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Abstract

Obesity and its impact on health is a multifaceted phenomenon encompassing many fac-

tors, including demographics, environment, lifestyle, and psychosocial functioning. A sys-

tems science approach, investigating these many influences, is needed to capture the

complexity and multidimensionality of obesity prevention to improve health. Leveraging

baseline data from a unique clinical cohort comprising 333 postmenopausal overweight or

obese breast cancer survivors participating in a weight-loss trial, we applied Bayesian net-

works, a machine learning approach, to infer interrelationships between lifestyle factors

(e.g., sleep, physical activity), body mass index (BMI), and health outcomes (biomarkers

and self-reported quality of life metrics). We used bootstrap resampling to assess network

stability and accuracy, and Bayesian information criteria (BIC) to compare networks. Our

results identified important behavioral subnetworks. BMI was the primary pathway linking

behavioral factors to glucose regulation and inflammatory markers; the BMI-biomarker link

was reproduced in 100% of resampled networks. Sleep quality was a hub impacting mental

quality of life and physical health with > 95% resampling reproducibility. Omission of the BMI

or sleep links significantly degraded the fit of the networks. Our findings suggest potential

mechanistic pathways and useful intervention targets for future trials. Using our models, we

can make quantitative predictions about health impacts that would result from targeted,

weight loss and/or sleep improvement interventions. Importantly, this work highlights the

utility of Bayesian networks in health behaviors research.

Introduction

Obesity, physical inactivity, and impaired sleep are known risk factors for cardiovascular dis-

ease, type 2 diabetes, and cancer [1–8]. Sedentary behavior is also reported to increase risk for

chronic disease and mortality [9, 10]. It is recognized that multiple biological pathways, such

as glucose regulation and inflammation, are implicated in the link between health behaviors,
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obesity and chronic disease [11, 12]. Unraveling interrelationships among these factors could

elucidate disease mechanisms and inform design of clinical studies.

Modeling multiple correlated factors can be computationally challenging and requires new

statistical approaches. Standard regression modeling cannot disentangle these complex associ-

ations. Bayesian graphical networks are a novel and powerful approach for examining relation-

ships among multiple correlated variables. These models provide algorithms for discovering

and analyzing structure, as well as, an intuitive graphical interface for visualizing multivariate

distributions. Bayesian networks were initially developed in computer science and artificial

intelligence applications [13, 14], and have since had major impact in biomedicine, ‘omics

studies, neurosciences, and more recently in obesity research [15–23]. To our knowledge, no

existing obesity studies have examined multiple lifestyle factors simultaneously in conjunction

with biomarkers and psychosocial factors in a cancer survivor population.

In this work, we applied probabilistic Bayesian networks [13, 24] to elicit bio-behavioral

pathways implicated in obesity and health in breast cancer survivorship. Our sample com-

prised 333 well-characterized postmenopausal breast cancer survivors with objective physical

activity assessments, detailed information on multiple lifestyle factors, clinical characteristics,

and a variety of health measures [25]. Using this unique sample, we developed Bayesian net-

works to model inter-relationships between health behaviors (sleep, physical activity), body

mass index (BMI), circulating biomarkers of inflammation (C-reactive protein [CRP]) and

glucose regulation (fasting insulin), and mental and physical quality of life.

Brief description of Bayes network methodology

A Bayesian network is a probabilistic directed acyclic graph. Random variables are depicted as

nodes on the graph, and edges between nodes represent dependencies (e.g., partial correla-

tions) between these variables. If there is a directed link (arrow) from node A to node B, then

A is termed the “parent” and B the “child”. Each node has an associated distribution function

that takes as input a set of values for the node’s parent variables and gives the probability of the

variable represented by the node. The presence of an edge or path between two variables indi-

cates a non-zero partial correlation between the two variables.

Fitting a Bayesian network requires (i) learning its structure, namely which nodes in the

graph are connected, and (ii) estimating parameters associated with conditional probabilities.

