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Introducing Mplots: scaling time series 
recurrence plots to massive datasets
Maryam Shahcheraghi1*, Ryan Mercer1, João Manuel de Almeida Rodrigues2, Audrey Der1, 
Hugo Filipe Silveira Gamboa2, Zachary Zimmerman1, Kerry Mauck1 and Eamonn Keogh1 

Introduction
There are many tasks that researchers routinely perform on time series, including clas-
sification, clustering, segmentation, anomaly detection, etc. However, given a new data-
set, the first task is typically to simply gain an understanding of that data, in particular 
the relationship among the subsequences within it [40, 43]. One way to do this is to use 
a recurrence plot. Given a long time series and a user-specified subsequence length, it 
is possible to construct a similarity matrix with colors (or shades of gray) representing 
the distance between all possible pairs of subsequences. Variants of these plots are also 
called dot plots, self-similarity matrices, similarity plots, time series similarity matrices, 
etc. [7, 22]. For concreteness we will call the variant of interest here time series similarity 
matrix plots or just Mplots. Mplots have many uses in data mining. They can be used for 

Abstract 

Time series similarity matrices (informally, recurrence plots or dot-plots), are useful 
tools for time series data mining. They can be used to guide data exploration, and vari-
ous useful features can be derived from them and then fed into downstream analyt-
ics. However, time series similarity matrices suffer from very poor scalability, taxing 
both time and memory requirements. In this work, we introduce novel ideas that allow 
us to scale the largest time series similarity matrices that can be examined by sev-
eral orders of magnitude. The first idea is a novel algorithm to compute the matri-
ces in a way that removes dependency on the subsequence length. This algorithm 
is so fast that it allows us to now address datasets where the memory limitations begin 
to dominate. Our second novel contribution is a multiscale algorithm that computes 
an approximation of the matrix appropriate for the limitations of the user’s memory/
screen-resolution, then performs a local, just-in-time recomputation of any region 
that the user wishes to zoom-in on. Given that this largely removes time and space 
barriers, human visual attention then becomes the bottleneck. We further introduce 
algorithms that search massive matrices with quadrillions of cells and then prioritize 
regions for later examination by either humans or algorithms. We will demonstrate 
the utility of our ideas for data exploration, segmentation, and classification in domains 
as diverse as astronomy, bioinformatics, entomology, and wildlife monitoring.
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visual exploration of data, or various features can be extracted from them, and then fed 
into other algorithms. For example, the Matrix Profile is an increasingly popular time 
series analytical tool that is directly extracted from a Mplot, by recording the smallest 
(off-the-diagonal) value in each column [40, 43, 45].

A simple Mplot makes comparisons within time series A, as shown in Fig. 1, and we 
can also use this representation to compare and contrast between two time series A and 
B, with a variant we call an AB-Mplot. Such plots allow us to understand where two time 
series are similar and different.

Mplots (under the different names noted above) are used in astronomy [27], econom-
ics [34], music [10], physiology [36, 37], neuroscience [19], earth sciences [3], medicine 
[1, 42] and engineering [22]. As noted in a founding paper on the topic, “information 
obtained from recurrence plots is often surprising, and not easily obtainable by other 
methods” [7].

In spite of this ubiquity, it is surprising that they are not used more often in the data 
mining community. We believe that this is because of the following three bottlenecks:

•	 CPU: Classic Mplots require processing that is quadratic in the length of the time 
series, and linear in the length of the subsequences. This seems to have limited their 
use to time series with a length of about 20,000 [7, 20, 22, 27].

•	 Memory: If a researcher has spent significant resources to obtain a long time series 
of say length 100,000, she may well be willing to wait hours or even days to compute 
a Mplot, in order to glean information from her dataset. However, she is unlikely to 
have the requisite 80 gigabytes of main memory to work with.

•	 Human visual attention/screen resolution: Even if a user could somehow bypass the 
two difficulties above, this would eventually lead to the situation where her ability to 
visually scan the Mplot, and the ability of a standard screen to display such a huge 
matrix, become bottlenecks. For example, in Sect.  “Searching Massive Mplots” we 
compute a Mplot that if printed out on the scale used in the figures in this paper, 
would cover a soccer field. Clearly such Mplots would defy any attempt at human 
visual inspection.

In this work we introduce techniques to solve all the above issues. We begin by 
showing how we can reduce the amortized time to compute a single cell of a Mplot to 
just O(1), not the current O(m), where m is the subsequence length. Because m can 
be > 1000, this means we can compute Mplot up to three orders of magnitude faster than 

Fig. 1  Examples of Mplots hint at the diversity and utility of this data structure. Like many plots in the paper, 
these figures suffer somewhat from the size of reproduction. We encourage the interested reader to visit 
[31] which has larger figures and videos. Here we show binarized Mplots, but more generally Mplots allow a 
spectrum of colors to indicate degree of similarity
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is currently possible. Moreover, as we will show, for truly ambitious datasets, we have 
ported our ideas to GPUs, to allow us to compute a Mplot with quadrillions of cells.

We further show how we can address the memory bottleneck by the introduction of a 
multiscale algorithm that computes an approximation of the matrix appropriate for the 
limitations of the user’s screen/memory, then performs a local, just-in-time recomputa-
tion of any region that the user wishes to zoom-in on. Finally, we show that for truly 
massive Mplots, we can create algorithms that can build the matrices “patchwise” and 
search each patch for features that a user may wish to have drawn to her attention. This 
removes human visual attention as a bottleneck for Mplots.

The rest of this paper is organized as follows. In Sect.  “Definitions and notation” we 
review the definitions that are required to comprehend the techniques explained in this 
paper. After that we clarify the main differences between Mplots and true recurrence 
plots in Sect.  “Related work”, along with a discussion of related work. Our proposed 
techniques are described in Sect. “Algorithms that scale up Mplots”. To help develop the 
readers skill in the interpretation of the Mplot patterns, we present annotated exam-
ples in Sect.  “Interpreting Mplots”. Section  “Interpreting Mplots: reverse engineered” 
explains how you can “reverse engineer” Mplot interpretations to automate the discov-
ery of hypothesized structure in the time series. We present a detailed empirical analysis 
on diverse datasets in Sect. “Experimental evaluation”. Finally, in Sect. “Conclusions” we 
offer conclusions and directions for future work.

Definitions and notation
Our data type of interest is time series.

Definition 1:  A time series T = t1, t2, . . . , tn is a sequence of real-valued numbers.

For the task-at-hand, we are not interested in global properties of a time series but 
rather the relationships between small regions of the time series called subsequences.

Definition 2:  A subsequence T(i,m) is a contiguous subset of values from T starting at 
index i with length m.

We can measure the distance between any two time series subsequences of equal 
length using a distance measure. In this work, we use the ubiquitous z-normalized 
Euclidean distance [40]. Note the subsequence length here takes on a similar role to 
the  embedding dimension  in discrete dot plots [20, 22]. However, the implications of 
changing lengths are more complex in our case. Making the embedding dimension 
larger can only make a dot plot sparser and decrease the length of “runs” in the plots. 
However, because we are working in the z-normalized space, longer subsequences can 
have a lower Euclidean distance, and therefore produce longer runs. We will return to 
the observation later in this work.

If we need to measure the distance between a short time series and every subsequence 
from a long time series, we can produce a distance profile.

Definition 3:  A distance profile DP
(j,m)

AB  is the vector of distances between each subse-
quence in a reference time series TA and a query subsequence T(j,m)

B .
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The distance can be computed very efficiently using the MASS algorithm [25]. How-
ever, if we are limited by time, we can perform the classic trick of computing the distance 
profile on a downsampled version of A, using a similarly downsampled version of B. We 
propose to use Piecewise Aggregate Approximation (PAA) to downsample the data [17]. 
If we wish to downsample a time series by a factor of d, we indicate this by PAA(A,d). As 
Fig. 2 shows, on many datasets it is possible to significantly downsample the data, while 
retaining the essential features.

Note that downsampling may be a particular attractive strategy here, as the memory 
and time savings are quadratic in the downsampling rate. Although the Mplot has been 
informally introduced and compared to recurrence plots (dot plots), for concreteness we 
define it here.

Definition 4:  A Mplot is the visualized matrix of distance profiles. Each row j of this 
matrix is DP

(j,m)

AB .

