
UC Berkeley
UC Berkeley Previously Published Works

Title
Refolding planar polygons

Permalink
https://escholarship.org/uc/item/3900x9qn

Journal
Discrete and Computational Geometry, 41(3)

ISSN
0179-5376

Authors
Iben, HN
O'Brien, JF
Demaine, ED

Publication Date
2009-04-01

DOI
10.1007/s00454-009-9145-7

Supplemental Material
https://escholarship.org/uc/item/3900x9qn#supplemental

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3900x9qn
https://escholarship.org/uc/item/3900x9qn#supplemental
https://escholarship.org
http://www.cdlib.org/

Discrete Comput Geom (2009) 41: 444–460
DOI 10.1007/s00454-009-9145-7

Refolding Planar Polygons

Hayley N. Iben · James F. O’Brien ·
Erik D. Demaine

Received: 27 September 2006 / Revised: 17 November 2007 / Accepted: 17 November 2007 /
Published online: 26 February 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract This paper describes an algorithm for generating a guaranteed intersection-
free interpolation sequence between any pair of compatible polygons. Our algorithm
builds on prior results from linkage unfolding, and if desired it can ensure that every
edge length changes monotonically over the course of the interpolation sequence.
The computational machinery that ensures against self-intersection is independent
from a distance metric that determines the overall character of the interpolation se-
quence. This decoupled approach provides a powerful control mechanism for deter-
mining how the interpolation should appear, while still assuring against intersection
and guaranteeing termination of the algorithm. Our algorithm also allows additional
control by accommodating a set of algebraic constraints that can be weakly enforced
throughout the interpolation sequence.

Keywords Polygon interpolation · Morphing · Shape transformation · Refolding

1 Introduction

In this paper we describe an algorithm for interpolating, or “morphing,” between
two planar, non-self-intersecting polygons. We assume only that the polygons are

H.N. Iben · J.F. O’Brien (�)
University of California, Berkeley, Berkeley, CA, USA
e-mail: job@eecs.berkeley.edu

H.N. Iben
Pixar Animation Studios, Emeryville, CA, USA
e-mail: iben@pixar.com

E.D. Demaine
Massachusetts Institute of Technology, Cambridge, MA, USA
e-mail: edemaine@mit.edu

mailto:job@eecs.berkeley.edu
mailto:iben@pixar.com
mailto:edemaine@mit.edu

Discrete Comput Geom (2009) 41: 444–460 445

simple (no initial self-intersections) and that they form a compatible pair (the same,
finite, number of vertices in both polygons). With these assumptions, our algorithm
is guaranteed to always find a continuous interpolation path between the two input
polygons, and every intermediate polygon along the computed interpolation path is
guaranteed to be intersection free.

Our algorithm is flexible in that it can accommodate substantial control over the
character of the resulting interpolation sequence through two distinct methods. The
first is the specification of a desired distance metric between a polygon pair. The algo-
rithm will greedily move the polygons towards each other by following the gradient
of this metric and detouring to avoid intersection. Second, additional algebraic con-
straints may be specified on the vertices of the intermediate polygons. The algorithm
will attempt to stay within the tangent space of the constraint set, breaking constraints
only when the constraints become incompatible with the conditions preventing inter-
section. In the special case where the constraints require that the edge-lengths change
monotonically, we can guarantee that the constraints never conflict with intersection
avoidance.

Our technique builds on recent theoretical results from discrete and computational
geometry, specifically [8] and [21], which show that any planar collection of polygons
and polylines can be “unfolded” to an “outer-convex” configuration. In the case of
a single polygon, these results imply that any arbitrary polygon can be continuously
deformed into a convex polygon without changing any of its edge lengths and without
self-intersection along the way. The motions implied by [8] and [21] are difficult to
compute directly, but based on the existence of these motions, we have shown in [5]
that a much simpler class of motions can also unfold any collection of polygons and
polylines to an outer-convex configuration. The simpler motions are easy to compute,
corresponding to the downward gradient of a “repulsive” energy function based on
the vertex-to-edge distances within the polygon.

Because one can easily interpolate between any two compatible convex polygons
(see, e.g., [1]), these unfolding results provide an obvious way to build a path from
one polygon to another. However, interpolating between two similar polygons by
ballooning the first polygon into a convex shape and then folding it back down to
the shape of the second polygon is probably not useful in most contexts. This paper
builds the theory of polygon unfolding into an approach to polygon refolding that
can be used to generate nonintersecting interpolation sequences between any two
compatible polygons.

