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ABSTRACT OF THE DISSERTATION

Descriptive Combinatorics on Trees, Grids, and Non-Amenable Graphs

by

Clark Richard Lyons

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2024

Professor Andrew Marks, Co-Chair

Professor Itay Neeman, Co-Chair

This dissertation investigates Baire measurable, measurable, and Borel labeling problems in

descriptive combinatorics on Borel graphs that are tree-like or grid-like, and also on graphs

that have certain expansion behavior.

Chapter 2 introduces a framework for applying the determinacy method to prove impossi-

bility results in Borel combinatorics to labeling problems on tree-like graphs and hypergraphs.

It also establishes a generalized method of round elimination to prove analogous impossibility

results in the theory distributed algorithms and shows that these two methods both naturally

apply to the same class of sinkless coloring problems.

Chapter 3 provides a proof that the set of games for which a certain player has a winning

strategy in a Borel family of games in Baire measurable. This result is used in the previous

chapter in the determinacy arguments. This result is proven by classical methods, but it is

also shown how the result follows from and fits into the theory of universally Baire sets of

reals.

Chapter 4 contains joint work with Felix Weilacher and Anton Bernshteyn to find a locally
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checkable labeling problem on two dimensional grids which can always be solved µ-measurably

on any Borel grid for any Borel probability measure µ, but cannot always be solved Baire

measurably.

Chapter 5 contains joint work with Alexander Kastner to prove that free Borel actions of

non-amenable groups admit Baire measurable perfect matchings.

Chapter 6 proves an expander mixing lemma for probability measure preserving graphs

and uses this result to obtain a simpler construction of an edge-colored highly mixing graph

from the descriptive combinatorics literature.
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CHAPTER 1

Introduction

The field of descriptive combinatorics studies definable graphs and definable solutions to

labeling problems on these graphs. A Borel graph is a graph G whose vertex set V (G)

is a Polish space and whose edge relation E(G) ⊆ V (G) × V (G) is Borel. Of particular

importance are Borel graphs which are locally finite, which means that every vertex has finite

degree, or even Borel graphs of bounded degree. A fundamental example of a Borel graph

is that of a Schreier graph. If Γ is a finitely generated group with finite generating set S,

and a : Γ×X → X is a Borel action of Γ on a Polish space X, then the resulting Schreier

graph Sh(a, S) is a bounded degree Borel graph. These Schreier graphs for various group

actions and Borel graphs derived from them form a good source of examples in descriptive

combinatorics.

One simple but illustrative example of such a Schreier graph comes from the irrational

rotation action on the circle Tθ : Z× S1 → S1 (for a fixed irrational angle θ). The resulting

Schreier graph Sh(Tθ, {±1}) is acyclic and every vertex has degree 2. Thus Sh(Tθ, {±1})

consists of continuum many components which are all bi-infinite paths. Therefore Sh(Tθ, {±1})

has a proper 2-coloring (the vertices can be labeled with 2 colors in such a way that adjacent

vertices receive different colors). But by a classical ergodicity argument, Sh(Tθ, {±1}) does

not have a Borel 2-coloring. That is, the function which labels the vertices with the two colors

cannot be Borel. In fact there is no Lebesgue measurable or Baire measurable 2-coloring of

Sh(Tθ, {±1}). This example already shows that the descriptive combinatorial properties of a

graph can diverge from the classical combinatorial properties of that graph.
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A Borel Schreier graph also makes an appearance in the proof of the Banach-Tarski

paradox in the form of an action of a free group on the sphere by rotations a : F2 × S2 → S2

with α, β ∈ F2 the generators. The Banach-Tarski paradox amounts to finding a vertex

labeling of Sh(a, {α, β, α−1, β−1}), indicating the pieces in the decomposition, such that the

labels satisfy certain local conditions in Sh(a, {α, β, α−1, β−1}) which indicate how the pieces

can be rotated to double-cover S2. Since the Banach-Tarski paradox cannot be performed

with Borel pieces (or even Lebesgue measurable pieces), we have another example of a

Borel graph with interesting descriptive combinatorial properties. But as it turns out, the

Banach-Tarski paradox can be performed with Baire measurable pieces by work of Dougherty

and Foreman [8].

In general if G is a locally finite graph and Π is a labeling problem whose correctness at a

vertex only depends on the labels in a neighborhood of that vertex, then the axiom of choice

implies that there is a solution to Π on G if and only if there is a solution to Π on every

finite subgraph of G, where the labeling condition is only enforced at the interior vertices of

the finite subgraph. But this compactness argument which lifts labelings of finite subgraphs

to G does not ensure anything about the definability of the resulting labeling on the whole

graph. If for example G is a Borel graph and we want a Borel solution to Π, then we need to

take more care than is afforded by this approach using compactness.

In work of Kechris-Solecki-Todorcevic [19], Grebk-Pikhurko [12], and Lyons-Nazarov [23],

definable vertex-colorings, edge-colorings, and matchings are constructed algorithmically, in

part by analyzing how classical greedy algorithms run in the context of Borel graphs. This

algorithmic approach continues to be fruitful in descriptive combinatorics. Analogously in

the field of distributed algorithms, labeling problems are studied on large finite graphs where

each vertex represents a computer which can only directly communicate with its neighbors.

After some number of rounds of communication each vertex must output its label. There

have been precise connections made between the field of distributed algorithms and the field

of descriptive combinatorics by Bernshteyn [2], and even outside of these proven connections
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each field employs similar ideas which can sometimes be borrowed into the other field.

1.1 Measure, Category, and Structural Decompositions

What separates descriptive combinatorics from set-theoretic combinatorics on the underlying

graph is the regularity properties that definable sets of reals have. For example, Borel subsets

of Polish spaces are Baire measurable and µ-measurable for any Borel probability measure µ.

Either Baire measurability or µ-measurability can be used to show that the Borel chromatic

number of Sh(Tθ, {±1}) is not 2. And these two methods of proof are analogous to each other

in this simple setting. But in general, the kind of regularity imposed by Baire measurability

and µ-measurability are very different. As was stated before, the Banach-Tarski paradox can

be performed with Baire measurable pieces (but not with Lebesgue measurable pieces). In

[25] Marks and Unger recast this as a result about Baire measurable matchings in bipartite

graphs with combinatorial expansion. Chapter 5 extends their results to Baire measurable

matchings in non-bipartite graphs with combinatorial expansion, with applications to the

Schreier graphs of free actions of non-amenable groups.

One main tool in the results of Chapter 5, which goes back to Marks and Unger, is a

certain strong structural Borel decomposition, which can be obtained in any Borel graph

after discarding an invariant meager set. This kind of decomposition can provide a witness

to hyperfiniteness, off of this invariant meager set, providing another way to see the result

that every countable Borel equivalence relation is hyperfinite on an invariant comeager set.

Hjorth and Kechris [16], and independently Sullivan, Weiss, and Wright [27] and also Woodin

in unpublished work, proved that every countable Borel equivalence relation is hyperfinite on

an invariant comeager set. Even more, after discarding an invariant meager set, there are

other strong strong structural Borel decompositions one can obtain like toast (discussed in

chapter 4), Borel asymptotic dimension decompositions, Borel asymptotic separation index

decompositions, and others.
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It is also known that Schreier graphs of Zd admit such strong Borel decompositions without

having to discard anything. This connects the study of Baire measurable combinatorics to

the Borel combinatorics of certain nicer Borel graphs, especially those generated by nicer

groups. The question of which groups are nice is very subtle and connects to Weiss’s question,

which is open: Are orbit equivalence relations of actions of amenable groups on Polish spaces

hyperfinite?

Ornstein and Weiss [26] proved that after discarding an invariant null set, actions of

amenable groups are hyperfinite. But non-amenable groups can generate non-measure-

hyperfinite equivalence relations. Therefore the Schreier graphs of actions non-amenable

groups need not have any of the structural Borel decompositions described above, even after

discarding an invariant null set. This provides a major difference between Baire measurable

and µ-measurable combinatorics which shows up in the presence of more complicated group

actions.

But this still leaves the question of what differences are their between Baire measurable

and µ-measurable combinatorics on Schreier graphs of nicer groups. It is asked in [14] whether

there are any locally checkable labeling problems on Schreier graphs of Zd which can be solved

µ-measurably for any action, but cannot always be solved Baire measurably. An example of

such a labeling problem is provided in Chapter 4.

1.2 Other Methods

There are also impossibility results in Borel combinatorics which do not come from measure or

category. Marks [24] constructed, for every d, an acyclic d-regular Borel graph which has Borel

chromatic number d+ 1. In contrast, as shown in [6], for d ≥ 3 every such graph has a Borel

d-coloring on a comeager or conull invariant set. Mark’s method uses the Borel determinacy

theorem. Chapter 2 provides a framework for applying Borel determinacy to certain labeling

problems on graphs and hypergraphs that are tree-like. That chapter also introduces a
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framework for applying the method of round elimination from distributed algorithms to show

that there is no o(log(n))-LOCAL algorithm for solving certain labeling problems on graphs

and hypergraphs that are tree-like. These two methods both naturally apply to a general

class of problems called sinkless coloring, which are described in the chapter.

In the determinacy arguments in Chapter 2, some measurability questions arise pertaining

to sets that have fairly complicated definitions in the sense of descriptive set theory. Chapter

3 is devoted to proving that these sets satisfy the required measurability hypotheses, and to

connecting these measurability results to the theory of universally Baire sets of reals.

In addition to the sigma-algebras of µ-measurable and Baire measurable sets of reals,

there are other sigma-algebras of interest in descriptive combinatorics. The sigma-algebra

of completely Ramsey subsets of [ω]ω is used for the purpose of proving some completeness

results in descriptive combinatorics in [15]. They combine results about the Ramsey property

with properties of certain edge-labeled measure-preserving graphs that they construct using a

local-global limit. Chapter 6 of this thesis provides an alternative construction which avoids

local-global limits and instead develops expansion properties of measure-preserving graphs

through a spectral analysis.

1.3 Terminology and Notation

We assume standard descriptive set theory terminology and notation as in [17].