A Mplot is, by its nature, a dense real-valued matrix. However, for better visualization 
(especially for a figure in a paper) we often binarized its values to either see the highest 
or lowest values. Binarizing Mplots helps to only display the values in the desired range. 
So, a user who is interested in subsequences with high similarity (motifs)/ low similarity 
(discords) can set a threshold to only see the values in that range.

When A = B, this definition is logically equivalent to a self-join of A. The popular 
Matrix Profile is simply the vector of length |A| that contains the minimum (non-diag-
onal) value in each column [40, 43, 45]. The state-of-the-art Matrix Profile algorithms 
(SCRIMP, SCAMP) can compute this incrementally, without ever having to have the 
entire matrix in main memory at one time. When A  = B, this definition is logically 
equivalent to an AB-join. Such joins are frequently used in recurrence plots to visualize 
the differences between two DNA sequences, but surprisingly, to the best of our knowl-
edge, there are very few uses of real-valued AB-join time series.

Related work
As noted in the introduction, the basic idea of creating a matrix to represent the similar-
ity of subsequences has many names, and the literature is not consistent in naming con-
ventions. It is important that we differentiate Mplots from true recurrence plots. Mplots 
are superficially similar to recurrence plots (dot plots) which are often used in bioinfor-
matics, linguistics, etc. [13]. Moreover, many of the uses of recurrence plots are also uses 

Fig. 2  A time series A with n = 64 downsampled with PAA. left) Downsampled 1 in 4, right) Downsampled 1 
in 16. While the 1 in 16 plot has lost significant detail, the 1 in 4 downsampling does preserve the basic shape 
of the time series
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of Mplots. However, it is worth explicitly pointing out some of the differences between 
them:

•	 Dot plots are discrete. Every cell in the matrix is binary. In contrast Mplots must be 
real-valued, as we may be interested in relative degrees of similarity.

•	 As a consequence of the binary nature of dot plots, they are normally extremely 
sparse, with typical densities less than 0.000001. This means that space complexity is 
rarely an issue for dot plots (by exploiting sparse matrix support in many program-
ming languages).

•	 Each cell in a dot plot is the result of an equality test comparing two scalers, such as 
‘T’ = ‘A’? In contrast each cell in a Mplot is the result of a distance comparison 
between two vectors, which can have a length of over 1000. Moreover, these vectors 
need to be normalized before being compared (surprisingly, normalization generally 
takes longer than the distance computation [28]). This means that Mplots may take 
orders of magnitude longer to be computed.

•	 Dot plots are only useful for finding similarity (i.e., conservation). In contrast, with 
Mplots we may wish to compare two datasets where we expect conservation, and/or 
violations of conservation (i.e., dissimilarity).

Because of these many differences between Mplots and recurrence plots, little of the 
vast literature on efficient construction of the latter is helpful in scaling up the former. 
Nevertheless, most of the utility of visualizing recurrence plots also applies to Mplots.

There are many creative ways to visualize time series, see [8] and the references 
therein. However, Mplots are particularly direct and intuitive. Moreover, unlike say Viz-
trees [18], they preserve the temporal information context. For example, if we examine 
a year’s worth of transaction time series and our eye is drawn to a motif that occurs at 
about 12% across and 40% down, we can use our intuition to guess that these events 
might correspond to Valentine’s Day and Mother’s Day,1 two days with similar spending 
patterns on flowers and restaurants.

Algorithms that scale up Mplots
In this section we introduce three novel ideas that allow us to scale up the largest size of 
Mplot that can be considered by several orders of magnitude. We begin by addressing 
the CPU bottleneck.

Removing the CPU bottleneck

It is clear that a Mplot’s time complexity must be at least O(n2) (This is not the case 
for true dot plots, which can be constrained to be arbitrarily sparse, and use various 
hashing-based optimizations). However, the time complexity is actually O(m × n2) 
[22, 27]. As we show in Sect.  “Experimental evaluation”, m can be in the thousands. 
Moreover, this complexity hides some constant factors. As we are working with z-nor-
malized time series, the time taken to perform the z-normalization is actually greater 
than the time needed for the Euclidean distance calculation [28]. In this section we 

1  Here we assume the USA Mother’s Day.
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show that we can completely remove the dependence on m and make Mplot’s a true 
O(n2) algorithm with tiny constant factor.

The idea of making the time complexity of a Mplot independent of the m value is 
similar to the Matrix Profile algorithms proposed in [43, 45]. Let us consider the for-
mula for calculating a cell of distance profile ( d(i,j)).

where, d(i,j) is assumed to be the Euclidean distance of z-normalized subsequences. 
QT (i,j) , is the dot product of corresponding subsequences. µi and σ i are the mean and 
standard deviation of T(i,m) , respectively.

In Table 1 we introduce an algorithm that exploits these observations. We call our 
algorithm SPLAT, Scalable Processing of LArger Time series.

The SPLAT algorithm starts by initializing the Mplot matrix in line 1. The matrix 
row and column count equal the number of subsequences in TA and TB , respectively. 
Line 2 precomputes the mean and standard deviation of each subsequence of input 
time series. By updating the QT values in line 6, the distance profile of the reference 
time series and the query is calculated as shown in line 7. Finally, with line 8, the 
Mplot matrix value of each cell is updated.

The SPLAT algorithm defined here is a general case where two distinct time series 
are compared (AB-join), however if we set both input time series as TA , this algorithm 
computes the special case of self-join similarity. For the self-join case, we can trivially 
make the algorithm twice as fast by exploiting the symmetry about the diagonal.

By taking advantage of the techniques in [28, 43] and [45] in addition to the mean 
and standard deviation, the dot product can also be calculated in O(1). So, a time 
complexity of O(n2 ) is achieved which is the minimum required to compute all the 
values in a Mplot with n× n cells.

(1)d(i,j) =

√

2m(1−
QT (i,j) −mµiµj

mσ iσ j
)

Table 1  The SPLAT Algorithm to compute Mplots
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The SPLAT algorithm can efficiently compute large Mplots, but we may task it with 
a long time series that would take longer to compute than the user’s patience allows. 
To address this issue, we can create a contract algorithm version of SPLAT, parameter-
ized by the maximum amount of time the user is willing to wait [44]. For example, in 
SPLAT(A,B,m,4), the user is requesting the best approximation that can be computed in 
four seconds or less.

To achieve this user-requested time limit, we will approximate the time series with 
PAA (Recall Fig.  2). We will use the absolute minimum amount of downsampling to 
achieve this user-requested acceleration. This is easy to implement. Suppose we have 
previously performed a calibration run with a Mplot with |A|= 10,000, and found it took 
S seconds. We can then predict that building a Mplot for size time series T, of length n′ , 
will take SplatTimePredict(T, n′) = S * ( n′/|A|)2.

If this is within our time budget, there is nothing to do. If this takes longer than our 
user supplied time budget, we then reduce T to create TPAA = PAA(T,p), where p = get-
PaaFactor = n′/|A|, ensuring that this approximation will take exactly S seconds.

Although the minimum possible time complexity has now been achieved with these 
ideas, we will run into issues with memory usage for a long time series. A Mplot needs 
all its cell values in memory, unlike say the state-of-the-art Matrix Profile algorithms [43, 
45], which only require keeping the minimum of each column of Mplot. Thus, mem-
ory becomes the next bottleneck. Our proposed solution to this issue is described in 
Sect. “Removing the memory bottleneck”.

Removing the memory bottleneck

The ideas in the previous section greatly reduce the time needed to compute large 
Mplots, however as we consider ever larger Mplots we bump into a new hurdle, main 
memory.

The reader may wonder why we should use the time and memory resources required 
to compute large matrices, when none of the available screens are able to display them 
at native resolution. Note that the highest resolution in a commercially available system 
is currently 8 K (7680 × 4320 pixels). In fact, there is a reason to compute a Mplot at a 
resolution greater than can be (currently) displayed. We propose to create multi-resolu-
tion approach, which allows a user to initially see an approximation of a massive Mplot, 
and interactively zoom-in on any areas that catch her eye as requiring a more detailed 
inspection. When the zoomed-in patch is requested, one of two things happens:

•	 If the zoomed-in patch was precomputed at the required resolution, we can simply 
fetch it from memory.