Specifically, let X comprise the set of variables Xi (e.g., X1 = physical activity, X2 = sleep quality,

X3 = BMI, X4 = insulin level, etc.) and M be a Bayesian network on X, comprising a directed

acyclic graph of edges between variables in X. The model M encodes conditional independen-

cies that imply a factoring of the joint probability distribution p(X) of X [13]:

PrðXjMÞ ¼ PPrðXijpaðXiÞÞ ð1Þ

where π represents the product of conditional probability distributions, and pa(Xi) denotes vari-

ables (“parents”) in X with arrows leading into Xi. The structure of the graph M can be learned

by implementing constraint-based, search-score, and hybrid algorithms [26]. For a given graph

M, Pr(Xi | pa(Xi)) represents a local probability distribution, and its parameters ß can be esti-

mated by regression methods, using multivariate Gaussian distributions (after appropriate

transformation if needed) or non-parametric approaches for continuous variables and multino-

mial distributions for categorical variables [24, 27]. Thus, dependencies and (conditional) inde-

pendencies between sets of variables can be derived from a Bayesian network analysis.

The notion of a Markov blanket of a Bayesian network can be used to identify sets of vari-

ables that are (conditionally) independent (i.e., uncorrelated). The Markov blanket for a node

V in a Bayesian network is the set of nodes composed of V’s parents, children and its children’s

Bayesian networks for health behaviors in overweight breast cancer survivors
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other parents. Conditional on its Markov blanket, a node V is independent of other nodes in

the network [24]. Thus the Markov blanket gives an indication of the set of variables that have

direct associations with V. Other variables not in the Markov blanket, may be associated with

V, but only indirectly through the variables in the Markov blanket. This is what would be

expected under a causal interpretation, although one must be cautious in this interpretation

for observational data.

Materials and methods

Ethics statement

This was a secondary data analysis of the “Reach for Health” clinical trial carried out at the

University of California, San Diego (UCSD). The original study was approved by the UCSD

IRB board, project #101977. All subjects in the Reach for Health study provided written con-

sent. The National Institutes of Health ClinicalTrials.gov identifier is NCT01302379.

Study sample and measures

Study sample. Our study sample comprised 333 early-stage breast cancer survivors

enrolled in a weight-loss intervention. The study protocol and design have been previously

published [25]. Briefly, the study enrolled breast cancer survivors, who were postmenopausal

at cancer diagnosis, were either overweight or obese at study entry, and had completed pri-

mary breast cancer treatment (surgery with or without chemotherapy and radiation). 83%

were white; 11% were Hispanic. More information on demographics, lifestyle, clinical factors,

coping, sleep, mood, physical factors, and biomarkers is provided in Table 1. The current anal-

ysis used baseline information to develop network models.

Measures. We obtained participants’ medical records including tumor characteristics

(Cancer Stage, hormone receptor status) and years from cancer diagnosis to study entry

(YrsDXRND). During clinic visits, participants’ height and weight were measured and used to cal-

culate BMI. Physical activity (PA) and sedentary behavior (SB) were determined by objective

7-day, minute-level triaxial accelerometer counts. Specifically, PA was the average (across days)

of total counts per minute per day, thus representing a measure that captured total volume of

activity; moderate vigorous physical activity (MVPA) was the average of minutes per day with

counts� 1952; SB was the average of minutes per day with counts< 100. Accelerometer-derived

measures were adjusted for device wear-time. Demographic information and other study mea-

sures were obtained through self-report or questionnaires. The Neighborhood Environment

Index (Neighborhood) derived from the NEWS scale [28] was used to measure walkability. It has a

range from 0 to 6, with higher scores indicating more walkable neighborhood. Sleep quality was

evaluated based on the PROMIS scale [29]. In the current analysis, we used two subscales, the

sleep disturbance (sleep1), and the sleep impairment (sleep2) subscales. These subscales were

normed to mean 50 with standard deviation of 10. Higher scores indicated worse sleep. Quality of

life assessment, both mental (QOLm) and physical (QOLp), used the SF-36 scale [30]. QOLm and

QOlp scores from 0 to 100, with higher scores reflecting better quality of life. The Monitor-Blunter

(MB) scale assessed participants’ coping mechanism. It ranged from -16 to 16, with higher scores

indicating more monitor than blunter. Fasting plasma CRP and insulin concentrations were mea-

sured using immune-based assays (Meso Scale Discovery), as described previously [25].

