
UC Riverside
UC Riverside Previously Published Works

Title
Introducing Mplots: scaling time series recurrence plots to massive datasets

Permalink
https://escholarship.org/uc/item/38z3g689

Journal
Journal of Big Data, 11(1)

ISSN
2196-1115

Authors
Shahcheraghi, Maryam
Mercer, Ryan
Rodrigues, João Manuel de Almeida
et al.

Publication Date
2024

DOI
10.1186/s40537-024-00954-1

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/38z3g689
https://escholarship.org/uc/item/38z3g689#author
https://escholarship.org
http://www.cdlib.org/

Introducing Mplots: scaling time series
recurrence plots to massive datasets
Maryam Shahcheraghi1*, Ryan Mercer1, João Manuel de Almeida Rodrigues2, Audrey Der1,
Hugo Filipe Silveira Gamboa2, Zachary Zimmerman1, Kerry Mauck1 and Eamonn Keogh1

Introduction
There are many tasks that researchers routinely perform on time series, including clas-
sification, clustering, segmentation, anomaly detection, etc. However, given a new data-
set, the first task is typically to simply gain an understanding of that data, in particular
the relationship among the subsequences within it [40, 43]. One way to do this is to use
a recurrence plot. Given a long time series and a user-specified subsequence length, it
is possible to construct a similarity matrix with colors (or shades of gray) representing
the distance between all possible pairs of subsequences. Variants of these plots are also
called dot plots, self-similarity matrices, similarity plots, time series similarity matrices,
etc. [7, 22]. For concreteness we will call the variant of interest here time series similarity
matrix plots or just Mplots. Mplots have many uses in data mining. They can be used for

Abstract

Time series similarity matrices (informally, recurrence plots or dot-plots), are useful
tools for time series data mining. They can be used to guide data exploration, and vari-
ous useful features can be derived from them and then fed into downstream analyt-
ics. However, time series similarity matrices suffer from very poor scalability, taxing
both time and memory requirements. In this work, we introduce novel ideas that allow
us to scale the largest time series similarity matrices that can be examined by sev-
eral orders of magnitude. The first idea is a novel algorithm to compute the matri-
ces in a way that removes dependency on the subsequence length. This algorithm
is so fast that it allows us to now address datasets where the memory limitations begin
to dominate. Our second novel contribution is a multiscale algorithm that computes
an approximation of the matrix appropriate for the limitations of the user’s memory/
screen-resolution, then performs a local, just-in-time recomputation of any region
that the user wishes to zoom-in on. Given that this largely removes time and space
barriers, human visual attention then becomes the bottleneck. We further introduce
algorithms that search massive matrices with quadrillions of cells and then prioritize
regions for later examination by either humans or algorithms. We will demonstrate
the utility of our ideas for data exploration, segmentation, and classification in domains
as diverse as astronomy, bioinformatics, entomology, and wildlife monitoring.

Keywords: Time series, Anomalies, Similarity matrix

Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/.

RESEARCH

Shahcheraghi et al. Journal of Big Data (2024) 11:96
https://doi.org/10.1186/s40537-024-00954-1

Journal of Big Data

*Correspondence:
sshah073@ucr.edu

1 University of California,
Riverside, USA
2 Libphys-UNL NOVA Faculty
of Science and Technology,
Lisbon, Portugal

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-024-00954-1&domain=pdf

Page 2 of 33Shahcheraghi et al. Journal of Big Data (2024) 11:96

visual exploration of data, or various features can be extracted from them, and then fed
into other algorithms. For example, the Matrix Profile is an increasingly popular time
series analytical tool that is directly extracted from a Mplot, by recording the smallest
(off-the-diagonal) value in each column [40, 43, 45].

A simple Mplot makes comparisons within time series A, as shown in Fig. 1, and we
can also use this representation to compare and contrast between two time series A and
B, with a variant we call an AB-Mplot. Such plots allow us to understand where two time
series are similar and different.

Mplots (under the different names noted above) are used in astronomy [27], econom-
ics [34], music [10], physiology [36, 37], neuroscience [19], earth sciences [3], medicine
[1, 42] and engineering [22]. As noted in a founding paper on the topic, “information
obtained from recurrence plots is often surprising, and not easily obtainable by other
methods” [7].

In spite of this ubiquity, it is surprising that they are not used more often in the data
mining community. We believe that this is because of the following three bottlenecks:

• CPU: Classic Mplots require processing that is quadratic in the length of the time
series, and linear in the length of the subsequences. This seems to have limited their
use to time series with a length of about 20,000 [7, 20, 22, 27].

• Memory: If a researcher has spent significant resources to obtain a long time series
of say length 100,000, she may well be willing to wait hours or even days to compute
a Mplot, in order to glean information from her dataset. However, she is unlikely to
have the requisite 80 gigabytes of main memory to work with.

• Human visual attention/screen resolution: Even if a user could somehow bypass the
two difficulties above, this would eventually lead to the situation where her ability to
visually scan the Mplot, and the ability of a standard screen to display such a huge
matrix, become bottlenecks. For example, in Sect. “Searching Massive Mplots” we
compute a Mplot that if printed out on the scale used in the figures in this paper,
would cover a soccer field. Clearly such Mplots would defy any attempt at human
visual inspection.

In this work we introduce techniques to solve all the above issues. We begin by
showing how we can reduce the amortized time to compute a single cell of a Mplot to
just O(1), not the current O(m), where m is the subsequence length. Because m can
be > 1000, this means we can compute Mplot up to three orders of magnitude faster than

Fig. 1 Examples of Mplots hint at the diversity and utility of this data structure. Like many plots in the paper,
these figures suffer somewhat from the size of reproduction. We encourage the interested reader to visit
[31] which has larger figures and videos. Here we show binarized Mplots, but more generally Mplots allow a
spectrum of colors to indicate degree of similarity

Page 3 of 33Shahcheraghi et al. Journal of Big Data (2024) 11:96

is currently possible. Moreover, as we will show, for truly ambitious datasets, we have
ported our ideas to GPUs, to allow us to compute a Mplot with quadrillions of cells.

We further show how we can address the memory bottleneck by the introduction of a
multiscale algorithm that computes an approximation of the matrix appropriate for the
limitations of the user’s screen/memory, then performs a local, just-in-time recomputa-
tion of any region that the user wishes to zoom-in on. Finally, we show that for truly
massive Mplots, we can create algorithms that can build the matrices “patchwise” and
search each patch for features that a user may wish to have drawn to her attention. This
removes human visual attention as a bottleneck for Mplots.

The rest of this paper is organized as follows. In Sect. “Definitions and notation” we
review the definitions that are required to comprehend the techniques explained in this
paper. After that we clarify the main differences between Mplots and true recurrence
plots in Sect. “Related work”, along with a discussion of related work. Our proposed
techniques are described in Sect. “Algorithms that scale up Mplots”. To help develop the
readers skill in the interpretation of the Mplot patterns, we present annotated exam-
ples in Sect. “Interpreting Mplots”. Section “Interpreting Mplots: reverse engineered”
explains how you can “reverse engineer” Mplot interpretations to automate the discov-
ery of hypothesized structure in the time series. We present a detailed empirical analysis
on diverse datasets in Sect. “Experimental evaluation”. Finally, in Sect. “Conclusions” we
offer conclusions and directions for future work.

Definitions and notation
Our data type of interest is time series.

Definition 1: A time series T = t1, t2, . . . , tn is a sequence of real-valued numbers.

For the task-at-hand, we are not interested in global properties of a time series but
rather the relationships between small regions of the time series called subsequences.

Definition 2: A subsequence T(i,m) is a contiguous subset of values from T starting at
index i with length m.

We can measure the distance between any two time series subsequences of equal
length using a distance measure. In this work, we use the ubiquitous z-normalized
Euclidean distance [40]. Note the subsequence length here takes on a similar role to
the embedding dimension in discrete dot plots [20, 22]. However, the implications of
changing lengths are more complex in our case. Making the embedding dimension
larger can only make a dot plot sparser and decrease the length of “runs” in the plots.
However, because we are working in the z-normalized space, longer subsequences can
have a lower Euclidean distance, and therefore produce longer runs. We will return to
the observation later in this work.

If we need to measure the distance between a short time series and every subsequence
from a long time series, we can produce a distance profile.

Definition 3: A distance profile DP
(j,m)

AB is the vector of distances between each subse-
quence in a reference time series TA and a query subsequence T(j,m)

B .

Page 4 of 33Shahcheraghi et al. Journal of Big Data (2024) 11:96

The distance can be computed very efficiently using the MASS algorithm [25]. How-
ever, if we are limited by time, we can perform the classic trick of computing the distance
profile on a downsampled version of A, using a similarly downsampled version of B. We
propose to use Piecewise Aggregate Approximation (PAA) to downsample the data [17].
If we wish to downsample a time series by a factor of d, we indicate this by PAA(A,d). As
Fig. 2 shows, on many datasets it is possible to significantly downsample the data, while
retaining the essential features.

Note that downsampling may be a particular attractive strategy here, as the memory
and time savings are quadratic in the downsampling rate. Although the Mplot has been
informally introduced and compared to recurrence plots (dot plots), for concreteness we
define it here.

Definition 4: A Mplot is the visualized matrix of distance profiles. Each row j of this
matrix is DP

(j,m)

AB .

A Mplot is, by its nature, a dense real-valued matrix. However, for better visualization
(especially for a figure in a paper) we often binarized its values to either see the highest
or lowest values. Binarizing Mplots helps to only display the values in the desired range.
So, a user who is interested in subsequences with high similarity (motifs)/ low similarity
(discords) can set a threshold to only see the values in that range.

When A = B, this definition is logically equivalent to a self-join of A. The popular
Matrix Profile is simply the vector of length |A| that contains the minimum (non-diag-
onal) value in each column [40, 43, 45]. The state-of-the-art Matrix Profile algorithms
(SCRIMP, SCAMP) can compute this incrementally, without ever having to have the
entire matrix in main memory at one time. When A = B, this definition is logically
equivalent to an AB-join. Such joins are frequently used in recurrence plots to visualize
the differences between two DNA sequences, but surprisingly, to the best of our knowl-
edge, there are very few uses of real-valued AB-join time series.