Our algorithm makes use of any valid metric for measuring distances between
pairs of polygons. This metric should have the properties of a symmetric norm in
the space used to describe polygon configurations, and one simple example is the l2-
norm on the vector of concatenated vertex positions. This metric provides a measure
of how “direct” an interpolation is: the most direct interpolation simply follows the
metric’s gradient exactly. Of course, directness is not the only desire, because gradi-
ent descent may cause self-intersection. Our algorithm attempts to greedily find the
most direct interpolation path subject to the constraint of no self-intersection. As the
gradient descent attempts to build a path interpolating between the two polygons, our
algorithm uses the repulsive energy function from polygon unfolding to steer around
self-intersections. As demonstrated by Fig. 1 and several more figures in Sect. 7, the

446 Discrete Comput Geom (2009) 41: 444–460

Fig. 1 An intersection-free interpolation sequence generated using our algorithm. The first and last frames
are the two polygons being interpolated. For this example, all edge lengths were held constant, and the
distance metric was the l2-norm on the vector of vertex positions. The total computation time was 1.6
minutes

appearance of the resulting motion is predominantly governed by the distance metric
yet still avoids self-intersection. Although to guarantee convergence of our algorithm
we require that “direct” paths follow the gradient of a distance metric, this condition
is not strictly necessary for convergence. Any reasonable “direction heuristic” that
locally determines how to make a polygon more similar to another would likely also
cause our algorithm to converge.

The user can also specify a set of algebraic, or even semi-algebraic, constraints to
be satisfied by polygons throughout the interpolation sequence. Our technique satis-
fies the specified constraints if they are consistent with the requirement of noninter-
section. If the constraints cannot be satisfied, we still guarantee nonintersection and
satisfy the constraints as much as possible in a locally-greedy least-squares sense.
In particular, using the theory of polygon unfolding, we show that the algorithm can
always satisfy the constraints of fixing the edge lengths throughout the motion, as-
suming that corresponding edges have matching lengths in the two polygons being
interpolated. More generally, when the edge lengths do not match, the algorithm can
force every edge length to change monotonically throughout the interpolation. These
constraints in particular often lead to pleasing motions, but the user has the freedom
to specify which if any edges should change length monotonically.

2 Background

The task of interpolating between polygons, also called “polygon morphing,” is often
divided into two subproblems: establishing vertex correspondences and computing
vertex paths. In some cases, for example, [18] and [6], researchers have focused pri-
marily on establishing vertex correspondences while using a simple method, such as
linear interpolation of the vertex positions, to create the intermediate polygons. In this
paper, we do not discuss algorithms for finding vertex correspondences. We assume
that some other algorithm, or the user, supplies suitable correspondences. So long
as the correspondences order the vertices consistently, our interpolation algorithm is
guaranteed to succeed.

Other approaches have focused on more sophisticated interpolating schemes for
computing vertex paths. In [19], intermediate frames between two shapes are com-
puted by linearly interpolating the vertex angles and the edge lengths, giving better
results for rigid transformations than previous work using vertex positions. The au-
thors of [11] create a multiresolution representation for each input polygon. Their
algorithm interpolates between these representations to create the intermediate poly-
gons. The method described in [20] decomposes each input polygon into a planar

Discrete Comput Geom (2009) 41: 444–460 447

tree of star-shaped pieces, called a star skeleton. The points of the star skeleton, repre-
sented in polar coordinates, are linearly interpolated to create the intermediate shapes.
In [2], the authors decompose the input objects into compatible triangulations. They
then compute transformations between the triangulations that minimize local distor-
tion. None of these methods guarantee that the intermediate polygons they generate
will be intersection-free.

Both [13] and [10] generate nonintersecting sequences for limited types of input.
The method in [13] operates on pairs of polygons that have corresponding parallel
edges. The method in [10] operates on simple polylines.

A more general method appearing in [12] embeds the polygons inside a convex
region, generates a pair of compatible triangulations, and then builds a sequence be-
tween them by interpolating the stochastic matrices whose unit eigenvectors encode
the triangulations’ geometries. In a related approach, [22] uses the matrix represen-
tations to generate a morphing sequence where the trajectories of the interior vertices
can be linear with constant velocities, or as close to linear as possible. This approach
enables additional control over the morph, such as forcing the sequence through an
intermediate triangulation. In [23], the authors present a method to generate a more
natural-looking morph between compatible triangulations by interpolating the angles
and edge lengths when computing the intermediate mean value barycentric coordi-
nates. This enables morphing between two stick figures. Like the method we present
here, these methods guarantee that all intermediate polygons will not self intersect,
however the types of user control afforded by these systems differ substantially. The
character of the motions created by these methods also differs dramatically from that
of those generated by our method. Furthermore the methods derived from [12] cannot
implement edge-length or other constraints.

Our algorithm ensures that the computed interpolation sequences are intersection-
free, and it also decouples vertex correspondence and path computation from inter-
section avoidance. Intersection avoidance does, of course, affect the vertex paths, but
users are free to supply a suitable distance metric to generate whatever type of path
they like. The intersection avoidance machinery interferes as needed to prevent in-
tersection. Thus, one could see our method either as an independent interpolation
method, or as a wrapper to be used with any of the above methods that generate in-
teresting, but possibly intersecting, vertex paths. For example, the approach in [2]
produces paths that avoid needless distortion but that might intersect. If combined
with our method, we expect that the resulting algorithm would produce predomi-
nantly “rigid-as-possible” motions that distort only as needed to avoid intersection.