A Borel graph G = (V,E) is a graph whose vertex set V is a Polish space and whose edge

relation E ⊆ V ×V is Borel. For a Borel graph G and a graph labeling problem P , descriptive

combinatorics concerns whether there is a a solution to P on G with a labeling function that

is Borel. As mentioned above, if G is locally finite (every vertex has finite degree) and the

validity of P at a vertex can be checked by considering the labels in a neighborhood of the

vertex, then a consequence of the axiom of choice is that G has a labeling which solves P

if and only if every finite subgraph of G has a labeling which solves P (where the labeling
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condition of P is only enforced at interior vertices of the finite subgraph). But this solution

given by the axiom of choice, is not guaranteed to be Borel, or even Baire measurable or

µ-measurable for a Borel probability measure µ.

Graphs will be assumed to be irreflexive with no multi-edges. We will use the discrete

graph distance d(x, y) between vertices x and y that are in the same component of a graph

G. We use Br(x) to denote set of vertices of distance at most r from x in the graph. And if

X is a set of vertices, we use Br(X) to denote the set of vertices of G of distance at most r

from some vertex in X. Denote the set of neighbors of a vertex x by N(x). And similarly

let N(X) denote the set of vertices which are adjacent to a vertex in X, when X is a set of

vertices. Additional graph-theoretic terminology and notation will be introduced and used as

needed, dependent on context.

If a : Γ y X is an action of a group Γ on a set X and S ⊆ Γ is a set, then we have a

Schreier graph Sh(a, S) whose vertex set is X and such that two vertices are related when

one can be obtained from the other by an application of a element of S in the action a. In

the case that X is a Polish space, Γ is a countable discrete group, and the action a is by

Borel transformations, the graph Sh(a, S) is a Borel graph.

If G is a Borel graph then the connectedness relation, where two vertices are related

if they are in the same connected component, is an analytic equivalence relation. If G is

locally finite or even just locally countable, then the connectedness relation is Borel and

has countable classes. We call such Borel equivalence relations countable Borel equivalence

relations. Similarly if a Borel equivalence relation has finite classes, we call it a finite Borel

equivalence relation.

If E is a countable Borel equivalence relation on a Polish space X and there exists an

increasing sequence of finite Borel equivalence relations En on X such that E =
⋃
En, then

we say that E is hyperfinite. The notion of hyperfiniteness, as mentioned above, plays an

important role in descriptive combinatorics. This is in part because finite Borel equivalence

relations have very simple definable combinatorics.
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CHAPTER 2

Round Elimination and The Determinacy Method

This chapter studies an aspect of the connection between descriptive combinatorics and

distributed algorithms, especially in the case of graphs that are tree-like, as studied in [3].

The connection of descriptive combinatorics to distributed algorithms is through the LOCAL

model of distributed computation, introduced by Linial in [22]. See Distributed Graph

Coloring: Fundamentals and Recent Developments [1] by Barenboim and Elkin for a formal

introduction.

Consider a graph G with n vertices. Here G represents a network of computers that can

communicate with their neighbors in discrete rounds. In each round, the vertices perform a

computation locally and then send messages to all their neighbors. After R many rounds,

every vertex outputs a label for itself or for its edges/hyperedges, and the this labeling of

G is the output of the algorithm. The efficiency of such an algorithm is measured by the

number of communication rounds R required, maximized over all n-vertex graphs (or all

n-vertex graphs from a specified class). Every vertex of G performs the same algorithm.

Symmetry is broken by assuming that each vertex has a unique identifier from {1, . . . , n},

and each vertex knows its own identifier. A deterministic LOCAL algorithm solves a labeling

problem P if the labeling it outputs on any graph G is a valid solution to P , regardless of

the way the identifiers are assigned. There is also a randomized LOCAL model, where the

vertices generate their identifiers independently at random from {1, . . . , n} and the algorithm

is required to produce a valid solution to P with probability of failure less than 1
n
. We will

primarily be concerned with deterministic algorithms.
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We will consider classes of graphs of bounded degree, and we study asymptotic bounds (in

terms of n) on the number of rounds of communication required to solve a labeling problem,

where the implied constants can depend on the degree bound.

Bernshteyn [2] proved the following two theorems which provide a connection between

descriptive graph combinatorics and distributed algorithms.

Theorem 1. If G = (V,E) is a Borel graph of bounded degree and there is a o(log n)-round

deterministic LOCAL algorithm for solving a locally checkable labeling problem P on the

finite subgraphs of V , then there is a Borel solution to P on G.

Theorem 2. If G = (V,E) is a Borel graph of bounded degree and there is a o(log n)-round

randomized LOCAL algorithm for solving a locally checkable labeling problem P on the finite

subgraphs of V , the for any compatible Polish topology τ on V there is a Baire measurable

solution to P on G. And for any Borel probability measure µ on V there is a µ-measurable

solution to P on G.

These theorems turn upper bound results in distributed algorithms directly into positive

results in descriptive graph combinatorics. Although the converses to the previous theorems

are not true, there is a similarity between the method of round elimination for proving lower

bounds in distributed algorithms and the determinacy method for proving impossibility

methods in descriptive set theory. Brandt’s [5] method of round elimination has been to show

that there is no o(log n)-LOCAL deterministic algorithm for finding a ∆ vertex coloring in

∆-regular acyclic graphs. The determinacy method of Marks [24] has been used to construct

a Borel ∆-regular acyclic graph without a Borel ∆ vertex coloring. Both round elimination

and the determinacy method have since been applied to a variety of problems. This chapter

generalizes both methods to a wider class of problems about labeling hypergraphs and shows

that both methods apply to natural problems in this wider class.

Since its introduction, round elimination has been applied to prove lower bounds for a

large number of problems in the theory of distributed algorithms. This has happened in part
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because of the online Round Eliminator tool, which can help test whether the method applies

to a particular labeling problem. The generalized notion of round elimination introduced in

this thesis may be able to expand the applications of round elimination further, especially if

a tool like the Round Eliminator were made available for this new form of round elimination.

2.1 Notation

The technique of round elimination takes place in the setting of a bipartite graph, where the

two parts in the partition are the “active” and “passive” vertices. The generalized setting for

round elimination proposed in this paper takes place in a k-partite k-uniform hypergraph,

which includes the case of a bipartite graph when k = 2. A k-uniform hypergraph

G = (V,E) is a set of vertices V equipped with a collection E of hyperedges, which are

cardinality k subsets of V . We will consider labelings of the vertices and hyperedges of

G which formally are functions from V or E to a set of labels. We say that a k-uniform

hypergraph G = (V,E) is k-partite if there is a partition

V = V1 t . . . t Vk

of the vertices such that every hyperedge contains exactly one vertex from each Vi. A

k-partite hypergraph is σ-regular (with respect to a partition V = V1 t . . . t Vk) for a tuple

σ = (d1, . . . , dk) if for each i each vertex in Vi belongs to exactly di many hyperedges. We

call such a tuple σ = (d1, . . . , dk) for di ≥ 2 a signature.

Given a σ-regular k-partite hypergraph G = (V,E) and a set of labels L, a labeling

problem P = (P1, . . . , Pk) is a tuple where each Pi is a collection of cardinality di multisets

of elements of L. We can also think of each Pi as a di-ary relation on L which is symmetric

under all permutations of the di coordinates. A labeling c : E → L is a solution to P if for

every i and every v ∈ Vi,

{c(e)|v ∈ e} ∈ Pi

where the left side is treated as a multiset of cardinality di. All labeling problems considered
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here will be of this form.

In the case k = 2, so σ = (d1, d2), we obtain the standard way of encoding labeling

problems for the purpose of round elimination. The case that k is larger and di = 2 for all i

is what is considered in the original determinacy method [24]. This encodes vertex-labeling

problems on k-regular graphs with a fixed k-edge coloring.

For a fixed signature σ = (d1, . . . , dk), if P = (P1, . . . , Pk) is a problem with label set L

and Q = (Q1, . . . , Qk) is a problem with label set M , then a 0-round reduction of Q to

P is a function f : L→M which is a homomorphism in the sense that for each i we have

(`1, . . . , `di) ∈ Pi =⇒ (f(`1), . . . , f(`di)) ∈ Qi.

If there is a 0-round reduction of Q to P then a solution to Q can be obtained from a solution

to P by applying f to all labels. Also note that the composition of 0-round reductions is a

0-round reduction.

The graphs we consider to prove lower bounds will be arise from certain σ-regular k-partite

hypergraphs associated to the Schreier graphs of free actions of free products of finite groups.

Fixing a signature σ we consider the group

Γσ = ∆1 ∗ . . . ∗∆k

where ∆i is a cyclic group of order di generated by δi for each i. Given an action of Γσ on a

set X, we can form a k-uniform k-partite hypergraph Gσ(X) with vertex set V = V1t . . .tVk

where each Vi is the set of cosets {x, δix, . . . , δdi−1
i x} of the induced action of ∆i on X. The

hyperedges of Gσ(X) are between sets of cosets whose intersection is a singleton {x} ⊆ X.

We call a k-partite σ-regular hypergraph free if it is a subgraph of some Gσ(X).

For any signature σ we can consider the sinkless coloring problem Psc = (P1, . . . , Pk)

with label set {1, . . . , k} with relations defined by

Pi = {(`1, . . . , `di)|∃m ≤ di, `m 6= i}.
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It follows from the original determinacy method that there is a Borel graph of the form Gσ(X)

which does not have a Borel solution to Psc. As demonstrated in [24], the problem Psc can

be seen as a weakening of the problem of finding a ∆-vertex coloring in ∆-regular graphs

equipped with a ∆-edge coloring, by considering the signature σ = (2, . . . , 2). The problem

Psc also can be seen as a weakening of the sinkless orientation problem or the problem of

2∆− 2 edge coloring.

2.2 Round Elimination

Fix a signature σ = (d1, . . . , dk), a problem P = (P1, . . . , Pk) with label set L in this

signature, and an index i ∈ {1, . . . , k} to indicate the active vertices. This means that when

we consider a distributed algorithm on a free k-partite σ-uniform hypergraph G = (V,E) with

k-partition V = V1 t . . . t Vk, only the vertices in Vi will label the hyperedges they belong to.

This avoids problems of conflicting outputs of an algorithm since each hyperedge contains

exaclty one element of Vi. Also, this does not affect the asymptotic number of rounds needed

to solve a problem since each vertex neighbors a vertex from Vi.

In addition to only declaring some of the vertices active, we also insist that a vertex v ∈ Vi

can only directly send a message to vertices in Vi−1 (or Vk if i = 1) with which it shares a

hyperedge. This lengthens the number of rounds to communicate a message, but only by a

factor of at most k− 1 since it now takes at most k− 1 rounds to send messages to the other

vertices on the same hyperedge.