Related work
As noted in the introduction, the basic idea of creating a matrix to represent the similar-
ity of subsequences has many names, and the literature is not consistent in naming con-
ventions. It is important that we differentiate Mplots from true recurrence plots. Mplots
are superficially similar to recurrence plots (dot plots) which are often used in bioinfor-
matics, linguistics, etc. [13]. Moreover, many of the uses of recurrence plots are also uses

Fig. 2 A time series A with n = 64 downsampled with PAA. left) Downsampled 1 in 4, right) Downsampled 1
in 16. While the 1 in 16 plot has lost significant detail, the 1 in 4 downsampling does preserve the basic shape
of the time series

Page 5 of 33Shahcheraghi et al. Journal of Big Data (2024) 11:96

of Mplots. However, it is worth explicitly pointing out some of the differences between
them:

• Dot plots are discrete. Every cell in the matrix is binary. In contrast Mplots must be
real-valued, as we may be interested in relative degrees of similarity.

• As a consequence of the binary nature of dot plots, they are normally extremely
sparse, with typical densities less than 0.000001. This means that space complexity is
rarely an issue for dot plots (by exploiting sparse matrix support in many program-
ming languages).

• Each cell in a dot plot is the result of an equality test comparing two scalers, such as
‘T’ = ‘A’? In contrast each cell in a Mplot is the result of a distance comparison
between two vectors, which can have a length of over 1000. Moreover, these vectors
need to be normalized before being compared (surprisingly, normalization generally
takes longer than the distance computation [28]). This means that Mplots may take
orders of magnitude longer to be computed.

• Dot plots are only useful for finding similarity (i.e., conservation). In contrast, with
Mplots we may wish to compare two datasets where we expect conservation, and/or
violations of conservation (i.e., dissimilarity).

Because of these many differences between Mplots and recurrence plots, little of the
vast literature on efficient construction of the latter is helpful in scaling up the former.
Nevertheless, most of the utility of visualizing recurrence plots also applies to Mplots.

There are many creative ways to visualize time series, see [8] and the references
therein. However, Mplots are particularly direct and intuitive. Moreover, unlike say Viz-
trees [18], they preserve the temporal information context. For example, if we examine
a year’s worth of transaction time series and our eye is drawn to a motif that occurs at
about 12% across and 40% down, we can use our intuition to guess that these events
might correspond to Valentine’s Day and Mother’s Day,1 two days with similar spending
patterns on flowers and restaurants.

Algorithms that scale up Mplots
In this section we introduce three novel ideas that allow us to scale up the largest size of
Mplot that can be considered by several orders of magnitude. We begin by addressing
the CPU bottleneck.

Removing the CPU bottleneck

It is clear that a Mplot’s time complexity must be at least O(n2) (This is not the case
for true dot plots, which can be constrained to be arbitrarily sparse, and use various
hashing-based optimizations). However, the time complexity is actually O(m × n2)
[22, 27]. As we show in Sect. “Experimental evaluation”, m can be in the thousands.
Moreover, this complexity hides some constant factors. As we are working with z-nor-
malized time series, the time taken to perform the z-normalization is actually greater
than the time needed for the Euclidean distance calculation [28]. In this section we

1 Here we assume the USA Mother’s Day.

Page 6 of 33Shahcheraghi et al. Journal of Big Data (2024) 11:96

show that we can completely remove the dependence on m and make Mplot’s a true
O(n2) algorithm with tiny constant factor.

The idea of making the time complexity of a Mplot independent of the m value is
similar to the Matrix Profile algorithms proposed in [43, 45]. Let us consider the for-
mula for calculating a cell of distance profile (d(i,j)).

where, d(i,j) is assumed to be the Euclidean distance of z-normalized subsequences.
QT (i,j) , is the dot product of corresponding subsequences. µi and σ i are the mean and
standard deviation of T(i,m) , respectively.

In Table 1 we introduce an algorithm that exploits these observations. We call our
algorithm SPLAT, Scalable Processing of LArger Time series.

The SPLAT algorithm starts by initializing the Mplot matrix in line 1. The matrix
row and column count equal the number of subsequences in TA and TB , respectively.
Line 2 precomputes the mean and standard deviation of each subsequence of input
time series. By updating the QT values in line 6, the distance profile of the reference
time series and the query is calculated as shown in line 7. Finally, with line 8, the
Mplot matrix value of each cell is updated.

The SPLAT algorithm defined here is a general case where two distinct time series
are compared (AB-join), however if we set both input time series as TA , this algorithm
computes the special case of self-join similarity. For the self-join case, we can trivially
make the algorithm twice as fast by exploiting the symmetry about the diagonal.

By taking advantage of the techniques in [28, 43] and [45] in addition to the mean
and standard deviation, the dot product can also be calculated in O(1). So, a time
complexity of O(n2) is achieved which is the minimum required to compute all the
values in a Mplot with n× n cells.

(1)d(i,j) =

√

2m(1−
QT (i,j) −mµiµj

mσ iσ j
)

Table 1 The SPLAT Algorithm to compute Mplots

Page 7 of 33Shahcheraghi et al. Journal of Big Data (2024) 11:96

The SPLAT algorithm can efficiently compute large Mplots, but we may task it with
a long time series that would take longer to compute than the user’s patience allows.
To address this issue, we can create a contract algorithm version of SPLAT, parameter-
ized by the maximum amount of time the user is willing to wait [44]. For example, in
SPLAT(A,B,m,4), the user is requesting the best approximation that can be computed in
four seconds or less.

To achieve this user-requested time limit, we will approximate the time series with
PAA (Recall Fig. 2). We will use the absolute minimum amount of downsampling to
achieve this user-requested acceleration. This is easy to implement. Suppose we have
previously performed a calibration run with a Mplot with |A|= 10,000, and found it took
S seconds. We can then predict that building a Mplot for size time series T, of length n′ ,
will take SplatTimePredict(T, n′) = S * (n′/|A|)2.

If this is within our time budget, there is nothing to do. If this takes longer than our
user supplied time budget, we then reduce T to create TPAA = PAA(T,p), where p = get-
PaaFactor = n′/|A|, ensuring that this approximation will take exactly S seconds.

Although the minimum possible time complexity has now been achieved with these
ideas, we will run into issues with memory usage for a long time series. A Mplot needs
all its cell values in memory, unlike say the state-of-the-art Matrix Profile algorithms [43,
45], which only require keeping the minimum of each column of Mplot. Thus, mem-
ory becomes the next bottleneck. Our proposed solution to this issue is described in
Sect. “Removing the memory bottleneck”.

Removing the memory bottleneck

The ideas in the previous section greatly reduce the time needed to compute large
Mplots, however as we consider ever larger Mplots we bump into a new hurdle, main
memory.

The reader may wonder why we should use the time and memory resources required
to compute large matrices, when none of the available screens are able to display them
at native resolution. Note that the highest resolution in a commercially available system
is currently 8 K (7680 × 4320 pixels). In fact, there is a reason to compute a Mplot at a
resolution greater than can be (currently) displayed. We propose to create multi-resolu-
tion approach, which allows a user to initially see an approximation of a massive Mplot,
and interactively zoom-in on any areas that catch her eye as requiring a more detailed
inspection. When the zoomed-in patch is requested, one of two things happens:

• If the zoomed-in patch was precomputed at the required resolution, we can simply
fetch it from memory.

• If the zoomed-in patch was not precomputed at a fine enough level, it is recalculated,
on-demand, at the finer resolution required.

Note that this style of user interaction echoes the widely known visual information
seeking mantra given by Ben Shneiderman: Overview first, zoom and filter, then details-
on-demand [33].

Assume that the entire area of an 8 K screen is to be used to show a Mplot. Using
the SPLAT algorithm, we could exactly compute an AB-join of two time series of

Page 8 of 33Shahcheraghi et al. Journal of Big Data (2024) 11:96

length 7680 and 4320 in well under one second on a standard desktop (by way of con-
trast, if m = 512, existing brute-force algorithms take about 840 s). This is effectively
real-time or interactive for our purposes. We set one second as being the limit for any
refresh interaction with our system.

With this in mind, we propose a multi-resolution approach to allow Mplots to han-
dle long time series called MultiResSPLAT. The basic intuition is as follows:

• MultiResSPLAT accepts a threshold for user patience for screen refreshes, i.e., one
second.

• The SplatTimePredict function predicts how long it would take the Mplot matrix
to be computed.

• If the predicted time exceeds the user’s patience, the tool downsamples the time
series by a factor of p such that the computation time is less than that threshold.
The factor p is computed by getPaaFactor. This matrix, computed on downsam-
pled data, is shown as the Mplot.

• The user may be satisfied with the approximate Mplot. However, if she wishes to
zoom-in to inspect any region in more detail, we recursively repeat this process
for that local patch of the matrix.

• Likewise, if the user is currently viewing a zoomed-in region of a Mplot, and she
wishes to pan her view, we will not have the new patch computed at the current
resolution, so we again compute it on-demand, at the highest resolution allowed
by its size and the threshold for user patience.

Table 2 The MultiResSPLAT Algorithm

Page 9 of 33Shahcheraghi et al. Journal of Big Data (2024) 11:96

In Table 2 we formalize these ideas, beginning with the main MultiResSPLAT
algorithm.

In line 1 the user patience threshold is set to t seconds. With line 2, we estimate the
SPLAT time on the input time series. By comparing the estimated time and t in line 3,
the algorithm decides whether a downsampling is required or not. If downsampling is
needed, the PAA factor, p, will be calculated as shown in line 4. Then the new downsam-
pled time series (TA′ , TB′) and the reduced subsequence length (m′) are set within lines 5
to 7. Finally, the SPLAT algorithm is applied on the downsampled time series of interest
as shown in lines 8 and 10.

In Table 3 we show how we can use the MultiResSPLAT algorithm recursively, to allow
zooming-in on a region of an approximately computed Mplot, to show that region in a
larger size that is more finely approximated. For clarity, Table 3 outlines the algorithm
for one single zoom-in. However, it can be trivially extended to allow iterative zooming-
in, where a user “drills down” to an event that catches her eye.

