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ABSTRACT OF THE DISSERTATION

Understanding Geometry and Topology Fluent for Robot Planning in Daily Scenes

by

Zeyu Zhang

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2023

Professor Song-Chun Zhu, Chair

This dissertation rethinks the problem of robot perception from an embodied agent’s per-

spective: While the classic view focuses on perceiving the semantics and geometry of objects

(e.g ., this piece of point cloud is a fridge), our new perspective emphasizes perceiving the

fluent (a condition that can change over time) that provides actionable information for en-

abling an agent to reason about actions an object affords as well as the potential outcomes

of actions for planning in daily scenes. We address this challenging problem by understand-

ing (i) the geometry fluent that accounts for the changes in object pose, (ii) the topology

fluent that accounts for the changes in object form, and (iii) the interconnection between

the geometry and topology fluent. Considering the task of chopping garlic, one needs to

transform whole garlic into minced and transport them from one place to another. An agent

that only recognizes geometry and semantics can hardly accomplish such a task. Therefore,

a scene reconstruction framework is proposed to reconstruct a functionally equivalent and

interactive scene from RGB-D data streams to afford finer-grained interactions of geometry

fluent. To further understand the interaction of topology fluent, a probabilistic framework

is devised to induce an attributed stochastic grammar that models the space of object form

ii



changes. This learned grammar and its probability model serve as a new indication of object

status regarding topology fluent and are useful for planning downstream tasks. Finally, we

study the interconnection between the geometry and topology fluent via a tool-use example

where we learn the essential physical properties contributing to the effects of a tool-use event.

By understanding potential actions in a scene, this dissertation aims to enable a robot to

perceive the geometry and topology fluent and to plan their actions in daily scenes.
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complete object meshes, our physical common sense reasoning for CAD replace-
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CHAPTER 1

Introduction

Perception of man-made environments and the objects within inevitably leads to the course

of actions [Gib50, Gib66], which naturally form the basis for a human agent to interact with

the environment and accomplish complex tasks. Crucially, what we “see” is much more than

pixels and semantic labels [KR96]. Instead, we further “see” how to interact with them

for our task purposes. Likewise, an embodied AI agent or a robot must possess a similar

perceptual capability to achieve a wide range of task goals in the physical world. How-

ever, this critical perspective is mostly unexplored by prior scene reconstruction literature in

computer vision or Simultaneous Localization and Mapping (SLAM) methods in robotics.

Oftentimes, prior art only captures scenes’ occupancy information and is evaluated primar-

ily by reconstruction accuracy in the euclidean space. Without incorporating the actionable

information—actions a semantic entity could afford and the associated physical constraints

among entities—in a reconstructed scene, a robot can only perform relatively simple navi-

gation or pick-and-place tasks, hindering its capability in planning and executing complex

tasks with a long horizon.

On the other hand, modeling and understanding objects are the crux of computer vision

and robot manipulation. Prior methods primarily focus on treating objects as a whole, which

have made tremendous success recently by discriminating object shape (e.g., recognition) or

tracking object pose (e.g., manipulation). However, objects can sometimes break into pieces

(i.e., object fragmentation), violating the assumption of “object-as-a-whole”. This common

phenomenon has been largely neglected in recent literature.
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To address these shortcomings in prior work, in this dissertation, we propose a new

perspective that emphasizes perceiving the fluent (a condition that can change over time)

that provides actionable information for enabling an agent to reason about actions an object

affords as well as the potential outcomes of actions. We address this challenging problem by

understanding (i) the geometry fluent that accounts for the changes in object pose, (ii) the

topology fluent that accounts for the changes in object form, and (iii) the interconnection

between the geometry and topology fluent.

First, in Chapter 2 we propose a scene reconstruction framework to reconstruct a func-

tionally equivalent and interactive scene from RGB-D data streams, where the objects within

are segmented by a dedicated 3D volumetric panoptic mapping module and subsequently re-

placed by part-based articulated CAD models to afford finer-grained robot interactions. The

object functionality and contextual relations are further organized by a graph-based scene

representation that describes the geometry fluent of the perceived scene. Additionally, such

a graph-based representation can be readily incorporated into robots’ action specifications

and task definition, facilitating their long-term task and motion planning in the scenes. In

Chapter 3 we further introduce a new perspective that performs planning in the geometry

fluent space via a VKC.

To understand the topology fluent space, in Chapter 4, we model the events of object

form changes using an attributed stochastic grammar model. A probabilistic framework is

devised to induce such a grammar from observation; this learned grammar and its probability

model serve as a new indication of object status during topology fluent changes. We further

propose a probabilistic inference algorithm over the grammar model to perform planning

and reasoning in the topology fluent space.

