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Behavioral/Cognitive

Dissociable Neural Systems Support the Learning and
Transfer of Hierarchical Control Structure

Adam Eichenbaum, Jason M. Scimeca, and Mark D’Esposito
Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720

Humans can draw insight from previous experiences to quickly adapt to novel environments that share a common underlying
structure. Here we combine functional imaging and computational modeling to identify the neural systems that support the
discovery and transfer of hierarchical task structure. Human subjects (male and female) completed multiple blocks of a rein-
forcement learning task that contained a global hierarchical structure governing stimulus–response action mapping. First, be-
havioral and computational evidence showed that humans successfully discover and transfer the hierarchical rule structure
embedded within the task. Next, analysis of fMRI BOLD data revealed activity across a frontoparietal network that was spe-
cifically associated with the discovery of this embedded structure. Finally, activity throughout a cingulo-opercular network
supported the transfer and implementation of this discovered structure. Together, these results reveal a division of labor in
which dissociable neural systems support the learning and transfer of abstract control structures.

Key words: fMRI; hierarchy; learning; learning to learn; reinforcement learning; transfer

Significance Statement

A fundamental and defining feature of human behavior is the ability to generalize knowledge from the past to support future
action. Although the neural circuits underlying more direct forms of learning have been well established over the last century,
we still lack a solid framework from which to investigate more abstract, higher-order human learning and knowledge general-
ization. We designed a novel behavioral paradigm to specifically isolate a learning process in which previous knowledge,
rather than directly indicating the correct action, instead guides the search for the correct action. Moreover, we identify that
this learning process is achieved via the coordinated and temporally specific activity of two prominent cognitive control brain
networks.

Introduction
Whether it is learning how to drive a new car or interacting with
an unfamiliar social group, humans show remarkable adaptability
inferring the correct action given minimal information. Such learn-
ing usually occurs via trial and error where feedback works to guide
future behavior. These problem-solving approaches are routinely
accelerated by generalizing previous knowledge (Woodworth and
Thorndike, 1901). When simple stimulus–response mappings are
learned in experimental settings, responses learned in one context
can be directly transferred to a subsequent context, leading to an
immediately observable benefit (Behrens et al., 2007; Collins et al.,
2014; Collins and Frank, 2016). Although humans can encounter

scenarios such as these (e.g., opening computer applications on a
Windows vs Apple operating system), humans also encounter set-
tings where this approach leads to failure (e.g., starting computer
programs onWindows/Apple vs Linux). In these cases, it is advan-
tageous to instead leverage prior knowledge to guide the learning
of the correct behavior, a process known as “learning to learn”
(Harlow, 1949; Kemp et al., 2010; Bavelier et al., 2012; Botvinick et
al., 2019). While the behavioral and neurobiological underpinnings
of more direct types of transfer have been relatively well character-
ized (Collins et al., 2014; Collins and Frank, 2016), the neural sys-
tems and mechanisms underlying this more abstract form of
transfer remain poorly understood.

Everyday experiences are often structured hierarchically
where actions and experiences are influenced by superordinate
contexts and rules. For example, when traveling away from
home it is common to pack a bag with clothes and overnight
necessities. However, the rule that restricts packing small-volume
liquids is only relevant in certain contexts: when traveling by air-
plane, not by car. By grouping these sets of behaviors and experi-
ences hierarchically, one is able to easily generalize rules from
one context to another, and even to contexts that have not yet
been personally experienced. One way in which learned
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hierarchical structures may be generalized to novel contexts is
the creation of task sets or task structures that span across related
contexts regardless of low-level features (Collins and Frank,
2013).

Although the combination of task sets and hierarchical proc-
essing provides a natural candidate solution for how learned
hierarchical structure is generalized, the neural basis of these
cognitive processes has typically been studied in isolation.
Growing neurobiological and computational evidence suggests
that the frontal cortex facilitates hierarchically structured behav-
ior (Koechlin et al., 2003; Badre and D’Esposito, 2007; Badre et
al., 2010; Frank and Badre, 2012; Collins and Frank, 2013; Nee
and D’Esposito, 2016; Wang et al., 2018). Specifically, left lateral
frontal cortex is organized along a rostrocaudal gradient wherein
more rostral regions support the learning and execution of
increasingly higher-order hierarchically structured rules. It
remains undetermined whether these regions, likely those more
rostrally, additionally support the transfer of learned structure
(Badre and Nee, 2018). In addition, the processing of task sets

has generally been related to activity in frontal cortex, as well as
to a distributed “cingulo-opercular” (CO) network of regions
(Dosenbach et al., 2008; Sakai, 2008). As generalization of hier-
archical knowledge involves the integration of information
across multiple sources, it is likely that a network of regions
spanning beyond frontal cortex will be involved.

To investigate the discovery and transfer of abstract hierarchi-
cal structure, we designed a hierarchical reinforcement learning
task that promotes the creation and transfer of a superordinate
structure (Fig. 1). Critically, although each block contained
entirely new stimulus features, a global second-order hierarchical
rule remained. Therefore, successful performance of a previous
block conveyed no immediate advantage on subsequent blocks.
However, knowledge of the correct hierarchical structure instead
facilitated a more rapid learning of the correct response mappings.
We leveraged converging computational modeling approaches to
confirm (1) when subjects first discovered the global hierarchical
structure, and (2) that rapid learning occurred thereafter, indicat-
ing transfer of learned structure. Last, we used fMRI to investigate

Figure 1. Schematic depiction of experimental logic and trial sequence. A, Schematic of task design showing example stimulus-to-action mappings. Subjects completed five blocks in total
throughout the experiment. The stimuli in each block varied along the following three dimensions: shape, color, and texture. Each block contained two stimulus features for each dimension
(e.g., two shapes) and the specific features changed for each block. The first block contained a flat policy structure such that the mapping between stimuli and actions (e.g., A1, A2) was ran-
domly assigned. The remaining four blocks all shared the same global second-order policy structure: the shape of the stimulus indicated whether first-order rules were determined by color or
texture on the current trial. In the example shown for hierarchical block 1, a circular stimulus indicated that color determined the correct action (i.e., green pairs with A1, orange pairs with
A2). Hierarchical blocks included an irrelevant fourth dimension (stimulus position on screen) that is not shown here. B, Schematic of trial design. Trials began with stimulus presentation, after
which subjects had up to 2 s to respond by pressing one of four buttons mapped to their right index, middle, ring, and pinky fingers. Subjects then indicated their confidence in their answer
by positioning a black bar along the screen in a one-shot manner. Subjects received auditory and visual feedback following a jittered interstimulus interval.
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the left lateral frontal regions along the predefined rostrocaudal
gradient, as well as broader neural systems, that support these two
processes.

Materials and Methods
Human subject details
Thirty-two healthy right-handed subjects (age range, 18–29 years;
mean= 19.63; SD= 2.54; 20 females) with normal or corrected-to-nor-
mal vision participated in the study at the University of California,
Berkeley. Target sample size was based on prior relevant literature
(Badre et al., 2010; Collins and Frank, 2016; Nee and D’Esposito, 2016).
Eight subjects were excluded from all behavioral analyses (four subjects
failed to complete the entire session, two subjects did not follow the
instructions, and two subjects exhibited subthreshold behavioral per-
formance; no above-chance performance in any hierarchical block [i.e.,
state-space model outcomes of the distribution around the probability to
produce a correct response always included the chance-level perform-
ance value)]. Five additional subjects were excluded from all fMRI analy-
ses [one subject because of above-threshold in-scanner motion (.2.5
mm in X, Y, or Z across all blocks), one subject for atypical anatomic
data, and three subjects because of scanner image reconstruction
failure].

All behavioral analyses presented here include data from the 24 sub-
jects for whom we obtained a complete behavioral dataset (age range,
18–24 years; mean= 19.25; SD=1.75; 16 females). All fMRI analyses pre-
sented here include data from the 19 subjects for whom we obtained a
complete behavioral and fMRI dataset (age range, 18–24 years; mean=
19.26; SD=1.88; 13 females). Behavioral analyses restricted to these 19
subjects show the same results as the 24-subject group. All research pro-
tocols were approved by the Committee for Protection of Human
Subjects at the University of California, Berkeley. Informed and written
consent was obtained from all subjects before participation.

Experimental design and statistical analyses
Task design. In the current experiment, we designed a reinforcement
learning task (inspired by Badre et al., 2010) that required learning mul-
tiple distinct second-order hierarchical rules (hereafter referred to as sec-
ond-order policy) that shared a global hierarchical policy structure
(hierarchical blocks). Specifically, a second-order hierarchical policy
determined that the shape of the stimulus cued first-order rules defined
by other stimulus dimensions (e.g., if the stimulus is a square, perform
action 1 for red squares, and action 2 for blue squares; however, if the
stimulus is a circle, perform action 3 for striped circles, and action 4 for
checkered circles, regardless of other stimulus features). Thus, subjects
who learn the block-specific hierarchical policy in successive blocks can
discover the existence of the global hierarchical structure. By transferring
their knowledge of the global hierarchical structure to subsequent blocks,
subjects can more rapidly learn the block-specific hierarchical policy.