•	 If the zoomed-in patch was not precomputed at a fine enough level, it is recalculated, 
on-demand, at the finer resolution required.

Note that this style of user interaction echoes the widely known visual information 
seeking mantra given by Ben Shneiderman: Overview first, zoom and filter, then details-
on-demand [33].

Assume that the entire area of an 8 K screen is to be used to show a Mplot. Using 
the SPLAT algorithm, we could exactly compute an AB-join of two time series of 
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length 7680 and 4320 in well under one second on a standard desktop (by way of con-
trast, if m = 512, existing brute-force algorithms take about 840 s). This is effectively 
real-time or interactive for our purposes. We set one second as being the limit for any 
refresh interaction with our system.

With this in mind, we propose a multi-resolution approach to allow Mplots to han-
dle long time series called MultiResSPLAT. The basic intuition is as follows:

•	 MultiResSPLAT accepts a threshold for user patience for screen refreshes, i.e., one 
second.

•	 The SplatTimePredict function predicts how long it would take the Mplot matrix 
to be computed.

•	 If the predicted time exceeds the user’s patience, the tool downsamples the time 
series by a factor of p such that the computation time is less than that threshold. 
The factor p is computed by getPaaFactor. This matrix, computed on downsam-
pled data, is shown as the Mplot.

•	 The user may be satisfied with the approximate Mplot. However, if she wishes to 
zoom-in to inspect any region in more detail, we recursively repeat this process 
for that local patch of the matrix.

•	 Likewise, if the user is currently viewing a zoomed-in region of a Mplot, and she 
wishes to pan her view, we will not have the new patch computed at the current 
resolution, so we again compute it on-demand, at the highest resolution allowed 
by its size and the threshold for user patience.

Table 2  The MultiResSPLAT Algorithm
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In Table  2 we formalize these ideas, beginning with the main MultiResSPLAT 
algorithm.

In line 1 the user patience threshold is set to t seconds. With line 2, we estimate the 
SPLAT time on the input time series. By comparing the estimated time and t in line 3, 
the algorithm decides whether a downsampling is required or not. If downsampling is 
needed, the PAA factor, p, will be calculated as shown in line 4. Then the new downsam-
pled time series ( TA′ , TB′ ) and the reduced subsequence length ( m′ ) are set within lines 5 
to 7. Finally, the SPLAT algorithm is applied on the downsampled time series of interest 
as shown in lines 8 and 10.

In Table 3 we show how we can use the MultiResSPLAT algorithm recursively, to allow 
zooming-in on a region of an approximately computed Mplot, to show that region in a 
larger size that is more finely approximated. For clarity, Table 3 outlines the algorithm 
for one single zoom-in. However, it can be trivially extended to allow iterative zooming-
in, where a user “drills down” to an event that catches her eye.

The algorithm starts by obtaining the user-requested patch from an existing Mplot 
(plt) in line 1. This request normally comes from a classic rectangular selection tool. 
As the user selects a rectangle region on plt, the four corners of the selected area are 
returned as lx, rx, uy, dy, which are left/right x and up/down y values, respectively. Then 
in lines 2 and 3, the coordinates are mapped to the exact locations in both input time 
series TA ( segA ) and TB ( segB ). Finally, the MultiResSPLAT is called on the new subsets of 
the input time series and the new zoomed-in Mplot is returned with line 4.

We omit the details of the panning function, which is similar. Note that the experi-
ence of using these tools is completely transparent to the user. She can pan and zoom 
at will and have essentially the same experience as if the system had precomputed and 
stored a massive matrix. Using MultiResSPLAT, memory usage can be improved by 
orders of magnitude. Assume we need to run SPLAT on a time series of length 1,000,000 
and return a matrix with a trillion cells. In MultiResSPLAT the computed matrix size is 
always below a threshold, say 7680 and 4320, which reduces the memory footprint by a 
factor of ~ 31,000.

Removing the human visual attention bottleneck

In the previous two sections we mitigated both memory and time limitations to cre-
ate large Mplots. However, this reveals two new related bottlenecks, human visual 

Table 3  The MultiResSPLATZoom Algorithm
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attention and screen resolution. It is reasonable to ask why we should bother to com-
pute a matrix of size, say 50,000 by 50,000 if we are going to display it on a mere, say 
2000 by 2000 pixel patch of the screen. The results in the last section partly answer 
this question, a downscaled approximation of a large Mplot is often good enough to 
allow a user to spot a tentative, but possibly “blurred” pattern, which she can then 
explore by zooming-in. However, for truly massive Mplots, the downscaled approxi-
mation may obscure patterns. There is an obvious solution, to compute the Mplot 
patchwise, and then show the user the full-scale piecewise patches consecutively. 
However, that simply shifts the bottleneck to human visual attention, which is an 
even more precious resource.

Note that if the user is interested in visually searching for features or patterns that can 
be objectively ranked, we can use our piecewise strategy to search for such features, and 
only save the top-k patches for later “offline” visual inspection. Assume for the moment 
that such a target feature, Tfeature, exists. In Table 4 we show how we can use the Piece-
wiseSPLAT algorithm to find the patch that contains the top-1 Tfeature.

The top-1 patch is initially set to Null in line 1. Given a patch size of p, the reference 
and query time series are examined piece by piece within lines 2 to 5. Each patch is then 
compared to the best patch so far in line 6, w.r.t. Tfeature. The best patch is updated only 
when the examined score is greater than our best-so-far. Line 7 returns the best patch of 
the Mplot with regard to the user desired Tfeature.

Thus far we have glossed over the nature of Tfeature. Here we can leverage decades 
of research. There are dozens of algorithms for extracting features from Mplots, some 
generic, and some domain specific. Some examples include:

•	 Bioacoustics: Malige et al. use Mplots [20], to analyze humpback whale communi-
cations, and explicitly define specialized features on the matrix such as song and 
theme.

Table 4  The PiecewiseSPLAT Algorithm

Note that there is some computational overhead, in that the patches must slightly overlap. This is because some features 
that we may wish to search for may span a region of pixels, and we do not want to miss a feature that is close to the edge 
of a patch. Note however that this overlap must be of the order m, which is typically in the range of 8 to 258. Whereas 
the patch size might be in the range of 20,000 × 20,000 (the best size depends on the main memory available) so the 
computational overhead of the overlap is inconsequential
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•	 Astronomy: Phillipson uses Mplot to investigate stochastic light curves of Active 
Galactic Nuclei [27], and define a feature called optical quasi-periodic oscillation that 
can be computed from the plots.

In addition to these domain specific features, there are hundreds of generic fea-
tures that a user may wish to search for, including Recurrence rate  (RR), Determin-
ism (DET), Laminarity (LAM), Ratio (RATIO), Trapping time (TT), Divergence (DIV), 
Entropy (ENTR), etc. [22]. Note that not all proposed features can be computed piece-
wise using the algorithm in Table 4 (some features require random access to all parts of 
the matrix), but the vast majority can.

For concreteness, in Sect.  “Experimental evaluation” we will show how this strategy 
can be used to solve two problems in which we can define simple and intuitive features 
that allow us to find targeted events in a time series that would be difficult to discover 
using any other method.

Parameter‑free Mplots: 3D Mplots, Mplot movies and multifocal Mplots

Given that we can now compute Mplots orders of magnitude faster, it is natural to ask if 
there are ways to exploit this alacrity to somehow improve Mplots or provide new ser-
vices. Here we briefly discuss three such examples, although we suspect that the com-
munity may discover many more.

A recent paper motivates the issue we address, noting that “(Mplots) cannot handle 
the variability of discriminative region scales and lengths of sequences” [41]. The issue 
at hand is unique to Mplots and does not happen for true dot-plots. Suppose we build 
a dot-plot for long string of natural language with m = 3. The plot will reveal a repeated 
“word” of length three, such as..binge watching. If there is repeated structure longer 
than three, such as …notwithstanding her demandingnesses…, this will also 
be revealed in the dot-plot, as a “streak” with a length of four, because each of the con-
secutive substrings in the motif, “and”, “ndi” “din” and “ing” have a match in the same 
order. 

