
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Improve the performance of CT-based pneumonia classification via source data 
reweighting

Permalink
https://escholarship.org/uc/item/38z7c377

Journal
Scientific Reports, 13(1)

ISSN
2045-2322

Authors
Xie, Pengtao
Zhao, Xingchen
He, Xuehai

Publication Date
2023

DOI
10.1038/s41598-023-35938-3

Copyright Information
This work is made available under the terms of a Creative Commons Attribution 
License, available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/38z7c377
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


1

Vol.:(0123456789)

Scientific Reports |         (2023) 13:9401  | https://doi.org/10.1038/s41598-023-35938-3

www.nature.com/scientificreports

Improve the performance 
of CT‑based pneumonia 
classification via source data 
reweighting
Pengtao Xie 1*, Xingchen Zhao 2,4 & Xuehai He 3,4

Pneumonia is a life‑threatening disease. Computer tomography (CT) imaging is broadly used for 
diagnosing pneumonia. To assist radiologists in accurately and efficiently detecting pneumonia from 
CT scans, many deep learning methods have been developed. These methods require large amounts 
of annotated CT scans, which are difficult to obtain due to privacy concerns and high annotation costs. 
To address this problem, we develop a three‑level optimization based method which leverages CT 
data from a source domain to mitigate the lack of labeled CT scans in a target domain. Our method 
automatically identifies and downweights low‑quality source CT data examples which are noisy or 
have large domain discrepancy with target data, by minimizing the validation loss of a target model 
trained on reweighted source data. On a target dataset with 2218 CT scans and a source dataset with 
349 CT images, our method achieves an F1 score of 91.8% in detecting pneumonia and an F1 score of 
92.4% in detecting other types of pneumonia, which are significantly better than those achieved by 
state‑of‑the‑art baseline methods.

Pneumonia is a life-threatening disease caused by bacteria, virus, and fungi. It is a type of acute respiratory infec-
tion in the lungs. According to the World Health Organization, pneumonia caused about 0.74 million deaths of 
children in 2019, which accounts for 14% of all deaths of children under 5 years  old1. In particular, the recent 
COVID-19 pneumonia caused 6.5 millions deaths globally. Chest computed tomography (CT) scans are broadly 
used to diagnose pneumonia (including COVID-19 and other types of pneumonia)2–4, differentiate different 
types of  pneumonia5, assess the severity of  pneumonia6, etc. In medically under-served areas such as rural areas, 
well-trained radiologists who can accurately interpret CT scans to detect and assess the severity of pneumonia 
are lacking. To assist radiologists in accurately and efficiently detecting pneumonia and distinguishing different 
types of pneumonia from CT scans, many deep learning methods have been  developed7–22. For example, Qian 
et al.7 proposed a multi-task multi-slice deep neural network to screen pneumonia from CT scans. Abdel-Basset12 
developed a two-stage deep learning method to distinguish community-acquired pneumonia from COVID-19 
pneumonia based on CT scans.  Ortiz23 developed a deep neural network which leverages CT scans and clinical 
metadata to distinguish COVID-19 pneumonia from other viral pneumonia.

Deep neural networks typically have a large number of weight parameters. To effectively train them, large 
amounts of CT scans with pneumonia annotations are needed. Due to data privacy concerns and high costs 
of annotating pneumonia, it is very difficult to obtain a large number of annotated CT scans. Without suf-
ficient training data, deep neural networks perform unsatisfactorily on test cases. One way of addressing this 
problem is transfer learning (TL)24, which leverages data from source domains to help train a target model in 
a target domain. It is often the case that some source examples have low quality and should be down-weighted. 
For example, some source examples are noisy and some examples have large domain discrepancy with target 
data. It is important to automatically identify such low-quality source examples and down-weight them during 
the transfer learning process. Many  methods25–33 have been developed for source example reweighting. These 
methods do not learn weights of source examples by maximizing the performance of the target model on a 
held-out validation set. As a result, the target model trained (implicitly) using reweighted source examples 
is not guaranteed to have good generalization performance on test data. Bi-level optimization (BLO)34 based 
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 approaches35–40 have been proposed for data reweighting by explicitly minimizing a validation loss, where the 
first-level trains network weights on a training dataset and the second level learns data weights on a validation 
set. Applying these approaches for source data reweighting in TL, it is required to train source model and target 
model in a multi-task learning (MTL) way at the first level. As noted by Zhuang et al.24, MTL formulations are 
not suitable for TL since MTL focuses on training both source and target models well while the goal of TL is to 
train the target model well.

To address the problems of existing methods, we propose a three-level optimization based method which 
performs three learning stages end-to-end. At the first stage, a source model is trained by minimizing weighted 
losses on source examples. Source example weights are tentatively fixed at this stage. At the second stage, we train 
a target model by transferring knowledge from source to target. We propose a new ranking-based knowledge 
transfer approach that allows source model and target model to have different architectures, different dimen-
sions of encodings, different weight parameters, etc. Our method uses the source model to generate a ranking 
on target examples. Then we train the target model by letting it predict the generated ranking. At the third stage, 
we evaluate the trained target model on a validation set. Note the validation loss is a function of source example 
weights. We update weights of source examples by minimizing the validation loss.

Compared with existing methods, our method has the following advantages: (1) our method learns source 
example weights by explicitly minimizing the validation loss of the target model, which therefore can make the 
target model generalize well on test data; (2) our method focuses on improving the target model by transferring 
knowledge from source to target, instead of training source and target models in a multi-task learning framework.

We apply the proposed method to detect pneumonia and distinguish COVID-19 and other types of pneu-
monia, on a target dataset with 2218 CT scans and a source dataset with 349 CT images. Our method achieves 
an F1 score of 91.8% for COVID-19 pneumonia and an F1 score of 92.4% for other types of pneumonia. Our 
method outperforms state-of-the-art baseline methods.