The algorithm starts by obtaining the user-requested patch from an existing Mplot
(plt) in line 1. This request normally comes from a classic rectangular selection tool.
As the user selects a rectangle region on plt, the four corners of the selected area are
returned as lx, rx, uy, dy, which are left/right x and up/down y values, respectively. Then
in lines 2 and 3, the coordinates are mapped to the exact locations in both input time
series TA (segA) and TB (segB). Finally, the MultiResSPLAT is called on the new subsets of
the input time series and the new zoomed-in Mplot is returned with line 4.

We omit the details of the panning function, which is similar. Note that the experi-
ence of using these tools is completely transparent to the user. She can pan and zoom
at will and have essentially the same experience as if the system had precomputed and
stored a massive matrix. Using MultiResSPLAT, memory usage can be improved by
orders of magnitude. Assume we need to run SPLAT on a time series of length 1,000,000
and return a matrix with a trillion cells. In MultiResSPLAT the computed matrix size is
always below a threshold, say 7680 and 4320, which reduces the memory footprint by a
factor of ~ 31,000.

Removing the human visual attention bottleneck

In the previous two sections we mitigated both memory and time limitations to cre-
ate large Mplots. However, this reveals two new related bottlenecks, human visual

Table 3 The MultiResSPLATZoom Algorithm

Page 10 of 33Shahcheraghi et al. Journal of Big Data (2024) 11:96

attention and screen resolution. It is reasonable to ask why we should bother to com-
pute a matrix of size, say 50,000 by 50,000 if we are going to display it on a mere, say
2000 by 2000 pixel patch of the screen. The results in the last section partly answer
this question, a downscaled approximation of a large Mplot is often good enough to
allow a user to spot a tentative, but possibly “blurred” pattern, which she can then
explore by zooming-in. However, for truly massive Mplots, the downscaled approxi-
mation may obscure patterns. There is an obvious solution, to compute the Mplot
patchwise, and then show the user the full-scale piecewise patches consecutively.
However, that simply shifts the bottleneck to human visual attention, which is an
even more precious resource.

Note that if the user is interested in visually searching for features or patterns that can
be objectively ranked, we can use our piecewise strategy to search for such features, and
only save the top-k patches for later “offline” visual inspection. Assume for the moment
that such a target feature, Tfeature, exists. In Table 4 we show how we can use the Piece-
wiseSPLAT algorithm to find the patch that contains the top-1 Tfeature.

The top-1 patch is initially set to Null in line 1. Given a patch size of p, the reference
and query time series are examined piece by piece within lines 2 to 5. Each patch is then
compared to the best patch so far in line 6, w.r.t. Tfeature. The best patch is updated only
when the examined score is greater than our best-so-far. Line 7 returns the best patch of
the Mplot with regard to the user desired Tfeature.

Thus far we have glossed over the nature of Tfeature. Here we can leverage decades
of research. There are dozens of algorithms for extracting features from Mplots, some
generic, and some domain specific. Some examples include:

• Bioacoustics: Malige et al. use Mplots [20], to analyze humpback whale communi-
cations, and explicitly define specialized features on the matrix such as song and
theme.

Table 4 The PiecewiseSPLAT Algorithm

Note that there is some computational overhead, in that the patches must slightly overlap. This is because some features
that we may wish to search for may span a region of pixels, and we do not want to miss a feature that is close to the edge
of a patch. Note however that this overlap must be of the order m, which is typically in the range of 8 to 258. Whereas
the patch size might be in the range of 20,000 × 20,000 (the best size depends on the main memory available) so the
computational overhead of the overlap is inconsequential

Page 11 of 33Shahcheraghi et al. Journal of Big Data (2024) 11:96

• Astronomy: Phillipson uses Mplot to investigate stochastic light curves of Active
Galactic Nuclei [27], and define a feature called optical quasi-periodic oscillation that
can be computed from the plots.

In addition to these domain specific features, there are hundreds of generic fea-
tures that a user may wish to search for, including Recurrence rate (RR), Determin-
ism (DET), Laminarity (LAM), Ratio (RATIO), Trapping time (TT), Divergence (DIV),
Entropy (ENTR), etc. [22]. Note that not all proposed features can be computed piece-
wise using the algorithm in Table 4 (some features require random access to all parts of
the matrix), but the vast majority can.

For concreteness, in Sect. “Experimental evaluation” we will show how this strategy
can be used to solve two problems in which we can define simple and intuitive features
that allow us to find targeted events in a time series that would be difficult to discover
using any other method.

Parameter‑free Mplots: 3D Mplots, Mplot movies and multifocal Mplots

Given that we can now compute Mplots orders of magnitude faster, it is natural to ask if
there are ways to exploit this alacrity to somehow improve Mplots or provide new ser-
vices. Here we briefly discuss three such examples, although we suspect that the com-
munity may discover many more.

A recent paper motivates the issue we address, noting that “(Mplots) cannot handle
the variability of discriminative region scales and lengths of sequences” [41]. The issue
at hand is unique to Mplots and does not happen for true dot-plots. Suppose we build
a dot-plot for long string of natural language with m = 3. The plot will reveal a repeated
“word” of length three, such as..binge watching. If there is repeated structure longer
than three, such as …notwithstanding her demandingnesses…, this will also
be revealed in the dot-plot, as a “streak” with a length of four, because each of the con-
secutive substrings in the motif, “and”, “ndi” “din” and “ing” have a match in the same
order.

Surprisingly for the corresponding situation with real valued time series, we cannot
make the same claim. It is possible that two subsequences match well, but their sub-
subsequences do not. This is because we are working with z-normalized time series. For
example, consider the two time series A = [1 0 1 9] and B = [0 1 0 9]. Their z-normal-
ized Euclidean Distance is very small, just 0.382. However, consider their subsequences
A’ = [1 0 1] and B’ = [0 1 0], in spite of being shorter, their z-normalized Euclidean Dis-
tance is 2.829, an order of magnitude larger.

The practical upshot of this is that an Mplot created with a user defined parameter
m, we cannot guarantee that this will reveal similarities of subsequences with lengths
greatly different to m. Before continuing, we should note (as most of the examples
in this paper show) that in general Mplots are very forgiving to the choice of m, for
almost all datasets and applications. For example, almost all atomic human gestures,
dance moves, ASL words, sport performances (i.e., a tennis serve), happen over a
time range of about 1/5th to 2 s. Using a m value at the shorter end of that range will
tend to reveal all such conserved behaviors. However, there are some domains that
can have conserved behaviors over an even wider range. An example familiar to the

Page 12 of 33Shahcheraghi et al. Journal of Big Data (2024) 11:96

current authors is the behavior of sap feeding insects [4, 5, 11, 38], which have con-
served behaviors that vary in performance length of at least two orders of magnitude.

We proposed to address this issue in one of three ways:

• We can produce Mplot movies, by creating a Mplot for all possible values of m
and writing each consecutive Mplot to a frame of a video. These videos are remi-
niscent of a video showing a microscope focusing, the image is initially “blurred”,
but later comes into focus. Critically, different parts of the Mplot video can come
into focus at different times, suggesting a time series that has multiscale struc-
tures.

• We can create 3D Mplots, by stacking the (sparsified) frames in the Y-axis. These
3D scatterplots can be rotated and viewed from various angles.

Static examples of these two ideas are shown in Fig. 3.
While these two Mplot variants are compelling and useful, they do not lend them-

selves to evaluation in a paper. We will therefore not further evaluate or discuss them.
However, we invite the reader to visit [31] to see a gallery of them used in various
domains.

The final variant of Mplot that we introduce are multifocal Mplots, which do lend
themselves to the static format of a paper. Our idea is inspired by focus stacking, a tech-
nique that allows photographers to create a single image where objects on various focal
planes are all in focus. The technique involves photographing the same composition
multiple times with various focal points. These images are then composited to create a
single image in which everything in the photo is in focus. This is a perfectly analog to the
task at hand, the notion of “focus” here means an appropriate choice of m. Since there is
no single choice of m for all parts of the time series, we can simply compute all m and
composite the final result, into a single image. Figure 4 shows an example of a multifocal
Mplot on some insect electrical penetration graph (EPG) telemetry.

Because our problems are such a perfect analogue for focus stacking, we do not need
to create any new software to create a multifocal Mplots, we can simply use off-the-
shelf image processing software and input a Mplot movie, including Photoshop’s built-in
focus stacking tool.

Note that all three of these techniques remove the need for a user to set the Mplot’s sin-
gle parameter, the subsequence length m, thus make Mplots essentially parameter-free.

Fig. 3 Left) Screen grabs from a Mplot video. Right) A 3D Mplot shows how motifs change as a function of
the subsequence length

Page 13 of 33Shahcheraghi et al. Journal of Big Data (2024) 11:96

Pooling SPLAT

If we create a Mplot that is larger than the screen resolution available, the operating
system will rescale the image for display. The algorithms used for this, Nearest Neigh-
bor, Bilinear, Lanczos, etc. are optimized for natural images but may be poor choices
for Mplots. In particular they may obscure fine details. For example, consider Fig. 5.left
which shows a Mplot which is being downscaled with nine pixels mapping to one. Most
rescaling algorithms reduce to averaging in such cases, and the black pixel indicating a
motif is obscured.

To mitigate this issue, we propose to take explicit control of how Mplot images are
resized. Instead of simply averaging the pixels, we allow arbitrary aggregation functions.
For example, to help highlight motifs we can use a MAX function as shown in Fig. 5.
right, and to preserve discords (anomalies/differences) we use a MIN function. Slightly
more exotic functions can be defined to attempt to preserve both discords and motifs at
the same time. In Table 5 the general algorithm is outlined.

Mplot m = 30 Mplot m = 700 Mul�focal Mplot

0 500 1000

0 60

0 60

The motif discovered for
m = 30, is dwarfed by the motif found for
m = 700 (both plotted here on the same
scale)

Fig. 4 Left) A Mplot with m = 30 discovers conserved periodic behavior corresponding to xylem ingestion
[11] but fails to discover conserved behavior at longer time frames. Center) A Mplot with m = 700 discovers
conserved periodic behavior corresponding to intercellular passage but cannot represent the shorter xylem
ingestion behavior. Right) A multifocal Mplot can simultaneously represent conserved behavior at both scales

Pixel
Averaging

Pixel MAX
func�on

Fig. 5 Left) A naïve averaging of pixels can “blur” out features when downscaling. Right) In contrast, while a
MAX aggregation may create some small amount of spatial uncertainty, it preserves the strength (“color”) of
the discovered motif

Page 14 of 33Shahcheraghi et al. Journal of Big Data (2024) 11:96

In line 1, a fixed size output Mplot is defined independent of the input time series
length. This fixed size depends on the desired resolution of the output plot. For exam-
ple, on an 8 K monitor, a user may request an output of 4320 × 4320. In lines 2 and 3
we compute how many cells from the original Mplot will be assigned to each cell in
the pooled Mplot. With lines 4 to 6 distance computation is done as in Table 1. As
indicated in line 7, the location for mapping the current value in the pooled Mplot
is found. We use standard image resizing algorithms to avoid aliasing artifacts. Then
line 8 compares the current distance value, with the existing value in the pooled
Mplot and updates that location with respect to the desired aggregate function’s out-
put. Finally, line 9 returns the fixed size pooled Mplot.