Surprisingly for the corresponding situation with real valued time series, we cannot 
make the same claim. It is possible that two subsequences match well, but their sub-
subsequences do not. This is because we are working with z-normalized time series. For 
example, consider the two time series A = [1 0 1 9] and B = [0 1 0 9]. Their z-normal-
ized Euclidean Distance is very small, just 0.382. However, consider their subsequences 
A’ = [1 0 1] and B’ = [0 1 0], in spite of being shorter, their z-normalized Euclidean Dis-
tance is 2.829, an order of magnitude larger.

The practical upshot of this is that an Mplot created with a user defined parameter 
m, we cannot guarantee that this will reveal similarities of subsequences with lengths 
greatly different to m. Before continuing, we should note (as most of the examples 
in this paper show) that in general Mplots are very forgiving to the choice of m, for 
almost all datasets and applications. For example, almost all atomic human gestures, 
dance moves, ASL words, sport performances (i.e., a tennis serve), happen over a 
time range of about 1/5th to 2 s. Using a m value at the shorter end of that range will 
tend to reveal all such conserved behaviors. However, there are some domains that 
can have conserved behaviors over an even wider range. An example familiar to the 
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current authors is the behavior of sap feeding insects [4, 5, 11, 38], which have con-
served behaviors that vary in performance length of at least two orders of magnitude.

We proposed to address this issue in one of three ways:

•	 We can produce Mplot movies, by creating a Mplot for all possible values of m 
and writing each consecutive Mplot to a frame of a video. These videos are remi-
niscent of a video showing a microscope focusing, the image is initially “blurred”, 
but later comes into focus. Critically, different parts of the Mplot video can come 
into focus at different times, suggesting a time series that has multiscale struc-
tures.

•	 We can create 3D Mplots, by stacking the (sparsified) frames in the Y-axis. These 
3D scatterplots can be rotated and viewed from various angles.

Static examples of these two ideas are shown in Fig. 3.
While these two Mplot variants are compelling and useful, they do not lend them-

selves to evaluation in a paper. We will therefore not further evaluate or discuss them. 
However, we invite the reader to visit [31] to see a gallery of them used in various 
domains.

The final variant of Mplot that we introduce are multifocal Mplots, which do lend 
themselves to the static format of a paper. Our idea is inspired by focus stacking, a tech-
nique that allows photographers to create a single image where objects on various focal 
planes are all in focus. The technique involves photographing the same composition 
multiple times with various focal points. These images are then composited to create a 
single image in which everything in the photo is in focus. This is a perfectly analog to the 
task at hand, the notion of “focus” here means an appropriate choice of m. Since there is 
no single choice of m for all parts of the time series, we can simply compute all m and 
composite the final result, into a single image. Figure 4 shows an example of a multifocal 
Mplot on some insect electrical penetration graph (EPG) telemetry.

Because our problems are such a perfect analogue for focus stacking, we do not need 
to create any new software to create a multifocal Mplots, we can simply use off-the-
shelf image processing software and input a Mplot movie, including Photoshop’s built-in 
focus stacking tool.

Note that all three of these techniques remove the need for a user to set the Mplot’s sin-
gle parameter, the subsequence length m, thus make Mplots essentially parameter-free.

Fig. 3   Left) Screen grabs from a Mplot video. Right) A 3D Mplot shows how motifs change as a function of 
the subsequence length



Page 13 of 33Shahcheraghi et al. Journal of Big Data           (2024) 11:96 	

Pooling SPLAT

If we create a Mplot that is larger than the screen resolution available, the operating 
system will rescale the image for display. The algorithms used for this, Nearest Neigh-
bor, Bilinear, Lanczos, etc. are optimized for natural images but may be poor choices 
for Mplots. In particular they may obscure fine details. For example, consider Fig. 5.left 
which shows a Mplot which is being downscaled with nine pixels mapping to one. Most 
rescaling algorithms reduce to averaging in such cases, and the black pixel indicating a 
motif is obscured.

To mitigate this issue, we propose to take explicit control of how Mplot images are 
resized. Instead of simply averaging the pixels, we allow arbitrary aggregation functions. 
For example, to help highlight motifs we can use a MAX function as shown in Fig. 5.
right, and to preserve discords (anomalies/differences) we use a MIN function. Slightly 
more exotic functions can be defined to attempt to preserve both discords and motifs at 
the same time. In Table 5 the general algorithm is outlined.

Mplot m = 30 Mplot m = 700 Mul�focal Mplot

0 500 1000

0 60

0 60

The motif discovered for 
m = 30, is dwarfed by the motif found for 
m = 700 (both plotted here on the same 
scale)

Fig. 4   Left) A Mplot with m = 30 discovers conserved periodic behavior corresponding to xylem ingestion 
[11] but fails to discover conserved behavior at longer time frames. Center) A Mplot with m = 700 discovers 
conserved periodic behavior corresponding to intercellular passage but cannot represent the shorter xylem 
ingestion behavior. Right) A multifocal Mplot can simultaneously represent conserved behavior at both scales

Pixel 
Averaging 

Pixel MAX 
func�on 

Fig. 5  Left) A naïve averaging of pixels can “blur” out features when downscaling. Right) In contrast, while a 
MAX aggregation may create some small amount of spatial uncertainty, it preserves the strength (“color”) of 
the discovered motif
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In line 1, a fixed size output Mplot is defined independent of the input time series 
length. This fixed size depends on the desired resolution of the output plot. For exam-
ple, on an 8 K monitor, a user may request an output of 4320 × 4320. In lines 2 and 3 
we compute how many cells from the original Mplot will be assigned to each cell in 
the pooled Mplot. With lines 4 to 6 distance computation is done as in Table 1. As 
indicated in line 7, the location for mapping the current value in the pooled Mplot 
is found. We use standard image resizing algorithms to avoid aliasing artifacts. Then 
line 8 compares the current distance value, with the existing value in the pooled 
Mplot and updates that location with respect to the desired aggregate function’s out-
put. Finally, line 9 returns the fixed size pooled Mplot.

Table 5  The PoolingSPLAT Algorithm
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Fig. 6  Some examples of patterns we may see on a Mplot. Here we assume m = 4 was used to create this 
plot
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Interpreting Mplots
There are many useful guides to interpreting recurrence plots/dot plots available 
[22]. We will not duplicate those efforts here. However, as we noted in Sect.  “Related 
work”, there are several differences between true recurrence plots and Mplots, and 
some of those differences effect the interpretation of plots. In Fig.  6 we show some 
examples of patterns that are unique to Mplots. When discussing the time series that 
created these patterns, we use the familiar expository trick of using text as a proxy for 
time series, and hamming distance as a proxy for Euclidean distance.

In a dot plot with m = 4, a recurring pattern of say CATA​ would produce a single 
point on the plot. In a dot plot with m = 3, the recurring pattern of CATA​ would pro-
duce a two consecutive points “smeared” in diagonal line, and so on.

In principle Mplots are similar, and a motif that was exactly m datapoints long could 
produce a single dot (U2). However, even if the natural motifs in the time series are 
exactly m datapoints long, the use of parameter m would tend not to produce a single 
point, but a smeared line. The reason is that if two subsequences beginning at loca-
tions i and k, are a close match, then we will still have a reasonably close match for i 
and k ± 1, i and k ± 2, etc. This is not true for the discrete strings of dot plots. There-
fore, if we see a diagonal streak on a Mplot built with parameter m, whose length in 
the x-axis is d, we should interpret this as the existence of a motif of length a little 
greater than d. Thus, the pink pattern seen beginning at Q2 suggests the existence of a 
motif of length five or six, not just four. This suggests a general strategy for setting the 
value of m. We should set it to be a little less than the length of the motifs we want or 
expect to find.

One of the patterns that are unique to Mplot is the green curved line shown in 
beginning at K2. This suggests that there is a motif, but the second occurrence begins 
to slow down. Intuitively this would be like CATA​ and CAT​TAA​AAA​. Naturally, the 
pattern can curve in the opposite direction if the second occurrence is speeding up 
instead. We call instances of such patterns “chirps”. If we see a streak that curves in 
both directions in a serpentine fashion this is suggestive of a pair of subsequences 
that match after allowing one to locally “warp” in order to match the other [28]. This 
is an important benefit, as finding motifs with invariance to warping (i.e. Dynamic 
Time Warping [28]) which is known to be very computationally demanding [2].