If P is a d-ary relation on L, then we define two d-ary relations P ∃ and P ∀ on P(L) by

P ∃ = {(S1, . . . , Sd)|∃`1 ∈ S1, . . . ,∃`d ∈ Sd, P (`1, . . . , `d)}

P ∀ = {(S1, . . . , Sd)|∀`1 ∈ S1, . . . ,∀`d ∈ Sd, P (`1, . . . , `d)}.

We define a new problem rei(P) = (Q1, . . . , Qk) with label set P(L) in the same signature

but with active index i + 1 (the new active index is 1 if i = k). And we let Qi = P ∃i and
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Qj = P ∀j for all j 6= i.

Note that there is a natural 0-round reduction from rei(P) to P which is f : L→ P(L)

with f(`) = {`}. We also have the following, which is the fundamental property of round

elimination.

Lemma 3. Let P = (P1, . . . , Pk) be a problem in signature σ and let 1 ≤ r � log n. Then

there is an r round solution in the port-labeling model to P with the Vi vertices active if and

only if there is an r − 1 round solution in the port-labeling model to rei(P) with the Vi+1

vertices active, for free hypergraphs of signature σ with n vertices.

Proof. Suppose that there is an r − 1 round solution to rei(P) with the Vi+1 vertices active.

We show how in one more round of communication, the vertices in Vi can solve P . First, the

Vi+1 vertices send their solution to rei(P) to all of the Vi vertices with which they share a

hyperedge. Each v ∈ Vi will recieve di many sets S1, . . . , Sdi . Because (S1, . . . , Sdi) ∈ P ∃i , the

vertex v can pick `m ∈ Sm for all m such that (`1, . . . , `di) ∈ Pi. Then v outputs each `m on

the hyperedge where Sm would have been in the solution to rei(P). This is a solution to P

because for each j 6= i and v ∈ Vj, the labels on the hyperedges around v were chosen from

sets satisfying P ∀j and hence satisfy Pj.

Now suppose that there is an r round solution to rei(P). Consider a vertex v ∈ Vi. Let

e1, . . . , edi be the hyperedges containing v, and let {u1, . . . , udi} be the corresponding vertices

in Vi+1 which share a hyperedge with v. Using r− 1 rounds of communication v can simulate

the computation and communication to predict what label each um would have outputted

for em. The only information which is inaccessible to v for this simulation are the vertices

which can reach um in r rounds but cannot reach v in r − 1 rounds of communication. For

each hyperedge e containing v let Xe(v) be the set of vertices which can reach the vertex

in e ∩ Vi+1 in r rounds but cannot reach v in r − 1 rounds of communication. The vertex v

lists through all possible identifiers which the vertices of Xe(v) could have and outputs the
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following label from P(L) for e

{`|um outputs ` for some assignment of identifiers to Xe(v)}.

Now fix j 6= i and some w ∈ Vj. For each hyperedge e containing w, let ve be the vertex in

e ∩ Vi. We claim that the different sets Xe(ve) are disjoint because the hypergraph is free.

This is because the vertices which can reach each ve in r rounds but cannot reach w in r − 1

rounds must have their information pass into ve from a vertex other than w and so come

from different directions in the free graph. This implies that the output of the algorithm

satisfies the relation P ∀j around each w ∈ Vj. If it were possible for each e around w to get

labels that violate Pj for some choice of identifiers on each Xe(ve), then it is possible for all

of the Xe(ve) to have these identifiers simultaneously which violates the correctness of the

algorithm being simulated. Checking the correctness of the algorithm around each v ∈ Vi is

more straightforward. The relation P ∃i must hold around v since for every e containing v, the

vertices from each e ∩ vi+1 are all simulating the same vertex v to produce their labels.

This lemma shows that round elimination produces a canonical problem which requires

one fewer round of communication, as long as we rotate which vertices are active. As a

consequence of this we have the following.

Theorem 4. If P is a fixed point of round elimination in the sense that P is 0-round

reducible to

rek ◦ rek−1 ◦ . . . ◦ re2 ◦ re1(P)

then P does not have a o(log n)-round deterministic algorithm in the port-labeling model for

the class of free hypergraphs of signature σ, unless P is solvable in < k rounds.

Proof. If P has a solution in r rounds for k ≤ r � log n, then rek ◦ . . . ◦ re1(P) has a

solution in r − k rounds. And using the zero round reduction from P, we have that P has

a solution in r − k rounds. The theorem follows by induction.
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We can upgrade this result to the deterministic LOCAL model using the same standard

technique with typical round elimination [5].

Theorem 5. If P is a fixed point of round elimination in the sense that P is 0-round

reducible to

rek ◦ rek−1 ◦ . . . ◦ re2 ◦ re1(P)

then P does not have a o(log n)-round LOCAL deterministic algorithm for the class of free

hypergraphs of signature σ, unless P is solvable in < k rounds.

Even though the problem rek ◦ . . . ◦ re1(P) has far more labels than P, it is possible to

test whether P is 0-round reducible to rek ◦ . . . ◦ re1(P) by only considering reductions to

problems with one usage of round elimination. But first we prove a simple lemma.

Lemma 6. If f : L→M is a 0-round reduction from Q to P , then the direct image function

f” : P(L)→ P(M)

is a 0-round reduction from rei(Q) to rei(P) for any i.

Proof. This follows from the fact that f” is a homomorphism from P(L) to P(M) for the

relations P ∃i and Q∃i and also for the relations P ∀i and Q∀i whenever f is a homomorphism

from L to M for the relations Pi and Qi.

Lemma 7. A problem P is 0-round reducible to rek ◦ . . . ◦ re1(P) if and only if for all i,

the problem P is 0-round reducible to rei(P).

Proof. First assume that P is reducible to rek ◦ . . . ◦ re1(P). By a previous remark,

applications of round elimination always produce easier problems from the perspective of

0-round reductions. Thus rei−1 ◦ . . .◦ re1(P) is reducible to P . Applying the previous lemma

gives that rei ◦ . . . ◦ re1(P) is reducible to rei(P). We also know that rek ◦ . . . ◦ re1(P) is

reducible to rei ◦ . . . ◦ re1(P). Following a sequence of three compositions we have that P is

reducible to rei(P).
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Conversely assume that P is reducible to rei(P) for all i. Applying the previous lemma

k−i times we have for all i that rek◦. . .◦rei+1(P) is reducible to rek◦. . .◦rei(P). Composiing

these reductions together yields that P is reducible to rek ◦ . . . ◦ re1(P).

We now show that the sinkless coloring problem Psc = (P1, . . . , Pk) admits round

elimination. Fix i ∈ {1, . . . , k} and consider rei(P) = (Q1, . . . , Qk). Then

Qi = P ∃i = {(S1, . . . , Sdi)|∀m ≤ di, Sdi 6⊆ {i}}

and for j 6= i

Qj = P ∀j = {(S1, . . . , Sdj)|∀m ≤ dj, j 6∈ Sdj}.

We show that the map f : P(L)→ L given by

fi(S) =


` if ` is least such that ` 6= i and ` ∈ S

i if S ⊆ {i}
(2.1)

is a 0-round reduction. To show this suppose that (S1, . . . , Sdi) ∈ Qi. Then (fi(S1), . . . , fi(Sdi)) ∈

Pi since none of the entries are i. And for j 6= i if (S1, . . . , Sdj ) ∈ Qj then (fi(S1), . . . , fi(Sdj )) ∈

Pj since none of the entries are j. This can be summarized by the following theorem.

Theorem 8. The sinkless coloring problem Psc admits round elimination in the sense that

Psc is 0-round reducible to rei(Psc) for all i.

This provides an alternative proof that Psc does not have a o(log n) round determanistic

LOCAL algorithm, but this also follows from applying Theorem 1 to [24].

2.3 Determinacy

Again fix a signature σ = (d1, . . . , dk). The determinacy method can be used to construct a

Borel σ-regular hypergraph of the form Gσ(X) without a Borel labeling that solves a problem

P for certain problems P . Let kL denote the set of functions from L to {1, . . . , k} where L

is the label set. We think of such functions as partitions of the labels into k named sets.
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Definition 9. A problem P = (P1, . . . , Pk) is playable if there is a function D : kL →

{1, . . . , k} such that for any i ∈ {1, . . . , k} if F1, . . . , Fdi ∈ kL are such that D(Fm) = i for

all i, then

(F−1
1 (i), . . . , F−1

di
(i)) ∈ P ∃i .

We think of each F ∈ kL determining a k-player game where player i tries to avoid the

labels in F−1(i). The function D picks out a player which does not have a winning strategy

in each game. And if player i loses each of the games Fm, then it must be the case that the

label sets F−1
m (i) are compatible by a strategy stealing argument where di − 1 copies of the

winning strategies of the k − 1 other players are played against each other. The following is

proven in [4] for the case that σ = (2, . . . , 2), but the same method yields the corresponding

statement for hypergraphs.

Theorem 10. If P is not playable, then there is a σ-regular Borel hypergraph of the form

Gσ(X) which does not have a Borel solution to the problem P.

Their method goes through the theory of local-global limits of finite graphs. We show that

it is possible to avoid this and also that the Borel graph Gσ(X) can be taken to be hyperfinite,

meaning that the connectedness relation is a hyperfinite Borel equivalence relation. This

hyperfiniteness was achieved in [4] when P is a homomorphism problem, and hyperfiniteness

had been achieved earlier for the classical vertex coloring, edge coloring, and matching

problems.

Theorem 11. If P is not playable, then there is a hyperfinite σ-regular Borel hypergraph of

the form Gσ(X) which does not have a Borel solution to the problem P.

This is obtained by replacing the ID graphing of [4] with an alternative Borel graph, and

the measure theoretic properties are replaced by Baire measurable properties.

For a fixed signature σ, consider the group

Γ∗ωσ = (∆1,1 ∗ . . . ∗∆1,k) ∗ (∆2,1 ∗ . . . ∗∆2,k) ∗ . . .
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where ∆p,i is a cyclic group of order di generated by δp,i. Let Y ⊆ 2Γ∗ωσ be a comeager subset

on which Γ∗ωσ acts freely and the action is hyperfinite, which must exist by [16]. We have the

following key property which allows for Γ∗ωσ to be used as an ID graph as in [4].

