phenotyping. 

Finally, an overview of bioinformatics methods for driver molecule discovery is provided, 

discussing strategies for characterizing temporal patterns and conducting functional enrichment. 
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Chapter 2 describes computational approaches to discern the oxidative posttranslational 

modification (O-PTM) proteome, an important factor in cardiac remodeling. We developed a 

novel platform involving a customized, quantitative biotin switch pipeline and advanced analytic 

workflow to profile O-PTMs in an isoproterenol (ISO)-induced cardiac remodeling mouse model. 

We identified 1,655 proteins containing 3,324 oxidized sites, and unveiled temporal progression 

of O-PTM in disease. Chapter 3 discusses computational approaches for identifying temporal 

metabolomics fingerprints in HF treatment. Pathologic remodeling from a healthy to diseased 

heart involves a series of alterations over time. Mechanical circulatory support devices (MCSD) 

are a promising strategy for unloading the heart and reversing this process. We sought to 

identify molecular drivers of pathologic remodeling and reverse remodeling in the plasma 

metabolome; however, machine learning (ML)-empowered technological platforms required for 

these analyses are lacking. Thus, we established a Multiple Reaction Monitoring (MRM)-based 

MS quantitative platform and ML-based computational workflow to discern metabolomics 

fingerprints. We quantified 610 plasma metabolites and identified those exhibiting high 

correlation to cardiac phenotype, demonstrating a novel platform for biomarker discovery. 

Finally, Chapter 4 integrates all aforementioned innovations into one unified, cloud-based 

computational knowledgebase, MetProt, equipped to analyze, annotate, and integrate 

metabolomics and proteomics information. This pipeline fully characterizes the plasma 

metabolome in HF, unveils the interplay of proteomes and metabolomes, and derives new 

knowledge in cardiovascular medicine. Innovations include engineered features for addressing 

large-scale clinical datasets as well as algorithms to connect various types of molecules (e.g., 

proteins and metabolites). Chapter 4 is subdivided into 3 projects: Project 1 describes a 

computational pipeline to characterize the plasma metabolome using datasets from the ISO 

mouse model of HF and human HF; Project 2 develops bioinformatics strategies to integrate 

proteome and metabolome datasets from six genetically distinct mouse strains; and Project 3 

establishes the cloud-based MetProt to disseminate the above computational pipelines for the 
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cardiovascular community at-large. Taken together, these innovations offer new approaches 

and workflows for integrated omics investigations that enable novel discovery and ultimately 

advance precision cardiovascular science and medicine.  
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CHAPTER 1: INTRODUCTION AND OVERVIEW. 
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1.I. The Landscape of the Human Heart and Disease. 

 
1.I.A. Cardiac Structure and Physiology. 

The heart is a muscular organ that pumps blood to the body via the vessels of the circulatory 

system (Venes 2009). The circulatory system delivers the blood to all tissues in order to provide 

the body with oxygen and nutrients, and carries away metabolic wastes such as nitrogen 

compounds or sulphates for excretion (Hall and Guyton 2011). In humans and other mammals 

(e.g., mouse), the heart consists of four chambers including left and right atria and left and right 

ventricles, as well as four valves including two atrioventricular valves between atria and 

ventricles and two semilunar valves at the exit of each ventricle that prevent backflow (Starr, 

Evers, and Starr 2009; Kaplan 2008). The right atrium and right ventricle, commonly referred to 

as the right heart, collects deoxygenated blood from superior and inferior venae cavae and 

pumps into the pulmonary circulation in order to oxygenate the blood via the lungs. The left 

atrium and the left ventricle, referred to as the left heart, receives oxygenated blood via 

pulmonary veins and pumps into the systemic circulation. The heart is primarily made up with 

two types of cells: cardiomyocytes (~99%) which are contractile cells that enable the heart to 

pump, and cardiac pacemaker cells (~1%) that spontaneously depolarize and rapidly spread the 

impulse from cell to cell to trigger the autorhythmic contraction. Cardiomyocytes have a high 

mitochondrial density, which occupy at least 30% of cell volume (Piquereau et al. 2013), 

enabling them to produce sufficient amounts of adenosine triphosphate (ATP) to fuel 

contraction. This high density of the power plant of the cell combined with its rhythmic electrical 

impulse enables the heart to beat approximately to 72 beats per minute (bpm) at rest in 

humans, and more than 31 million times per year or 2 billion beats over an average lifetime. 
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1.I.B. Cardiac Remodeling and Heart Failure. 

Cardiac remodeling, also referred to as ventricular remodeling, is defined as an alteration in the 

structure (dimensions, mass, shape) of the heart in response to hemodynamic load and/or 

cardiac injury in parallel with neurohormonal activation (Cohn, Ferrari, and Sharpe 2000). 

Remodeling can be either adaptive or maladaptive, with maladaptive cardiac remodeling leading 

to heart failure (HF) (Dorn, Robbins, and Sugden 2003). HF is a condition in which the heart is 

unable to pump a sufficient amount of blood to meet the body’s demand. HF is a convergent 

end result of many etiologies of heart disease, including cardiomyopathies. HF is a common, 

costly, and potentially fatal disease responsible for >300,000 deaths a year in the US, with 5.8 

million Americans currently afflicted (Mancini and Colombo 2015; Roger 2013; Braunwald 2015; 

Goldberg et al. 2007). A major reason why this common disease is so intractable is its complex, 

multifactorial nature where disease outcome is often the combinatorial effect of multiple genetic 

and environmental causes.  

 

1.I.C. Biomarkers of Heart Failure Progression. 

B-type natriuretic peptide (BNP) and its biologically inert, amino-terminal pro-peptide 

counterpart (NT-proBNP) are the gold standard biomarkers in determining the diagnosis and 

prognosis of HF (Hanna K. Gaggin and Januzzi 2013). An array of additional biomarkers has 

emerged and can be arranged into the following categories: 1) myocardial stress/injury (e.g., 

myocyte stretch markers: MR-proANP; myocardial injury markers: troponin T, troponin I, myosin 

light-chain I, heart-type fatty-acid protein, CKMB; oxidative stress markers: myeloperoxidase, 

uric acid, oxidized low-density lipoproteins, urinary biopyrrins, urinary and plasma isoprostanes, 

plasma malodialdehyde), 2) neurohormonal activation (e.g., renin angiotensin system markers: 

renin, angiotensin II, aldosterone; sympathetic nervous system: norepinephrine, chromogranin 

A, MR-proADM; arginine vasopressin system: arginine vasopressin, copeptin; endothelins: ET-

1, big proET-1), 3) remodeling (e.g., inflammation: C-reactive protein, TNF-α, soluble TNF 
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receptors, Fas, interleukins [I, 6 and 18], osteoprotegerin, adiponectin; hypertrophy/fibrosis: 

matrix metalloproteinases, collagen propeptides, galectin-3, soluble ST2; apoptosis: GDF-15; 

misc: MicroRNA, quiescin Q6, VEGFR-1) and 4) comorbidities (e.g., renal biomarkers: 

creatinine, BUN, eGFR, cystatin C, β-trace protein; renal injury markers: NGAL, KIM-1, NAG, 

liver-type fatty acid binding protein, IL-18; hematologic biomarkers: hemoglobin, RDW, iron 

deficiency [ferritin, transferrin sat], albumin) (Hanna Kim Gaggin et al. 2017).  

 

The majority of key biomarkers mentioned above are comprised of proteins, post-translationally 

modified proteins, and metabolites. Notably, oxidative stress-related molecules comprise a 

significant population of myocardial stress/injury markers, suggesting a prominent role for 

oxidative stress in cardiac remodeling and heart failure. Although biomarkers such as BNP and 

troponin T are helpful in the diagnosis and management of irreversible myocardial injury, we 

currently have no satisfactory diagnostic markers of many cardiovascular complications that 

possibly leads to heart failure such as reversible myocardial ischemia, i.e. either stable or 

unstable angina (Gerszten, Asnani, and Carr 2011; Morrow et al. 2003). Despite increasing 

demand for cardiovascular biomarkers, few new markers have been FDA approved for the 

diagnosis of cardiovascular diseases (Morrow et al. 2003). Mass spectrometry (MS)-based 

proteomics and metabolomic technologies are capable of identifying hundreds to thousands of 

proteins, metabolites and oxidative stress-related molecules in cells, tissues and biofluids. Thus, 

a systematic approach integrating multi-omics analysis (i.e., proteomics, O-PTM proteomics, 

and metabolomics) would provide deep phenotyping to reveal new biomarkers, prioritize 

biomarker validation, and monitor biomarker panels for heart failure progression and drug 

response. 
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1.II. Systematic Characterization of the Cardiac Proteome and Metabolome. 

 
1.II.A. Systematic Profiling of The Cardiac Proteome 

As molecules that perform most mechanical and biochemical functions in the heart, proteins 

provide critical information to systems biology studies that aim to uncover the mechanisms of 

disease susceptibility and cardiac plasticity. Technologies now exist that can easily identify and 

quantify large numbers of proteins in a single experiment (Lotz et al. 2014; Mann 2006). These 

studies have advanced our understanding of the components constructing protein interaction 

networks (Orchard et al. 2014), the role of post-translational modifications in modulating cellular 

signals (Streng et al. 2013), the dynamics of individual protein half-life in response to 

perturbation (Lam et al. 2014), and the totality of proteins contributing to a given cellular process 

or organelle (Kim et al. 2014). One of the principal lessons from the proteomics revolution is that 

gene expression is no surrogate for protein function, e.g., following ISO stimulation, protein 

abundance changes independently of mRNA (Lam et al. 2014). 

 

1.II.B. Profiling of the Cardiac Metabolomic Landscape. 

The persistent contraction of cardiomyocytes demands tremendous amounts of energy; thus, 

maintaining metabolic homeostasis is essential for heart function. Accumulating evidence 

suggests that perturbation of cardiac metabolism plays an important role in the pathological 

progression of HF (Neubauer 2007). Comprehensive quantification of metabolite abundance in 

blood plasma, also known as plasma metabolomics profiling, provides mechanistic insights into 

the molecular alterations underlying HF (Cheng et al. 2015). The large-scale quantification of 

circulating metabolites also identifies metabolic changes for clinical classification, which may 

assess the outcomes of HF patients before and after optimal medical therapy and surgical 

interventions (Lloyd-Jones 2010). These metabolomic approaches can be established as 
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important avenues for biomarker and drug target development, as well as the validation of the 

efficacy of patient treatments. 

 

1.II.C. Multi-omics Phenotyping of HF. 

Along with advances in high-throughput technologies, recent studies have integrated gene 

expression profiling with proteomics, and have facilitated our understanding of the 

pathophysiology and the molecular mechanisms of HF (Hou et al. 2015; Dos Remedios et al. 

2003). However, there are no systematic approaches for the integration of large proteomic 

datasets with metabolome datasets due to a glaring lack of bioinformatics strategies that can 

connect proteins to metabolites and elucidate their relationships. 

 

1.III. Overview of Bioinformatic Methods for Driver Molecule Identification and 

Integration. 

The availability of proteomics and metabolomics data analysis tools is currently limited 

compared to genomics analysis tools. For example, the Aztec resource discovery index 

(http://aztec.bio/) lists 778 proteomics tools, and 147 metabolomics tools while it lists thousands 

of genomics tools. To our knowledge, there is no application or computational pipeline that 

comprehensively analyzes, annotates, and integrates large-scale proteomic and metabolomic 

datasets. This limitation significantly hinders our capability to identify patterns of biomolecules 

relevant to HF. 

 

1.III.A. Computational Approaches to Identify Driver Molecules. 

Differential Expression Analysis: Differential Expression Analysis (DEA) is a univariate method 

widely used in omics studies for targeting molecules that are statistically significantly altered 

(i.e., up-regulated or down-regulated) after a medical treatment or physical exercise (Xia et al. 

2015, 2012, 2009; Xia and Wishart 2011b). This method mainly employs two criteria: the fold-
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change of the molecule abundance in two sample groups and the adjusted p-value from 

statistical hypothesis testing followed by multiple testing correction. Recent studies have shown 

that if the sample size is sufficient (i.e., n > 12), the univariate test such as t test followed by 

multiple testing correction can outperform the multivariate methods (e.g., linear support vector 

machine-recursive features elimination or principal component discriminant analysis) in terms of 

not missing the true positives (Christin et al. 2013). Alternatively to the t test, a non-parametric 

test such as Wilcoxon signed-rank test can be applied if it is difficult to test the normality of the 

dataset (Figure 1.1.). Following the statistical hypothesis test, multiple testing correction to the 

p-values can be applied using the Benjamini-Hochberg method to reduce the false positives 

rate. Subsequently, the identified molecules can be validated by classification/clustering 

methods, such as Principal Component Analysis (PCA) or Unsupervised Hierarchical 

Clustering. PCA is a multivariate method for dimensional reduction of large datasets with many 

variables or observations. This facilitates visualization, clustering, pattern recognition, and 

identification of the key variables that vary most significantly across a population. PCA can aid 

investigators in understanding complex, higher-dimensional datasets by projecting them into a 

2- or 3-dimensional space, where they can be more easily visualized without sacrificing fidelity 

(Xia et al. 2015, 2012, 2009; Xia and Wishart 2011b, [a] 2011). Moreover, Unsupervised 

Hierarchical Clustering is a widely used data analysis method to build a binary tree from data by 

merging similar groups of points based on the calculated distances across samples or 

molecules. Usually, the distances are displayed as dendrograms (Xia et al. 2015, 2012, 2009). 
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Figure 1.1. Hierachical Structure of Hypothesis Tests. Hypothetical testing related to statistical 
differences are classified into two categories: parametric and nonparametric tests, depending on prior 
knowledge about the population parameter. For each category, statistical approaches suitable for one 
sample or two samples tests are as illustrated in the hierarchical graph. For two sample test, statistical 
methods are further divided into independent and paired samples depend on the structure of the data. 
Among 11 statistical methods, t test and z test are applied in both one sample and two-sample tests of 
the parametric test, whereas Chi-square and Kolmogorov-Smirnov are applied in both subcategories of 
the non-parametric test. In addition, Runs and Binomial are specific for one sample non-parametric test; 
Mann-Whitney and Median are specific for independent two-sample non-parametric test; Sign, Wilcoxon, 
and McNemar are specific for paired two-sample non-parametric test. This hypothesis test hierarchy 
serves as the guiding principle for the implementation of statistical approaches throughout this thesis. 
 

Machine Learning-based Feature Extraction: Machine Learning (ML)-based feature selection 

algorithm aims to identify key molecules discriminating one condition from the other. The filtered 

and scaled data from a mouse model is divided into non-overlapping training and test datasets. 

A two-stage feature selection and validation workflow are created to extract signature 
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metabolites. On the training set, randomized least absolute shrinkage and selection operator 

(LASSO)-based stability selection is applied in the  first stage to screen for metabolites of 

interest and support vector machine (SVM)-based recursive feature elimination (RFE) is applied 

in the second stage to identify a subset of accurate metabolites. Subsequently, the identified 

metabolites are validated on the test sets using predictive models and then local interpretable 

model-agnostic explanations (LIME) (Ribeiro, Singh, and Guestrin 2016) is applied to 

understand the predictions made by ML models. Finally, a Bayesian networks-based graphical 

model is created to discover causal relationships between identified metabolites and phenotypic 

response. 

 

Mixed Model-based Association Study: Linear Mixed Model (LMM) with Sample Relatedness 

Correction analyzes time-series omics data generated from heterogeneous samples to identify 

driver molecules that are highly associated with phenotypic characteristics. LMM correlates two 

variables and incorporates the samples’ relatedness, represented by omics expression or 

demographic factors, to improve statistical accuracy. We have applied LMM with Sample 

Relatedness Correction in our preliminary metabolomics study to find fingerprints of pathological 

stages following induction of HF using chronic infusion of the beta-adrenergic agonist, 

isoproterenol (ISO)  HF treatment (H. M. Kang et al. 2008; Kirby et al. 2010). 

 

1.III.B. Bioinformatic Stretage to Characterize Dynamic Patterns of Molecules 

Cubic Spline-based Temporal Clustering: Cubic spline-based temporal clustering is a technique 

where first computes a low-degree polynomial pieces that fit smoothly on data, and then 

clusters the similar spline curves using clustering methods such as K-mean clustering. We used 

this technique in our studies to analyze metabolite concentrations for six genetically 

heterogeneous strains of mich that exhibit varying phenotypes including different susceptibilities 

to cardiac dysfunction. We subjected these to chronic ISO treatment over 14 days. Both CTRL 
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and ISO groups were selected for cubic spline-based temporal clustering. Missing concentration 

values were replaced with the average occupancy of the available timepoints for every strain. 

The log2-transformed ratio of concentration values of ISO to CTRL was calculated per site per 

strain. After scaling and centering these ratios, cubic splines were fitted to them across the 

timepoints in R. The degree of smoothing was automatically determined by leave-one-out cross-

validation applied to each site per strain. The predicted spline values were used for K-mean 

clustering (kmean in R), following identification of the cluster numbers (mclust package in R).  

                    

1.III.C. Functional Enrichment Analysis and Annotation 

Pathway Enrichment Analysis: Significantly altered metabolites in our studies may be searched 

against several metabolomics databases, including Chemical Entities of Biological Interest 

(ChEBI, UK) (Hastings et al. 2013), Human Metabolome Database (HMDB, Canada) (Wishart et 

al. 2013, 2009, 2007), and LIPID Metabolites And Pathways Strategy (LIPID MAPS) (Fahy et al. 

2009, 2007) to cross-reference identifiers that are commonly used by pathway enrichment 

search engines and databases. The pathways enriched with identified metabolites may be 

further annotated with resources including MetaboLights (Haug et al. 2013) and Reactome 

(EMBL-EBI, UK) (Fabregat et al. 2016; Milacic et al. 2012). 

 

Cloud-based Computational Knowledgebase: To extract biological meaning from multi-omics 

datasets, researchers rely heavily on computational resources that analyze and annotate the 

molecules of interest with known information. Currently, access to tools/annotations is not 

straightforward because they reside in fragmented and incomplete repositories. To address this 

challenge, we created a novel distributed query system and cloud-based infrastructure, MetProt, 

that is capable of providing unified access to protein and metabolite datasets, allowing users to 

submit a single query to access multiple resources including Reactome (Fabregat et al. 2016; 

Milacic et al. 2012), UniProt (UniProt Consortium 2015), MetaboLights (Haug et al. 2013), 
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BioGPS (Wu et al. 2016; Wu, Macleod, and Su 2013), Gene Wiki (Tsueng et al. 2016), and 

COPaKB (N. C. Zong et al. 2013; H. Li et al. 2013). We also engineered customized application 

programming interfaces (APIs) to provide direct access for information in MetProt. These 

resources are described below. 

 

COPaKB: COPaKB (N. C. Zong et al. 2013; H. Li et al. 2013; N. Zong et al. 2014) 

(http://heartproteome.org) is an omics analysis platform with 2 key components: (1) a peptide 

spectral search engine; and (2) spectral library modules for knowledge annotation.  

 

Reactome: The Reactome (Milacic et al. 2012; Croft et al. 2014) (http://reactome.org) platform is 

a suite of network analysis tools for performing topology analysis and over-representation 

analysis of gene/protein networks. It comprises a manually curated database of human 

pathways with views of protein and metabolite structures overlaid with expression data. We 

interfaced with Reactome to identify key pathways of interest in our omics data. 

 

MetaboLights: MetaboLights (http://ebi.ac.uk/metabolights/) is a public database dedicated to 

the submission and sharing of metabolomics data, mass spectra, annotated biological roles, 

and other derived information (Haug et al. 2013). Based on spectral similarities and chemical 

structures, we employed its search services to analyze and interpret metabolite data we 

collected from our studies.  

 

BioGPS/Gene Wiki: BioGPS (http://biogps.org) is an interface for omics research (Wu et al. 

2016). It provides a user-customizable portal with aggregated information on protein annotations 

and target list analysis. Gene Wiki translates molecular information into structured knowledge; 

relevant pages representing molecular transducers will be aggregated and recruited into 

MetProt. 
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1.IV. Overview and Rationale. 

Heart failure (HF), which afflicts an estimated 6.5 million Americans and has incurred $6.5 billion 

in medical costs that are projected to grow within the next 20 years, remains a significant 

challenge to diagnosis and treat due to its heterogeneous clinical manifestations and 

multifactorial risk drivers (Benjamin et al. 2018; Dunbar et al. 2018). Maladaptive cardiac 

remodeling and heart failure (HF) are common stages of many heart diseases and pose major 

public health problems in the United States (McMurray 2010). To date, advanced HF patients 

are clinically treated as a homogenous group with similar standard therapies (WRITING 

COMMITTEE MEMBERS et al. 2013). However, HF is a multifactorial disease and results not 

only from cardiac overload or injury, but also from a complex interplay among genetic, 

neurohormonal, inflammatory, and biochemical alterations, requiring more sophisticated means 

to stratify patient groups for divergent therapies (S. J. Shah et al. 2015; Taylor et al. 2004). Over 

the past years, racial disparities in HF are well documented (East et al. 2004; Mensah et al. 

2005) along with common comorbidities such as hypertension, obesity, kidney disease, and 

diabetes, which before the age of 40 can predict the severity and outcome of HF (Husaini et al. 

2011).  

 

Research efforts have been spurred to understand its underlying molecular mechanisms for 

developing targeted therapeutic strategies (A. M. Shah et al. 2014). Towards this goal, the 

advancement of analytical technologies has drastically increased the depth, quality and volume 

of data generated by both proteomics and metabolomics experiments. Both proteins and 

metabolites are essential building blocks of cellular processes that collaboratively formulate 

biological pathways. In addition, oxidative stress is becoming increasingly recognized as a key 

signaling event in the progression of heart failure (Maulik and Kumar 2012). In response to 

oxidative stress, O-PTMs of proteins have been shown to alter the 3-dimensional structure and 

therefore functional activities of proteins in various biological pathways contributing to 
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hypertrophy development (Qin et al. 2014; Birk et al. 2015; Bak and Weerapana 2015). 

However, many large datasets of either proteins, protein O-PTM, or metabolites are often 

fragmented and rarely integrated, hindering the understanding of mechanistic details of heart 

failure progression and the extraction of statistically significant and biologically relevant 

molecular signatures.  

 

Here, we will deep phenotype heart failure progression via newly developed machine learning 

and statistical workflows and platforms for collective analyses of the landscape of oxidative 

stress-modified proteomics, metabolomics, and protein-metabolite networks. In Chapter 2, we 

performed a multi-faceted proteomics study, combined with a state-of-the-art computational 

pipeline, to elucidate key O-PTMs of molecular signatures and pathways in cardiac remodeling 

and heart failure progression. In Chapter 3, we established a Multiple Reaction Monitoring 

(MRM)-based MS quantitative platform and a corresponding computational workflow to unravel 

the metabolomics fingerprints of healthy humans, HF patients, and a mouse model. Accordingly, 

we quantified the plasma levels of 610 metabolites, and identified metabolites highly correlated 

to phenotypic changes. Our study highlights an established computational workflow that, in 

conjunction with a benchmark dataset, will facilitate future biomarker discovery. In chapter 4, we 

built a cloud-based platform, MetProt, for quantifying, triaging and analyzing omics datasets, 

and in doing so elucidating novel connections between proteins and metabolites, annotating 

molecular functions, and providing biomedical insights. 
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CHAPTER 2: COMPUTATIONAL APPROACHES TO DISSECT THE 

CYSTEINE O-PTM PROTEOME DURING CARDIAC HYPERTROPHY 
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2.I. Abstract. 

Cysteine oxidative modification of cellular proteins is crucial for many aspects of cardiac 

hypertrophy development. However, integrated dissection of multiple types of cysteine oxidative 

post-translational modifications (O-PTM) of proteomes in cardiac hypertrophy is currently 

missing. Here we developed a novel discovery platform encompassing a customized biotin 

switch-based quantitative proteomics pipeline and an advanced analytic workflow to 

comprehensively profile the landscape of cysteine O-PTM in an ISO-induced cardiac 

hypertrophy mouse model. Specifically, we identified a total of 1,655 proteins containing 3,324 

oxidized cysteine sites by at least one of the following three modifications: reversible cysteine 

O-PTM, cysteine sulfinylation (CysSO2H), and cysteine sulfonylation (CysSO3H). Analyzing the 

hypertrophy signatures that are reproducibly discovered from this computational workflow 

unveiled 4 biological processes with increased cysteine O-PTM. Among them, protein 

phosphorylation, creatine metabolism, and response to elevated Ca2+ pathways exhibited an 

elevation of cysteine O-PTM in early stages whereas glucose metabolism enzymes were 

increasingly modified in later stages, illustrating a temporal regulatory map in cardiac 

hypertrophy. Our cysteine O-PTM platform depicts a dynamic and integrated landscape of the 

cysteine oxidative proteome, through the extracted molecular signatures, and provides critical 

mechanistic insights in cardiac hypertrophy. Data are available via ProteomeXchange with 

identifier PXD010336. 

 

2.II. Introduction. 

Cardiac hypertrophy is an adaptive response of the heart to pressure overload and a risk factor 

for heart failure and sudden cardiac death (Shimizu and Minamino 2016; Maulik and Kumar 

2012; Souders et al. 2012). The complex and dynamic pathophysiological mechanisms 

surrounding cardiac hypertrophy have been the focus of many investigations seeking 

therapeutic strategies. Reactive oxygen and nitrogen species (RO/NS) have been recognized 
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as second messengers that mediate important biological processes during the development of 

cardiac hypertrophy (Maulik and Kumar 2012; Murray and Van Eyk 2012). As a major target of 

RO/NS, protein cysteine residues can act as molecular switches and undergo various types of 

O-PTM (Lim et al. 2003), which can alter protein 3D structure and activity in cellular signaling, 

adaptive and maladaptive cardiac responses (Murray and Van Eyk 2012; Pastore and Piemonte 

2013; Sag, Santos, and Shah 2014). Major cysteine O-PTM types observed in cardiac muscle 

include reversible (S-nitrosylation, S-glutathionylation, sulfenic acid, inter- and intramolecular 

disulfide bonds and S-sulfhydration) and irreversible sulfinic acid (CysSO2H) or sulfonic acid 

(CysSO3H) modifications (Murray and Van Eyk 2012; Alcock, Perkins, and Chalker 2018; 

Forrester and Stamler 2007).  

 

As dysregulation of cysteine O-PTM is directly associated with disease pathology (Bechtel and 

Weerapana 2017; Murray and Van Eyk 2012), identification and characterization of cysteine O-

PTM could yield a wider range of biomarkers and therapeutic targets for diseases characterized 

by oxidative stress. Due to the complexity of the cysteine oxidative proteome, elucidation of 

these molecular signatures during hypertrophy progression is currently lacking. Biotin switch 

assays and numerous iterations of this technique provide validated toolkits to customize the 

proteomic discovery platform and maximize the detection and quantification of the labile 

reversible cysteine O-PTM (Murray and Van Eyk 2012; Jaffrey and Snyder 2001). For example, 

work by Jennifer van Eyk’s laboratory has advanced methodologies to specifically detect S-

nitrosylation and measure individual protein thiol-reactivity, thereby discriminating artifacts and 

ambiguity surrounding site assignment of oxidation (Murray et al. 2013, 2012). Meanwhile, 

spline-based computational analysis enables extraction of temporal patterns (T.-Y. Liu et al. 