The blue streak beginning at E2 shows a straight line streak that is not parallel to 
the diagonal, indicating a motif where one occurrence is a linearly rescaled version 
of the other, something like TAG​ and TTA​AGG​. As we will later show, we can use the 
observed angle of this streak to predict the amount of rescaling and then exploit this 
fact.

Finally, the red streak beginning at B2 suggests a motif of about length eight in which 
the second occurrence has some spurious sub-patterns inserted at about the midway 
point, something like TAG​XCAT and TAG​CAT​ (alternatively, we can see the first occur-
rence as missing some sub-patterns).

We have shown these examples on binarized toy examples, however more generally, 
using real-valued Mplots, the colors or shades of gray offer further information about 
the degree of pattern conservation. In our experimental section we show examples of 
such patterns discovered in real datasets.
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Interpreting Mplots: reverse engineered
In the previous section we showed how to interpret some of the basic patterns and regu-
larities that we regularly encounter in a Mplot. However, it is also possible to reverse 
engineer this process. We can imagine a hypothetical structure in a time series that 
might be of interest, and then further imagine how that structure would manifest itself 
locally on a Mplot. Moreover, we may be able to write a simple function to search for this 
local manifestation using the piecewise Mplot function in Table 4. To make this clear, we 
will consider a concrete example here.

Finding motifs is generally easy using Mplots (or the Matrix Profile [40, 43]). However, 
it can be very difficult to find motifs under certain circumstances, in particular, it can be 
hard to find rare motifs, if:

•	 There is a much more common motif or motif(s).
•	 The rare motif is less well conserved than the common motif or motif(s).

Note that this case is common in real world data. For example, we may have a handful 
of examples of abnormal heartbeats in an ECG that contains thousands of better con-
served normal beats.

Let us think about what a Mplot would look like in such cases. If we had a repeating 
common motif, we would expect to see many more or less solid lines, more or less paral-
lel to the diagonal. This is a very common type of Mplot. However, some such Mplots 
also have “cross shaped” structures that have very low pixel density within the arms of 
the cross. In Fig. 7 we show two synthetic examples, and Fig. 1.right showed a natural 
example.

The reader will note that there are two slight variations of this pattern shown in 
Fig. 7. In the intersection shown at {7,8},{O,P} the center of the cross is also sparse. 
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Fig. 7  A hypothetical Mplot. Note that there are two “crosses” formed by the sparse rows {7,8} and the sparse 
columns {G,H} and {O,P}
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These are what we should expect from if either or both of the subsequences corre-
sponding to {7,8} or {O,P} are noisy or unique (i.e. discords). If either of the subse-
quences is unique, it will be far from everything (except itself ), thus its entire row (or 
column) will be sparse, including when that row (or column) intersects with another 
sparse column (or row).

However, in contrast, consider the intersection shown at {7,8},{G,H}. Here, while the 
main arms of the cross are mostly empty, there is a diagonal line that runs through the 
intersection. This is exactly what we should expect, if the pair of subsequences at {7,8} 
and {G,H} are a rare motif. This is because a rare pattern will be different to the common 
patterns, which are by definition almost everywhere; Thus, giving us a mostly sparse row 
(or column). However, in the infrequent places that the rare pattern encounters another 
example of the same rare pattern, it will produce a streak of black pixels.

Having given the intuition as to how a rare motif can manifest itself, we can write 
a simple function that can test for such patches in a massive Mplot. In Table  6 we 
outline such an algorithm. The intuition is to look for white rows and columns, which 
indicates the existence of subsequences with the minimum similarity to the majority 
of subsequences. We then aim to find a straight black line(s) within the intersection 
of those white rows and columns. This is the sign of a similarity that rarely happens in 
the input data.

Table 6  The rare motif algorithm
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In line 1, we define an empty list to store the possible best patches. Lines 2 and 3 intro-
duce the list of candidate rows and columns where the locations with less similarity to 
other locations are stored in. Starting from line 4 the Mplot is computed patchwise. 
Lines 8 and 9 look for rows and columns in Mplot with the highest probability to include 
the rare motifs. Since rare motifs do not match to most subsequences, we expect to see a 
row (or column) of low values in that location.

In a binarized matrix that can be seen as a white row (or column). In line 10 and 11 we 
go over the intersection of candidate rows and columns and look for a high value, indi-
cating a high similarity to another subsequence(s). This is visualized as a straight line in 
a Mplot. This line can be angled by some value or can be divided into parts, especially if 
the rare motif is less well conserved than the common motifs (which as we will later see, 
is empirically often the case). We use the Hough Transform tool to find these lines [6]. 
If such a line exists, line 13 stores it as one of the best patches. Finally in line 14 we sort 
the best patches such that a white cross of Mplot with a black line (more black pixels) is 
prioritized over a white cross with a few random black pixels.

In Sect. “Pooling SPLAT” we will show a real word example of using this idea to search 
for rare motifs in a vast collection of insect data. We believe that this basic idea could 
be used to find other structures, including variations of Time Series Chains [16], Time 
Series Shapelets [40], Time Series Novelets [24], etc. More exciting is the possibility of 
that this framework will be used to discover structures that did not occur to the current 
authors.

Experimental evaluation
To ensure that our experiments are reproducible, we have built a website [31] that con-
tains all the data/code used in this work. All experiments were conducted on an Intel® 
Core i7-9700CPU at 2.80  GHz with 16 GB of main memory, unless otherwise stated. 
As noted above, the format of this publication does not lend itself well to Mplots. We 
encourage the reader to visit [31] where we have large format images and videos that 
exploit and demonstrate our ideas.

To help the reader gain some intuition for the utility and generality of Mplots we begin 
with some anecdotal examples before considering more qualitative experiments.

Hunting for exoplanets

Exoplanets can be discovered by examining the time series of flux (light intensity) of a 
star. When a planet passes between the star and the observatory on Earth (or orbiting 
Earth), its shadow causes a slight dimming of the flux. In some cases, as in Fig. 8.top.
right, the effect can be quite dramatic. This is true if the planet is very large (Jupiter-
sized), with a short orbital period, and the data is relatively noise-free. These ideal cases 
are visually apparent and/or can be easily discovered with Fourier techniques. However, 
if the planet is small (Mercury-sized), with a longer orbital period, and the data is noisy, 
this is a much more difficult problem.

As Fig. 8 hints at, we believe that Mplot may be a useful tool to examine these difficult 
cases, as the evenly spaced diagonal lines not only offer evidence for an exoplanet, but 
their spacing tells us the period. Note that it is possible that some lines could be missing 
due to noise (cloud cover, sensor noise, etc.). Consider Fig. 9, does it show an Exoplanet?
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Fig. 8  Top.left) A star-light curve from a star believed not to have an exoplanet. Top.right) A star light curve 
from a star known to have an exoplanet. Bottom.left) The Mplot of the planetless star is relatively featureless. 
Bottom.right) The Mplot of Exo9 reveals not only the existence of an exoplanet but tells us its orbital period

Fig. 9  The star light curve for Exo25. Does it suggest the existence of an Exoplanet?

Fig. 10  The star-light curve for Exo25 with its Mplot (m = 100). While there is noise reflecting the original 
data’s noise, there is the unmistakable signature of an exoplanet with an orbital period about three times 
longer than Exo9 (Cf. Fig. 8.bottom.right)
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In an attempt to answer this question, we built a Mplot in Fig.  10, using the same 
parameters as in Fig. 8.

A visual inspection offers strong evidence for the existent of an exoplanet. As the call-
out in Fig. 8.right shows, we can clearly see four periods. The much weaker, barely visible 
fifth period is presumably explained by the noise in the original figure. In [31] we have a 
gallery of additional exoplanets discovered with this technique.

To be clear, we are not advocating Mplot as a tool for hunting exoplanets. This is an 
important problem, and it is worth creating bespoke tools that consider the many physi-
cal constraints in this domain. This example merely serves to show that Mplots can 
reveal structure that is not readily apparent in raw time series.

Mplot filtering

Our ability to create massive Mplots presents both opportunities and problems. One 
problem is that Mplots can be very “busy”, and as we noted earlier, human visual atten-
tion is a precious resource. One solution to this issue is to apply filters of various kinds to 
emphasize patterns that we may be interested in. This can be done in many ways, most 
of which are trivial to implement. For example, a traffic manager might choose to high-
light motifs that happen within five days of a holiday, or on rainy days (using out-of-band 
data), etc.