In addition to methods that operate directly on explicit polygonal representations,
several other methods for interpolating shapes have been described in the literature.
For example, both [24] and [7] interpolate between shapes by interpolating scalar
fields that implicitly define the shapes. The authors of [14] and [15] discuss meth-
ods for interpolating volumetric data. A method based on Minkowski sums appears
in [16].

448 Discrete Comput Geom (2009) 41: 444–460

3 Unfolding Groundwork

Our method stems from recent results showing that any planar collection of polygons
and polylines can be unfolded to an outer-convex configuration. In an outer-convex
configuration, all polygons or polylines that are not contained inside another poly-
gon are separated from each other and made either convex (polygons) or straight
(polylines). An unfolding motion preserves edge lengths and avoids self-intersection.
The existence of these unfolding motions has been demonstrated in both [8] and [21]
using two distinct approaches.

While both imply the existence of unfolding motions, actually computing the mo-
tions directly implied by these proofs can be difficult. However, the motion implied
by [8] has the additional property that it is strictly expansive, meaning that the mo-
tion strictly increases the distances between all vertices not sharing an edge. In [5], we
show that given the existence of expansive motions, one can reformulate the unfold-
ing problem as one where one simply seeks to minimize a suitable energy function.
A suitable energy function is one with the following properties:

Charge—the value of the function is finite for any intersection-free configuration and
approaches +∞ as the system approaches self-intersection.

Repulsive—the energy function decreases to first order under any expansive motion.
Separable—as distinct connected components recede from each other, any energy

terms relating them should vanish.
C1,1—the function should be C1 continuous with bounded curvature.

It can then be shown that a simple optimization strategy, such as gradient descent,
can be used to generate an intersection-free interpolation path from any polygon to a
convex polygon, and that the space of valid configurations contains no local minima
in which the process might get stuck. The results also imply that a valid energy func-
tion contains no critical points of any kind at non-outer-convex points in the space
of valid configurations and that the valid configuration space is simply connected.
A detailed convergence proof with step bounds appears in [5], but in summary, for a
single polygon:

1. By charge, the energy function is finite for any valid initial polygon and ap-
proaches +∞ as the system approaches self-intersection, so any path that starts
with a nonintersecting polygon and strictly decreases energy cannot lead to a self-
intersection.

2. By repulsiveness, an expansive direction in configuration space is a direction that
decreases the energy, and from [8] we know that such a direction always exists
unless the polygon is already convex. Therefore, the gradient can never vanish ex-
cept for convex polygons, and there can be no local minima that do not correspond
to a convex configuration.

Together these two observations guarantee that any continuous gradient descent
path starting from any valid polygon will converge to a convexified polygon and that
at no point along the path will the polygon intersect itself.

Discrete Comput Geom (2009) 41: 444–460 449

4 Energy and Parameterization

In [5], we used an energy function based on the elliptic distance between edges
and vertices because a C2 energy function facilitates placing an actual bound on
the worst-case number of Euler steps that might be required to convexify a given
collection of polygons and polylines. We also used an angle-based parameterization
because it allows us to guarantee that all edge lengths are preserved exactly.

Here, however, we prefer to use an energy based on Euclidean distances because
we have found that it converges faster in practice. Additionally, we choose to pa-
rameterize using the vertex positions directly and enforce any desired edge-length
preservation using algebraic constraints. This decision simplifies interpolation be-
tween polygons with different edge lengths, and it also preserves any symmetries by
treating all edges equivalently.

For a polygon with N vertices, let vi with i ∈ [1 . . .N] denote the positions of the
vertices, let ei be the edge between vi and vi+1, and let li be the edge’s length.1 The
energy corresponding to the polygon’s configuration is given by

E =
N∑

i=1

N∑

j=1
j �=i,j �=i−1

1

dist(vi , ej)2
, (1)

where dist(vi , ej) is the Euclidean distance between edge j and vertex i. It is easy to
verify that this energy function is charge, separable, C1,1, and, except for the trivial
cases of N ≤ 4, repulsive.

5 Refolding

Our interpolation algorithm relies on the energy-based unfolding framework to guar-
antee that it can always construct an intersection-free sequence between any two
polygons. In the worst case, the algorithm will convexify both polygons, trivially in-
terpolate between the two convex polygons, and produce the sequence begin-polygon

→ convexified-begin-polygon → convexified-end-polygon → end-polygon.
In most contexts, this worst-case result is not particularly useful, so the algorithm

uses an additional distance metric to generate a more desirable path. Because the
energy function provides a guiding framework, this metric can be quite simplistic
and still produce good results. In fact, many of the examples shown in this paper were
produced using the trivial metric based on the norm of differences in vertex positions.
That metric would simply move the vertices on a straight line to their target location.
As shown in Fig. 2, this metric alone produces intersecting sequences, but it can be
guided around intersections by an appropriate energy function.

We can also include algebraic constraints that should be enforced throughout the
interpolation. These constraints could be simply bundled into the distance metric, but

1Index arithmetic is modulo N , so vN+1 is equivalent to v1.