Statistical methods

We fit a Bayesian network to examine multivariate relationships between demographics, clini-

cal factors, health behaviors and health outcomes. We disallowed implausible edge directions

Bayesian networks for health behaviors in overweight breast cancer survivors
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while learning the network structure. Specifically, we disallowed QOLp and QOLm to be the

parent nodes of any other variable in the network; and we disallowed age, education, cancer

stage, years between diagnosis and study entry, and neighborhood to be the child nodes of any

other variable. We applied bootstrap resampling to learn a set of 500 network structures. We

then averaged these networks in an attempt to reduce the impact of locally optimal (but glob-

ally suboptimal) networks on learning and inference. The averaged network is a more robust

model with better predictive performance than choosing a single, high-scoring network [24].

To quantify stability of inferred edges, we computed arc strength and direction strength. Arc

strength was calculated as the frequency of an edge occurring between two variables across the

500 bootstrapped network structures; similarly, directional strength was assessed as the fre-

quency of the observed direction re-occurring in the set of learned network structures in

which the relevant edge occurred. The averaged network was created using the arcs whose

strength exceeded a threshold, which was computed by searching for the arc set “closest” to

the arc strength computed from the original data [24]. Conditional independencies were

inferred using Markov blankets and related Bayesian network theory.

Table 1. Characteristics of the Reach for Health cohort of overweight postmenopausal breast cancer survivors (N = 333).

Variables (Nodes)

Demographics & Lifestyle Age (years) Mean (SD) 63 (6.9)

Education (% with college or higher degree) 51%

Smoke (% who ever smoked) 45%

Alcohol (drinks/month) Median 4

Clinical Factors Tumor Stage % 48% Stage1

35% Stage2

17% Stage3

Years from cancer diagnosis to study entry (years) Mean (SD) 2.7 (2.0)

Estrogen Receptor (% Positive) 85.0%

Progesterone Receptor (% Positive) 71.8%

Cancer Treatment Treatment type (%) 53.2% chemotherapy

72.1% radiation

76.9% endocrine

13.8% immunotherapy

Coping Monitor-blunter (MB) Mean (SD) 4.2 (3.5)

Neighborhood NEWS scale Mean (SD) 3.1 (1.7)

Health Insomnia % 28.8% Yes

Depression % 40.8% Yes

Arthritis % 56.4% Yes

QOLp (SF-36) Mean (SD) 66.2 (18.7)

QOLm (SF-36) Mean (SD) 73.6 (18.4)

Insulin+ (pg/mL) Median (25th, 75th)-%ile 463.8 (335.6, 667.0) pg/mL

CRP (mg/l) Median (25th, 75th)-%ile 3.1 (1.5, 6.5) mg/l

Health Behaviors Total Physical Activity (PA)

(counts/min/day) Mean (SD)

273.1(108.6)

MVPA++ min/day Mean (SD) 17.5 (17.3) min/day

Sedentary time min/d Mean (SD) 471(111) min/day

BMI (kg/m2) Mean (SD) 31.1(4.9) kg/m2

Sleep Disturbance Score (Sleep1) Mean (SD) 50.5 (8.8)

Sleep Impairment Score (Sleep2) Mean (SD) 46.9 (9.0)

+ To convert insulin pg/mL to pmol/L multiply by 0.172
++Weartime adjusted

https://doi.org/10.1371/journal.pone.0202923.t001
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We used Bayesian information criteria (BIC) and posterior model probabilities to compare fit

of candidate networks. The BIC was computed as logLik(M)– 0.5�k�log (n), where logLik(M) is

the log-likelihood of model M, k is the number of parameters in M, n is the sample-size. This is

the classic definition rescaled by -2; hence, in our calculations, higher BIC scores indicate better fit.