Subjects completed one block containing a rule set in which there
was no higher-order structure [flat block (Flat)] and four hierarchical
blocks (Hiers) while inside the scanner (Fig. 1). Subjects viewed stimuli
that varied along three or four dimensions, as follows: shape, color,
black-and-white image pattern (referred to as “texture”), and stimulus
position on the screen (hierarchical blocks only; Fig. 1A). For each block,
stimulus dimensions could vary between two features (e.g., color: red/
blue; shape: square/circle), resulting in 8 unique stimuli in the flat block
and 16 unique stimuli in each hierarchical block. All blocks contained
unique features, and thus subjects had to learn entirely new stimulus–
response mappings for each block. We assigned stimulus features to
blocks by random assignment.

Stimuli. Stimuli were generated using PsychoPy (Peirce, 2007, 2008).
Colors included red, green, blue, yellow, magenta, cyan, white, maroon,
black, and orange. Shapes included a circle, square, rectangle, triangle,
pentagon, rhombus, trapezoid, six-sided star, oval, and tear drop.
Texture images were sourced from the Normalized Brodatz Texture
Database (Abdelmounaime and Dong-Chen, 2013). These images
included close-up photographs of various real-world textures, such as
tree rings, sand dunes, snakeskin, and bubbles. Subjects did not report

difficulty in discriminating between textures (Fig. 1A). The stimuli gen-
erally subtended;7.5° of visual angle. The stimulus position in the hier-
archical blocks was computed along an invisible circle positioned at the
center of the screen with a radius subtending ;7.5° of visual angle. The
eight locations along this circle began at 27.5° clockwise from the vertical
meridian and were equally spaced by 45° increments.

Flat block. The flat block consisted of 20 repetitions of each stimulus
for a total of 160 trials. Stimulus order was randomized within each set
of eight trials so as to restrict the range of the number of trials between
stimulus repetitions. On average, each stimulus was viewed once every
eight trials, ranging from 0 to 15. Before the start of the block, subjects
had the opportunity to view all eight stimuli created for the upcoming
block. All stimuli were presented on screen in a 2� 4 array and
remained on screen until the subject chose to proceed. No additional
instructions were provided regarding the viewing of the stimuli.

Trials began with the presentation of the stimulus slightly offset left of
the center of the screen for a maximum (max) of 2000 ms (Fig. 1B).
Stimulus composition included a black-and-white image cropped into a
specific shape with a colored border. Subjects were instructed to respond
to the presentation of the stimulus by pressing one of four buttons
mapped to their right index, middle, ring, and pinky fingers. Responding
within 2000 ms advanced the trial to the confidence response phase. This
phase began with the appearance of a vertical rectangle offset right of cen-
ter, with a horizontal black bar appearing either on the bottom or top of
the rectangle. To indicate their confidence that their most recent response
to the stimulus was correct, subjects had 1500 ms to re-press and hold
down the button they had just pressed. By re-pressing the button, the
black bar began to move away from its starting position at a constant rate
until it reached the other side of the rectangle, a process that lasted up to
1250 ms. Regardless of the starting position of the bar, the top of the rec-
tangle indicated 100% confidence in their answer being correct, while the
bottom of the rectangle indicated 0%. Subjects were instructed to be as
precise as possible with their confidence rating. Following the release of
the held-down button, or after 1250 ms, both the stimulus and confidence
probe disappeared from the screen. Following a pseudorandom intersti-
mulus interval (200, 1200, or 2200 ms), subjects received audiovisual feed-
back. Correct feedback involved the presentation of the word “Correct”
and “$$$$$” stacked vertically in the center of the screen, as well as a
pleasant tone. Incorrect feedback contained the word “Incorrect” and an
unpleasant tone. The feedback stimulus persisted for 333ms. Feedback
was 100% valid. Following feedback, a fixation cross was displayed for the
remainder of the trial duration (5283, 6283, or 7283 ms, depending on the
duration of the interstimulus interval on that trial). The next trial then
began after a variable intertrial interval (ITI) with a mean of 1500 ms
(range, 500–4500 ms). The order of ITIs within a block was optimized to
permit estimation of the event-related response using optseq2 (Dale,
1999).

We assigned two stimuli to each response option so that each button
had a 25% chance of being correct on any given trial. Stimulus–response
mappings were independent from one another, such that no higher-
order structure was present, thus requiring each response to be learned
individually. Following the final trial, mean block accuracy was pre-
sented on screen.

Hierarchical block. We designed the hierarchical blocks identically to
the flat block with the following exceptions. (1) Stimuli now included a
fourth dimension: position on screen. In each of the four hierarchical
blocks, the stimulus could appear in one of two locations on screen.
These locations were semirandomly selected from eight possible equidis-
tant positions along an invisible aperture around the center of the screen.
We assigned the positions in each block in pairs, such that each pair was
offset in both the x-axis and y-axis so as to create as large a separation
and difference as possible. Position was not included in the flat block as
pilot testing indicated subjects were unable to learn above chance 16 in-
dependent stimuli across four button responses in an appropriate
amount of time. (2) The number of stimulus repetitions decreased from
20 to 6, resulting in a decrease in the number of total trials from 160 to
96 per block. (3) Given the new position dimension, the confidence
probe was moved to the center of the screen so as not to interfere with
the stimulus. (4) The position-on-screen dimension was not included in
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the preblock stimulus presentation screen in which all eight stimuli were
shown.

Last, and most critically, all hierarchical blocks contained a second-
order policy relationship that subjects could discover and transfer across
blocks so as to facilitate their learning, instead of learning 16 independ-
ent stimulus–response mappings. Specifically, the shape dimension cued
first-order rules dependent on either the colors or textures and, as a
result, screen position was irrelevant. By learning and exploiting this
structure, the number of rules to be learned decreased to four (i.e., two
rules for color, two rules for texture). The same second-order policy rela-
tionship was maintained across blocks, in that the shape dimension
(shape) always cued rules based on either color or texture dimensions.

Instructions and training protocol. Before performing the task inside
the MRI scanner, all subjects completed a training session on a desktop
computer to make sure they understood the task and could perform it
adequately. After obtaining experimental consent, and confirming both
study and MRI scanner eligibility, subjects reviewed the instructions of
the task. Along with visual aids on the computer, the experimenter
described the task such that subjects knew they had to learn stimulus–
response mappings across multiple task blocks; however, no information
was provided that could cue subjects to the hierarchical structure of the
task. Subjects then practiced the confidence-reporting component of the
task in a guided environment using stimuli not present in the real experi-
ment. Subjects received guided instructions indicating which button to
press and how confident they should report feeling for each practice
trial. Instructed confidence levels included 0, 15, 35, 50, 65, 85, and
100%. Subjects needed to place the confidence bar at the appropriate
location along the vertical rectangle to match the instructed confidence
level across 21 practice trials (three repetitions of each level). A 93% ac-
curacy criterion was required to progress. Subjects had to repeat the 21-
trial practice block until they met the criterion. The timing of all events
matched that of the real experiment.

Following completion of the confidence reporting practice, subjects
then performed 24 practice trials of a flat block, using the same stimuli
as before. Just as in the real task, subjects had to learn eight independent
stimulus response mappings across four buttons using the feedback pro-
vided at the end of each trial. No performance criterion was included, as
the goal of this practice session was to familiarize subjects with the com-
ponents of the task in real time.

Upon completion of the practice session, subjects were then escorted
to the MRI scanner suite and placed inside the scanner. During the ac-
quisition of an anatomic scan (details below), subjects went through the
practice instructions and confidence-reporting session again so as to
both become accustomed the MRI-compatible four-button response box
and to being inside the active scanner. Subjects received compensation
at a rate of $20/h and could earn a bonus of up to $10 based on their
overall trial accuracy.

Statistical analyses of behavioral data. Analyses of behavioral data
included the use of paired t tests with one exception. When analyzing
the number of learned second-order rules across blocks, we used
Wilcoxon sign-ranked tests because of the nonparametric nature of the
data (i.e., subjects could learn either zero, one, or two second-order rules
per block) and the within-subjects design of the study. In addition, the
stimulus dimension of position-on-screen was fully ignored in all analy-
ses of the data.