450 Discrete Comput Geom (2009) 41: 444–460

Fig. 2 The top row demonstrates how using the vertex-position metric alone will, as expected, generate a
sequence with self intersections. The bottom row illustrates how the collision-avoidance machinery alters
the vertex motions to avoid self intersection. Computation times were less than one second

then the intersection-avoidance machinery would tend to violate them needlessly. In-
stead, we combine the projection step that prevents self-intersection with the projec-
tions that preserve the user constraints. In the special case where the user constraints
seek to make edge lengths constant (or change them monotonically), we can guar-
antee, based on the previously described unfolding results, that they will not conflict
with intersection avoidance. However, arbitrary constraints may conflict with inter-
section avoidance, so they will only be enforced to the extent that they do not cause
the algorithm to fail.

5.1 The Algorithm

The following pseudocode describes our algorithm for generating an interpolation
sequence between two polygons, A and B:

1. Establish compatibility and correspondence:
The user, or some heuristic, indicates the desired correspondence between A and
B and renumbers vertices accordingly. If one of the polygons has fewer vertices
than the other, then additional vertices are inserted by splitting edges.

2. While A and B are different:
a) Compute the energy for A and B .
b) Use the gradient of the distance metric to determine a direction, D, that would

move the higher-energy polygon, H , closer toward the lower-energy one, L.
c) Optional: Project D to enforce edge-length or other constraints.
d) If D would move H to a higher-energy configuration:

• Project D so that it is perpendicular to the energy gradient. (Attempt to honor
any constraints if they are in use.)

e) If D is not null:

• Perform a bounded search in the direction D for a new state that decreases
the distance metric by some minimal amount and does not result in an energy
increase.

f) If D is null or the search in (2.e) failed:

• Set G to the direction of the downward energy gradient at H . (Again, attempt
to honor any constraints if they are in use.)

Discrete Comput Geom (2009) 41: 444–460 451

• Move H in the direction G.

g) If both A and B are convex:

• Use the method from [1] to move A to B .

3. Output the path taken by A to the common configuration followed by the reverse
of the path taken by B .

At each iteration of the while loop, the higher-energy polygon, H , attempts to
move closer to the other, lower-energy one, L. The projection step in (2.d) ensures
that H does not move up in energy and therefore protects against self-intersection. If
the direction from H toward L is the same as the upward energy gradient at H , the
projection would take D to the null vector.2 In that case, the algorithm simply moves
H downward in energy, which we know is always possible from [5].

A formal proof that this algorithm will terminate after a finite number of steps
appears in Sect. 6. Informally, if we assume that the direction used in step (2.b) to
compute D is the gradient of a suitable distance metric, we can guarantee that the
above algorithm will always converge. We note that each iteration of the while loop
makes either an “approach” move (bringing A and B closer to one another) or a “de-
scent” move (decreasing the energy of H). The descent moves may undo some of
the progress made by approach moves, but the approach moves cannot undo progress
made by the descent moves. The algorithm cannot fail to converge by taking an infi-
nite number of descent moves because each decreases the energy toward a minimal
value and no moves ever increase the energy. Similarly, the algorithm should not be
able to take an infinite number of approach moves because each move decreases the
distance between A and B as measured by the distance metric. A sequence of an in-
finite number of interleaved approach and descent moves continually undoing each
other cannot occur because the approach moves cannot undo descent progress.

This algorithm is essentially a variation of numerical constrained gradient descent.
We suggest [9] for a discussion of the conditions under which descent methods gen-
erally converge, and [3] or [17] for a general introduction to relevant numerical meth-
ods. For our current implementation, we have found it sufficient to use a fixed step
size that has been selected conservatively by the user.

5.2 A Distance Metric

As described above, the interpolation algorithm is designed to work with a user-
supplied distance metric. Given an initial configuration, S, and a target configuration
T , the gradient of the metric indicates a direction, D, that moves S closer to T in the
space of polygon configurations.

In our implementation, each polygon configuration is represented as a vector of
length 2N that contains the interleaved x and y coordinates of each vertex. The most
obvious distance metric is simply ‖T − S‖ so that D is the unit vector in the direc-
tion T − S. If we were to use this naïve direction alone, the resulting motion would

2Because the gradient of the nonlinear energy function varies over configuration space, this situation will
occur occasionally.

452 Discrete Comput Geom (2009) 41: 444–460

most often include self-intersections. However, when embedded in our energy-guided
algorithm, it generates an interpolation sequence free of self-intersection.

In Sect. 7 we show both results generated using this simple distance metric and
results generated with other metrics. The ability to specify an arbitrary distance met-
ric, or even a direction heuristic not explicitly tied to some metric, affords the user
with some aesthetic control over the resulting interpolation sequence. The use of a
direction heuristic not explicitly tied to some metric could also cause the algorithm to
fail. If given the opportunity, the heuristic must cause the two polygons to converge in
a finite number of steps. Further, the directions generated by the heuristic should not
include any extraneous components or else the energy projection could potentially
cancel the useful portion leaving a nonzero vector that might then fail to converge.
Alternatively, the direction heuristic could be allowed to include additional spurious
components that do not correspond to the gradient of any distance metric, but the
conditions in steps (2.e) and (2.f) should then test to see if the projected vector lacks
a component in the direction of the distance metric’s downward gradient, rather than
just testing whether it is null.