We also calculated the Bayes factor, which is the ratio of the posterior probabilities (given the

observed data) of the first to the second model, as another metric to compare the two models. The

log of the Bayes factor can be approximated as the difference in the BIC scores as defined above

[31]. Finally, we used logic sampling [24] to study how small perturbations got propagated

through the network. In other words, using Monte Carlo simulations, we evaluated how changes

in one part of the network could influence distributions in another part of the network, and thus

potentially predict the impact of manipulating specific variables. Biomarkers were log-transformed

to better approximate Gaussian assumptions. Models were fitted using the R package bnlearn [32].

Results

Decomposition of probability distribution

The fitted network is shown in Fig 1. From the network analysis, we can obtain the joint prob-

ability distribution of all the variables as a product of conditional distributions. In our applica-

tion, we obtained

PðxÞ

¼ PðTumor StageÞ � PðYears diagnosis to study entryÞ � PðNeighborhoodÞ

�PðAlcohol intakeÞ � PðCoping styleÞ � PðEducationÞ � PðAgeÞ � PðSmokeÞ � PðInsomniaÞ

�PðDepressionjInsomniaÞ � PðSleep1jInsomnia;DepressionÞ � PðArthritisjDepressionÞ

�PðBMIjSmoke;ArthritisÞ � PðSleep2jDepression; Sleep1Þ

�PðQOLpjBMI; Sleep2;ArthritisÞ � PðQOLmjDepression; Sleep2Þ � PðInsulinjBMIÞ

�PðCRPjBMIÞ � PðPAjAge; Sleep2; InsulinÞ

ð2Þ

Fig 1. Bayesian network of total physical activity, other lifestyle factors and health in the Reach for Health cohort.

Lifestyle factors (green), biomarkers (orange), and physical and mental health outcomes (blue).

https://doi.org/10.1371/journal.pone.0202923.g001
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This decomposition converts the complex model comprising 19 variables into simpler compo-

nents. It highlights subsets of factors that directly influence each variable. In fact, the maxi-

mum number of directed edges pointing to any variable is 3 (e.g., PA and QOLp), substantially

fewer than the maximum of 18 possible directed edges. A first notable finding is that there

were no edges from (or to) the following variables: tumor stage, years from diagnosis to study

entry, neighborhood, education, alcohol intake and coping style (MB scale), indicating that

these variables were (marginally) independent of all other factors. Below, we provide addi-

tional details on these decompositions, and how to infer (in)dependencies between variables.

BMI and physical activity (PA)

The network allows us to elicit local structure of the variables and identify “parent” variables

that directly influence other variables. In our learned network (Fig 1), the variables smoke and

arthritis were parents of BMI. Table 2 provides parameter estimates, and strength of network

links based on bootstrap analysis. The smoke and arthritis links to BMI were not very stable as

reflected in the low arc-strengths from the bootstrap analysis: 0.63 for the smoke-BMI link,

0.54 for the arthritis-BMI link (Table 2). The regression coefficient for arthritis was positive,

indicating that having arthritis was associated with higher BMI on average. Interestingly, the

regression coefficient for smoke was positive as well, indicating that smoking was associated

with higher BMI, which is contrary to the common belief that smoking can cause weight loss

by suppressing appetite. However, smoking status in our cohort refers to “ever smoking” and

likely reflects former smokers who quit many years ago; the proportion of current smokers in

the cohort was<2%, too few to include as a separate variable in our analysis. In addition, BMI

had a large Markov blanket comprising smoke, sleep2, QOLp, arthritis, insulin, and CRP, indi-

cating its influence on multiple factors. Also, using Bayesian network theory, we can infer that

BMI is independent of all other variables conditional on its Markov blanket.

Table 2. Parameter estimates and stability of a Bayesian network of total physical activity, sleep and other lifestyle factors, biomarkers, and physical and mental

health outcomes in the Reach for Health cohort of 333 postmenopausal breast cancer survivors.