Table 5 The PoolingSPLAT Algorithm

4

5

6

7

A B C D E F G H I J K L M N O P Q R S T U V W

1

2

3

8

9

10

11

X

Fig. 6 Some examples of patterns we may see on a Mplot. Here we assume m = 4 was used to create this
plot

Page 15 of 33Shahcheraghi et al. Journal of Big Data (2024) 11:96

Interpreting Mplots
There are many useful guides to interpreting recurrence plots/dot plots available
[22]. We will not duplicate those efforts here. However, as we noted in Sect. “Related
work”, there are several differences between true recurrence plots and Mplots, and
some of those differences effect the interpretation of plots. In Fig. 6 we show some
examples of patterns that are unique to Mplots. When discussing the time series that
created these patterns, we use the familiar expository trick of using text as a proxy for
time series, and hamming distance as a proxy for Euclidean distance.

In a dot plot with m = 4, a recurring pattern of say CATA would produce a single
point on the plot. In a dot plot with m = 3, the recurring pattern of CATA would pro-
duce a two consecutive points “smeared” in diagonal line, and so on.

In principle Mplots are similar, and a motif that was exactly m datapoints long could
produce a single dot (U2). However, even if the natural motifs in the time series are
exactly m datapoints long, the use of parameter m would tend not to produce a single
point, but a smeared line. The reason is that if two subsequences beginning at loca-
tions i and k, are a close match, then we will still have a reasonably close match for i
and k ± 1, i and k ± 2, etc. This is not true for the discrete strings of dot plots. There-
fore, if we see a diagonal streak on a Mplot built with parameter m, whose length in
the x-axis is d, we should interpret this as the existence of a motif of length a little
greater than d. Thus, the pink pattern seen beginning at Q2 suggests the existence of a
motif of length five or six, not just four. This suggests a general strategy for setting the
value of m. We should set it to be a little less than the length of the motifs we want or
expect to find.

One of the patterns that are unique to Mplot is the green curved line shown in
beginning at K2. This suggests that there is a motif, but the second occurrence begins
to slow down. Intuitively this would be like CATA and CAT TAA AAA . Naturally, the
pattern can curve in the opposite direction if the second occurrence is speeding up
instead. We call instances of such patterns “chirps”. If we see a streak that curves in
both directions in a serpentine fashion this is suggestive of a pair of subsequences
that match after allowing one to locally “warp” in order to match the other [28]. This
is an important benefit, as finding motifs with invariance to warping (i.e. Dynamic
Time Warping [28]) which is known to be very computationally demanding [2].

The blue streak beginning at E2 shows a straight line streak that is not parallel to
the diagonal, indicating a motif where one occurrence is a linearly rescaled version
of the other, something like TAG and TTA AGG . As we will later show, we can use the
observed angle of this streak to predict the amount of rescaling and then exploit this
fact.

Finally, the red streak beginning at B2 suggests a motif of about length eight in which
the second occurrence has some spurious sub-patterns inserted at about the midway
point, something like TAG XCAT and TAG CAT (alternatively, we can see the first occur-
rence as missing some sub-patterns).

We have shown these examples on binarized toy examples, however more generally,
using real-valued Mplots, the colors or shades of gray offer further information about
the degree of pattern conservation. In our experimental section we show examples of
such patterns discovered in real datasets.

Page 16 of 33Shahcheraghi et al. Journal of Big Data (2024) 11:96

Interpreting Mplots: reverse engineered
In the previous section we showed how to interpret some of the basic patterns and regu-
larities that we regularly encounter in a Mplot. However, it is also possible to reverse
engineer this process. We can imagine a hypothetical structure in a time series that
might be of interest, and then further imagine how that structure would manifest itself
locally on a Mplot. Moreover, we may be able to write a simple function to search for this
local manifestation using the piecewise Mplot function in Table 4. To make this clear, we
will consider a concrete example here.

Finding motifs is generally easy using Mplots (or the Matrix Profile [40, 43]). However,
it can be very difficult to find motifs under certain circumstances, in particular, it can be
hard to find rare motifs, if:

• There is a much more common motif or motif(s).
• The rare motif is less well conserved than the common motif or motif(s).

Note that this case is common in real world data. For example, we may have a handful
of examples of abnormal heartbeats in an ECG that contains thousands of better con-
served normal beats.

Let us think about what a Mplot would look like in such cases. If we had a repeating
common motif, we would expect to see many more or less solid lines, more or less paral-
lel to the diagonal. This is a very common type of Mplot. However, some such Mplots
also have “cross shaped” structures that have very low pixel density within the arms of
the cross. In Fig. 7 we show two synthetic examples, and Fig. 1.right showed a natural
example.

The reader will note that there are two slight variations of this pattern shown in
Fig. 7. In the intersection shown at {7,8},{O,P} the center of the cross is also sparse.

4

5

6

7

A B C D E F G H I J K L M N O P Q R S T U

1

2

3

8

9

10

V W X Y X *

11

12

13

14

15

16

17

Fig. 7 A hypothetical Mplot. Note that there are two “crosses” formed by the sparse rows {7,8} and the sparse
columns {G,H} and {O,P}

Page 17 of 33Shahcheraghi et al. Journal of Big Data (2024) 11:96

These are what we should expect from if either or both of the subsequences corre-
sponding to {7,8} or {O,P} are noisy or unique (i.e. discords). If either of the subse-
quences is unique, it will be far from everything (except itself), thus its entire row (or
column) will be sparse, including when that row (or column) intersects with another
sparse column (or row).

However, in contrast, consider the intersection shown at {7,8},{G,H}. Here, while the
main arms of the cross are mostly empty, there is a diagonal line that runs through the
intersection. This is exactly what we should expect, if the pair of subsequences at {7,8}
and {G,H} are a rare motif. This is because a rare pattern will be different to the common
patterns, which are by definition almost everywhere; Thus, giving us a mostly sparse row
(or column). However, in the infrequent places that the rare pattern encounters another
example of the same rare pattern, it will produce a streak of black pixels.

Having given the intuition as to how a rare motif can manifest itself, we can write
a simple function that can test for such patches in a massive Mplot. In Table 6 we
outline such an algorithm. The intuition is to look for white rows and columns, which
indicates the existence of subsequences with the minimum similarity to the majority
of subsequences. We then aim to find a straight black line(s) within the intersection
of those white rows and columns. This is the sign of a similarity that rarely happens in
the input data.

Table 6 The rare motif algorithm

Page 18 of 33Shahcheraghi et al. Journal of Big Data (2024) 11:96

In line 1, we define an empty list to store the possible best patches. Lines 2 and 3 intro-
duce the list of candidate rows and columns where the locations with less similarity to
other locations are stored in. Starting from line 4 the Mplot is computed patchwise.
Lines 8 and 9 look for rows and columns in Mplot with the highest probability to include
the rare motifs. Since rare motifs do not match to most subsequences, we expect to see a
row (or column) of low values in that location.

In a binarized matrix that can be seen as a white row (or column). In line 10 and 11 we
go over the intersection of candidate rows and columns and look for a high value, indi-
cating a high similarity to another subsequence(s). This is visualized as a straight line in
a Mplot. This line can be angled by some value or can be divided into parts, especially if
the rare motif is less well conserved than the common motifs (which as we will later see,
is empirically often the case). We use the Hough Transform tool to find these lines [6].
If such a line exists, line 13 stores it as one of the best patches. Finally in line 14 we sort
the best patches such that a white cross of Mplot with a black line (more black pixels) is
prioritized over a white cross with a few random black pixels.

In Sect. “Pooling SPLAT” we will show a real word example of using this idea to search
for rare motifs in a vast collection of insect data. We believe that this basic idea could
be used to find other structures, including variations of Time Series Chains [16], Time
Series Shapelets [40], Time Series Novelets [24], etc. More exciting is the possibility of
that this framework will be used to discover structures that did not occur to the current
authors.

Experimental evaluation
To ensure that our experiments are reproducible, we have built a website [31] that con-
tains all the data/code used in this work. All experiments were conducted on an Intel®
Core i7-9700CPU at 2.80 GHz with 16 GB of main memory, unless otherwise stated.
As noted above, the format of this publication does not lend itself well to Mplots. We
encourage the reader to visit [31] where we have large format images and videos that
exploit and demonstrate our ideas.

To help the reader gain some intuition for the utility and generality of Mplots we begin
with some anecdotal examples before considering more qualitative experiments.

Hunting for exoplanets

Exoplanets can be discovered by examining the time series of flux (light intensity) of a
star. When a planet passes between the star and the observatory on Earth (or orbiting
Earth), its shadow causes a slight dimming of the flux. In some cases, as in Fig. 8.top.
right, the effect can be quite dramatic. This is true if the planet is very large (Jupiter-
sized), with a short orbital period, and the data is relatively noise-free. These ideal cases
are visually apparent and/or can be easily discovered with Fourier techniques. However,
if the planet is small (Mercury-sized), with a longer orbital period, and the data is noisy,
this is a much more difficult problem.

As Fig. 8 hints at, we believe that Mplot may be a useful tool to examine these difficult
cases, as the evenly spaced diagonal lines not only offer evidence for an exoplanet, but
their spacing tells us the period. Note that it is possible that some lines could be missing
due to noise (cloud cover, sensor noise, etc.). Consider Fig. 9, does it show an Exoplanet?