In this section we show a novel filtering strategy that corresponds to a high-level and 
subtle semantic question; “Show me patterns common between two sequences, but 
absent from one or more other sequences.”

First, a quick review. Recall that Mplots are conceptual precursors to Matrix Profiles 
[40, 43]. In particular, a self-join Matrix Profile can be created by collapsing an n× n 
similarity matrix using the smallest value of each column (excluding values on the diago-
nal). There is a similar correspondence for the AB-join Matrix Profile which is either the 
row or column collapsed-min of the Mplot between two different time series.

The Contrast Profile [23] is a recent tool for discovering contrasting patterns across 
time series, that is, behaviors that are repeated within one time series but are absent 
from another. Since the Contrast Profile is defined “lego-like”, by combining several 
Matrix Profiles, this suggests that its definition could be retroactively generalized to 
Mplots.

The Contrast Profile is defined as the difference between AB-join and self-join Matrix 
Profiles:

We adapt this to create the semantic definition we desire:

The Mplots cannot be directly subtracted due to dimensionality incompatibilities, 
however this equation serves as a reference when reasoning about how to complete 
the desired operation. The motivating question: “Which behaviors are common 
between two sequences but absent from one or more other sequences?” hints at a 
methodology. When thinking about this on a pair-wise basis, we would like to focus 

CP = MPAB −MPAA

ContrastMplot = MPhabituated −MPtargeted
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on self-join subsequence pairs with high similarity but suppress those which are simi-
lar in the “habituating” sequence.

We can achieve this with one Mplot and two AB-join Matrix Profiles. Given two 
target time series TA and TB , and one or more habituating time series TC we generate 
a MplotAB between TA and TB , then compute two Matrix Profiles MPAC and MPBC . We 
habituate through the following indexed definition:
ContrastMplot(i,j) = min

(

MPi
AC ,MP

j
BC

)

−Mplot
(i,j)
AB

It may be unintuitive to consider why we are combining elements from two different 
structures. In a Mplot, we are interested in the pair-wise structure across the entire 
matrix, however when habituating, we are only interested in whether a low distance 
nearest neighbor exists. Thus, we can collapse the habituating similarity matrix into a 
Matrix Profile.

We will perform a demonstration using a time series representation of mito-
chondrial DNA. The conversion from DNA to time series is done with this classic 
transformation.

T1 = 0,   for i = 1 to length(DNAstring)

if DNAstringi = A, then Ti+1 = Ti + 1 

if DNAstringi = C, then Ti+1 = Ti - 1 

if DNAstringi = G, then Ti+1 = Ti - 2 

if DNAstringi = T, then Ti+1 = Ti + 2

The two closest species to humans are Chimpanzees (Pan troglodytes) and Bonobos 
(Pan paniscus). Chimps and Bonobos are more similar to each other than to humans 
[14], so we will investigate whether there exist DNA subsequences shared between them, 
but which is absent from humans.

Fig. 11  A contrast-Mplot revealing mitochondrial DNA subsequences are shared between Bonobos and 
Chimps, but absent from Humans. The region highlighted in red indicates a reversed and offset Bonobo 
subsequence relative to the Chimp sequence
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We structure the problem by setting Bonobos to TA , Chimpanzees to TB , and humans 
to TC . One type of DNA mutation is subsequence reversal. The Contrast-Mplot can 
reveal this by simply concatenating the reversed Bonobo sequence to itself before 
processing.

In the ContrastMplot shown in Fig. 11, the black streaks represent sequences which 
are conserved between Bonobos and Chimps, and also dissimilar to humans. White rep-
resents subsequences pairs between Bonobos and Chimps where either subsequence is 
conserved at least as well in humans. The dominant visual feature is the patchy diago-
nal which lies along the reference 1:1 diagonal (blue). This is expected since most of the 
DNA sequences between the two species are conserved in order. What is more inter-
esting are the off-diagonal visual features. Features occurring above the reference diag-
onal in the reversed region (purple) indicate subsequences which occur earlier in the 
Bonobos relative to Chimpanzees. One such feature is highlighted in red. Additionally, 
this feature occurs in the reversed Bonobo region, suggesting that the original DNA was 
transposed relative to the Chimp’s sequence.

Using the BLAST [29] we have identified that the subsequence in question occurs 
within the COX2 gene, which is known to be closely conserved between Bonobos and 
Chimps, but divergent in humans [14]. While our demonstration focused on DNA, we 
anticipate that Contrast-Mplots will have broader applicability to domains where we 
want to visually reason about shared and unshared patterns in sets of data.

Finding rescaled motifs using PiecewiseSPLAT

As we noted in Sect.  “Removing the human visual attention bottleneck” we can use 
PiecewiseSPLAT to find arbitrary features/structures/regularities in massive Mplots that 
could not fit in main memory. However, for concreteness here we will consider a struc-
ture with a direct and immediate visual interpretation, scaled motifs; subsequences of 
different lengths that would have a small Euclidean distance if they were scaled to the 
same length. If the difference in scale is very small, say < 8%, then the simple Matrix Pro-
file will probably work [43]. If the difference in scale is relatively small, say < 8 to 20%, 
then there are a handful of techniques to address such cases [39]. However, here we are 
interested in motifs that may dramatically differ in scale, say up to 300%.

Fig. 12  Top) A toy time series with three sine-wave patterns embedded. Note that instance C is about 37% 
longer than the other two instances A and B. Bottom) The corresponding Mplot shows that the difference in 
lengths manifests as a difference in angle
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To discover such rescaled motifs, we can search Mplots with PiecewiseSPLAT. Fig-
ure 12 illustrates the main insight.

Suppose we have two occurrences of a motif, A and B, of length L, and we create a 
Mplot with m set to a number less than L. We would expect to see a “streak” of length 
about L-m × 

√
2 , parallel to the diagonal (or 135° to vertical).

However, if we have two motifs that differ in length, as with A and C, we should expect 
a similar streak, but at non-zero angle relative to the diagonal. The relationship between 
the scaling factor and the angle is given by:

Thus, we can reduce the rescaled motif discovery problem to the task of finding lines 
in an image, and that problem is easily solved by the classic Hough transform [6]. There 
is a minor caveat, while the start point and angle of the discovered line reveal the loca-
tion and scaling factor respectively, they may be a little “blurry”, so we need to run a 
localized brute-force search on the identified area to refine the best motif.

To hint at the utility of this idea, consider Fig. 13.
Here we see a motif discovered in telemetry from an insect. Because the two instances 

of this motif differ in length by a factor of 1.25, classic methods cannot find them [40].

Hunting for Chiroptera with PiecewiseSPLAT

In the previous section we showed that PiecewiseSPLAT could allow us to find motifs 
with invariance to scaling. However sometimes we may explicitly desire to discover only 
those motifs that exhibit scaling.

For example, suppose a biodiversity survey needs to examine audio recorded at night 
to look for examples of bats. Existing bat classifiers have only been tested on a handful 
of the 1400 known species [35]. We would like to have a general method to capture any 
species of bat. The problem is compound by the fact that many birds and insects also 
sing at night, not to mention inevitable human noise pollution.

A well-known fact about bats may be useful. Bats use echolocation to find prey, pro-
ducing bursts of sound and analyzing the returning echoes build a picture of the external 
world. Critically, the rate at which the bat emits sounds is not constant but changes, as 
[29] notes “Over the course of an attack, bats increase call production rate”. It is impor-
tant to note that this change in call production rate is not an accidental side-effect of the 
bat’s call, but an intrinsic part of the bat’s hunting strategy, trading off the energetic cost 
of producing sounds with the finer spatial resolution of rapid bursts [29].

ScalingFactor(A,C) =
1

tan
(

Angle(A,C)− 90◦
)

1 187

0 205,000

1 150

Motifs in 
original time 
series

Motifs after 
rescaling red 
example by 0.80

34.5 minutes of insect telemetry 

1.87 seconds 1.5 seconds

Fig. 13   Top) Telemetry from an insect pest feeding on a plant. bottom) A multi-scale motif discovered in the 
data can only be seen as conserved after one instance is rescaled by a factor of 1.25
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This suggests an exploitable idea, we might expect that these changes in call rate would 
produce Mplot structures not parallel to the diagonal, as discussed in Sect. “Interpreting 
Mplots”. Consider Fig. 14.right.

