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RESEARCH Open Access

Comprehensive benchmarking and
ensemble approaches for metagenomic
classifiers
Alexa B. R. McIntyre1,2,3, Rachid Ounit4, Ebrahim Afshinnekoo2,3,5, Robert J. Prill6, Elizabeth Hénaff2,3,
Noah Alexander2,3, Samuel S. Minot7, David Danko1,2,3, Jonathan Foox2,3, Sofia Ahsanuddin2,3, Scott Tighe8,
Nur A. Hasan9,10, Poorani Subramanian9, Kelly Moffat9, Shawn Levy11, Stefano Lonardi4, Nick Greenfield7,
Rita R. Colwell9,12, Gail L. Rosen13* and Christopher E. Mason2,3,14*

Abstract

Background: One of the main challenges in metagenomics is the identification of microorganisms in clinical and
environmental samples. While an extensive and heterogeneous set of computational tools is available to classify
microorganisms using whole-genome shotgun sequencing data, comprehensive comparisons of these methods
are limited.

Results: In this study, we use the largest-to-date set of laboratory-generated and simulated controls across 846 species to
evaluate the performance of 11 metagenomic classifiers. Tools were characterized on the basis of their ability to identify
taxa at the genus, species, and strain levels, quantify relative abundances of taxa, and classify individual reads to the
species level. Strikingly, the number of species identified by the 11 tools can differ by over three orders of magnitude on
the same datasets. Various strategies can ameliorate taxonomic misclassification, including abundance filtering, ensemble
approaches, and tool intersection. Nevertheless, these strategies were often insufficient to completely eliminate false
positives from environmental samples, which are especially important where they concern medically relevant species.
Overall, pairing tools with different classification strategies (k-mer, alignment, marker) can combine their respective
advantages.

Conclusions: This study provides positive and negative controls, titrated standards, and a guide for selecting tools for
metagenomic analyses by comparing ranges of precision, accuracy, and recall. We show that proper experimental design
and analysis parameters can reduce false positives, provide greater resolution of species in complex metagenomic
samples, and improve the interpretation of results.

Keywords: Metagenomics, Shotgun sequencing, Taxonomy, Classification, Comparison, Ensemble methods, Meta-
classification, Pathogen detection

Background
Sequencing has helped researchers identify microorgan-
isms with roles in such diverse areas as human health
[1], the color of lakes [2], and climate [3, 4]. The main
objectives when sequencing a metagenomic community
are to detect, identify, and describe its component taxa

fully and accurately. False positives, false negatives, and
speed of analysis are critical concerns, in particular when
sequencing is applied to medical diagnosis or tracking
infectious agents.
Selective amplification (e.g. 16S, 18S, ITS) of specific

gene regions has long been standard for microbial
community sequencing, but it introduces bias and omits
organisms and functional elements from analysis. Recent
large-scale efforts to characterize the human micro-
biome [5] and a variety of Earth microbiomes [6] used
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the 16S genes of ribosomal RNA (rRNA) as amplicons.
Highly conserved regions within these genes permit the
use of common primers for sequencing [7]. Yet certain
species of archaea include introns with repetitive regions
that interfere with the binding of the most common 16S
primers [8, 9] and 16S amplification is unable to capture
viral, plasmid, and eukaryotic members of a microbial
community [10], which may represent pivotal drivers of
an individual infection or epidemic. Moreover, 16S
amplification is often insufficient for discrimination at
the species and strain levels of classification [11]. Al-
though conserved genes with higher evolutionary rates
than 16S rRNA [11] or gene panels could improve dis-
criminatory power among closely related strains of pro-
karyotes, these strategies suffer from low adoption and
underdeveloped reference databases.
Whole-genome shotgun sequencing addresses some of

the issues associated with amplicon-based methods,
but other challenges arise. Amplification-based methods
remain a cheaper option and 16S databases are more ex-
tensive than shotgun databases [12]. Also, taxonomic an-
notation of short reads produced by most standard
sequencing platforms remains problematic, since shorter
reads are more likely to map to related taxa that are not
actually present in a sample. Classification of whole-
genome shotgun data relies on several strategies, including
alignment (to all sequences or taxonomically unique
markers), composition (k-mer analysis), phylogenetics
(using models of sequence evolution), assembly, or a
combination of these methods. Analysis tools focusing
on estimation of abundance tend to use marker
genes, which decreases the number of reads classified
but increases speed [13]. Tools that classify at the read
level have applications beyond taxonomic identification
and abundance estimation, such as identifying contam-
inating reads for removal before genome assembly, cal-
culating coverage, or determining the position of
bacterial artificial chromosome clones within chromo-
somes [14, 15].
Environmental surveys of the New York City (NYC)

subway system microbiome and airborne microbes found
that metagenomic analysis tools were unable to find a
match to any reference genome for about half of input
reads, demonstrating the complexity of the data and
limitations of current methods and databases [16, 17].
Environmental studies also highlight the importance of re-
liable species identification when determining pathogen-
icity. All analysis tools used in the initial NYC subway
study detected matches to sequences or markers associ-
ated with human pathogens in multiple samples, although
subsequent analyses by the original investigators, as well
as others, showed there was greater evidence for related,
but non-pathogenic, organisms [18–20]. The problem of
false positives in metagenomics has been recognized and

reported [21, 22]. Strategies including filtering and com-
bining classifiers have been proposed to correct the prob-
lem, but a thorough comparison of these strategies has
not been done. Recent publications have focused on de-
tecting and identifying harmful or rare microorganisms
[20, 22, 23]. However, when studying common non-
pathogenic microbes, investigators routinely rely on the
accuracy of increasingly rapid analyses from metagenomic
classifiers [22].
Fortunately, efforts to standardize protocols for metage-

nomics, including sample collection, nucleic acid extrac-
tion, library preparation, sequencing, and computational
analysis are underway, including large-scale efforts like the
Microbiome Quality Control (MBQC), the Genome Refer-
ence Consortium (GRC), the International Metagenomics
and Microbiome Standards Alliance (IMMSA), the Crit-
ical Assessment of Metagenomics Interpretation (CAMI),
and others [2, 24–28]. Comparisons of available bioinfor-
matics tools have only recently been published [13, 21,
28–30]. For example, Lindgreen, et al. [13] evaluated a set
of 14 metagenomics tools, using six datasets comprising
more than 400 genera, with the analysis limited to phyla
and genera. A similar study by Peabody, et al. [21] evalu-
ated algorithms to the species level but included only two
datasets representing 11 species, without taking into ac-
count the evolution of the taxonomy of those species [31].
Meanwhile, the number of published tools for the identifi-
cation of microorganisms continues to increase. At least
80 tools are currently available for 16S and whole-genome
sequencing data [32], although some are no longer main-
tained. Publications describing new methods tend to in-
clude comparisons to only a small subset of existing tools,
ensuring an enduring challenge in determining which
tools should be considered “state-of-the-art” for metage-
nomics analysis.
To address the challenge, we curated and created a set

of 14 laboratory-generated and 21 simulated metagenomic
standards datasets comprising 846 species, including read-
level and strain-level annotations for a subset of datasets
and sequences for a new, commercially available DNA
standard that includes bacteria and fungi (Zymo BIO-
MICS). We further tested tool agreement using a deeply
sequenced (>100 M reads) environmental sample and de-
veloped new ensemble “voting” methods for improved
classification. These data provide an online resource for
extant tools and are freely available (http://ftp-private.nc-
bi.nlm.nih.gov/nist-immsa/IMMSA/) for others to use for
benchmarking future tools or new versions of current
tools.