Page 19 of 33Shahcheraghi et al. Journal of Big Data (2024) 11:96

Fig. 8 Top.left) A star-light curve from a star believed not to have an exoplanet. Top.right) A star light curve
from a star known to have an exoplanet. Bottom.left) The Mplot of the planetless star is relatively featureless.
Bottom.right) The Mplot of Exo9 reveals not only the existence of an exoplanet but tells us its orbital period

Fig. 9 The star light curve for Exo25. Does it suggest the existence of an Exoplanet?

Fig. 10 The star-light curve for Exo25 with its Mplot (m = 100). While there is noise reflecting the original
data’s noise, there is the unmistakable signature of an exoplanet with an orbital period about three times
longer than Exo9 (Cf. Fig. 8.bottom.right)

Page 20 of 33Shahcheraghi et al. Journal of Big Data (2024) 11:96

In an attempt to answer this question, we built a Mplot in Fig. 10, using the same
parameters as in Fig. 8.

A visual inspection offers strong evidence for the existent of an exoplanet. As the call-
out in Fig. 8.right shows, we can clearly see four periods. The much weaker, barely visible
fifth period is presumably explained by the noise in the original figure. In [31] we have a
gallery of additional exoplanets discovered with this technique.

To be clear, we are not advocating Mplot as a tool for hunting exoplanets. This is an
important problem, and it is worth creating bespoke tools that consider the many physi-
cal constraints in this domain. This example merely serves to show that Mplots can
reveal structure that is not readily apparent in raw time series.

Mplot filtering

Our ability to create massive Mplots presents both opportunities and problems. One
problem is that Mplots can be very “busy”, and as we noted earlier, human visual atten-
tion is a precious resource. One solution to this issue is to apply filters of various kinds to
emphasize patterns that we may be interested in. This can be done in many ways, most
of which are trivial to implement. For example, a traffic manager might choose to high-
light motifs that happen within five days of a holiday, or on rainy days (using out-of-band
data), etc.

In this section we show a novel filtering strategy that corresponds to a high-level and
subtle semantic question; “Show me patterns common between two sequences, but
absent from one or more other sequences.”

First, a quick review. Recall that Mplots are conceptual precursors to Matrix Profiles
[40, 43]. In particular, a self-join Matrix Profile can be created by collapsing an n× n
similarity matrix using the smallest value of each column (excluding values on the diago-
nal). There is a similar correspondence for the AB-join Matrix Profile which is either the
row or column collapsed-min of the Mplot between two different time series.

The Contrast Profile [23] is a recent tool for discovering contrasting patterns across
time series, that is, behaviors that are repeated within one time series but are absent
from another. Since the Contrast Profile is defined “lego-like”, by combining several
Matrix Profiles, this suggests that its definition could be retroactively generalized to
Mplots.

The Contrast Profile is defined as the difference between AB-join and self-join Matrix
Profiles:

We adapt this to create the semantic definition we desire:

The Mplots cannot be directly subtracted due to dimensionality incompatibilities,
however this equation serves as a reference when reasoning about how to complete
the desired operation. The motivating question: “Which behaviors are common
between two sequences but absent from one or more other sequences?” hints at a
methodology. When thinking about this on a pair-wise basis, we would like to focus

CP = MPAB −MPAA

ContrastMplot = MPhabituated −MPtargeted

Page 21 of 33Shahcheraghi et al. Journal of Big Data (2024) 11:96

on self-join subsequence pairs with high similarity but suppress those which are simi-
lar in the “habituating” sequence.

We can achieve this with one Mplot and two AB-join Matrix Profiles. Given two
target time series TA and TB , and one or more habituating time series TC we generate
a MplotAB between TA and TB , then compute two Matrix Profiles MPAC and MPBC . We
habituate through the following indexed definition:
ContrastMplot(i,j) = min

(

MPi
AC ,MP

j
BC

)

−Mplot
(i,j)
AB

It may be unintuitive to consider why we are combining elements from two different
structures. In a Mplot, we are interested in the pair-wise structure across the entire
matrix, however when habituating, we are only interested in whether a low distance
nearest neighbor exists. Thus, we can collapse the habituating similarity matrix into a
Matrix Profile.

We will perform a demonstration using a time series representation of mito-
chondrial DNA. The conversion from DNA to time series is done with this classic
transformation.

T1 = 0, for i = 1 to length(DNAstring)

if DNAstringi = A, then Ti+1 = Ti + 1

if DNAstringi = C, then Ti+1 = Ti - 1

if DNAstringi = G, then Ti+1 = Ti - 2

if DNAstringi = T, then Ti+1 = Ti + 2

The two closest species to humans are Chimpanzees (Pan troglodytes) and Bonobos
(Pan paniscus). Chimps and Bonobos are more similar to each other than to humans
[14], so we will investigate whether there exist DNA subsequences shared between them,
but which is absent from humans.

Fig. 11 A contrast-Mplot revealing mitochondrial DNA subsequences are shared between Bonobos and
Chimps, but absent from Humans. The region highlighted in red indicates a reversed and offset Bonobo
subsequence relative to the Chimp sequence

Page 22 of 33Shahcheraghi et al. Journal of Big Data (2024) 11:96

We structure the problem by setting Bonobos to TA , Chimpanzees to TB , and humans
to TC . One type of DNA mutation is subsequence reversal. The Contrast-Mplot can
reveal this by simply concatenating the reversed Bonobo sequence to itself before
processing.

In the ContrastMplot shown in Fig. 11, the black streaks represent sequences which
are conserved between Bonobos and Chimps, and also dissimilar to humans. White rep-
resents subsequences pairs between Bonobos and Chimps where either subsequence is
conserved at least as well in humans. The dominant visual feature is the patchy diago-
nal which lies along the reference 1:1 diagonal (blue). This is expected since most of the
DNA sequences between the two species are conserved in order. What is more inter-
esting are the off-diagonal visual features. Features occurring above the reference diag-
onal in the reversed region (purple) indicate subsequences which occur earlier in the
Bonobos relative to Chimpanzees. One such feature is highlighted in red. Additionally,
this feature occurs in the reversed Bonobo region, suggesting that the original DNA was
transposed relative to the Chimp’s sequence.

Using the BLAST [29] we have identified that the subsequence in question occurs
within the COX2 gene, which is known to be closely conserved between Bonobos and
Chimps, but divergent in humans [14]. While our demonstration focused on DNA, we
anticipate that Contrast-Mplots will have broader applicability to domains where we
want to visually reason about shared and unshared patterns in sets of data.

Finding rescaled motifs using PiecewiseSPLAT

As we noted in Sect. “Removing the human visual attention bottleneck” we can use
PiecewiseSPLAT to find arbitrary features/structures/regularities in massive Mplots that
could not fit in main memory. However, for concreteness here we will consider a struc-
ture with a direct and immediate visual interpretation, scaled motifs; subsequences of
different lengths that would have a small Euclidean distance if they were scaled to the
same length. If the difference in scale is very small, say < 8%, then the simple Matrix Pro-
file will probably work [43]. If the difference in scale is relatively small, say < 8 to 20%,
then there are a handful of techniques to address such cases [39]. However, here we are
interested in motifs that may dramatically differ in scale, say up to 300%.

Fig. 12 Top) A toy time series with three sine-wave patterns embedded. Note that instance C is about 37%
longer than the other two instances A and B. Bottom) The corresponding Mplot shows that the difference in
lengths manifests as a difference in angle

Page 23 of 33Shahcheraghi et al. Journal of Big Data (2024) 11:96

To discover such rescaled motifs, we can search Mplots with PiecewiseSPLAT. Fig-
ure 12 illustrates the main insight.

Suppose we have two occurrences of a motif, A and B, of length L, and we create a
Mplot with m set to a number less than L. We would expect to see a “streak” of length
about L-m ×

√
2 , parallel to the diagonal (or 135° to vertical).

However, if we have two motifs that differ in length, as with A and C, we should expect
a similar streak, but at non-zero angle relative to the diagonal. The relationship between
the scaling factor and the angle is given by:

Thus, we can reduce the rescaled motif discovery problem to the task of finding lines
in an image, and that problem is easily solved by the classic Hough transform [6]. There
is a minor caveat, while the start point and angle of the discovered line reveal the loca-
tion and scaling factor respectively, they may be a little “blurry”, so we need to run a
localized brute-force search on the identified area to refine the best motif.

To hint at the utility of this idea, consider Fig. 13.
Here we see a motif discovered in telemetry from an insect. Because the two instances

of this motif differ in length by a factor of 1.25, classic methods cannot find them [40].

Hunting for Chiroptera with PiecewiseSPLAT

In the previous section we showed that PiecewiseSPLAT could allow us to find motifs
with invariance to scaling. However sometimes we may explicitly desire to discover only
those motifs that exhibit scaling.

For example, suppose a biodiversity survey needs to examine audio recorded at night
to look for examples of bats. Existing bat classifiers have only been tested on a handful
of the 1400 known species [35]. We would like to have a general method to capture any
species of bat. The problem is compound by the fact that many birds and insects also
sing at night, not to mention inevitable human noise pollution.

A well-known fact about bats may be useful. Bats use echolocation to find prey, pro-
ducing bursts of sound and analyzing the returning echoes build a picture of the external
world. Critically, the rate at which the bat emits sounds is not constant but changes, as
[29] notes “Over the course of an attack, bats increase call production rate”. It is impor-
tant to note that this change in call production rate is not an accidental side-effect of the
bat’s call, but an intrinsic part of the bat’s hunting strategy, trading off the energetic cost
of producing sounds with the finer spatial resolution of rapid bursts [29].

ScalingFactor(A,C) =
1

tan
(

Angle(A,C)− 90◦
)

1 187

0 205,000

1 150

Motifs in
original time
series

Motifs after
rescaling red
example by 0.80

34.5 minutes of insect telemetry

1.87 seconds 1.5 seconds

Fig. 13 Top) Telemetry from an insect pest feeding on a plant. bottom) A multi-scale motif discovered in the
data can only be seen as conserved after one instance is rescaled by a factor of 1.25

Page 24 of 33Shahcheraghi et al. Journal of Big Data (2024) 11:96

This suggests an exploitable idea, we might expect that these changes in call rate would
produce Mplot structures not parallel to the diagonal, as discussed in Sect. “Interpreting
Mplots”. Consider Fig. 14.right.