Statistical analyses of fMRI data. Whole-brain analyses were per-
formed in SPM (Statistical Parametric Mapping; www.fil.ion.ucl.ac.uk/
spm), and cluster correction was performed at the familywise error rate
of p=0.05, using p=0.001 as the cluster defining threshold. Correlations
between fMRI data and behavioral data were performed using standard
parametric linear regression, as well as nonparametric rank-ordered
regression to better control for potential outliers in the dataset. Results
for each assessment are presented in tandem throughout the article.

fMRI data acquisition
Whole-brain imaging was performed at the Henry H. Wheeler Jr. Brain
Imaging Center at the University of California, Berkeley, using a
Siemens 3 T Trio MRI scanner using a 32-channel head coil. Functional
imaging data were acquired with a gradient echo echoplanar pulse

sequence using a multiband acceleration factor of 4 (TR=1000 ms;
TE= 33 ms; flip angle = 40°; array = 84� 84; 52 slices; voxel size = 2.5
mm isotropic). T1-weighted (T1w) MP-RAGE anatomic images were
collected as well (TR=2300 ms; TE=2.98ms; flip angle = 9°; array =
256� 256; 160 slices; voxel size = 1 mm isotropic). The subject’s head
movement was restricted using foam padding. Auditory feedback was
presented through in-ear headphones connected to the stimulus presen-
tation computer. The flat block consisted of a single run of 1290 TRs,
while each hierarchical block consisted of 760 TRs.

fMRI data preprocessing
Preprocessing was performed using FMRIPREP version 1.0.2 (Esteban et al.,
2018), a Nipype-based tool (Gorgolewski et al., 2011). Each T1w volume was
corrected for intensity nonuniformity using N4BiasFieldCorrection version
2.1.0 (Tustison et al., 2010) and skull stripped using ANTs BrainExtraction.
Spatial normalization to the ICBM 152 Nonlinear Asymmetrical template
version 2009c was performed through nonlinear registration with the
antsRegistration tool of ANTs version 2.1.0 (Avants et al., 2008), using
brain-extracted versions of both T1w volume and template. Brain tissue seg-
mentation of CSF, white matter, and gray matter was performed on the
brain-extracted T1w using FSL fast (Zhang et al., 2001). Functional data
were motion corrected using FSL mcflirt (Jenkinson et al., 2002). This was
followed by coregistration to the corresponding T1w using boundary-based
registration (Greve and Fischl, 2009) with 9 df, using flirt (FSL). Motion-cor-
recting transformations, BOLD-to-T1w transformation, and T1w-to-tem-
plate (MNI) warp were concatenated and applied in a single step using
ANTs ApplyTransforms using Lanczos interpolation. Slice-timing correction
was not performed. Preprocessed data were spatially smoothed with an 8
mm FWHM isotropic Gaussian kernel. Motion estimates used for subject
exclusion were calculated using the SPM realign function.

Computational modeling: state-space model
Trial responses were modeled with a state-space modeling approach
(Smith et al., 2004) to produce learning curves. The model outputs trial-
by-trial estimates of the probability of a correct response on each trial, as
well as a 90% confidence interval around each estimate. Similar to the
study by Badre et al. (2010), our analyses focused on the following met-
rics derived from the learning curve: (1) the trial for which the 90% con-
fidence interval no longer included chance performance, referred to as
the “learning trial”; (2) the maximal first derivative of the learning curve,
which indexes the rate of learning; and (3) the maximal second deriva-
tive, which indexes the rate of change in one’s learning rate.

Computational modeling: mixture of experts model
We make use of a hybrid Bayesian-reinforcement learning mixture of
experts (MoE) model previously used by Frank and Badre (2012) to esti-
mate subjects’ attention to various hypothesis states that we assume are
being tested while subjects perform the task. Given the observed stimuli
and responses, the MoE model estimates individual subjects’ attention to
likely hypotheses about the relationship between context (i.e., the fea-
tures of the stimulus) and action (i.e., the available button responses) in
each task block. Each expert in the model represents a prediction about
how a stimulus feature, or a combination of features, relates to the likeli-
hood of obtaining a reward given the motor actions available to the sub-
ject. For example, the “shape expert” could learn the likelihood of
obtaining a reward based only on the shape of the stimulus. For each trial,
the expert makes its prediction about what action is likely to be correct
given its assigned feature, and experts who contribute accurate predictions
are rewarded while experts providing unreliable predictions are not. For
hierarchical experts, the model makes predictions about subordinate stim-
ulus dimensions (i.e., color or texture) contingent on the identity of a
third, superordinate dimension (i.e., shape), such that weights assigned to
predictions about each subordinate dimension are dynamically gated
based on the feature of the superordinate dimension (e.g., circle vs square).
The MoE model also assigns attentional weights to experts that learn the
overall reliability of hierarchical versus flat predictions based on the reli-
ability of all the hierarchical and flat experts, respectively.

For the current study, we adapted the model to allow for individual
fits to each hierarchical expert. As the original version used a single
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hyperparameter across all three hierarchical experts, thus preventing the
ability to estimate different initial weights, we instead modeled each hier-
archical expert with a separate parameter. We also removed the decay
parameter originally used to model the degree to which the attentional
weights of the current block carried over into the next block. Instead, we
modeled a separate set of parameters for the various experts in each
block. By removing the decay parameter, and modeling each block inde-
pendently, we ensure that the model is incapable of being biased by the
previous block. As a result, any differences between blocks in the param-
eter values, as well as the computed attentional weights at the beginning
of the block, are the result of that data of the block alone.

Specifically, subjects’ beliefs about reward probability for each of the
four available response options (per expert) were modeled as a beta dis-
tribution and updated via Bayes’ rule. For example, the color expert was
updated by the following:

p u R;Cjr1::: rnÞ / pðr1::: rn u R;Cj Þp u R;Cð Þ;�

where u R;C reflects the parameters determining the belief distribution
about rewards given the presence of color C and the choice of response
R, with r1::: rn being the rewards seen so far when this specific R was
chosen. Next, the probability of selecting each response is calculated by
comparing the means m of their reward distributions using a softmax
function. For example, the probability of the color expert selecting Ri on
trial t was as follows:

pCRi tð Þ ¼
e
mC
Ri

tð Þ
k

P
je

mC
Rj

tð Þ
k

;

where k governs the choice stochasticity, with lower (higher) values
reflecting less (more) noise. The same computations were performed for
each expert e, including a shape expert and a texture expert, as well as all
two-way conjunctions, and finally the full three-way conjunction. The
model represents subjects’ beliefs about the reliability of each expert with
another beta distribution, and again uses Bayes’ rule to learn the proba-
bility that the expert is reliable. For example, the color expert is updated
as follows:

p u Cjr19 :::rn9Þ / pðr91 :::r9n u Cj Þp u Cð Þ;�

where r9 are the rewards indicating whether the expert contributed to
the outcome. Specifically, if Ri is the chosen action, rewards are delivered
as follows:

r ¼ r; ifmRi .mRj ; 8j 6¼ i
1� r; otherwise

:

�

Thus, experts were rewarded when a reward was received and that
expert assigned the highest probability to the chosen response. If, on the
other hand, the expert predicted one of the unselected options it would
not be rewarded (i.e., r=0). Moreover, if the chosen action was not cor-
rect and the expert assigned the largest probability to that action, then it
was not rewarded. However, it was rewarded if the outcome was not cor-
rect (i.e., it did not contribute to the incorrect action). We can assign an
attentional weight to each expert that reflects its history of contributing
to successful outcomes. To do so, we use another softmax function to
assign weights to each expert, relative to all other experts. For the color
expert, we can determine its weight with the following equation:

wC tð Þ ¼ e
mC tð Þ
z

P
Ee

mE tð Þ
z

;

where wC on trial t is the attentional weight, based on its expected
reward probability mC relative to all other experts. Last, z acts as a gain
parameter that discriminates between the separate experts (similar to the

k parameter in the action selection softmax). Thus, the probability of
selecting response Ri is the sum of the experts E in proportion to their
weight, as follows:

pfRi tð Þ ¼
X

E
wEp

E
Ri

tð Þ;

where p f refers to the probability of generating responses for a superor-
dinate “flat expert” (the combination of all subordinate experts so far
mentioned).