The major contributions of this paper are as follows:

• To accurately detect pneumonia from CT scans and distinguish COVID-19 pneumonia and other types of 
pneumonia, we propose a three-level optimization based method which leverages external CT data from a 
source domain to help train a target model and automatically down-weights low-quality source data exam-
ples. Our framework learns source example weights by explicitly minimizing the validation loss of the target 
model and performs knowledge transfer from source to target instead of training source and target models 
simultaneously in a multi-task learning way.

• We propose a new ranking-based knowledge transfer approach where a source model generates a ranking 
and a target model predicts this ranking.

• We demonstrate the effectiveness of the proposed method in detecting pneumonia from CT scans and dif-
ferentiating COVID-19 pneumonia and other types of pneumonia. By leveraging a source dataset with 349 
CT images, our method achieves an F1 score of 91.8% for COVID-19 and an F1 score of 92.4% for other types 
of pneumonia on a target dataset with 2218 CT scans. Our method outperforms state-of-the-art baseline 
methods significantly.

Related works
Deep learning for detecting pneumonia from CT scans. Many deep learning methods have been 
developed for detecting pneumonia from CT scans. Qian et al.7 proposed a multi-task multi-slice deep neural 
network to screen pneumonia from CT scans. Li et al.8 developed a deep learning method to analyze thick-
section CT scans for assessing the severity and progression of COVID-19. Amyar et al.9 proposed a multi-task 
deep learning method to identify and segment COVID-19 from CT scans. Ni et al.10 developed a deep neural 
network for COVID-19 pneumonia classification, segmentation, and localization from CT scans. Zhang et al.41 
leveraged a human-in-the-loop training strategy to learn a segmentation network for quantifying the volumes 
of COVID-19 infection on CT scans. Ko et al.42 proposed a transfer learning method which leverages pretrained 
convolutional neural networks to detect COVID-19 pneumonia from a single chest CT image. Maghdid et al.43 
used pretrained deep convolution network to detect pneumonia from CT scans and chest X-rays. Xu et al.11 
developed a 3D deep convolutional network model to distinguish COVID-19 from influenza-A viral pneumonia 
and healthy cases from CT scans. Abdel-Basset12 developed a two-stage deep learning method to distinguish 
community-acquired pneumonia from COVID-19 pneumonia based on CT scans.  Chen44 applied UNet++ to 
detect COVID pneumonia from CT scans. Zhou et  al.45 applied YOLOv3 to differentiate novel coronavirus 
pneumonia from influenza pneumonia based on CT scans. Chaudhary et al.46 developed a two-stage convolu-
tional neural network (CNN) to detect COVID-19 and community acquired pneumonia (CAP) from CT scans. 
Bermejo-Peláez et al.47 proposed a deep neural network to analyze COVID-19 patterns from CT scans to assess 
disease severity and predict clinical outcomes. Yao et al.48 developed an atrous convolution network to diagnose 
mild COVID-19 pneumonia from CT scans. Song et al.49 developed a Details Relation Extraction neural net-
work to diagnose COVID-19 from CT images. Bratt et al.50 developed a deep learning method to predict usual 
interstitial pneumonia histopathology from CT images. Shiri et al.51 developed a deep neural network to assess 
the severity of COVID-19 based on CT radiomics features.  Ortiz23 developed a deep neural network which lev-
erages CT scans and clinical metadata to distinguish COVID-19 pneumonia from other viral pneumonia. Exist-
ing methods do not consider leveraging external CT data from source domains to mitigate the lack of CT scans 
that have pneumonia labels or cannot automatically identify and downweight source CT data examples that are 
noisy and have large domain discrepancy with target domain. Our method bridges these gaps.
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Source data reweighting in transfer learning. Many  methods25–33,52–56 have been developed to reweight 
source data examples according to their fitness for training target models, based on bi-level  optimization35,37–40, 
reinforcement  learning57–59, adversarial  learning31, curriculum  learning27,32,  entropy60,61, Bayesian  optimization26, 
multi-task  learning25, etc. In bi-level optimization based methods, an inner optimization problem trains a model 
on reweighted data and an outer optimization problem learns data weights by minimizing validation loss of the 
trained model. These methods reweight source data by comparing their similarity with training data in the target 
domain. As a result, a target model trained using these reweighted source data may overfit to the training data 
distribution and generalizes poorly on unseen data. Our method reweights source examples by measuring how a 
target model trained (implicitly) using reweighted source data generalizes to validation examples, and therefore 
is more robust to overfitting.

Transfer learning and multi‑task learning. The goal of transfer learning (TL)24,62–66 is to leverage data 
in a source domain to help with model training in a target domain. Existing TL methods can be roughly catego-
rized into the following groups: (1) latent space  projection67–70, (2) distribution  alignment53,71–73, (3) adversarial 
domain-invariant representation  learning74–77, and (4)  regularization78–80. Multi-task learning (MTL)81,82 aims 
to improve multiple models simultaneously by training them jointly and transferring knowledge across models. 
Various MTL approaches have been proposed, based on (1) hard parameter  sharing83–87, where multiple models 
share the same weight parameters, such as encoder weights; (2) soft parameter  sharing88, where parameters 
of different models are constrained to be similar; (3) task similarity  learning89–91, which identifies similarity 
between tasks and encourages similar tasks to share more commonalities; (4) loss  weighting87, which weighs 
each model’s loss, and so on. Different from previous transfer learning and multi-task learning methods, our 
method is based on three-level optimization and can automatically identify and downweight source data that is 
noisy or have large domain discrepancy with target data by minimizing target model’s validation loss.

Bi‑level optimization. Bi-level Optimization (BLO)92 has been broadly applied for hyperparameter 
 tuning93, neural architecture  search94, meta  learning95, data  reweighting37–39, learning rate  adjustment96, label 
 denoising97, data  generation98, etc. In these methods, meta parameters (e.g, hyperparameters, neural archi-
tectures, data weights, etc.) are optimized by minimining validation losses and model weights are learned by 
minimizing training losses. Our method goes beyond bi-level optimization and solves a three-level optimization 
problem for source data reweighting.