These Mplot snippets are diverse but note that the bird examples all have structure
that is parallel to the diagonal. In contrast, the bat call is unique in that it has lines that
are at an angle to the diagonal, telling us that the bat produced the motif twice, at two
different speeds. Birds are only using sound to communicate,2 bats are using sound for a
completely different purpose, and occasionally producing this unique feature.

To test our hypothesis, we embedded a twenty-second snippet of bat hunting audio
into a one-hour audio file containing diverse bird songs. We searched for lines that had
an angle of at least ± 9.5° to the diagonal, indicating a rescaling factor of 1.40. As shown
in Fig. 15.

The top-1 motif was indeed a bat vocalization. This experiment took 81 min, which
is just slightly slower than real-time. Note that for the classic Matrix Profile, the top-10
motifs are all bird (occasionally possibly insect) sounds. This example hints at the util-
ity of Mplots, with only the vaguest of domain knowledge we can search large complex
datasets for behaviors of interest that can be described in high-level abstract terms.

Searching massive Mplots

Recall that in Sect. “Interpreting Mplots: reverse engineered” we discussed the possibil-
ity of “reverse engineering” the interpretation of Mplots. We noted that it may be pos-
sible to think of some structure we would like to find, hypothesize what the structure

Emballonura alecto
Laterallus jamaicensis

Charadrius vociferus
Icteria virens

Antrostomus vociferus

Fig. 14 Five randomly chosen six-second snippets of animals that both fly and produce sound at night. The
four leftmost examples are all birds. The rightmost example is a bat, which is unique here in having “stripes”
that are not perfectly parallel to the diagonal

1 3601 500

Motifs in
original time
series

Motifs after
rescaling red
example by 0.714

Five seconds ~Three seconds

One hour of nocturnal jungle sounds

Fig. 15 Top) A one-hour dataset containing bird sounds, and a total of 20 seconds of bat sound. Bottom)
If we use PiecewiseSPLAT to search for motifs that have at least 1.35 rescaling, the top-1 motif is a bat
vocalization

2 A few birds such as oilbirds/swiftlets do use a weak form of echolocation.

Page 25 of 33Shahcheraghi et al. Journal of Big Data (2024) 11:96

would look like on a Mplot, then build a simple image processing filter to search for this
structure. Here we show a complete worked example of this idea.

Sap feeding insects in the order Hemiptera feed by removing plant sap from trans-
port vessels, such as phloem and xylem elements [4, 38]. This behavior is typically not
destructive by itself but can spread pathogens from plant to plant. One of the most stud-
ied insects is the Asian citrus psyllid (Diaphorina citri), which is responsible for billions
of dollars in crop losses each year. The primary tool used to study these insects is the
electrical penetration graph (EPG), which as shown in Fig. 16, produces a complex and
noisy time series that reflects the behavior of the insect’s straw-like mouthparts as they
navigate within the plant tissues.

As shown in Fig. 16A One of the most common behaviors seen is xylem ingestion.
Psyllids spend approximately 22% of their lives engaged in this behavior, with bouts of
xylem ingestion lasting an average of about 40 min [11]. It is known that it is rare to
observe a perfect run of xylem ingestion lasting tens of minutes, the behavior is occa-
sionally interrupted by noise. In the EPG literature, “noise” is often used somewhat
informally. The device must be very sensitive to record such tiny insects, and as such
it is very sensitive to ambient interference (some researchers place the entire apparatus

Fig. 16 An Mplot with the three corresponding pairs of time series extracted from an Asian citrus psyllid
(Diaphorina citri). The value of m was forty (the length of the colored prefix in the call-out plots), and we
show the following eighty datapoints for context. A A typical bout of xylem ingestion shows metronome-like
regularity. B The white cross with an empty intersection corresponds to a section of noise (cf. Fig. 7). C The
white cross with diagonal strip in its intersection corresponds to a rare motif, that occurred between two
bouts of xylem ingestion

Page 26 of 33Shahcheraghi et al. Journal of Big Data (2024) 11:96

in a Faraday cage in an attempt to mitigate electronic noise interference [26]). However,
some authors use “noise” to simply mean any behavior that is not stereotypically part of
a known behavioral waveform.

Based on a hunch from an experienced entomologist, we wondered if some of these
sections attributed to “noise” could be behaviors that are less well conserved than the
typical xylem ingestion waveform. To test this idea, we implemented the image process-
ing filter in Table 6, and searched a 2.7 h long recording.

Figure 16 allows us to illustrate the three possibilities that make up our dataset. Fig-
ure 16A shows a dense run of parallel lines, corresponding to the typical xylem ingestion
waveform (in the literature, this is often called the G phase or G waveform [4, 38]. Such
patterns make up more than 99% of the Mplot. Figure 16B shows a white cross with
an empty intersection. This corresponds to a noisy region in the time series. Figure 16C
shows a white cross with diagonal lines in intersection. This corresponds to what we
have dubbed an interstitial motif. In Fig. 17 we show this motif at a larger scale, to allow
the reader to appreciate how well conserved it is.

We illustrate the similarity of the two time series by showing the Dynamic Time Warp-
ing alignment between them [28]. The is only a small amount of warping but is enough
such that these two 120-datapoint long subsequences are not similar under the classic
Euclidean distance. In a sense, we can see the Mplot as revealing a “piecewise” Euclidean
distance similarity by showing a diagonal (but slightly wavy) line.

One of the current authors is entomologist who is an expert on EPG data [5]. Although
not involved in the collection of this dataset, she believes the interstitial motif shows the
insect is transitioning between C phase (navigation through the mesophyll tissue) and
the G phase. In [4] they observed that waveform G was always followed by a return to
waveform C. This would also explain why it is somewhat regular but not 100% consist-
ent, as C phase has some variability depending on the nature of the tissues the stylet (the
insect’s needle-like mouthpart) is traveling through.

We use piecewise Mplot to search 1,000,000 datapoints (2.7 h) for the telltale white
crosses. Each patch was of size 10,000 by 10,000 and took about 5.3 s to process. As there
are 10,000 patches, the entire process took about 8.5 h. To give the reader an apprecia-
tion as to how large a Mplot this is, if we printed out the entire Mplot at the scale shown
in Fig. 16,3 it would comfortably cover a soccer field.

0 20 40 60 80 100 120
Fig. 17 A larger reproduction of the interstitial motif shown in Fig. 16C

3 100 datapoints is about one centimeter, given the scale shown in Fig. 16 and this journals format.

Page 27 of 33Shahcheraghi et al. Journal of Big Data (2024) 11:96

Finally, we want to demonstrate that the “white cross” heuristic can be a general
technique for finding rare motifs in the presence of common motifs, so we will con-
sider a completely different data domain. Here we address the problem of examining
telemetry from Contraction in Cardiac Tissue (CCT), which are mechanical contrac-
tile signals at the tissue level (the signals are related to, but distinct from the more
familiar ECGs) [21]. As shown in Fig. 18 bottom.right, most of such data looks like
noise with periodic spikes. This generally produces the classic pattern of diagonal
stripes in a Mplot. However, as shown in Fig. 18 left, when comparing two traces with
an AB-Mplot, we occasionally see a white cross with a diagonal strip in the intersec-
tion. Here we can use the annotations provided by the creators of the dataset [21] to
understand that, as illustrated in Fig. 18 top.right, this is a rare motif of slow pulse
decay.

0 50 100 150 200 250

Slow pulse decay

Typical CCT signals

Fig. 18 Left) A zoom-in of an AB-Mplot created with CCT telemetry from two mice. Right) The value of m
was eighty (the length of the colored prefix in the call-out plots), and we show the following 160 datapoints
for context

0 4000 8000

0

500

NASA Mars Science Lab G1: Test

NASA MSL
G1: Train

The single
annotated
anomaly…
… is apparent
in the Mplot

Fig. 19 The G1 trace from NASA MSL [15] is used to create an AB Mplot (The training data is longer that
shown here. However, it is highly redundant, so we only used the first 500 datapoints.) with m = 80. The only
anomaly annotated in the official NASA record is at 4797 to 4871, and it shows up in the Mplot as an obvious
break in the continuity of the diagonal lines (recall the broken “red streak” example in Fig. 6)

Page 28 of 33Shahcheraghi et al. Journal of Big Data (2024) 11:96

Using Mplot as anomaly detectors

Most of our examples thus far have concentrated on the discovery of conserved struc-
ture (motifs), and on the self-join use of Mplots. In this example we show that Mplots
can also be useful for discovering violations of conservation, which are (in most con-
texts) called time series anomalies. Moreover, here we will consider an AB-Join, not a
self-join. That is to say we consider a matrix is DP

(j,m)

AB , where A ≠ B, (cf. Definition 4).
Note that, as shown in Fig. 19, such Mplots are not generally square.

In [15], Hundman and his colleagues introduced a dataset that has since become
widely studied and has been cited more than one thousand times. The Mars Science
Laboratory (MSL) rover dataset is a set of telemetry anomalies corresponding to actual
spacecraft issues involving various subsystems and channel types. Beyond the excite-
ment of the domain, the dataset is attractive because it has unusually good provenance.
The labels come from “expert-labeled data derived from Incident Surprise, Anomaly
(ISA) reports”, and we are reassured that “All telemetry channels discussed in an individ-
ual ISA were reviewed to ensure that the anomaly was evident in the associated telem-
etry data, and specific anomalous time ranges were manually labeled for each channel.”.
Moreover, the data also comes with positive only training data.

In Fig. 19 we show MSL:G1 and its corresponding Mplot.
There is one anomaly labeled in this dataset by NASA’s ISA report beginning at loca-

tion 4797. A casual glance at the Mplot can clearly locate the anomaly. It does not seem
to be a particularly hard problem, and perhaps the dataset is ill-suited to the strong
claims made by those using this dataset to compare rival algorithms.

However, when using the Mplot to investigate this dataset we noticed two other sub-
tle breaks in the diagonal stripes. In Fig. 20 we show a zoom-in of one of the relevant
regions and its corresponding Mplot.