5.3 Energy Projection

To avoid self-intersection, each step must move H to an equal- or lower-energy con-
figuration. This requires that D · G ≤ 0 where G is the normalized gradient of the
repulsive energy function evaluated at H . The algorithm accomplishes this by testing
a candidate direction against the gradient direction. If the dot product is less than or
equal to zero, then the direction is left unchanged. Otherwise, the direction is replaced
with

D := (
I − GGT)

D, (2)

where I is the identity matrix.
Because the gradient is not constant, a finite sized step following D may still yield

an increase in energy even if D · G ≤ 0. When this condition occurs, we bias D

downward by subtracting γG from the direction where γ is a small positive number
determined numerically to ensure that the step leads to an equal or lower energy level.
This standard technique, commonly used in numerical minimization codes, does not
adversely affect our convergence guarantee.

5.4 Constraints

In addition to specifying vertex correspondences and a distance metric, the user can
also control the interpolation by specifying constraints that should be satisfied by
each polygon in the sequence. One could choose to incorporate user constraints into
the direction given by the distance metric, but the energy gradient projection done by
(2) would tend to violate the constraints needlessly. Instead, when the user desires
constraints, we can attempt to satisfy both them and the energy constraint simultane-
ously. If they cannot all be satisfied simultaneously, then the energy constraint will
be satisfied and the user constraints only as much as possible. We treat the energy
constraint with higher priority because it is what assures convergence and noninter-
section.

Discrete Comput Geom (2009) 41: 444–460 453

We assume that each constraint applies to an individual polygon P , is differen-
tiable, and can be expressed in the form

Ω(P) = 0. (3)

For example, we could constrain the edge lengths of a polygon to be constant with

‖vi − vi+1‖2 − l2
i = 0 ∀i ∈ [1 . . .N], (4)

where the vi and li are the vertex positions and edge lengths of P .
If there are M constraints, let J be the M ×N matrix whose rows are the gradient

vectors for each of the constraints, ∇Ω . If the initial polygons honor the constraints,
then in step (2.c), we can project D to a direction that will not violate them with

D := D − J Tl, (5)

where l is determined by

J J T l = JD. (6)

In general, a finite step in this direction would still allow any nonlinear constraints to
be violated by a small amount, and this error could accumulate to unacceptable levels
if not managed. If e is the length M vector whose entries are each of the Ω evaluated
at H , then we can prevent error accumulation by instead solving for l using

JJ Tl = JD + αe, (7)

where α is a small constant. (See, for example, [4] for a discussion of constraint
stabilization and how α should be selected.)

As before, if the adjusted direction would move upward in energy, it must be ad-
justed. However, using (2) could break the projection done by (7) because, in general,
G will not be orthogonal to all of the constraints (rows of J). To avoid violating the
constraints needlessly, let K be the matrix formed by appending G as an extra row to
J , and let f be the vector formed by appending −γ /α to e. Step (2.d) sets

D := D − KTl, (8)

where l was solved for using

KKTl = KD + αf (9)

with some small value used for γ . This value is iteratively increased until a downward
energy step results.

Both (7) and (9) can be solved efficiently using the conjugate-gradient method.
The matrices J J T and K KT may be under-constrained, over-constrained, or both.
When the matrix is over-constrained, not all of the constraints can be satisfied, and
the conjugate-gradient method will produce a solution that satisfies them all equally
in a least-squares sense. Increasing γ causes the energy constraint to have greater
importance until it is satisfied. Figure 3 shows a simple example computed with and
without additional constraints.

454 Discrete Comput Geom (2009) 41: 444–460

Fig. 3 These images show interpolation between a box with an arm-like protrusion and a rotated version
of the box with the arm bent. These simple examples demonstrate how the direction metric and constraints
can affect the computed sequence. The first row shows the result computed using a vertex position metric.
The second row shows the result for the vertex position metric after several distance constraints have been
added. The bottom row uses a metric based on joint angles with no constraints. For each row, the edge
lengths were held fixed and less than two seconds of computation was required

For the special case where all of the user constraints correspond to edge-length
preservation, we know from [5] that (9) is never over-constrained because an energy-
decreasing motion exists even when the edge lengths are fixed. Thus, for two poly-
gons with the same edge lengths, we can always interpolate between them while
holding the edge lengths constant. When the polygons have different edge lengths,
we can force them to change monotonically by only including the appropriate row of
J or K if omitting that row would result in an edge becoming further in length from
its target rather than closer. This type of linear-programming approach could also be
used to include other semi-algebraic constraints.