Methods
In this section, we present the method for reweighting source CT data based on three-level optimization. We aim 
to train a target model Mt to detect pneumonia from CT scans, on a dataset Dt from the target domain which 
contains CT scans with pneumonia class labels. To mitigate the deficiency of labeled target data, we leverage 
a CT dataset Ds from a source domain which has pneumonia class labels. A source model Ms is trained on Ds . 
Some examples in Ds are noisy and some examples have large domain discrepancies with Dt . We aim to down-
weight such low-quality source examples by automatically learning a weight for each source example. For Mt , it 
has an encoder Et and a head Ht . For Ms , it has an encoder Es and a head Hs . Knowledge transfer is conducted 
from Es to Et . Note that we allow Es and Et to have different architectures, different dimensions of encodings, 
and different weight parameters.

A three‑level optimization framework. We propose a three-level optimization based framework 
(Fig. 1(top)) to perform reweighting of source CT data. The framework consists of three learning stages which 
are performed end-to-end. At the first stage, we train Es and Hs on Ds . For each source example in Ds = {ds,i}

M
i=1 , 

an importance weight c ∈ [0, 1] is to be learned. The training loss L of a source example, which is a cross-entropy 
based classification loss, is multiplied with the importance weight of this  example35. If c is close to 0, it means this 
example is noisy or has large domain-discrepancy with target data; accordingly, the loss (after multiplied with 
c) is made close to 0, which effectively excludes this example from the training process. We aim to automatically 
learn these importance weights, which will be detailed later on. This stage amounts to solving the following 
problem:

where C = {ci}
M
i=1 . The importance weights C are needed to calculate training losses, but they should not be 

updated at this stage. Otherwise, the values of C will all be zero. Note that E∗s (C) depends on C since it depends 
on the training loss which is a function of C.

At the second stage, we train Et and Ht on Dt by minimizing a cross-entropy based classification loss L. 
We propose a novel way of transferring knowledge from source model to target model, based on predicting 
cross-domain relative similarity relationships. Given two target examples, we use the source encoder to label 
which of them is closer to the source examples. For each target example xt , its distance to source dataset Ds 
is calculated as e(xt ,Ds;E

∗
s (C)) = minds∈Ds c(xt , ds;E

∗
s (C)) , where c(xt , ds;E∗s (C)) is the L2 distance between 

xt and a source example ds , both encoded by the source encoder E∗s (C) . For two target examples xt and yt , if 
e(xt ,Ds;E

∗
s (C)) < e(yt ,Ds;E

∗
s (C)) , xt is labeled as being closer to the source dataset (denoted by xt ≻ yt |E

∗
s (C)) . 

The source encoder labels many such pairs. Then these labeled pairs are used to train the target encoder. Given a 
cross-domain relative similarity (CDRS) relationship between two target examples, the target encoder is trained 
to predict this relationship. Let e(xt ,Ds;Et) (defined in a similar way as e(xt ,Ds;E

∗
s (C)) ) denotes the distance 

(1)E∗s (C),H
∗
s (C) = argminEs ,Hs

∑M
i=1 ciL(Es ,Hs, ds,i),
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between xt and Ds , encoded using the target encoder. If xt ≻ yt |E
∗
s (C) , then e(xt ,Ds;Et) is required to be smaller 

than e(yt ,Ds;Et) . The optimization problem at the second stage is:

    CDRS captures the relationships among target examples by generating a global ranking among them, based 
on their distances to the source domain (such a global ranking can be induced from all pairwise rankings). This 
global ranking reveals a lot of semantic information of target CT images. For instance, CT images at adjacent 
positions in the ranking are more similar than those at faraway positions. Grouping similar CT images together 
using the ranking can facilitate pneumonia classification. In pneumonia classification, there are multiple classes, 
such as common pneumonia, COVID-19, and no pneumonia. Grouping CT images in the same pneumonia 
class together based on their positions in the global ranking can better distinguish different classes and improve 
classification performance.

At the third stage, we use the trained target model consisting of E∗t (E∗s (C)) and H∗
t  to make predictions on a 

validation dataset D(val)
t  in the target domain. We update C by minimizing the validation loss L which is also a 

cross-entropy based classification loss.

    Putting the three learning stages together, we have the following three-level optimization framework:

    The three stages are mutually dependent on each other and are conducted end-to-end. The output of Stage 
I, which is E∗s (C) , is used as input of Stage II. The outputs of Stage II, which are E∗t (E∗s (C)) and H∗

t  , are used as 
inputs of Stage III. After C is updated at Stage III, the objective function in Stage I, which is a function of C, will 
change accordingly, rendering E∗s (C) to change as well. By solving the three interdependent optimization prob-
lems jointly in the multi-level optimization framework, we can perform the three learning stages end-to-end.

The constraint in the above equation is highly discrete, which is not end-to-end differentiable and renders 
the optimization problem difficult to solve. We address this issue by performing a continuous relaxation of the 
constraint using pairwise hinge loss:

E∗t (E
∗
s (C)),H

∗
t = argminEt ,Ht

L(Et ,Ht ,Dt)

s.t. ∀xt ≻ yt |E
∗
s (C), e(xt ,Ds;Et) < e(yt ,Ds;Et)

(2)minC L(E∗t (E
∗
s (C)),H

∗
t ,D

(val)
t ).