At this point, the model is incapable of detecting any hierarchical
structure that may be present in the task. To afford the model this ability,
we now discuss the inclusion of a set of “hierarchical experts.” These
experts learn about two of the stimulus dimensions contingent on the
identity of another, higher-order dimension. For example, the hierarchi-
cal texture expert hCSjT would learn reward probabilities for color and
shape separately for each texture option in T. This manner of learning is
accomplished by having two subordinate experts learn the reward proba-
bility for selecting a response for color C (shape S) given texture T, as
follows:

p u R;CjTjr1 :::rnÞ / pðr1 :::rn u R;CjTj Þpðu R;CjTÞ
�

p u R;SjTjr1 :::rnÞ / pðr1 :::rn u R;SjTj Þp u R;SjTð Þ:�

Credit assignment works as it did with the flat experts, but now
across the subordinate experts within the hierarchical expert framework.
For the hCSjT hierarchical texture expert, attentional weights are dynami-
cally assigned to the color or shape dependent on the texture, as follows:

wCjT tð Þ ¼ e
mCjT tð Þ

z

e
mCjT tð Þ

z 1e
mSjT tð Þ

z

;

where wCjTðtÞ is the attentional weight to the color expert relative to the
shape expert when texture T is present. The probability of selecting a
response, Ri, according to this hierarchical texture expert is the result of
mixing the subordinate experts on each trial:

p
hCSjT
Ri tð Þ ¼ wCjTp

CjT
Ri tð Þ1wSjTp

SjT
Ri tð Þ:

In addition to the texture expert, we also included a hierarchical
shape and hierarchical color expert. Similar to the overall flat expert, a
superordinate hierarchical expert assigned attention weights to the hier-
archical experts via the following:

phRi tð Þ ¼ wCSjTp
CSjT
Ri tð Þ1wCTjSp

CTjS
Ri tð Þ1wTSjCp

TSjC
Ri tð Þ:

Last, a second-level attentional selection step was included to arbi-
trate between the two overall experts (flat, hierarchical), as follows:

wH tð Þ ¼ e
mH tð Þ

j

e
mH tð Þ

j 1 e
mF tð Þ
j

;

where j determines the gain of the discrimination between the hierarch-
ical and flat expert. The ultimate response is then selected as follows:

pRi tð Þ ¼ wHp
H
Ri

tð Þ1wFp
F
Ri

tð Þ:

In total, the model included 11 free parameters to be estimated, with
each block being fit independently. Three of these consisted of the a-pa-
rameters from each one-way flat experts’ initial beta distribution (the
mean of which is represented by, in the example of the flat color expert,
mC). Another two came from the b -parameter of the beta distribution
for the two-way and three-way flat experts, where in the case of the three

6628 • J. Neurosci., August 19, 2020 • 40(34):6624–6637 Eichenbaum et al. · Learning and Transfer of Hierarchical Structure



two-way experts, the value acted as a hyperparameter over each expert.
Another three consisted of the b -parameter of the beta distribution for
each hierarchical expert. The last three included the noise/gain parame-
ters in each of the three softmax functions (i.e., action selection, atten-
tional weight assignment, and superordinate attention to hierarchy).

To obtain the best fit for the data, we first modeled all subjects to-
gether (pseudo-R2 = 0.25 and 0.12 for the mean hierarchical block and
flat block, respectively) to generate appropriate initial starting parameter
values to be used as our initialization point for the model when fitting
each subject individually (mean pseudo-R2 = 0.33 and 0.15 for the mean
hierarchical block and flat block, respectively). Model fitting occurred
via maximum likelihood estimation. These pseudo-R2 values are similar
to those reported in the study by Frank and Badre (2012). Validation of
the revised MoE model involved simulating datasets across each of the
five task blocks. We used the parameter values obtained from fitting
the model to the real subject data to generate simulated responses to the
task. To draw comparisons to the human data, the simulated data were
then fit to the state-space model so as to produce learning curves, which
allowed for calculation of learning metrics (i.e., maximum second deriv-
ative). Overall, the revised MoE model was successfully able to recreate
the qualitative patterns of behavior and attentional weight recovery
across blocks seen in the human data.

Univariate fMRI analysis
Statistical models were constructed for each subject under the assump-
tions of the general linear model using SPM 12. Each trial was modeled
by one of two sets of the following five boxcar regressors: (1) a regressor
for the stimulus response phase (beginning with stimulus onset and end-
ing when a response was made); (2) a regressor with the same onset and
duration as the stimulus response phase, but whose value was parametri-
cally modulated by the subject’s reaction time to the stimulus; (3) a
regressor for the confidence response phase (beginning and ending with
the onset and offset, respectively, of the confidence probe); (4) a regres-
sor with the same onset and duration as the confidence response phase,
but whose value was parametrically modulated by the reported confi-
dence level; and (5) a regressor for the feedback phase (beginning and
ending with the onset and offset, respectively, of the audiovisual feed-
back). To match the analysis approach of Badre et al. (2010), one set of
regressors exclusively modeled correct trials, while the other set exclu-
sively modeled incorrect trials. To ensure the parametrically modulated
regressors only explained the variance unique to processes associated
with the modulatory values (i.e., stimulus reaction time and confidence
level), we orthogonalized both the modulated stimulus response phase
and modulated confidence response phase regressors with respect to
their respective unmodulated regressors. Next, we included three addi-
tional regressors to remove variance associated with events related to the
subject failing to make a required response. Two regressors modeled
stimulus and confidence response phases where no stimulus or confi-
dence response, respectively, was made. The third regressor modeled
feedback phases where “No Response” was presented. Although trials
where subjects failed to indicate their level of confidence could be sepa-
rated by whether the subject’s stimulus response was correct or incor-
rect, we chose to model these events together because we considered
both events to be of no interest and thus nuisance signals. Last, five block
regressors were included to account for run-to-run variance. In total,
each block contained a theoretical maximum of 14 regressors: some sub-
jects had blocks where all required responses were made, and thus no
regressors could be made that modeled events related to a failure to
respond. Low-frequency signals were removed with a 1/128Hz high-
pass filter. This first-level regression thus yielded standardized regression
coefficients (“betas”) for each voxel in the brain for each regressor
included in the model. Linear contrasts were used to obtain subject-spe-
cific effects, which were then entered into a second-level analysis treating
subjects as a random effect and comparing voxel effects against a value
of zero. Cluster correction was performed on all whole-brain, voxelwise
analyses using an initial height threshold of p, 0.001 to then define a
familywise error rate threshold of p= 0.05. The first voxelwise analysis of
stimulus response phase activity compared with baseline (see Fig. 3)
resulted in an extent threshold of 29,516 voxels. The voxelwise map

revealing the contrast of stimulus response phase activity in Hier 2
greater than the average of Hier 1 and Hier 3 resulted in an extent
threshold of 106 voxels (see Fig. 4A), while the voxelwise map assessing
the behavioral metric of transfer in Hier 3 and Hier 4 resulted in an
extent threshold of 107 voxels (see Fig. 4B).

Region of interest (ROI) analyses supplemented the whole-brain
search. ROIs were constructed with the Marsbars (Brett et al., 2002) and
wfupickatlas (Maldjian et al., 2003) toolboxes in SPM12. Coordinates
and sphere size for frontal cortex nodes [i.e., dorsal premotor cortex
(PMd), pre-dorsal premotor cortex (pre-PMd), mid inferior frontal sul-
cus (Mid-IFS), and frontal polar cortex (FPC)] were taken from the
study by Badre et al. (2010). Cingulo-opercular and frontoparietal (FP)
coordinates and size [i.e., CO: bilateral anterior prefrontal cortex, bilat-
eral anterior insula/frontal operculum, bilateral thalamus, and dorsal an-
terior cingulate cortex (ACC)/mid-superior frontal cortex; FP: bilateral
intraparietal sulcus (IPS), bilateral frontal cortex (approximately BA 6),
bilateral precuneus, bilateral inferior parietal lobule (IPL), bilateral dor-
solateral prefrontal cortex (approximately BA 9/46), and midcingulate
cortex] were taken from the study by Dosenbach et al. (2007).

Behavioral metrics of transfer
To test for brain–behavior correlations that relate individual differences
in transfer performance to fMRI activity, we calculated the behavioral
metric of transfer based on the state-space model we used. We computed
a difference score between the fourth and the first hierarchical block so
as to assess the maximum impact that hierarchical structure transfer
could have on behavioral performance. Specifically, our metric of trans-
fer came from computing the change in the state-space maximum sec-
ond-derivative measure of the model. We chose to focus on the
maximum second derivative as it should best capture the degree to
which learning accelerates once the subject determines the appropriate
first-order rules associated with the known second-order policy.
Defining transfer in this manner allowed us to contrast subjects’ per-
formance when learning a hierarchically structured task with no ability
to transfer knowledge of a second-order policy to when subjects have the
greatest likelihood of transferring learned second-order policy.

For the whole-brain analysis, we defined a contrast for each subject
that contrasted mean stimulus response phase activity for the third and
fourth hierarchical blocks against baseline. At the second level, the trans-
fer metric was used as a covariate and regressed against this contrast to
identify univariate activity across individuals that was associated with
differences in transfer.

Data availability
The custom Python and MATLAB code used for model fitting and data
analysis is available on request.