Outcome

(child)

Predictors (parents) Strength Direction Regression coefficients (SE)

Arthritis� Depression 0.69 0.64 0.704 (0.239)

BMI Smoke 0.63 1.00 1.157 (0.551)

Arthritis 0.54 0.98 1.524 (0.555)

CRP BMI 1.00 0.96 0.093 (0.012)

Depression� Insomnia 0.93 0.60 1.000 (0.257)

Insulin BMI 1.00 0.82 0.039 (0.006)

PA Age 0.97 1.00 -4.563 (0.845)

Sleep2 0.53 0.80 -1.905 (0.659)

Insulin 0.73 0.77 -43.926 (11.188)

QOLm Depression 0.95 0.97 -7.029 (1.717)

Sleep2 1.00 0.95 -1.060 (0.094)

QOLp BMI 0.83 1.00 -0.689 (0.176)

Sleep2 1.00 1.00 -0.921 (0.096)

Arthritis 0.80 1.00 -7.439 (1.740)

Sleep1+ Insomnia 1.00 0.97 10.641 (0.915)

Depression 0.53 0.83 1.710 (0.845)

�: coefficients represent log-odds ratios

+: sleep1 = sleep disturbance, sleep2 = sleep impairment

https://doi.org/10.1371/journal.pone.0202923.t002
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Next, we examined links to PA. Age, sleep impairment (sleep2), and insulin level were

parents of PA (Fig 1). The association between age and PA had the highest arc strength (0.97),

with a negative regression coefficient showing that higher age was associated with, on average,

lower level of physical activity. The link between insulin and PA had a moderately high arc

strength (0.73) and directional strength (0.77), whereas the link between sleep2 and PA was

weak (arc strength = 0.53) but had a relatively strong directional strength (0.80). The regres-

sion coefficients for insulin and sleep2 were negative, implying that higher insulin level and

poor sleep were associated with lower physical activity level. Since PA did not have any chil-

dren in our learned network, the parents of PA also comprised the Markov blanket of PA.

Thus, once we observe a subject’s age, sleep2, and insulin, her physical activity level is indepen-

dent of all other variables in the network. It is interesting to note that BMI had a strong positive

association with insulin (arc strength = 1.00, directional strength = 0.82). Hence, we can infer

that BMI was indirectly negatively associated with PA.

Biomarkers (insulin and CRP)

We are also interested in studying the local network structure of the two biomarkers, insulin
and CRP. Both markers shared a single parent, BMI, and for both, this link appeared in 100%

of the bootstrapped networks (arc strength = 1.00). The link between BMI and CRP also had

very strong directional strength of 0.96, with a moderately high value of 0.82 for the BMI-insu-

lin link. Both regression coefficients were positive, so that higher BMI was associated with

higher insulin and CRP. The Markov blanket for insulin consisted of BMI, age, sleep2, and PA;

and the Markov blanket for CRP only had only one element, BMI.

Quality of life (physical and mental)

We also briefly summarize interesting associations revolving around physical and mental qual-

ity of life (QOLp& QOLm). BMI, sleep2 and arthritis were parents of QOLp (Fig 1). Both BMI
and arthritis had strong associations with QOLp, with arc strength of 0.83 and 0.80 respec-

tively. Regression coefficients showed that both BMI and arthritis were, as expected, negatively

associated with QoLp (Table 2). We note that arthritis was directly, and indirectly via BMI,
linked to QOLp, implying that BMI could be a mediator between arthritis and QOLp. Surpris-

ingly, sleep2 had the strongest association with QOLp (arc strength = 1.00), with a correspond-

ing negative regression coefficient indicating that poor sleep quality was associated with worse

physical quality of life.

Depression and sleep2 were parents of QOLm, with respective arc strengths of 0.95 and 1,

indicating that this cluster was strongly linked and highly reproducible. Again, as expected, the

negative regression coefficients suggested that poor sleep and depression were associated with

poorer mental QoL. Finally, via Markov blankets we infer that, conditional on BMI, sleep2, and

arthritis, QOLpwas independent of all other factors; and, conditional on depression and sleep2,

QOLm was independent of all other variables.