Finally, in Chapter 5, we study the interconnection between the geometry and topology

fluent in a tool-use scenario. We present a robot learning and planning framework that learns

the essential physical properties contributing to the effects of a tool-use event (e.g ., how a

hammer cracks a walnut) and produces an effective tool-use strategy with the least joint
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efforts. Specifically, leveraging a Finite Element Method (FEM)-based simulator that repro-

duces fine-grained, continuous visual and physical effects given observed tool-use events, the

essential physical properties contributing to the effects are identified through the proposed

Iterative Deepening Symbolic Regression (IDSR) algorithm. We further devise an optimal

control-based motion planning scheme to integrate robot- and tool-specific kinematics and

dynamics to produce an effective trajectory that enacts the learned properties.

This dissertation is intended to provide a new perspective on robot perception, where

perception is guided by the understanding of actions afforded in a scene. As such, the

acquired geometry and topology fluent provide actionable information that enables a robot

to reason about the potential outcomes of actions while planning for daily tasks in a scene

and further have an intelligent robot reach a higher level of autonomy.
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CHAPTER 2

Understanding the Geometry Fluent via a Contact

Graph

In this chapter, we rethink the problem of scene reconstruction from an embodied agent’s

perspective: While the classic view focuses on the reconstruction accuracy, our new perspec-

tive emphasizes the underlying functions and constraints of the reconstructed scenes that

provide actionable information for simulating interactions with agents. Here, we address this

challenging problem by reconstructing a functionally equivalent and interactive scene from

RGB-D data streams, where the objects within are segmented by a dedicated 3D volumetric

panoptic mapping module and subsequently replaced by part-based articulated CAD models

to afford finer-grained robot interactions. The object functionality and contextual relations

are further organized by a graph-based scene representation that can be readily incorpo-

rated into robots’ action specifications and task definition, facilitating their long-term task

and motion planning in the scenes. In the experiments, we demonstrate that (i) our panoptic

mapping module outperforms previous state-of-the-art methods in recognizing and segment-

ing scene entities, (ii) the geometric and physical reasoning procedure matches, aligns, and

replaces object meshes with best-fitted CAD models, and (iii) the reconstructed functionally

equivalent and interactive scenes are physically plausible and naturally afford actionable in-

teractions; without any manual labeling, they are seamlessly imported to ROS-based robot

simulators and VR environments for simulating complex robot interactions. The materials

in this chapter have been published in [HZJ22].
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2.1 Introduction

Having the actionable information in a scene is crucial for the training and testing of mod-

ern embodied AI agents [BCC20]. Existing research efforts are mainly devoted to de-

velop simulation platforms that provide (i) photorealistic views (e.g ., Habitat [SKM19],

RoboTHOR [DHH20]) for navigation, (ii) articulated and interactive objects (e.g ., iGib-

son [XSL20], SAPIEN [XQM20]) for interaction, and (iii) physical simulation engines (e.g .

VRGym [XLZ19]) for fine-grained fluent changes. While the actionable information can be

explicitly specified and embedded in the simulation setup, or be recognized from a physical

scene using dedicated vision modules, such as part-based object pose estimation [LWY20],

functionality [ZZ13] and affordance [MLZ16] recognition etc., it is non-trivial to organize

this information and unclear about how an agent could utilize such information for various

tasks.

Take the scene in Fig. 2.1 as the example, wherein the robot is tasked to pick up a frozen

meal from the fridge, microwave it, and serve it. The challenges of processing actionable in-

formation are three-fold. First, it needs to recognize the semantics and geometry information

of objects (e.g ., this piece of point cloud is a fridge). Although typical semantic mapping

and segmentation techniques can achieve this goal [HLS20, NSI19], a more robust and accu-

rate approach is still in need to better handle the complexity in clustered real environments

given a first-person-view RGB-D video stream. Second, mere semantics are inadequate to

reflect the actions an object affords (e.g ., whether or how the fridge can be opened). While

some existing work attempted to identify the associations between symbolic actions and ob-

jects [MTF15, LLK19] or the underlying the object’s kinematics [SSB11, CD17, MB19], they

are insufficient for robots to execute complex tasks with multiple steps at the motion level.

Third, we quest for a more fundamental question: How to devise a scene representation with

a succinct action specification and task definition to account for the action opportunities

and the accumulated outcome of executed actions. Without addressing these challenges, a
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Figure 2.1: The reconstruction of a functionally equivalent, interactive 3D scene.