(3)

minC L(E∗t (E
∗
s (C)),H

∗
t ,D

(val)
t )

s.t. E∗t (E
∗
s (C)),H

∗
t = argminEt ,Ht

L(Et ,Ht ,Dt)

s.t. ∀xt ≻ yt |E
∗
s (C), e(xt ,Ds;Et) < e(yt ,Ds;Et)

s.t. E∗s (C),H
∗
s (C) = argminEs ,Hs

∑M
i=1 ciL(Es ,Hs, ds,i)

(4)�max

(

0,−
(

e(xt ,Ds;E
∗
s (C))− e(yt ,Ds;E

∗
s (C))

)(

e(xt ,Ds;Et)− e(yt ,Ds;Et)
)

)

,

Figure 1.  (Top) Overview of the proposed three-level optimization framework. (Bottom) Network architecture 
of target and source models.
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where � is a tradeoff parameter. Let p = e(xt ,Ds;E
∗
s (C))− e(yt ,Ds;E

∗
s (C)) and q = e(xt ,Ds;Et)− e(yt ,Ds;Et) . 

If pq > 0 , the target model predicts the CDRS relationship between xt and yt correctly. In this case, the hinge 
loss is 0 and there is no penalty. Otherwise, the hinge loss is −pq , which penalizes the target model to correct 
its prediction.

Optimization algorithm. We develop a gradient-based algorithm to solve the three-level optimization 
problem. Drawing insights  from94, we approximate E∗s (C) using one-step gradient descent update of Es:

and update Hs using:

    We plug E∗s (C) ≈ E′s into the loss function at the second stage and get an approximated objective:

    Then we approximate E∗t (E∗s (C)) and H∗
t  using one-step gradient descent update of Et and Ht w.r.t O:

    Finally, we plug these approximations into the validation loss at the third stage and update C and Rs by mini-
mizing the approximated loss using gradient descent:

    For ∇CL(E
′
t ,H

′
t ,D

(val)
t ) , it can be computed as:

where

    These steps iterate until convergence. For the calculation of e(xt ,Ds;E
∗
s (C)) , in theory, the complexity is 

quadratic O(n2) , where n is the number of data examples: calculating the distance between each pair of (source, 
target) examples. In practice, the calculation is conducted on a minibatch of target examples and a minibatch of 
source examples. The actual complexity is O(k2) , where k is the minibatch size. k is at most a few hundred, which 
is much smaller than n. Similar to  DARTS94, the matrix-vector multiplication in Eq. (11) are approximated using 
finite differences, which can be calculated efficiently. With this approximation, the complexity is reduced from 
quadratic to linear (in terms of parameter numbers).

Dataset
For the target domain dataset, we used the China Consortium of Chest CT Image Investigation (CC-CCII)99. It 
contains 2218 3D CT scans from 557 common pneumonia patients (CP), 682 COVID-19 patients (NCP), and 
979 normal controls. The common pneumonia (CP) group includes viral pneumonia (e.g., adenoviral, influenza, 
and parainfluenza pneumonia), bacterial pneumonia, and mycoplasma pneumonia, which were diagnosed based 
on standard clinical, radiological, culture/molecular assay results. Novel coronavirus patient (NCP) diagnosis 
was based on reverse transcriptase PCR. The CTs scans are obtained from Sun Yat-sen Memorial Hospital, 
Third Affiliated Hospital of Sun Yat-sen University, The first Affiliated Hospital of Anhui Medical University, 
West China Hospital, Nanjing Renmin Hospital, Yichang Central People’s Hospital, and Renmin Hospital of 
Wuhan University. The dataset is split into a train, validation, and test set with a ratio of 7:1.5:1.5. For the source 
domain dataset, we use the one collected by Yang et al.100. This dataset contains 2D CT slices extracted from 
COVID-19 related papers. Each slice is labeled with whether containing COVID-19 findings. It consists of 349 
COVID-19 CT images from 216 patients and 463 non-COVID-19 CTs. These CT slices are extracted from 760 
preprints about COVID-19 in medRxiv and bioRxiv, posted from Jan 19th to Mar 25th. The minimum, average, 
and maximum height of these images are 153, 491, and 1853. The minimum, average, and maximum width of 
these images are 124, 383, and 1485. In this dataset, some images are noisy, annotated with non-clinical artifacts 

(5)E∗s (C) ≈ E′s = Es − ηes∇Es

M
∑

i=1

ciL(Es ,Hs, ds,i),

(6)Hs ← Hs − ηhs∇Hs

M
∑

i=1

ciL(Es ,Hs, ds,i).

(7)O = L(Et ,Ht ,Dt)+ �
∑

xt ,yt
max(0,−(e(xt ,Ds;E

′
s)− e(yt ,Ds;E

′
s))(e(xt ,Ds;Et)− e(yt ,Ds;Et))).

(8)E∗t (E
∗
s (C)) ≈ E′t = Et − ηet∇EtO,

(9)H∗
t ≈ H ′

t = Ht − ηht∇HtO.

(10)C ← C − ηc∇CL(E
′
t ,H

′
t ,D

(val)
t ).

(11)∇CL(E
′
t ,H

′
t ,D

(val)
t ) =

∂E′s
∂C

∂E′t
∂E′s

∂L(E′t ,H
′
t ,D

(val)
t )

∂E′t
,

(12)
∂E′t
∂E′s

= −ηet∇
2
E′s ,Et

O,

(13)
∂E′s
∂C

= −ηes∇
2
C,Es

M
∑

i=1

ciL(Es ,Hs, ds,i).
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such as bounding boxes and arrows. Some images have large domain differences from target data in terms of 
resolution, appearance, texture, color, scale, etc.

Experiments
In this section, we present experimental results.

Experimental settings. We leverage the proposed three-level optimization framework to reweight the 
noisy source CT data. The source model performs binary classification on 2D CT slices in the source dataset: 
given a 2D CT slice, predict whether it contains COVID-19. The source model consists of a 2D image encoder 
Es and a classification head Hs . The target model performs three-class classification on 3D CT scans in the target 
dataset, which classifies a 3D CT scan into one of the three classes: NPC, CP, and Normal. The target model 
consists of an LSTM-CNN  encoder101 and a classification head Ht . The LSTM-CNN encoder is used to encode 
a 3D CT scan, which contains a sequence of 2D CT slices. For each 2D slice, it is encoded by a CNN encoder Et . 
Then the sequence of CNN encodings are fed into an  LSTM102 network Vt to extract a holistic representation of 
the entire 3D CT scan. The encoding of the 3D CT scan is fed into the classification head to predict the class label. 
When training Et , we transfer knowledge from Es to Et.