5,212 5,283

NASA MSL G1: Test
(excerpt)

0

500

NASA MSL
G1: Train

A true
break in
continuity

Inset

Fig. 20 A zoom-in of Fig. 19. At about location 5271 there is an apparent anomaly, similar to, but much
shorter than the officially recorded anomaly (Not shown, there is a similar, but smaller anomaly at 6879 to
6894). The zoomed-in inset shows that the anomaly causes a break in the continuity of the diagonal lines of
the Mplot

Page 29 of 33Shahcheraghi et al. Journal of Big Data (2024) 11:96

We wrote to the original authors and asked them to examine our findings. They con-
firmed that these two examples are true positives, missed by the original annotators.

As an aside, it is interesting to note that while at least one hundred papers have explic-
itly experimented on this dataset, to the best of our knowledge, none of them have
reported noting these unknowledge true positives. However, most of these papers report
results (typically F1) using four significant digits. If we correctly labeled the data based
on the revised acknowledgement of ground truth, this would change at least two of those
digits.

Mplot based segmentation

Many researchers have independently noted that if the time series being examined in a
Mplot comprises of multiple regimes, the Mplot will reflect that fact with a “block-like”
structure. Figure 21 illustrates this with a toy example. This suggests that we could for-
malize this observation to produce a Mplot semantic segmentation algorithm. To search
for segmentation points we slightly adapt the method defined in [9], that is used in audio
signal information retrieval. This process involves searching for transitions between
block structures using the correlation of a checkerboard kernel with the diagonal of the
matrix.

The result is a 1D function called the novelty function. The change point events
are represented by local maxima (peaks) in the novelty function, which are then dis-
covered with a peak finding algorithm. To test the utility of this algorithm we com-
pared to three state-of-the-art semantic segmentation algorithms on a benchmark of

Fig. 21 Regime changes produce block-like Mplots

Table 7 A comparison of Mplot with three SOTA algorithms

FLOSS AutoPlait HOG-1D

win |lose|draw over Mplot 20 | 7 | 4 8 | 22 | 2 17 | 13 | 2

Page 30 of 33Shahcheraghi et al. Journal of Big Data (2024) 11:96

thirty-two diverse datasets. We use the evaluation metric suggested by the creators
of the datasets [12]. Table 7 summarizes the results.

In interpreting these results note the following:

• Our algorithm is better than AutoPlait, about the same as HOG-1D, and worse,
but not dramatically so, than FLOSS.

• We could have done better by tuning our algorithm, but to avoid overtuning we
set m to be the same value as used by the authors of [12] for FLOSS. Thus, these
results should be seen as a lower bound for SPLAT’s performance.

SPLAT segmentation has a significant advantage over the other methods, it
can give insight into the cause of the regime change. For example, consider the
 PulsusParadoxusSP02 problem shown in Fig. 22 top. Note that SPO2, also known as
oxygen saturation, is a measure of the amount of oxygen-carrying hemoglobin in the
blood relative to the amount of hemoglobin not carrying oxygen.

As noted in [12], this problem cannot be solved by visual inspection. The ground
truth is known by access to out-of-band data. Nevertheless, both SPLAT and FLOSS
correctly segment it. But what caused the change? If we saw non-linear structure
in the blocks off the diagonal, we could attribute the regime change to a change of
heart rate, but this is not the case here.

However, there is an interesting clue as shown in Fig. 22 bottom. There is a slight
reduction in the degree of conservation of heartbeats, that happens about once
every eight beats. The reader will appreciate that the ratio of typical respiration rate
to heartbeat rate is about eight-to-one.

Normally we should not expect respiration to effect SPO2. However, if the peri-
cardium, a sac-like structure surrounding the heart, is damaged during surgery, it
can fill with fluid and then deep breaths can cause pressure on the heart (this is
called Cardiac tamponade) and reduce its efficiency in producing oxygenated blood.
According to Dr. Greg Mason (Clinical Professor of Medicine, David Geffen School
of Medicine at UCLA) this is exactly what we are seeing here.

18000

Fig. 22 Top) The PulsusParadoxusSP02 segmentation problem is very subtle. Bottom.left) A zoom-in of the
Mplot close to the regime change revels a break in the diagonal streak. Bottom.right) A zoom-out indicate
that these breaks happen once in every eight beats

Page 31 of 33Shahcheraghi et al. Journal of Big Data (2024) 11:96

Speed and scalability

In Fig. 23left we evaluate the time needed for SPLAT for increasingly long time series
(n) when the subsequence length (m) is set to 100. Then, in Fig. 23right we hold the
length of the time series to a fixed 16,000, and test the effect of increasingly large val-
ues of m.

The reader will observe that we can compute a million length time series in about
9.5 h using PiecewiseSPLAT. This is extremely fast given that the brute-force algo-
rithm would take 5.4 years.

We can further accelerate our algorithm by leveraging the hardware. To test this, we
ported SPLAT to GPUs. As the results in Table 8 show we can process a time series of
length one million in just 6.3 s. We refer the reader to visit [31] for more results and
the GPU code.

In a just published paper the authors introduce PyRQA, “a software package that
efficiently conducts recurrence quantification analysis… leveraging the computing
capabilities of a variety of parallel hardware architectures” [30]. They also consider
a dataset of size 1 M, finding it took 68.94 s to process. This is an order of magni-
tude slower than the time we required. Moreover, our results in Table 8 used a sin-
gle Nvidia P100 GPU, whereas [30] use four, much faster NVIDIA GeForce GTX
690 GPUs. The two software packages are not identical in features, nevertheless, this
comparison does hint at the efficiency of our proposed algorithms.

Conclusions
We introduced SPLAT, an algorithm that allows us to construct Mplots that are orders
of magnitude larger than those that are typically computed. We have shown that such
Mplots can be used for tasks in domains as diverse as astronomy, medicine, entomol-
ogy, and biodiversity monitoring. Our proposed algorithms are so scalable that for the

Fig. 23 SPLAT execution time vs. brute-force algorithm—note that both the left figure’s axis are in log scale

Table 8 Pooled Mplot timing results (in seconds) on 1 × Nvidia GPU P100

Time series length Mplot 100 × 100 Mplot 1k × 1k Mplot 4k × 4k Mplot 8k × 8k

128k 0.20 0.21 0.26 0.46

256k 0.49 0.47 0.55 0.73

512k 1.58 1.57 1.64 1.84

1M 6.01 5.99 6.05 6.27

Page 32 of 33Shahcheraghi et al. Journal of Big Data (2024) 11:96

first time, space and time complexity are no longer bottlenecks, but human attention
is. Therefore, we further show that our ideas can support patchwise search of massive
Mplots, to find a handful of patches that are worth bringing to the attention of a user.

We have made all code and data freely available to allow the community to confirm
our results and build upon our ideas.
Acknowledgements
We thank all the donors of datasets, and the domain experts that provided context and interpretation of the patterns
discovered.

Author contributions
M.S: Writing, Implementation, Experiment Design. R.M. Bioinformatics Experiment Design. J.R. Segmentation Experiment
Design. A.D. Creation of Accompanying Videos. Z.Z Porting Algorithms to GPU. K.M: Entomology Experiment Design. E.K:
Funding, Editing.

Funding
We gratefully acknowledge funding from Accenture, Mitsubishi Labs and NSF Award 2103976.

Data availability
To ensure that our experiments are reproducible, we have built a website [31] that contains all the data/code used in this
work. Shahcheraghi [32].

Declarations

Competing interests
The authors of this paper declare that they have no conflict of interest.

Received: 23 November 2023 Accepted: 2 July 2024

References
 1. Afonso LCS, Rosa GH, Pereira CR, et al. A recurrence plot-based approach for Parkinson’s disease identification.

Future Gen Comput Syst. 2019;94:282–92. https:// doi. org/ 10. 1016/j. future. 2018. 11. 054.
 2. Alaee S, Mercer R, Kamgar K, Keogh E. Time series motifs discovery under DTW allows more robust discovery of

conserved structure. Data Min Knowl Discov. 2021;35:1–48. https:// doi. org/ 10. 1007/ s10618- 021- 00740-0.
 3. Almeida-Ñauñay AF, Benito RM, Quemada M, et al. Recurrence plots for quantifying the vegetation indices dynamics

in a semi-arid grassland. Geoderma. 2022;406: 115488. https:// doi. org/ 10. 1016/j. geode rma. 2021. 115488.
 4. Bonani JP, Fereres A, Garzo E, et al. Characterization of electrical penetration graphs of the Asian citrus psyllid,

Diaphorina citri, in sweet orange seedlings. Entomol Exp Appl. 2009;134:35–49. https:// doi. org/ 10. 1111/j. 1570- 7458.
2009. 00937.x.

 5. Chesnais Q, Mauck KE. Choice of tethering material influences the magnitude and significance of treatment
effects in whitefly electrical penetration graph recordings. J Insect Behav. 2018;31:656–71. https:// doi. org/ 10. 1007/
s10905- 018- 9705-x.

 6. Duda RO, Hart PE. Use of the Hough transformation to detect lines and curves in pictures. Commun ACM.
1972;15:11–5. https:// doi. org/ 10. 1145/ 361237. 361242.

 7. Eckmann J-P, Kamphorst SO, Ruelle D. Recurrence plots of dynamical systems. Europhys Lett (EPL). 1987;4:973–7.
https:// doi. org/ 10. 1209/ 0295- 5075/4/ 9/ 004.

 8. Fang Y, Xu H, Jiang J. A survey of time series data visualization research. IOP Conf Ser Mater Sci Eng. 2020;782:22013.
https:// doi. org/ 10. 1088/ 1757- 899x/ 782/2/ 022013.

 9. Foote J, Cooper M. Media segmentation using self-similarity decomposition. Proceedings of SPIE—The International
Society for Optical Engineering. 2022; 5021. https:// doi. org/ 10. 1117/ 12. 476302.

 10. Fukino M, Hirata Y, Aihara K. Coarse-graining time series data: recurrence plot of recurrence plots and its application
for music. Chaos Interdiscip J Nonlinear Sci. 2016;26:23116. https:// doi. org/ 10. 1063/1. 49413 71.

 11. George J, Kanissery R, Ammar E-D, et al. Feeding behavior of asian Citrus Psyllid [Diaphorina citri (Hemiptera: Livii-
dae)] nymphs and adults on common weeds occurring in cultivated citrus described using electrical penetration
graph recordings. Insects. 2020. https:// doi. org/ 10. 3390/ insec ts110 10048.

 12. Gharghabi S, Ding Y, Yeh C-CM, et al. Matrix profile VIII: domain agnostic online semantic segmentation at superhu-
man performance levels. 2017; pp 117–126.