2017; Bhasi, Forrest, and Ramanathan 2005).  
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Here, we present the first proteome-wide study of major cysteine modification types in cardiac 

hypertrophy, including reversible O-PTM, CysSO2H, and CysSO3H. We devised a biotin switch-

based cysteine O-PTM discovery platform specific for multi-time point quantitative proteomic 

analysis at different disease stages of hypertrophic progression. To limit non-biologically 

oxidized peptides, we selected a maleimide-based reagent for enrichment labeling and 

combined dimethyl labeling for quantification. Comparing to IAM based labeling, maleimide 

provides higher specificity and reactivity with free thiols (Kramer et al. 2015; Reisz et al. 2013). 

In addition, dimethyl-based quantitative labeling is highly-efficient and cost-effective in studies 

with large sample size. We implemented the cubic spline-based computational workflow to 

capture the cysteine O-PTM clusters with distinct temporal profiles and high association with a 

hypertrophic phenotypic temporal profile. We define proteins in these clusters as molecular 

signatures. The novelty lies in this being the first study to link global oxidative proteomic 

signatures to distinct time points of hypertrophic progression, thus showcasing multi-factor, 

temporal fingerprints rather than a singular protein or snapshot at one specific time point.  

 

2.III. Methods and Materials. 

 

2.III.A. Experimental Animal Models. 

Male C57BL/6J mice, 9–12 weeks of age (Jackson Laboratories), were housed in a 12-hour 

light/12-hour dark cycle with controlled temperature, humidity, and access to standard chow and 

water ad libitum. Mice were surgically implanted with a subcutaneous micro-osmotic pump 

(ALZET) delivering 15mg/kg/day isoproterenol (ISO) (Sigma) or saline vehicle (Lau et al. 2018, 

2016). In this treatment protocol, mice develop a gradual cardiac hypertrophy phenotype 

characterized by significantly increased ejection fraction and HW/BW (Lau et al. 2016; Drews et 

al. 2010). Independent groups of 3 mice from each treatment condition were euthanized for 

sample collection at 1, 3, 5, 7, 10, and 14 days post-implantation. Four technical replicates were 
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performed for each treatment condition. All animal procedures were performed in accordance 

with the Guide for the Care and Use of Laboratory Animals by the National Research Council 

and approved by the Animal Research Committee at UCLA. 

 

2.III.B. Biotin Switch-based Sample Processing 

Protein extraction. Left ventricles were collected from mouse hearts and placed in 1mL NP-40 

lysis buffer (50mM Tris–HCl, pH 8, 137mM NaCl, 10% glycerol, 1% NP-40, 2mM EDTA) 

containing 100mM N-ethylmaleimide (NEM) and Halt™ Protease Inhibitor Cocktail (100X) 

(ThermoFisher Scientific). Tissue was homogenized using a glass hand homogenizer and 

mixed by rotation for 2hr at 4°C before centrifugation at 13,800g for 20 min at 4°C. The protein 

concentration of the supernatant was measured using the DC™ protein assay (Bio-Rad).  

 

Biotin switch-based labeling of reversible cysteine O-PTM. Aliquots containing 2mg protein were 

prepared, then precipitated by 10% trichloroacetic acid (TCA) and centrifuged at 20,000g for 

15min at 4°C. One wash with ice-cold 5% TCA and two washes with 95% ethanol were 

performed to get rid of small molecules. Pellets were re-suspended and alkylated in 1mL of 

urea-containing cysteine modification buffer (CMBU) (0.1M HEPES-NaOH, pH7.4, 1% SDS, 

10mM diethylenetriaminepentaacetic acid [DTPA], 6M urea) with 0.1M NEM. After 30min 

rotation at room temperature, the samples were reduced by 0.12M dithiothreitol (DTT) and 

rotated for another 60min. To quantify the total abundance of cysteine sites and to preserve 

cysteine sulfinylation (CysSO2H) and sulfonylation (CysSO3H), 10% of the lysate was reserved 

as an unlabeled portion and underwent acetone precipitation followed by digestion. For the 

remaining 90%, proteins were separated from small molecules by centrifugation with 10% TCA, 

followed by one wash with 5% TCA and two washes with 95% ethanol. Pellets were suspended 

in 300µL CMBU with 0.1mM maleimide-biotin (Mal-Biotin) (Sigma-Aldrich). After a 30min 

rotation at room temperature, unreacted NEM was quenched with 10mM DTT for an additional 
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30min. Small molecules and proteins were separated by TCA and ethanol washes as described 

above (J. Wang and Sevier 2016; J. Wang et al. 2014).  

 

Digestion and dimethyl labeling. Pellets from both labeled and unlabeled portions were 

solubilized in 0.1M triethylammonium bicarbonate buffer (TAEB) with 0.1% Rapigest (Waters) 

and heated at 60°C for 45min. Solubilized proteins were alkylated with 9mM iodoacetamide 

(IAM) incubation in the dark at room temperature for 30min. The alkylated lysate underwent 

trypsin digestion overnight (16hr) at 37°C with a 1:100 ratio of trypsin to protein. A final 

concentration of 0.16% (vol/vol) CH2O or C2H2O (Sigma-Aldrich) and 24mM sodium 

cyanoborohydride (NaBH3CN) (Sigma-Aldrich) were added to the designated samples with light 

or medium labeling, respectively. Reciprocal labeling was performed on two out of four technical 

replicates to minimize the technical bias from dimethyl labeling. After a 1 h incubation at room 

temperature, 0.16% (vol/vol) ammonium solution was added and mixed for 15 min to quench 

the reaction (García-Santamarina et al. 2014; Gu and Robinson 2016; Boersema et al. 2009). 

 

Mal-biotin enrichment. Mal-Biotin and dimethyl labeled peptides were diluted in 1.2mL PBS with 

200µL pre-washed High-Capacity NeutrAvidin slurry (Thermo Scientific). After overnight 

incubation, the sample was centrifuged, washed twice with 1mL PBS, once with 50mM 

ammonium bicarbonate w/ 20% methanol, and eluted with 50% Pierce™ acetonitrile (ACN) w/ 

0.4% trifluoroacetic acid (TFA) (Chung et al. 2015). 

 

C18 column cleanup. All samples were subjected to 30min incubation at 37°C with 1% TFA and 

centrifugation (13,000g for 15min) to remove remaining Rapigest. Samples were cleaned with 

PierceTM C18 Spin Columns (Thermo Scientific) to remove any interfering substances prior to 

LC-MS/MS analysis. 
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2.III.C. LC-MS/MS Analysis. 

LC-MS/MS was performed on digested peptides as previously described (Lau et al. 2018, 

2016). To reduce sample complexity and increase protein coverage, we fractionated peptide 

samples using high-pH/low–pH two-dimensional reversed-phase chromatography prior to 

MS/MS. Fifty micrograms of peptides were injected into a Phenomenex C18 column (Jupiter 

Proteo C12, 4-µm particle, 90-Å pore, 100mm×1mm dimension) using a Finnigan Surveyor LC 

system (Thermo Scientific) for the first-dimension (high-pH) separation. We established a 

gradient between solvent A (20mM ammonium formate, pH 10) and solvent B (20mM 

ammonium formate, 90% acetonitrile, pH10) at a 50µL·min−1 flow-rate with the following timing 

and solvent proportions: 0–5% solvent B in solvent A from 0–2min; 5–35% solvent B in solvent A 

from 3–32min; and, finally, 80% solvent B in solvent A from 32–37min. Six fractions of peptides 

were collected from 16–40min, lyophilized, and re-dissolved in 20µL 0.5% formic acid with 2% 

acetonitrile. Each high-pH fraction was injected (10μL) to an EasySpray C18 column (PepMap, 

3-μm particle, 100-Å pore; 75μm×150mm dimension; Thermo Scientific) using an auto-sampler 

on a single Easy-nLC 1000 nano-UPLC system (Thermo Scientific) for second-dimension (low-

pH) reversed-phase chromatography analysis. We established a gradient between solvent A 

(0.1% formic acid, 2% acetonitrile) and solvent B (0.1% formic acid, 80% acetonitrile) at a flow 

rate of 300nL·min−1 with the following timing and solvent proportions: 0–40% solvent B from 0–

110 min; 40–80% B from 110–117min; and 80% B from 117–120min. Column pressure was 

maintained below 150bar. High-resolution LC-MS/MS was performed on a single LTQ Orbitrap 

Elite instrument (Thermo Scientific) through a Thermo EasySpray interface. MS signals were 

acquired in Fourier-Transform/Ion-Trap (FT/IT) mode: each FT MS1 survey scan was analyzed 

at 400 to 2000 m/z mass range and 60,000 resolving power in profile mode, followed by rapid IT 
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MS2 scans on the top 15 ions with monoisotopic peak selection and 3000 intensity threshold. 

MS2 precursor isolation width was set to 2 m/z, normalized collision energy was 35, and charge 

state 1 and unassigned charge state were excluded. MS1 and MS2 target ion accumulation 

targets were 104 and 106, respectively. MS1 lock mass (m/z 425.120025) and dynamic 

exclusion (90s) were used. Throughout the LC-MS/MS experiment, column temperature was 

held at a constant 50°C. 

 

2.III.D. Quantification of Cysteine O-PTM Abundance 

The acquired raw mass spectra were processed with MaxQuant software (Cox and Mann 2008) 

version 1.5.6.0 as described (García-Santamarina et al. 2014). Peptide identification was 

performed using the Andromeda search engine (Cox et al. 2011), against a reverse-decoyed 

protein sequence database (UniProt Reference Proteome, reviewed, accessed June-12–2016). 

This Mus musculus proteome (taxonomy ID: 10090) database contains 33588 canonical 

sequences and does not include isoform information. Common contaminants were included in 

the database search. First and main searches were performed with precursor mass tolerances 

of 20ppm and 4.5ppm. Product ion tolerance was set to 0.5Da. Specificity for trypsin cleavage 

was required, allowing up to two missed cleavage sites (van der Reest et al. 2018). 

Dimethylated peptide labels were identified using the “multiplicity” query, including “DimethLys0” 

and “DimethN-term0” as light labels as well as “DimethLys4” and “DimethN4” as medium labels 

with a maximum four modified sites for each identified peptide. Variable modification types for 

enriched samples include Mal-biotin labeled cysteine (451.1889 Da), NEM-labeled cysteine 

(125.0477 Da), IAM-labeled cysteine (57.0215 Da), and methionine sulfoxidation (15.9949 Da) 

were queried with a maximum five modified sites for each identified peptide. Variable 

modification types for unlabeled whole tissue lysate samples include NEM-labeled cysteine 

(125.0477 Da), IAM-labeled cysteine (57.0215 Da), methionine sulfoxidation (15.9949 Da), 
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CysSO2H (31.9898 Da), and CysSO3H (47.9847 Da) were queried with a maximum five 

modified sites for each identified peptide. Tryptic, semi-tryptic, and non-tryptic peptides within a 

20ppm parent mass window surrounding the candidate precursor mass were searched. Peptide 

ions from up to 3 isotopic peaks with fragment mass tolerance of 600ppm were allowed. Protein 

inference required ≤5% peptide spectra matching (PSM), posterior error probability (PEP), and 

≤1% global level protein false discovery rate (FDR) (Q-value ≤1%), as well as a minimum of 2 

ratio counts. Peptides with a cysteine count lower than one were excluded, along with reverse 

and potential contaminant flagged peptides. Modified peptide identifications with an Andromeda 

search score greater than 40, a delta score greater than 6, and a localization probability >0.8 

were allowed (Bogdanow, Zauber, and Selbach 2016). All searches for a given data set were 

based on one set of Andromeda peak list files (apl-files). Each of the cysteine modifications (i.e. 

Mal-biotin, NEM, IAM, CysSO2H, and CysSO3H) was generated as a separate output file with 

identified cysteine sites, their extracted ion chromatogram (XIC) values, and normalized ratios of 

ISO vs. Vehicle conditions calculated from the differential dimethyl labeled peptides. To ensure 

data quality, technical replicates with significant change (p-value <0.05) in overall normalized 

ratio distribution among all four replicates were excluded. The total abundance of one cysteine 

site is quantified as the sum of XIC values from both modified and unmodified forms of that 

particular cysteine. Detailed information on number of spectra for identification and 

quantification, as well as number of unique peptide identified per experimental group are listed 

in Table 2.1. Furthermore, number of unique peptides, percent sequence coverage, heavy over 

light (H/L) ratio of mean peak area (± percent ratio H/L variability). The mass spectrometry 

proteomics data have been deposited to the ProteomeXchange Consortium (Deutsch et al. 

2017) via the PRIDE (Vizcaíno et al. 2016) partner repository with the dataset identifier 

PXD010336.  
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Experimental Group # Spectra for Identification # Spectra for Quantification # Unique Peptide Identified 

Total cysteine_Day1_Rep1 545427 9521 4935 

Total cysteine_Day1_Rep2 435853 19484 8035 

Total cysteine_Day1_Rep3 613730 18328 7422 

Total cysteine_Day1_Rep4 494484 18236 7156 

Total cysteine_Day3_Rep1 493264 13098 6039 

Total cysteine_Day3_Rep2 478093 19376 8885 

Total cysteine_Day3_Rep3 572188 19778 8007 

Total cysteine_Day3_Rep4 496781 19996 7752 

Total cysteine_Day5_Rep1 513134 6201 3293 

Total cysteine_Day5_Rep2 327835 10759 5743 

Total cysteine_Day5_Rep3 626678 20711 8109 

Total cysteine_Day5_Rep4 521663 16660 7057 

Total cysteine_Day7_Rep1 533963 16200 6780 

Total cysteine_Day7_Rep2 597921 15568 7120 

Total cysteine_Day7_Rep3 609493 24065 10116 

Total cysteine_Day7_Rep4 505500 20557 8011 

Total cysteine_Day10_Rep1 614085 18505 6755 

Total cysteine_Day10_Rep2 456761 21063 8392 

Total cysteine_Day10_Rep3 602423 18246 7832 

Total cysteine_Day10_Rep4 503221 18106 7063 

Total cysteine_Day14_Rep1 586878 11614 5019 

Total cysteine_Day14_Rep2 554245 18840 8224 

Total cysteine_Day14_Rep3 604953 20311 8381 

Total cysteine_Day14_Rep4 472933 17988 7126 

Reversible cysteine O-PTM_Day1_Rep1 227533 5012 2048 

Reversible cysteine O-PTM_Day1_Rep2 314860 5868 2080 

Reversible cysteine O-PTM_Day1_Rep3 357770 4044 1688 

Reversible cysteine O-PTM_Day1_Rep4 274523 2887 1397 

Reversible cysteine O-PTM_Day3_Rep1 262151 4290 1891 

Reversible cysteine O-PTM_Day3_Rep2 326416 6133 2061 

Reversible cysteine O-PTM_Day3_Rep3 284474 3457 1579 

Reversible cysteine O-PTM_Day3_Rep4 252848 3052 1730 

Reversible cysteine O-PTM_Day5_Rep1 213077 5751 2401 

Reversible cysteine O-PTM_Day5_Rep2 337457 6302 2123 

Reversible cysteine O-PTM_Day5_Rep3 296146 3761 1690 

Reversible cysteine O-PTM_Day5_Rep4 315913 4370 1862 

Reversible cysteine O-PTM_Day7_Rep1 312953 7326 2797 

Reversible cysteine O-PTM_Day7_Rep2 238772 3392 1568 

Reversible cysteine O-PTM_Day7_Rep3 278035 2659 1346 

Reversible cysteine O-PTM_Day7_Rep4 235911 1831 1280 
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Experimental Group # Spectra for Identification # Spectra for Quantification # Unique Peptide Identified 

Reversible cysteine O-PTM_Day10_Rep1 177615 3464 1588 

Reversible cysteine O-PTM_Day10_Rep2 336361 5053 1733 

Reversible cysteine O-PTM_Day10_Rep3 273030 2453 1332 

Reversible cysteine O-PTM_Day10_Rep4 252848 3052 1730 

Reversible cysteine O-PTM_Day14_Rep1 179144 3327 1584 

Reversible cysteine O-PTM_Day14_Rep2 339793 6088 2007 

Reversible cysteine O-PTM_Day14_Rep3 261463 2254 1136 

Reversible cysteine O-PTM_Day14_Rep4 238437 3850 2067 

 
Table 2.1. Summary information of raw file contents and statistics for all experimental groups. 
 

2.III.E. Data Analysis. 

Cubic spline-based temporal clustering. Mal-biotin labeled cysteine sites or total cysteine sites 

with abundance values represented in at least 4 out of 6 time points in both ISO and Vehicle 

groups were selected for cubic spline-based temporal clustering. The averaged ratio of 

abundance in ISO to Vehicle across replicates was calculated per site. Missing abundance 

values for a modification site were imputed using average abundance of remaining time-points. 

After scaling and centering, cubic splines were fitted to ratios across the time points in the R 

statistical programming language (v3.4.3). The predicted abundance ratios from cubic spline 

were used for K-mean clustering (kmean package in R) following identification of the cluster 

numbers (mclust package in R). All the codes used for the analyses were deposited to the 

Github public repository (https://github.com/UCLA-BD2K/Cubic-Spline-based-Temporal-

Analysis-Workflow). The statistical significance of abundance change in ISO and Vehicle 

conditions was evaluated by a paired two-sided t-test. Pearson correlation was performed to 

analyze the association between phenotype and abundance of Mal-biotin labeled cysteines.  

 

Functional annotations. Cellular pathway information was retrieved from Reactome (release 

v63, 2017_12) (https://reactome.org/) (Fabregat et al. 2018). To exclude single entity function 
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and non-specific/generalized pathway terms (e.g. metabolism), enriched pathways are required 

to house a minimum 2 found entities and a maximum of 200 total entities. Significantly enriched 

pathways are defined by FDR <0.05 calculated from Fisher’s exact test with FDR multiple test 

correction. NeXtProt (release 2018-02) was implemented to annotate the biological processes 

and disease association of key proteins identified in the analysis (Gaudet et al. 2017). 
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Figure 2.1. Quantitative cysteine O-PTM proteomics workflow. Left ventricular tissue samples 
originated from C57BL/6J were subjected to ISO (Hypertrophy) conditions or saline vehicle (Normal) for 
1, 3, 5, 7, 10, and 14 days, with n = 3 mice per group. Extracted proteins underwent biotin switch for 
reversible cysteine O-PTM labeling. First, free cysteines in the cell lysate were alkylated with NEM to 
prevent nonspecific labeling of reversible cysteine O-PTM. Subsequently, reversibly oxidized cysteine 
were reduced with DTT. At this point, 10% of the lysate was separated out for the quantification of total 
cysteine site abundance and  DTT-irreversible cysteine O-PTMs (i.e., CysSO2H and CysSO3H) (right 
side of flowchart). The remaining 90% (left side of flowchart) was treated with Mal-Biotin, which labels 
newly-reduced, free cysteine residues. Following trypsin digestion and IAM alkylation of newly exposed 
free cysteines, lysates from Normal and Hypertrophy groups were differentially labeled with medium/light 
dimethyl in two of the four technical replicates, whereas the other two received reciprocol labeling. The 
dimethyl-labeled peptides were quenched by ammonium and equally mixed. The Mal-Biotin labeled 
portion was enriched by avidin agarose and the abundance of reversible cysteine O-PTM was quantified 
by LC-MS/MS. Following differential dimethyl labeling, the unlabeled 10% (right side) underwent LC-
MS/MS to quantify the abundance of total cysteines and DTT-irreversible cysteine O-PTM. The 
identification of modified peptides is based on their mass changes by corresponding modifications, i.e., 
+451.1889 Da for reversible cysteine O-PTM, +31.9898 Da for CysSO2H, and +47.9847 Da for 
CysSO3H. Quantification of modifications is based on XIC values. Integrative analysis was performed to 
characterize the impact of ISO-induced cardiac hypertrophy on the cysteine O-PTM profile. Abbreviations: 
oxidative post-translational modification (O-PTM); isoproterenol (ISO); N-ethylmaleimide (NEM); 
dithiothreitol (DTT); cystein sulfinylation (CysSO2H); cystein sulfonylation (CysSO3H); maleimide biotin 
(Mal-Biotin); extracted ion chromatogram (XIC); iodoacetamide (IAM). 
 

2.IV. Results. 

 
2.IV.A. Overview. 

We developed a cysteine O-PTM discovery platform by integrating a biotin switch-based 

quantitative proteomics approach with advanced computational analysis, and we applied the 

novel platform on an ISO-induced cardiac hypertrophic mouse model. First, we defined the 

abundance distribution of three types of cysteine O-PTM, including reversible CysSO2H, and 

CysSO3H during the progression of hypertrophy. Secondly, we applied statistical analysis to 

identify key proteins with significantly increased or decreased cysteine O-PTM abundance, 

followed by cubic spline-based K-mean clustering to dissect the temporal profiles of cysteine O-

PTM together with their total cysteine abundance. Thirdly, temporal signatures along with their 

enriched hypertrophic pathways were identified. And finally, we established the association 

between cysteine O-PTM profiles and hypertrophic phenotypes, keying in on cysteine sites that 

were significantly correlated with the phenotype dynamics. Integrated analysis of key sites 

extracted from our computational approaches was performed to comprehensively identify 
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molecular signatures and provide mechanistic insights during the development of cardiac 

hypertrophy. 

 

2.IV.B. Impact of ISO-induced hypertrophy on cysteine O-PTM. 

Using our cysteine O-PTM discovery pipeline on mouse LV tissue from ISO and Vehicle groups 

(Figure 2.1.), we identified a total of 2,505 proteins containing 6,818 cysteine sites; with 1,655 

proteins containing 3,324 sites modified by at least one of three cysteine O-PTM types. 

Specifically, 1,095 proteins containing 2,162 sites, 484 proteins containing 671 sites, and 447 

proteins containing 613 sites were modified by reversible modification, CysSO2H, and 

CysSO3H, respectively. According to Uniprot, among the reversibly modified proteins and 

cysteine sites only 167 proteins containing 470 sites and 8 proteins containing 9 sites are known 

sites of disulfide-bonds and nitrosylation, respectively, revealing that the majority of identified 

cysteine sites are novel. Figure 2.2.A illustrates the overall change in abundance distribution of 

reversible cysteine O-PTM over the progression of hypertrophy, with the average abundance of 

reversible cysteine O-PTM sites across 4 technical replicates plotted for each time point. All 

histograms exhibit a J-shaped curve, demonstrating the higher frequency of modified cysteine 

sites concentrated in the low abundance XIC range. Notably, the distribution of O-PTM 

abundance in ISO demonstrates a sizeable reduction in the lower abundance range, indicating 

a global enrichment of O-PTM occurring as early as Day 3. Figure 2.2.B shows a Venn diagram 

to depict the number of proteins associated with each individual type of cysteine modification. 

To summarize, 1,057 sites within 377 proteins are unique to an enriched reversible O-PTM 

proteome, demonstrating the advantage of using enrichment to concentrate less abundant but 

highly oxidized proteins. The overlapping cysteine sites among three modification types are 

limited (5 sites), suggesting that this arrangement of cysteine O-PTM is highly site-specific. 

Comparatively, the numbers of proteins co-modified with all three modification types on 

separate residues are significantly higher, suggesting that diverse cysteine O-PTM patterns 
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occur on the same protein albeit in a site-specific manner. Overall, these data indicate that the 

oxidative regulation of proteins requires complex orchestration of myriad oxidative chemistries in 

a site-specific manner. 