Results
State-space model reveals discovery and transfer of global
hierarchical structure
Trial outcomes from each block were fit with a state-space model
(Fig. 2A; Smith et al., 2004), and the following metrics were com-
puted from the learning curves in each block: the (1) maximal
first derivative (mean 6 within-subjects SEM: Flat, 0.0066
0.003; Hier 1, 0.0196 0.004; Hier 2, 0.0246 0.003; Hier 3,
0.0376 0.004; Hier 4, 0.0376 0.004; Fig. 2B); (2) maximal sec-
ond derivative (mean 6 within-subjects SEM: Flat, 0.002 6
0.0011; Hier 1, 0.00526 0.0012; Hier 2, 0.00676 0.0010; Hier 3,
0.01256 0.0019; Hier 4, 0.01136 0.0015; Fig. 2B), and (3) the
“learning trial” (mean6 within-subjects SEM: Flat, 79.296 8.82;
Hier 1, 48.086 5.12; Hier 2, 36.836 5.60; Hier 3, 33.676 4.92;
Hier 4, 24.126 5.53; Fig. 2B; see Materials and Methods for
definitions).

We first tested whether subjects acquired second-order hier-
archical rules in blocks that contained a hierarchical policy struc-
ture, which should be reflected in differences in the learning
curve metrics. Compared with the flat block, learning in the first
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hierarchical block was more efficient (earlier learning trial:
t(23) = 3.22, p=0.004; Fig. 2B) and showed the abrupt gains in ac-
curacy expected from the generalization of learned second-order
policy to unknown first-order rules (greater max first derivative:
t(23) = 3.30, p=0.003; max second derivative: t(23) = 3.20, p=
0.004; Fig. 2B). This pattern was also present when comparing
learning curve metrics from the flat block to the average metrics
across all hierarchical blocks (max first derivative: t(23) = 5.74,
p, 0.001; max second derivative: t(23) = 4.68, p, 0.001; learning
trial: t(23) = 3.95, p, 0.001; Fig. 2B).

We next sought to investigate the role of hierarchical struc-
ture transfer. In the first hierarchical block, subjects acquired and
exploited the block-specific second-order policy to facilitate
learning relative to the flat block. Subsequently, the second hier-
archical block provides the opportunity for subjects to discover
the global second-order policy structure: after acquiring the
block-specific second-order policy in the second hierarchical
block, subjects can discover that the same abstract second-order
policy (i.e., shape cues color or texture) has been shared across
the first two hierarchical blocks. Subjects can then transfer their
learned knowledge of a global second-order policy structure to
subsequent blocks, which should greatly facilitate the acquisition
of a block-specific second-order policy (e.g., star cues color, tra-
pezoid cues texture) and subsequently allow the subject to more

rapidly resolve first-order rules within the known hierarchical
structure. Thus, we predicted that successful structure transfer
would result in markedly more efficient and abrupt learning fol-
lowing the second hierarchical block.

To test for behavioral evidence of hierarchical structure trans-
fer, performance in hierarchical block 3—where subjects can
implement learned structure knowledge from the start of the
block—was compared with hierarchical block 2—where subjects
can initially discover the global second-order policy structure
(Fig. 2B). As predicted, there is a significant improvement in
hierarchical learning as measured by the max first derivative
(t(23) = 2.25, p=0.035) and max second derivative (t(23) = 2.23,
p= 0.036). However, the learning trial metric does not show the
same pattern (t(23) = 0.41, p= 0.688). This improvement is not
easily explained by general practice effects: there is not a reliable
change in performance metrics from the first to the second hier-
archical block—when subjects can take advantage of task practice
and general familiarity with the trial procedure—but must still
discover the global second-order policy structure (as assessed by
all three metrics: max t=1.28, p=0.21). Instead, the evidence of
transfer is only observed after subjects have had the opportunity
to discover the global structure in the second hierarchy block.

Following discovery of the global second-order policy struc-
ture, hierarchical knowledge transfer can facilitate learning for all

Figure 2. Learning curve and mixture of experts results reveal the discovery and transfer of the global hierarchical policy structure. A, Output of the state-space model (Smith et al., 2004)
for a representative subject. For each trial within a block, the model computes the probability of a correct response given the trial outcomes of the block. The 90% confidence interval around
the estimated probability of each trial is shown in gray (Flat block) and blue (Hierarchical blocks). The red line indicates chance-level performance. B, State-space model estimates for maximal
first and second derivatives and learning trial, averaged across subjects. The first and second derivative metrics reveal a significant increase in learning following the second hierarchical block,
while the mean learning trial improves more gradually across hierarchical blocks. C, Mixture of experts model weights for attention to the hierarchical shape, color, and texture experts at the
beginning of the flat (gray) and four hierarchical (blue) blocks. Each expert corresponds to a latent hypothesis regarding the hierarchical task structure that a subject might hold at the begin-
ning of each block. Following the second hierarchical block, there is a significant increase in attention for the expert that corresponds to the global second-order policy: shape cues color or tex-
ture (hierarchical shape expert). Error bars represent within-subjects SEM. Significance is assessed at p, 0.05. Statistical significance values of p. 0.05 are reported as n.s.
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subsequent blocks. Therefore, the learning metrics averaged
across hierarchical blocks 3 and 4 (when the knowledge can be
implemented to support learning) were compared with the aver-
age across hierarchical blocks 1 and 2 (when the knowledge has
not yet been acquired). Subjects showed evidence of improved
hierarchical learning in the last two hierarchical blocks versus
the first two across all behavioral metrics (max first derivative:
t(23) = 2.99, p=0.007; max second derivative: t(23) = 2.76, p=
0.011; learning trial: t(23) = 2.50, p= 0.020).

Last, we used a method previously developed to assess hier-
archical learning (Badre et al., 2010) to analyze hierarchical struc-
ture learning and transfer. Instead of modeling all trials together
within a block, responses to each unique stimulus were individu-
ally analyzed to obtain separate learning trials. Moreover, in tasks
with hierarchically structured second-ordered policy, one can con-
clude that a second-order rule is completely learned if all of its
subordinate first-order rules are learned above chance. Then, evi-
dence of hierarchical structure transfer can be assessed, which
should allow for faster and more complete learning of second-
order rules (mean 6 within-subjects SEM: Flat, 0.176 0.08; Hier
1, 0.256 0.10; Hier 2, 0.506 0.09; Hier 3, 1.006 0.12; Hier 4,
0.926 0.11). Subjects learned more second-order rules in the hier-
archical blocks than in the flat block (Z=15.5, p, 0.001).
Moreover, there was a significant increase in learned second-order
rules from the second to the third hierarchical block (Z=4.5,
p=0.008). Last, subjects also learned more second-order rules in
the last two hierarchical blocks than in the first two (Z=12.0,
p, 0.001). Together, these results provide evidence that learning
and subsequently transferring the global second-order policy
structure supports more efficient hierarchical learning, over and
above the expected level of hierarchical learning if the hierarchical
policy must be relearned on every block.

Mixture of experts model confirms transfer of specific
hierarchical structure
Although learning rate metrics derived from the state-space
model allow us to characterize how learning changes across
blocks, they do not provide information about why learning may
have changed. We theorized that subjects discovered the specific
second-order policy that was globally persistent across blocks.
When learning the rules for a new block, this knowledge should
encourage subjects to test the hypothesis that shape determines
second-order policy. In turn, this would enhance learning by
biasing their attention toward the relevance of the shape dimen-
sion, and away from the color and texture dimensions. As an al-
ternative explanation, subjects might have discovered that the
presence of hierarchical policy, in general, was persistent across
blocks: one dimension cues the relevant first-order dimensions.
When learning the rules for a new block, this knowledge should
encourage subjects to test the hypothesis that a second-order pol-
icy exists. This knowledge could enhance learning by biasing
their attention toward the relevance of second-order policies, in
general, versus a flat policy. Because the state-space model can-
not distinguish these two explanations, we used a hybrid
Bayesian-reinforcement learning MoE model to infer the latent
hypothesis states of each subject during the learning process
(Frank and Badre, 2012). This approach allows us to probe the
underlying cognitive mechanisms that support transfer by esti-
mating how specific hypotheses regarding hierarchical task struc-
ture were being attended and transferred across blocks (for
details, see Materials and Methods).

The MoE model was used to derive attention measures
for four modeled “experts,” each associated with a specific

hypothesis. The first measure indexes the attention subjects place
on the specific hypothesis that the shape dimension forms the
top of the second-order policy and cues subordinate first-order
rules based on either color or texture (referred to as “attention to
the hierarchical shape expert”). The second and third measures
index the attention placed on the specific hypotheses that the
color or texture dimensions, respectively, form the top of the hi-
erarchy. The fourth measure indexes the attention subjects place
on the general hypothesis that hierarchical structure, in the form
of any second-order policy, exists in the block compared with a
flat policy (referred to as “attention to hierarchy”). The attention
to hierarchy measure does not discern among which dimension
sits atop the hierarchy, in contrast to the other three measures.
To characterize what knowledge is being transferred from the
previous block, we focus on the model estimates for these meas-
ures that capture the state of the subject before encountering the
first trial of the block. These estimates of the subject’s latent state
before the block begins are inferred by fitting the model to each
individual’s trial-by-trial sequence of choices and rewards.
Therefore, a discrimination can be made between whether a sub-
ject is transferring a hypothesis regarding a specific second-order
policy (attention to the hierarchical shape expert), compared
with a general hypothesis regarding the presence of second-order
policy (attention to hierarchy), at the start of the block.