Hubs and subnetworks

In our network (Fig 1), the set (or any subset) of variables {insomnia, depression, QOLm} was

conditionally independent of the set (or any subset) of variables {BMI, PA, QOLp, insulin,

CRP}, given {sleep2, arthritis}. We point out that arthritis was in the set of conditional vari-

ables due to its link to depression, however, the arthritis-depression link was in fact weak with

arc strength of 0.69 and even weaker directional strength of 0.64. This implies that sleep quality

was the primary hub linking mental factors to physical health and biomarkers.

Bayesian networks for health behaviors in overweight breast cancer survivors
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Comparing networks

Given that sleep played a central role in our networks, we conducted network comparison

analyses to test the importance of the two sleep quality measurements, sleep1 and sleep2. We

quantitatively assessed this assumption via Bayesian information criteria (BIC) scores. The

original learned network had a BIC score of -14483.5 We then fit a second network by isolating

sleep1, i.e., removing all links to and from sleep1, and obtained a BIC score of -14637.4, a

154-point lower score, indicating substantially worse fit for the model with the sleep1 variable

isolated compared to the original network. The Bayes factor for the original vs second model

was approximately exp(-14483.5+14637.4), indicating > 20-fold higher posterior probability

for the original network compared to the sleep-omitted network, thus affirming our hypothesis

that sleep1 plays a critical role in the network. Similarly, isolating sleep2 resulted in an even

larger reduction of 190 points in the BIC score, and hence a Bayes factor that strongly favored

the original model. These analyses confirm the role of sleep as an important factor in the fitted

network.

Given our focus on BMI and biomarkers, we conducted additional network comparison

analyses to test the value of the learned sub-networks for BMI and the two biomarkers. We cre-

ated a new network in which the edge from BMI to insulin was removed. The BIC score for

this network was 20 points lower than that of the original network, and, as before, the Bayes

factor would strongly favor the original model. Similarly, a network in which the edge from

BMI to CRPwas removed had a 26 points lower BIC score, again strongly favoring the original

fitted model.

Finally, we investigated the depression-arthritis link, which was reproduced in only 69% of

bootstrapped networks. Omitting this link, decreased the BIC score by 1.56, indicating only

moderate evidence for this association.

Deconstructing total PA

To further investigate physical activity, we parsed the total PA volume (counts/minute) vari-

able as two activity behaviors: sedentary time and MVPA. When these two “activity” variables

were included in the network instead of total PA, the network structure, i.e., parent and child

nodes (Fig 2), were identical, and parameter estimates (Table 3) very similar to the original

network for CRP, alcohol, smoking, sleep1, education, QoLm, QoLp, BMI, depression and

insomnia. Two links were omitted: the arthritis-BMI edge and the age-PA edge, so that age

was isolated and independent of all variables. With regards to activity, MVPA and arthritis

were both direct parents, as well as, the Markov blanket of sedentary time, with lower MVPA

and having arthritis associated with more sedentary time. The MVPA-sedentary time link was

reproduced in 100% of the bootstrapped networks, and the network in which this link was

omitted had a 28 point lower BIC score. The arthritis-sedentary time link was less robust

occurring in 63% of bootstrapped networks with a corresponding 2.16 lower BIC score when

this link was dropped.