Results
We compared the characteristics and parameters of a set
of 11 metagenomic tools [14, 33–44] (Additional file 1:
Table S1) representing a variety of classification
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approaches (k-mer composition, alignment, marker). We
also present a comprehensive evaluation of their per-
formance, using 35 simulated and biological metagen-
omes, across a wide range of GC content (14.5–74.8%),
size (0.4–13.1 Mb), and species similarity characteristics
(Additional file 2: Table S2).

Genus, species, and subspecies level comparisons
From the platypus [22] to Yersinia pestis [17], false posi-
tives can plague metagenomic analyses. To evaluate the
extent of the problem of false positives with respect to
specific tools, we calculated precision, recall, area under
the precision-recall curve (AUPR), and F1 score based

on detection of the presence or absence of a given
genus, species, or subspecies at any abundance. When
compared by mean AUPR (mAUPR), all tools performed
best at the genus level (45.1% ≤mAUPR ≤ 86.6%, Fig. 1a),
with small decreases in performance at the species level
(40.1% ≤mAUPR ≤ 84.1%, Fig. 1b). Calls at the subspe-
cies (strain) level showed a more marked decrease on all
measures for the subset of 12 datasets that included
complete strain information (17.3% ≤mAUPR ≤ 62.5%,
Fig. 1c). For k-mer-based tools, adding an abundance
threshold increased precision and F1 score, which is
more affected than AUPR by false positives detected at
low abundance, bringing both metrics to the same

a d

b

c

Fig. 1 The F1 score, precision, recall, and AUPR (where tools are sorted by decreasing mean F1 score) across datasets with available truth sets for
taxonomic classifications at the (a) genus (35 datasets), (b) species (35 datasets), and (c) subspecies (12 datasets) levels. d The F1 score changes
depending on relative abundance thresholding, as shown for two datasets. The upper bound in red marks the optimal abundance threshold to
maximize F1 score, adjusted for each dataset and tool. The lower bound in black indicates the F1 score for the output without any threshold.
Results are sorted by the difference between upper and lower bounds
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range for as marker-based tools, which tended to be
more precise (Fig. 1d, e).

Performance across datasets
Grouping datasets into simulated reads and biological
samples revealed that precision is notably lower for bio-
logical samples that are titrated and then sequenced
(Additional file 3: Figure S1). We initially hypothesized
that tools would attain lower precision with biological
data because: (1) they detect true contaminants; (2) they
detect close variants of the reference strain; or (3) simu-
lated data do not fully capture errors, GC content range,
and read distribution biases present in biological data.
However, by modeling the number of false positives as a
negative binomial of various dataset properties, we
found that whether data were simulated had no
significant effect on the number of false positives de-
tected for most tools (Fig. 2, with the exception of
MetaFlow, which showed a significant trend only with
outliers and with few false positives overall, Additional file
3: Figure S2a). The decrease in precision could instead
occur because the biological samples contained fewer
species on average, but tools detected similar numbers of
false positives. No significant relationship was found
between the number of taxa in a sample and false positives
for most tools. However, false positives for almost all k-
mer-based methods did tend to increase with more reads
(e.g. Additional file 3: Figure S2b), showing a positive
relationship between depth and misclassified reads. The
same relationship did not exist for most marker-based and
alignment-based classifiers, suggesting any additional
reads that are miscalled are miscalled as the same species
as read depth increases. BLAST-MEGAN and PhyloSift

(without or with laxer filters) were exceptions, but ad-
equate filtering was sufficient to avoid the trend. On fur-
ther examination, the significant relationship between
number of taxa and read length and false-positive counts
for MetaPhlAn and GOTTCHA appeared weak for
MetaPhlAn and entirely due to outliers for GOTTCHA
(Additional file 3: Figure S2c–f ), indicating misclassifica-
tion can be very dataset-specific (more below).
The mAUPR for each sample illustrates wide variation

among datasets (Additional file 4: Table S3, Additional
file 3: Figure S3, Additional file 5: Table S4). Difficulty in
identifying taxa was not directly proportional to number
of species in the sample, as evidenced by the fact that
biological samples containing ten species and simulated
datasets containing 25 species with log-normal distribu-
tions of abundance were among the most challenging
(lowest mAUPR). Indeed, some datasets had a rapid
decline in precision as recall increased for almost all
tools (e.g. LC5), which illustrates the challenge of calling
species with low depth of coverage and the potential for
improvement using combined or ensemble methods.

Ensemble approaches to determine number and identity
of species present
To gauge the benefits of combining multiple tools for
accuracy and measuring the actual number of species
present in a sample, we used a series of tests. First, a
combination of five lower-precision tools (CLARK, Kra-
ken, LMAT, NBC, and PhyloSift) showed that the over-
lap between the most abundant species identified by the
tools and the truth set was relatively high for subset
sizes close to the actual number of species (Fig. 3a).
Concordance among tools was evaluated by sorting

Fig. 2 Number of false positives called by different tools as a function of dataset features. The test statistic (z-score) for each feature is reported
after fitting a negative binomial model, with p value > 0.05 within the dashed lines and significant results beyond

McIntyre et al. Genome Biology  (2017) 18:182 Page 4 of 19



species according to abundance and varying the number
of results included in the comparison to give a

percent overlap ¼ 100 � species identif ied by all tools
species in comparision

� �

(Fig. 3b). For most samples, discrepancies in results
between tools were higher and inconsistent below the
known number of species because of differences in abun-
dance estimates. Discrepancies also increased steadily as
evaluation size exceeded the actual number of species to
encompass more false positives. Thus, these data show
that the rightmost peak in percent overlap with even
lower-precision tools approximated the known, true num-
ber of species (Fig. 3c). However, more precise tools pro-
vided a comparable estimate of species number.
GOTTCHA and filtered results for Kraken, and BLAST-
MEGAN all outperformed the combined-tool strategy for
estimating the true number of species in a sample
(Fig. 3d).