(a) A contact graph is constructed by the supporting relations that emerged from (b) panop-

tic mapping. By reasoning their affordance, functional objects within the scene are matched

and aligned with part-based interactive CAD models. (c) The reconstructed functionally

equivalent scene enables a robot to simulate its task execution with comparable outcomes in

the physical world.

robot can hardly plan for the given task or verify whether its plan is valid before executing

in the physical world.

In this dissertation, we propose a new task of reconstructing functionally equivalent and

interactive scenes by representing the actionable information of scene entities to support

agents’ planning and simulation. Here we argue that a scene’s functionality is composed by

the functions of objects within the scene. Therefore, the essence of a functionally equivalent

scene is to preserve most objects’ four characteristics with a decreasing propriety: (i) their

semantic class and spatial relations with nearby objects, (ii) their affordance, e.g . what

interactions they offer, (iii) similar geometry in terms of size and shape, and (iv) similar
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appearance. To address this new task, we devise a perception system with three unique

components; see an illustration in Fig. 2.3:

A) A robust 3D volumetric panoptic mapping module, detailed in Section 2.3,

accurately segments and reconstructs 3D objects and layouts in clustered scenes based on

potentially noisy per-frame segmentation. The term “panoptic,” introduced in [KHG19],

refers to jointly segmenting stuff and things in semantic and instance levels. In this disser-

tation, we regard objects as things and layouts as stuff. This module produces a volumetric

panoptic map using a novel per-frame panoptic fusion strategy and a global data fusion pro-

cedure performing data association, map integration and regularization; see Fig. 2.1b and

Fig. 2.3a for examples of results.

B) A physical reasoning module, detailed in Section 2.4, replaces the potentially

noisy and incomplete object meshes segmented from the panoptic map with functional (rigid

or articulated) CAD models. This step is achieved by a ranking-based CAD matching and

an optimization-based CAD alignment, which accounts for both geometric and physical con-

straints. We further introduce a global physical violation check to ensure that the resulting

reconstructed interactive scene is physically plausible.

C) A contact graph cg representation, detailed in Section 2.2 and illustrated in

Fig. 2.2, is constructed in accordance with the supporting and proximal relations among

objects and imposes physical constraints as well as kinematic information for a robot’s task

execution. After retrieving actionable information annotated in CAD models, this novel

representation indicates how an object can be moved or manipulated (e.g ., a table can be

moved in 3D space) and how nearby objects would move correspondingly (e.g ., a box on

the table would go through a similar transformation if not slid or tilted). The cg can be

interpreted as and converted to a kinematic tree, which is updated following the robot’s

actions so that it can support long-horizon task and motion planning. As such, it serves

as an ideal representation that bridges robot perception (scene reconstruction) with robot

planning. Part of this work is published in [HZJ21]; comparing with it, this dissertation

7



Figure 2.2: 3D scene representations and relations within. (a) The contact graph

representation. Each node denotes an object or a piece of layout, reconstructed and seg-

mented as meshes from the RGB-D stream using the proposed panoptic mapping module.

The directed edges indicate supporting relations—The parent node supports the child node.

(b) The object meshes are replaced by best-fitted CAD models to create a functionally equiv-

alent and physically plausible reconstructed scene. The directed edges and the constructed

kinematic relations define the action space for robot planning. By updating the kinematic

relations, various action effects can be easily integrated. (c) The supporting relations can

further facilitate a reasoning process that refines (d) the 3D bounding box estimation. Ini-

tial: dashed line. Refined: solid line.

highlights the conversion from a sensed cg to the URDF, conducts experiments and analysis

in real-world setting, and further evaluations including a new study of evaluating resulted

cg using GED.

To our knowledge, ours is the first work that introduces a comprehensive system that

reconstructs a full 3D scene from an embodied agent’s perspective to provide actionable

information for simulating robot interactions. It makes three major contributions:
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1. We introduce a novel scene representation using a contact graph, whose structure is de-

termined by the supporting and proximal relations among scene entities. It imposes phys-

ical constraints for a physically plausible scene and kinematic information that indicates

whether and how an object can be interacted with. This contact graph representation is

constructed and maintained for the scene reconstruction, and converted to a kinematic

tree, which reflects the full geometric state of a scene and updates to keep track of ev-

ery interaction. As such, our contact graph representation can facilitate the functionally

equivalent scene reconstruction, as well as the robot learning and planning for complex

long-horizon tasks.

2. Leveraging (i) local geometric similarity on the basis of relative sizes and surfaces of each

object, and (ii) global physical constraints regarding the plausibility of stable support and

non-penetration, we align rigid or articulated CAD models to object meshes to generate

a physically plausible, fully interactive scene.