Predicting intervention effects

Edges and paths inferred from a Bayesian network can be used for prediction. If we perturb a

node, e.g. PA or BMI, we can investigate predicted downstream effects on biomarkers. Table 4

gives a few examples of such queries: increasing total PA from <270 count/min/day to> =

380 counts/min/day (e.g., a PA increase of 1 SD) would be predicted to result in an average

BMI reduction of 1 kg/m2. Or, moving from the obese to overweight category would be pre-

dicted to reduce insulin by 26% (reduction in loginsulin is 0.3pg/mL), reduce CRP by over

50% (reduction of 0.76 mg/L in logCRP), improve physical QoL by an average 6 points, and

Bayesian networks for health behaviors in overweight breast cancer survivors
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not change mental QoL appreciably. Most interestingly, reducing sleep impairment from the

highest to the lowest quartile would be predicted to improve both mental and physical QoL

by> 20 points. A combined change of reducing BMI category from obese to overweight and
reducing sleep impairment from highest to lowest quartile would be predicted to result in a

26.7-point higher physical QoL score on average, suggesting that an intervention aimed at

weight-loss and reducing sleep impairment could have additive effects on physical QoL.

Importantly, the simulations also give estimates of variability in the outcomes corresponding

to changes in the targeted behaviors (SDs in Table 4), which would be useful when estimating

required sample sizes for intervention studies.

Fig 2. Bayesian network of moderate-vigorous physical activity, sedentary time, other lifestyle factors and health

in the Reach for Health cohort. Lifestyle factors (green), biomarkers (orange), and physical and mental health

outcomes (blue).

https://doi.org/10.1371/journal.pone.0202923.g002

Table 3. Parameter estimates and stability of a Bayesian network of moderate-vigorous physical activity, sedentary time, sleep, and other lifestyle factors, biomark-

ers, and physical and mental health outcomes in the Reach for Health cohort of 333 postmenopausal breast cancer survivors.

Outcome

(child)

Predictors (parents) Strength Direction Regression coefficients (SE)

Arthritis Depression 0.69 0.62 0.704 (0.239)

BMI Smoke 0.66 1.00 1.196 (0.557)

CRP BMI 1.00 0.95 0.093 (0.012)

Depression Insomnia 0.94 0.65 1.000 (0.257)

Insulin BMI 1.00 0.85 0.039 (0.006)

QOLm Depression 0.93 0.97 -7.029 (1.717)

Sleep2 1.00 0.97 -1.060 (0.094)

QOLp BMI 0.84 1.00 -0.689 (0.176)

Sleep2 1.00 1.00 -0.921 (0.096)

Arthritis 0.79 1.00 -7.439 (1.740)

Sedentary Arthritis 0.67 0.99 -11.706 (7.178)

MVPA 1.00 0.90 -1.788 (0.213)

Sleep1 Insomnia 1.00 0.96 10.641 (0.915)

Depression 0.53 0.79 1.710 (0.845)

Sleep2 Depression 0.83 0.96 3.489 (0.741)

Sleep1 1.00 0.93 0.665 (0.042)

https://doi.org/10.1371/journal.pone.0202923.t003
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Discussion

In this work, we have illustrated how Bayesian networks, a machine learning tool, can be

applied in behavioral research. Health behaviors are modifiable risk factors, and hence can be

potentially intervened upon to improve health and reduce disease. Identifying which behaviors

are most robustly linked to disease is critical for designing effective interventions, as changes

in these will elicit the most robust health benefits. Bayesian networks can shed light on these

solutions, as we enumerate below.

1. Identifying intervention targets: Bayesian networks provide insights into which factors

directly affect health. For instance, in our analysis, BMI was directly linked to the biomark-

ers, suggesting that a weight-loss intervention could improve profiles of these markers. Sim-

ilarly, sleep impairment was directly linked to Quality of life (mental and physical)

suggesting that an intervention aimed at improving sleep quality could improve QoL. Of

note, our network also suggests that a combined sleep improvement and weight-loss inter-

vention could improve physical and mental QoL, as well as, glucose regulation and

inflammation.

2. Mechanisms: Bayesian networks can identify indirect pathways of influence. For example,

the arthritis-BMI-QoLp link indicates that high BMI is one of the mechanisms by which

arthritis impacts QoL. Similarly, the depression-sleep2-QoLm link identifies sleep

impairment as an intermediate factor by which depression impacts mental health. Again,

these indirect paths through health behaviors suggest intervention targets, namely weight

and sleep2, that could reduce the impact of arthritis and depression on physical and mental

QoL respectively.