In the LSTM-CNN target encoder, we set the hidden size to 128 and set the CNN encoder to ResNet-50103. 
For the source encoder, we set it to  DenseNet104. Dimensions of embeddings generated by the source and target 
CNN encoders are different. The classification heads Ht and Hs are linear. Figure 1 (bottom) shows the network 
architecture of source and target models. The tradeoff parameter � was set to 0.1. The initial learning rate was 
set to 1e-3 with the  Adam105 optimizer used. The learning rate decayed with cosine scheduling. The momentum 
for Adam was (0.5, 0.999). The batch size was set to 64. The model was trained for 150 epochs. The  dropout106 
rate was set to 0.3. Weight decay was set to 5e-4. To determine the convergence of the three-level optimization 
problem, we check the values of the validation loss in the third stage and those of training losses in the first and 
second stage. For every loss, if the standard deviation of its values in the most recent four epochs is less than 5% 
of these values’ mean, we consider the algorithm has converged and stop the optimization process.

To tune the hyperparameters, we randomly split the validation set into two equal-sized subsets: denoted by 
A and B. For each configuration of hyperparameters, we used the validation set A to learn importance weights 
of source data. Then we measure the performance of the trained model on validation set B. Hyperparameter 
values yielding the best performance on validation set B were selected. To ensure a fair comparison, we spent 
approximately the same time on tuning hyperparameters for each method (including ours and baselines). The 
tuning time per method is about 16 hours.

Every experiment ran 5 times with different random initializations. Precision, recall, and F1 scores were used 
as evaluation metrics. For all experiments, we performed significance tests using double-sided t-tests. The p-val-
ues of our methods against baselines are all less than 0.001, which shows that our methods are significantly better 
than baselines. The experiments were conducted on A100 GPU. Our method takes about 26 hours to converge.

Baselines. We compared our method with the following baselines. The baseline models were trained on the 
combination of training and validation sets of the target dataset.

• No source data (NoSrc)101: we do not leverage source data for model training.
• No reweighting (NoWt)101: we use all source data examples for model training without reweighting. NoWt 

uses CDRS-based knowledge transfer. We first train a source model on all source examples without reweight-
ing, then use this source model to label CDRS relationships. These labeled CDRS relationships are utilized 
as constraints to train the target model.

• Pretrain103: we first pretrain Es on source data, then use Es to initialize Et.
• BO26: Bayesian optimization based data selection for transfer learning.
• MGTL31: a minimax game based model for selective transfer learning.
• Online meta-learning (OML)35 for data reweighting: we first unify the formats of 3D CT scans and 2D source 

CT slices by labeling all slices in a positive/negative CT scan as positive/negative; then on 2D slices, we use an 
online meta-learning35 approach, which is based on bi-level optimization (BLO), to reweight source slices.

• MentorNet107: a curriculum learning method for data selection. Similar to OML, format unification is applied.
• Multi-task learning (MTL)108: BLO is applied for reweighting source data, where source and target models are 

trained simultaneously by minimizing the weighted sum of their training losses; source and target encoder 
weights are encouraged to be similar using L2 regularization to transfer knowledge between source and target 
encoders and let them help each other to learn.

• Weights sharing (WS)86: similar to MTL, except that target and source models share the same encoder.
• We compare our CDRS knowledge transfer approach with: (1) L2 regularization on encoder weights 

(RegW)109: encouraging target encoder’s weights to have small L2 distance with source encoder’s weights; 
(2) L2 regularization on embeddings (RegE)110: encouraging embeddings generated by target encoder to have 
small L2 distance with those generated by source encoder; (3) pseudo-labeling (PL)111: the source model 
generates pseudo-labels regarding whether CT slices are positive, which are used to train the target model; 
and (4) pairwise similarity (PS)112: the source encoder annotates whether two images are similar or dissimilar 
and the target encoder predicts these similarity labels.

• We also compare with six CT-based pneumonia classification methods: (1) CC-CCII99, (2)  RapidAI113, (3) 
 3DCNN11, (4) Li et al.114, (5) Shamsi et al.115, and (6) Shaik et al.116.



7

Vol.:(0123456789)

Scientific Reports |         (2023) 13:9401  | https://doi.org/10.1038/s41598-023-35938-3

www.nature.com/scientificreports/

Results and analysis. Table  1 shows the results. Our method achieves an F1 score of 91.8% in detect-
ing COVID-19 pneumonia (NCP) and an F1 score of 92.4% in detecting other types of pneumonia (CP). Our 
method performs better than NoSrc. In NoSrc, no source data is leveraged for learning representations, which is 
a waste. Many source 2D CT slices contain abnormalities related to COVID-19. An encoder trained using these 
CT slices can learn representations capturing such abnormalities, which is helpful for classifying COVID-19. 
Our method performs better than NoWt. In NoWt, all source examples are used without reweighting. Many 
source examples are noisy or incorrectly labeled. Trained using such low-quality data, the source encoder Es 
may learn poor representations. Transferring low-quality representations from Es to Et , the effectiveness of Et 
may be degraded as well, which yields inferior performance in classifying 3D CT scans. In contrast, our method 
performs reweighting of each source data example by checking whether it can help to reduce the validation loss 
of the target model. If a source example hurts classification performance on 3D CT scans, our method automati-
cally assigns a small weight to it. Our method outperforms state-of-the-art methods developed for pneumonia 
classification, including CC-CCII99,  RapidAI113,  3DCNN11, Li et al.114, Shamsi et al.115, and Shaik et al.116. The 
reason is that these methods do not leverage auxiliary source data or lack capability of reweighting source data.