These Mplot snippets are diverse but note that the bird examples all have structure 
that is parallel to the diagonal. In contrast, the bat call is unique in that it has lines that 
are at an angle to the diagonal, telling us that the bat produced the motif twice, at two 
different speeds. Birds are only using sound to communicate,2 bats are using sound for a 
completely different purpose, and occasionally producing this unique feature.

To test our hypothesis, we embedded a twenty-second snippet of bat hunting audio 
into a one-hour audio file containing diverse bird songs. We searched for lines that had 
an angle of at least ± 9.5° to the diagonal, indicating a rescaling factor of 1.40. As shown 
in Fig. 15.

The top-1 motif was indeed a bat vocalization. This experiment took 81 min, which 
is just slightly slower than real-time. Note that for the classic Matrix Profile, the top-10 
motifs are all bird (occasionally possibly insect) sounds. This example hints at the util-
ity of Mplots, with only the vaguest of domain knowledge we can search large complex 
datasets for behaviors of interest that can be described in high-level abstract terms.

Searching massive Mplots

Recall that in Sect. “Interpreting Mplots: reverse engineered”  we discussed the possibil-
ity of “reverse engineering” the interpretation of Mplots. We noted that it may be pos-
sible to think of some structure we would like to find, hypothesize what the structure 

Emballonura alecto
Laterallus jamaicensis

Charadrius vociferus
Icteria virens

Antrostomus vociferus 

Fig. 14  Five randomly chosen six-second snippets of animals that both fly and produce sound at night. The 
four leftmost examples are all birds. The rightmost example is a bat, which is unique here in having “stripes” 
that are not perfectly parallel to the diagonal

1 3601 500

Motifs in 
original time 
series

Motifs after 
rescaling red 
example by 0.714

Five seconds ~Three seconds

One hour of nocturnal jungle sounds

Fig. 15   Top) A one-hour dataset containing bird sounds, and a total of 20 seconds of bat sound. Bottom) 
If we use PiecewiseSPLAT to search for motifs that have at least 1.35 rescaling, the top-1 motif is a bat 
vocalization

2  A few birds such as oilbirds/swiftlets do use a weak form of echolocation.
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would look like on a Mplot, then build a simple image processing filter to search for this 
structure. Here we show a complete worked example of this idea.

Sap feeding insects in the order Hemiptera feed by removing plant sap from trans-
port vessels, such as phloem and xylem elements [4, 38]. This behavior is typically not 
destructive by itself but can spread pathogens from plant to plant. One of the most stud-
ied insects is the Asian citrus psyllid (Diaphorina citri), which is responsible for billions 
of dollars in crop losses each year. The primary tool used to study these insects is the 
electrical penetration graph (EPG), which as shown in Fig. 16, produces a complex and 
noisy time series that reflects the behavior of the insect’s straw-like mouthparts as they 
navigate within the plant tissues.

As shown in Fig.  16A One of the most common behaviors seen is xylem ingestion. 
Psyllids spend approximately 22% of their lives engaged in this behavior, with bouts of 
xylem ingestion lasting an average of about 40 min [11]. It is known that it is rare to 
observe a perfect run of xylem ingestion lasting tens of minutes, the behavior is occa-
sionally interrupted by noise. In the EPG literature, “noise” is often used somewhat 
informally. The device must be very sensitive to record such tiny insects, and as such 
it is very sensitive to ambient interference (some researchers place the entire apparatus 

Fig. 16  An Mplot with the three corresponding pairs of time series extracted from an Asian citrus psyllid 
(Diaphorina citri). The value of m was forty (the length of the colored prefix in the call-out plots), and we 
show the following eighty datapoints for context. A A typical bout of xylem ingestion shows metronome-like 
regularity. B The white cross with an empty intersection corresponds to a section of noise (cf. Fig. 7). C The 
white cross with diagonal strip in its intersection corresponds to a rare motif, that occurred between two 
bouts of xylem ingestion
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in a Faraday cage in an attempt to mitigate electronic noise interference [26]). However, 
some authors use “noise” to simply mean any behavior that is not stereotypically part of 
a known behavioral waveform.

Based on a hunch from an experienced entomologist, we wondered if some of these 
sections attributed to “noise” could be behaviors that are less well conserved than the 
typical xylem ingestion waveform. To test this idea, we implemented the image process-
ing filter in Table 6, and searched a 2.7 h long recording.

Figure 16 allows us to illustrate the three possibilities that make up our dataset. Fig-
ure 16A shows a dense run of parallel lines, corresponding to the typical xylem ingestion 
waveform (in the literature, this is often called the G phase or G waveform [4, 38]. Such 
patterns make up more than 99% of the Mplot. Figure  16B shows a white cross with 
an empty intersection. This corresponds to a noisy region in the time series. Figure 16C 
shows a white cross with diagonal lines in intersection. This corresponds to what we 
have dubbed an interstitial motif. In Fig. 17 we show this motif at a larger scale, to allow 
the reader to appreciate how well conserved it is.

We illustrate the similarity of the two time series by showing the Dynamic Time Warp-
ing alignment between them [28]. The is only a small amount of warping but is enough 
such that these two 120-datapoint long subsequences are not similar under the classic 
Euclidean distance. In a sense, we can see the Mplot as revealing a “piecewise” Euclidean 
distance similarity by showing a diagonal (but slightly wavy) line.

One of the current authors is entomologist who is an expert on EPG data [5]. Although 
not involved in the collection of this dataset, she believes the interstitial motif shows the 
insect is transitioning between C phase (navigation through the mesophyll tissue) and 
the G phase. In [4] they observed that waveform G was always followed by a return to 
waveform C. This would also explain why it is somewhat regular but not 100% consist-
ent, as C phase has some variability depending on the nature of the tissues the stylet (the 
insect’s needle-like mouthpart) is traveling through.

We use piecewise Mplot to search 1,000,000 datapoints (2.7 h) for the telltale white 
crosses. Each patch was of size 10,000 by 10,000 and took about 5.3 s to process. As there 
are 10,000 patches, the entire process took about 8.5 h. To give the reader an apprecia-
tion as to how large a Mplot this is, if we printed out the entire Mplot at the scale shown 
in Fig. 16,3 it would comfortably cover a soccer field.

0 20 40 60 80 100 120
Fig. 17  A larger reproduction of the interstitial motif shown in Fig. 16C

3  100 datapoints is about one centimeter, given the scale shown in Fig. 16 and this journals format.
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Finally, we want to demonstrate that the “white cross” heuristic can be a general 
technique for finding rare motifs in the presence of common motifs, so we will con-
sider a completely different data domain. Here we address the problem of examining 
telemetry from Contraction in Cardiac Tissue (CCT), which are mechanical contrac-
tile signals at the tissue level (the signals are related to, but distinct from the more 
familiar ECGs) [21]. As shown in Fig. 18 bottom.right, most of such data looks like 
noise with periodic spikes. This generally produces the classic pattern of diagonal 
stripes in a Mplot. However, as shown in Fig. 18 left, when comparing two traces with 
an AB-Mplot, we occasionally see a white cross with a diagonal strip in the intersec-
tion. Here we can use the annotations provided by the creators of the dataset [21] to 
understand that, as illustrated in Fig. 18 top.right, this is a rare motif of slow pulse 
decay.

0 50 100 150 200 250

Slow pulse decay

Typical CCT signals

Fig. 18   Left) A zoom-in of an AB-Mplot created with CCT telemetry from two mice. Right) The value of m 
was eighty (the length of the colored prefix in the call-out plots), and we show the following 160 datapoints 
for context

0 4000 8000

0

500

NASA Mars Science Lab G1: Test

NASA MSL 
G1: Train

The single 
annotated 
anomaly… 
… is apparent 
in the Mplot

Fig. 19  The G1 trace from NASA MSL [15] is used to create an AB Mplot (The training data is longer that 
shown here. However, it is highly redundant, so we only used the first 500 datapoints.) with m = 80. The only 
anomaly annotated in the official NASA record is at 4797 to 4871, and it shows up in the Mplot as an obvious 
break in the continuity of the diagonal lines (recall the broken “red streak” example in Fig. 6)
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Using Mplot as anomaly detectors

Most of our examples thus far have concentrated on the discovery of conserved struc-
ture (motifs), and on the self-join use of Mplots. In this example we show that Mplots 
can also be useful for discovering violations of conservation, which are (in most con-
texts) called time series anomalies. Moreover, here we will consider an AB-Join, not a 
self-join. That is to say we consider a matrix is DP

(j,m)

AB  , where A ≠ B, (cf. Definition 4). 
Note that, as shown in Fig. 19, such Mplots are not generally square.