3. Informing study design: As shown in Table 4, Bayesian networks can be used to estimate puta-

tive intervention effects, and hence inform achievable effect-sizes and required sample-size.

Table 4. Bayesian network propagation: Predicting change in outcomes.

Targeted behavior Change in targeted behavior(s) Outcome Average change in

Outcome

[Mean(SD) of outcome by targeted behavior category]

PA < 270 to� 380 counts/min/day BMI BMI decreases 1 kg/m2

[31.5(4.9) to 30.5(4.9)]

BMI � 30 to < 30 kg/m2 Insulin Insulin decreases 0.30 (log) pg/mL (26% decrease)

[6.29(0.50) to 5.99(0.49)]

BMI � 30 to < 30 kg/m2 CRP CRP decreases 0.76 (log) mg/L (50% decrease)

[15.28(1.07) to 14.56(1.05)]

BMI � 30 to < 30 kg/m2 QoLp QoLp increases 6.1

[64.6(17.9) to 70.7(17.7)]

BMI � 30 to < 30 kg/m2 QoLm QoLm increases 0.3

[74.9(17.3) to 75.2(16,9)]

Sleep2 > Q3 to < Q1 QoLp QoLp increases 20.5

[56.6(16.7) to 77.1(16.3)]

Sleep2 > Q3 to < Q1 QoLm QoLm increases 23.9

[62.9(15.9) to 86.8(14.7)]

Sleep2 + BMI sleep2 > Q3 to < Q1

BMI� 30 to < 30 kg/m2
QoLp QoLp increases 26.7

[54.3(16.1) to 81.0(16.1)\

Sleep2 + BMI sleep2 > Q3 to < Q1

BMI� 30 to < 30 kg/m2
QoLm QoLm increases 23.3

[62.8(15.8) to 86.1(14.5)]

a Derived from 5000 simulated datasets via network propogation.

Q3: 75th%-ile; Q1: 25th%-ile

https://doi.org/10.1371/journal.pone.0202923.t004
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4. Tailoring interventions: Bayesian networks can be useful for identifying at-risk populations

and personalizing interventions. For instance, our network indicates that older age, more

sleep impairment and higher BMI are each associated with lower physical activity, suggest-

ing that these three factors could be used to custom design a physical activity intervention

that will best suit the needs of specific subgroups.

We have enumerated a few ways in which Bayesian network analyses could inform public

health research. The strengths of this work include a well-characterized cohort of breast cancer

survivors, the availability of clinical information from medical records, objective information

on physical activity, biomarker outcomes, and from a methodological perspective, the use of

bootstrap methods and Bayesian information criteria, which reduce overfit and improve repli-

cability. There are also limitations. Bayesian networks are an inherently exploratory tool, best

suited for hypothesis generation. As mentioned before, the Markov blanket of a given node V

identifies factors that directly influence V, and thus would be consonant with a causal (mecha-

nistic) model. While it is impossible to prove causality from observational data, these methods

can provide clues for particular causal models that would then have to be validated in experi-

mental data and/or randomized trials. Hence our results need to be confirmed in other cohorts

and/or randomized trials. Also, our cohort only included overweight postmenopausal cancer

survivors who agreed to participate in an intervention trial, which could limit generalizability.

For instance, it is possible that with an unrestricted BMI range, we may have observed other

factors (e.g., built environment, age, PA) influencing BMI and other outcomes. Nevertheless, it

would be interesting to test our final averaged network on younger and/or normal-weight

breast cancer survivors.

In conclusion, we have introduced Bayesian networks, a machine learning methodology, to

infer biobehavioral networks in a breast cancer cohort. Our results identified several health

behaviors directly linked to biomarker and quality of life, suggesting potential mechanistic

pathways and intervention targets. The network comparison analysis strongly favored the fit-

ted networks, indicating that our findings are robust against alternative network structures.

We believe that this network methodology could be a useful tool in health behaviors research.
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