Accession Cysteine 
Fold 

Change 
P Value Signature 

Oxidation 
Type 

Entry 
Name 

Gene 
Name 

Protein Name 
Molecular 

Weight 

A2ASQ1 
A2ASQ1
_C441 

0.842 0.026 
Decreased 
Reversible 

Modification 

Reversible 
cysteine O-

PTM 

AGRIN_
MOUSE 

Agrn 
Agrin 

Agrin [Cleaved into: Agrin N-terminal 
110 kDa subunit; Agrin C-terminal 

110 kDa subunit; Agrin C-terminal 90 
kDa fragment (C90); Agrin C-terminal 

22 kDa fragment (C22)] 

207,539 

A2AX52 
A2AX52_

C211 
0.759 0.028 

Decreased 
Reversible 

Modification 

Reversible 
cysteine O-

PTM 

CO6A4_
MOUSE 

Col6a4 
Dvwa 

Collagen alpha-4(VI) chain 250,798 

B2RXS4 
B2RXS4
_C617 

0.914 0.04 
Decreased 
Reversible 

Modification 

Reversible 
cysteine O-

PTM 

PLXB2_
MOUSE 

Plxnb2 Plexin-B2 206,230 

O08528 
O08528_

C368 
0.715 0.029 

Decreased 
Reversible 

Modification 

Reversible 
cysteine O-

PTM 

HXK2_M
OUSE 

Hk2 
Hexokinase-2 (EC 2.7.1.1) 
(Hexokinase type II) (HK II) 

102,535 

O08796 
O08796_

C145 
0.876 0 

Decreased 
Reversible 

Modification 

Reversible 
cysteine O-

PTM 

EF2K_M
OUSE 

Eef2k 

Eukaryotic elongation factor 2 kinase 
(eEF-2 kinase) (eEF-2K) (EC 

2.7.11.20) (Calcium/calmodulin-
dependent eukaryotic elongation 

factor 2 kinase) 

81,739 

O35459 
O35459_

C91 
0.921 0.011 

Decreased 
Reversible 

Modification 

Reversible 
cysteine O-

PTM 

ECH1_M
OUSE 

Ech1 
Delta(3,5)-Delta(2,4)-dienoyl-CoA 

isomerase, mitochondrial (EC 5.3.3.-) 
36,118 

O35855 
O35855_

C148 
0.805 0.004 

Decreased 
Reversible 

Modification 

Reversible 
cysteine O-

PTM 

BCAT2_
MOUSE 

Bcat2 
Bcatm 
Eca40 

Branched-chain-amino-acid 
aminotransferase, mitochondrial 

(BCAT(m)) (EC 2.6.1.42) 
44,127 

O55143 
O55143_

C349 
0.924 0.031 

Decreased 
Reversible 

Modification 

Reversible 
cysteine O-

PTM 

AT2A2_
MOUSE 

Atp2a2 
Sarcoplasmic/endoplasmic reticulum 

calcium ATPase 2 (SERCA2) (SR 
Ca(2+)-ATPase 2) (EC 3.6.3.8)  

114,858 

O55143 
O55143_

C344 
0.833 0.016 

Decreased 
Reversible 

Modification 

Reversible 
cysteine O-

PTM 

AT2A2_
MOUSE 

Atp2a2 
Sarcoplasmic/endoplasmic reticulum 

calcium ATPase 2 (SERCA2) (SR 
Ca(2+)-ATPase 2) (EC 3.6.3.8)  

114,858 

P00397 
P00397_

C498 
0.932 0.046 

Decreased 
Reversible 

Modification 

Reversible 
cysteine O-

PTM 

COX1_M
OUSE 

Mtco1 
COI 
mt-
Co1 

Cytochrome c oxidase subunit 1 (EC 
1.9.3.1) (Cytochrome c oxidase 

polypeptide I) 
56,910 
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Accession Cysteine 
Fold 

Change 
P Value Signature 

Oxidation 
Type 

Entry 
Name 

Gene 
Name 

Protein Name 
Molecular 

Weight 

P02469 
P02469_

C190 
0.894 0.043 

Decreased 
Reversible 

Modification 

Reversible 
cysteine O-

PTM 

LAMB1_
MOUSE 

Lamb1 
Lamb-

1 
Lamb1

-1 

Laminin subunit beta-1 (Laminin B1 
chain) (Laminin-1 subunit beta) 

(Laminin-10 subunit beta) (Laminin-
12 subunit beta) (Laminin-2 subunit 

beta) (Laminin-6 subunit beta) 
(Laminin-8 subunit beta) 

197,090 

P10493 
P10493_

C616 
0.869 0.037 

Decreased 
Reversible 

Modification 

Reversible 
cysteine O-

PTM 

NID1_M
OUSE 

Nid1 
Ent 

Nidogen-1 (NID-1) (Entactin) 136,538 

P14094 
P14094_

C214 
0.915 0.049 

Decreased 
Reversible 

Modification 

Reversible 
cysteine O-

PTM 

AT1B1_
MOUSE 

Atp1b1 
Atp4b 

Sodium/potassium-transporting 
ATPase subunit beta-1 

(Sodium/potassium-dependent 
ATPase subunit beta-1) 

35,195 

P18242 
P18242_

C327 
0.848 0.018 

Decreased 
Reversible 

Modification 

Reversible 
cysteine O-

PTM 

CATD_M
OUSE 

Ctsd Cathepsin D (EC 3.4.23.5) 44,954 

P23242 
P23242_

C198 
0.895 0.004 

Decreased 
Reversible 

Modification 

Reversible 
cysteine O-

PTM 

CXA1_M
OUSE 

Gja1 
Cxn-
43 

Gap junction alpha-1 protein 
(Connexin-43) (Cx43) (Gap junction 

43 kDa heart protein) 
43,004 

P32261 
P32261_

C54 
0.939 0.043 

Decreased 
Reversible 

Modification 

Reversible 
cysteine O-

PTM 

ANT3_M
OUSE 

Serpin
c1 At3 

Antithrombin-III (ATIII) (Serpin C1) 52,004 

P41216 
P41216_

C298 
0.868 0.006 

Decreased 
Reversible 

Modification 

Reversible 
cysteine O-

PTM 

ACSL1_
MOUSE 

Acsl1 
Acsl2 
Facl2 

Long-chain-fatty-acid--CoA ligase 1 
(EC 6.2.1.3) (Long-chain acyl-CoA 

synthetase 1) (LACS 1) 
77,951 

P41216 
P41216_

C510 
0.81 0 

Decreased 
Reversible 

Modification 

Reversible 
cysteine O-

PTM 

ACSL1_
MOUSE 

Acsl1 
Acsl2 
Facl2 

Long-chain-fatty-acid--CoA ligase 1 
(EC 6.2.1.3) (Long-chain acyl-CoA 

synthetase 1) (LACS 1) 
77,951 

P41216 
P41216_

C626 
0.874 0.015 

Decreased 
Reversible 

Modification 

Reversible 
cysteine O-

PTM 

ACSL1_
MOUSE 

Acsl1 
Acsl2 
Facl2 

Long-chain-fatty-acid--CoA ligase 1 
(EC 6.2.1.3) (Long-chain acyl-CoA 

synthetase 1) (LACS 1) 
77,951 

P58281 
P58281_

C856 
0.772 0.022 

Decreased 
Reversible 

Modification 

Reversible 
cysteine O-

PTM 

OPA1_M
OUSE 

Opa1 

Dynamin-like 120 kDa protein, 
mitochondrial (EC 3.6.5.5) (Large 

GTP-binding protein) (LargeG) (Optic 
atrophy protein 1 homolog) [Cleaved 
into: Dynamin-like 120 kDa protein, 

form S1] 

111,339 

P58281 
P58281_

C786 
0.91 0.012 

Decreased 
Reversible 

Modification 

Reversible 
cysteine O-

PTM 

OPA1_M
OUSE 

Opa1 

Dynamin-like 120 kDa protein, 
mitochondrial (EC 3.6.5.5) (Large 

GTP-binding protein) (LargeG) (Optic 
atrophy protein 1 homolog) [Cleaved 
into: Dynamin-like 120 kDa protein, 

form S1] 

111,339 
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Accession Cysteine 
Fold 

Change 
P Value Signature 

Oxidation 
Type 

Entry 
Name 

Gene 
Name 

Protein Name 
Molecular 

Weight 

P97370 
P97370_

C249 
0.816 0.024 

Decreased 
Reversible 

Modification 

Reversible 
cysteine O-

PTM 

AT1B3_
MOUSE 

Atp1b3 

Sodium/potassium-transporting 
ATPase subunit beta-3 

(Sodium/potassium-dependent 
ATPase subunit beta-3) (ATPB-3) 

(CD antigen CD298) 

31,776 

P97443 
P97443_

C125 
0.886 0.024 

Decreased 
Reversible 

Modification 

Reversible 
cysteine O-

PTM 

SMYD1_
MOUSE 

Smyd1 
Bop 

Histone-lysine N-methyltransferase 
Smyd1 (EC 2.1.1.43) (CD8b-

opposite) (SET and MYND domain-
containing protein 1) (Zinc finger 

protein BOP) (m-BOP) 

56,496 

Q02566 
Q02566_

C949 
0.856 0.012 

Decreased 
Reversible 

Modification 

Reversible 
cysteine O-

PTM 

MYH6_M
OUSE 

Myh6 
Myhca 

Myosin-6 (Myosin heavy chain 6) 
(Myosin heavy chain, cardiac muscle 

alpha isoform) (MyHC-alpha) 
223,565 

Q04592 
Q04592_

C1360 
0.94 0.01 

Decreased 
Reversible 

Modification 

Reversible 
cysteine O-

PTM 

PCSK5_
MOUSE 

Pcsk5 

Proprotein convertase subtilisin/kexin 
type 5 (EC 3.4.21.-) (Proprotein 
convertase 5) (PC5) (Proprotein 

convertase 6) (PC6) (Subtilisin-like 
proprotein convertase 6) (SPC6) 

(Subtilisin/kexin-like protease PC5) 

209,257 

Q60675 
Q60675_

C1447 
0.676 0 

Decreased 
Reversible 

Modification 

Reversible 
cysteine O-

PTM 

LAMA2_
MOUSE 

Lama2 

Laminin subunit alpha-2 (Laminin M 
chain) (Laminin-12 subunit alpha) 

(Laminin-2 subunit alpha) (Laminin-4 
subunit alpha) (Merosin heavy chain) 

343,815 

Q60936 
Q60936_

C403 
0.894 0.02 

Decreased 
Reversible 

Modification 

Reversible 
cysteine O-

PTM 

COQ8A_
MOUSE 

Coq8a 
Adck3 
Cabc1 

Atypical kinase COQ8A, 
mitochondrial (EC 2.7.-.-) 

(Chaperone activity of bc1 complex-
like) (Chaperone-ABC1-like) 

(Coenzyme Q protein 8A) (aarF 
domain-containing protein kinase 3) 

71,743 

Q61292 
Q61292_

C505 
0.894 0.027 

Decreased 
Reversible 

Modification 

Reversible 
cysteine O-

PTM 

LAMB2_
MOUSE 

Lamb2 
Lams 

Laminin subunit beta-2 (Laminin-11 
subunit beta) (Laminin-14 subunit 
beta) (Laminin-15 subunit beta) 

(Laminin-3 subunit beta) (Laminin-4 
subunit beta) (Laminin-7 subunit 

beta) (Laminin-9 subunit beta) (S-
laminin subunit beta) (S-LAM beta) 

196,579 

Q61738 
Q61738_

C103 
0.556 0.023 

Decreased 
Reversible 

Modification 

Reversible 
cysteine O-

PTM 

ITA7_MO
USE 

Itga7 
Integrin alpha-7 [Cleaved into: 

Integrin alpha-7 heavy chain; Integrin 
alpha-7 light chain] 

129,329 

Q7TQ48 
Q7TQ48
_C899 

0.671 0.002 
Decreased 
Reversible 

Modification 

Reversible 
cysteine O-

PTM 

SRCA_M
OUSE 

Srl Sar Sarcalumenin 99,184 

Q80TZ3 
Q80TZ3_

C372 
0.769 0 

Decreased 
Reversible 

Modification 

Reversible 
cysteine O-

PTM 

AUXI_M
OUSE 

Dnajc6 
Kiaa04

73 

Putative tyrosine-protein 
phosphatase auxilin (EC 3.1.3.48) 

(DnaJ homolog subfamily C member 
6) 

102,299 
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Accession Cysteine 
Fold 

Change 
P Value Signature 

Oxidation 
Type 

Entry 
Name 

Gene 
Name 

Protein Name 
Molecular 

Weight 

Q8BGK2 
Q8BGK2
_C206 

0.674 0.027 
Decreased 
Reversible 

Modification 

Reversible 
cysteine O-

PTM 

ARHL1_
MOUSE 

Adprhl
1 Arh2 

[Protein ADP-ribosylarginine] 
hydrolase-like protein 1 (EC 3.2.-.-) 

(ADP-ribosylhydrolase 2) 
39,885 

Q8CC88 
Q8CC88
_C415 

0.868 0.019 
Decreased 
Reversible 

Modification 

Reversible 
cysteine O-

PTM 

VWA8_M
OUSE 

Vwa8 
Kiaa05

64 

von Willebrand factor A domain-
containing protein 8 

213,421 

Q8CFX1 
Q8CFX1
_C621 

0.765 0.025 
Decreased 
Reversible 

Modification 

Reversible 
cysteine O-

PTM 

G6PE_M
OUSE 

H6pd 

GDH/6PGL endoplasmic bifunctional 
protein [Includes: Glucose 1-
dehydrogenase (EC 1.1.1.47) 

(Glucose-6-phosphate 
dehydrogenase) (EC 1.1.1.363); 6-
phosphogluconolactonase (6PGL) 

(EC 3.1.1.31)] 

88,928 

Q8K182 
Q8K182_

C140 
0.812 0 

Decreased 
Reversible 

Modification 

Reversible 
cysteine O-

PTM 

CO8A_M
OUSE 

C8a 
Complement component C8 alpha 
chain (Complement component 8 

subunit alpha) 
66,080 

Q8K182 
Q8K182_

C194 
0.749 0.001 

Decreased 
Reversible 

Modification 

Reversible 
cysteine O-

PTM 

CO8A_M
OUSE 

C8a 
Complement component C8 alpha 
chain (Complement component 8 

subunit alpha) 
66,080 

Q8K2B3 
Q8K2B3
_C536 

0.88 0.002 
Decreased 
Reversible 

Modification 

Reversible 
cysteine O-

PTM 

SDHA_M
OUSE 

Sdha 

Succinate dehydrogenase 
[ubiquinone] flavoprotein subunit, 

mitochondrial (EC 1.3.5.1) 
(Flavoprotein subunit of complex II) 

(Fp) 

72,585 

Q91VD9 
Q91VD9
_C367 

0.935 0.016 
Decreased 
Reversible 

Modification 

Reversible 
cysteine O-

PTM 

NDUS1_
MOUSE 

Ndufs1 

NADH-ubiquinone oxidoreductase 75 
kDa subunit, mitochondrial (EC 

1.6.5.3) (EC 1.6.99.3) (Complex I-
75kD) (CI-75kD) 

79,777 

Q91VD9 
Q91VD9
_C727 

0.924 0.004 
Decreased 
Reversible 

Modification 

Reversible 
cysteine O-

PTM 

NDUS1_
MOUSE 

Ndufs1 

NADH-ubiquinone oxidoreductase 75 
kDa subunit, mitochondrial (EC 

1.6.5.3) (EC 1.6.99.3) (Complex I-
75kD) (CI-75kD) 

79,777 

Q91WD5 
Q91WD5

_C347 
0.928 0.022 

Decreased 
Reversible 

Modification 

Reversible 
cysteine O-

PTM 

NDUS2_
MOUSE 

Ndufs2 

NADH dehydrogenase [ubiquinone] 
iron-sulfur protein 2, mitochondrial 

(EC 1.6.5.3) (EC 1.6.99.3) (Complex 
I-49kD) (CI-49kD) (NADH-ubiquinone 

oxidoreductase 49 kDa subunit) 

52,626 

Q99J39 
Q99J39_

C359 
0.786 0.037 

Decreased 
Reversible 

Modification 

Reversible 
cysteine O-

PTM 

DCMC_
MOUSE 

Mlycd 
Malonyl-CoA decarboxylase, 

mitochondrial (MCD) (EC 4.1.1.9) 
54,736 

Q99JY8 
Q99JY8_

C68 
0.913 0.012 

Decreased 
Reversible 

Modification 

Reversible 
cysteine O-

PTM 

PLPP3_
MOUSE 

Plpp3 
Lpp3 

Ppap2
b 

Phospholipid phosphatase 3 (EC 
3.1.3.4) (Lipid phosphate 

phosphohydrolase 3) (PAP2-beta) 
(Phosphatidate phosphohydrolase 

type 2b)  

35,216 
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Accession Cysteine 
Fold 

Change 
P Value Signature 

Oxidation 
Type 

Entry 
Name 

Gene 
Name 

Protein Name 
Molecular 

Weight 

Q9CQN1 
Q9CQN1

_C503 
0.806 0.016 

Decreased 
Reversible 

Modification 

Reversible 
cysteine O-

PTM 

TRAP1_
MOUSE 

Trap1 
Hsp75 

Heat shock protein 75 kDa, 
mitochondrial (HSP 75) (TNFR-

associated protein 1) (Tumor 
necrosis factor type 1 receptor-
associated protein) (TRAP-1) 

80,209 

Q9CRB9 
Q9CRB9
_C193 

0.79 0.007 
Decreased 
Reversible 

Modification 

Reversible 
cysteine O-

PTM 

MIC19_
MOUSE 

Chchd
3 

Mic19 

MICOS complex subunit Mic19 
(Coiled-coil-helix-coiled-coil-helix 

domain-containing protein 3) 
26,335 

Q9CRB9 
Q9CRB9
_C183 

0.893 0.006 
Decreased 
Reversible 

Modification 

Reversible 
cysteine O-

PTM 

MIC19_
MOUSE 

Chchd
3 

Mic19 

MICOS complex subunit Mic19 
(Coiled-coil-helix-coiled-coil-helix 

domain-containing protein 3) 
26,335 

Q9Z2I9 
Q9Z2I9_

C430 
0.9 0.016 

Decreased 
Reversible 

Modification 

Reversible 
cysteine O-

PTM 

SUCB1_
MOUSE 

Sucla2 

Succinate--CoA ligase [ADP-forming] 
subunit beta, mitochondrial (EC 

6.2.1.5) (ATP-specific succinyl-CoA 
synthetase subunit beta) (A-SCS) 
(Succinyl-CoA synthetase beta-A 

chain) (SCS-betaA) 
 

50,114 

 

Table 2.2. List of cysteine sites with alterations in modification abundance during cardiac hypertrophy. 

 

We mapped the distribution of O-PTM abundance, expressed as a ratio of ISO over Vehicle 

across 6 time points in violin plots for the three modification types (Figure 2.2.C). Consistent 

with 2.2.A, the ratio means of reversible O-PTM on Day 3, 5, 10, and 14 in ISO over Vehicle are 

slightly above zero, demonstrating an increase in reversible O-PTM abundance. CysSO2H 

oxidized sites exhibit no distribution change whereas CysSO3H oxidized sites have upshifts on 

Day 5 and 14. The distinct patterns of abundance distribution among the three modification 

types indicate O-PTM type-specific proteomic regulation during ISO-induced hypertrophy and 

oxidative stress. 

  

To identify sites of cysteine O-PTM that are significantly altered by ISO treatment, we applied a 

t-test on the log2-transformed fold-change of the reversible cysteine O-PTM (ISO/Vehicle) with 

at least 3 time points, where a p-value <0.05 and fold-change within the top or bottom 20th 
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percentile were deemed significant. For reversible cysteine O-PTM (Figure 2.2.D, top panel), we 

found 128 sites within 74 proteins with significantly increased abundance and 46 sites within 39 

proteins with significantly decreased abundance during ISO treatment, marking their potential to 

be signatures of cardiac hypertrophy. In addition, one and two CysSO3H oxidized sites are 

significantly increased and decreased, respectively (Figure 2.2.D, lower panel). 

 

Pathway Name 
# Entities 

Found 
# Entities 

Total 
Entities 

FDR 
Submitted Entities Found Signature 

Laminin interactions 4 35 0.001 Q60675;P10493;Q61292;P02469 Significantly Decreased 

MET activates PTK2 signaling 3 36 0.011 Q60675;Q61292;P02469 Significantly Decreased 

MET promotes cell motility 3 59 0.025 Q60675;Q61292;P02469 Significantly Decreased 

Ion homeostasis 3 61 0.025 O55143;P14094;P97370 Significantly Decreased 

The citric acid (TCA) cycle and 
respiratory electron transport 

4 156 0.026 Q91VD9;Q9Z2I9;Q91WD5;Q8K2B3 Significantly Decreased 

Ion transport by P-type ATPases 3 76 0.026 O55143;P14094;P97370 Significantly Decreased 

Citric acid cycle (TCA cycle) 2 26 0.038 Q9Z2I9;Q8K2B3 Significantly Decreased 

Basigin interactions 2 32 0.052 P14094;P97370 Significantly Decreased 

Signaling by MET 3 110 0.052 Q60675;Q61292;P02469 Significantly Decreased 

Complex I biogenesis 2 59 0.083 Q91VD9;Q91WD5 Significantly Decreased 

Post-translational protein 
phosphorylation 

3 165 0.083 P32261;Q61292;P02469 Significantly Decreased 

Pyruvate metabolism and Citric 
Acid (TCA) cycle 

2 61 0.083 Q9Z2I9;Q8K2B3 Significantly Decreased 

Cardiac conduction 3 169 0.083 O55143;P14094;P97370 Significantly Decreased 

Respiratory electron transport 2 71 0.088 Q91VD9;Q91WD5 Significantly Decreased 

Peroxisomal protein import 2 79 0.105 O35459;Q99J39 Significantly Decreased 

Respiratory electron transport, 
ATP synthesis by chemiosmotic 
coupling, and heat production by 

uncoupling proteins. 

2 95 0.111 Q91VD9;Q91WD5 Significantly Decreased 

Degradation of the extracellular 
matrix 

2 172 0.111 P10493;P18242 Significantly Decreased 

      

Gluconeogenesis 5 40 0.002 
P14152;P21550;P08249;P17751;P

05201 
Significantly Increased 

Formation of the ternary 
complex, and subsequently 

5 61 0.004 
P62242;P97351;P62908;P25444;P

62754 
Significantly Increased 
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Pathway Name 
# Entities 

Found 
# Entities 

Total 
Entities 

FDR 
Submitted Entities Found Signature 

Nonsense Mediated Decay 
(NMD) enhanced by the Exon 

Junction Complex (EJC) 
6 104 0.004 

P62242;P97351;P62908;P62717;P
25444;P62754 

Significantly Increased 

Nonsense-Mediated Decay 
(NMD) 

6 104 0.004 
P62242;P97351;P62908;P62717;P

25444;P62754 
Significantly Increased 

Ribosomal scanning and start 
codon recognition 

5 66 0.004 
P62242;P97351;P62908;P25444;P

62754 
Significantly Increased 

Cap-dependent Translation 
Initiation 

5 73 0.004 
P62242;P97351;P62908;P25444;P

62754 
Significantly Increased 

Eukaryotic Translation Initiation 5 73 0.004 
P62242;P97351;P62908;P25444;P

62754 
Significantly Increased 

Respiratory electron transport, 
ATP synthesis by chemiosmotic 
coupling, and heat production by 

uncoupling proteins. 

5 95 0.01 
Q03265;Q99LC5;P52503;Q91YT0;

Q9CQJ8 
Significantly Increased 

Protein methylation 3 21 0.01 Q01853;P10126;P25444 Significantly Increased 

The citric acid (TCA) cycle and 
respiratory electron transport 

6 156 0.012 
Q03265;Q99LC5;P08249;P52503;Q

91YT0;Q9CQJ8 
Significantly Increased 

Post-translational protein 
phosphorylation 

6 165 0.015 
Q61147;Q61554;P07724;P01027;Q

921I1;P11276 
Significantly Increased 

Glucose metabolism 5 119 0.022 
P14152;P21550;P08249;P17751;P

05201 
Significantly Increased 

Respiratory electron transport 4 71 0.023 Q99LC5;P52503;Q91YT0;Q9CQJ8 Significantly Increased 

HSF1 activation 2 8 0.026 Q01853;P10126 Significantly Increased 

Molecules associated with 
elastic fibres 

3 45 0.058 Q61554;Q8K4G1;P11276 Significantly Increased 

Elastic fibre formation 3 52 0.079 Q61554;Q8K4G1;P11276 Significantly Increased 

Creatine metabolism 2 16 0.082 Q04447;Q6P8J7 Significantly Increased 

Translation 5 185 0.095 
P62242;P97351;P62908;P25444;P

62754 
Significantly Increased 

Complex I biogenesis 3 59 0.095 P52503;Q91YT0;Q9CQJ8 Significantly Increased 

Mitochondrial biogenesis 2 27 0.189 P26443;Q03265 Significantly Increased 

Plasma lipoprotein remodeling 2 30 0.21 P07724;P20918 Significantly Increased 

Amino acid synthesis and 
interconversion (transamination) 

2 33 0.22 P26443;P05201 Significantly Increased 

Metabolism of polyamines 3 91 0.22 Q04447;Q6P8J7;Q60692 Significantly Increased 

Platelet degranulation 4 166 0.22 P07724;P20918;Q921I1;P11276 Significantly Increased 

Degradation of the extracellular 
matrix 

4 172 0.226 P02463;Q61554;P20918;P11276 Significantly Increased 

Response to elevated platelet 
cytosolic Ca2+ 

4 172 0.226 P07724;P20918;Q921I1;P11276 Significantly Increased 

Non-integrin membrane-ECM 
interactions 

2 43 0.268 P02463;P11276 Significantly Increased 

Integrin cell surface interactions 3 110 0.268 P02463;Q61554;P11276 Significantly Increased 
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Pathway Name 
# Entities 

Found 
# Entities 

Total 
Entities 

FDR 
Submitted Entities Found Signature 

Detoxification of Reactive 
Oxygen Species 

2 47 0.285 P24270;P46412 Significantly Increased 

Cross-presentation of soluble 
exogenous antigens 

(endosomes) 
2 50 0.29 Q61830;Q60692 Significantly Increased 

MET promotes cell motility 2 59 0.3 P63001;P11276 Significantly Increased 

Semaphorin interactions 2 63 0.3 P63001;O08553 Significantly Increased 

Hedgehog ligand biogenesis 2 68 0.3 Q01853;Q60692 Significantly Increased 

Plasma lipoprotein assembly, 
remodeling, and clearance 

2 71 0.3 P07724;P20918 Significantly Increased 

Iron uptake and transport 2 73 0.3 Q61147;Q921I1 Significantly Increased 

MAPK6/MAPK4 signaling 2 80 0.3 P63001;Q60692 Significantly Increased 

Signaling by PDGF 2 81 0.3 P02463;P20918 Significantly Increased 

rRNA processing in the nucleus 
and cytosol 

2 88 0.3 P25444;P62754 Significantly Increased 

rRNA processing 2 88 0.3 P25444;P62754 Significantly Increased 

Major pathway of rRNA 
processing in the nucleolus and 

cytosol 
2 88 0.3 P25444;P62754 Significantly Increased 

L1CAM interactions 2 88 0.3 P63001;O08553 Significantly Increased 

Scavenging of heme from 
plasma 

2 89 0.3 P07724;Q07456 Significantly Increased 

PCP/CE pathway 2 94 0.3 P63001;Q60692 Significantly Increased 

Glycolysis 2 98 0.3 P21550;P17751 Significantly Increased 

Binding and Uptake of Ligands 
by Scavenger Receptors 

2 108 0.3 P07724;Q07456 Significantly Increased 

Cellular response to heat stress 2 110 0.3 Q01853;P10126 Significantly Increased 

Signaling by MET 2 110 0.3 P63001;P11276 Significantly Increased 

ABC-family proteins mediated 
transport 

2 112 0.3 Q01853;Q60692 Significantly Increased 

Antigen processing-Cross 
presentation 

2 113 0.3 Q61830;Q60692 Significantly Increased 

Regulation of Complement 
cascade 

2 129 0.3 P01027;P06909 Significantly Increased 

Cargo recognition for clathrin-
mediated endocytosis 

2 134 0.3 Q921I1;Q07113 Significantly Increased 

Beta-catenin independent WNT 
signaling 

2 136 0.3 P63001;Q60692 Significantly Increased 

Complement cascade 2 140 0.3 P01027;P06909 Significantly Increased 

Signaling by Hedgehog 2 161 0.3 Q01853;Q60692 Significantly Increased 

Clathrin-mediated endocytosis 2 187 0.312 Q921I1;Q07113 Significantly Increased 
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Table 2.3. Enriched biological pathways of proteins bearing cysteine sites with significantly 

increased/decreased modification abundance. 

 

Reactome identified 17 and 55 pathways that are enriched by proteins with significantly 

increased and decreased reversible cysteine sites, respectively (Figure 2.2.D, top panel). 

Specifically, proteins with significantly decreased reversibly oxidized sites are significantly 

enriched in 3 extracellular matrix organization and signaling pathways, 2 ion homeostasis and 

transportation pathways, and 2 TCA cycle and respiratory electron transport (TCA) pathway. 

Proteins with significantly increased reversibly oxidized cysteine sites are significantly enriched 

in 7 transcriptional and translational regulation pathways, 2 protein post-translational 

modification (PTM) pathways, 2 glucose metabolism pathways, and 3 TCA cycle and respiratory 

electron transport pathways. Notably, the “TCA cycle and respiratory electron transport” 

pathway is enriched in both significantly increased and decreased sites with associated proteins 

labeled by their UniProt ID. This observation reveals a significant and diverse reversible O-PTM 

regulation of mitochondrial metabolism during ISO-induced cardiac hypertrophy. In addition, 

significantly increased cysteine modifications of proteins susceptible to methylation and 

phosphorylation indicates further hierarchical interactions among PTMs. Zinc finger factor, ZEP1 

is significantly decreased in CysSO3H (associated proteins are labeled by their UniProt ID), 

demonstrating redox regulation of transcriptional regulation during hypertrophy. Detailed 

information on featured sites, proteins, and their enriched pathways are listed in Tables 2.2 and 

2.3, respectively. 
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Figure 2.2. Impact of ISO-induced cardiac hypertrophy on the reversible cysteine O-PTM profile.  
(A) Abundance distribution of reversible cysteine O-PTM during ISO treatment. Six histograms 
exhibit the distribution of abundance of reversible cysteine O-PTM in each of the 6 time-points under both 
ISO (red) and Vehicle (blue) conditions. The absolute value of the vertical axis represents the site counts 
whereas the horizontal axis represents average abundance value (XIC) across all replicates. The black 
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arrow denotes a significant change in the abundance distribution of ISO occurring on Day5, where a 
sizeable upshift is observed in the ISO distribution of reversible cysteine O-PTM.  
 