Pairwise combinations of tools also show general im-
provements in taxonomic classification, with the overlap
between pairs of tools almost always increasing precision
compared to results from individual tools (Fig. 4a). At
the species level, combining filtered BLAST-MEGAN
with Diamond-MEGAN, NBC, or GOTTCHA, or
GOTTCHA with Diamond-MEGAN increased mean
precision to over 95%, while 24 other combinations in-
creased precision to over 90%. However, depending on
the choice of tools, improvement in precision was incre-
mental at best. For example, combining two k-mer-based
methods (e.g. CLARK-S and NBC, with mean precision
26.5%) did not improve precision to the level of most of
the marker-based tools. Increases in precision were off-
set by decreases in recall (Fig. 4b), notably when tools
with small databases such as NBC were added and when
tools with different classification strategies (k-mer, align-
ment, marker) were used.

a

b c

d

Fig. 3 Combining results from imprecise tools can predict the true number of species in a dataset. a UpSet plots of the top-X (by abundance)
species uniquely found by a classifier or group of classifiers (grouped by black dots at bottom, unique overlap sizes in the bar charts above). The eval_RAIphy
dataset is presented as an example, with comparison sizes X = 25 and X = 50. The percent overlap, calculated as the number of species
overlapping between all tools, divided by the number of species in the comparison, increases around the number of species in the sample (50 in this
case). b The percent overlaps for all datasets show a similar trend. c The rightmost peak in (b) approximates the number of species in a sample, with a
root mean square error (RMSE) of 8.9 on the test datasets. d Precise tools can offer comparable or better estimates of species count. RMSE = 3.2, 3.8,
3.9, 12.2, and 32.9 for Kraken filtered, BlastMegan filtered, GOTTCHA, Diamond-MEGAN filtered, and MetaPhlAn2, respectively
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c d

Fig. 4 (See legend on next page.)
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We next designed a community predictor that combines
abundance rankings across all tools (see “Methods”). Con-
sensus ranking offered improvement over individual tools
in terms of mAUPR, which gives an idea of the accuracy
of abundance rankings (Additional file 5: Table S4). Unlike
pairing tools, this approach can also compensate for varia-
tions in database completeness among tools for samples
of unknown composition, since detection by only a subset
of tools was sufficient for inclusion in the filtered results
of the community predictor. However, by including every
species called by any tool, precision inevitably falls.
As alternatives, we designed two “majority vote” en-

semble classifiers using the top tools by F1 score either
including BLAST (one of the two slowest tools) or not.
At the genus level (Fig. 4c), the majority vote BlastEn-
semble had the best F1 score due to limited loss in pre-
cision and improved recall. However, we show that little
performance is sacrificed using only BLAST-MEGAN or
the overlap between BLAST-MEGAN and LMAT. If
avoiding BLAST for speed reasons, the majority vote
DiamondEnsemble is a competitive alternative, improv-
ing the F1 score over Diamond-MEGAN or GOTTCHA
alone. At the species level (Fig. 4d), the BlastEnsemble and
DiamondEnsemble ranked highest. Finally, pairing tools
could occasionally lead to worse performance; for ex-
ample, GOTTCHA combined with CLARK lowered F1
score compared to GOTTCHA alone (Fig. 4d).

Classifier performance by taxa
We next sought to identify which species were consist-
ently hardest to detect within and across the tools; the
performance of each classifier by taxon is provided in
Additional file 6. The most difficult taxa to identify at each
taxonomic level (averaged over all classifiers) are Archaea
(Superkingdom), Acidobacteria (phylum), Acidobacteriia
(class), Acidobacteriales (order), Crocosphaera (genus),
and Acinetobacter sp. NCTC 10304/Corynebacterium
pseudogenitalium/Propionibacterium sp. 434-HC2 (spe-
cies). Common phyla such as Proteobacteria, Firmicutes,
and Actinobacteria and genera such as Lactobacillus,
Staphylococcus, and Streptococcus were frequent false pos-
itives. Classifiers show bias towards these taxa likely be-
cause they are better represented in databases than others.
In terms of false negatives, it is interesting to note that
genera that include highly similar species such as Bacillus,
Bifidobacterium, and Shigella were commonly miscalled.
Species in Additional file 6 are additionally annotated by
genomic complexity using the classification groups from

Koren, et al. (2014) [45]; however, we found minimal dif-
ferences between classification groups.

Negative controls
We tested all tools on a set of three negative controls:
sequenced human reference material (NA12878) spiked
into a MoBio PowerSoil extraction kit, simulated
sequences that do not exist in any species, and environ-
mental samples containing strains previously misclassi-
fied as pathogens. Of the methods tested, seven did not
include the human genome in their default database. For
those that did, human DNA was identified as the most
abundant species in the sequencing controls (Additional
file 7: Table S5). Most of the tools identified additional
non-human species, between a mean of 4.67 for
GOTTCHA and 1360 for CLARK-S. MetaFlow and
BLAST-MEGAN (default filter) were the only tools that
did not identify additional species. Notably, not all
additional species are necessarily false positives; previous
studies (e.g. [46]) detected biological contaminants in se-
quencing data. Using pairs of tools with mean precision
greater than 90% (n = 25) on the test datasets at the
genus level, we found Acinetobacter and Escherichia
were genera of putative sequencing and/or reagent
contaminants. Previous studies have also detected con-
tamination with both [46]. Lymphocryptovirus was also
identified by the pairs of tools. High-precision pairs at
the species level (n = 28) reported Escherichia coli, En-
terobacter cloacae, and Epstein-Barr virus. No genera or
species were consistently found by pairs of tools with
mean precision > 95% (genus n = 15, species n = 4).
We next tested a set of 3 million simulated negative

control sequences that do not exist in any known species
(see “Methods,” Additional file 2: Table S2). Most tools
did not identify any species in these synthetic control se-
quences, although PhyloSift, NBC, and LMAT identified
false positives at low probability scores (PhyloSift) or
abundances (NBC and LMAT). The identification of Sor-
angium cellulosum as the most abundant species in all
three datasets indicates size bias among NBC’s false pos-
itives. The S. cellulosum genome is particularly large for
bacteria at 13.1 M base pairs [47]. Further top-ranking
species from NBC were consistent despite smaller ge-
nomes than other organisms in the database, most likely
because there are more reference sequences available at
the subspecies level for these common microbes (29 E.
coli and nine B. cereus in the NBC database). LMAT
consistently identified human as the most abundant

(See figure on previous page.)
Fig. 4 The (a) precision and (b) recall for intersections of pairs of tools at the species level, sorted by decreasing mean precision. A comparison
between multi-tool strategies and combinations at the (c) genus and (d) species levels. The top unique (non-overlapping) pairs of tools by F1
score from (a, b) are benchmarked against the top single tools at the species level by F1 score, ensemble classifiers that take the consensus of
four or five tools (see “Methods”), and a community predictor that incorporates the results from all 11 tools in the analysis to improve AUPR
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species in all three datasets without any other overlap
between the datasets, suggesting a bias towards the host
reference genome. PhyloSift results were variable, with
no species consistently reported in all three datasets.
Finally, we note that filtering is not always sufficient to

address the challenge of monophyletic species within cer-
tain genera, such as Bacillus (Additional file 8: Table S6).
In many cases, pairing tools or using ensemble approaches
did not reliably correct the problem of species/strain
identity, demonstrating that examining plasmids and
specific genetic markers is often necessary to correctly
characterize pathogenicity, as noted elsewhere [18, 19].
Taxonomic classifiers give a first, useful overview of the
sample under investigation but crucial microbes for med-
ically relevant analyses should be validated, visualized, and
closely examined, ideally with orthogonal analyses or algo-
rithms. For example, we have released a new tool that can
accurately discriminate harmless from pathogenic strains
of Bacillus using titrated plasmid measures, variant detec-
tion, and specific gene markers [20].