Our method outperforms MTL. In MTL, target model and source model are trained simultaneously by 
minimizing the weighted sum of their loss functions. In our experiments, we found that these two models have 
a competing relationship during training: improving performance of one model incurs performance degrada-
tion of the other model. Figure 2(left) shows how test performances of source and target models vary with the 
weight β of source model’s training loss (the weight of target model’s training loss is set to 1). The source model 
is evaluated on a clean 2D CT test set. As β increases (more attention is paid to minimizing the source model’s 
loss), F1 of source model increases while F1 of target model decreases. This demonstrates that MTL incurs a 
competition between the two models. Our method addresses this problem by training these two models in two 
different optimization problems in an end-to-end framework. We first train the source model, then leverage 
transfer learning to train the target model. In this way, the source model helps the target model to learn, instead 
of competing with it. We provide some empirical evidence by doing the following experiments. First, we train 
three source encoders that have different accuracy. Three clean 2D CT validation sets with increasing example 
numbers and one clean 2D test set are collected. Using each validation set, we learn training data weights based 
on the method proposed by Ren et al.35 and train a model accordingly. Using these learned source models as regu-
larization, we train three target models. Figure 2(right) shows that the performance of target models increases 

Table 1.  Precision, recall, and F1 for pneumonia classification from CT scans. Source data is 2D CT slices 
from COVID-19 related papers. In the XY formatted entry, X denotes mean and Y denotes standard deviation 
in 5 runs with different random initialization.

NCP CP Normal

Precision (%) Recall (%) F1 (%) Precision (%) Recall (%) F1 (%) Precision (%) Recall (%) F1 (%)

CC-CCII99 84.5.5 87.2.7 85.8.4 88.9.8 87.5.6 88.2.2 85.9.6 86.3.7 86.1.7
RapidAI113 83.1.2 86.8.5 84.9.1 86.3.5 86.0.4 86.1.3 83.8.8 85.5.6 84.6.8
3D-CNN11 86.6.7 87.2.5 86.9.5 85.4.7 87.7.9 86.5.7 86.8.5 85.9.9 86.3.2
Li et al.114 84.2.3 88.1.6 86.1.4 89.4.4 88.5.3 88.9.3 86.6.7 87.2.4 86.9.5
Shamsi et al.115 85.4.5 87.9.4 86.6.5 90.1.6 89.1.6 89.6.5 88.5.8 88.9.5 88.7.7
Shaik et al.116 84.9.3 88.7.9 86.8.5 88.2.8 88.3.2 88.2.6 87.2.3 87.4.5 87.3.5
NoSrc101 85.9.9 87.5.6 86.7.6 88.1.9 89.2.6 88.6.9 86.2.9 87.1.9 86.6.5
NoWt101 86.4.7 87.1.4 86.7.4 88.6.4 89.8.5 89.2.7 88.1.3 88.5.8 88.3.2
Pretrain103 88.6.4 90.1.8 89.3.3 89.1.5 90.9.4 90.0.2 88.6.7 87.2.5 87.9.7
BO26 87.3.6 88.5.3 87.9.8 89.2.9 90.5.8 89.8.6 89.2.2 88.5.6 88.8.4
MGTL31 87.5.5 90.7.6 89.1.6 90.2.7 91.7.3 90.9.5 88.5.6 89.3.4 88.9.9
OML35 87.1.8 88.4.8 87.7.8 89.5.4 89.7.9 89.6.5 88.1.4 88.3.8 88.2.1
MentorNet107 87.6.6 88.2.2 87.9.4 89.8.6 90.3.7 90.0.7 88.4.4 89.1.5 88.7.5
MTL108 89.1.4 90.7.7 89.9.7 90.9.5 91.2.4 91.0.5 88.2.6 88.7.7 88.4.8
WS86 89.2.3 89.7.7 89.4.4 90.3.6 91.1.5 90.7.8 87.3.7 88.1.8 87.7.2
No-LSTM 90.0.4 91.4.6 90.7.5 91.3.3 92.0.4 90.2.4 89.2.5 90.3.3 90.1.5
Same-ResNet 90.5.2 89.9.9 91.6.5 90.8.9 91.4.5 91.1.8 89.4.7 90.1.4 90.9.5
Same-DenseNet 90.3.5 90.0.6 89.7.6 90.5.2 91.3.8 89.7.6 89.4.4 89.0.7 89.2.5
Ours+RegW109 88.9.2 91.0.3 89.9.2 91.1.4 89.8.3 90.4.6 87.8.4 89.2.6 88.5.9
Ours+RegE110 88.6.5 89.8.5 89.2.1 91.3.2 90.1.6 90.7.4 87.3.3 90.2.5 88.7.5
Ours+PL111 89.2.3 90.4.8 89.8.9 90.7.5 91.4.4 91.0.3 88.7.5 87.9.6 88.3.6
Ours+PS112 89.5.4 88.6.6 89.0.1 90.8.3 89.9.5 90.3.3 88.9.8 88.1.4 88.5.2
Ours+CDRS 91.4.2 92.2.2 91.8.1 92.1.2 92.8.3 92.4.8 90.3.3 91.5.4 90.9.7
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when the test performance of source models (used for regularization) increases. This shows that a better source 
model yields a better target model in our method.