3. We develop a volumetric panoptic mapping module based on [GFN19], and introduce

new designs to improve the accuracy in per-frame segmentation and the consistency in

global data fusion. We show that this implementation is more robust against noisy input

data and generates more accurate panoptic segmentation results, especially suitable for

challenging and clustered indoor scenes.

2.1.1 Related Work

Scene datasets are crucial for providing supervisions of existing data-driven methods for

a plethora of scene reconstruction and scene understanding tasks. In literature, the devel-

opment of such datasets follows three stages. Early work, such as NYU-Depth [SHK12] and

SUN RGB-D [SLX15], provides single view RGB-D images with densely annotated object

segmentation, bounding boxes, etc. These types of 2.5D data are primarily designed to

support recognition and prediction tasks in computer vision. In the second stage, datasets

provide full 3D (in contrast to 2.5D) scene data in the form of annotated meshes for more
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holistic computer vision tasks [HPN16, CDF17, DCS17]. More recently, researchers start to

construct synthetic scene datasets [YYT11, SYZ17, QZH18, JQZ18] to overcome the tedious

and error-prone labeling process and obtain scene data at a much larger scale. Despite suc-

cess in all three stages, they still fall short for robot learning or planning due to the lack of

a proper means that converts a scanned or synthetic scene to an interactive one for robot

task execution. In comparison, the proposed system can reconstruct interactive scenes from

RGB-D streams and directly import them into simulators for robot training and testing of

complex task execution.

To gather the scene semantics, modern semantic mapping [NSI19, GFN19, PHN19]

and object SLAM [YS19a, MCB18] methods can retrieve object semantic segmentation, 6

DoF poses, and 3D bounding boxes during reconstruction. Physical cues, such as support

and collision [YS19b, WSJ20, SCX20] and robot proactive actions [XHS15, LXS18], can be

further integrated to better estimate and refine the scene semantics. In parallel, signifi-

cant efforts have been made for object instance segmentation from point clouds [ZZC19];

e.g ., [YZW19] can segment an object with fine-grained part instances, and [PNH19] jointly

perform semantic and instance segmentation. The above work, however, could only pro-

duce incomplete objects (in contrast to full 3D) due to confined viewpoints in the physical

world, which prohibits the complex robot interaction and task execution in the reconstructed

scenes. To alleviate this issue, researchers have recently attempted to align CAD models

to these incomplete objects based on single RGB image [HQZ18, CHY19], single RGB-D

image pair [GAG15, ZGL19], and scanned scene meshes [DCS17, ADD19, ADN19] to incor-

porate richer scene semantics. Following this trend, our system further introduces a physical

reasoning procedure to align (part-based) CAD models to segmented objects to enable robot

manipulation and interaction.

Devising an appropriate scene representation for scene reconstruction remains an open

problem [CCC16]. Existing SLAM and semantic mapping approaches reviewed above often-

times represent a reconstructed scene and its entities as sparse landmarks [PJ12, YS19a],

10



surfels [MHD17, HLS20], volumetric voxels [GFN19, MCB18], or semantic objects [YS19a,

MCB18]. Such a paradigm only provides geo-information of what and where to a robot

without any actionable information for its interactions or planning. Meanwhile, graph-based

representations for 3D scene further identify the hierarchical and relational structure among

the scene entities [ZM07, ZZ11, ZZ13, ZZY15, HQX18, JQZ18, CHY19, AHG19, WDN20,

RGA20], providing better structural and contextual information of the reconstructed scenes.

In particular, [RGA20] explicitly incorporate actionable information to support robot plan-

ning, though limited to navigation and traversal tasks as the representation only models

the connectivity between entity nodes. [RGA20] is also limited in that it is conducted in a

simulated environment without accounting for real perception challenges. By leveraging the

advantages of prior arts and addressing the shortcomings, the proposed system takes a real

RGB-D stream as input and produces a contact graph representation based on the identified

supporting relations among scene entities. This representation for scene reconstruction indi-

cates how an entity can be interacted with and what the effect would be after an interaction,

capable of supporting more complex manipulation planning.

2.2 Contact-Based Scene Representation

We devise a graph-based representation, contact graph cg, to represent a 3D indoor scene

and the relations among scene entities. Formally, a contact graph cg “ ppt, Eq contains (i) a

parse tree (pt) that hierarchically organizes the scene entities [ZM07], and (ii) the proximal

relations E among entities represented by undirected edges; see an example in Fig. 2.2a.