In [15], Hundman and his colleagues introduced a dataset that has since become 
widely studied and has been cited more than one thousand times. The Mars Science 
Laboratory (MSL) rover dataset is a set of telemetry anomalies corresponding to actual 
spacecraft issues involving various subsystems and channel types. Beyond the excite-
ment of the domain, the dataset is attractive because it has unusually good provenance. 
The labels come from “expert-labeled data derived from Incident Surprise, Anomaly 
(ISA) reports”, and we are reassured that “All telemetry channels discussed in an individ-
ual ISA were reviewed to ensure that the anomaly was evident in the associated telem-
etry data, and specific anomalous time ranges were manually labeled for each channel.”. 
Moreover, the data also comes with positive only training data.

In Fig. 19 we show MSL:G1 and its corresponding Mplot.
There is one anomaly labeled in this dataset by NASA’s ISA report beginning at loca-

tion 4797. A casual glance at the Mplot can clearly locate the anomaly. It does not seem 
to be a particularly hard problem, and perhaps the dataset is ill-suited to the strong 
claims made by those using this dataset to compare rival algorithms.

However, when using the Mplot to investigate this dataset we noticed two other sub-
tle breaks in the diagonal stripes. In Fig. 20 we show a zoom-in of one of the relevant 
regions and its corresponding Mplot.

5,212 5,283

NASA MSL G1: Test 
(excerpt)

0

500

NASA MSL 
G1: Train

A true 
break in 
continuity

Inset

Fig. 20  A zoom-in of Fig. 19. At about location 5271 there is an apparent anomaly, similar to, but much 
shorter than the officially recorded anomaly (Not shown, there is a similar, but smaller anomaly at 6879 to 
6894). The zoomed-in inset shows that the anomaly causes a break in the continuity of the diagonal lines of 
the Mplot
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We wrote to the original authors and asked them to examine our findings. They con-
firmed that these two examples are true positives, missed by the original annotators.

As an aside, it is interesting to note that while at least one hundred papers have explic-
itly experimented on this dataset, to the best of our knowledge, none of them have 
reported noting these unknowledge true positives. However, most of these papers report 
results (typically F1) using four significant digits. If we correctly labeled the data based 
on the revised acknowledgement of ground truth, this would change at least two of those 
digits.

Mplot based segmentation

Many researchers have independently noted that if the time series being examined in a 
Mplot comprises of multiple regimes, the Mplot will reflect that fact with a “block-like” 
structure. Figure 21 illustrates this with a toy example. This suggests that we could for-
malize this observation to produce a Mplot semantic segmentation algorithm. To search 
for segmentation points we slightly adapt the method defined in [9], that is used in audio 
signal information retrieval. This process involves searching for transitions between 
block structures using the correlation of a checkerboard kernel with the diagonal of the 
matrix.

The result is a 1D function called the novelty function. The change point events 
are represented by local maxima (peaks) in the novelty function, which are then dis-
covered with a peak finding algorithm. To test the utility of this algorithm we com-
pared to three state-of-the-art semantic segmentation algorithms on a benchmark of 

Fig. 21  Regime changes produce block-like Mplots

Table 7  A comparison of Mplot with three SOTA algorithms

FLOSS AutoPlait HOG-1D

win |lose|draw over Mplot 20 | 7 | 4 8 | 22 | 2 17 | 13 | 2
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thirty-two diverse datasets. We use the evaluation metric suggested by the creators 
of the datasets [12]. Table 7 summarizes the results.

In interpreting these results note the following:

•	 Our algorithm is better than AutoPlait, about the same as HOG-1D, and worse, 
but not dramatically so, than FLOSS.

•	 We could have done better by tuning our algorithm, but to avoid overtuning we 
set m to be the same value as used by the authors of [12] for FLOSS. Thus, these 
results should be seen as a lower bound for SPLAT’s performance.

SPLAT segmentation has a significant advantage over the other methods, it 
can give insight into the cause of the regime change. For example, consider the 
PulsusParadoxusSP02 problem shown in Fig. 22 top. Note that SPO2, also known as 
oxygen saturation, is a measure of the amount of oxygen-carrying hemoglobin in the 
blood relative to the amount of hemoglobin not carrying oxygen.

As noted in [12], this problem cannot be solved by visual inspection. The ground 
truth is known by access to out-of-band data. Nevertheless, both SPLAT and FLOSS 
correctly segment it. But what caused the change? If we saw non-linear structure 
in the blocks off the diagonal, we could attribute the regime change to a change of 
heart rate, but this is not the case here.

However, there is an interesting clue as shown in Fig. 22 bottom. There is a slight 
reduction in the degree of conservation of heartbeats, that happens about once 
every eight beats. The reader will appreciate that the ratio of typical respiration rate 
to heartbeat rate is about eight-to-one.

Normally we should not expect respiration to effect SPO2. However, if the peri-
cardium, a sac-like structure surrounding the heart, is damaged during surgery, it 
can fill with fluid and then deep breaths can cause pressure on the heart (this is 
called Cardiac tamponade) and reduce its efficiency in producing oxygenated blood. 
According to Dr. Greg Mason (Clinical Professor of Medicine, David Geffen School 
of Medicine at UCLA) this is exactly what we are seeing here.

18000

Fig. 22   Top) The PulsusParadoxusSP02 segmentation problem is very subtle. Bottom.left) A zoom-in of the 
Mplot close to the regime change revels a break in the diagonal streak. Bottom.right) A zoom-out indicate 
that these breaks happen once in every eight beats
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Speed and scalability

In Fig. 23left we evaluate the time needed for SPLAT for increasingly long time series 
(n) when the subsequence length (m) is set to 100. Then, in Fig. 23right we hold the 
length of the time series to a fixed 16,000, and test the effect of increasingly large val-
ues of m.

The reader will observe that we can compute a million length time series in about 
9.5  h using PiecewiseSPLAT. This is extremely fast given that the brute-force algo-
rithm would take 5.4 years.

We can further accelerate our algorithm by leveraging the hardware. To test this, we 
ported SPLAT to GPUs. As the results in Table 8 show we can process a time series of 
length one million in just 6.3 s. We refer the reader to visit [31] for more results and 
the GPU code.

In a just published paper the authors introduce PyRQA, “a software package that 
efficiently conducts recurrence quantification analysis… leveraging the computing 
capabilities of a variety of parallel hardware architectures” [30]. They also consider 
a dataset of size 1  M, finding it took 68.94  s to process. This is an order of magni-
tude slower than the time we required. Moreover, our results in Table 8 used a sin-
gle Nvidia P100 GPU, whereas [30] use four, much faster NVIDIA GeForce GTX 
690 GPUs. The two software packages are not identical in features, nevertheless, this 
comparison does hint at the efficiency of our proposed algorithms.

Conclusions
We introduced SPLAT, an algorithm that allows us to construct Mplots that are orders 
of magnitude larger than those that are typically computed. We have shown that such 
Mplots can be used for tasks in domains as diverse as astronomy, medicine, entomol-
ogy, and biodiversity monitoring. Our proposed algorithms are so scalable that for the 

Fig. 23  SPLAT execution time vs. brute-force algorithm—note that both the left figure’s axis are in log scale

Table 8  Pooled Mplot timing results (in seconds) on 1 × Nvidia GPU P100

Time series length Mplot 100 × 100 Mplot 1k × 1k Mplot 4k × 4k Mplot 8k × 8k

128k 0.20 0.21 0.26 0.46

256k 0.49 0.47 0.55 0.73

512k 1.58 1.57 1.64 1.84

1M 6.01 5.99 6.05 6.27
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first time, space and time complexity are no longer bottlenecks, but human attention 
is. Therefore, we further show that our ideas can support patchwise search of massive 
Mplots, to find a handful of patches that are worth bringing to the attention of a user.

We have made all code and data freely available to allow the community to confirm 
our results and build upon our ideas.
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