Lemma 12. If A1, . . . , Adi ⊆ Y are each comeager in a non-empty basic open subset of Y ,

then there exists p ∈ N and y ∈ Y such that for all m ≤ di we have δmp,i · y ∈ Am.

Proof. For each m let Um be a non-empty basic open subset of Y such that Am is comeager

in Um. Then each Um is determined by a finite set of coordinates Im ⊆ Γ∗ωσ . For each distinct

m,m′ ≤ di, for all but finitely many p we have that δmp,iIm is disjoint from δm
′

p,i Im′ . Thus there

is a single p such that for all m the sets δmp,iIm are disjoint. Thus the basic open sets δ−mp,i ·Um

have non-meager intersection. Let y ∈ Y be in this intersection. Then for all m ≤ di we have

δmp,i · y ∈ Am.

Proof. Theorem 10 now follows from the methods of [4] but with Y as the ID graph.

The Cayley graphs of

Γ∗ωσ = (∆1,1 ∗ . . . ∗∆1,k) ∗ (∆2,1 ∗ . . . ∗∆2,k) ∗ . . .

and

Γσ = ∆1 ∗ . . . ∗∆k

both have natural edge-colorings where edges corresponding to the generators δi,j or δj are

colored j. And Y inherits such a coloring since its components are all isomorphic to the

Cayley graph of

Γ∗ωσ = (∆1,1 ∗ . . . ∗∆1,k) ∗ (∆2,1 ∗ . . . ∗∆2,k) ∗ . . . .

Let H be the set of subgraphs of Y which are isomorphic to Γσ = ∆1 ∗ . . . ∗ ∆k, with a

distinguished vertex. The isomorphism is required to respect the edge-coloring just described.

Let H = (H,E) be the graph with vertex set H where two subgraphs (G, v) and (G′, v′),

with distinguished vertices, are adjacent if they are the same subgraph G = G′ and the
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distinguished vertices v and v′ are adjacent. Then H is a graph, all of whose connected

components are isomorphic to Γσ = ∆1 ∗ . . . ∗∆k. In fact H can be seen as the Schreier graph

of an action of Γσ = ∆1 ∗ . . . ∗∆k on H. And since Y is hyperfinte, H is as well. Suppose

that the σ-regular Borel hypergraph Gσ(H) has a Borel solution to P. We show that P is

playable.

For each y ∈ Y and partition F ∈ kL we define a k-player game G(y, F ). In turns the

players build an element of H, a subgraph with distinguished vertex y. In the first turn player

i chooses among the generators δj,i to choose a di cycle through y. In subsequent rounds

the players choose cycles further and further away from y to build the subgraph (G, v) by

finite approximation. Let ` be the label that the hyperedge corresponding to (G, v) has in

the Borel solution to P. The loser is declared to be the player F (`).

In this multi-player Borel game there must be some player i such that the players in

{1, . . . , k} \ {i} have a combined winning strategy to force i to lose. For each y and F , let

L(y, F ) be the least such losing player. Note also that if player i loses the game G(y, F ),

then player i also loses the variant of the game where they make their play first in each turn.

The other players can simply use the same combined strategy ignoring the extra information

of one extra play each turn. As described in [4], the function L(y, F ) is Baire measurable. (In

the next chapter we provide an alternative proof of this fact, avoiding the metamathematical

theory of provably ∆1
2 sets.) Thus we can define a function D : kL → {1, . . . , k} such that for

each f ∈ kL we have L(y, F ) = D(F ) for a non-meager set of y.

Now suppose that F1, . . . , Fdi ∈ kL are such that D(Fm) = i for all i. Then by the previous

lemma there is some y ∈ Y and some δp,i such that for all m ≤ di we have L(δmp,i · y, Fm) = i.

We now consider a way to pit the combined winning strategies of the other players against

each other. Starting at the cycle {y, . . . , δdi−1
p,i · y}, we can build a subgraph of Y by following

for each m the winning combined strategy of G(δmp,i · y, Fm) where {y, . . . , δdi−1
p,i · y} is taken

to be the opponent’s first move. Since these are all winning strategies, it must be the case
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that the hyperedge corresponding to δmp,i · y receives a label in F−1(`). Therefore

(F−1
1 (i), . . . , F−1

di
(i)) ∈ P ∃i .

This verifies that P is playable.

The following is a rephrasing of the original determinacy argument of [24].

Theorem 13. The sinkless coloring problem Psc is not playable.

Proof. Note that L = {1, . . . , k}. Consider the partition F : L → {1, . . . , k} given by

the identity F (i) = i. Supposing that Psc = (P1, . . . , Pk) is playable, we can choose

such an assignment D : kL → {1, . . . , k}. Then we have D(F ) = i for some i. Now let

F1 = . . . = Fdi = F . Then

(F−1
1 (i), . . . , F−1

di
(i)) 6∈ P ∃i

since by the definition of Psc, (i, . . . , i) 6∈ Pi. This contradicts playability.

We also mention one simple property of playability and 0-round reductions.

Theorem 14. If there is a 0-round reduction f : L → M of Q to P and P is playable,

then Q is playable.

Proof. If P is playable, there is a function D : kL → {1, . . . , k} such that for any i ∈

{1, . . . , k} if F1, . . . , Fdi ∈ kL are such that D(Fm) = i for all i, then

(F−1
1 (i), . . . , F−1

di
(i)) ∈ P ∃i .

We show that Q is playable by considering the function D′ : kM → {1, . . . , k} defined by

D′(F ) = D(F ◦ f). Suppose that F1, . . . , Fdi ∈ kM are such that D′(Fm) = i for all m. Then

D(Fm ◦ f) = i for all m. Thus

((F1 ◦ f)−1(i), . . . , (Fdi ◦ f)−1(i)) ∈ P ∃i .
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But this immediately implies that

(F−1
1 (i), . . . , F−1

di
(i)) ∈ Q∃i .
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CHAPTER 3

Borel Families of Games and Baire Measurability

This chapter provides a proof that in a Borel family of Borel games, the set of games for

which player I has a winning strategy is Baire measurable. This was established by Solovay,

in unpublished work. We also connect this fact to the theory of universally Baire sets.

Throughout, games are identified with subsets of H ⊆ ωω. Players I and II alternate

playing natural numbers and player II wins if and only if the resulting sequence is in H.

The Borel determinacy theorem says that if H is a Borel set, then one of the players has a

winning strategy. For more details see [17].

If X is a set and A ⊆ X × ωω then for every x ∈ X there is a game Ax ⊆ ωω such that

Ax = {α ∈ ωω|(x, α) ∈ A}.

In this way A defines a parameterized family of games. If X is a Polish space and A is Borel,

then A defines a Borel family of Borel games, each of which is determined. This is the setting

of interest.

In Chapter 2, as part of the construction of a Borel graph without Borel solutions to

certain labeling problems, Borel families of games are considered. It is important for those

arguments to proceed that the set of games won by a player in a Borel family of games is

Baire measurable. Similar arguments can be made to work if this set is µ-measurable for a

certain Borel probability measure µ. This measurability problem in the determinacy method

first shows up in [4]. They resolve the issue with the metamathematical theory of weakly

provably ∆1
2 sets. This chapter provides an alternative more “classical” approach, which
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avoids the metatheory and instead uses an argument that combines a Borel family of games

into a single Borel game. We also provide an alternative quick proof that relies on the theory

of universally Baire sets.

The set of games for which a certain player has a winning strategy is ∆1
2. But these sets

of games won by a certain player in a Borel family of games have some nicer measurability

properties than general ∆1
2 sets, in particular they are Baire measurable. But if V = L, then

there is a ∆1
2 well ordering of ωω. This can provide an example of a ∆1

2 set which is not

Baire measurable. Of course, under large cardinals we have Baire measurability of all ∆1
2 sets,

including sets of games won by a player in a Borel family of games. So the main result of this

chapter is most relevant in the setting of ZFC without necessarily assuming large cardinal

hypotheses.

3.1 Classical Proof

This proof is based off of a proof that the axiom of determinacy implies that all sets of reals

are Baire measurable.

Theorem 15. If X is a Polish space and A ⊆ X × ωω is Borel then

W = {x|II has a winning strategy for Ax}

is Baire measurable.

Proof. It suffices to show that for any open set U ⊆ X that either W is comeager in U or

X \W is comeager in a nonempty open V ⊆ U . But localizing the argument and replacing

X with U , it suffices to prove that W is either comeager or X \W is comeager in some

nonempty open V ⊆ X. This is what we prove.

Consider the following Borel game GA. Fix a countable basis U for the topology on X.

Player I plays pairs (U2k, n2k) and player II plays pairs (U2k+1, n2k+1) such that for all i,
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ni ∈ ω, Ui ∈ U is a basic open subset of X, diam(Ui) ≤ 2−i, and Ui+1 ⊆ Ui. By the shrinking

conditions on the open sets, we have ⋂
i∈ω

Ui = {x}

and player II wins if and only if (x, (ni)i∈ω) ∈ A.

We will prove that if player II has a winning strategy for GA then W is comeager, and then

that if player I has a winning strategy for GA then X \W is nonmeager in some nonempty

open V ⊆ U . Borel determinacy implies that one of the two players has a winning strategy

and the result follows.

We first prove that if player II has a winning strategy for GA, then W is comeager. Let

σ :
⋃
k∈ω

(
U × ω

)2k → U × ω

be a winning strategy for II. Let T ⊆ (U × ω)<ω be a tree on U × ω with the property that

any

a ∈ T ∩ (U × ω)2k

has a unique child

a′ = a_σ(a) ∈ T ∩ (U × ω)2k+1.

We also assume that for any b ∈ T ∩ (U × ω)2k−1 and any n2k the collection

{U2k+1|∃U2k ∃U2k+1 ∃n2k+1, b
_(U2k, n2k)

_(U2k+1, n2k+1) ∈ T}

is pairwise disjoint with union dense in U2k−1. Such a tree T can be built inductively by

choosing a maximal disjoint such collection of U2k+1 at each stage.

For each s = (n0, n2, . . . , n2k) define

Ds =
⋃
{U2k+1|∃n1 . . . ∃n2k+1∃U0, . . . ,∃U2k,

(
(U0, n0), . . . , (U2k+1, n2k+1)

)
∈ T}.