(B) Site and protein counts of reversible cysteine O-PTM, CysSO2H, and CysSO3H during ISO-
induced hypertrophy. A Venn diagram illustrates the number of reversibly oxidized proteins (left panel) 
and cysteine sites (right panel) for each of the cysteine O-PTMs that are identified from the integrated 
discovery platform. Data show that there are considerable and complex patterns of overlap among 
proteins and sites that are susceptible to modification.  
 
(C) Distribution of cysteine O-PTM abundance during ISO treatment. Three violin plots exhibit the 
log2 transformed abundance ratio of oxidation (y-axis) in ISO vs. Vehicle over 6 time points across 14 
days (x-axis). The red horizontal line depicts the ratio value of zero, demonstrating no change. The black 
bar on the violin at each time point represents the population mean. The black arrow denotes a significant 
change in the abundance distribution of ISO occurring on Day5, where a sizeable upshift is observed in 
the ISO distribution of reversible cysteine O-PTM.  
 
(D) Statistical validation of changes in oxidative molecular signatures. A volcano plot portrays 
significantly altered molecular signatures of reversible cysteine O-PTM (top panel) and CysSO3H (bottom 
panel) during ISO treatment. Each dot represents a cysteine O-PTM site with respect to its log2-
transformed fold-change of abundance ratio in ISO/Vehicle (x-axis) and -log10-transformed p-value from t-
test (y-axis). Any sites with p-value <0.05 (horizontal line) and fold-change within the top or bottom 20th 
percentile (vertical line) are identified as significantly altered molecular signatures. Significantly increased 
and decreased modification sites are labeled in green and red, respectively. Pathway enrichment by 
Reactome identified “TCA cycle and respiratory electron chain” as the significantly enriched pathway for 
signatures with reversible O-PTM. “Transcriptional and translational regulation” is enriched in CysSO3H. 
The UniProt IDs of proteins housing decreased and increased sites of cysteine O-PTM in these two 
enriched pathways are labeled. Detailed information regarding proteins of each cluster and their enriched 
pathways are listed in the Tables 2.2 and 2.3, respectively. Abbreviations: oxidative post-translational 
modification (O-PTM); isoproterenol (ISO); cystein sulfinylation (CysSO2H); cystein sulfonylation 
(CysSO3H); extracted ion chromatogram (XIC); TCA cycle and respiratory electron transport (TCA). 
 

2.IV.C. Integrated temporal profiles of cysteine O-PTM in the hypertrophic heart proteome. 

To characterize the dynamic patterns of reversible cysteine O-PTM during the progression of 

cardiac hypertrophy, we calculated the abundance ratios of each reversible cysteine O-PTM site 

in ISO over Vehicle for 1, 3, 5, 7, 10, and 14 days and employed a cubic spline-based 

smoothing approach for data de-noising. The cubic spline-fitted data were subsequently 

classified by K-means clustering to produce a total of 8 unique dynamic patterns (Figure 2.3.A). 

The largest cluster (Cluster 6, n = 198) remains unchanged during ISO treatment. These likely 

represent structural disulfide cysteines of housekeeping proteins. Consistent with this notion, 

Reactome analysis identified extracellular matrix (ECM) organization and signaling pathways to 

be enriched in this cluster, and ECM proteins are known to be rich in structural disulfide bonds.  
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The dynamic patterns of 8 clusters were represented in the stripcharts with smoothing lines, 

demonstrating the temporal feature of each cluster (Figure 2.3.B). Different temporal patterns of 

reversible O-PTM clusters may reveal the hidden association between dynamic regulation of 

biological processes and the progression of cardiac hypertrophy. We applied determination 

coefficient analysis to extract key sites as temporal signatures that are highly correlated (R2 

>0.8) with the temporal feature of their corresponding clusters. Cluster 6, with its lack of 

significant temporal changes to cysteine sites, is excluded from temporal signatures analysis. 

Among a total of 415 sites within 250 proteins that match the criteria as temporal signatures, the 

majority (404 sites within 243 proteins) are modified by reversible cysteine O-PTM, whereas 5 

sites within 4 proteins by CysSO2H and 6 sites within 5 proteins by CysSO3H. Notably, majority 

of CysSO2H sites (3 out of 5) are distributed in Cluster 1, exhibiting a continual decrease 

whereas the majority of CysSO3H sites (5 out of 6) are enriched in Cluster 7, exhibiting a 

continual increase. Notably, CysSO2H can be enzymatically reduced to free cysteine and can 

also be further oxidized into CysSO3H, which is non-reducible (Lowther and Haynes 2011; Woo 

et al. 2005). These observations revealed distinct regulation pattern of different irreversible 

modification types during ISO-induced oxidative stress. Specifically, CysSO2H on Cys164 and 

CysSO3H on Cys167 in ATP7b (Q64446) shared the temporal pattern of continual increase 

(Cluster 7), suggesting an inactivation of ATP7b during cardiac hypertrophy. As a malfunction in 

ATP7b leads to cellular copper accumulation and cardiomyopathy in Wilson disease (Patil et al. 

2013), the mapping of ATP7b’s irreversible O-PTM temporal pattern offers mechanistic insights 

into cardiac complications of Wilson disease.  

 

In a total of 243 reversibly oxidized proteins, 62 out of 90 bore at least two sites that fall into 

more than one temporal cluster. The distinct temporal regulation of cysteine sites within the 

same protein is possibly due to the unique microenvironment of the particular cysteine sites 

(e.g. cysteine pKa, enzymatic interaction). We utilized Reactome to perform pathway 
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enrichment with temporal signature proteins that are unique to one cluster. Cluster 1 is 

characterized by a continual decrease and significantly enriched in branched-chain amino acid 

(BCAA) catabolism, fatty acid beta-oxidation (FABO), and TCA pathways; Cluster 2 by an initial 

decrease that dips on Day 7 and significantly enriched in BCAA and TCA pathways; Cluster 3 

by a sharp, increase after Day 7 and significantly enriched in BCAA, TCA, and glucose 

metabolism; Cluster 4 by a sinusoidal curve and significantly enriched in protein phosphorylation 

and complement cascade; Cluster 5 by an arched curve that peaks on Day 7 and significantly 

enriched in protein phosphorylation and creatine metabolism; Cluster 6 by no change and 

significantly enriched in extracellular matrix organization and signaling; and Cluster 7 by a 

continual increase and significantly enriched in BCAA, FABO, TCA, glucose metabolism, and 

creatine metabolism; and Cluster 8 by an initial sharp decrease before returning to baseline 

levels. Reversible cysteine O-PTM sites/proteins with significant alteration in abundance ratio 

across 14 days after ISO were widely distributed among 8 clusters, suggesting that dynamic 

temporal patterns is a state-of-the-art measurement and prediction that is independent of the 

absolute value of end-point measurements. Specifically, three 40S ribosomal proteins — S3, 

S6, and S11 — with significantly increased oxidation abundance are enriched in Cluster 1 

(continual decrease), suggesting an initial wave of sharply increased oxidation in response to 

ISO treatment that diminishes as the heart hypertrophies. Notably, the majority of glucose 

metabolism proteins (4 out of 5) with significantly increased abundance belong to Cluster 7, 

demonstrating a strong and significant increase of reversible cysteine O-PTM in glucose 

metabolism during cardiac hypertrophy. In addition, the conserved Cys17 in the ATPase domain 

of the cytosolic chaperone protein, Hspa8, was continually oxidized (Cluster 7). As the perpetual 

oxidation of the conserved cysteine in the ER chaperone, Hspa5, has been shown to enhance 

chaperone function and ER homeostasis, the perpetual oxidation of Hspa8 indicates a potential 

function in cytosolic protein homeostasis during ISO-induced cardiac hypertrophy (J. Wang and 

Sevier 2016; J. Wang et al. 2014; O’Donnell et al. 2018).  
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The stoichiometry is an important feature of PTM and can be calculated by comparing the 

abundance of a modified form with all forms of a site of interest. Integrating the temporal 

patterns of total cysteine abundance and reversible cysteine O-PTM further reveals the 

comprehensive regulation of cysteine O-PTM stoichiometry. We applied cubic spline based 

clustering on total cysteine abundance and subsequently co-clustered temporal patterns of 

reversible cysteine O-PTM with total cysteine abundance (Figure 2.4.). Briefly, cubic spline-

based K-mean clustering was implemented to determine the temporal clusters of the total 

cysteine proteome. Subsequently, temporal signature sites of total cysteines from each cluster 

were extracted by determination coefficient analysis with R2 >0.8 as described and combined 

with the temporal pattern of oxidized cysteine sites. Clusters with more than 3 sites were 

considered as conserved patterns and included in the subsequent analysis.   

 

Figure 2.4. shows a total of 10 co-clusters with more than 3 sites identified. These co-clusters 

consist of 3 temporal patterns from reversible and irreversible cysteine modification identified 

previously and 4 newly identified temporal patterns from total cysteine abundance. Cluster 1A is 

characterized by continual decrease in oxidation with continual increase in total abundance, 

suggesting a decrease in oxidation occupancy; Cluster 1B by continual decreased oxidation 

with no change in total abundance and enriched in fatty acid metabolism; Cluster 1C by 

continual decrease in both oxidation and total abundance and enriched in branched chain amino 

acid catabolism; Cluster 1D by continual decreased oxidation with initial decreased abundance 

that dips on Day 7 and enriched in respiratory electron transport; Cluster 7A by both continual 

increase in oxidation and total abundance and enriched in glucose metabolism, FABO, and 

lipoprotein remodeling; Cluster 7B by continual increased oxidation with no change in total 

abundance and enriched in glucose metabolism and ATP synthesis; Cluster 7C by continual 

increased oxidation with decreased total abundance and enriched in retinoic acid signaling, 

suggesting a continual increase in cysteine O-PTM occupancy in regulating retinoic acid, which 
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contributes to cardiac development; Cluster 7E by continual increase oxidation with arched 

curve that peaks on Day 7; Cluster 3A by initial decreased oxidation that dips on Day7 with 

continual increased total abundance and enriched in pyruvate metabolism and TCA cycle; 

Cluster 5B by an arched curve that peaks on Day 7 with no change in total abundance. In 

addition to sites modified by reversible O-PTM, two CysSO3H sites bore the temporal pattern of 

Cluster 7A. Notably, three major enriched pathways from Cluster1, BCAA, FABO, and TCA, 

were divided into Cluster 1B, 1C, and 1D, according to the temporal patterns of their total 

cysteine abundance, demonstrating the clustering of their temporal pattern is dependent on their 

biological function. Among clusters with altered stoichiometry during cardiac hypertrophy, 

Cluster 1B and Cluster 7B are enriched in FABO and glucose metabolism, respectively. As 

cardiac hypertrophy is featured by an increased reliance on glucose with an overall reduction in 

fatty acid metabolism (Kolwicz and Tian 2011), these observations provide a detailed molecular 

map that reveals an additional layer of regulation in mitochondrial energy metabolism via 

reversible cysteine O-PTM.  
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Figure 2.3. Temporal profiling of reversible cysteine O-PTM proteomes using cubic spline-based 
clustering. (A) The temporal mapping of the reversible cysteine O-PTM proteome. Cubic spline 
followed by K-mean clustering was applied to abundance ratio of reversible cysteine O-PTM sites in ISO 
vs. Vehicle across 6 time points (x-axis), as represented by a scale from 2-fold decrease (black) to 2-fold 
increase (white), in a heat map. Our analyses yielded 8 unique temporal patterns of change in the 
reversible cysteine O-PTM abundance ratio. The numbers of sites of each cluster are as listed to the right 
of the heatmap. (B) Cluster-specific temporal patterns of reversible cysteine O-PTM. Eight 
stripcharts exhibit the trends in the normalized abundance ratio of reversible cysteine O-PTM sites (ISO 
vs. Vehicle; y-axis) over 6 time points (x-axis). Cluster 1 of reversible cysteine O-PTM sites is 
characterized by continual decrease; Cluster 2 by an initial decrease that dips on Day 7; Cluster 3 by a 
sharp increase after Day 7; Cluster4 by a sinusoidal curve with an initial increase that shifts to decrease 
on Day 5 and back to increase on Day 10; Cluster 5 by an arched curve that peaks on Day 7; Cluster 6 by 
no change; Cluster 7 by continual increase; and Cluster 8 by an initial sharp decrease that dips on Day 5. 
Key cysteine sites and pathways are listed on the stripcharts of their corresponding clusters. 
Abbreviations: oxidative post-translational modification (O-PTM); isoproterenol (ISO); TCA cycle and 
respiratory electron transport (TCA); branched-chain amino acid (BCAA) catabolism; fatty acid beta-
oxidation (FABO). 
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Figure 2.4. Temporal profiling combining reversible cysteine O-PTM and total cysteine proteomes 
using cubic spline-based co-clustering. Cubic spline followed by K-mean clustering was applied to 
abundance ratio of total cysteine sites (ISO vs. Vehicle) in the proteome. The profiles of reversible 
cysteine O-PTM temporal signatures (Figure 2.3.: R2 >0.8) were co-plotted with the well-fitted temporal 
profiles of their total cysteine abundance (labeled as A-E; R2 >0.8). Ten co-clusters with more than three 
cysteine sites were identified and demonstrated in the stripcharts, exhibiting the trends in the normalized 
abundance ratio of reversible cysteine O-PTM and total cysteine sites (y-axis) over 6 time points (x-axis). 
As previously described, Cluster 1 of reversible cysteine O-PTM sites is characterized by continual 
decrease; Cluster 3 by a sharp increase after Day7; Cluster 5 by an arched curve that peaks on Day 7; 
Cluster 6 by no change; and Cluster 7 by continual increase. Cluster A of total cysteine sites is 
characterized by continual increase; Cluster B by no change; Cluster C by continual decrease; Cluster D 
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by initial sharp decrease that dips between Day 7-10; Cluster E by an arched curve that peaks on Day7. 
Key pathways are listed on the stripcharts of their corresponding clusters. Abbreviations: oxidative post-
translational modification (O-PTM); isoproterenol (ISO); TCA cycle and respiratory electron transport 
(TCA); branched-chain amino acid (BCAA) catabolism; fatty acid beta-oxidation (FABO). 
 
2.IV.D. Correlation between hypertrophy phenotype and cysteine O-PTM abundance. 

Temporal cluster analysis revealed the intrinsic temporal regulation of a cysteine O-PTM site, 

which may contribute to or respond to the dynamic pattern of the cardiac hypertrophy 

phenotype. The heart weight-body weight (HW/BW) ratios of the mouse strain were 

documented along with the left ventriclar sample collections to provide temporal phenotypic 

profiles. During ISO treatment, all mouse strains exhibited cardiac hypertrophy development 

starting from Day 1 post ISO-treatment (Figure 2.5.A). The averaged ratio of HW/BW across 6 

time points increased 20% in ISO over Vehicle. Interestingly, we observed an arched curve of 

hypertrophy development that peaked on Day 5 (33% higher than control) and stabilized on Day 

10 (~14% higher than control). This is consistent with previous observations of the ISO mouse 

model in the C57BL/6J40 mouse strain (Rau et al. 2015). 

Protein Cysteine Correlation P value 
Oxidation 

Type 
Signature 

Entry 
Name 

Protein Names 
Gene  

Names 

O55143 
O55143_

C875 
-0.99 0.0001 

Reversible 
cysteine O-
PTM 

Negative 
Correlation 

AT2A2_
MOUSE 

Sarcoplasmic/endoplasmic reticulum 
calcium ATPase 2 (SERCA2) (SR Ca(2+)-
ATPase 2) (EC 3.6.3.8) (Calcium pump 2)  

Atp2a2 

O55143 
O55143_

C377 
-0.96 0.0021 

Reversible 
cysteine O-

PTM 

Negative 
Correlation 

AT2A2_
MOUSE 

Sarcoplasmic/endoplasmic reticulum 
calcium ATPase 2 (SERCA2) (SR Ca(2+)-
ATPase 2) (EC 3.6.3.8) (Calcium pump 2) 

(Calcium-transporting ATPase 
sarcoplasmic reticulum type, slow twitch 
skeletal muscle isoform) (Endoplasmic 

reticulum class 1/2 Ca(2+) ATPase) 

Atp2a2 

P00397 
P00397_

C498 
-0.96 0.0020 

Reversible 
cysteine O-

PTM 

Negative 
Correlation 

COX1_
MOUSE 

Cytochrome c oxidase subunit 1 (EC 
1.9.3.1) (Cytochrome c oxidase polypeptide 

I) 

Mtco1 
COI mt-

Co1 

Q07417 
Q07417_

C246 
-0.97 0.0010 

Reversible 
cysteine O-

PTM 

Negative 
Correlation 

ACADS_
MOUSE 

Short-chain specific acyl-CoA 
dehydrogenase, mitochondrial (SCAD) (EC 

1.3.8.1) (Butyryl-CoA dehydrogenase) 
Acads 

Q3ULD
5 

Q3ULD5
_C431 

-0.99 0.0001 
Reversible 
cysteine O-

PTM 

Negative 
Correlation 

MCCB_
MOUSE 

Methylcrotonoyl-CoA carboxylase beta 
chain, mitochondrial (MCCase subunit 

beta) (EC 6.4.1.4) (3-methylcrotonyl-CoA 
carboxylase 2)  

Mccc2 
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Protein Cysteine Correlation P value 
Oxidation 

Type 
Signature 

Entry 
Name 

Protein Names 
Gene  

Names 

Q8BFR
5 

Q8BFR5
_C290 

-0.93 0.0065 
Reversible 
cysteine O-

PTM 

Negative 
Correlation 

EFTU_M
OUSE 

Elongation factor Tu, mitochondrial Tufm 

Q8BGH
2 

Q8BGH2
_C65 

-0.93 0.0079 
Reversible 
cysteine O-

PTM 

Negative 
Correlation 

SAM50_
MOUSE 

Sorting and assembly machinery 
component 50 homolog 

Samm5
0 

Q8K182 
Q8K182
_C140 

-0.92 0.0085 
Reversible 
cysteine O-

PTM 

Negative 
Correlation 

CO8A_
MOUSE 

Complement component C8 alpha chain 
(Complement component 8 subunit alpha) 

C8a 

Q8K2B
3 

Q8K2B3
_C238 

-0.99 0.0002 
Reversible 
cysteine O-

PTM 

Negative 
Correlation 

SDHA_
MOUSE 

Succinate dehydrogenase [ubiquinone] 
flavoprotein subunit, mitochondrial (EC 

1.3.5.1) (Flavoprotein subunit of complex II) 
(Fp) 

Sdha 

Q9D8B
4 

Q9D8B4
_C115 

-0.98 0.0006 
Reversible 
cysteine O-

PTM 

Negative 
Correlation 

NDUAB_
MOUSE 

NADH dehydrogenase [ubiquinone] 1 alpha 
subcomplex subunit 11 (Complex I-B14.7) 

(CI-B14.7) (NADH-ubiquinone 
oxidoreductase subunit B14.7) 

Ndufa1
1 

Q5SSE
9 

Q5SSE9
_C4865 

-0.93 0.0070 SO2H 
Negative 

Correlation 
ABCAD_
MOUSE 

ATP-binding cassette sub-family A member 
13 

Abca13 

A2ASQ
1 

A2ASQ1
_C441 

0.97 0.0012 
Reversible 
cysteine O-

PTM 

Positive 
Correlation 

AGRIN_
MOUSE 

Agrin [Cleaved into: Agrin N-terminal 110 
kDa subunit; Agrin C-terminal 110 kDa 

subunit; Agrin C-terminal 90 kDa fragment 
(C90); Agrin C-terminal 22 kDa fragment 

(C22)] 

Agrn 
Agrin 

P01027 
P01027_

C727 
0.95 0.0032 

Reversible 
cysteine O-

PTM 

Positive 
Correlation 

CO3_M
OUSE 

Complement C3 (HSE-MSF) [Cleaved into: 
Complement C3 beta chain; C3-beta-c 

(C3bc); Complement C3 alpha chain; C3a 
anaphylatoxin; Acylation stimulating protein 

(ASP) (C3adesArg); Complement C3b 
alpha' chain; Complement C3c alpha' chain 
fragment 1; Complement C3dg fragment; 
Complement C3g fragment; Complement 
C3d fragment; Complement C3f fragment; 
Complement C3c alpha' chain fragment 2] 

C3 

P07724 
P07724_

C302 
0.94 0.0051 

Reversible 
cysteine O-

PTM 

Positive 
Correlation 

ALBU_M
OUSE 

Serum albumin 
Alb Alb-
1 Alb1 

P07724 
P07724_

C485 
0.99 0.0001 

Reversible 
cysteine O-

PTM 

Positive 
Correlation 

ALBU_M
OUSE 

Serum albumin 
Alb Alb-
1 Alb1 

P14211 
P14211_

C137 
0.93 0.0066 

Reversible 
cysteine O-

PTM 

Positive 
Correlation 

CALR_M
OUSE 

Calreticulin (CRP55) (Calregulin) 
(Endoplasmic reticulum resident protein 60) 

(ERp60) (HACBP) 
Calr 

P19221 
P19221_

C264 
1.00 0.0000 

Reversible 
cysteine O-

PTM 

Positive 
Correlation 

THRB_M
OUSE 

Prothrombin (EC 3.4.21.5) (Coagulation 
factor II) [Cleaved into: Activation peptide 
fragment 1; Activation peptide fragment 2; 

Thrombin light chain; Thrombin heavy 
chain] 

F2 Cf2 
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Protein Cysteine Correlation P value 
Oxidation 

Type 
Signature 

Entry 
Name 

Protein Names 
Gene  

Names 

P62908 
P62908_

C119 
1.00 0.0000 

Reversible 
cysteine O-

PTM 

Positive 
Correlation 

RS3_M
OUSE 

40S ribosomal protein S3 (EC 4.2.99.18) Rps3 

P68040 
P68040_

C249 
0.97 0.0010 

Reversible 
cysteine O-

PTM 

Positive 
Correlation 

RACK1_
MOUSE 

Receptor of activated protein C kinase 1 
(12-3) (Guanine nucleotide-binding protein 

subunit beta-2-like 1) (Receptor for 
activated C kinase) (Receptor of activated 
protein kinase C 1) (p205) [Cleaved into: 
Receptor of activated protein C kinase 1, 

N-terminally processed (Guanine 
nucleotide-binding protein subunit beta-2-

like 1, N-terminally processed)] 

Rack1 
Gnb2-

rs1 
Gnb2l1 

Q01853 
Q01853_

C572 
0.93 0.0080 

Reversible 
cysteine O-

PTM 

Positive 
Correlation 

TERA_M
OUSE 

Transitional endoplasmic reticulum ATPase 
(TER ATPase) (EC 3.6.4.6)  

Vcp 

Q07113 
Q07113_

C886 
1.00 0.0000 

Reversible 
cysteine O-

PTM 

Positive 
Correlation 

MPRI_M
OUSE 

Cation-independent mannose-6-phosphate 
receptor (CI Man-6-P receptor) (CI-MPR) 
(M6PR) (300 kDa mannose 6-phosphate 
receptor) (MPR 300) (Insulin-like growth 

factor 2 receptor)  

Igf2r 

Q3ULD
5 

Q3ULD5
_C392 

0.94 0.0047 
Reversible 
cysteine O-

PTM 

Positive 
Correlation 

MCCB_
MOUSE 

Methylcrotonoyl-CoA carboxylase beta 
chain, mitochondrial (MCCase subunit 

beta) (EC 6.4.1.4) (3-methylcrotonyl-CoA 
carboxylase 2)  

Mccc2 

Q60936 
Q60936_

C265 
1.00 0.0000 

Reversible 
cysteine O-

PTM 

Positive 
Correlation 

COQ8A_
MOUSE 

Atypical kinase COQ8A, mitochondrial (EC 
2.7.-.-) (Chaperone activity of bc1 complex-
like) (Chaperone-ABC1-like) (Coenzyme Q 

protein 8A) (aarF domain-containing 
protein kinase 3) 

Coq8a 
Adck3 
Cabc1 

Q61543 
Q61543_

C320 
0.95 0.0040 

Reversible 
cysteine O-

PTM 

Positive 
Correlation 

GSLG1_
MOUSE 

Golgi apparatus protein 1 (E-selectin ligand 
1) (ESL-1) (Selel) (Golgi sialoglycoprotein 

MG-160) 

Glg1 
Esl1 

Mg160 
Selel 

Q61554 
Q61554_

C2413 
0.92 0.0091 

Reversible 
cysteine O-

PTM 

Positive 
Correlation 

FBN1_M
OUSE 

Fibrillin-1 [Cleaved into: Asprosin] 
Fbn1 
Fbn-1 

Q8VDN
2 

Q8VDN2
_C249 

1.00 0.0000 
Reversible 
cysteine O-

PTM 

Positive 
Correlation 

AT1A1_
MOUSE 

Sodium/potassium-transporting ATPase 
subunit alpha-1 (Na(+)/K(+) ATPase alpha-

1 subunit) (EC 3.6.3.9) (Sodium pump 
subunit alpha-1) 

Atp1a1 

Q8VE9
6 

Q8VE96
_C254 

0.99 0.0003 
Reversible 
cysteine O-

PTM 

Positive 
Correlation 

S35F6_
MOUSE 

Solute carrier family 35 member F6 (ANT2-
binding protein) (ANT2BP) (Transport and 

Golgi organization 9 homolog) 
Slc35f6 

Q9DBH
5 

Q9DBH5
_C204 

0.95 0.0034 
Reversible 
cysteine O-

PTM 

Positive 
Correlation 

LMAN2_
MOUSE 

Vesicular integral-membrane protein VIP36 
(Lectin mannose-binding 2) (Vesicular 
integral-membrane protein 36) (VIP36) 

Lman2 

Q9ESW
4 

Q9ESW
4_C72 

1.00 0.0000 
Reversible 
cysteine O-

PTM 

Positive 
Correlation 

AGK_M
OUSE 

Acylglycerol kinase, mitochondrial (EC 
2.7.1.107) (EC 2.7.1.94) (Multiple substrate 

lipid kinase) (MuLK) (Multi-substrate lipid 
kinase) 

Agk 
Mulk 

Table 2.4. List of cysteine sites significantly correlated with the hypertrophy phenotype. 
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To directly map the association between temporal changes in cysteine O-PTM and that of the 

hypertrophy phenotype, we performed cubic spline-based Pearson correlation. We selected 29 

cysteine O-PTM sites with a p-value <0.01 as key oxidation sites that significantly associated 

with cardiac hypertrophy. Among them, 18 cysteine sites within 17 proteins and 11 cysteine 

sites within 10 proteins were positively and negatively correlated with HW/BW changes, 

respectively (Figure 2.5.B). Pathway enrichment of proteins with a positive correlation to 

phenotype unveiled 4 secretory proteins in the extracellular space that regulate Insulin-like 

Growth Factor (IGF) transport, a key regulatory mechanism of cardiac hypertrophy (Hua, Zhang, 

and Ren 2012; Troncoso et al. 2014). In addition, a BCAA pathway protein, MCCC2, was 

identified in both correlation groups, demonstrating a diverse regulation of MCCC2 cysteine O-

PTM. Notably, reversible O-PTM of an additional two key BCAA proteins, BCAT2 and DBT were 

observed in Cluster 1C, featured by continually decreased oxidation and total cysteine 

abundance. As a BCAA catabolic defect is a metabolic hallmark of the failing heart (Sun et al. 