Relative abundance
After calculating performance based on species detec-
tion, we calculated the accuracy of relative abundance
predictions (Fig. 5a, b) for titrated and simulated sam-
ples. Almost all tools could predict the percentage of a
species in a sample to within a few percentage points.
GOTTCHA was an exception, performing poorly with
log-normally distributed samples (Fig. 5a, c) despite
success with more evenly distributed samples (Fig. 5b).
Although GOTTCHA showed promise in relative abun-
dance estimation on first publication [29], our results
are consistent with those from Lindgreen et al. [13] at
higher levels of classification (phylum and genus). While
the log-modulus examines a fold-change, the L1 distance
shows the distance between relative abundance vectors
by dataset (Σi = 1

n |yi − xi|), where y is the expected profile
and x the observed profile (Fig. 5d) [48]. Many tools
showed greater variation between datasets, as measured
by the L1 distance for simulated datasets, especially
BLAST and Diamond. The ensemble methods per-
formed the best on the simulated data but had more
variation than NBC, MetaPhlAn, and CLARK. On the
biological samples, DiamondEnsemble was competitive
but again had greater deviation than CLARK and tended
to underestimate the relative abundance while CLARK
tended to overestimate.

Limits of detection and depth of sequencing
To quantify the amount of input sequence required for
detection, recall was calculated as a function of sequencing
depth for each input organism, using the Huttenhower
HC/LC datasets (Fig. 6a). Each bin represents 17–69
input organisms, for a total of 197 organisms in the

analysis. In general, k-mer-based methods (CLARK,
Kraken, and LMAT) produced the highest recall, while
other methods required higher sequencing depth to
achieve equivalent recall.
Yet, sequencing depth can strikingly change the results

of a metagenomic study, depending on the tool used.
Using a deeply sequenced, complex environmental sam-
ple from the New York City subway system (100 M
reads from sample P00497), we subsampled the full
dataset to identify the depth (5, 10, 15, 20, 30, 40, 50,
and 75 M reads) at which each tool recovered its max-
imum number of predicted species (Fig. 6b). Reinforcing
our analysis of limits of detection, marker-based tools
identified far more species as depth of sequencing in-
creased, an effect slightly attenuated by filtering (Fig. 6c).
Among k-mer-based tools, LMAT showed the largest in-
crease, while Kraken, CLARK, and CLARK-S showed
more gradual increases. Filtering Kraken results de-
creased the absolute number of species identified but in-
creased the slope of the trend. Notably, only a single
species (Pseudomonas stutzeri) was called by every
method (Additional file 3: Figure S4) and the majority of
species called (6223, 72%) were unique to a single tool.
Thus, as investigators consider depth of sequencing in
their studies, they should keep in mind that results can
drastically change, depending on the tool selected and
method of filtering. Based on these results, standardizing
the sequencing depth and analysis method is extraordin-
arily important to compare multiple samples within
studies or from similar studies.

Nanopore reads
Short, highly accurate reads are the primary focus of
most analysis tools but newer, long-read sequencing
methods can offer a lower cost, more portable alterna-
tive for metagenomics studies. We tested the tools using
two titrated MGRG mixtures (five and 11 species, re-
spectively) sequenced using one of the first available
versions (R6 flowcell) and a newer update (R9 flowcell)
of the MinION from Oxford Nanopore Technologies
(Additional file 3: Figure S5). “2D” consensus-called
reads from the initial release of the MinION attained
around 80% alignment accuracy, increasing to around
95% since then. Most k-mer-based and alignment-based
tools identified all component species of the mixture at
some level of abundance, although also reported false
positives among the top five results. CLARK and
Diamond-MEGAN performed as well with lower quality
data, while other tools were not as robust. Classification
of reads with an average quality score of > Q9 improved
results for LMAT. Marker-based methods did not per-
form well, likely in part because the datasets were small
and failed to cover the expected markers.
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Read-level analysis
Finally, we used the output from eight tools that classify
individual reads to measure precision and recall for spe-

cies identification at the read level, where precision ¼
# reads classified correctly

# reads classified and recall ¼ # reads classified correctly
# reads

with classification to species or subspecies (Additional

file 9: Table S7). Both measures were high for all tools, al-
though low recall was observed for some of the data-
sets, depending on whether the species in the dataset
were also in a tool’s database. The low recall of some
tools can also be explained by the low proportion of
classified reads after filtering (e.g. Diamond-MEGAN
and NBC). BLAST-MEGAN offered the highest

a

d

b

c

BIOMICS sample

Fig. 5 The relative abundances of species detected by tools compared to their known abundances for (a) simulated datasets and (b) a biological
dataset, sorted by median log-modulus difference (difference' = sign(difference)*log(1 + |difference|)). Most differences between observed and expected
abundances fell between 0 and 10, with a few exceptions (see inset for scale). c The deviation between observed and expected abundance by expected
percent relative abundance for two high variance tools on the simulated data. While most tools, like Diamond-MEGAN, did not show a pattern in errors,
GOTTCHA overestimated low-abundance species and underestimated high-abundance species in the log-normally distributed data. d The L1 distances
between observed and expected abundances show the consistency of different tools across simulated datasets
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a

b c

Fig. 6 a Recall at varying levels of genome coverage on the HC and LC datasets (using the least filtered sets of results for each tool). b Downsampling
a highly sequenced environmental sample shows depth of sequencing significantly affects results for specific tools, expressed as a percentage of the
maximum number of species detected. Depending on strategy, filters can decrease the changes with depth. c The maximum number of species
detected by each tool at any depth
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precision, while CLARK-S most frequently provided
the highest recall. An ensemble approach was con-
structed by assigning each read to the most frequently
called taxa among the different tools. Setting the
quorum to one improved recall by 0.43% on average
compared with results from the best single tool for
each dataset, while maintaining precision comparable
to the most precise tool for each dataset.