Our method works better than RegE and PL. These two baselines require embeddings learned by source and 
target models to be similar in an absolute sense (L2 difference or KL divergence), which is more restrictive than 
requiring embeddings to preserve ranking as our method does. Besides, these two baselines transfer knowledge 
on individual data instances without considering the relationship between instances. In contrast, our method 
compares which target slice is more close to the source dataset during knowledge transfer. Our method works 
better than PS. PS is limited to capturing second-order relationships among instances while each piece of knowl-
edge in our CDRS method involves two target instances and all source instances, which therefore can capture 
higher-order relationships. Figure 3 shows 4-nearest source neighbors retrieved by different methods for some 
randomly sampled target CT slices. As can be seen, compared with PS and PL, nearest neighbors retrieved by 
CDRS are more semantically similar to query slices. The similarity is evaluated by physicians and is determined 
based on whether clinical findings in two images are clinically close. A better ability of comparing source and 
target slices can help to better identify low-quality source data: if a source slice is very different from target slices, 
it is likely to be noisy or out of target domain. Our method works better than RegW. RegW requires target and 
source encoders to have the same architecture so that the distance between their weights can be calculated. This 
requirement prohibits learning representations tailored to specific datasets. 2D CT slices in CC-CCII have dif-
ferent properties than those in COVID-Papers. CC-CCII CTs are obtained from medical imaging databases in 
hospitals while COVID-Papers CTs are extracted from PDF-format papers. Using the same encoder architecture 
to represent them fails to account for such differences. In contrast, our method allows different encoders to have 
different architectures. Our method performs better than WS. In WS, target and source models share the same 
2D CT encoder, which prohibits the learning of dataset-specific representations. We performed an ablation study 
to further investigate whether it is beneficial to let the 2D CT slice encoders in source and target models have 
different architectures. Specifically, we set the two encoders in Ours+CDRS to be 1) both ResNet-50, and 2) both 
DenseNet. Table 1 shows the results of these two ablation settings denoted as Same-ResNet and Same-DenseNet. 
As can be seen, these two ablation settings perform worse than Ours+CDRS which uses different architectures 
for the two encoders. This further demonstrates that it is beneficial to use different architectures for source and 
target encoders to learn dataset-specific representations.

Our method works better than BO and MGTL. These two methods reweight source data without consider-
ing the performance of the target model on a held-out validation set, which leads to worse generalization per-
formance on test data. Our method outperforms OML and MentorNet. In OML and MentorNet, 3D CT scans 

Figure 2.  (Left) Evidence of model competition in MTL. (Right) How the performance of the target model 
varies with the performance of the source model in our framework.

Figure 3.  4-nearest source neighbors retrieved by different methods for some randomly sampled target CT 
slices. Compared with PS and PL, nearest neighbors retrieved by our CDRS method are more semantically 
similar to query slices. The similarity is evaluated by physicians and is determined based on whether clinical 
findings in two images are clinically close.
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are reduced to 2D slices for the sake of making target data have compatible format as source data. As a result, 
temporal information in 3D scans is lost, which leads to worse classification performance. In OML and Men-
torNet, format compatibility is required on both input data and output labels where the input data needs to be 
2D CT slices and the output label is COVID/Non-COVID. To meet such a requirement, when reducing 3D CT 
scans into 2D slices, each slice needs to be given a COVID/Non-COVID label using heuristics: every 2D slice 
in a COVID-positive 3D CT scan is labeled as COVID. This heuristic is noisy: it could be possible that some 2D 
slices in a COVID-positive 3D scan do not contain COVID-related abnormalities. In our method, when calcu-
lating e(xt ,Ds;E

∗
s (C)) , format compatibility is only required on input data, not on output labels. Therefore, our 

method does not suffer from the noisy labeling problem of OML and MentorNet. Our method performs better 
than Pretrain. This is because Pretrain learns source model and target model separately while our method trains 
these two models jointly end-to-end.

We also performed experiments where a 3D CT scan  dataset117 is used as source data. It contains 753 CT scans 
of COVID-19 patients. The architecture of the source model in our method is set to be the same as that of the 
target model described in the Experimental Settings section. Hyperparameters are the same as those described 
in the Experimental Settings section. For the OML baseline, no format unification between source and target 
data is needed. Table 2 shows the results. Our method outperforms all baselines. The analysis of reasons is similar 
to that for results in Table 1.

We also investigated whether the global ranking (of target CT images) generated in our proposed CDRS 
approach can group images with the same class together. We calculated the percentage of adjacent images (in the 
ranking) that have the same class label for model checkpoints of our method at different epochs. Figure 4(left) 
shows how this same-class percentage varies with training epochs, together with each checkpoint’s average F1 
of the three classes on test data. As can be seen, as our method runs for more epochs, the same-class percentage 
increases. This demonstrates that our method can encourage images from the same class to be grouped together 
in the global ranking. In addition, test F1 increases as the same-class percentage increases. This demonstrates 
that a better grouping of same-class images in the global ranking facilitates pneumonia classification.

Table 2.  Precision, recall, and F1 for pneumonia classification from CT scans. Source data is 3D CT scans. 
In the XY formatted entry, X denotes mean and Y denotes standard deviation in 5 runs with different random 
initialization.

NCP CP Normal

Precision (%) Recall (%) F1 (%) Precision (%) Recall (%) F1 (%) Precision (%) Recall (%) F1 (%)

CC-CCII99 84.5.5 87.2.7 85.8.4 88.9.8 87.5.6 88.2.2 85.9.6 86.3.7 86.1.7
RapidAI113 83.1.2 86.8.5 84.9.1 86.3.5 86.0.4 86.1.3 83.8.8 85.5.6 84.6.8
3D-CNN11 86.6.7 87.2.5 86.9.5 85.4.7 87.7.9 86.5.7 86.8.5 85.9.9 86.3.2
Li et al.114 86.2.5 82.3.4 84.2.5 90.9.7 90.3.4 90.6.5 89.4.4 87.9.7 88.6.6
Shamsi et al.115 86.4.3 87.4.5 86.9.6 91.7.3 89.9.5 90.8.4 90.4.6 89.2.3 89.8.5
Shaik et al.116 87.0.6 89.6.3 88.3.4 89.7.5 89.1.4 89.4.4 87.8.2 87.7.4 87.8.3
NoSrc101 85.9.9 87.5.6 86.7.6 88.1.9 89.2.6 88.6.9 86.2.9 87.1.9 86.6.5
NoWt101 89.1.4 86.6.5 87.8.5 88.2.6 90.7.8 89.4.6 90.4.5 91.2.3 90.8.3
Pretrain103 89.9.7 92.5.2 91.2.6 89.6.3 91.5.8 90.5.6 87.9.4 88.5.7 88.2.6
BO26 89.6.3 89.8.6 89.7.4 91.5.5 92.1.4 91.8.5 89.9.4 87.6.3 88.7.3
MGTL31 90.3.8 93.4.3 91.8.5 91.2.4 91.9.5 91.5.4 90.8.9 90.3.6 90.5.7
OML35 88.3.4 88.9.6 88.6.5 90.5.7 91.3.5 90.9.6 88.3.7 89.5.2 88.9.4
MentorNet107 87.1.4 88.7.3 87.9.3 90.6.7 91.1.4 90.8.5 89.3.1 90.5.8 89.9.6
MTL108 91.4.6 91.2.4 91.3.5 90.3.9 91.9.1 91.1.7 90.6.8 88.3.3 89.4.5
WS86 90.4.8 90.3.4 90.4.5 91.7.3 91.8.7 91.8.5 89.9.5 89.4.3 89.6.4
Ours 93.7.4 94.6.3 94.1.3 93.1.4 93.6.6 93.3.5 91.6.5 92.9.4 92.2.3