2016), diverse oxidative regulation of BCAA proteins can potentially contribute to hypertrophy by 

metabolic reprogramming. Detailed information on featured sites, proteins, and their enriched 

pathways are listed in Tables 2.4 and 2.5, respectively. 
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Figure 2.5. Phenotypic alteration and corresponding cysteine site fingerprints during ISO-induced 
cardiac hypertrophy. (A) The HW/BWs were temporally measured three times per time point during 
ISO-induced cardiac remodeling (time points Day 1, 3, 5, 7, 10, and 14), and subsequently normalized to 
HW/BWs of vehicle. The majority of log2 transformed measurements showed positive values, indicating 
HW/BWs of ISO mice increase relative to that of Vehicle mice, as expected. The difference of HW/BWs 
between ISO and Vehicle mice was continuously broadened and peaked at Day 5, and then decreased 
until Day 10, stabilizing thereafter. (B) Twenty-nine cysteine sites which are highly correlated with HW/BW 
changes were identified through Pearson correlation coefficient (p-value <0.01); their abundance ratios 
were displayed over time. The left panel shows eighteen cysteine sites within seventeen proteins that are 
positively correlated with HW/BW, while the right panel shows eleven cysteine sites within ten proteins 
that are negatively correlated with HWBW. The red line indicates each cysteine site and the thick blue line 
shows the average trend of the group. The two thin blue lines indicate upper bound and lower bound that 
cover 95% of the data. Detailed information regarding proteins of each cluster and their enriched 
pathways are listed in the Tables 2.4 and 2.5, respectively. Abbreviations: isoproterenol (ISO); heart 
weight-body weight ratio (HW/BW); control (CTRL).  
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Pathway	Name	
#	Entities	
Found	

#	Entities	Total	 Entities	FDR	
Submitted	Entities	

Found	
Association	

N-glycan	trimming	in	the	ER	
and	Calnexin/Calreticulin	cycle	

2	 40	 0.063407806	 Q01853;P14211	 Positive	Correlation	

Post-translational	protein	
phosphorylation	

3	 165	 0.063407806	
Q61554;P07724;P01

027	
Positive	Correlation	

Binding	and	Uptake	of	Ligands	
by	Scavenger	Receptors	

2	 108	 0.090262572	 P14211;P07724	 Positive	Correlation	

Regulation	of	Complement	
cascade	

2	 129	 0.090262572	 P19221;P01027	 Positive	Correlation	

Complement	cascade	 2	 140	 0.090262572	 P19221;P01027	 Positive	Correlation	

Peptide	ligand-binding	
receptors	

2	 196	 0.090262572	 P19221;P01027	 Positive	Correlation	

 

Table 2.5. Enriched biological pathways of proteins associated with cysteine sites significantly correlated 
with the hypertrophy phenotype. 
 

2.IV.E. Signature pathways and proteins that contribute to cardiac hypertrophy. 

Combining molecular signatures from differential analysis, cubic spline-based temporal 

clustering, and phenotypic correlation, we highlighted 7 biological processes that are 

reproducibly identified as signature pathways during cardiac hypertrophy, including TCA, FABO, 

BCAA, glucose metabolism, protein phosphorylation, creatine metabolism, and response to 

elevated Ca2+. Specifically, among pathways enriched in proteins with significantly increased 

reversible modification, protein phosphorylation, creatine metabolism, and response to elevated 

Ca2+ pathways exhibited an increase in cysteine modification in early stages of hypertrophy, 

whereas glucose metabolism pathways were modified in the later stages (Figure 2.6.A). 

Comparatively, the cysteine oxidative profiles of TCA, FABO, and BCAA were more 

complicated, as metabolic reprogramming is a highly integrative process with complex 

compensatory mechanisms. We mapped all identified BCAA pathway proteins and their 

corresponding temporal dynamics. As expected, temporal trends of cysteine modification differ 

across pathways and even among cysteine sites within one protein. Interestingly, cysteine 

temporal profiles of valine catabolism sub-pathways exhibit a trend towards increase, whereas 
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that of leucine and isoleucine catabolism uniformly illustrates a decreased trend at early stage of 

hypertrophy. These observations demonstrate that cysteine O-PTM profiles are highly 

correlated with key biological processes during cardiac hypertrophy. Furthermore, these 

integrated molecular signatures of hypertrophy are novel and can be used to define phenotypes 

of metabolic reprogramming in new and informative ways. 

 
 
Figure 2.6. Signature pathways and proteins that contribute to cardiac hypertrophy. (A) The 
temporal changes of modified cysteine sites on pathways enriched in proteins with significantly increased 
modification abundance. Pathways and the temporal changes of their corresponding enriched temporal 
clusters are illustrated. Temporal clusters displaying increased trends of modification changes at 
indicated durations are boxed and color-coded as green. Protein phosphorylation, creatine metabolism, 
and response to elevated Ca2+ pathways are increased at early stages of hypertrophy whereas glucose 
metabolism has a trend of increased modification during later stages of hypertrophy. Cysteine sites with 
significantly increased modification in glucose metabolism pathways are labeled with accession number, 
protein name, and modified cysteine site. These cysteine sites with significantly increased modification 
are color-coded as green. (B) The temporal changes of modified cysteine sites on BCAA pathway 
proteins are labeled and illustrated. Each molecular player is labeled with accession number, protein 
name, modified cysteine site, and temporal cluster. Temporal clusters with increased or decreased trends 
at indicated durations are boxed and color-coded as green or red, respectively. Most sites in the shared 
pathways among BCAA pathways exhibit diverse temporal trends. Notably, the valine catabolism 
pathway exhibits an increased trend of cysteine modification whereas the temporal trend of leucine and 
isoleucine is decreased during early stages of hypertrophy. These observations suggest that oxidative 
cysteine regulation of BCAA pathways is highly compartmentalized, based on biological functions. 
Abbreviations: branched-chain amino acid catabolism (BCAA). 
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54 

2.IV.F. Role of cysteine O-PTM in cardiovascular biology. 

ISO induced beta-adrenoceptor stimulation has been shown to evoke cardiac oxidative stress 

(G.-X. Zhang et al. 2005, 2007). Specifically, this process is mediated through increased 

mitochondrial ROS production, as mitochondrial targeted antioxidants diminish oxidative stress 

and its downstream biological events (Andersson et al. 2011). Meanwhile, the capacity of nitric 

oxide synthesis is also increased in response ISO, likely from enhanced expression of 

endothelial and inducible nitric oxide synthases (Krenek et al. 2009). During heart failure 

development, elevated RO/NS production in turn leads to modification of reactive cysteine thiol 

groups. The highly reactive thiol group of cysteine residues has made it difficult to isolate native 

versus non-biological oxidized peptides in the cardiovascular system, and subsequently, to 

elucidate their biological role. Pioneering studies on both technological and biological fronts 

have overcome this barrier and broken new ground in cardiovascular medicine. Recent work 

from Jennifer van Eyk’s laboratory identified distinct subpopulations of nitrosylated cysteines 

through a dual-labeling of nitrosylation that reduces labeling bias (Chung et al. 2015). This 

advanced methodology was then utilized to explore glycogen synthase kinase 3β (GSK3β) 

regulation by nitrosylation and it was discovered that nitrosylation reduces GSK3β kinase 

activity and promotes its nuclear translocation (S.-B. Wang et al. 2018).  

 

The biological and physiological roles of cysteine O-PTM in both vascular systems and cardiac 

muscle have been pioneered and carried into clinical translation by the work of Jonathan 

Stamler and Elizabeth Murphy, respectively. A seminal paper in 2004 by the Stamler laboratory 

was the first demonstration of a role of nitrosylation in innate immunity and vascular function (L. 

Liu et al. 2004). Mice devoid of S-nitrosoglutathione reductase showed marked increased in 

nitrosylation, vascular damage, and mortality following endotoxic challenge. More recent work 

unveiled a role for the hemoglobin β Cys93 residue in nitrosylation-based vasoactivity, 

demonstrating that S-nitrosohemoglobin plays a role in cardioprotection  (R. Zhang et al. 2016). 
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This and other notable contributions (Stomberski, Hess, and Stamler 2019; Seth and Stamler 

2015; Gonzalez et al. 2009) have revolutionized our understanding of cysteine O-PTM in 

vascular signaling. Studies from Elizabeth Murphy’s lab have advanced knowledge of cysteine 

O-PTM in cardiac muscle biology. This group pioneered novel labeling approaches for 

measuring nitrosylation occupancy, the fraction of a given protein that is nitrosylation modified in 

the myocardium, and demonstrated that nitrosylation occupancy levels following ischemic 

preconditioning protect against cysteine O-PTM (Kohr et al. 2012). More recent, formative work 

by this lab demonstrated increased nitrosylation abundance at Cys144 of the cardioprotective 

protein, TRIM72, is a molecular switch preventing TRIM72 degradation following an oxidative 

insult, which increases cardiomyocyte survival (Kohr et al. 2014). Other work unveiled complex 

profiles of nitroso-redox signaling and nitrosylation of cardiac proteins in failing versus non-

failing human cardiac tissue. Sex-specific differences in S-glutathionylation of endothelial nitric 

oxide synthase were discovered, adding to the overall complexity of these pathways in cardiac 

muscle (Menazza et al. 2015). 

   

Our measurements represent the sum of all types of cysteine O-PTM events, including disulfide 

bonds, nitrosylation, glutathionylation, and irreversible cysteine O-PTMs. Among these, different 

modifications result from diverse regulatory mechanisms (Murray and Van Eyk 2012) and can 

be interconvertible. For example, glutathionylation of Cys63 on the ER stress protein BiP is 

mediated by sulfenylation (J. Wang and Sevier 2016). Meanwhile, both sulfenylation and 

glutathionylation of BiP have been shown to enhance BiP’s activity in preventing aggregation. 

Meanwhile, different modifications can also lead to distinct biological consequences. For 

example, two types of oxidative posttranslational modifications have been shown to occur on 

Cys674 of SERCA2: reversible S-glutathiolation increases SERCA activity, whereas irreversible 

oxidative CysSO3H is associated with decreased activity (Qin et al. 2013). Conventionally, 

irreversible modifications were considered to be markers of cellular damage. Yet recent 
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advances suggest that these modifications have regulatory capacities. For example, the unique 

active cysteine sites of nitrile hydratase and thiocyanate hydrolase are responsible for metal 

coordination and can be modified by CysSO2H. The fully reduced forms of these two enzymes 

appear inactive, suggesting that CysSO2H is critical in maintaining their catalytic activity 

(Murakami et al. 2000; Arakawa et al. 2009). Our study provides key signatures modified by 

reversible and irreversible cysteine O-PTMs, facilitating the target prioritization for studying 

hierarchical regulation among different types of cysteine O-PTMs. 

 

2.V. Discussion.  

 

2.V.A. Technical Considerations. 

Capitalizing on several advancements and variations of the biotin switch method (García-

Santamarina et al. 2014; R. Li, Huang, and Kast 2015), we developed a quantitative approach 

for in-depth characterization of the cysteine oxidized cardiac proteome. Firstly, NEM alkylates 

free cysteines via a faster, more specific Michael addition reaction than the nucleophilic 

substitution reaction with IAM (Kramer et al. 2015; Reisz et al. 2013). Efficient labeling with less 

pH dependence makes NEM a great choice to preserve the labile reversible cysteine O-PTM 

and minimize artificial chemical alteration and non-specific labeling during sample processing 

over IAM. Secondly, biotin maleimide labeling offers the efficiency and specificity accompanying 

the Michael addition reaction. In addition, as the avidin-biotin interaction is strong and rapid 

(Haugland and You 2008), enrichment with high-capacity NeutrAvidin agarose enables a large-

scale pull-down with high efficiency. Thirdly, stable-isotope dimethyl labeling using reductive 

amination is a reliable widely-used approach in MS-based quantitative proteomics (Boersema et 

al. 2009; Hsu et al. 2003). Specifically, dimethylation enhances fragmentation efficiency of 

collision-induced dissociation (CID) by increasing the number of positive charges on a peptide 
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(Fu and Li 2005). In addition, high cost-effectiveness makes dimethylation applicable for studies 

with any sample size. 

 

Nevertheless, there are a few limitations to consider. The multi-stage process, including biotin 

maleimide labeling, dimethyl labeling, and avidin enrichment requires milligrams of starting 

material. The development of biotin maleimide-based isotope reagents would be a great tool to 

combine this two-stage labeling. While DTT is a potent and efficient reducing reagent for all 

types of reversible cysteine O-PTM, proteins with a large number of stable disulfide bonds will 

be prevalently enriched in this assay. On the other hand, this method can facilitate discovery of 

functional and catalytic disulfide bonds and less reactive cysteine O-PTMs that require a more 

potent reductant. Despite the limitations mentioned above, our biotin switch-based reversible 

cysteine discovery platform provides a reliable workflow allowing robust detection of reversible 

cysteine sites at multiple time points during cardiac hypertrophy development. 

  

2.V.B. Future Directions. 

To comprehensively understand the impact of ISO-induced hypertrophy on cysteine O-PTM 

sites and proteins identified from this robust biotin switch based quantitative proteomic 

approach, we used a bioinformatics approach that dissects the temporal pattern of the cysteine 

O-PTM proteome using a cubic spline-based K-mean clustering (Bhasi, Forrest, and 

Ramanathan 2005; Straube et al. 2015). The cubic spline method generates a fitted curve for all 

the cysteine O-PTM abundance values across time points for each oxidation site. This de-

noising method extracts the most fitted temporal pattern from a group of highly variable values 

with cross-validation. The smoothed temporal curve facilitates the subsequent unsupervised 

clustering to accurately identify temporal clusters of interests. However, the assumption of this 

method is that alteration across time points is gradual and smooth; this will potentially have a 

tradeoff with a sudden alteration between time points that is biologically significant. Thus, more 
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time points are required or multiple temporal analysis methods widely used in the genomics 

field, including advanced pattern extraction (Tchagang et al. 2009), can be adapted and applied 

to reveal the true biological signal from the technical bias. 

   

2.VI. Conclusions. 

Utilizing a novel cysteine O-PTM discovery platform comprised of customized redox proteomics 

and advanced computational analysis, we present the first proteome-wide study of multi-type 

cysteine O-PTM on the well-known mouse model of ISO-induced cardiac hypertrophy. The 

novelty and strength of our study lie in our ability to cluster the temporal behavioral profiles of 

cysteine residues and visualize distinct patterns of change, as well as how they correlate to the 

hypertrophic phenotype. The advanced computational and statistical platform enabled us to 

create a dynamic and integrated picture of the entire cysteine oxidative proteome, a molecular 

signature that can be used for in-depth profiling and defining of various health and diseased 

states.  
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CHAPTER 3: COMPUTATIONAL APPROACHES TO IDENTIFY 

METABOLOME FINGERPRINTS OF PATHOLOGICAL STAGES 

FOLLOWING HEART FAILURE TREATMENT. 
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3.I. Abstract. 

Pathologic cardiac remodeling from a healthy to diseased state is characterized by an intricate 

and coordinated multitude of alterations among various biomolecules over time. Conversely, 

mechanical circulatory support devices (MCSD) are a promising strategy for unloading the heart 

and reversing this process. Understanding the molecular drivers of remodeling and reverse 

remodeling would inform new mechanistic insights and more nuanced diagnostics, prognostics, 

and therapeutics for hypertrophy and/or heart failure (HF).  Plasma metabolomics holds great 

promise for the temporal profiling and characterization of healthy and diseased phenotypes, but 

large-scale technological platforms with machine learning (ML) pipelines for clinical temporal 

metabolomics profiling are still lacking. In this study, we established a Multiple Reaction 

Monitoring (MRM)-based MS quantitative platform and a corresponding ML-based 

computational workflow to unravel the metabolomics fingerprints of healthy humans, HF 

patients, and a mouse model. Accordingly, we quantified the plasma levels of 610 metabolites, 

and identified those exhibiting high correlation to phenotypic changes. In summary, a total of 30 

metabolites were significantly altered during the cardiac remodeling: 12 metabolites were 

continuously upregulated during ISO-treatment, belonging to the biological categories of amino 

acids and sphingomyelin (SM). In parallel, 18 metabolites were downregulated, consisting of 10 

free fatty acids (FFA), 6 ceramides, and 2 phosphatidylcholine (PC). Among these FFAs, we 

identified 3 saturated FFAs, 6 monounsaturated FFAs (with 1 double bond) and 5 

polyunsaturated fatty acids (PUFA). Importantly, we have identified 4 driver metabolites that are 

significantly associated with changes in HW/BW ratio, all of which are FFAs: C14:0 (Myristic 

acid), cis-C16:1w7 (Palmitoleic acid), cis-C18:1w9 (Oleic acid), and cis-C18:3w3 (α-Linolenic 

acid, ALA). Our study highlights a novel ML workflow that, in conjunction with benchmark 

datasets, will facilitate future biomarker discovery. 
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3.II. Introduction. 

Maladaptive cardiac remodeling and heart failure (HF) are common stages of many heart 

diseases and pose major public health problems in the United States (McMurray 2010). To date, 

advanced HF patients are clinically treated as a homogenous group with similar standard 

therapies (WRITING COMMITTEE MEMBERS et al. 2013). However, HF is a multifactorial 

disease and results not only from cardiac overload or injury, but also from a complex interplay 

among genetic, neurohormonal, inflammatory, and biochemical alterations, requiring refined 

diagnostic means to stratify patient groups for divergent therapies (S. J. Shah et al. 2015; Taylor 

et al. 2004). Many factors including cultural, environmental, and comorbidities (e.g., 

hypertension, obesity, kidney disease, and diabetes) can predict the severity and outcome of 

HF (East et al. 2004; Mensah et al. 2005; Husaini et al. 2011). However, rigorous, quantifiable 

methods that reliably characterize the complexity of changes associated with pathological 

remodeling and hold clinical predictive value are lacking. 

 

Cardiac metabolism is a likely target for pathologic cardiac remodeling (Neubauer 2007), in that 

the mechanical nature of cardiomyocytes makes them substantial energy consumers and even 

more so during remodeling when workloads are heightened. Under healthy conditions, the 

catabolism of fatty acids through β-oxidation provides approximately 70-90% of the total ATP 

used by the heart (Doenst, Nguyen, and Abel 2013). In addition to fatty acids, other metabolites 

are supplemented into the oxidative phosphorylation pathway, including carbohydrates, amino 

acids, and ketone bodies (Kolwicz, Purohit, and Tian 2013). Complex metabolic pathways 

including lipolysis, glycolysis, fatty acid oxidation, tricarboxylic acid cycle, oxidative 

phosphorylation, and regulatory signaling cascades work in concert to maintain functional 

stability of the heart. Both basic research and clinical studies have reported a shift toward 

glucose metabolism from fatty acid β-oxidation in hypertrophied and failing hearts. 

Consequently, ATP synthesis in failing hearts is compromised, leading to cardiac energy deficits 
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(Kolwicz, Purohit, and Tian 2013). Furthermore, inadequate cardiac output leads to insufficient 

hemodynamic circulation and end-organ perfusion, which subsequently alters global 

metabolism. Hence, maladaptive remodeling and advanced HF are associated with disrupted 

levels of multiple metabolites both in the heart and the body (Neubauer 2007). Comprehensive 

quantitation of metabolite abundance in blood plasma, also known as plasma metabolomics 

profiling, can provide mechanistic insights into the molecular alterations underlying maladaptive 

remodeling and HF (Cheng et al. 2015). The large-scale quantitation of circulating metabolites 

may also identify metabolic changes for clinical classification, which may predict the outcomes 

of HF patients before and after optimal medical therapy and surgical interventions (Lloyd-Jones 

2010). These methods can be established as important avenues for biomarker and drug-target 

development, as well as the validation of treatments. 

  

With the advances in high-throughput quantification by MS and Nuclear Magnetic Resonance, 

components of metabolic pathways have been identified as potential biomarkers in complex 

diseases (Emwas 2015; Soininen et al. 2015; A. Zhang, Sun, Wang, et al. 2012; A. Zhang et al. 

2016). Biomarkers are quantifiable small molecules that can be utilized as internal indicators 

(Chen et al. 2011; Graham et al. 2013; J. Kang et al. 2015) or therapeutic targets of disease 

(Arakaki, Skolnick, and McDonald 2008; Ganti et al. 2012; Tolstikov et al. 2014). Metabolic 

survey may offer novel mechanistic insights on disease origin and progression beyond 

traditional approaches (Roux et al. 2011; A. Zhang, Sun, Wu, et al. 2012). A few studies have 

identified metabolites as cardiometabolic risk factors (Sansbury et al. 2014; Soininen et al. 

2015; Würtz et al. 2015). In these investigations, several biological classes of metabolites or 

metabolic pathways were targeted based on previous knowledge of cardiac pathology 

(Armenian et al. 2014). Thus far, a platform for unbiased, discovery-based temporal 

metabolomics profiling empowered by advanced machine learning-based approaches is still 
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missing, which has largely hindered our capabilities for identifying metabolites relevant to 

maladaptive remodeling and HF. 

  

Table 3.1. Biological Classes of 610 Targeted Metabolites in Mouse and Human Plasma. An MRM-
based mass spectrometry approach detected and quantified the absolute abundances of a total 610 
metabolites belonging to 20 biological classes in mouse and human plasma samples. The number of 
metabolites in each biological class is also shown.  
 

In this study, we utilized an MRM-based MS quantitative platform to conduct large-scale plasma 

metabolomics profiling with the intent to capture the temporal dynamics of metabolites in 

plasma. We first applied this to chronic isoproterenol (ISO)-treated mouse strains with diverse 

susceptibilities towards β-adrenergic overstimulation, temporally characterizing 610 plasma 

metabolites that encompass 20 categories of biomolecules based on their chemical structure 

and biological function (Table 3.1). The experimental mouse dataset was used to develop a 

computational workflow, which elucidates the connection between metabolic dynamics and 

phenotypic alterations. We then applied our technical platform and corresponding computational 

Biological Class Metabolites Biological Class Metabolites 

Ceramides 136 Biogenic Amines 18 

Phosphatidylcholines 85 Phosphatidylglycerols 18 

Free Fatty Acids 63 Eicosanoids & Other PUFAs 17 
Phosphatidylethanolami
nes 54 Lysophosphatidylcholines 15 

Acylcarnitines 42 Energy Metabolism 
Intermediates 9 

Sphingomyelins 40 Lysophosphatidylethanolamine
s  9 

Phosphatidylserines 27 Neurotransmitter 8 

Bile Acids 22 Oxidative Status 6 

Amino Acids 20 Hexoses 1 

Steroids 19 Lysophosphatidylglycerols 1 
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workflow to human datasets. Blood samples and clinical assessments were acquired from 26 

HF patients receiving Mechanical Circulatory Support Device (MCSD) therapy. Temporal 

metabolomics profiling characterized the metabolic fingerprints following MCSD implantation 

and identified metabolites relevant to phenotypic alterations. Our study illustrates that a 

computational workflow, in conjunction with a benchmark dataset of healthy and diseased 

human plasma metabolomes, may pave the groundwork for future metabolomics studies with 

clinical translation. 

 
 
3.III. Methods and Materials. 

 
3.III.A. Experimental Procedures 

 
Study Approvals. 

Mouse experiments were performed in accordance with the National Research Council’s 

guidelines for the care and use of laboratory animals and were approved by the Animal 

Research Committee (ARC) of UCLA under ARC Protocol #2002-172.  Human procedures were 

performed according to protocols approved by the Institutional Review Board (IRB) of UCLA 

under IRB protocols #12-000351 and #12-000899. All participating human subjects received a 

detailed explanation of the study and provided written informed consent. 

 

Mouse Model of Maladaptive Cardiac Remodeling and Sample Collection. 

Cardiac maladaptive remodeling was induced in mice of six genetic strains (Figure 3.1.) with 

chronic isoproterenol infusion, using a previously reported protocol (Drews et al. 2010). 
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Human Cohort and Sample Collection. 

A pilot human cohort was assembled with 26 advanced HF Patients undergoing MCSD 

implantation and 12 Healthy Human Subjects. The venous blood samples were obtained and 

clinical assessments were concomitantly documented one day before the surgery (T0), and 

subsequently within time windows from one day post-surgery up to 14 weeks depending on the 

availability of patients (Figure 3.4.). 

 

Metabolic Profiling of Blood Plasma. 

Utilizing a Multiple-Reaction-Monitoring (MRM) based MS quantitative approach, we surveyed 9 

quantification panels of plasma metabolites (P180, Energy Metabolism, Free Fatty Acids, 

Eicosanoids and other oxidation products of PUFAs, Lipids, Steroids, Neurotransmitters, Bile 

acids, Oxidative status assays) using service offered by Biocrates Life Science AG (Innsbruck, 

Austria). We targeted a total of 610 plasma metabolites (Table 3.1); the absolute abundance 

levels of plasma metabolites were quantified for subsequent computational analyses. 

 

Healthy Human Subjects 
No
. 

Age 
(y/o) 

Gender Ethnicity BMI  No. 
Age  
(y/o) 

Gender Ethnicity BMI 

H1 61 F Caucasian 25.6  H7 38 M Asian 25.0 
H2 43 F Caucasian 25.0  H8 40 M Asian 25.8 
H3 58 M Asiana 23.3  H9 51 F Asian 22.7 
H4 39 M Hispanic 25.6  H10 36 M Asian 30.5 
H5 45 F Asian 22.5  H11 34 M Asian 24.9 
H6 46 M Asian 25.3  H12 27 M Asian 24.7 

 

Heart Failure Patients 

No. 
Age 
(y/o) 

Gender Ethnicity BMI Etiology SOFA1 SOFA2 SOFA3 
INTER
MACS 

P1 59 F Asian 23.3 Non-ischemic 6 3 2 2 
P2 65 M Caucasian 27.6 Non-ischemic 8 15 18 2 

P3 55 M Caucasian 21.0 Non-ischemic 5 5 2 
Mediu

mc 

P4 38 F Hispanic 29.7 Non-ischemic 5 4 2 3 
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No.	
Age 
(y/o)	

Gender	 Ethnicity	 BMI	 Etiology	 SOFA1	 SOFA2	 SOFA3	
INTER
MACS	

P5 24 F Hispanic 32.4 Non-ischemic 4 1 N/A 3 
P6 43 M Hispanic 28.3 Non-ischemic 12 2 N/A 3 
P7 57 M Caucasian 24.1 Non-ischemic 7 3 1 3 
P8 74 M Caucasian 28.0 Ischemic 14 4 3 2 
P9 62 M Asian 28.0 Ischemic 16 8 N/A 1 

P10 64 M Caucasian 27.3 Non-ischemic 8 6 3 2 

P11 43 M 
African 

American 
24.1 Non-ischemic 3 4 1 

Mediu
m 

P12 30 F Caucasian 20.1 Non-ischemic 4 1 N/A 3 
P13 65 M Hispanic 26.3 Ischemic 7 13 4 2 
P14 68 M Hispanic 25.6 Non-ischemic 10 9 2 2 
P15 61 M Hispanic 24.7 Non-ischemic 6 8 3 2 
P16 71 M Caucasian 19.7 Ischemic 5 4 2 4 
P17 66 M Hispanic 22.0 Non-ischemic 6 4 1 3 
P18 62 M Caucasian 23.4 Ischemic 10 15 N/A 2 
P19 37 F Caucasian 29.2 Non-ischemic 5 6 10 2 
P20 61 M Caucasian 21.0 Non-ischemic 13 7 4 2 
P21 63 M Otherb 20.3 Ischemic 12 17 N/A 1 

P22 36 M 
African 

American 
27.0 Non-ischemic 8 N/A 1 2 

P23 46 M 
African 

American 
22.4 Non-ischemic 13 3 4 2 

P24 80 M Caucasian 16.3 Ischemic 8 7 21 3 
P25 59 F Hispanic 47.9 Non-ischemic 15 19 N/A 2 
P26 65 M Hispanic 22.5 Non-ischemic 4 5 3 2 

 
Table 3.2 Demographics of the Human Cohorts. A sample cohort was assembled with 12 healthy 
human subjects and 26 advanced heart failure patients undergoing Mechanical Circulatory Support 
Device (MCSD) implantation. BMI represents Body Mass Index; SOFA1 represents SOFA score of 
patient on 1 day pre-surgery; SOFA2 represents SOFA score of patient 5-6 days post-surgery; and SOFA 
3 represents SOFA score of patient 1 month (or closest date to 1 month) post-surgery. a. Asian 
represents Asian and Pacific Islander; b. Other indicates no available ethnicity record; c. Medium 
presents all profiles above profile 4.  
 