Then each Ds is open and dense by construction. We show that
⋂
sDs ⊆ W to show that

W is comeager. Let x ∈
⋂
sDs. We describe a strategy τ for player II in Ax. If the play of
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the game so far is s = (n0, . . . , n2k), then player II responds with the unique n2k+1 such that

there exist U0, . . . , U2k+1 such that
(
(U0, n0), . . . , (U2k+1, n2k+1)

)
∈ T and x ∈ U2k+1. We now

prove that τ is a winning strategy for player II. Suppose that (ni)i∈ω is a result of player II

following τ . Then there is a unique sequence (Ui)i∈ω such that ((Ui, ni))i∈ω is an infinite path

through T and x ∈ Ui for all i. By the definition of T and because σ is a winning strategy

for player II in GA, we have (x, (ni)i∈ω) ∈ A. Thus τ is winning for player II and so x ∈ W .

Now suppose that player I has a winning strategy for GA with first move (U0, n0). Then

we can repeat the same arguments as above for the complement of A localized to U0 to show

that X \W is comeager in U0.

The above argument can also be used to prove the Kuratowski-Ulam theorem.

Theorem 16 (Kuratowski-Ulam). If X and Y are Polish spaces and Q ⊆ X×Y is comeager,

then for comeager many x ∈ X, the fiber Qx ⊆ Y is comeager.

Proof. For each x ∈ X we can consider the Banach-Mazur game where players I and II play

a decreasing sequence of non-empty basic open subsets of Y and II wins if the intersection is

contained in Qx. Player II has a winning strategy if and only if Qx ⊆ Y is comeager. Since

Y is Polish, this game can be encoded into a standard game on ωω.

This defines a Borel family of games A ⊆ X × ωω. Consider the combined game GA.

In this game the players alternate to play a decreasing sequence of non-empty basic open

subsets of both X and Y simultaneously. This can be viewed as playing non-empty basic

open subsets of the product X × Y , and in fact the game GA is exactly the Banach Mazur

game for A as a subset of X × Y .

If Q ⊆ X × Y is comeager, then player II wins GA. So by the above arguments, player II

wins the Banach-Mazur game for Qx for comeager many fibers x. Thus Qx is comeager in Y

for a comeager set of x ∈ X.
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3.2 Universally Baire Sets

Note that if S ⊆ ωω is the set of games that one player wins in a Borel family of Borel games,

then S is ∆1
2. In fact S is absolutely ∆1

2 in in the following sense. There are Σ1
2 formulas

Φ and Ψ defining S and its complement from a parameter t ∈ ωω such that for any forcing

notion P we have

P ∀x ⊆ ω̌
(
Φ(x, ť)↔ ¬Ψ(x, ť)

)
.

The formulas Φ and Ψ state that a player has a winning strategy in the game above x.

This works because the forcing extensions still satisfy ZFC and therefore also the Borel

determinacy theorem. In general if Φ and Ψ are Σ1
2 formulas which define complementary sets

of reals, then they will define disjoint sets in any forcing extension by Shoenfield absoluteness,

but they need not remain complementary.

Here we follow Feng, Magidor, and Woodin who proved:

Theorem 17. If S ⊆ ωω, the following are equivalent:

• For any topological space X and any continuous function f : X → ωω, the set f−1(S)

is Baire measurable.

• For any forcing notion P, there exists a cardinal κ and trees T1 and T2 on ω × κ such

that

S = π[T1] and ωω \ S = π[T2]

and we have

P ω
ω = π[T1] ∪ π[T2].

If the above conditions hold we say that S is univerally Baire. Feng, Magidor, and Woodin

[9] proved that universally Baire sets are Baire measurable, Lebesgue measurable, Ramsey,

and Bernstein measurable.

Theorem 18. If S ⊆ ωω is absolutely ∆1
2 then then S is universally Baire.
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Proof. We will let κ = ω1 independent of P. Because every Σ1
2 set is ω1-Suslin, there are

trees T1 and T2 on ω × ω1 obtained from Φ and Ψ such that S = π[T1] and ωω \ S = π[T2],

and for any forcing notion P we have

P ω
ω = π[T1] ∪ π[T2].

This verifies that S is universally Baire.

3.3 Extensions

Because the set of games won by a particular player is universally Baire, it is also Baire

measurable in the density topology and the Ellentuck topology. Therefore such a set is

Lebesgue measurable and completely Ramsey. The “classical” proof can also be used to show

Baire measurability in these topologies.
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CHAPTER 4

Toast and LCLs on Grids

The results of this chapter are part of join work with Felix Weilacher and Anton Bernshteyn.

This chapter is concerned with measurable solutions to locally checkable labeling problems

on grids. A grid is the Schreier graph G(X,Sd) of a free Borel action Zd y X of the group

Zd for some d with respect to the standard symmetric set Sd of 2d generators on a Polish

space X. So the set of vertices of the grid G(X,Sd) is X, and two vertices are connected by

an edge if and only if one can be obtained from the other by an application of one of the

generators in Sd.

After fixing a dimension d, a locally checkable labeling (LCL) problem Π on d-dimensional

grids is specified by a finite set of labels L and a set of allowed configurations of the labels in

a radius 1 ball around a vertex in the grid. A coloring for the LCL is a function from X to

L, such that the configuration of labels in the 1-ball around each vertex is allowed. Because

we will only work with LCLs on grids in this chapter, we will use some specific conventions

and notation for describing them which differ from those introduced in Chapter 2.

Definition 19. Fix a dimension d. Let

Sd =
{

(x1, . . . , xd) ∈ Zd
∣∣∣|x1|+ . . .+ |xd| = 1

}
be the standard set of 2d many generators. An LCL Π is a finite set of labels L and set

Π ⊆ LSd∪{(0,...,0)}

of allowed configurations. Let a : Zd y X be a free Borel action (a grid) and F : X → L

a labeling. For any x ∈ X, there is a unique function fx ∈ LSd∪{(0,...,0)} such that for all
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g ∈ Sd ∪ {(0, . . . , 0)} we have F (g · x) = fx(g). We say that F is a Π-coloring if for all x ∈ X

we have fx ∈ Π.

In the above definition, the functions fx encode the configuration of labels in the radius 1

ball around x. Note that each vertex “knows” which edges in the graph come from which

generators of Zd for the purposes of checking the correctness of an LCL.

It was asked in [14] whether for any d and any LCL Π the following are equivalent.

(1) For any free Borel action Zd y X on a standard Borel space X, G(X,Sd) admits a

Borel Π-coloring.

(2) For any free Borel action Zd y X on a Polish space X, G(X,Sd) admits a Baire

measurable Π-coloring.

(3) For any free Borel action Zd y X on a standard probability space (X,µ), G(X,Sd)

admits a µ-measurable Π-coloring.

It is proven in [13] that the answer is positive for the case d = 1. However the main result

of this chapter is the following.

Theorem 20 (Bernshteyn-L.-Weilacher). For d = 2 there is a locally checkable labeling

problem Π such that (3) holds but (2) and (1) fail.

The main tool for constructing Borel Π-colorings is a Borel structural decomposition,

known to exist in the grid setting by [10], called toast. The construction of the µ-measurable Π-

coloring in the above counterexample comes from a restricted form of toast called rectangular

toast, which is proven to exist for grids after discarding an invariant null set. And the

construction of the free Borel action without a Baire measurable Π-coloring comes from an

inverse limit argument, in particular a twisted action on a p-adic space.
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4.1 Rectangular Toast

We recall the following fundamental definition from Borel combinatorics.

Definition 21. Let (X,E) be a locally finite Borel graph and r > 0. An r-toast structure

on (X,E) is a Borel set T ⊆ [X]<ω such that
⋃
T = X and for any S, T ∈ T one of the

following hold.

(1) Br(S) ⊆ T

(2) Br(T ) ⊆ S

(3) Br(S) ∩ T = ∅ [or equivalently S ∩Br(T ) = ∅].

Elements S ∈ T are called tiles. In the case where the Borel graph is a grid G(X,Sd), a

tile S is a rectangle if it is of the form

S = [a0, b0)× . . .× [ad−1, bd−1) · x

for some [a0, b0) × . . . × [ad−1, bd−1) ⊆ Zd and some x ∈ X. A toast on a grid is called

rectangular if all tiles are rectangles.

It is proven in [11] that not every grid (even for d = 2) admits a rectangular toast. We

next prove that any grid on a standard probability space admits a toast off of an invariant null

set. First we need the following lemma which is related to the well known Kakutani-Rokhlin

lemma as in [26].

Lemma 22. Fix d. For any r > 0 and any ε > 0 there exists n = n(r, ε) such that the

following holds for any d-dimensional grid (X,E) on a standard probability space (X,µ).

There exists a Borel set R ⊆ [X]<ω of rectangles with all side lengths n with µ(
⋃
R) > 1− ε

and for any distinct S, T ∈ R, Br(S) ∩Br(T ) = ∅.

Proof. Fix r and ε. For any value of n, consider the set of rectangles Dn ⊆ [Zd]<ω in Zd with

all side lengths n whose lexicographically least entries are in the lattice (n + 2r + 3) · Zd.
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These rectangles are pairwise separated by distances greater than 2r. When n is large enough

the union Un =
⋃
Dn ⊆ Zd of this collection of rectangles has natural density greater than

1− ε
2

as a subset of Zd. Fix n = n(r, ε) to be this large.

By [26] actions of Zd are measure-hyperfinite. Let F be the connectedness relation on the

grid and let Fk be an increasing sequence of finite Borel equivalence relations on X such that

F =
⋃
Fk. For each k consider

Ak = {x ∈ X|Bd2(n+2r+3)(x) ⊆ [x]Fk}.

We have
⋃
Ak = X. Fix k large enough that µ(Ak) > 1 − ε

2
. Since Fk is a finite Borel

equivalence relation, it has a selector. We can choose a Borel set Y ⊆ Ak such that Y contains

exactly one vertex from each Fk class than meets Ak. We can also choose a Borel selector

f : Ak/Fk → Y such that for all x ∈ Ak we have (x, f([x])) ∈ Fk.

We choose our rectangles to be from a dense grid like Un =
⋃
Dn ⊆ Zd as considered at

the start of the proof. The offset of the grid is determined by the vertices in Y and also a

choice of parameter

p ∈ [0, n+ 2r + 3)d.