First, to determine whether subjects discover the global sec-
ond-order policy that is persistent across blocks and then test the
hypothesis that this policy applies to subsequent blocks, the
attention to the hierarchical shape expert was analyzed across
blocks (mean 6 within-subjects SEM: Flat, 0.306 0.04; Hier 1,
0.586 0.05; Hier 2, 0.586 0.07; Hier 3, 0.776 0.05; Hier 4,
0.736 0.06; Fig. 2C). In line with our predictions, subjects’ atten-
tion to the hierarchical shape expert at the start of the block
increases from the second to the third hierarchical block (t(23) =
2.08, p= 0.049; Fig. 2C), after they have had the opportunity to
discover the global second-order policy structure. Moreover,
because this knowledge can inform the hypotheses for all subse-
quent blocks, attention to the hierarchical shape expert is greater
at the start of hierarchical blocks 3 and 4 than at the start of the
first two hierarchical blocks (t(23) = 2.64, p= 0.015). Although
specific statistical predictions regarding attention to the hierarch-
ical color and texture experts were not made, attention to these
experts should generally be diminished when attention is biased
in favor of the hierarchical shape expert. Indeed, attention to the
color and texture experts is qualitatively low in the hierarchical
blocks (Fig. 2C).

Next, we analyzed whether subjects test the hypothesis that a
hierarchical policy, in general, is persistent across blocks (mean 6
within-subjects SEM: Flat, 0.226 0.01; Hier 1, 0.226 0.01; Hier 2,
0.236 0.01; Hier 3, 0.266 0.01; Hier 4, 0.266 0.01). Subjects’
attention to hierarchy does not increase from the second to the third
hierarchical block (t(23) =1.70, p=0.103). However, there is a more
gradual change in attention to hierarchy such that the measure
increases from the first two hierarchical blocks to the last two
(t(23) = 2.51, p=0.019). Together, these results show that the
improvement in hierarchical learning observed after the second
hierarchical block can be explained by subjects discovering and
then transferring their knowledge of the appropriate global second-
order policy structure that is persistent across all hierarchical blocks.

Lateral frontal regions linked to discovery of global
hierarchical structure
First, a whole-brain univariate contrast of activity during the
stimulus response phase on correct trials across all blocks
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compared with baseline was performed (p=0.05 cluster cor-
rected; Fig. 3A). The resultant map is consistent with those seen
in previous hierarchical reinforcement learning studies (Badre et
al., 2010). The task recruited regions along the lateral frontal cor-
tex associated with hierarchical task performance (Koechlin et
al., 2003; Badre and D’Esposito, 2007), as well as parietal cortex,
and more specifically the intraparietal sulcus, anterior insula,
mid-cingulate cortex, occipital lobe, thalamus, and medial tem-
poral lobe.

To address which brain regions supported searching for and
discovering the global second-order policy structure, we first
focused on the following regions in left lateral frontal cortex that
support the learning and execution of hierarchical control poli-
cies: the PMd, pre-PMd, Mid-IFS, and FPC (Badre et al., 2010;
Fig. 3A). In their original work, Badre and D’Esposito (2007) dis-
covered that PMd resolved competition between first-order rules
regarding motor response options, pre-PMd resolved competi-
tion between second-order rules relating one stimulus feature to
another (e.g., for squares, red cues action 1 while blue cues action
2), Mid-IFS resolved competition between third-order rules, and
FPC resolved competition between fourth-order task contexts.
Moreover, activity in these regions has been associated with the
search for a specific hierarchical policy within a task block
(Badre et al., 2010). However, it remains unknown whether these
same regions also support the learning of a more abstract, global
hierarchical structure that facilities learning the specific hierarch-
ical policies within each block.

The behavioral results demonstrate that subjects were able to
learn block-specific hierarchical policies, as well as search for and
discover the global hierarchical policy structure during the sec-
ond hierarchical block. To identify activity in the frontal cortex
that is related to discovering the global structure, over and above
activity associated with learning a block-specific hierarchical pol-
icy, activity in the second hierarchical block relative to the first
hierarchical block was assessed (mean 6 within-subjects SEM;
PMd: Hier 1, 4.906 0.56; Hier 2, 5.396 0.31; pre-PMd: Hier 1,
1.146 0.31; Hier 2, 2.176 0.17; Mid-IFS: Hier 1, 0.946 0.48;
Hier 2, 2.166 0.25; FPC: Hier 1, 0.406 0.24; Hier 2, 1.096 0.15;
Fig. 3B). With the exception of PMd (t(18) = 0.72, p= 0.483), ac-
tivity across the lateral frontal cortex regions is greater in the sec-
ond hierarchical block compared with the first (pre-PMd:
t(18) = 3.48, p=0.003; Mid-IFS: t(18) = 2.10, p=0.050; FPC:
t(18) = 2.19, p=0.042). Next, activity in the second hierarchical

block was compared with that in the third hierarchical block,
where subjects no longer need to search for structure and can
instead implement their transferred structure knowledge from
the second hierarchical block (mean 6 within-subjects SEM;
PMd: Hier 2, 5.396 0.31; Hier 3, 5.456 0.41; pre-PMd: Hier 2:
2.176 0.17; Hier 3, 1.166 0.25; Mid-IFS: Hier 2, 2.166 0.25;
Hier 3, 1.216 0.36; FPC: Hier 2, 1.096 0.15; Hier 3, 0.626 0.26;
Fig. 3B). Again, activity in pre-PMd (t(18) = 2.80, p= 0.012) and
Mid-IFS (t(18) = 2.12, p= 0.048) is greater in the second hierarchi-
cal block. Activity is also numerically greater in FPC (t(18) = 1.52,
p= 0.147), but not statistically significant. Last, activity in PMd
did not differ across the blocks (t(18) = 0.12, p=0.904). Because
the activity in rostral regions of frontal cortex is elevated in the
second hierarchical block relative to both the preceding and pro-
ceeding blocks, the observed results are likely because of a pro-
cess that is preferentially engaged in the second hierarchical
block, as opposed to a process that continuously evolves over
time such as effects related to time on task or practice.

Lateral frontal regions linked to transfer of global
hierarchical structure
Next, we determined whether activity in the lateral frontal
ROIs predicts behavioral transfer, which was indexed by more
abrupt hierarchical learning in the blocks that follow discov-
ery of the global hierarchical structure (for definitions and
details, see Materials and Methods). Different lateral frontal
cortex regions could support transfer of the global hierarchical
policy structure. For example, pre-PMd could support transfer
of second-order policy by means of a more efficient resolution
of competition between competing within-block second-order
rules. Alternatively, if transfer is an additional third level in the
policy hierarchy (i.e., the task block contextualizes second-order
rules associated with the shape dimension), then Mid-IFS (e.g., the
region associated with policy abstraction one level greater than
that being transferred) could support transferring learned struc-
ture. Last, FPC activity could support transfer, as structure transfer
may be a form of extended temporal contextualization, or episodic
control, that biases task representations across multiple blocks.
Knowledge of the position of the shape dimension in the hierarchy
may take the role of a schema and thus recruit FPC to support the
accommodation and contextualization of new information within
this framework.

Figure 3. Lateral frontal regions linked to the discovery of global hierarchical policy structure and behavioral transfer. A, Group-level activity across all blocks during the stimulus response
phase on correct trials only. The overlaid numbered pink circles indicate the position of each of the four lateral frontal cortex ROIs. Map is cluster corrected to a familywise error rate of
p, 0.05. B, ROI analyses for the regions shown in A. The mean b -coefficients from the stimulus response phase show elevated activity during the second hierarchical block (vs the first and
third hierarchical blocks) in all regions except PMd. Error bars indicate the within-subject SEM. C, Correlations between behavioral transfer and activity in the left lateral frontal cortex ROIs following
discovery of the global hierarchical policy structure. Only activity in PMd is tentatively correlatedwith individual differences in transfer. Statistical significance values of p. 0.05 are reported as n.s.
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To test these predictions, correlations between the mean activ-
ity in each lateral frontal ROI from blocks where behavioral trans-
fer could occur (i.e., hierarchical blocks 3 and 4), and the
behavioral metric of transfer for each subject were performed (Fig.
3C). Activity in pre-PMd (r = –0.02, p=0.937), Mid-IFS (r=0.15,
p=0.528), and FPC (r=0.18, p=0.633) did not reliably correlate
with behavioral transfer. However, activity in the most caudal
frontal region, PMd, appeared to reliably correlate with behavioral
transfer (r=0.65, p=0.002). To test the robustness of these indi-
vidual differences results, we also performed the analyses using a
nonparametric rank-ordered regression test. In line with the previ-
ous results, PMd was significantly correlated with behavioral
transfer (Spearman r =0.48, p=0.037), while pre-PMd, Mid-IFS,
and FPC were not statistically significant (absolute value of all
Spearman r values, 0.43, all p values. 0.065). However, one
high-leverage subject who showed substantial behavioral transfer
also had the highest activity in PMd (Fig. 3C). When this subject is
removed from the analysis, the positive correlation no longer
reaches statistical significance [PMd: r=0.37, p=0.12 (r =0.39,
p=0.11); all other ROI p values. 0.38 (nonparametric p values.
0.09)]. Thus, these results suggest that PMd is the most likely lat-
eral frontal region to relate to transfer, although this relationship
may be modest and awaits confirmation in future studies.