 
3.III.B. Computational Analyses and Annotation Workflow. 

Data Pre-processing. 

To construct a reliable temporal dataset of metabolomics profiling for subsequent computational 

analyses, the original dataset was pre-processed to remove redundancy and to replace missing 

values. 
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Differential Expression Analysis with t-Tests. 

To characterize the temporal dynamics of plasma metabolites in response to maladaptive 

cardiac remodeling in mice, a Differential Expression Analysis was performed. We applied a 

Multiple Testing Correction to the p-values calculated by the t-tests, using the Benjamini-

Hochberg method to reduce the false positives (Benjamini and Hochberg 1995).  

In parallel, t-tests were applied to 12 Healthy Human Subjects and 26 advanced HF Patients 

undergoing MCSD implantation. For both mice and humans, a threshold of adjusted p-value < 

0.001 and ±1.5 fold change was applied to detect metabolites with significant changes. Volcano 

plots, Heatmaps, and PCAs were generated to depict the results of Differential Expression 

Analyses. 

 

Identification of Housekeeping Metabolites. 

A certain set of metabolites are regularly produced and maintained by the basic processes of 

metabolism. This set of metabolites can serve as internal controls to adjust for experimental 

batch effects, and individual differences prior to an experiment. Leveraging the concept of 

housekeeping proteins, we defined the housekeeping metabolites as constitutively expressed 

components to maintain the basic cellular function. Accordingly, they sustain a constant plasma 

concentration over time. As oppose to metabolites that were significantly altered over time, 

housekeeping metabolites are selected with an adjusted p-value > 0.1 in the comparison 

between Untreated mice and ISO-treated mice for the mouse population. For the human 

datasets, housekeeping metabolites were selected using the same criteria. 

  

Adjustment for Sample Relatedness Using a Linear Mixed Model. 

In the effort of identifying plasma metabolites that are highly associated with the phenotypic 

characteristics of ISO treatment or MCSD implantation (i.e., HW/BW or SOFA Score), we 

applied the following Linear Mixed Model to account for any population relatedness represented 
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by the metabolite expression profiles (Furlotte and Eskin 2015). In this model, y represents the 

measurable phenotypic characteristics, µ is the phenotypic mean of a population, β represents 

the strength of metabolite effects, x is the metabolite expression profiles, u represents the 

effects of population stratification with Var(u) = σ2gK, and ε represents the measurement errors 

which follows a normal distribution with mean of zero and variance of σ2e. In a genome-wide 

association study, the population structure is mainly defined by the genetic relatedness among 

strains or individuals, and thus the relatedness matrix (K) is constructed using all genotypes. 

However, the concentrations of plasma metabolites can be influenced by multidimensional 

factors including genetic variances, behavior patterns, and environmental impacts. Accordingly, 

it is more adequate to use the basal expression levels of the “housekeeping” metabolites to 

construct the relatedness matrix. The variances σ2g and σ2e are estimated using a restricted 

maximum likelihood (REML) approach, and the phenotype association is performed through 

computing the F-statistic to test whether β = 0. The relatedness matrix construction, restricted 

maximum likelihood estimation, and the F-statistic computation are carried out using “Pylmm”. 

Since each metabolite is tested independently, the Benjamini-Hochberg procedure is applied to 

correct for multiple testing. A metabolite is identified as highly associated with the phenotypic 

characteristics if its associated weight (β) is significantly greater or smaller than zero with an 

adjusted p-value < 0.01. 

 

3.IV. Results. 

 
3.IV.A. Characterization of Plasma Metabolome Dynamics in Mice following ISO-Treatment. 

 
Temporal Dynamics of Mouse Plasma Metabolome During Maladaptive Remodeling. 

We conducted ISO treatment of six genetic mouse strains that previously displayed variable 

susceptibilities towards hypertrophy caused by chronic β-adrenergic stimulation (Figure 3.1.) 
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(Rau et al. 2015). Using plasma metabolomics profiling, we obtained a temporal dataset 

containing 6 mouse strains, 6 time points, and 610 metabolites (Table 3.1) for computational 

analyses (see details in Experimental Procedures). Accordingly, an integrated computational 

workflow was conceptualized to facilitate data interpretation. To identify metabolites sensitive to 

the progression of ISO-induced cardiac remodeling, the differential expression patterns of all 

610 metabolites were investigated over time using paired Wilcoxon Signed-Rank tests followed 

by the multiple testing corrections (FDR < 0.05 as the threshold). 

 

 

Figure 3.1. Schematic Overview of Experimental Protocol for Global Plasma Metabolomics 
Profiling in ISO-stimulated Mice, Healthy Humans, and HF Patients. (A) Six genetic mouse strains 
with varying susceptibilities towards maladaptive cardiac remodeling by isoproterenol (ISO) stimulation 
were continuously treated with 15mg/kg/day ISO for 14 days using surgically implanted mini-osmotic 
pumps. At baseline (time point D0) and during ISO treatment (time points D1, D3, D5, D7, and D14), 
blood samples and whole hearts were collected for plasma metabolomics profiling (3 technical replicates), 
cardiac phenotypic assessments, and annotation analyses of metabolic pathways. (B) A total of 26 
advanced heart failure (HF) patients undergoing mechanical circulatory support device (MCSD) 
implantation were analyzed for their plasma metabolomics profiles while their clinical data were obtained. 
Venous blood samples were collected one day prior to surgery (-1d, labeled as T0) and subsequently at 
12 time periods up to 14 weeks post-surgery (14 weeks, T12). The post-surgery period was subdivided 
into Stage I (surgical recovery, T0-T3), Stage II (short-term post-MCSD, T4 up to T7), and Stage III (long-
term post-MCSD, T8-T12). A cohort of 12 healthy human subjects was also analyzed for their plasma 
metabolomics profiles at 5 time periods as control (T0-T4). 
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A total of 30 metabolites were significantly altered across all time points (Figure 3.2.C). Among 

these altered metabolites, 12 metabolites (Proline, Sphingomyelins C18:0, C20:1, C26:1, etc.) 

belonging to the biological categories of amino acids and sphingomyelin (SM) were continuously 

upregulated during ISO treatment. In parallel, 18 metabolites consisting of 10 free fatty acids 

(FFA), 6 ceramides, and 2 phosphatidylcholine (PC). Among these FFAs, we identified 3 

saturated FFAs, 6 monounsaturated FFAs (with 1 double bond) and 5 polyunsaturated fatty 

acids (PUFA) were downregulated (Figure 3.2.A). A temporal trend in fold change among the 25 

differentially expressed metabolites was visualized using a Heatmap (Figure 3.2.B). Each 

individual metabolite displays a unique pattern across the 14 days of treatment, with some 

metabolites (e.g., Proline and Sphingomyelin) continually increasing, and others (e.g. FFAs) 

reaching a sustained decrease. Using the 25 significantly altered metabolites, Principal 

Component Analysis (PCA) was able to stratify the untreated (D0) mice from the ISO-treated 

mice (D1, D3, D5, D7, D14), indicating that the screening process is sufficient to recognize 

metabolic distinctions between pathological stages (Figure 3.2.B and 3.2.C). At each time point, 

Unsupervised Hierarchal Clustering was applied to stratify the 6 genetic strains (Figure 3.2.D). 

Notably, each heatmap displays unique relationships between expression patterns, suggesting 

that the metabolic alterations are sensitive to both genetic predispositions and temporal 

development. 
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Figure 3.2. Metabolomics Dynamics in Mouse Plasma During ISO-induced Cardiac Remodeling.  
The absolute abundances of 610 plasma metabolites were quantified in six genetic mouse strains during 
ISO stimulation and subjected to statistical analyses to identify differentially expressed metabolites. Over 
time, these metabolites underlie the metabolic responses associated with the progression of ISO-induced 
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maladaptive remodeling of the heart. The results indicate that the global metabolomics profiling is a 
sensitive approach to identify metabolic markers with pathophysiological relevance. (A) A paired t-test 
was performed to identify metabolites significantly altered following ISO treatment (D0 vs. D1, 3, 5, 7 and 
14). One volcano plot depicted as Log2 (Fold-Change expressed as ISO-treated/Untreated) (X-axis) 
against –Log10 (adjusted p-value) (Y-axis) was generated accordingly. A threshold (p < 0.001 and ±1.5 
Fold-Change, dotted lines) was applied to identify metabolites with significant changes. During ISO-
induced maladaptive cardiac remodeling, 21 metabolites were downregulated (Yellow dots) and 4 were 
upregulated (Blue dots). The other metabolites did not display significant changes (Grey dots). (B) A 
temporal Fold-Change profile was generated for the 25 differentially expressed metabolites identified in 
panel 2A. The heatmap shows the metabolite levels expressed as Fold-Change between ISO-treated 
mice on consecutive time points (D1, D3, D5, D7 and D14) and Untreated mice (D0). For all metabolites, 
the Fold-Change value at each time point is indicated in each tile. The color keys (green, upregulation; 
red, downregulation) and histograms (blue line, distribution of metabolites in each color range) are 
displayed at the bottom of heatmap. Both Proline (Pro) and Sphingomyelin (SM) showed an increasing 
Fold-Change over time while multiple species of Ceramides (Cer) and Free Fat Acids (FFA) showed 
consistent downregulation. (C) Principal Component Analyses (PCAs) were performed on the 25 
significantly altered metabolites (Panel 2A) to compare ISO-treated mice during multiple time points (D1, 
D3, D5, D7, and D14) to Untreated mice (D0). The X-axis is depicted as the first principal component 
(PC1) representing the space with the largest variance in data. And the Y-axis is depicted as the second 
principal component (PC2) representing the space with the second largest variance. In each scatterplot, 
ISO-treated mouse strains are colored in red and untreated mouse strains are colored in blue. Ovals are 
95% inertia ellipses. Of the 25 metabolites, a clear separation between the ISO-treated mice and 
untreated mice can be observed starting on D1. The more profound separation on D3, D5, D7 and D14 
reflects prolonged and more severe stress by ISO treatment. In contrast, a PCA of all 610 metabolites did 
not show a separation during all time points, which demonstrates the identified metabolites in panel 6A-C 
reflecting pathophysiological changes over time. (D) A Hierarchical Clustering was generated using 
Spearman correlation coefficients of the metabolites Fold-Change profiles. Accordingly, the heatmaps 
display the metabolite levels expressed as a Fold-Changes between Untreated mice (D0) and ISO-
treated mice at multiple time points (D1, D3, D5, D7, and D14) of the 25 differentially expressed 
metabolites (Panel 2A). The color keys (green, upregulation; red, downregulation) and histograms (blue 
line, distribution of metabolites in each color range) are displayed at the bottom of heatmap. The 
dendrograms on the top of the heat maps represent the distance among the mouse strains. 
Metabolomics Fingerprints of Six Unique Genetic Mouse Strains with Differing Susceptibilities to 

ISO Stimulation. 

To identify metabolomics fingerprints that closely associate with phenotypic characteristics, the 

heart weight-body weight (HW/BW) ratios were documented concomitantly with the plasma 

sample collection to provide temporal phenotypic profiles in parallel with metabolic alterations.  

During ISO treatment, mouse strains C57BL/6J, CE/J and FVB/NJ exhibited relatively lower 

severity of cardiac hypertrophy; the HW/BW ratios ended at ~120% of baseline after 14 days. 

The result agrees with previous observations that these three mouse strains are more resilient 

to cardiac stress following ISO treatment (Rau et al. 2015). In contrast, strains DBA/2J, A/J and 

BALB/cJ showed more substantial hypertrophy, with HW/BW ratios ~140% after 14 days, 

demonstrating a greater degree of susceptibility to ISO-induced cardiac stress (Figure 3.3.A).   
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In our computational workflow, a Linear Mixed Model (LMM) was employed to correlate 

temporal metabolome dynamics with HW/BW ratios. To account for individual relatedness and 

thereby improve statistical accuracy, we incorporated a Relatedness Matrix Correction into the 

LMM. To generate the matrix, we selected the metabolites with an adjusted p-value > 0.1 in the 

aforementioned paired t-test and a total of 309 metabolites, termed “housekeeping metabolites”, 

were identified. These “housekeeping” metabolites maintain consistent levels in plasma over 

time, whereas their similarities among mouse strains indicate individual relatedness. We also 

performed a Multiple Testing Correction to control the false discovery rate. Applying a threshold 

of < 0.01 on adjusted p-values, 4 metabolites were identified as significantly associated with 

changes in HW/BW ratio, all of which are FFAs: C14:0 (Myristic acid), cis-C16:1w7 (Palmitoleic 

acid), cis-C18:1w9 (Oleic acid), and cis-C18:3w3 (α-Linolenic acid, ALA). Their temporal 

changes in plasma levels are displayed in parallel with HW/BW ratios (Fig 3B). In mouse strains 

sharing similar susceptibility to ISO treatment, the 4 metabolites displayed similar temporal 

behaviors during maladaptive remodeling. 
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Figure 3.3. Phenotypic Alteration and Corresponding Metabolic Fingerprints During ISO-induced 
Cardiac Remodeling in Mice. 
(A) The heart weight–body weight ratios (HW/BWs) were temporally measured for the six mouse strains 
during ISO-induced cardiac remodeling (time points D1, D2, D3, D5, and D14), and subsequently 
normalized to HW/BW of untreated mice (D0). The BALB/cJ, A/J, and DBA/2J mouse strains showed an 
elevation up to 40% at an earlier stage, indicating a more severe response to ISO treatment; the 
C57BL/6J, CE/J, and FVB/NJ mouse strains displayed a stabilized increase of 20% at D14, suggesting a 
more resilient response. (B) Four metabolites (C14:0, cis-C16:1w7, cis-C18:1w9, cis-C18:3w3) were 
identified through paired t-test and LMM analyses; their absolute abundances were displayed over time, 
in line with the mice’s susceptibilities towards ISO treatment. Within each mouse strain, the four 
metabolites presented consistent temporal dynamics, indicating shared or synchronized metabolic 
pathways. In mouse strains sharing similar susceptibility towards ISO treatment, the four metabolites 
displayed comparable behavior during the progression of maladaptive remodeling. For example, Balb/c, 
A/J, and DBA/2J mouse strains (ISO-susceptible) showed relatively less basal abundance of α-linolenic 
acid (cis-C18:3w3) than the C57, CE/J, and FVB mouse strains (ISO-resilient). During 14days’ ISO-
treatment, ISO-resilient mouse strains displayed better capability to immediately restore the plasma level 
of α-linolenic acid than ISO-susceptible strains 
 

3.IV.B. Characterization of Plasma Metabolomics Dynamics in HF Patients Receiving MCSD 

Implants.  

 

Enrollment and Demographics of Human Cohort. 

To translate our computational workflow from mouse dataset analyses to human data 

interpretation, we first assembled a test cohort over a 2-year period from Aug 2012 to Nov 2014, 

including 12 healthy human volunteers (H1, H2, … H12) and 26 advanced HF patients (NYHA 

III-IV) who had received MCSD implants (P1, P2, … P26) (Table 3.2). The healthy human group 

contains 9 Asians, 2 Caucasians, and 1 Hispanic with an average age of 43 ± 10 (range: 27-61) 

years. The healthy humans include 4 females and 8 males with an average Body Mass Index 

(BMI) of 25.1 ± 2.0 (range: 20.1-32.4), presenting a normal distribution of body type. The HF 

patients include 11 Caucasians, 9 Hispanics, 3 African-Americans, 2 Asians, and 1 without an 

ethnic record. This group includes 6 females and 23 males with an average age of 56 ± 14 

(range: 24-80) years. The average of BMI was 25.5 ± 5.9 (range: 16.3-47.9). The etiological 

categories of HF patients were classified as ischemic cardiomyopathy (ICM) or non-ischemic 

cardiomyopathy (NICM). The Sequential Organ Failure Assessment (SOFA) score of each 

individual patient was assessed 1 day before MCSD implantation and continuously monitored 
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post-surgery. Within the 5-day period after MCSD implantation, all patients showed a significant 

increase in SOFA score that is most likely induced by post-surgical inflammatory response and 

recovery. We exhibited this period as Stage I (T1-T3, up to 6 days post-surgery, Fig 5). A short-

term clinical assessment Stage II (T4-T7, 7 days to 28 days post-surgery) was chosen to 

evaluate the direct results of MCSD implants and their metabolic imprint due to improved 

systemic hemodynamics and vital signs. A long-term phase was indicated as Stage III (T8-T12, 

29 days up to 120 days post-surgery) to determine the metabolic imprints of the patients with 

respect to their recovery and outcome. Before surgery, the INTERMACS score for each patient 

was assessed to classify the HF patients before MCSD implantation (7.79% in profile 1; 53.85% 

in profile 2; 26.92% in profile 3; 3.85% in profile 4, and 7.69% in profile 5-7).  

 

Plasma Metabolomics Stability in Healthy Human Subjects. 

To validate the practicality and reliability of our technical platform and corresponding 

computational workflow, blood samples were collected from 12 Healthy Human Subjects at 5 

consecutive time points (T0, T1, …T4). A total of 610 metabolites were absolutely quantified for 

the time series of samples. A paired t-test showed that only one metabolite, Cortisol, was 

significantly altered over time (Figure 3.5.A). Cortisol is a human steroid hormone released in 

response to stress and also sensitive to the Circadian rhythm. In addition, cortisol is only slightly 

above the threshold to be considered significant, suggesting general metabolome stability over 

time in Health Human Subjects. In addition, almost all metabolites were identified without 

statistical significance from these biological replicates, in which no pathological difference 

should exist. The results suggest that our technical platform and computational workflow only 

address metabolites in response to pathological alterations and clinical interventions. 
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Figure 3.4. Healthy Human Subjects Plasma Metabolomics Stability and Their Distinction from HF 
Patients. The absolute abundances of plasma metabolites were quantified in 12 Healthy Human Subjects 
at 5 consecutive time points (T0-T4) and in 26 HF Patients before receiving MCSD implantation (T0). 
Resulting datasets were subjected to statistical analyses to identify differentially expressed metabolites. 
(A) A paired t-test was performed to generate a volcano plot depicted as Log2 (Fold-Change expressed 
as T1-T4/T0) (X-axis) against –Log10 (adjusted p-value) (Y-axis) to highlight the differential expression 
patterns of 610 plasma metabolites quantified in 12 Healthy Human Subjects over 5 consecutive time 
points (T0-T4). A threshold (p < 0.001 and ±1.5 Fold-Change, dotted lines) was applied to identify 
metabolites with significant changes. Over T0-T4 only one metabolite was upregulated (Blue dot) and no 
metabolites were downregulated (Yellow dots) in healthy humans. The other metabolites did not display 
significant changes (Grey dots), indicating a notable stability of the plasma metabolome under basal 
conditions. (B) With the same threshold as in Panel (A), a t-test was performed to compare the differential 
expression patterns of 610 metabolites in Healthy Human Subjects and HF Patients before MCSD 
implantation. The volcano plot illustrates 76 metabolites that were differentially expressed, of which 21 
metabolites were downregulated (Yellow dots) and 55 were upregulated (Blue dots) in HF patients, 
respectively. (C) Using the 76 metabolites identified in Panel (B), the Principal Component Analysis 
(PCA) reveals that Healthy Human Subjects and HF Patients are evidently separated, indicating distinct 
metabolomics fingerprints that differentiate healthy and compromised plasma metabolomes. (D) The 76 
metabolites identified in Panel (B) were further subjected to unsupervised hierarchal clustering; this 
method validates that the HF Patients are well-clustered and separate from the Healthy Human Subjects, 
corroborating that the two cohorts have distinct metabolomic fingerprints.  
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Figure 3.5. Metabolomics Dynamics in Plasma from HF Patients Before and After MCSD 
Implantation. The absolute abundances of plasma metabolites were quantified in HF patients receiving 
MCSD implantation and subjected to statistical analyses to identify differentially expressed metabolites. 
The significantly altered metabolites over time underlie the metabolic responses associated with 
mechanical unloading of the heart during advanced HF.  
A paired t-test was performed to generate volcano plots depicted as Log2 (Fold-Change expressed as 
post-surgery/pre-surgery) (X-axis) against –Log10 adjusted p-value (Y-axis) to highlight the differential 
expression patterns of 610 plasma metabolites before (T0) and after the MCSD implantation at Stage I 
(surgical recovery, T1 - T3), Stage II (Short term post-MCDS, T3 - T7), and Stage III (Long term post-
MCDS, T7 - T12). A threshold (p < 0.001 and ±1.5-fold change, dotted lines) was applied to identify 
metabolites with significant changes In Stage I (A), a total of 7 metabolites were significantly altered, of 
which 7 were upregulated (Blue dots) while none were downregulated (Yellow dots) compared with T0. In 
Stage II (B), a total of 22 metabolites were significantly altered, of which 8 were downregulated (Yellow 
dots) while 14 were upregulated (Blue dots) compared with T0. In Stage III (C), a total of 8 metabolites 
were significantly altered, of which 7 were downregulated (Yellow dots) while 1 was upregulated (Blue 
dots) compared with T0. The other metabolites did not display significant changes (Grey dots). (D) A 
temporal Fold-Change profile was generated for the sum of 36 differentially expressed metabolites found 
in Stage I-III. The color keys (green, upregulation; red, downregulation) and histograms (blue line, 
distribution of metabolites in each color range) are displayed at the bottom of each heatmap. 
Dopamine_P180 showed an decreasing Fold-Change over time, while PC aa C32:2_Lipd showed an 
increasing fold-change over time; The other metabolites were consistently upregulated, or downregulated 
over time. (E) Three PCAs were performed for post-surgery Stages I, II and III against the metabolic 
conditions before MCSD implantation (T0). In each scatterplot, post-surgical status of MCSD recipients 
are colored in red and their pre-surgical status (T0) are colored in blue. Ovals are 95% inertia ellipses. Of 
the 36 metabolites, no separation can be observed between Stage I and T0. However, Stage II exhibited 
a moderate separation and Stage III displayed an increased separation, reflecting the metabolic impacts 
of prolonged MCSD unloading for advanced HF patients.  
 

Differences of Human Plasma Metabolomes between Healthy and HF Conditions. 

To assess the scale of metabolic distinction between Healthy Human Subjects and HF Patients, 

a t-test was applied to data points of Healthy Human Subjects versus HF Patients before their 

MCSD implantation (Figure 3.5.B). A total of 21 metabolites were upregulated in HF Patients 
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while 55 metabolites were downregulated. Performing PCA with these 76 significantly 

differentiated metabolites, the first two principal components clearly separated healthy humans 

from HF Patients before MCSD implants (Figure 3.5.C). In parallel, an Unsupervised 

Hierarchical Clustering analysis was applied and the resulting heatmap and dendrograms 

revealed that patients are well clustered away from healthy humans. Furthermore, the 

upregulated metabolites and downregulated metabolites are clustered separately with unique 

relationships (Figure 3.5.D). Through the Differential Expression Analysis, we identified 

metabolites that are potentially related to disease-induced metabolic abnormality. However, 

end-stage HF patients displayed notable pathological conditions dissimilar to those of healthy 

humans; thus, it is not surprising to observe that these severe physical dysfunctions underlie 

drastic metabolic differences. 

 

Temporal Metabolic Alterations Induced by MCSD Implantation in HF Patients. 

Beyond the characterization of readily-discernable metabolomics distinctions between healthy 

humans and HF patients, we aimed to pinpoint the metabolic alterations before and after MCSD 

implantation. Paired t-tests were performed to characterize the differential expression patterns 

of 610 plasma metabolites at the following time points: post-surgery Stage I (surgical recovery, 

up to 6 day post-surgery, see details in Experimental Procedures), Stage II (short-term post-

MCSD, up to 4 weeks post-surgery), and Stage III (long-term post-MCSD, up to 14 weeks post-

surgery). In Stage I, only 7 metabolites were significantly downregulated (Figure 3.6.A). 

Subsequent analysis revealed 14 downregulated and 8 upregulated metabolites in Stage II. 

Notably, all 8 upregulated metabolites are Glycerophospholipids, while the majority of 

downregulated metabolites belong to biological classes of Acylcarnitines and Ceramides (Figure 

3.6.B). Finally, we found that 1 Acylcarnitine was downregulated and 7 Glycerophospholipids 

were significantly upregulated within Stage III (Figure 3.6.C). Accordingly, a temporal trend of 

fold change among the 36 differentially expressed metabolites was visualized using a heatmap 
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(Figure 3.6.D). Plasma metabolites such as Dopamine, Testosterone and several phospholipids 

exhibited a steady fold change after MCSD implantation reflecting the temporal effects of 

mechanical unloading of the heart. Three PCAs were performed for post-surgery Stages I, II 

and III against the metabolic conditions before MCSD implantation (T0). Of the 36 metabolites 

that were cumulatively found to be differentially expressed in either Stages I, II or III, no 

separation could be observed between Stage I and T0. However, Stage II exhibited a moderate 

separation and Stage III displayed an increased separation, reflecting the metabolic impacts of 

prolonged MCSD unloading for advanced HF patients.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.6. Temporal Changes of Clinical Manifestation and Corresponding Metabolomic 
Dynamics in HF Patients Following MCSD Implantation. In conjunction with Differential Expression 
Analysis, a Linear Mixed Model (LMM) was applied to the temporal metabolomics dataset of 26 HF 
Patients and identified 11 metabolites that were both significantly altered over time and highly associated 
to the clinical manifestations after MCSD implantation. Among these metabolites, 4 acylcarnitines, 4 
phosphotidylethanolamines, 1 phosphotidylcholine, 1 sphingomyelin, and 1 hormone were identified, 
which we consider as potential novel biomarkers with respect to clinical diagnosis, prognosis and 
gradation of disease severity. Particularly, the temporal patterns of testosterone were utilized to stratify 
the patients into 3 risk groups. In Group I, 8 deceased patients (P2, P3, P9, P16, P18, P21, P24, and 
P25) were mostly males (n=7) who constantly maintained a very low Testosterone level. In Group II, 13 
patients (P6, P7, P8, P10, P11, P13, P14, P15, P17, P20, P22, P23, P26) were all males with good 
clinical manifestation. Notably, these patients stayed at low Testosterone levels shortly after implantation 
but exhibited a steady increase of Testosterone after Stage II. In Group III, 5 female patients (P1, P4, P5, 
P12, P19) shared similar low Testosterone levels while showing a promising clinical recovery.  
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Potential Biomarker Candidates Identified by Temporal Metabolomics Profiling and 

Computational Workflows. 