Figure 4.  (Left) How same-class percentage and F1 change with epochs in our method. (Right) How the 
performance of Ours+CDRS changes with �.



10

Vol:.(1234567890)

Scientific Reports |         (2023) 13:9401  | https://doi.org/10.1038/s41598-023-35938-3

www.nature.com/scientificreports/

We performed an ablation study on the LSTM component in the target model, by replacing it with an aver-
aging operation: instead of feeding the representations of CT slices into the LSTM network, we average these 
representations and feed the averaged representation into the classification head. Table 1 shows the results of this 
ablation setting (denoted as No-LSTM). The performance of No-LSTM is worse than Ours+CDRS which uses 
LSTM. This is because No-LSTM cannot capture the sequential relationship between CT slices while LSTM can.

Figure 4(right) shows how the performance (average F1 of NCP, CP, and Normal) of Ours+CDRS changes 
with � in Eq. (4). As can be seen, a � value in the middle ground yields the best performance. If � is too small 
(e.g., 0.01), there is not sufficient knowledge transfer from source to target. If � is too large (e.g., 2), the target 
encoder is excessively influenced by the source encoder and therefore is less capable of learning representations 
that are tailored to the target dataset.

Figure 5 shows some source examples whose importance weights learned by our method are close to 0 (indi-
cating these examples are noisy or have large domain discrepancy with target data). The range of importance 
weights after optimization is between [0,1]. As can be seen, some of these examples are indeed noisy. For instance, 
some contain artifacts such as bounding boxes. In some examples, lung regions are distorted. Though images on 
the last row do not contain obvious artifact noise, their appearance, texture, color, scale, and positions of lungs 
are different from those in the target dataset. This shows that our method is not only able to identify obviously 
noisy source examples, but also those having domain discrepancy with target data. MTL and OML incorrectly 
assign close-to-zero weights to some images that are clean and have large domain similarity to target data. 
Another finding is that our method tends to give COVID-19 CTs more weight to make the two classes (COVID 
and Non-COVID) more balanced. Without reweighting, the ratio between these two classes is about 0.75. After 
reweighting, the ratio is 0.84, getting closer to 1. As a result, performance of different classes in the 3D CT scan 
test set is more balanced. Without reweighting (NoWt), the ratio of F1 scores achieved on NCP, CP, and Normal 
is 1:1.03:1.02. After reweighting (ours), the ratio becomes 1:1.01:0.99.

Figure 6 shows two failure cases of our method. Each row contains some slices of a target CT scan. The first 
CT scan is from the CP class, but is incorrectly predicted as being from the NCP class. The second CT scan is 

Figure 5.  Randomly-sampled source images whose importance weights learned by different methods are 
close to 0. Our method can successfully identify images containing artifact noises such as bounding boxes or 
having large domain discrepancies with target data in terms of appearance, texture, color, scale, etc. In contrast, 
OML and MTL incorrectly assign close-to-zero weights to some images that are clean and have large domain 
similarity to target data.

Figure 6.  Two failure cases of our method. Each row contains some slices of a target CT scan. The first CT scan 
is from the CP class, but is incorrectly predicted as being from the NCP class. The second CT scan is from the 
NCP class, but is incorrectly predicted as being from the CP class. The cause of failure is that the two types of 
pneumonia have similar findings in CTs, which makes it challenging to distinguish them.
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from the NCP class, but is incorrectly predicted as being from the CP class. The cause of failure is that the two 
types of pneumonia have similar findings in CTs, which makes it challenging to distinguish them.

Conclusions
To accurately detect pneumonia from CT scans and differentiate COVID-19 and other types of pneumonia, we 
propose a three-level optimization based method which leverages CT images from a source domain to improve 
the training of a target model. Our method automatically identifies and down-weights low-quality source CT data 
examples that are noisy or have large discrepancies with target domain, by checking whether a source example 
is helpful in reducing validation loss of the target model. Our framework involves three learning stages. At the 
first stage, we train a source model on weighted source data. At the second stage, by transferring knowledge from 
source model to target model, we train a target model. We propose a novel knowledge transfer approach based 
on cross-domain relative similarity. At the third stage, we learn the importance weights of source examples by 
minimizing the validation loss of the target model. The three stages are performed end-to-end. Our method 
achieves an F1 score of 91.8% in detecting COVID-19 and an F1 score of 92.4% in detecting other types of 
pneumonia and outperforms state-of-the-art baselines significantly.

Data availability
The China Consortium of Chest CT Image Investigation (CC-CCII) is used as target dataset, which is available 
at http:// ncov- ai. big. ac. cn/ downl oad? lang= en The source dataset is available at https:// github. com/ UCSD- AI4H/ 
COVID- CT and https:// wiki. cance rimag ingar chive. net/ displ ay/ Public/ CT+ Images+ in+ COVID- 19# 70227 1073d 
f18fe c0c95 44498 74468 eec04 5f67d
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