For each possible choice of p, consider the set of rectangles Rp which have all side lengths n,

meet Ak in the Fk-class C, and have lexicographically least entry in the lattice

[p+ (n+ 2r + 3) · Zd] · f(C).

By construction the rectangles in Rp are pairwise of distance greater than 2r from each other.

Also, for each x ∈ Ak, we have that x ∈
⋃
Rp for greater than 1− ε

2
proportion of the choices

for p. Therefore for some choice of p we must have

µ
(⋃

Rp

)
≥
(

1− ε

2

)
µ(Ak) ≥

(
1− ε

2

)2

> 1− ε.

Therefore R = Rp satisfies the conclusion of the lemma for this choice of p.
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Note that by making n = n(r, ε) larger we may assume that

µ
(
{x ∈ X|Br(x) ⊆

⋃
R}
)
> 1− ε.

We can now construct µ-measurable rectangular toast layer-by-layer through repeated appli-

cations of the proceeding lemma.

Theorem 23. If (X,E) is a d-dimensional grid on a standard probability space (X,µ), then

for any r > 0 there exists a rectangular toast on a co-null invariant subset of X.

Proof. First, we may assume that µ is quasi-invariant, since there is a measure µ′ whose null

sets are µ-null which is quasi-invariant as shown in [18].

For k ∈ ω let εk = 2−k. Let r0 = r and for k ∈ ω let nk = n(rk, εk) and rk+1 = 2d2nk+2r+3.

Then for each k let Rk be a Borel collection of rectangles separated by distances greater than

2rk such that

µ
(
{x ∈ X|Brk(x) ⊆

⋃
Rk}

)
> 1− εk.

Inductively add all rectangles from Rk to T and remove any rectangles in
⋃
i<kRi whose

radius r-ball is not contained in a rectangle in Rk.

Let Z = {x ∈ X|Br(x) ⊆
⋃
Rk} for infinitely many k. By the Borel-Cantelli lemma, the

set Z is co-null. And in the construction of T rectangles are only removed when they fail to

be in the rk-interior of a rectangle at a later stage k. Therefore T is a toast on the co-null set

Z. Since we can assume µ is quasi-invariant, we may assume that Z is invariant by replacing

it with its saturation.

4.2 Description of the Counterexample

In this section we describe the counterexample that is used to establish Threorem 20. Fix

d = 2. The problem Π has a set of 10 labels. The first 8 labels indicate “top”, “bottom”, “left”,

“right”, and the four corner positions “top-right”, “top-left”, “bottom-left”, and “bottom-

right”. And the other 2 labels are 0 and 1. The intension of Π is to encode the boundaries of
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rectangles in a rectangular toast, with the 0 and 1 labels forming a checkerboard pattern

inside and outside of each rectangular boundary.

If a vertex x has label 0, then the vertex above it must have label 1 or “top”. The label

to the right of x must have label 1 or “right”, and similarly for the other two directions. The

same is true reversing the roles of 0 and 1.

If a vertex x has label “top” then the vertices above and below it must have labels that

are either 0 or 1. The vertex to the right of x must either have the label “top” or “top-right”.

And the vertex to the left of x must either have the label “top” or “top-right”. The analogous

conditions hold for a vertex with the “bottom”, “left”, “right” labels.

If a vertex x has the label “top-right”, then the vertices above and to the right of x must

both have label 0 or both label 1. The vertex to the left of x must have label “top”, and the

vertex below x must have label “right”. The analogous conditions hold for a vertex with the

other corner labels.

This defines a labeling problem Π. By construction, Π-colorings can be obtained from

rectangular toast and can therefore can be constructed µ-measurably.

Lemma 24. If (X,E) is a 2-dimensional grid which admits a rectangular 1-toast, then (X,E)

admits a Borel Π-coloring.

Proof. Let T be a rectangular 1-toast on (X,E). Then along the boundaries of tiles in T

we can use the labels for “top”, “bottom”, “left”, “right”, and the four corner positions.

The remainder of the graph has finite connected components, and therefore there is a Borel

2-coloring of this remainder with the labels 0 and 1. This defines a Borel Π-coloring.

But note that Borel Π-colorings do not necessarily encode toast. In particular, an infinite

checkerboard pattern of 0 and 1 can be part of a valid Π-coloring. It remains to define a free

action of Z2 by homeomorphisms on a Polish space, such that the resulting grid does not

have a Baire measurable solution to Π.

32



Let X = Z3 × Z2 where Z3 is the Polish group of 3-adic integers and Z2 is the Polish

group of 2-adic integers. We define an action a : Z2 ×X → X by

a
(

(s, t), (α, β)
)

= (s+ α, s+ t+ β).

The action is free by homeomorphisms and the Schreier graph defines a 2-dimensional grid

(X,E). We first prove a lemma about the regularity of Baire measurable subsets of X under

this action.

Lemma 25. If Y ⊆ X is Baire measurable and non-meager then there exists y ∈ Y , m ∈ ω,

and k ∈ ω such that A · y ⊆ Y where A is the subgroup of Z2 generated by (3m, 0) and (1, k).

Proof. Since Y is non-meager and Baire measurable, there is a basic open set U in which Y

is comeager. The set U can be taken to be of the form

U =
{

(α, β)
∣∣∣α ≡ u mod 3m and β ≡ v mod 2n

}
for some u, v ∈ Z and some m,n ∈ ω. We see that (3m, 0) ∈ Z2 preserves U under the

action a of Z2. Choose k ∈ ω such that k ≡ 0 mod 2n and k ≡ −1 mod 3m. Then U is

also preserved by (1, k) under the action a of Z2. Thus U is preserved by A, the subgroup

generated by (3m, 0) and (1, k).

Since the action is by homeomorphisms and Y is comeager in U , the result follows.

This allows us to prove the following.

Lemma 26. There is no Baire measurable Π-coloring of (X,E).

Proof. Suppose there is such a Baire measurable coloring, and consider the set B of vertices

which have boundary labels. By the definition of Π, the set B is 2-regular.

In fact, each component of B can only have at most 4 corner labels, and there are a limited

number of configurations for such a finite boundary component. Each boundary component
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with 4 corner labels is the boundary of a standard rectangle. The other components have 0,

1, or 2 corner labels and all have infinite rays of boundary labels.

We first prove that the union of components which contain an infinite ray of boundary

labels is meager. This follows from an application of Lemma 25. For example, if there is a

nonmeager set of “top” labels T such that (1, 0) · T ⊆ T , then we may assume without loss of

generality that there is a nonmeager set Z of vertices labeled 0 which are immediately above

elements of T . But then Z is preserved under some (3m, 0) ∈ Z2, which is a contradiction

because 3m is odd. And if there is a nonmeager set of “right” labels R such that (0, 1) ·R ⊆ R,

then R is preserved by some (1, k) ∈ Z, which is a contradiction because a right label cannot

be above another right label. The other cases for infinite rays of boundary labels are similar.

Therefore, after modifying the labeling on a meager set, we may assume that all boundary

labels are parts of standard rectangles. Now we prove that the set of vertices which are not

inside of boundary rectangles is meager. This then shows that the boundary labels do define

a rectangular toast structure.

If the set of vertices which are not inside of boundary rectangles is non-meager then we

can assume without loss of generality that the set Y of such vertices labeled 0 is non-meager.

Thus there is some y ∈ Y such that also (3m, 0) ·y ∈ Y for some m. But since y and (3m, 0) ·y

are both not inside of the boundary of any rectangles and are in the same component of

the grid, they must both be from the same checkerboard pattern. But they are at an odd

distance, which contradicts the fact that they are both labeled 0.

Therefore we have reduced to the case that the boundary labels define a rectangular

1-toast. Because every rectangular boundary component is contained in a larger one, in every

component there are arbitrarily long vertical line segments with the label “right”. But we

know that the set Y of vertices which are labeled 0 or 1 is non-meager. And so Z must

contain a lattice of the form A ·y for A ⊆ Z2 generated by some (3m, 0) and (1, k). But such a

lattice Z meets every vertical line segment of sufficiently large length. This is a contradiction.
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The preceding lemma completes the construction required in the proof of Theorem 20.
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CHAPTER 5

Baire Measurable Matching in Non-Amenable Graphs

The results of this chapter are part of joint work with Alexander Kastner.

We say an infinite connected graph G of bounded degree is non-amenable if there exists

δ > 0 such that whenever F ⊆ V (G) is finite, the set of edges E(F, V (G) \ F ) between F

and V (G) \ F satisfies |E(F, V (G) \ F )| ≥ δ|F |. For example, the Cayley graphs of finitely

generated non-amenable groups with respect to any finite symmetric generating set (not

containing the identity) are non-amenable graphs.

In this chapter, we consider non-amenable Borel graphs on Polish spaces, and prove

theorems about the existence of perfect matchings:

Theorem 27 (Kastner-L.). Let G be a Borel graph such that each component is an infinite,

bounded degree, non-amenable vertex transitive graph. Then G admits a Borel perfect matching

on a Borel comeager invariant set.

Corollary 28. Every Schreier graph of a free Borel action of a finitely generated nonamenable

group admits a Borel perfect matching on a Borel comeager invariant set.

In [25], Marks and Unger studied Baire measurable matchings in the context of bipartite

Borel graphs, with a view towards applications for Baire measurable equidecompositions.

Though not explicitly stated in their paper, their Theorem 1.3 implies that every bipartite

Borel graph whose components are bounded degree, regular, and non-amenable has a Baire

measurable perfect matching. Thus, our theorem can be viewed as an extension of their

result to the non-bipartite setting. The existence of regular, quasi-transitive, non-amenable
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graphs without perfect matchings, leads us to assume vertex transitivity, not just regularity.

5.1 Perfect matchings

The classical theorem of Tutte, repeated below, characterizes when a locally finite graph

admits a perfect matching.

Theorem 29 (Tutte’s theorem). A locally finite graph G admits a perfect matching if and

only if whenever X ⊆ V (G) is finite, the graph G−X has at most |X| many finite components

of odd size.

By Tutte’s condition we will mean the condition that “G−X has at most |X| many

odd components for each finite X ⊆ V (G)”.

The proof of Theorem 27 consists in two steps. First, we establish a Baire measurable

variant of Tutte’s theorem which gives a sufficient condition for a locally finite Borel graph

to admit a perfect matching on a Borel comeager invariant set (Theorem 31). Second, we

show that nonamenable vertex transitive graphs satisfy this sufficient condition (Lemma 33).