Whole-brain analyses: regions linked to discovery of global
hierarchical structure
To identify regions recruited by the search and discovery of the
global hierarchical policy structure, a whole-brain voxelwise
analysis was performed by contrasting activity in the second
hierarchical block to the average of the first and third hierarchi-
cal blocks (Fig. 4A). This contrast revealed activity that over-
lapped with the left pre-PMd and Mid-IFS ROIs. However,
activity was also found in medial superior frontal gyrus, the left
IPL and IPS, and the right IPL. The locations of these lateral
frontal and parietal regions overlap with a set of regions referred
to as the “FP network” that have been previously implicated in
cognitive control functions (Dosenbach et al., 2007, 2008).

Whole-brain analyses: regions linked to transfer of global
hierarchical structure
To further identify which regions support behavioral transfer in
blocks following the discovery of the global hierarchical policy

structure, a whole-brain analysis was performed using the degree
of behavioral transfer as a parametric modulator of the mean
stimulus response phase activity in the third and fourth hierarch-
ical blocks (p=0.05 cluster-corrected; Fig. 4B). PMd activity
(overlapping with our ROI)—in accord with the previous ROI
analyses—as well as bilateral anterior insula/frontal opercu-
lum, anterior cingulate cortex, left lateral occipital cortex,
and left medial temporal cortex correlated with behavioral
transfer. Anterior insula and dorsal anterior cingulate cortex
correspond to the “core” regions of the putative cingulo-
opercular network commonly found in tasks requiring cog-
nitive control (“CO network,” Dosenbach et al., 2007, 2008;
Sadaghiani and Kleinschmidt, 2016).

Dissociation of behavioral roles for FP and CO networks
The FP and CO networks have been proposed as two compo-
nents of a dual-network architecture of cognitive control
(Dosenbach et al., 2008), and regions in both the FP and CO net-
works were active during performance of our hierarchical learn-
ing task. However, these regions may support task performance
by making separable behavioral contributions. To test this hy-
pothesis, we directly compared the relationship between activity
across the networks’ respective regions and (1) discovering the
global hierarchical policy structure versus (2) the transferring of
hierarchical structure knowledge across blocks.

First, we assessed the relationship between activity in these
networks and the search and discovery of hierarchical structure
that occurs during the second hierarchical block. The canonical
FP and CO networks were defined based on a previous meta-
analysis of cognitive control tasks (FP: bilateral frontal cortex,
bilateral dorsolateral prefrontal cortex, bilateral intraparietal sul-
cus, bilateral inferior parietal lobule, bilateral precuneus, and
midcingulate cortex; CO: bilateral anterior insula/frontal opercu-
lum, bilateral anterior prefrontal cortex, bilateral thalamus, and
dorsal anterior cingulate cortex/mid-superior frontal cortex; Fig.
5A; coordinates are from Dosenbach et al., 2007). Separately for
the FP network and CO network ROIs, the activity during each
block was estimated and a contrast was performed for the activity
in the second hierarchical block versus the first and third hier-
archical blocks (mean 6 within-subjects SEM; FP: Hier 1,
0.746 0.23; Hier 2, 1.576 0.16; Hier 3, 1.016 0.25; CO: Hier 1,

Figure 4. Voxelwise analyses reveal regions linked to unique behavioral roles. A, Activity during the search and discovery of the global hierarchical structure during the second hierarchical
block shown by the contrast of Hier 2. Hier 11 Hier 3. B, Whole-brain analysis of regions for which stimulus response phase activity following discovery of the global hierarchical structure
correlates with behavioral transfer. All activity maps are cluster corrected to a familywise error rate of p, 0.05.
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2.096 0.25; Hier 2, 2.456 0.12; Hier 3, 2.316 0.24; Fig. 5B). FP
activity was significantly increased during the second hierarchi-
cal block (t(18) = 3.49, p=0.003), as expected based on the whole-
brain results, whereas CO activity was not significantly different
(t(18) = 1.46, p= 0.162). Since the FP network was chosen for fur-
ther analysis based on the observation of left lateral frontal and
bilateral parietal activity in our previous whole-brain contrast,
any ROI analyses that include these regions may be biased by cir-
cularity (Vul et al., 2009). To address this possibility, a separate
analysis was performed that included only the FP network ROIs
that were not observed in the original whole-brain results (i.e.,
right frontal cortex, right dorsolateral frontal cortex, right intra-
parietal sulcus, bilateral precuneus, and midcingulate cortex),
which also found a significant result for the contrast (t(18) = 2.80,
p=0.012). Next, to formally dissociate the patterns observed
across the FP and CO networks (Henson, 2006), we tested the
interaction between block (second hierarchical block; average of
first and third hierarchical blocks) and region (FP; CO) and
found that the difference in activity between the second hierarch-
ical block compared with the first and third blocks is significantly
greater in the FP regions than in the CO regions (t=3.37,
p=0.003).

We next assessed the relationship between activity in these
networks and the transfer of hierarchical structure knowledge.
As before, we sought to confirm the relationship between behav-
ioral transfer and the canonically defined CO network, while
additionally ruling out the potential for circularity in our analy-
ses. Our first analysis confirmed a significant relationship
between activity averaged across all CO regions and behavioral
transfer (r=0.57, p= 0.011, Spearman r = 0.67, p=0.002; Fig.
5C). Moreover, to control for circularity in this analysis, we ran a
separate test of the relationship between the CO network and be-
havioral transfer by excluding the insular and anterior cingulate
ROIs that were present in the original whole-brain regression.
This new analysis, which only included activity from bilateral
thalamus and bilateral anterior prefrontal cortex (referred to as

the “periphery” of the CO network; Dosenbach et al., 2008),
found a significant correlation between mean ROI activity and
the behavioral transfer metric (r= 0.66, p=0.002, Spearman
r = 0.77, p, 0.001). In contrast to the robust correlation
between the CO network and behavioral transfer, activity in the
FP network in the last two hierarchical blocks is only modestly
correlated with the behavioral transfer metric (r=0.26, p= 0.279,
Spearman r =0.61, p=0.006; Fig. 5C).

To test whether the CO network is uniquely related to trans-
fer, both the CO network and FP network activity were included
in a multiple regression with behavioral transfer as the depend-
ent variable, as this approach controls for any shared contribu-
tion made by both networks. This analysis revealed that activity
in the CO network selectively predicts transfer (CO network:
r= 0.52, p=0.023; Spearman r =0.47, p=0.045; FP network:
r = �0.003, p=0.990; Spearman r = 0.04, p=0.881; Fig. 5D).
Collectively, these findings demonstrate a clear dissociation: the
regions of the FP network are specifically involved in the search
and discovery of hierarchical structure, whereas the regions of
the CO network are selectively involved in the transfer of hier-
archical structure knowledge across blocks.

Discussion
Subjects were able to efficiently discover and exploit abstract
structure during a hierarchical reinforcement learning task.
During the task, subjects rapidly discovered and generalized an
embedded global task structure to subsequent novel task blocks.
Moreover, this generalization was supported by an increase in
subjects’ awareness of the specific global hierarchical structure at
the start of a new block. The fMRI data revealed that multiple
left lateral frontal regions were involved during task performance
(pre-PMd, Mid-IFS, and FPC). In addition, regions within a
frontoparietal network were involved in the initial discovery of
the global hierarchical structure, while regions within a cingulo-
opercular network, and potentially PMd, were involved in the
transfer of this structure.