Run-time and memory
Speed and memory requirements are often critical factors
in the analysis of large-scale datasets. We benchmarked all
tools on the same computational cluster, using 16 threads
to measure relative speed and memory consumption
(Fig. 7). Among the least memory intensive were MetaPh-
lAn, GOTTCHA, PhyloSift, and NBC. However, PhyloSift
was slow compared to CLARK, GOTTCHA, Kraken,
MetaFlow, MetaPhlAn, Diamond-Megan and LMAT.
NBC and BLAST were the slowest tools, taking multiple
weeks to run for larger datasets. Taken together with pre-
cision, recall, and database size, these speed constraints
can help guide the optimal selection of tools (Fig. 7c).

Discussion
Recent studies of microbiomes have used a variety of
molecular sequencing methods (16S, 18S, ITS, shotgun)
to generate data. Many rely on a single classifier or com-
pare the results of a few classifiers, but classifier type
and filter use differ among studies [17, 49–53]. To en-
able greater comparability among metagenome studies,
continuous benchmarking on titrated and varied datasets
is needed to ensure the accuracy of these tools.
Unlike almost all prior comparisons, our analyses

focused on species identification, since species is a taxo-
nomic rank more relevant in clinical diagnostics or
pathogen identification than genus or phylum. Although
clinical diagnosis and epidemiological tracking often re-
quire identification of strains, databases remain poorly
populated below the level of species [12, 54]. Classifica-
tion to strain requires algorithms that can differentiate
genomes and their plasmids with high similarity, as we
have shown for Bacillus, which is particularly challen-
ging when using short reads. Most of the test datasets
included in this study lacked complete information at
the strain level, so we were able to calculate precision

a

c

b

Fig. 7 a Time and (b) maximum memory consumption running the tools on a subset of data using 16 threads (where the option was available,
except for PhyloSift, which failed to run using more than one thread, and NBC, which was run through the online server using four threads).
BLAST, NBC, and PhyloSift were too slow to completely classify the larger datasets, therefore subsamples were taken and time multiplied.
c A decision tree summary of recommendations based on the results of this analysis
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and recall for only a subset of datasets (n = 12). These
results clearly indicate that specialized approaches are
still needed. For example, PanPhlAn [55] and MetaPh-
lAn2 strainer are recent tools designed by the authors of
MetaPhlAn for epidemiological strain detection, al-
though they focus on relationships between strains in a
sample for a given species, rather than strain identifica-
tion of all species in a sample. ConStrains [56] instead
uses single nucleotide polymorphism profiling and re-
quires higher depth of coverage than available for the
datasets used in this study.
Every database ideally should provide a complete set

of taxa for sequence comparison. In reality, most species
lack reference genomes, with contigs or full genomes for
only around 300,000 microbial species of a recent esti-
mate of up to 1 trillion extant species globally [57].
Large databases also demand greater computational re-
sources, another reason that tools classify samples using
limited sets of reference genomes. However, incomplete
databases result in more unclassified reads or incorrect
identification of reads as related species. For this study,
tools were compared using their default or recom-
mended databases, where possible. Thus, our analyses
penalize tools if their databases are missing genera or
species in the truth set for a sample. We considered this
a fair comparison since database size can affect the
results of metagenomic analyses significantly (as we
demonstrate with the limited NBC database) and certain
tools were trained on, or provide, a single database.
By considering tools in their entirety, this study does

not directly address differences between databases, but
in the absence of any other guide for specific problems,
users of these tools usually choose the default or most
readily available database. Differences between tools’ de-
fault databases are shown in Additional file 1: Table S1.
For example, for full metagenomic profiling across all king-
doms of life, BLAST and Diamond offer the most extensive
databases for eukaryotes, although databases can be con-
structed for tools like CLARK or Kraken to include greater
kingdom diversity. One issue we note is that results for
web-based tools that frequently update their databases (e.g.
BLAST) vary over time, and may not be reproducible
between analyses. The high percentage of unidentifiable
reads, or “microbial dark matter,” in many studies [16, 17]
underscores the limitations of databases currently available,
as well the use for de novo assembly of reads to help with
the uncharacterized microorganisms from the field.
Long read technologies, such as the MinION nanopore,

10X Genomics, or PacBio sequencers can be helpful both
for de novo assembly [58, 59] and avoiding ambiguous
mapping of reads from conserved regions. Our results
suggest that even relatively low-quality reads (below an
average base quality of 9) can be used for taxonomic
classification, with improvements as dataset size and

quality increased. Most k-mer-based and alignment-based
methods performed well with longer reads, while marker-
based tools did not.

Conclusions
These data and results provide useful metrics, datasets
(positive and negative controls), and best practices for
other investigators to use, including well-characterized, ti-
trated reference datasets now routinely sequenced by
laboratories globally. Using the simulated datasets, read-
level accuracy can be calculated and aid in determining
the role of read ambiguity in taxonomic identification.
Our data showed that read-level precision was much
higher than organism-level precision for some tools, in-
cluding CLARK, Kraken, and NBC. By varying the filter-
ing threshold for identification and comparing F1 scores
to AUPR, we showed that the discrepancy occurs because
these tools detect many taxa at relatively low read counts.
To determine which taxa are actually present in a

sample, users can filter their results to increase precision
and exercise caution in reporting detection of low abun-
dance species, which can be problematic to call. For ex-
ample, an analysis of environmental samples collected in
the Boston subway system filtered out organisms present
at less than 0.1% of total abundance and in fewer than
two samples [60]. Yet, depending on tool selection, this
filter would have been insufficient to reject strains of
Bacillus in the NYC subway study, despite the absence
of pathogenic plasmids that distinguish it from closely
related species [17]. Therefore, filters must be consid-
ered in the context of a given study along with add-
itional information like plasmids, genome coverage,
markers’ genetic variants, presence of related species,
and epidemiology. Filters should be used with consider-
ation for study design and read depth, as well as the
classification tool used. Nevertheless, discarding all taxa
at low abundance risks rejecting species that are actually
present. For instance, highly complex microbial commu-
nities found in the adult human gut and in soil contain
species numbering in the hundreds and tens of thou-
sands, respectively [61, 62]. Assuming even abundance
and depth of coverage, any one species would be repre-
sented by less than 0.1% of reads. In a real community
of variable species abundance, many species would com-
pose an even smaller percentage [51].
There are several options to address the ongoing prob-

lem of thresholds and low abundance species. First,
precision–recall curves using known samples (such as
those used in this study) can help define the appropriate
filtering threshold for a given tool. Second, combining
predictions from several tools offers an alternative
means to improve species detection and multiple ensem-
ble approaches were explored in this study. Finally,
targeted methods (e.g. capture, polymerase chain
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reaction, direct hybridization) can confirm the presence
of rare taxa or specific pathogens. As citizen science ex-
pands with cheaper and more accessible sequencing
technologies [63, 64], it is important that background on
bioinformatics tools is provided, that classifier results
are not oversold, and that genus-level differences are
viewed as trends, not diagnostics.
Although many approaches are possible, here we ex-