 13. Gibbs AJ, Gibbs AJ, McIntyre GA. The diagram, a method for comparing sequences: its use with amino acid and
nucleotide sequences. Eur J Biochem. 1970;16:1–11. https:// doi. org/ 10. 1111/j. 1432- 1033. 1970. tb010 46.x.

 14. Green RE, Malaspinas A-S, Krause J, et al. A complete neandertal mitochondrial genome sequence determined by
high-throughput sequencing. Cell. 2008;134:416–26.

 15. Hundman K et al. Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding. In: Pro-
ceedings 24th ACM SIGKDD Intl. Conf. Knowledge Discovery and Data Mining, 2018; pp. 387–395.

https://doi.org/10.1016/j.future.2018.11.054
https://doi.org/10.1007/s10618-021-00740-0
https://doi.org/10.1016/j.geoderma.2021.115488
https://doi.org/10.1111/j.1570-7458.2009.00937.x
https://doi.org/10.1111/j.1570-7458.2009.00937.x
https://doi.org/10.1007/s10905-018-9705-x
https://doi.org/10.1007/s10905-018-9705-x
https://doi.org/10.1145/361237.361242
https://doi.org/10.1209/0295-5075/4/9/004
https://doi.org/10.1088/1757-899x/782/2/022013
https://doi.org/10.1117/12.476302
https://doi.org/10.1063/1.4941371
https://doi.org/10.3390/insects11010048
https://doi.org/10.1111/j.1432-1033.1970.tb01046.x

Page 33 of 33Shahcheraghi et al. Journal of Big Data (2024) 11:96

 16. Imamura M, Nakamura T, Keogh E. Matrix profile XXI: a geometric approach to time series chains improves robust-
ness. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
Association for Computing Machinery, New York, NY, USA; 2020, pp 1114–1122.

 17. Keogh E, Chakrabarti K, Pazzani M, Mehrotra S. Dimensionality reduction for fast similarity search in large time series
databases. Knowl Inf Syst. 2001;3:263–86. https:// doi. org/ 10. 1007/ PL000 11669.

 18. Lin J, Keogh E, Lonardi S, et al. VizTree: a tool for visually mining and monitoring massive time series databases. In:
Proceedings of international conference on very large data bases. 2004; pp 1269–1272.

 19. Lopes MA, Zhang J, Krzemiński D, et al. Recurrence quantification analysis of dynamic brain networks. Eur J Neurosci.
2021;53:1040–59. https:// doi. org/ 10. 1111/ ejn. 14960.

 20. Malige F, Djokić D, Patris J, et al. Use of recurrence plots for identification and extraction of patterns in humpback
whale song recordings. Bioacoustics. 2020. https:// doi. org/ 10. 1080/ 09524 622. 2020. 18452 40.

 21. Marimon X, Traserra S, Jiménez M, et al. Detection of abnormal cardiac response patterns in cardiac tissue using
deep learning. Mathematics. 2022. https:// doi. org/ 10. 3390/ math1 01527 86.

 22. Marwan N, Carmen Romano M, Thiel M, Kurths J. Recurrence plots for the analysis of complex systems. Phys Rep.
2007;438:237–329. https:// doi. org/ 10. 1016/j. physr ep. 2006. 11. 001.

 23. Mercer R, Alaee S, Abdoli A, et al. Matrix profile XXIII: contrast profile: a novel time series primitive that allows real
world classification. In: 2021 IEEE International Conference on Data Mining (ICDM). 2021, pp 1240–1245.

 24. Mercer R, Keogh E. Matrix profile XXV: introducing novelets: a primitive that allows online detection of emerging
behaviors in time series. In: 2022 IEEE International Conference on Data Mining (ICDM). 2022, pp 338–347.

 25. Mueen A, Zhu Y, Yeh M, et al. The fastest similarity search algorithm for time series subsequences under Euclidean
distance. In: http:// www. cs. unm. edu/ ~mueen/ Faste stSim ilari tySea rch. html. 2017.

 26. Nalam V, Louis J, Patel M, Shah J. Arabidopsis-green peach aphid interaction: rearing the insect, no-choice and
fecundity assays, and electrical penetration graph technique to study insect feeding behavior. Bio Protoc. 2018.
https:// doi. org/ 10. 21769/ BioPr otoc. 2950.

 27. Phillipson RA. Complex long-term variability of X-ray binaries and active galaxies revealed by novel methods. In:
American Astronomical Society Meeting Abstracts #236. 2020;p 122.02.

 28. Rakthanmanon T, Campana B, Mueen A, et al. Addressing big data time series: mining trillions of time series subse-
quences under dynamic time warping. In: ACM Transactions on Knowledge Discovery from Data (TKDD). 2013.

 29. Ratcliffe JM, Elemans CPH, Jakobsen L, Surlykke A. How the bat got its buzz. Biol Lett. 2013. https:// doi. org/ 10. 1098/
rsbl. 2012. 1031.

 30. Rawald T, Sips M, Marwan N. PyRQA—Conducting recurrence quantification analysis on very long time series
efficiently. Comput Geosci. 2017;104:101–8. https:// doi. org/ 10. 1016/j. cageo. 2016. 11. 016.

 31. Shahcheraghi M. mplot. 2022. https:// sites. google. com/ view/ mplot/. Accessed 6 Mar 2023.
 32. Shahcheraghi M, Mercer R, Rodrigues JDA, et al. Matrix profile XXVI: Mplots: scaling time series similarity matrices to

massive data. In: 2022 IEEE International Conference on Data Mining (ICDM). Los Alamitos, CA, USA: IEEE Computer
Society; 2022. p. 1179–84.

 33. Shneiderman B. The eyes have it: a task by data type taxonomy for information visualizations. In: Proceedings 1996
IEEE Symposium on Visual Languages. 1996; pp 336–343.

 34. Soloviev VN, Serdiuk O, Semerikov SO, Kiv AE. Recurrence plot-based analysis of financial-economic crashes. In:
M3E2-MLPEED. 2020.

 35. Tabak M, Murray K, Lombardi J, Bay K. Automated classification of bat echolocation call recordings with artificial
intelligence. 2021.

 36. Takakura I, Hoshi R, Santos M, et al. Recurrence plots: a new tool for quantification of cardiac autonomic nervous
system recovery after transplant. Braz J Cardiovasc Surg. 2017. https:// doi. org/ 10. 21470/ 1678- 9741- 2016- 0035.

 37. Webber CL, Zbilut JP. Dynamical assessment of physiological systems and states using recurrence plot strategies. J
Appl Physiol. 1994;76:965–73. https:// doi. org/ 10. 1152/ jappl. 1994. 76.2. 965.

 38. Willett D, George J, Willett N, et al. Machine learning for characterization of insect vector feeding. PLoS Comput Biol.
2016;12: e1005158. https:// doi. org/ 10. 1371/ journ al. pcbi. 10051 58.

 39. Yankov D, Keogh E, Medina J, et al. Detecting time series motifs under uniform scaling. In: Proceedings of the ACM
SIGKDD international conference on knowledge discovery and data mining. 2007; pp 844–853.

 40. Yeh C-CM, Zhu Y, Ulanova L, et al. Matrix profile I: all pairs similarity joins for time series: a unifying view that includes
motifs, discords and shapelets. 2016; pp 1317–1322.

 41. Zhang Y, Hou Y, OuYang K, Zhou S. Multi-scale signed recurrence plot based time series classification using incep-
tion architectural networks. Pattern Recogn. 2022;123: 108385. https:// doi. org/ 10. 1016/j. patcog. 2021. 108385.

 42. Zhu X-C, Zhao D-H, Zhang Y-H, et al. Multi-scale recurrence quantification measurements for voice disorder detec-
tion. Appl Sci. 2022. https:// doi. org/ 10. 3390/ app12 189196.

 43. Zhu Y, Zimmerman Z, Senobari NS, et al. Matrix profile II: exploiting a novel algorithm and GPUs to break the one
hundred million barrier for time series motifs and joins. In: 2016 IEEE 16th International Conference on Data Mining
(ICDM). 2016; pp 739–748.

 44. Zilberstein S. Optimizing decision quality with contract algorithms. In: Proceedings of the 14th International Joint
Conference on Artificial Intelligence—Volume 2. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA; 1995. pp
1576–1582.

 45. Zimmerman Z, Kamgar K, Senobari NS, et al. Matrix profile XIV: scaling time series motif discovery with GPUs to
break a quintillion pairwise comparisons a day and beyond. In: Proceedings of the ACM Symposium on Cloud
Computing. Association for Computing Machinery, New York, NY, USA; 2019. pp 74–86.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/PL00011669
https://doi.org/10.1111/ejn.14960
https://doi.org/10.1080/09524622.2020.1845240
https://doi.org/10.3390/math10152786
https://doi.org/10.1016/j.physrep.2006.11.001
http://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html
https://doi.org/10.21769/BioProtoc.2950
https://doi.org/10.1098/rsbl.2012.1031
https://doi.org/10.1098/rsbl.2012.1031
https://doi.org/10.1016/j.cageo.2016.11.016
https://sites.google.com/view/mplot/
https://doi.org/10.21470/1678-9741-2016-0035
https://doi.org/10.1152/jappl.1994.76.2.965
https://doi.org/10.1371/journal.pcbi.1005158
https://doi.org/10.1016/j.patcog.2021.108385
https://doi.org/10.3390/app12189196

	Introducing Mplots: scaling time series recurrence plots to massive datasets
	Abstract
	Introduction
	Definitions and notation
	Related work
	Algorithms that scale up Mplots
	Removing the CPU bottleneck
	Removing the memory bottleneck
	Removing the human visual attention bottleneck
	Parameter-free Mplots: 3D Mplots, Mplot movies and multifocal Mplots
	Pooling SPLAT

	Interpreting Mplots
	Interpreting Mplots: reverse engineered
	Experimental evaluation
	Hunting for exoplanets
	Mplot filtering
	Finding rescaled motifs using PiecewiseSPLAT
	Hunting for Chiroptera with PiecewiseSPLAT
	Searching massive Mplots
	Using Mplot as anomaly detectors
	Mplot based segmentation
	Speed and scalability

	Conclusions
	Acknowledgements
	References