When we applied our integrated computational workflow, including both Differential Expression 

Analysis and LMM, to the MCSD recipient cohort, a total of 11 metabolites were found 

significantly altered over time as well as highly associated with clinical manifestations (SOFA 

Scores). When applied to human datasets, LMM with Relatedness Matrix Correction provides 

notable different results compared to Simple Linear Regression Model. Therefore, QQ-plots 

were used to evaluate the performance of these two computational models. The LMM analyses 

using matrix correction generated more precise p-values than Simple Linear Regression Model 

without matrix correction. Among these metabolites, 4 Acylcarnitine, 4 

Phosphotidylethanolamine, 1 Phosphotidylcholine, 1 Sphingomyelin, and 1 hormone were 

identified. These metabolites may offer significant predictive value to the patient’s clinical 

manifestation and outcome. In particular, Testosterone level could classify patients into three 

groups (Figure 3.7). In Group I, 8 deceased patients (P2, P3, P9, P16, P18, P21, P24, and P25) 

were mostly males (n=7) who constantly maintained a very low Testosterone level throughout 

the entire study period post-MCSD. In Group II, 13 patients (P6, P7, P8, P10, P11, P13, P14, 

P15, P17, P20, P22, P23, P26) were all males who presented with good clinical manifestation 

according to their SOFA scores. Notably, these patients stayed at low Testosterone levels 

shortly after implantation but exhibited a steady increase of Testosterone after Stage I, while 

further increasing in Stage II & III. In Group III, 5 patients (P1, P4, P5, P12, P19) shared similar 

low Testosterone levels as patients in Group I while their SOFA scores showed a promising 

clinical recovery. Interestingly, these were all female patients. It appears that Testosterone 

plasma levels may have more accurate predication of clinical outcomes in male patients, 

potentially as a biomarker candidate in clinical classification. 
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3.V. Discussion. 

Advanced HF is a multifactorial disease in which a patient’s hemodynamics are severely 

compromised. MCSD has been proven to promptly restore blood circulation and end-organ 

perfusion, thus enhancing global metabolism. To fully comprehend the failing heart and 

cardiovascular systemic responses towards MCSD implantation, it is essential to characterize 

the dynamics of metabolic networks. Several successful clinical investigations identified plasma 

biomarkers for diagnosis of cancers and neurodegenerative Diseases (Duarte, Rocha, and Gil 

2013; Jové et al. 2014; G. Wang et al. 2014; Xu et al. 2013). In the cardiovascular research 

field, the metabolic networks in the heart and their perturbations during cardiac disease 

progression have become an emerging research focus (Cheng et al. 2015; Hoefer et al. 2015; 

Stegemann et al. 2014). However, the lack of an effective workflow to systematically screen 

disease-relevant metabolites has limited the clinical application of metabolomics profiling. Within 

this pilot study, we first sought to develop a technical platform with computational tools that can 

adequately handle the volume and analysis of the mouse plasma metabolome in a temporal 

manner. Our established workflow was subsequently refined to characterize complex clinical 

datasets of human HF. Finally, we translated our findings to clinical diagnosis, therapeutic 

validation, and risk stratification. 

 

3.V.A. Methodological Considerations of Animal Models and Human Studies. 

Advanced HF is characterized by prolonged stress and inflammation caused by elevated levels 

of neurohormonal stimuli, including cortisol and catecholamines. Previous studies demonstrated 

that implantation of MCSDs may improve patient quality of life by decreasing clinical symptoms 

and reducing neurohormonal stimulation in patients, which is recognized as reverse remodeling 

in HF (Liem et al. 2014). Technically, it is challenging to simulate a reverse remodeling model in 

mice. Thus, we decided to utilize an ISO-induced hypertrophy model, in which cardiac function 

is compromised by constant neurohormonal overstimulation (opposite to reverse remodeling). In 
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addition, the pathological phenotypes of ISO treatment (e.g., HW/BW ratio) have been well-

documented and can be used as guidance for experimental quality control.  

Six genetically distinct mouse strains were selected for their variable susceptibilities towards 

ISO treatment, which offers a spectrum of molecular responses to ISO-induced stress that 

mimics genetic variances among humans.  

 

We explored the scope of our large-scale metabolic survey to determine the dynamic range and 

sensitivity for data acquisition over time. Theoretically, any plasma metabolite could be 

accurately quantified if we apply extra isolation/enrichment procedures. However, temporal 

metabolomics profiling needs to be balanced between the quantity of identifiable metabolites 

and the technical practicality. Accordingly, we applied 9 quantitative panels of plasma 

metabolites and eventually obtained the absolute abundances of 610 metabolites. They 

encompass 20 categories of biomolecules based on their similarities in chemical structure and 

biological functions. We considered this set of metabolites as the most accessible pool for 

human and mouse plasma profiling without additional enrichment procedures.  

 

In contrast to animal models, in which sample collections follow a well-planned schedule, clinical 

human studies often face challenges that may prevent blood sampling at consistent intervals. 

This necessitates a certain degree of flexibility in the construction of datasets. Accordingly, we 

defined intervals to which a time window is assigned. In brief, smaller intervals of sample 

collection were conducted right after surgery, and larger intervals were used as the patient 

stabilized and continuously recovered. This enabled data-series from multiple patients to be 

compared in a temporal manner, while maintaining a high level of accuracy to reflect clinical 

manifestations. 
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Before committing to extensive temporal profiling studies, it was important to gain confidence in 

our technical design by confirming the plasma metabolomics stability under basal conditions. 

Thus, 12 Healthy Human Subjects were recruited and blood samples were collected individually 

at 5 consecutive time points. A differential expression analysis validated that our computational 

workflow is tolerant of the insignificant changes among 610 metabolites that may occur due to 

varying factors such as sample collection, diet, physical activity, etc (Figure 3.5.). This result 

provided the confidence for conducting the two-year enrollment of MCSD recipients for blood 

sample collections up to 14 weeks. Furthermore, this dataset of healthy humans could be used 

as a benchmark reference for plasma metabolomic homeostasis. 

 

3.V.B. Conceptualization of Computational Workflow Modules. 

Unlike animal models, human studies present major challenges due to human biochemical 

individuality. Variability in genetic assembly and metabolic homeostasis may prevent deduction 

of mechanistic insights, especially in the presence of comorbidities. Large, longitudinal clinical 

studies take years to conduct, and the scope of metabolite profiling is usually limited by financial 

costs. Studies with smaller cohorts provide enhanced possibility for “data-driven” biomarker 

discoveries. However, small numbers of human subjects restrains the statistic power for in-

depth characterization using standard computational methods. We demonstrate in our study 

that temporal metabolomics profiling datasets with smaller cohorts, in conjunction with 

customized computational approaches, may offer the benefit of sensitivity in response to 

pathological stress or therapeutic regimens, enabling in-depth analysis of biomarker candidates. 

To date, the most widely-used computational analyses in metabolomics studies are Univariate 

Analysis (e.g., t-test or ANOVA), Multivariate Analysis (e.g., PCA or PLS-DA) and Cluster 

Analysis (e.g., hierarchical clustering or partitional clustering) (Xia et al. 2012, 2009, 2015), 

offering snapshot comparisons of static conditions (e.g., healthy vs. diseased). However, these 
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methods have not been integrated to characterize temporal datasets extracted from large-scale 

metabolomics profiling.  

The plasma metabolome is a summation of global metabolism, containing metabolites whose 

plasma levels range from stable to vastly dynamic. In this study, paired t-tests were first utilized 

to process temporal data series and differentiate metabolites’ responses towards stress or 

therapies over time. A pilot subset of 12 healthy humans was initiated to establish a preferable 

threshold. With an adjusted p-value less than 0.001, we only identified one metabolite, Cortisol 

(stress hormone), which was slightly above the significance threshold. The stringent threshold 

reduces false positive rates potentially caused by systematic error (e.g., lack of biological 

replicates). Using the same criteria, this approach enabled us to identify significantly altered 

metabolites from HF patients following MCSD implantation. Our benchmark dataset of Healthy 

Humans and HF Patients revealed not only the stability but also the dynamics of plasma 

metabolome under varying pathological conditions. Such references may serve as guidance for 

future clinical investigations. 

 

Following the identification of significantly altered metabolites over time, we sought to recognize 

a strong association between metabolic dynamics and pathophysiological alterations. The 

Regression Analysis has been widely used to correlate metabolite concentration and clinical 

characteristics (Riesmeyer et al. 2012; Weinstock-Guttman et al. 2011; Adibi et al. 2009). 

However, few metabolomics studies have considered Random Effects in their statistical 

equation, in which each element of one given variable presents different (weighted) impact on 

the final result (Bonate 2013). In clinical studies, Random Effects need to be taken into account 

because factors such as age, gender, or comorbidities contribute unevenly to disease 

phenotypes. To address these Random Effects in our regression model, a Relatedness Matrix 

Correction was applied. Although common in genomics studies (H. M. Kang et al. 2010; Orozco 

et al. 2015; H. M. Kang et al. 2008), such matrix correction has not been employed in 
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metabolomics investigations. The immediate challenge is that SNPs are routinely used in 

genomics to generate the relatedness matrix, whereas such genetic background is not available 

for human subjects in our study. In addition, genetic relatedness may not completely translate 

into metabolic similarities. It is more logical to generate the matrix using original plasma 

metabolite concentrations, which reflects the intrinsic metabolic differences among individuals 

and should remain consistent throughout the entire temporal profiling study.  

Given that a fraction of metabolites are more dynamic, and a Relatedness Matrix will be 

universally applied to correct all data points for the entire time series, we decided to select 

metabolites with stable plasma levels to generate the matrix. Similar to the concept in 

proteomics, we term those metabolites as “housekeeping metabolites”. Thus, we computed a 

pairwise Relatedness Matrix among patients according to their housekeeping metabolite 

abundances, and performed the Linear Mixed Model (LMM) with the Matrix Correction using a 

software package pyLMM (https://github.com/nickFurlotte/pylmm) (Orozco et al. 2015). 

In this study, a metabolite must fulfill the criteria for both the differential expression analyses and 

LMM to be considered as a biomarker candidate. However, those extremely stable metabolites 

also bear biological importance. The pool-size differences of metabolite plasma reservoirs may 

also indicate the individual’s capability to handle stress and perturbation, offering new directions 

for further investigations. 

 

3.V.C. Gradation of Cardiac Remodeling and HF Using Identified Metabolites as Biomarker 

Candidates. 

In the ISO treatment mouse model, we identified four metabolites that are both differentially 

altered over time and highly associated with ISO-induced phenotypic alteration (i.e., HW/BW 

ratio). They belong to the biological class of Free Fatty Acids (FFAs), including C14:0 (Myristic 

acid), cis-C16:1w7 (Palmitoleic acid), cis-C18:1w9 (Oleic acid) and cis-C18:3w3 (α-Linolenic 

acid). Following the initiation of maladaptive remodeling, their plasma levels significantly 
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dropped to below 30% of baseline levels within 3 days, suggesting that elevated cardiac energy 

demand directly led to plasma FFA deficiency (Figure 3.4). The stratification of mouse strains 

with these 4 FFAs is in line with their susceptibility towards ISO. In particular, the plasma α-

linolenic acid (ALA) levels in ISO-resilient strains were promptly restored after the first wave of 

ISO-induced stress, which maintained in a level as much ~2-fold as that of ISO-susceptible 

strains. In a recent study using a rat model with β-adrenergic overstimulation, ALA was found to 

prevent ISO-induced myocardial fibrosis and hypertrophy by preserving the Src-PI3K protective 

pathway also known as the β2AR pro-survival pathway (Folino et al. 2015). Similar studies 

confirmed that an ALA-enriched diet prevents myocardial damages in an independent animal 

model (Fiaccavento et al. 2006) and might be associates with cardioprotective effects in human 

(Djoussé et al. 2005; Singh et al. 1997). According to our results, the temporal profiles of 

plasma ALA can be used as a potential biomarker to differentiate ISO-resilient mouse strains 

from ISO-susceptible ones.  

 

In this human HF study, our integrated computational workflow identified a total of 11 

metabolites that were significantly altered over time and highly associated with the patient’s 

clinical manifestation (i.e., SOFA Score). Among these metabolites, 4 acylcarnitines, 4 

phosphotidylethanolamines, 1 phosphotidylcholine, 1 sphingomyelin, and 1 hormone were 

identified, which we consider as potential novel biomarkers with respect to clinical diagnosis, 

prognosis and gradation of disease severity. In addition to static differences in plasma levels, 

we have considered the temporal fold change (Figure 3.6.D) of potential metabolomics 

biomarkers as a predictive clinical parameter. For clinically established biomarkers such as B-

type natriuretic peptide (BNP) and Troponin-I, their fold changes over time (in parallel to their 

absolute plasma levels) provide valuable clinical insights on the pathological state of the heart 

(Twerenbold et al. 2012). Hence, a 10 fold change of plasma Troponin-I over time indicates 

more severe cardiac ischemic damage compared to a 2-fold change. Similarly, our results 
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indicate that plasma metabolites such as Dopamine, Testosterone and several phospholipids 

exhibit a steady fold change after MCSD implantation, reflecting the temporal impacts of 

mechanical unloading of the heart. 

 

Remarkably, the human plasma levels of the hormone Testosterone appear to have strong 

clinical predictive values. In 8 HF patients deceased after MCSD implantation, their plasma 

testosterone values remained consistently low over phase I, II and III (Group I in 3.7); 

concomitantly, their SOFA scores remained in high-risk ranges. In contrast, 13 HF patients who 

showed favorable clinical recoveries after MCSD implantation (illustrated by a consistently 

improving SOFA score over time) displayed a steady increase of Testosterone plasma levels 

starting in Phase II, and further increasing over Phase III (Group II in 3.7). Lastly, 5 HF patients 

who showed good clinical recoveries with improving SOFA scores post-MCSD demonstrated 

low plasma testosterone levels (Group III in Figure 3.7.). Interestingly, these 5 patients were all 

females, which explains the lower hormone values despite the good clinical manifestation. 

Accordingly, our findings on plasma testosterone levels suggest that monitoring plasma 

testosterone in male HF patients before and after therapeutic intervention may furnish accurate 

predictive value to the patient’s clinical outcome. Low testosterone levels post-MCSD may 

predict complications and a poor clinical performance, whereas an increasing plasma value may 

indicate that the HF patient is responding well to MCSD. Notably, 3 patients (P3, P9, P16 in 

Group I) displayed good SOFA scores but still expired post-MCSD. However, these 3 patients 

exhibited consistently low Testosterone levels, suggesting that plasma Testosterone levels may 

remain predictive even when the SOFA score is ambiguous. Correspondingly, previous 

observations in patients who were critically ill with trauma, shock or sepsis in the intensive care 

unit indicated that hypotestosteronemia was correlated with a poorer clinical outcome (Almoosa 

et al. 2014; Nierman and Mechanick 1999). To our knowledge, by applying our technical 

platform and novel computational workflow, we are the first group to identify a correlation 
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between hypotestosteronemia in advanced HF patients before and after MCSD implantation 

and their clinical outcome, in parallel to other plasma metabolomics fingerprints that may be 

utilized as potential biomarkers.  

 

3.V.D. Future Perspectives and Directions. 

In the current pilot study, we developed a technical platform and computational workflow to 

characterize the temporal dynamics of the plasma metabolome. A mouse model of maladaptive 

remodeling was applied as well as a human model of advanced HF and reverse remodeling. 

Our results suggest that this novel workflow is adequate for identifying significant metabolic 

changes that are correlated to the cardiac phenotypes and clinical outcomes. To further validate 

and optimize our technological platform and computational workflow (i.e. defining it’s sensitivity, 

specificity, and positive & negative predictive values), it is critical to expand the current study to 

large HF patient cohorts. Moreover, advanced HF is a complex heterogeneous disease with a 

multitude of underlying molecular mechanisms and different etiologies, which must be taken into 

account within our computational workflow when being applied to large patient cohorts. For 

instance, many comorbidities and clinical characteristics relevant to cardiovascular disease 

(e.g., lipid status, blood chemistry, organ (dys)function, medication panel), and etiological 

subgroups (e.g., ischemic- vs. non-ischemic heart disease) most likely impact the plasma 

metabolome fingerprints (Stegemann et al. 2014; S. H. Shah, Kraus, and Newgard 2012; T. J. 

Wang 2011). Thus, their interferences should be assessed in greater detail using large patient 

cohorts. 

 

In contrast to the mouse model consisting of 6 homogeneous genetic strains, each patient in our 

study exhibits unique demographics and individual variability in lifestyle. Consequently, different 

ethnic backgrounds, environmental stimuli, personality types, dietary preferences and physical 

activities most likely impact their metabolomes in advanced HF pre- and post-therapy. To meet 



 
 

91 

the challenge of taking these individual variability’s into account, it is a mandatory endeavor to 

extract information from multi-dimensional data sets; this includes combining conventional 

clinical data from electronic health records with “omics” data from high-throughput technologies 

and computational workflows (Collins and Varmus 2015). It is the combination of diverse 

datasets from large patient cohorts that will enable a better understanding of disease risks, 

complex disease mechanisms, and optimal therapies as well as suitable intervention points in 

advanced heart failure. 
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CHAPTER 4: CLOUD-BASED COMPUTATIONAL KNOWLEDGEBASE TO 

ANALYZE, ANNOTATE, AND INTEGRATE METABOLOMICS AND 

PROTEOMICS DATASETS. 
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4.I. Abstract. 

The integrated cardiovascular proteomics and metabolomics knowledgebase project entails a 

computational pipeline to fully characterize the plasma metabolome amid the development of 

heart failure (HF), and to establish a cloud-based bioinformatics platform that enables analysis, 

annotation, and integration of proteomics and metabolomics datasets. This project aims to 

unravel the interplay of the cardiovascular proteome and metabolome, ultimately to deliver novel 

knowledge in cardiovascular medicine. 

The progression of HF on the molecular level is determined by the complex interplay among a 

broad spectrum of biomolecules and cellular pathways, where both proteins and metabolites are 

key players. Identifying how various biomolecules contribute to the pathological progression of 

HF is a major goal in cardiovascular research for informing pathological mechanisms, indicating 

disease phenotypes, and identifying new therapeutic targets. However, one current bottleneck 

for realizing this goal is the lack of computational tools and algorithms that can effectively 

integrate large-scale multi-omics data, including clinical datasets.  

Accordingly, in this Chapter, we will discuss the outcome of three specific projects:  

● Project 1: Development of a simplified computational pipeline to characterize the plasma 

metabolome and application to two specific cardiovascular scenarios: first, metabolome 

datasets from a mouse model of HF (isoproterenol [ISO]-treated mice); and second, 

metabolome datasets from HF patients. 

● Project 2: Development of bioinformatics strategies to integrate proteome datasets with 

metabolome datasets and application to datasets obtained from six genetic mouse strains. 

● Project 3: Establishment of a cloud-based platform, MetProt, to streamline and empower the 

above bioinformatics strategies, as well as disseminate the pipeline to the cardiovascular 

community at-large. 
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4.II. Intorduction. 

4.II.A. Omics Phenotyping of HF. 

HF causes >300,000 deaths a year in the US, with 5.8 million Americans currently afflicted 

(Mancini and Colombo 2015; Braunwald 2015; Roger 2013; Goldberg et al. 2007). A major 

reason why this common disease is so intractable is its complex, multifactorial nature, where 

overall phenotypic traits and disease outcomes are the effect of multiple biological and 

environmental factors. Technologies and approaches used to characterize HF and develop 

therapeutics must be able to embrace the complexity of the data. 

 

4.II.A.a. Systematic characterization of the cardiac proteome.  

As molecules that perform most mechanical and biochemical functions in the heart, proteins 

provide critical information to systems biology studies that aim to uncover the mechanisms of 

disease susceptibility. Technologies now exist that can easily identify and quantify large 

numbers of proteins in a single experiment (Lotz et al. 2014; Mann 2006). These studies have 

advanced our understanding of the components constructing protein interaction networks 

(Orchard et al. 2014), the role of post-translational modifications (PTMs) in modulating cellular 

signals (Streng et al. 2013), the dynamics of individual protein half-life in response to 

perturbation (Lam et al. 2014), and the totality of proteins contributing to a given cellular process 

or organelle (Kim et al. 2014). One of the principal lessons from the proteomics revolution is that 

gene expression does not necessarily mirror protein expression; one example of this is following 

ISO challenge on the heart we see protein abundance change independently of mRNA (Lam et 

al. 2014). 

 

4.II.A.b. Temporal profiling of the cardiac metabolome.  

The continuous contraction of cardiomyocytes demands tremendous amounts of energy; thus, 

maintaining metabolic homeostasis is essential for heart function. Accumulating evidence 
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suggests that perturbation of cardiac metabolism plays an important role in the pathological 

progression of HF (Neubauer 2007). Comprehensive quantification of metabolite abundance in 

blood plasma, also known as plasma metabolomics profiling, provides mechanistic insights into 

the molecular alterations underlying HF (Cheng et al. 2015). The large-scale quantification of 

circulating metabolites is useful for clinical applications, which can help classify HF patients 

before and after optimal medical therapy and surgical interventions (Lloyd-Jones 2010). These 

metabolomic approaches can be established as important avenues for biomarker and drug-

target development, as well as validation of therapeutic efficacy. 

 

4.II.A.c. Multi-omics phenotyping of HF. 

Along with advances in high-throughput technologies, current studies have successfully 

integrated gene expression profiling with proteomics, and have facilitated our understanding of 

the pathophysiology and the molecular mechanisms of HF (Hou et al. 2015; Dos Remedios et 

al. 2003). However, there are no systematic approaches for the integration of large proteomic 

datasets with metabolome datasets due to the lack of strategies to connect proteins to 

metabolites and elucidate their relationships. 

 
4.II.B. Computational Approaches to Identify Driver Molecules. 

The availability of metabolomics data analysis tools is currently limited; for example, the Aztec 

discovery index lists 778 proteomics tools, but only 147 metabolomics tools. To our knowledge, 

there is no application that comprehensively analyzes and integrates proteomic and 

metabolomic datasets, and a simplified computational pipeline to analyze and annotate large-

scale proteomics datasets with metabolomics datasets currently does not exist. This limitation 

hinders our capability to identify biomolecules relevant to HF. 
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4.II.B.a. Differential Expression Analysis with Paired t-Test.  

Differential Expression Analysis is a univariate method widely used in omics studies for 

targeting molecules that are altered in a statistically significant manner (i.e., up-regulated or 

down-regulated) after a treatment or physical exercise (Xia et al. 2015, 2012, 2009). We employ 

a paired sample t-test, which is a statistical technique that is used to compare two population 

means in ‘before-after’ studies. Following the paired t-test, multiple testing correction to the p-

values is applied using the Benjamini-Hochberg method to reduce false positives. 

 

4.II.B.b. Principal Component Analysis.  

Principal Component Analysis (PCA) is a well-established method for dimensional reduction of 

large datasets with many variables. This facilitates visualization, clustering, pattern recognition, 

and identification of the key variables that vary most significantly across a population. PCA can 

aid investigators in understanding complex, higher-dimensional datasets by projecting them into 

a 2- or 3-dimensional space, where they can be more easily visualized without sacrificing fidelity 

(Xia et al. 2015, 2012, 2009).  

 

4.II.B.c. Unsupervised Hierarchical Clustering Analysis.  

Unsupervised Hierarchical Clustering is a widely used data analysis method to build a binary 

tree from data by merging similar groups of points based on the calculated distances across 

samples or molecules. Usually, the distances are displayed as dendrograms (Xia et al. 2015, 

2012; Xia and Wishart 2011b, [a] 2011; Xia et al. 2009). 

 

4.II.B.d. Linear Mixed Model with Sample Relatedness Correction.  

Linear Mixed Model (LMM) with Sample Relatedness Correction analyzes time-series omics 

data generated from heterogeneous samples to identify driver molecules that are highly 

associated with phenotypic characteristics. LMM correlates two variables and incorporates the 
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samples’ relatedness, represented by omics expression or demographic factors, to improve 

statistical accuracy. We have applied LMM with Sample Relatedness Correction in our 

preliminary metabolomics study to find fingerprints of pathological stages during HF progression 

(Kirby et al. 2010; H. M. Kang et al. 2008). 

                          

4.II.B.c. Pathway Enrichment Analysis.  

Significantly altered metabolites may be searched against several metabolomics databases, 

including Chemical Entities of Biological Interest (ChEBI, UK) (Hastings et al. 2013), Human 

Metabolome Database (HMDB, Canada) (Wishart et al. 2013, 2009, 2007), and LIPID 

Metabolites And Pathways Strategy (LIPID MAPS) (Fahy et al. 2009, 2007) to cross-reference 

identifiers that are commonly used by pathway enrichment search engines and databases. The 

pathways enriched with identified metabolites may be further annotated with resources including 

MetaboLights (Haug et al. 2013) and Reactome (EMBL-EBI, UK) (Fabregat et al. 2018, 2016; 

Milacic et al. 2012). 

 

4.II.C. Cloud-based Computational Knowledgebase. 

To extract biological meaning from multi-omics datasets, researchers rely heavily on 

computational resources that analyze and annotate the molecules of interest with known 

information. Currently, access to tools/annotations is not straightforward because they reside in 

fragmented and incomplete repositories. To address this challenge, we are creating a novel 

distributed query system and cloud-based infrastructure, MetProt, that is capable of providing 

unified access to protein and metabolite datasets, allowing users to submit a single query to 

access multiple resources including Reactome (Fabregat et al. 2018, 2016; Milacic et al. 2012), 

UniProt (UniProt Consortium 2015), MetaboLights (Haug et al. 2013), BioGPS (Wu et al. 2016; 

Wu, Macleod, and Su 2013), Gene Wiki (Tsueng et al. 2016), and COPaKB (N. C. Zong et al. 
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2013; H. Li et al. 2013). We will also engineer customized application programming interfaces 

(APIs) to provide direct access for information in MetProt. 

 

4.II.C.a. COPaKB.  

COPaKB (N. Zong et al. 2014; N. C. Zong et al. 2013; H. Li et al. 2013) 

(http://heartproteome.org) is an omics analysis platform with two key components: (1) a peptide 

spectral search engine; and (2) spectral library modules for knowledge annotation.  

 

4.II.C.b. Reactome. 

The Reactome (Croft et al. 2014; Milacic et al. 2012) (http://reactome.org) platform is a suite of 

network analysis tools for performing topology analysis and over-representation analysis of 

gene/protein networks. It comprises a manually curated database of human pathways with 

views of protein and metabolite structures overlaid with expression data. We will interface with 

Reactome to identify key pathways of interest in our omics data. 