plored ensemble methods without taking into account the
differences in performance of their component tools to
avoid overfitting weighted schemes. Trained predictors
merit further research, including variations on that recently
proposed by Metwally, et al. [65]. Any ensemble method
requires combining outputs of various tools, a challenge
that would benefit by the adoption of standardized file for-
mats. The Critical Assessment of Metagenomic Interpret-
ation challenge proposed one such unifying format [27].
Inclusion of NCBI taxonomy IDs in addition to taxa
names, which are more variable and difficult to track across
database updates, would greatly simplify comparisons.
With significant variation in tools’ performance demon-

strated in this study, continual benchmarking using the
latest sequencing methods and chemistries is critical. Tool
parameters, databases, and test dataset features all affect
the measures used for the comparisons. Benchmarking
studies need to be computationally reproducible and
transparent and use readily available samples and
methods. We showed here that filtering and combining
tools decreases false positives, but that a range of issues
still affect the classification of environmental samples, in-
cluding depth of sequencing, sample complexity, and
sequencing contamination. Additional benchmarking is
necessary for analyses such as antibiotic resistance marker
identification, functional classification, and mobile genetic
elements; this is especially important as metagenomics
moves towards answering fundamental questions of cross-
kingdom genetic dynamics. Metrics of tool performance
can inform the implementation of tools across metage-
nomics research studies, citizen science, and “precision
metagenomics,” where robust metagenomics analysis can
guide clinical decisions across all kingdoms of life.

Methods
Data selection
A wide range of datasets was selected to answer a variety of
questions. Published datasets with known species composi-
tions (“truth sets,” see Additional file 2: Table S2) were
chosen to measure precision and recall. Additional datasets
with known abundances, including a subset with even (HC
datasets) and log-normal (LC datasets) distributions of spe-
cies, facilitated analysis of abundance predictions and limits
of detection. The MGRG libraries sequenced using Illumina
and the MinION nanopore sequencer contain equimolar
concentrations of DNA from five organisms.

We used two sets of negative controls: biological con-
trols to test for contamination during sample prepar-
ation; and a simulated set of reads that did not map to
any known organisms to test for spurious predictions.
The biological control was made by spiking human
NA12878 samples into a MoBio PowerSoil kit and then
extracting and sequencing the DNA in triplicate. The
three simulated negative control datasets we use include
100-bp reads constructed from 17-mers that do not map
to any genomes in the full NCBI/RefSeq database [37].
Lack of agreement in read classification among the

tools, which can arise from discrepancies in the databases,
classification algorithms, and underlying read ambiguity,
was investigated. Notably, 100-bp reads are short enough
that some will map to several distinct organisms (e.g. from
the same genus) within a given error rate. To facilitate a
comparison between tools based solely on the database of
the tool and internal sequence analysis algorithm, datasets
of reads that map unambiguously to a single species
within the NCBI/RefSeq database were generated using a
methodology described previously [37]. Briefly, six data-
sets were created using the ART simulator with default
error and quality base profiles [66] to simulate 100-bp Illu-
mina reads from sets of reference sequences at a coverage
of 30X and efficiently post-processed to remove ambigu-
ously mapped read at the species levels [36]. Each of these
unambiguous datasets (“Buc12,” “CParMed48,” “Gut20,”
“Hou31,” “Hou21,” and “Soi50”) represents a distinct mi-
crobial habitat based on studies that characterized real
metagenomes found in the human body (mouth, gut, etc.)
and in the natural or built environment (city parks/me-
dians, houses, and soil), while a seventh dataset, “simBA-
525,” comprised 525 randomly selected species. An extra
unambiguous dataset, “NYCSM20,” was created to repre-
sent the organisms of the New York City subway system
as described in the study of Afshinnekoo et al. [17], using
the same methodology as in Ounit and Lonardi [37]. To-
gether, these eight unambiguous datasets contain a total of
657 species. In the survey of the NYC subway metagen-
ome, Afshinnekoo et al. noted that two samples (P00134
and P00497) showed reads that mapped to Bacillus
anthracis using MetaPhlAn2, SURPI, and MegaBLAST-
MEGAN, but it has been since shown by the authors and
others that this species identification was incorrect. We
used the same datasets to test for the detection of a patho-
genic false positive using the wider array of tools included
in this study [20].

Tool commands
CLARK series
We ran CLARK and CLARK-S. CLARK is up to two or-
ders of magnitude faster than CLARK-S but the latter is
capable of assigning more reads with higher accuracy at
the phylum/genus level [67] and species level [37]. Both
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were run using databases built from the NCBI/RefSeq
bacterial, archaeal, and viral genomes.
CLARK was run on a single node using the following

commands:

$./set_target.sh < DIR > bacteria viruses (to set the
databases at the species level)
$./classify_metagenome.sh -O < file > .fasta -R < result > (to
run the classification on the file named < file > .fasta given
the database defined earlier)
$./estimate_abundance -D <DIR > -F result.csv >
result.report.txt (to get the abundance estimation report)

CLARK-S was run on 16 nodes using the following
commands:

$./set_target.sh < DIR > bacteria viruses
$./buildSpacedDB.sh (to build the database of spaced
31-mers, using three different seeds)
$./classify_metagenome.sh -O < file > -R < result > -n 16
–spaced
$./estimate_abundance -D <DIR > -F result.csv -c 0.75 -g
0.08 > result.report.txt

For CLARK-S, distribution plots of assignments per
confidence or gamma score show an inconsistent peak
localized around low values likely due to sequencing er-
rors or noise, which suggests 1–3% of assignments are
random or lack sufficient evidence. The final abundance
report was therefore filtered for confidence scores ≥ 0.75
(“-c 0.75”) and gamma scores ≥ 0.08 (“-g 0.08”).
We note that we used parameters to generate classifi-

cations to the level of species for all analyses, although
classifying only to genus could improve results at that
level. Speed measurements were extracted from the
log.out files produced for each run.

GOTTCHA
Since GOTTCHA does not accept input in fasta format,
fasta files for simulated datasets were converted to fastqs
by setting all base quality scores to the maximum.
The v20150825 bacterial databases (GOTTCHA_BAC-

TERIA_c4937_k24_u30_xHUMAN3x.strain.tar.gz for the
strain-level analyses and GOTTCHA_BACTERIA_c4
937_k24_u30_xHUMAN3x.species.tar.gz for all others)
were then downloaded and unpacked and GOTTCHA
run using the command:

$ gottcha.pl –threads 16 –outdir $TMPDIR/–input
$TMPDIR/$DATASET.fastq –database
$DATABASE_LOCATION

As for CLARK and CLARK-S, using the genus data-
bases for classifications to genus could improve results

at that level (although we observed only small differ-
ences in our comparisons to use of the species databases
for a few datasets).

Kraken
Genomes were downloaded and a database built using
the following commands:

$ kraken-build –download-taxonomy –db KrakenDB
$ kraken-build –download-library bacteria –db
KrakenDB
$ kraken-build –build –db KrakenDB –threads 30
$ clean_db.sh KrakenDB

Finally, Kraken was run on fasta and fastq input files
using 30 nodes (or 16 for time/memory comparisons).