Figure 5. fMRI analyses reveal dissociation of behavioral roles for FP and CO networks. A, Locations of regions that define the FP (green) and CO (yellow) networks are from
the study by Dosenbach et al. (2007). FP: bilateral frontal cortex, dorsolateral prefrontal cortex, IPL, IPS, precuneus, and midcingulate. CO: bilateral anterior insula/frontal opercu-
lum, anterior prefrontal cortex, thalamus, and dorsal ACC/mid-superior frontal cortex. B, The contrast of the mean b -coefficients from the stimulus response phase across all re-
spective regions in the second hierarchical block compared with the first and third blocks reveals an increase in activity during the search and discovery phase only in the FP
regions. Moreover, there is a significant interaction such that the difference in activity between these blocks is greater in the FP network than in the CO network. Error bars indi-
cate within-subject SEM. C, The correlation of transfer with the mean b -coefficient of each network from the third and fourth hierarchical blocks. D, Regression analyses for the
FP and CO networks against behavioral transfer reveal a unique role of the CO network in structure transfer. Shown are the partial correlation coefficients from a multiple regres-
sion that accounts for the effects of both networks. Statistical significance values of p. 0.05 are reported as n.s.
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Previous work on structure learning in the context of hier-
archical reinforcement learning (Collins and Frank, 2013, 2016;
Collins et al., 2014) has shown that subjects tend to build gen-
eralizable structures that allow for components of the stimu-
lus (e.g., shape) to act as a higher-order context that cues
rules based on other stimulus features (e.g., color). However,
in contrast to previous work where stimulus–response
groupings could be directly transferred, our task design pre-
vented direct block-to-block transfer of action mappings.
Instead of discovering structure that immediately informed
action, such as learning one of the block-specific hierarchical
policies, subjects discovered structure that informed subor-
dinate task-set policies, as evidenced by more rapid learning
in hierarchical blocks following discovery. Moreover, when a
MoE model was used to derive an estimate of subjects’ atten-
tion to the hierarchical shape rule at the start of the third
hierarchical block, the model-derived estimate was greater
than at the start of the second hierarchical block, indicating
that subjects transferred and immediately applied their
structural knowledge following discovery in the second hier-
archical block. This demonstrates that subjects are capable of
learning a higher-order representation between stimulus
dimensions that can abstract away from the groupings of
specific response pairings, and can then transfer this knowl-
edge to new contexts.

Our brain imaging findings have implications regarding
the functional organization of the frontal cortex in support
of hierarchical learning. The lateral frontal cortex is recruited
for both the learning and execution of hierarchical rules
(Koechlin et al., 2003; Badre and D’Esposito, 2007; Badre et
al., 2010; Collins et al., 2014; Nee and D’Esposito, 2016;
Badre and Nee, 2018), with recruitment of more rostral
regions during processing of higher levels of policy abstrac-
tion. In addition, patients with lateral frontal cortex lesions
exhibit the following asymmetric behavioral impairments:
caudal lesions impair both concrete and abstract cognitive
control task performance, while rostral lesions only impair
abstract task performance (Badre et al., 2009). In tasks where
hierarchical rules had to be implicitly learned, different lat-
eral frontal regions are simultaneously involved in the search
for hierarchical policy within a block (Badre et al., 2010).
However, patients with pre-PMd lesions are impaired at
learning the full second-order policy, but not the subordinate
first-order rules (Kayser and D’Esposito, 2013). This asym-
metric functional deficit is evidence of the hierarchical orga-
nization of functions associated with these regions. Our
study extends these findings by demonstrating that frontal
cortex is involved in the search for a global hierarchical
structure, beyond that of the block-specific second-order
policies, when evidence of its presence is first available. We
conclude that the same hierarchical frontal cortex organiza-
tion used to execute policy rules, as well as search for hier-
archical relationships of varying complexity within the
moment (i.e., block-specific policies), is also involved in the
search for hierarchical relationships across contexts.

There existed a potential relationship between activity in the
most caudal region (PMd) and the measure of transfer and
implementation of global hierarchical structure, defined as the
change in the maximum second-derivative across blocks. The
maximum second-derivative captures the initial rise of the learn-
ing curve, indicating the transition from searching for higher-
order rules to the resolution of first-order rules. Subjects are
transitioning from a phase of the task where the search space of

possible structures is large to one where it has become well
defined and narrow. With conflict of the second-order policy
resolved, all that remains is the resolution of first-order rules, a
process linked to PMd function. It is likely that subjects who
resolve the second-order conflict more rapidly can then rely pri-
marily on processes associated with PMd (i.e., linking specific
colors and textures to motor responses) for the remainder of the
block, therefore facilitating performance.

Together with previous work, the current findings suggest
a sophisticated coordination among motor control, rule
implementation, rule discovery, and rule generalization in
the service of hierarchical control, where each function
incorporates knowledge of both the immediate setting (i.e.,
task block) and overall environment (i.e., global hierarchical
structure). In simple tasks lacking contextual elements, cau-
dal premotor regions likely resolve response competition
without influence from superordinate rostral frontal regions.
However, in tasks for which contextual information must be
considered (e.g., abstracted hierarchical policy), rostral pre-
motor and mid-dorsolateral regions are likely recruited to
exert control over sensory–motor conflict in more caudal
premotor regions (Badre et al., 2009; Kayser and D’Esposito,
2013). In settings where actions and rules are being learned,
these contextual influences are likely being tested and
updated via cortical–striatal interactions in response to task-
based feedback signals (Badre and Frank, 2012; Frank and
Badre, 2012). Thus, when a subject discovers and transfers
global structure, knowledge of this structure works to restrict
the search space of potential hypotheses, resulting in selec-
tive recruitment along the rostrocaudal gradient to those
involved in representing the generalized known structure.
Thus, multiple regions can be involved in the process of
structure transfer, but specifically only those regions along
the gradient necessary for the resolution of the remaining
unresolved block-specific rules.

Several cortical and subcortical regions outside the lateral
frontal cortex associated with behavioral transfer were
identified. Subjects with greater levels of activity in regions
comprising the CO network learned the block-specific hier-
archical policies faster following discovery of the global hier-
archical structure. Critically, this association was not found
in regions comprising the FP network, suggesting that CO
network activity is specifically related to the manner in
which subjects maintain and implement the learned struc-
ture. Alternatively, it is possible that CO activity is increased
in subjects who are more engaged and attentive to the task
(Sadaghiani and Kleinschmidt, 2016). We favor the former
interpretation because our transfer metric indexes a differ-
ence between performance in the first, compared with the
final, hierarchical block, and is thus insensitive to differences
between subjects who perform poorly in both phases (when
it could be assumed that subjects are failing to pay attention
to the current task), and those who perform exceedingly well
in both phases (when it is likely that attentional engagement
is greatest).

Previous work has implicated the CO network in both “task-
set maintenance” (Dosenbach et al., 2006, 2007, 2008), broadly
defined as the configuration of control signals required to per-
form any type of task, and “tonic alertness” (Sadaghiani et al.,
2010; Sadaghiani and D’Esposito, 2015), or the user-driven sus-
tained control necessary to remain prepared to process incoming
information. Task-set maintenance requires that a specific struc-
ture be known to the individual—that which defines successful
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performance of the task—whereas tonic alertness precludes any
need for a specific structural representation of the task as alert-
ness takes the role of “nonselective disengagement” (Sadaghiani
and Kleinschmidt, 2016). Thus, our findings are more consistent
with a role of the CO network in task-set maintenance, although
a role in tonic alertness during our task cannot be ruled out.

Whereas the CO network was uniquely related to trans-
fer, the FP network was selectively involved in the search
and discovery of the global hierarchical structure. Our find-
ings suggest that the FP network is not only involved in the
representation and integration of current task rules and
response mappings, but also in the integration of previous
task-relevant components. The integration of this informa-
tion would likely allow for complex structured relationships
to be discovered across blocks. Although the component
processes of searching for and discovering abstract hierarch-
ical structure overlap with behaviors associated with learn-
ing and navigating the explore-exploit dilemma—classically
linked to regions along ACC—it is unlikely that ACC would
be uniquely linked to search and discovery as additional
roles associated with ACC likely occurred during the pre-
ceding and proceeding phases of the task (e.g., exploring
and evaluating individual hierarchical policies in the first
hierarchical block, representing exploitative behaviors in
the third hierarchical block; Walton et al., 2003; Quilodran
et al., 2008; Stoll et al., 2016). Recent studies have discovered
that tasks requiring varying levels of cognitive control
recruit regions along a caudal–rostral gradient in parietal
cortex in a fashion similar to that found in lateral frontal
cortex (Choi et al., 2018). Moreover, regions along both gra-
dients showed mirroring patterns of functional connectivity
with striatal sites, which is in line with previous work (Badre
and Frank, 2012; Collins and Frank, 2013). Accordingly, the
present results implicate a system of parallel and distributed
hierarchical gradients across frontal and parietal cortex that
supports the search and discovery of structure of varying
complexity within and across task blocks.
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