6 Proof of Convergence

In this section, we present a formal proof showing that our refolding algorithm con-
verges in a finite number of steps, under basic assumptions on the user-supplied dis-
tance metric. For simplicity, we consider the case where the two polygons have corre-
sponding edges of the same length and the only constraints are preservation of edge
lengths. In this case, the angle-based parameterization of [5] can be used, and the
methods for enforcing algebraic constraints described in Sect. 5.4 are not required.

Definition 1 A valid distance metric is a scalar function, φ(H,L), that has the prop-
erties of a norm on the space of polygon configurations. In particular, φ(H,L) is
zero if and only if H and L correspond to the same configuration. We also require
that ∇φ ≤ κ for some constant κ , so that ‖�H‖ < d implies that |�φ| < dκ .

Discrete Comput Geom (2009) 41: 444–460 455

Definition 2 A descent step is one that takes H to a new, lower-energy configuration
by moving in the direction of the downward energy gradient. Descent steps occur in
(2.f) of the algorithm listing.

Definition 3 An approach step is one that takes H to a new configuration such that
φ(H,L) = ‖H − L‖ decreases according to the chosen distance metric. Further, an
acceptable approach step must decrease φ(H,L) = ‖H − L‖ by at least some mini-
mal amount ε, and the energy value of H after the step must be less than or equal to
the value prior to the step. Approach steps occur in (2.e) of the algorithm listing.

Theorem 1 The total number of descent steps taken by the algorithm is finite.

Proof In [5], we bound the total number of descent steps taken by a polygon A in
terms of the number of vertices and the ratio between the largest and smallest distance
in the original configuration of A. The same energy bound applies to B . Because ap-
proach steps cannot move upward in energy, this bound on descent steps for each
polygon must apply to the algorithm as a whole irrespective of any interleaved ap-
proach steps. �

Theorem 2 The total number of approach steps taken by the algorithm is finite.

Proof By definition, any approach step must decrease φ(L,H) by at least ε, or it
will be replaced by a descent step. Therefore the total number of descent steps is
bounded by (φ0 + φ+)/ε, where φ0 is the initial value of φ(L,H), and φ+ is the
total increase caused by all descent steps. From [5] we obtain an upper bound on the
maximum distance that each descent step can move in configuration space by dividing
an upper bound on energy by a lower bound on the energy gradient. We also know
from Theorem 1 that the total number of descent steps is bounded. By Definition 1,
the gradient of φ is bounded as well, so the bound on the change in the configuration
implies a bound on φ+. Therefore we obtain a finite upper bound on (φ0 + φ+)/ε. �

Corollary 1 The algorithm must terminate after a finite number of steps.

Proof By Theorems 1 and 2, the algorithm can take only a finite number each of
approach and descent steps. If the approach steps are exhausted first, then the two
configurations are equal, and the algorithm has completed. If the descent steps are
exhausted first, then both polygons are convex, and we may hand off to the algorithm
of [1] that completes in polynomially many steps. �

The structure of the above proof remains the same for the general case of unequal
corresponding edges with included constraints. However, the extended versions of
Theorems 1 and 2 would require an analysis of the numerical algorithms used in
Sect. 5.4 that is beyond the scope of this paper.

456 Discrete Comput Geom (2009) 41: 444–460

7 Results and Discussion

We have implemented our algorithm and used it to create the examples shown in
this paper. The accompanying video contains animations corresponding to these ex-
amples.3 times and the methods used to create the examples can be found in their
respective figure captions. The running times for our C++ implementation were mea-
sured in CPU seconds on a 3.06 GHz Pentium IV computer with 1 GB of memory.

The rows of images in Fig. 3 illustrate the use of different distance metrics. As can
be seen in the top and bottom rows, metrics based on the Cartesian coordinates of the
vertices and on joint angle coordinates produce very different results. The middle row
shows how the motion can be modified by adding additional constraints. In Fig. 7,
distance constraints were added to maintain the shape of the six arms and outside
box and also to keep the inside box rigid throughout the motion. Figure 10 illustrates
adding distance constraints to control an animation sequence. Using the directions
based on vertex position differences alone, as illustrated in the top row, produces
an animation that expands unnecessarily. Adding distance constraints creates a more
rigid motion, as shown in the middle and bottom rows.

A feature of the method is that it preserves spatial and temporal symmetries.
In Figs. 1 and 7, the input polygons are symmetric about a central horizontal axis.
It is evident that the animation preserves this symmetry throughout the interpolation.
Similarly, the input for Fig. 9 is symmetric about a central vertical axis. Figures 3
and 4, both demonstrate animations where the input polygons mirror each other and
the method creates temporally symmetric sequences.