$ time kraken –db < KrakenDB > –threads 30 –fast[a/
q]-input [input file] > [unfiltered output]

Results were filtered by scores for each read (# of k-mers
mapped to a taxon/# of k-mers without an ambiguous nu-
cleotide) using a threshold of 0.2, which had been shown to
provide a per-read precision of ~99.1 and sensitivity ~72.8
(http://ccb.jhu.edu/software/kraken/MANUAL.html).

$ time kraken-filter –db < KrakenDB > –threshold 0.2
[unfiltered output] > [filtered output]

Both filtered and unfiltered reports were generated using

$ kraken-report –db < KrakenDB > [filtered/unfiltered
output] > [report]

Paired end files were run with the –paired flag.
We compared results using the standard database and

the “mini” database of 4 GB, which relies on a reduced
representation of k-mers. Precision, recall, F1 score, and
AUPR were highly similar; therefore, we show only the
results for the full database.

LMAT
We used the larger of the available databases, lmat-4-
14.20mer.db, with the command

$ run_rl.sh –db_file=/dimmap/lmat-4-14.20mer.db
–query_file = $file –threads = 96 –odir = $dir
–overwrite

MEGAN

� BLAST
We downloaded the NCBI BLAST executable
(v2.2.28) and NT database (nucleotide) from
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ftp://ftp.ncbi.nlm.nih.gov/blast/. We searched for each
unpaired read in the NT database using the Megablast
mode of operation and an e-value threshold of 1e-20.
The following command appended taxonomy
columns to the standard tabular output format:
$ blastn –query < sample > .fasta -task megablast
-db NT -evalue 1e-20 \
-outfmt '6 std staxids scomnames sscinames
sskingdoms'" \
< sample > .blast

We downloaded and ran MEGAN (v5.10.6) from
http://ab.inf.uni-tuebingen.de/software/megan5/. We
ran MEGAN in non-interactive (command line)
mode as follows:
$ MEGAN/tools/blast2lca –format BlastTAB –
topPercent 10 \
–input < sample > .blast –output < sample >
_read_assignments.txt

This MEGAN command returns the lowest
common ancestor (LCA) taxon in the NCBI
Taxonomy for each read. The topPercent option
(default value 10) discards any hit with a bitscore
less than 10% of the best hit for that read.
We used a custom Ruby script,
summarize_megan_taxonomy_file.rb, to sum the
per-read assignments into cumulative sums for each
taxon. The script enforced the MEGAN parameter,
Min Support Percent = 0.1, which requires that at
least this many reads (as a percent of the total reads
with hits) be assigned to a taxon for it to be re-
ported. Taxa with fewer reads are assigned to the
parent in the hierarchy. Output files were given the
suffix “BlastMeganFiltered” to indicate that an abun-
dance threshold (also called a filter in this manu-
script) was applied. We produced a second set of
output files using 0.01 as the minimum percentage
and named with the suffix
“BlastMeganFilteredLiberal.”

� DIAMOND
DIAMOND (v0.7.9.58) was run using the nr
database downloaded on 2015-11-20 from NCBI
(ftp://ftp.ncbi.nih.gov/blast/db/FASTA/). We tried
both normal and --sensitive mode, with very similar
results and present the results for the normal mode.
The command to execute DIAMOND with input
file sample_name.fasta is as follows and generates an
output file named sample_name.daa
diamond blastx -d/path/to/NCBI_nr/nr -q
sample_name.fasta -a sample_name -p 16
MEGAN (v5.10.6) (obtained as described above) was
used for read-level taxonomic classification in non-
interactive mode:
megan/tools/blast2lca –input sample_name.daa
–format BlastTAB –topPercent 10 –gi2taxa

megan/GI_Tax_mapping/gi_taxid-
March2015X.bin –output
sample_name.read_assignments.txt

A custom Ruby script (described above) was used to
sum the per-read assignments into cumulative sums
for each taxon.

MetaFlow
MetaFlow is an alignment-based program using BLAST
for fasta files produced by Illumina or 454 pyrosequenc-
ing (all fastqs for this study were converted to fastas to
run MetaFlow). Any biological sample that was not se-
quenced with one of these technologies was not run or
analyzed by MetaFlow. We ran MetaFlow using the rec-
ommended parameters as described in the available tu-
torial (https://github.com/alexandrutomescu/metaflow/
blob/master/TUTORIAL.md). We first installed the de-
fault microbial database from NBCI/RefSeq and built the
associated BLAST database. Using the provided script
“Create_Blast_DB.py,” the genomes are downloaded and
stored in the directory “NCBI” in the working directory
and the BLAST database is created with the command:

$ makeblastdb -in NCBI_DB/BLAST_DB.fasta -out
NCBI_DB/BLAST_DB.fasta -dbtype nucl

Classification of each sample (<sample > .fasta) then
proceeded through the following steps:

1) BLAST alignment
$ blastn -query < sampleID > .fasta -out <
sampleID > .blast -outfmt 6 -db NCBI_DB/
BLAST_DB.fasta -num_threads 10
We converted the sample file into FASTA file if the
sample file was in FASTQ format and used the
default settings to align the reads with BLAST.

2) LGF file construction
$ python BLAST_TO_LGF.py < sampleID > .blast
NCBI_DB/NCBI_Ref_Genome.txt < avg_length >
<seq_type >
The graph-based representation from the BLAST
alignments is built into a LGF (Lemon Graph For-
mat) file. This operation takes as input the average
length (<avg_length>) of the reads and the sequen-
cing machine (<seq_type>, 0 for Illumina and 1 for
454 pyrosequencing).

3) MetaFlow
$./metaflow -m < sampleID > .blast.lgf -g NCBI_DB/
NCBI_Ref_Genome.txt -c metaflow.config
The MetaFlow program is finally run using as input
the LGF file (from the previous step), the database
metadata (i.e. genome length) and a configuration
file. We used the default settings for the
configuration but lowered the minimum threshold
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for abundance to increase the number of detected
organisms from 0.3 to 0.001). The program outputs
all the detected organisms with their related
abundance and relative abundance.

MetaPhlAn2
MetaPhlAn2 was run using suggested command under
“Basic usage” with the provided database (v20) and the
latest version of bowtie2 (bowtie2-2.2.6):

$ metaphlan2.py metagenome.fasta –mpa_pkl
${mpa_dir}/db_v20/mpa_v20_m200.pkl –bowtie2db
${mpa_dir}/db_v20/mpa_v20_m200 –input_type
fasta > profiled_metagenome.txt

NBC
All datasets were analyzed through the web interface
using the original bacterial databases [42], but not the
fungal/viral or other databases [68].
Results were further filtered for the read-level analysis

because every read is classified by default, using a
threshold = -23.7*Read_length + 490 (suggested by
http://nbc.ece.drexel.edu/FAQ.php).