 

4.II.C.c. MetaboLights. 

MetaboLights (http://ebi.ac.uk/metabolights/) is a public database dedicated to the submission 

and sharing of metabolomics data, mass spectra, annotated biological roles, and other derived 

information (Haug et al. 2013). Based on spectral similarities and chemical structures, we will 

employ its search services to analyze and interpret metabolite data we collect from the studies. 

 

4.II.C.d. BioGPS/Gene Wiki:  

BioGPS (http://biogps.org) is an interface for omics research (Wu et al. 2016). It provides a 

user-customizable portal with aggregated information on protein annotations and target list 

analyses. Gene Wiki translates molecular information into structured knowledge; relevant pages 

representing molecular transducers will be aggregated and recruited into MetProt. 
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4.III. Results. 

4.III.A. Multi-Omic Data Acquisition from Public Repositories.  

We have at hand large human and mouse plasma metabolomics datasets that are clinically 

relevant to advanced HF. The datasets include multiple reaction monitoring (MRM) mass 

spectromertry (MS)-based absolute quantification measurements of 610 distinct plasma 

metabolites (including lipids, steroids, amino acids, and energy metabolism metabolites) from 26 

advanced HF patients and 12 healthy controls recruited at UCLA. In parallel, we established a 

systems genetics model of cardiac hypertrophy in which the metabolomics of six genetic mouse 

strains were measured. In total, the datasets comprise 21,960 measurements of absolute 

concentrations in mouse plasma, and 147,620 measurements of absolute concentrations in 

human plasma. In addition, a large dataset of protein dynamics data, including the abundance 

of 8,064 cardiac proteins and turnover rates of 3,228 cardiac proteins in the normal and 

hypertrophic hearts of six mouse strains, was acquired from ProteomeXchange (PXD002870) 

and Sage Synapse (syn2289125). This dataset contains over 120,000 protein quantification 

data points and covers over 200 cellular pathways, and used to support development of a 

strategy to integrate protein and metabolite data as detailed in Project 2. 

 
4.III.B.  Simplified computational pipeline for triaging and prioritizing molecular markers. 

We have established a computational pipeline to identify biomarker candidates that are 

associated with both phenotypic alterations and temporal dynamics following medical therapy 

and surgical intervention. In our pipeline, we explored the analytical power of two major 

components, a Differential Expression Analysis and a Linear Mixed Model. To account for the 

individual relatedness, we incorporated the Relatedness Matrix Correction into the Linear Mixed 

Model by exploiting the “housekeeping metabolites”, which remain at constant plasma levels 

after mechanical circulatory support device (MCSD) implantation. With these preliminary 
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analyses, we successfully identified a number of plasma metabolites that are altered in cardiac 

remodeling. 

 

Figure 4.1. MetProt Integrated Workflow. This workflow diagram depicts the individual elements and 
logical connections in the proposed bioinformatics platform for prioritizing and analyzing data, finding 
connections between proteins and metabolites, and annotating molecular functions. User data will be 
submitted in two major categories: 1) lists of protein and/or metabolite identifiers from hypothesis-driven 
research with biological information enriched by Gene Wiki, COPaKB, and/or BioGPS, or 2) large-scale 
molecular data from data-driven investigations with their quantitative values and phenotypic information. 
For the latter category, MetProt will review and analyze the data to identify driver molecules that are 
significantly altered over time and highly associated with phenotype (Project 1). The molecules of interest 
are then annotated using information fetched from Reactome/KEGG (biological pathways), Uniprot/HMDB 
(chemical reactions), dbPTM/PhosphoSitePlus (PTM data), and KEGG LIGAND/DrugBank (ligand & drug 
information). The extracted information are now integrated to construct interaction graphs among proteins 
and metabolites, with additional annotations from COPaKB/Gene Wiki and MetaboLights/CheBI (Project 
2). Collectively, we will engineer a cloud-based platform to enable these analyses on the cloud and to 
generate integrated reports, including table views of protein-metabolite interactions, functional 
annotations, and graphical views as output (Project 3). Detailed platform system architecture is shown in 
Figure 4.3. 
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4.III.B.a. Develop a simplified computational pipeline to characterize plasma metabolomics data. 

Plasma metabolomics profiling has great potential to identify biomarker candidates as internal 

indicators of diseases or as novel therapeutic targets. However, its clinical applications are 

challenged by the complex nature of patient cohorts, hospital protocols, and policy. Subject 

individuality, affected genetic variability, diverse metabolic homeostasis, and interference of 

comorbidities can further complicate accurate quantification of metabolites. To overcome these 

challenges, large-scale clinical cohorts have been assembled to provide sufficient statistical 

power, though the studies were limited to a “hypothesis-driven” metabolomics approach. 

Alternatively, temporal datasets using small clinical cohorts can be established as a profiling 

approach to pursue “data-driven” metabolomics studies. However, an integrated computational 

workflow simplified for clinical metabolomics datasets has never been fully explored. 

We first implement a data pre-processing component, which replaces the Limit of Detection 

(LOD) values with half of the minimum value in the original data and remove any metabolites 

missing more than 50% of the quantification values. Second, Differential Expression Analysis 

will be performed on the filtered dataset with a stringent threshold of adjusted p-value < 0.001 

and ±1.5-fold change to detect metabolites with significant changes. To depict the results of 

Differential Expression Analysis, volcano plots and heatmaps will be automatically generated. 

Next, to identify metabolites that are highly associated with the phenotypic characteristics (e.g., 

HW/BW or SOFA Score), we first account for the individual relatedness by incorporating the 

relatedness matrix into a linear mixed model (LMM). The relatedness matrix will be generated 

using “housekeeping metabolites”, which are metabolites that maintain a consistent level of 

plasma concentration over time. Differences in plasma concentration exist among individuals, 

which can indicate individual relatedness. Housekeeping metabolites will be defined using a 

threshold of adjusted p-value > 0.1 and subsequently used to create the relatedness matrix. The 

LMM employs time series metabolite concentrations along with phenotypic values, and it adjusts 

the regression based on their relatedness matrix. We perform the multiple testing correction, 
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using the Benjamini-Hochberg method, and apply a threshold of FDR < 0.01 to identify 

metabolites highly correlated with phenotypic alterations. The metabolites that are detected by 

both Differential Expression Analysis and Linear Mixed Model with relatedness correction are 

considered driver molecules. We also use Principal Component Analysis (PCA) to verify that the 

driver molecule expression pattern has sufficient power to stratify patients with distinct 

outcomes (Figure 4.1.). Users upload metabolite identification and quantification datasets with 

phenotypic information and matching time points in .tsv or .csv file formats, using file transfer 

and management protocols we have previously established in our knowledgebase, COPaKB. 

Output contains: (i) a list of metabolites that are significantly altered over time; (ii) a list of 

metabolites that are highly associated with the phenotypic characteristics; (iii) a list of 

metabolites commonly detected in both (i) and (ii); and (iv) p-values, FDRs, and metabolite 

annotations for each detected metabolite (Figure 4.1.). 

We utilize a mouse model of maladaptive cardiac remodeling via β-adrenergic overstimulation to 

validate the computational pipeline with stringent thresholds. To investigate whether the pipeline 

is applicable to different organisms, we subsequently apply our integrated computational 

pipeline to a clinical temporal dataset of HF patients undergoing MCSD implantation. 

 

4.III.B.b. Develop bioinformatics strategies to integrate proteome datasets with metabolome 

datasets.  

The proteome and the metabolome are both intermediate phenotypes that are tightly connected 

to the biochemical functional output of a system. Both proteomics and metabolomics methods 

are now being increasingly deployed to identify disease markers and mechanisms. There are 

intrinsic connections between proteins and metabolites: (i) proteins in major metabolic pathways 

function to synthesize and degrade metabolites, (ii) metabolites in turn can modulate protein 

activities via allosteric interactions, and (iii) metabolomics and proteomics experiments share 

mass spectrometry (MS) techniques. Unfortunately, current efforts to integrate these two types 
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of molecules are limited. Our goal is two-fold: (i) first, to identify the biological interface of 

proteins and metabolites; and (ii) second, to develop a bioinformatics strategy to integrate 

proteome and metabolome datasets. Therefore, we enable users with either hypothesis-driven 

or data-driven approaches to annotate and enrich their data, and to gain biomedical insights 

with metabolite-level information (Figure 4.3.). We start by enumerating various direct linkages 

via which metabolite information may be relevant to data interpretation and hypothesis 

generation from proteomics data. We then lay out a computational strategy and software tool to 

integrate multiple data types, drawing broadly from existing databases on protein and metabolite 

information. The utility, applicability, and scalability of our approach are rigorously validated 

using large-scale proteomics and metabolomics data on six distinct genetic mouse strains and 

perturbations that we have already acquired. 

 

 

Figure 4.2. Intersections where metabolome meets proteome. meet proteins. Protein	 PTMs	 are	
critically	modulated	by	the	presence	and	concentration	of	particular	metabolites.	With	Histone	Acetyltransferase	
(HAT),	e.g.,	enzyme	PCAF	(lysine)	acetyltransferase,	an	Acetyl	group	from	metabolite,	Acetyl-CoA,	is	transferred	to	
histone	protein,	forming	the	Acetylated	protein.	The	Acetylation	is	considered	as	a	PTM. 
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We identify five important relationships between proteins and metabolites essential to the 

annotation of a dataset in biomedical investigations: (i) given a list of quantified proteins, we find 

the enriched biological and cellular pathways from Reactome and KEGG, and we retrieve a list 

of metabolites that participate in these pathways; (ii) given a protein that catalyzes an enzymatic 

reaction, we retrieve its natural biochemical substrates and products from UniProt, HMDB, 

Reactome, and KEGG; (iii) given a protein known to participate in a particular type of PTM, we 

retrieve metabolites known to critically induce, suppress, or otherwise participate in these 

modifications (e.g., NAD+ to acetylation and ADP-ribosylation) from dbPTM; (iv) given a protein 

that is a receptor or is allosterically regulated by a known metabolite, we retrieve its natural 

agonist and/or allosteric regulator (e.g., from KEGG LIGAND database); and (v) given a protein 

with known transcriptional regulation, we retrieve metabolites that are known to induce or 

suppress its transcription (e.g., oxysterols and liver X receptor downstream targets) (Figure 4.2 

and 4.3). 

 

To enable these functionalities, we begin by building broad interfaces with large-scale 

databases of proteomics and metabolomics data. Currently, we are at pace to complete a 

dedicated web API to retrieve protein cardiovascular disease relevance information from 

COPaKB. Data from Reactome, MetaboLights, and UniProt will be retrieved through existing 

and to-be-developed high-performance APIs. We develop a scoring schema to weigh retrieved 

protein-metabolite connections from each category based on the strength of existing evidence. 

As the data retrieval and integration strategies mature, we demonstrate the strategy’s utility in 

the analysis of a large protein and metabolite dataset of cardiac hypertrophy that we have 

already acquired (see Preliminary Data). We construct protein-metabolite graphs based on the 

retrieved connections, followed by visualization of the integrated protein-metabolite networks on 

the browser. 
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In addition, biological and chemical functional annotations for proteins and metabolites are 

retrieved from COPaKB/Gene Wiki and MetaboLights/ChEBI. MetProt will be hosted on Amazon 

Web Services (AWS), enabling users to perform these analyses on the cloud and generate 

integrated reports, including a table view of protein-metabolite interactions, and functional 

annotations as well as graphical views of networks and pathways. 

 

Users input a list of proteins with Uniprot accession numbers and columns of numerical qualities 

in text formats. Output will be annotations for each Uniprot accession in each of the 

aforementioned classes of protein-metabolite linkage (Figure 4.3.). We use the proteomics and 

metabolomics data from the mouse hypertrophy model as a test case to determine whether the 

knowledge integration approach between protein and metabolite data in a common disease 

model can be used to discover new pathways and generate new hypotheses (Project 3). 

 

4.III.C. Build a cloud-based platform, MetProt, to enable the computational/bioinformatics 

strategies.  

Cloud-based platforms have become an increasingly popular mode of large-scale high-

dimensional omics datasets (big data) analysis and dissemination of biomedical 

knowledgebases. The many operational advantages of cloud-based knowledgebases include 

minimal requirements of end-user investment in computational infrastructure, strong software 

compatibility, lack of installation hassle, and high visibility on the web, all working to ensure 

maximal use and access of the tools. Successful examples include UniProt and Reactome; both 

currently support broad user engagement in global biomedical research. Accordingly, we have 

chosen to establish a cloud-based platform, tentatively named MetProt, as an approach 

enabling the above computational and bioinformatics strategies (Projects 1 & 2). This cloud-

based platform connects to collaborating partners and knowledgebases to promote 

interoperability, utilization, and dissemination.  
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Figure 4.3. MetProt Distributed System Architecture. MetProt is designed to run on a modern system 
architecture that will make it robust, versatile, and extensible. An Amazon Web Service (AWS) EC2 
server will host the MetProt Core. Users will programmatically access and retrieve search results via 
REST APIs or the web interface on www.metprot.org. MetProt Database Updater will integrate various 
types of biomolecular interaction information extracted from REACTOME, KEGG PATHWAY, UniProt, 
HMDB, dbPTM, PhosphoSitePlus, KEGG LIGAND, and DrugBank, and will store the comprehensive 
interaction information among proteins and metabolites in MetProt Databases. In addition, MetProt will 
provide biological and chemical functional annotation for biomolecules by utilizing APIs provided by Gene 
Wiki, BioGPS, MetaboLights, HMDB, ChEBI, and COPaKB. 
 

Our team previously developed COPaKB, a cardiovascular knowledgebase for cloud-based 

proteomics analysis. COPaKB enables users to upload and analyze MS data files remotely on a 

highly scalable cloud server (N. C. Zong et al. 2013; H. Li et al. 2013) and has received over 

177,604 page views from ~125 countries as of June 2016. The spectral library search engine on 

COPaKB is an emerging alternative to sequence database search, and allows fast identification 

of peptides with low error rates. In addition, API integration has enabled COPaKB to feature a 

pathway enrichment analysis tool, a Gene Wiki embedding widget, and a protein-protein 

interaction and visualization tool. These efforts demonstrate our credentials in developing and 

deploying widely-utilized, community-centric data science platforms. 

MetProt system architecture includes: (i) a Wiki interface, which serves as evolving 

documentation and a canvas for users to document protein and metabolite annotations; (ii) a 

MetProt Core, which receive and process user queries and connect to Gene Wiki, BioGPS, 
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MetaboLights, COPaKB, HMDB, and ChEBI via APIs provided by these knowledgebases; (iii) a 

Database Access Object (DAO), which interfaces with MetProt Database Updater, retrieving 

and integrating information from collaborating knowledgebases (i.e., Reactome, KEGG, UniProt, 

etc.); and (iv) MetProt will build upon two complimentary database systems (MySQL and 

MongoDB) and ensure efficient search/query operations (Figure 4.3.). 

 

 

Figure 4.4. MetProt User Interface. Technologies used in MetProt user interface include HTML/CSS, 
JavaScript, and Bootstrap. Back-end/server is written in Java and R programming languages. The 
MetProt can be accessed at http://metaprot-env.us-west-2.elasticbeanstalk.com/. 
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We anticipate users upload protein identification and quantification datasets, using file transfer 

and management protocols we have established from our experience with COPaKB. Output 

contains the list of proteins that are linked to known metabolites and metabolite annotations, 

and the manner in which such conceptual or molecular connections are established. For 

example, users are able to identify the number of proteins from the uploaded list that participate 

in major metabolic pathways and visualize the proteins that are driving chemical and 

biochemical reactions, as well as proteins whose protein PTMs may be critically modulated by 

the presence and concentration of particular metabolites. These connections serve to identify 

the potential involvement of various metabolite species in the biological model being studied, 

and will be systematically organized and presented to facilitate data interpretation, knowledge 

integration, and hypothesis generation. Additional features will be developed (which will extend 

beyond my dissertation), where we will support metabolite datasets as input and allow reverse 

queries of protein-level regulation of metabolite levels. 

 

MetProt is evaluated by the number of installed servers and the volume of depositions in the 

MetProt database at the end of the project. In addition, the user access statistics of MetProt, 

including number of unique users, pageviews, and pageviews per visit, are measured by Google 

Analytics (Figure 4.4.). We will also continuously monitor the usage of our MetProt API through 

Google Analytics. 

 

4.IV. Discussion. 

 
4.IV.A. Significance and Innovation of Completed MetPro Projects. 

The proposed three projects have two major aspects of significance. First, our studies will 

establish a computational pipeline, applying it to two benchmark plasma metabolomic datasets 

of ISO-treated mouse strains and HF patients, to pave the groundwork for future metabolomics 
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studies with clinical translation. Protein and metabolite identities/quantities are tightly regulated 

parameters reflecting cardiac function. 

●      Conceptual innovation: We took advantage of a novel systems genetics model, in which 

natural mouse genetic strains span a wide spectrum of HF susceptibility, to discover disease 

mechanisms. 

●      Technological innovation: Proteomics and metabolomics investigations are rarely integrated, 

despite the obvious connections between proteins and metabolites that are critical for fully 

understanding biological mechanisms. Our studies innovate approaches that enable multi-omics 

investigations and empower the broad user base of cardiovascular investigators. 

●      Translational innovation: The proposed studies directly support experiments aimed at 

understanding in vivo protein and metabolite dynamics of HF patients. 

 

4.IV.B. Feasibility of Integrating MetPro with Other Existing Resources. 

 

4.IV.B.a. Aztec search results for other available resources that conduct multi-omics analysis 

and integration (http://aztec.bio/). 

 The availability of multi-omics data analysis tools is currently limited; for example, the Aztec 

discovery index lists 778 proteomics tools and 147 metabolomics tools. However, Aztec resulted 

in only one multi-omics visualization tool, and to the best of our knowledge, there is no 

application that comprehensively analyzes and integrates proteomic and metabolomic datasets. 

A simplified computational pipeline to analyze and annotate large-scale proteomics datasets 

with metabolomics datasets currently does not exist. This limitation hinders our capability to 

identify integrated biomolecular profiles relevant to HF. 
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 4.V.B.b. Function, application and accuracy of the existing/alternative methods. 

Previous studies have systematically examined the interplay between proteomes and 

metabolomes and reported that approximately 20% of proteins bind to at least one hydrophobic 

metabolite (X. Li et al. 2010; X. Li and Snyder 2011), suggesting that a large portion of the 

proteome physically interfaces with metabolites. However, the resources for the true integration 

of proteins and metabolites remain limited. One notable effort that successfully tackled this topic 

is the development of “Search Tool for Interacting Chemicals” (STITCH), which is a database 

integrating the disparate data sources into a singular resource (Szklarczyk et al. 2016; Kuhn et 

al. 2014, 2008). 

 

STITCH facilitates access to the information of protein-metabolite interactions that can be 

extracted from the databases of metabolic pathways, crystal structures, binding experiments, 

and drug-target relationships. Further, this database provides a comprehensive list as well as 

visualization of protein-metabolite interactions. Specifically, STITCH enables users to query the 

interacting partners of the list of proteins or metabolites of interest. A full-text search is available 

for identifiers (e.g., STRING identifier) and common names of chemicals and proteins. The 

chemical structures and protein sequences can also be submitted for a database search. In 

addition, STITCH contains a visualization tool that displays the search results in a network view, 

providing an overview of the complex networks among proteins and metabolites and possibly 

biological insights. Further, STITCH allows users to filter out the molecules in the results that 

are believed not to be present in a specified tissue. This filtering capability reduces the false 

positives in the protein-metabolite network. STITCH aggregates information from multiple 

sources into a unified global network of protein–metabolite interactions. It is widely applicable to 

targeted small-scale analyses via web interface to large-scale analyses via their API access.  

 

Due to its powerful capacity for bridging metabolic pathways, protein 3D structures, protein-
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metabolite binding data, and drug-target relations, STITCH enables synergistic data sharing 

with MetProt. This resource offers granular details for biological and cellular pathways, 

describing chemical and biochemical reactions at each step. Moreover, it provides critical 

information for metabolites when they function either as ligands for protein-based receptors or 

cofactors for translational and post-translational regulations. This effort affords opportunities for 

comprehensive knowledge pertaining to interfaces between the proteome and metabolome; 

furthermore, it facilitates an in-depth understanding of molecular and cellular function underlying 

disease initiation and progression. 

 

4.V.B.c. Potential limitations and alternative strategies. 

The proposed platform will incorporate information from multiple resources. Some resources 

provide APIs allowing us to programmatically retrieve information; some provide only 

spreadsheets without structured data. Our approach is to retrieve programmatically where 

possible and manually where APIs are not available. Hence, a potential pitfall is the 

heterogeneity and incompatibility of vocabularies from these different data sources; for example, 

KEGG and Reactome may have different terminologies for some identical pathways. We will 

apply community standards to particular resources and either request the resources, adopt a 

consistent community standard, or alternatively, host the converted information on our local 

server, with periodical updates. 

 

4.V.C. Future Direction of MetProt Development. 

 

4.V.C.a. Differentiate physiological relevant protein-metabolite relations from “enzymatic 

promiscuity” (“Comprehensive Natural Products II” 2010).  

For an enzyme, its “native function” is physiologically relevant to the organism hosting this 

enzyme. Many enzymes have more than one physiological function, or exhibit a broad 
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specificity towards a whole range of similar substrates, which still belong to the category of 

naturally evolved “native function”. However, purely accidental protein-metabolite interactions 

occur, which comprise the idea of enzymatic promiscuity. When a high-throughput, unbiased 

proteomics dataset has been established, we need to differentiate the physiologically relevant 

associations from non-specific ones. The traditional binding assay-based method is labor-

intensive and not practical for validating hundreds of thousands of relations within a global 

proteome-metabolome network. Therefore, computational approaches, in particular, machine 

learning (ML)-based strategies may be incorporated into the current infrastructure of MetPro. 

 

4.V.C.b. Analysis of protein-metabolite regulatory events that are relevant to a particular 

phenotype.  

 

Large-scale characterization of metabolomes has gained traction over the last decade, and as 

with proteomics, advanced MS techniques can now be used to detect and quantify thousands of 

chemical compounds in a single run. Data analysis pipelines are not quite as well developed for 

metabolomics as for standard proteomics data, and since the structures of many metabolites 

cannot be readily distinguished above a certain mass tolerance, rigorous validation criteria are 

required for confident identification. While the main bottleneck in computational analysis 

remains the lack of annotation for many uncharacterized metabolites, serendipitously the global 

study of metabolite–protein interactions will likely provide an elegant solution to address this 

(Guo, Peng, and Emili 2017). To this end, a major goal of MetProt moving forward is to 

systematically address the metabolite annotation conundrum. 

 

It is estimated that there are >1 million metabolites in a biological cell, and the number of 

metabolites is approximately 100-fold larger than proteins (Milo 2013; Bennett et al. 2009). 

However, the interaction between the proteome and metabolome has been difficult to 
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systematically define on a large-scale. While bioinformatics analysis of proteomes and 

metabolomes has traditionally been performed separately, integrative data analysis strategies 

are urgently needed to obtain a deeper mechanistic understanding of biological processes and 

complex protein-metabolite networks. From a technical standpoint, the allosteric, or noncovalent 

nature of the binding between proteins and metabolites has hampered the development of 

methods for systematically mapping protein-metabolite interactions. MS-based approaches are 

largely restricted to metabolite classes (e.g., lipids), and while NMR spectroscopy shows 

promise for defining sophisticated interaction mechanisms (Nikolaev et al. 2016), it has lower 

throughput than MS. It has also become clear in recent work that some PTMs, such as 

acetylation and succinylation, can occur non-enzymatically in vitro through inherently reactive 

metabolites (Weinert et al. 2013; Wagner and Payne 2013). The identification of PTM sites or 

allosteric interactions which are highly conserved across species can help to select regulatory 

events which are more likely to be functionally relevant. The next step is to identify those 

regulatory events that are actually relevant to a particular phenotype (Kochanowski, Sauer, and 

Noor 2015), including efforts to address how post-translational regulatory events relate to other 

physiological measures, such as fluxes or metabolite concentrations. 

 

A study in 2010 conducted in eukaryotic yeast cells which looked at purified proteins and their 

association with metabolites revealed that approximately 70% of ergosterol biosynthetic proteins 

and 20% of the protein kinases studied bound hydrophobic metabolites (X. Li et al. 2010). 

Extrapolating from this results, the authors speculated that >1200 soluble yeast proteins bind 

hydrophobic molecules in vivo. A recent study in 2018 achieved a comprehensive, systematic 

analysis of the bacterial proteome-metabolite interactome via the Limited Proteolysis-small 

molecule mapping (LiP-SMap) technique (Piazza et al. 2018). They looked at the binding of 

over 2,500 proteins with 20 common metabolites and demonstrated that ~25% of the proteome 

interacted with at least one of the evaluated metabolites, with preference exhibited for the “core 
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proteome” (Yang et al. 2015). Moreover, the fraction of the proteome that underwent structural 

variations upon metabolite binding was approximately one-third of the total proteome (620 

proteins out of 2,565). This study indicates that the size and complexity of the metabolite-protein 

interactome is substantially larger than previously anticipated. Currently, MetProt contains xxx 

number of protein-metabolite interactions from xxx protein and xxx metabolites for xxx 

organisms. Despite the sizable nature of our database, this likely represents only a portion of 

biologically relevant interactions.  

 

4.V.C.c. Using advance ML-based methods to predict protein-metabolite regulatory events that 

are relevant to disease phenotypes.  

 

The increasingly complex protein-metabolite datasets that have been generated, such as those 

listed above, have spurred the development of powerful new computational capabilities for 

integrating proteomic and metabolomic datasets. An example of this is deep learning, which 

allows for deeper mechanistic inferences of biomedical significance, as well as better 

diagnostics and drugs (Guo, Peng, and Emili 2017). Several computational tools have been 

developed to predict the protein targets of small molecules (Koutsoukas et al. 2011), such as 

GUSAR, PASS INet, PharmMapper, and TarFisDock. However, these approaches and others 

used in recent studies are univariate and don’t fully take an advantage of using big data. 

Advanced ML approaches to tackle this topic may be suitable, and we have plans to employ 

ML-based prediction methods to predict highly possible interactions between proteins and 

metabolites. In this project a cloud-based platform is developed to aggregate knowledge of 

protein-metabolite interfaces from multiple sources. We can leverage the massive datasets in 

MetProt as training data to predict other interactions, and use existing text-mining tools 

developed by Dr. Jiawei Han and Dr. Peipei Ping to validate the predicted interactions reported 

in both current and future biomedical literature. Moreover, rapid progress in the drug discovery 
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field is expected in the next few years, resulting in much needed new opportunities for improving 

sparse drug discovery pipelines. Our future plans for MetProt include using deep learning to find 

the associations between the protein-small molecule interactions and disease phenotypes, 

among others. 

 

4.V. Conclusion.  

We are establishing a cloud-based platform, MetProt (http://metaprot-env.us-west-2. 

elasticbeanstalk.com/), for quantifying, triaging and analyzing omics datasets. MetProt will 

enable us to find existing as well as novel connections between proteins and metabolites, 

annotate molecular functions, and provide biomedical insights. 
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