Our method also enables the user to choose the behavior of the edge lengths dur-
ing the animation. The sequence in Fig. 1 shows our method with the constraint that
edge lengths are held constant. The examples in Figs. 4 and 5 illustrate the differ-
ence between constraining the edge lengths to change monotonically (top row) or
allowing them to change freely (bottom row). For some examples, constraining the

Fig. 4 This example interpolates between two configurations of interlocked teeth. The top row shows the
result computed with the edge lengths constrained to change monotonically and required 5.0 minutes of
computation. The bottom row shows the result computed with unconstrained edge lengths and required 1.8
minutes of computation

3The video, in QuickTime format, may be accessed on-line at the following URL: http://www.cs.berkeley.
edu/b-cam/Papers/Iben-2006-RPP.

http://www.cs.berkeley.edu/b-cam/Papers/Iben-2006-RPP
http://www.cs.berkeley.edu/b-cam/Papers/Iben-2006-RPP

Discrete Comput Geom (2009) 41: 444–460 457

Fig. 5 Examples with relaxed energy constraint; see text. In the top row constrained edge lengths, 4.1
minutes computation. In the bottom row unconstrained edge lengths, 2.0 minutes computation. The leaf
and plane outlines were provided by Marc Alexa. Note that these input objects are not symmetric

Fig. 6 Examples of interpolating with constrained edge lengths between levels of the Hilbert curve. The
frames in the top row have 260 vertices, and computation time was 2.0 minutes. The bottom row frames
have 1026 vertices and required 1.3 hours of computation

edge lengths generated pleasing results. However, in the leaf-plane example, the con-
straint causes an ugly pinch to form in the leaf-stem/plane-tail. Because a “good”
sequence depends on the subjective criteria applied by the user, we feel the flexibility
afforded by our approach is highly desirable. Other examples using unconstrained
edge lengths are pictured in Figs. 8 and 9. In Fig. 11, we decided based on aesthetic
considerations to morph from T to E with constrained edge lengths while the other
letters’ animations are unconstrained.

Figure 6 shows interpolation between different levels of the two-dimensional
Hilbert curve. The large bottom edge connecting the two sides of the curve is chang-
ing monotonically throughout the animation, while the rest of the edges are con-
strained to be constant length. To maximize visibility, configurations are uniformly
scaled to give a constant image size.

We can also relax the requirement that steps never increase the energy. As an
experiment, we allowed the leaf-plane examples in Fig. 5 to take steps that increase
the energy up to a threshold. This modified algorithm still avoids self-intersection,
but it could potentially fail to converge.

One possible problem with our method is that it uses information, the energy func-
tion gradient, that is local to the current polygon. As a result, we cannot guarantee
that the path generated is globally optimal in any sense: we can guarantee only that

458 Discrete Comput Geom (2009) 41: 444–460

Fig. 7 In addition to constrained edge lengths, this example has eighteen distance constraints (drawn light
gray in the first and last frames). The total computation time was 1.3 minutes

Fig. 8 This example was created by generating two successive sequences using three key frames. The
keys are shown in the first, center, and last positions. Total computation time was three seconds

Fig. 9 Transforming between two polygons. Unrestricted edge lengths, less than three seconds computa-
tion

we find a path. In practice, however the algorithm appears to do a good job finding
paths that do not detour needlessly. We have experimented with applying relatively
expensive optimization procedures to, for example, shorten a computed path as much
as possible. So far, we have not observed that this effort produces any significant
improvements. These experiments suggest that the computed paths might be at least
locally optimal, at all times greedily minimizing the deviation from the greedy di-
rection given by the distance metric’s gradient. It is tempting to wonder whether
properties of the energy landscape might mean that locally optimality implies some
global property.

The collision-avoidance technique presented here provides a method for generat-
ing intersection-free interpolation sequences between arbitrary, nonintersecting, pla-
nar polygons. We can guarantee that such a path can be found when used with any
suitable distance metric or direction heuristic. The examples illustrate that our method
can handle a variety of polygons and produce pleasing results. In addition to shape
morphing applications in computer graphics, the facility to include length and other
constraints may allow our work to be useful for other problems, such as finding effi-
cient, direct motion paths for planar robotic arm manipulators.

There are several directions for improving our results further. Although our C++
implementation is robust and fast, using an adaptive time step would likely improve
running times. Other areas for future work include exploring interesting direction

Discrete Comput Geom (2009) 41: 444–460 459

heuristics and adding other types of constraints to the system. It would also be inter-
esting to explore the extent to which our techniques can be applied to 3D polygons
and tree skeletons. In these contexts, interpolation sequences would, in general, be
forced to intersect. However, nonintersecting solutions between similar objects might
be useful in contexts such as character animation.

Acknowledgements We thank Jonathan Shewchuk, Jason Cantarella, and Carlo Séquin for their help-
ful suggestions. Demaine was partially supported by NSF CAREER award CCF-0347776, DOE grant
DE-FG02-04ER25647, and AFOSR grant FA9550-07-1-0538. Iben was supported by NSF and GAANN
Fellowships. Iben and O’Brien were supported in part by NSF CCR-0204377, State of California MICRO
04-066 and 05-044, and by generous support from Pixar Animation Studios, Intel Corporation, Sony Com-
puter Entertainment America, Apple Computer Inc., Autodesk, the Okawa Foundation, and the Alfred P.
Sloan Foundation.