PhyloSift
PhyloSift was run using

$ phylosift all [–paired] < fasta or fastq > .gz

Results were filtered for assignments with > 90%
confidence.

Analysis
Taxonomy IDs
For those tools that do not provide taxonomy IDs, taxa
names were converted using the best matches to NCBI
names before comparison of results to other tools and
truth sets. A conversion table is provided in the supple-
mentary materials (Additional file 10).

Precision–recall

Precision was calculated as species identified correctly
species identified and

recall as species identified correctly
species in the truth set . We calculated precision–

recall curves by successively filtering out results based
on abundances to increase precision and recalculating
recall at each step, defining true and false positives in
terms of the binary detection of species. The AUPR was
calculated using the lower trapezoid method [69]. For
subspecies, classification at varying levels complicated
the analysis (e.g. Salmonella enterica subsp. enterica,
Salmonella enterica subsp. enterica serovar Typhimur-
ium, Salmonella enterica subsp. enterica serovar Typhi-
murium str. LT2). We accorded partial credit if higher

levels of subspecies classification were correct but the
lowest were not by expanding the truth sets to include
all intermediate nodes below species.

Negative binomial model
Negative binomial regression was used to estimate the
contributions of dataset features to the number of false
positives called by each tool. Using all 40 datasets, the
false-positive rate was modeled as false positives ~ ß0
+ ß1(X1) + ß2(X2) + ß3(X3) + ß4(X4), where X = (number
of reads, number of taxa, read length, and a binary
variable indicating whether a dataset is simulated).
Test statistics and associated p values were calculated
for each variable using the glm.nb function in R.

Abundance
Abundances were compared to truth set values for simu-
lated and laboratory-sequenced data. Separate truth sets
were prepared for comparison to tools that do and do
not provide relative abundances by scaling expected
relative abundances by genome size and ploidy (expected
read proportion = (expected relative abundance)/(gen-
ome length*ploidy)) or comparing directly to read
proportions. The genome size and ploidy information
were obtained from the manual for the BIOMICS™
Microbial Community DNA Standard, while the read pro-
portions for the HC and LC samples were calculated using
species information from the fasta file headers. The log-
modulus was calculated as y' = sign(y)*log10(1 + |y|) to
preserve the sign of the difference between estimated and
expected abundance, y.

Community/ensemble predictors
Ensemble predictors were designed to incorporate the
results from multiple tools using either summaries of
identified taxa and/or their relative abundances, or read-
level classifications.

Summary-based ensembles

Community When multiple tools agree on inferred
taxa, it increases confidence in the result. Conversely,
when multiple tools disagree on inferred taxa, it dimin-
ishes confidence in the result. To study this intuition
quantitatively, we formulated a simple algorithm for
combining the outputs from multiple tools into a single
“community” output. For each tool, we first ranked the
taxa from largest to smallest relative abundance, such
that the most abundant taxon is rank 1 and the least
abundant taxon is rank n. Next, we weighted taxa by 1/
rank, such that the most abundant taxon has a weight 1
and the least abundant taxon has weight 1/n. Finally, we
summed the weights for each taxon across the tools to give
the total community weight for each taxon. For example, if
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E. coli were ranked second by five of five tools, the total
weight of E. coli would be 5/2. Variations on this method of
combining multiple ranked lists into a single list have been
shown to effectively mitigate the uncertainty about which
tool(s) are the most accurate on a particular dataset [70, 71]
and for complex samples [72].

Quorum As an alternative approach, we tested various
combinations of three to five classifiers to predict taxa
present based on the majority vote of the ensemble
(known as majority-vote ensemble classifiers in machine
learning literature). In the end, tools with the highest
precision/recall (BlastMEGAN_Filtered, GOTTCHA,
DiamondMEGAN_Filtered, Metaphlan, Kraken_Filtered,
and LMAT) were combined to yield the best majority
vote combinations. We limited the ensembles to a max-
imum of five classifiers, reasoning that any performance
gains with more classifiers would not be worth the
added computational time. Two majority vote combina-
tions were chosen: (1) BlastEnsemble, a majority vote
classifier that relies on one of the BLAST-based configu-
rations, with a taxa being called if two or more of the
classifiers call it out of the calls from BlastMEGAN
(filtered), GOTTCHA, LMAT, and MetaPhlAn; and (2)
DiamondEnsemble, a majority vote classifier that does
not rely on BLAST, with three or more of Diamond-
MEGAN, GOTTCHA, Kraken (filtered), LMAT, and
MetaPhlAn calling a taxa. The second was designed to
perform well but avoid BLAST-MEGAN, the tool with
the highest F1 score but also one of the slowest tools.
In order to get the final relative abundance value, we

tried various methods, including taking the mean or
median of the ensemble. We settled on a method that
prioritizes the classifiers based on L1 distance for the
simulated data. Therefore, in the BlastEnsemble, the
BLAST-MEGAN relative abundance values were taken
for all taxa that were called by BLAST-MEGAN and the
ensemble, then MetaPhlAn abundance values were taken
for taxa called by the BlastEnsemble but not BLAST,
then LMAT values were taken for taxa called by LMAT
and the ensemble but not BLAST or MetaPhlAn, and
finally GOTTCHA values. This method was also ap-
plied to the DiamondEnsemble, with Kraken (filtered)
prioritized, followed by MetaPhlAn, LMAT, Diamond,
and GOTTCHA. To compensate for any probability
mass loss, the final relative abundance values (numer-
ator) were divided by the sum of the relative abun-
dance after excluding any taxa not called by the
ensembles (denominator).

Read-based ensembles
For each read r of a given dataset, this predictor con-
siders the classification results given by all the tools and
classifies r using the majority vote and a “quorum” value

(set in input). If all the tools agree on the assignment of
r, say organism o, then the predictor classifies r to o and
moves to the next read, otherwise the predictor identi-
fies the organism o’ of the highest vote count v and
classifies r to o’ if v is higher than a quorum value set by
the user (ties are broken arbitrarily).
Parameters are the results of the tools (i.e. a list of

pairs containing the read identifiers and the associated
organism predicted) and a quorum value (e.g. 1, 2, … 7).
Note that we have set the predictor to ignore cases in
which only one tool provides a prediction.

Time/Memory profiling
We profiled the time and memory consumption of the
tools using the “/usr/bin/time” command on the same
Linux cluster at Weill Cornell. PhyloSift failed to run
without error using multiple threads; otherwise we ran
tools using 16 threads when given an option. Wall time
and maximum resident set size are presented in Fig. 7.
NBC finished running on only a subset of samples, while
we had to subdivide larger files to run BLAST and Phy-
loSift to completion. The overall maximum memory and
cumulative time (with extrapolations from the subsam-
pled files where only a subset finished running) were
taken as estimates in these cases.
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