Definition 30. If G is a locally finite graph and X ⊆ G is finite, define

Cfin(X) := {finite components of G−X}

and

Codd(X) := {odd components of G−X}.

Also let

hullfin(X) := X ∪
⋃
Cfin(X),

and

hullodd(X) := X ∪
⋃
Codd(X).

We sometimes add superscripts to indicate the ambient graph when there is ambiguity.
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Theorem 31 (Kastner-L.). Let G be a locally finite Borel graph on a Polish space V (G),

and suppose there exists ε > 0 such that for every finite set X ⊆ V (G), we have

|X| ≥ |Codd(X)|+ ε|hullodd(X)|.

Then G admits a Borel perfect matching on a Borel comeager invariant set.

For the proof, we say a locally finite graph G satisfies Tutteε,k if (i) Tutte’s condition

holds, and (ii) whenever X ⊆ V (G) is finite such that hullodd(X) is connected and has size

at least k,

|X| ≥ |Codd(X)|+ ε|hullodd(X)|.

Observe that the condition in Theorem 31 is equivalent to Tutteε,1. This is an analogue of

Hallε,k in the proof of Theorem 1.3 in [25]. Our proof of Theorem 31 follows the same general

strategy as the proof in [25]. In particular, we will need the following lemma from that paper.

Lemma 32. Let G be a locally finite Borel graph on a Polish space V (G), and let f : N→ N.

Then there exist Borel sets An ⊆ V (G), n ∈ N, such that
⋃
nAn is a Borel comeager invariant

set and dG(x, y) > f(n) whenever x, y are distinct vertices in An.

Proof of Theorem 31. Let f : N → N be a sufficiently fast-growing increasing function so

that

1.
∑

n
4

f(n)
< ε;

2. letting εn = ε−
∑

m≤n
4

f(n)
, we have εn−1f(n) > 4 for each n.

For convenience, we write ε−1 = ε. Let An be the Borel sets given by Lemma 32 for this

f . Given a matching M , we write G −M for the graph obtained from G by removing all

the vertices covered by M (that is, G −M is the induced subgraph on the set of vertices

not covered by M). We define increasing Borel matchings Mn such that their union will

be a perfect matching of the Borel comeager invariant set
⋃
nAn. We will ensure that Mn
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covers the vertices in An and G−Mn satisfies Tutteεn,f(n). We can take M−1 to be the empty

matching, and the hypothesis of the theorem implies that G−M−1 satisfies Tutteε−1,1.

Assume Mn−1 has been defined. For each vertex x ∈ An ∩ V (G −Mn−1), let ex be the

least edge not in Mn−1 such that (G−Mn−1)− ex satisfies Tutte’s condition, equivalently

such that (G −Mn−1) − ex admits a perfect matching. We know such an edge exists as

the hypothesis that Tutteεn−1,f(n−1) holds for G −Mn−1 implies in particular that Tutte’s

condition holds for G−Mn−1, hence G−Mn−1 has a perfect matching. If we pick an edge

ex that belongs to a perfect matching of G−Mn−1, then (G−Mn−1)− ex will still satisfy

Tutte’s condition. Since Tutte’s condition quantifies over finite sets, the matching

Mn := Mn−1 ∪ {ex : x ∈ An ∩ V (G−Mn−1)}

is Borel.

We verify that G−Mn satisfies Tutteεn,f(n). As a first step, we show that G−Mn has

no odd component (this is verifying Tutte’s condition for X = ∅). Assume for contradiction

that C is an odd component of G −Mn, and let X ′ denote the set of endpoints of edges

ex ∈ Mn −Mn−1 such that ex is adjacent to C. Since G −Mn−1 had no odd component,

X ′ 6= ∅ and hull
G−Mn−1

odd (X ′) must be connected.

Case 1: Suppose |X ′| ≥ 4, so that there are at least two distinct edges ex ∈Mn −Mn−1

that are adjacent to C. Since C ∪X ′ is connected and the vertices in X ′ corresponding to

distinct edges are a distance of at least f(n) from one another, we have

|hull
G−Mn−1

odd (X ′)| = |C ∪X ′| ≥ |X
′|

2
· f(n)

2
≥ f(n)

4
|X ′|.

In particular, |hull
G−Mn−1

odd (X ′)| ≥ f(n) ≥ f(n− 1). So, applying the inductive assumption of

Tutteεn−1,f(n−1) to G−Mn−1 and X ′, we obtain

|X ′| ≥ εn−1|hull
G−Mn−1

odd (X ′)|+ |CG−Mn−1

odd (X ′)| ≥ εn−1
f(n)

4
|X ′|

Since f was chosen so that εn−1f(n) > 4, this is impossible.
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Case 2: Suppose |X ′| = 2, so that there is a single edge ex ∈Mn −Mn−1 that is adjacent

to C. But this case is impossible as we chose ex specifically so that Mn−1 ∪ {ex} extends to a

perfect matching, so the appearance of the odd component C in G−Mn cannot only be due

to ex.

So far we have proved that G−Mn has no odd component. Let X ⊆ V (G−Mn) be a

finite set such that hullodd(X) is connected. Let EX be the set of edges ex ∈Mn−Mn−1 such

that at least one of the endpoints of ex is adjacent to hullG−Mn
odd (X) in G.

Case 1: Suppose that |EX | ≥ 2. Since hullG−Mn
odd (X) is connected and distinct edges in Ex

are a distance of at least f(n) from one another, we have

|hullG−Mn
odd (X)| ≥ |Ex|

f(n)

2
.

In particular, |hull
G−Mn−1

odd (X ′)| ≥ f(n) ≥ f(n− 1). So, applying the inductive assumption of

Tutteεn−1,f(n−1) to G−Mn−1 and

X ′ = X ∪ {v ∈ V (G) : v is an endpoint of some e in EX},

yields

|X ′| ≥ |CG−Mn−1

odd (X ′)|+ εn−1|hull
G−Mn−1

odd (X ′)|.

Therefore

|CG−Mn
odd (X)| = |CG−Mn−1

odd (X ′)|

≤ |X ′| − εn−1|hull
G−Mn−1

odd (X ′)|

≤ |X ′| − εn−1|hullG−Mn
odd (X)|

= |X|+ 2|EX | − εn−1|hullG−Mn
odd (X)|

≤ |X|+ 4

f(n)
|hullG−Mn

odd (X)| − εn−1|hullG−Mn
odd (X)|

= |X| − εn|hullG−Mn
odd (X)|.

Case 2: Suppose that |EX | ≤ 1. If EX is empty, then the fact that X does not violate

Tutteεn,f(n) simply follows from the fact that G−Mn−1 satisfies the (stronger) Tutteεn−1,f(n−1).
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So suppose that EX consists of a single edge ex, for some x ∈ An ∩ V (G−Mn−1). We chose

ex so that Tutte’s condition holds for (G−Mn−1)− ex, so in particular

|CG−Mn−1−ex
odd (X)| ≤ |X|.

But ex is the only edge adjacent to hullG−Mn
odd (X) in G −Mn, so the odd components of

(G−Mn−1− ex)−X are precisely the same as the odd components of (G−Mn)−X. Hence,

X does not violate Tutte’s condition in G−Mn. Suppose now that |hullG−Mn
odd (X)| ≥ f(n) ≥

f(n− 1), and as in Case 1 let

X ′ = X ∪ {v ∈ V (G) : v is an endpoint of some e in EX}.

Applying Tutteεn−1,f(n−1) to G−Mn−1 and X ′ yields

|CG−Mn
odd (X)| = |CG−Mn−1

odd (X ′)|

≤ |X ′| − εn−1|hull
G−Mn−1

odd (X ′)|

≤ |X|+ 2− εn−1|hullG−Mn
odd (X)|

≤ |X|+ 2

f(n)
|hullG−Mn

odd (X)| − εn−1|hullG−Mn
odd (X)|

≤ |X|+ εn|hullG−Mn
odd (X)|.

So X does not violate Tutteεn,f(n) in Case 2 either.

Next, we show that non-amenable vertex transitive graphs satisfy the condition in

Theorem 31.

Lemma 33. Let G be an infinite, connected, locally finite, non-amenable, vertex transitive

graph. Then there exists ε > 0 such that for all finite X ⊆ V (G),

|X| ≥ |Cfin(X)|+ ε|hullfin(X)|.

In particular, there exists ε > 0 such that for all finite X ⊆ V (G),

|X| ≥ |Codd(X)|+ ε|hullodd(X)|.
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Proof. Fix a finite set X ⊆ V (G). By Lemma 2.3 of [7], the assumption that G is a (connected,

infinite) d-regular, vertex transitive graph implies that each element of Cfin(X) has at least d

many edges in its boundary. And so∣∣∣E (X,⋃ Cfin(X)
)∣∣∣ =

∑
F∈Cfin(X)

∣∣E(X,F )
∣∣ ≥ d|Cfin(X)|.

Also by the expansion property∣∣∣E(X, V (G) \ hullfin(X))
∣∣∣ ≥ δ|hullfin(X)|,

where δ is the expansion constant of the graph. Therefore

d|X| ≥
∣∣∣E (X,⋃ Cfin(X)

)∣∣∣+
∣∣∣E(X, V (G) \ hullfin(X)

)∣∣∣ ≥ d|Cfin(X)|+ δ|hullfin(X)|.

And so

|X| ≥ |Cfin(X)|+ ε|hullfin(X)|,

where ε = δ
d
.

As discussed earlier, combining Theorem 31 and Lemma 33 immediately yields Theorem 27.

5.2 Comparison with Bipartite Matching Results

It is worth comparing Theorem 31 with the corresponding result in [25].

Theorem 34 (Marks-Unger). Let G be a locally finite bipartite Borel graph on a Polish space

V (G), and suppose there exists ε > 0 such that for every finite independent set X ⊆ V (G),

we have

|N(X)| ≥ (1 + ε)|X|.

Then G admits a perfect matching on a Borel comeager invariant set.

Theorem 31 does not immediately imply Theorem 34. But there is still a connection that

can be drawn between the two results. Marks and Unger remark that their method also

proves the following one-sided matching theorem.
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Theorem 35 (Marks-Unger). Let G be a locally finite Borel graph on a Polish space V (G)

with Borel bipartition V (G) = P0 t P1, and suppose there exists ε > 0 such that for every

finite independent set X ⊆ P0 we have

|N(X)| ≥ (1 + ε)|X|.