Fig. 10 This example interpolates between letters U and S, demonstrating that adding distance constraints
can control the animation sequence. The first row shows the result computed using the vertex position
metric alone, requiring eighteen seconds of computation time. The middle row shows the animation after
adding 41 distance constraints to create a more rigid motion, requiring 5.5 minutes. The bottom row dis-
plays a different motion created using less distance constraints (19), requiring 3.0 minutes. For each row,
the edge lengths were constrained to change monotonically. The middle row may be compared to results
shown in [12] and [22]

Fig. 11 Our final example.
Total computation time was less
than a second

460 Discrete Comput Geom (2009) 41: 444–460

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Aichholzer, O., Demaine, E.D., Erickson, J., Hurtado, F., Overmars, M., Soss, M.A., Toussaint, G.T.:
Reconfiguring convex polygons. Comput. Geom., Theory Appl. 20(1–2), 85–95 (2001)

2. Alexa, M., Cohen-Or, D., Levin, D.: As-rigid-as-possible shape interpolation. In: Proceedings of
ACM SIGGRAPH 2000, pp. 157–164 (July 2000)

3. Atkinson, K.E.: An Introduction to Numerical Analysis, 2nd edn. Wiley, New York (1989)
4. Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput.

Methods Appl. Mech. Eng. 1, 1–16 (1972)
5. Cantarella, J.H., Demaine, E.D., Iben, H.N., O’Brien, J.F.: An energy-driven approach to linkage

unfolding. In: Proceedings of the 20th Annual Symposium on Computational Geometry, pp. 134–143
(June 2004)

6. Carmel, E., Cohen-Or, D.: Warp-guided object-space morphing. Vis. Comput. 13, 465–478 (1997)
7. Cohen-Or, D., Solomovic, A., Levin, D.: Three-dimensional distance field metamorphosis. ACM

Trans. Graph. 17(2), 116–141 (1998)
8. Connelly, R., Demaine, E.D., Rote, G.: Straightening polygonal arcs and convexifying polygonal

cycles. Discrete Comput. Geom. 30(2), 205–239 (2003)
9. Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear

Equations. SIAM, Englewood Cliffs (1996)
10. Efrat, A., Har-Peled, S., Guibas, L.J., Murali, T.M.: Morphing between polylines. In: Proceedings of

the Twelfth ACM-SIAM Symposium on Discrete Algorithms, pp. 680–689 (2001)
11. Goldstein, E., Gotsman, C.: Polygon morphing using a multiresolution representation. In: Proceedings

of Graphics Interface, pp. 247–254 (1995)
12. Gotsman, C., Surazhsky, V.: Guaranteed intersection-free polygon morphing. Comput. Graph. 25(1),

67–75 (2001)
13. Guibas, L., Hershberger, J.: Morphing simple polygons. In: Proceedings of the 10th Annual Sympo-

sium on Computational Geometry, pp. 267–276 (1994)
14. He, T., Wang, S., Kaufman, A.: Wavelet-based volume morphing. In Bergeron, D., Kaufman, A. (eds.)

Proceedings of Visualization ’94, pp. 85–92 (1994)
15. Hughes, J.F.: Scheduled Fourier volume morphing. In: Proceedings of ACM SIGGRAPH 1992, pp.

43–46 (1992)
16. Kaul, A., Rossignac, J.: Solid-interpolating deformations: Construction and animation of PIPs. In:

Proceedings of Eurographics ’91, pp. 493–505 (1991)
17. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C, 2nd edn.

Cambridge University Press, Cambridge (1994)
18. Sederberg, T.W., Greenwood, E.: A physically based approach to 2-d shape blending. In: Proceedings

of ACM SIGGRAPH 1992, pp. 25–34 (July 1992)
19. Sederberg, T.W., Gao, P., Wang, G., Mu, H.: 2-d shape blending: an intrinsic solution to the vertex

path problem. In: Proceedings of ACM SIGGRAPH 1993, pp. 15–18 (August 1993)
20. Shapira, M., Rappoport, A.: Shape blending using the star-skeleton representation. IEEE Comput.

Graph. Appl. 15, 44–50 (1995)
21. Streinu, I.: A combinatorial approach to planar non-colliding robot arm motion planning. In: Proceed-

ings of the 41st Annual Symposium on Foundations of Computer Science, Redondo Beach, California,
pp. 443–453 (November 2000)

22. Surazhsky, V., Gotsman, C.: Controllable morphing of compatible planar triangulations. ACM Trans.
Graph. 20(4), 203–231 (2001)

23. Surazhsky, V., Gotsman, C.: Intrinsic morphing of compatible triangulations. Int. J. Shape Model.
9(2), 191–201 (2003)

24. Turk, G., O’Brien, J.F.: Shape transformation using variational implicit functions. In: Proceedings of
ACM SIGGRAPH 1999, pp. 335–342 (August 1999)

	Refolding Planar Polygons
	Abstract
	Introduction
	Background
	Unfolding Groundwork
	Energy and Parameterization
	Refolding
	The Algorithm
	A Distance Metric
	Energy Projection
	Constraints

	Proof of Convergence
	Results and Discussion
	Acknowledgements
	Open Access
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