Then G admits a matching covering P0.

Note that a Cantor-Schroder-Bernstein argument shows that Theorem 35 implies Theo-

rem 34 in the case where the graph has a Borel bipartition.

We remark that the same method to prove Theorem 31 can be used to prove the following

generalization.

Theorem 36. Let G be a locally finite Borel graph on a Polish space V (G), let P ⊆ V (G)

be Borel, and suppose there exists ε > 0 such that for every finite set X ⊆ V (G), we have

|X| ≥ |CPodd(X)|+ ε|hullPodd(X)|.

Then G admits a Baire measurable matching that covers P .

The superscript P indicates that we only consider odd components that are entirely

contained in P . Now Theorem 36 directly implies Theorem 35. To see this, let G be a locally

finite Borel graph on a Polish space V (G) with Borel bipartition V (G) = P0 t P1. And let ε

be as in the hypothesis of Theorem 35. Let ε′ > 0 be small enough that 1+ε′

1−ε′ ≤ 1 + ε. We

show that G satisfies the hypothesis of Theorem 36 for P = P0 and for this value ε′. Let

X ⊆ V (G). For the purpose of verifying the inequality we may assume that X ⊆ P1 since

removing elements of P0 only decreases the left side and increases the right side. Each odd

component of the complement of X entirely contained in P0 is a singleton. Let Y be the

union of these singletons. Then Y ⊆ P0 with |CPodd(X)| = |Y | and |hullPodd(X)| = |X|+ |Y |.

We therefore have by assumption |X| = |N(Y )| ≥ (1 + ε)|Y |. Putting this all together we
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see that

|CPodd(X)|+ ε′|hullPodd(X)| = |Y |+ ε′(|X|+ |Y |)

= |Y |(1 + ε′) + ε′|X|

≤ |X|
(1 + ε′

1 + ε
+ ε′

)
≤ |X|

which verifies the hypothesis of Theorem 36. And so G has a Baire measurable matching

covering P0. This completes the argument.

Therefore in some sense, the Baire measurable expansive Tutte results do generalize the

Baire measurable expansive Hall results.
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CHAPTER 6

Expander Mixing in PMP Graphs

In this chapter, we provide a proof of the expander mixing lemma for probability measure

preserving (pmp) graphs. Then we use this along with a spectral gap computation to provide

an example of an acyclic pmp graph equipped with an edge labeling which has nice expansion

properties. The spectral gap computation is due to Kechris and Tsankov [20], using a result

of Kesten [21]. The construction provides a proof of the following theorem of Greb́ık and

Vidnyánszky [15], avoiding the theory of local-global limits.

Theorem 37. Let k ≥ 1 and n ≥ 3. There exist disjoint Borel graphs Gj for j < k on a

probability measure space (Y, µ) such that

1.
⋃
j<k Gj is acyclic and has bounded degree.

2. For every j < k if B,B′ ⊆ Y are measurable and µ(B), µ(B′) ≥ 1
n

then there exist

z ∈ B and z′ ∈ B′ that are adjacent in Gj.

6.1 Expander Mixing Lemma

In order to define the spectral gap of a d-regular pmp graph, we introduce a bounded operator

on the Hilbert space of square-integrable functions on the graph.

Definition 38. If (X,G) is a probability measure preserving d-regular graph, then we define

the adjacency operator T : L2(X)→ L2(X) by

(Tf)(x) =
∑

(x,y)∈G

f(y).
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We have T ∈ B(L2(X)) is a self adjoint bounded operator with ‖T‖ = d. Let

L2
0(X) =

{
f ∈ L2(X)

∣∣∣ ∫
X

fdµ = 0
}
.

We say that (X,G) has spectral gap ε if∥∥T �L2
0(X)

∥∥ = d− ε.

The following is the expander mixing lemma for d-regular pmp graphs. The proof is

nearly identical to the proof for finite graphs but with vertex and edge counting replaced by

integration.

Theorem 39. Let (X,G) be a d-regular pmp graph which has spectral gap ε. For any

measurable subsets B,B′ ⊆ X we have∣∣∣|G(B,B′)| − d · µ(B)µ(B′)
∣∣∣ ≤ (d− ε)

√
µ(B)(1− µ(B)) ·

√
µ(B′)(1− µ(B′))

where we are using the edge measure

|G(B,B′)| =
∫
B

∣∣∣{y ∈ X|(x, y) ∈ G}
∣∣∣dµ(x).

Proof. Let B,B′ ⊆ X. First we observe that

|G(B,B′)| = 〈1B, T1B′〉

is the inner product on L2(X). We can decompose the indicator functions 1B and 1B′ as a

constant part and an orthogonal part in L2
0(X). Then

〈1B, T1B′〉 = 〈µ(B)1X + 1B − µ(B)1X , T (µ(B′)1X + 1B′ − µ(B′)1X)〉

= 〈µ(B)1X , T (µ(B′)1X)〉+ 〈1B − µ(B)1X , T (1B′ − µ(B′)1X)〉

= d · µ(B)µ(B′) + 〈1B − µ(B)1X , T (1B′ − µ(B′)1X)〉.

Also by Cauchy-Schwarz

|〈1B − µ(B)1X , T (1B′ − µ(B′)1X)〉| ≤ (d− ε)‖1B − µ(B)1X‖2‖1B′ − µ(B′)1X‖2
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and we can compute

‖1B − µ(B)1X‖2
2 = µ(B)− µ(B)2 and ‖1B′ − µ(B′)1X‖2

2 = µ(B′)− µ(B′)2

which gives the result.

We can also define the expansion constant of a d-regular pmp graph and connect this

with the spectral gap.

Definition 40. Define the expansion constant of (X,G) to be

ΦX = inf
{ |G(B,X \B)|
µ(B)(1− µ(B))

∣∣∣B ⊆ X, 0 < µ(B) < 1
}
.

Theorem 41. If (X,G) has spectral gap ε then ΦX ≥ ε.

Proof. For B ⊆ X we apply the expander mixing lemma to B and X \B and have∣∣∣|G(B,X \B)| − d · µ(B)(1− µ(B))
∣∣∣ ≤ (d− ε)

√
µ(B)(1− µ(B))

√
(1− µ(B))µ(B)

= (d− ε)µ(B)(1− µ(B))

and so
|G(B,X \B)|
µ(B)(1− µ(B))

≥ d− (d− ε) = ε.

6.2 Spectral Decomposition

In order to prove Theorem 37 we will analyze spectral properties of the left shift action

of a countable group Γ on [0, 1]Γ given by (γf)(x) = f(γ−1x). This induces a unitary

representation of Γ on L2([0, 1]Γ) given by (γF )(f) = F (γ−1f).

Kechris and Tsankov [20] analyze this representation of Γ to compute the spectral gap of

the Schreier graph. We repeat their argument for the sake of completeness. Let

S = {f : Γ→ Z | f(γ) = 0 for all but finitely many γ}
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and for r ∈ S we consider Hr ∈ L2([0, 1]Γ)

Hr(f) =
∏
γ∈Γ

e2πir(γ)f(γ).

Then Hr are orthonormal and closed under products and complex conjugation. The Stone-

Weierstrass theorem implies that B = {Hr|r ∈ S} forms a Hilbert basis for L2([0, 1]).

Also note that Γ preserves B. There is one vector H0 in B which is fixed by all elements

of Γ, and every other vector in B has finite stabilizer (with some elements having trivial

stabilizer). Together this shows an isomorphism of Γ-representations

L2([0, 1]Γ) ∼= `2(B) ∼= C⊕
⊕
i∈I

`2(Γ/∆i)

where I is a countable set, each ∆i is a finite subgroup of Γ, and Hi is trivial for at least

one i. The one dimensional space C corresponds to the constant functions in L2
0(X). In the

orthogonal part we have an isomorphism

L2
0(X) ∼=

⊕
i∈I

`2(Γ/∆i).

It follows that for any a ∈ C[Γ] we have

‖a‖L2
0([0,1]Γ) = sup

i∈I
‖a‖`2(Γ/Hi) = ‖a‖`2(Γ).

6.3 Spectral Gap in Free Group Actions

Now consider the free group Fkd with standard generators {γ0, . . . , γkd−1}. Let

T =
d−1∑
i=0

γi + γ−1
i ∈ C[Fkd].

We compute ‖T‖`2(Fkd). Let Fd ≤ Fkd be the subgroup generated by {γ0, . . . , γd−1}. Then

T ∈ C[Fd] and ‖T‖`2(Fkd) = ‖T‖`2(Fd) because

`2(Fkd) ∼= `2(Fd)⊕k
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as Fd-representations. Kesten [21] computed

‖T‖`2(Fd) = 2
√

2d− 1.

We can now prove Theorem 37.

Proof of Theorem 37. Fix k ≥ 1 and n ≥ 3. Choose d ∈ N large enough that d√
2d−1

> n. Let

Y = [0, 1]Fdk with the product measure and left shift action of Fkd. For j < k define

Gj = {(z, z′) ∈ Y × Y | for some 0 ≤ i < d either y′ = γjd+iy or y′ = γ−1
jd+iy}.

Then
⋃
j<k Gj is the Schreier graph of the action of Fdk as so is acyclic of degree 2dk (mod

null).

For j < k the adjacency operator for Gj is

Tj =
d−1∑
i=0

γjd+i + γ−1
jd+i.

And we have computed

‖Tj‖L2
0(Y ) = 2

√
2d− 1

so Gj is regular of degree 2d with spectral gap 2d− 2
√

2d− 1. Fix j and let B,B′ ⊆ Y be

measurable with µ(B), µ(B′) ≥ 1
n
. The expander mixing lemma for Gj implies

|Gj(B,B′)| ≥ 2d · µ(B)µ(B′)− 2
√

2d− 1
√
µ(B)(1− µ(B))

√
µ(B′)(1− µ(B′))

= 2
√
µ(B)µ(B′)

(
d
√
µ(B)µ(B′)−

√
2d− 1

√
(1− µ(B))(1− µ(B′))

)
≥ 2
√
µ(B)µ(B′)

(d
n
−
√

2d− 1
)
> 0.

This shows that there exist z ∈ B and z′ ∈ B′ which are adjacent in Gj.
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