2.2.1 Representation

Scene Parse Tree pt “ pV, Sq has been used to represent the hierarchical decompositional

relations (i.e., the edge set S) among entities (i.e., the node set V ) in various task do-

mains, including 2D images and 3D scenes [ZM07, ZZ11, ZZ13, QZH18, JQZ18, HQZ18,

11



HQX18, CHY19], videos and activities [ZZZ15, ZJZ16, QJH20, JCH20], robot manipula-

tions [EGX17, LZS18, EGL19, LZZ19, ZZZ20], and theory of mind [YLF20]. In this paper,

we adapt pt to represent supporting relations among entities instead of their decomposition.

A pt is dynamically built and maintained during the reconstruction based on the identified

supporting relations among segmented scene entities; for instance in Fig. 2.2a, the table1

is the parent node of the microwave. Supporting relation is quintessential in scene under-

standing as it reflects the omnipresent physical plausibility; i.e., if the table were moved, the

microwave would move together with it. This perspective of physical common sense goes

beyond occupancy information (i.e., the geometric location of an object); in effect, it further

provides actionable information and the potential outcome of actions for robot interactions

and task executions in the scene.

Scene Entity Nodes V “ tvsuYV LYV RYV A include: (i) the scene node vs, serving as

the root of pt, (ii) layout node set V L, including floor, ceiling, and the walls that bound the 3D

scene, (iii) rigid object set V R, wherein each object has no articulated part (e.g ., a table), and

(iv) articulated object set V A, wherein each object has articulated parts to be interacted for

robot tasks (e.g ., fridge, microwave). Each non-root node vi “ xoi, ci,Mi, Bippi, qi, siq,Πiy

encodes a unique instance label oi, a semantic label ci, a full geometry model Mi (e.g ., a

triangle mesh or a CAD model), a 3D bounding box Bi (parameterized by its center position

pi, orientation qi, and size si, all in R3), and a set of surface planes Πi “ tπk
i , k “ 1 ¨ ¨ ¨ |Πi|u,

where a plane πk
i is represented by a homogeneous vector rnk

i
T
, dki sT P R4 in the projective

space [HZ03] with unit plane normal vector nk
i , where any point v P R3 on the plane

satisfies a constraint: nk
i
T

¨ v ` dki “ 0; see Fig. 2.2c for an illustration. Compared to other

geometric primitives like generalized cylinders, planes are advantageous in that they can be

extracted robustly from corrupted object meshes and are effective features in downstream

computations.

Supporting Relations S is the set of directed edges in pt from parent nodes to their

child nodes. Each edge sp,c P S imposes physical common sense between the parent node vp
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and the child node vc. These constraints are necessary to ensure that vp supports vc in a

physically plausible fashion:

(1) Geometrical plausibility. The parent node vp should have a plane πs
p “ rns

p
T , dspsT

that is horizontal and is in contact with the bottom surface of the child vc:

Dπs
p P Πp,n

s
p
T

¨ g ď ath,

s.t. Dpvc,π
s
pq “ pgc ´ p´dsp ` sgc{2q “ 0,

(2.1)

where g is a unit vector in the gravity direction, ath “ ´0.9 is a tolerance coefficient (ath “ ´1

for a perfect horizontal plane), and pgc and sgc denote the position and size of the vc’s 3D

bounding box along the gravity direction, respectively.

(2) Sufficient contact area for stable support. Formally,

Apvp, vcq “ Apvp X vcq{Apvcq ě bth, (2.2)

where Apvcq is the bottom surface of the vc’s 3D bounding box, and Apvp X vcq is the area of

the overlapping rectangle containing the mesh vertices of vp near π
s
p within vc’s 3D bounding

box. We set threshold bth “ 0.5 for a stable support.

Proximal Relations E introduce links among entities in the pt . It imposes additional

constraints by modeling spatial relations between two non-supporting but physically nearby

objects v1 and v2: Their meshes should not penetrate with each other, i.e., VolpM1XM2q “ 0.

Note that we only assign a proximal relation between two objects with overlapping 3D

bounding boxes, i.e., when VolpB1 X B2q ą 0, instead of between every pair of objects to

reduce computation cost. The non-penetration constraints will be applied when selecting

physically plausible scene configurations, as detailed in Section 2.4.4.

2.2.2 Constructing Contact Graphs

For each scene entity x extracted from the volumetric panoptic map (see details on obtaining

panoptic map in Section 2.3.4), we initialize a scene entity node vx of cg by: (i) acquiring its

13
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Figure 2.3: System architecture for reconstructing a functionally equivalent scene.

(A) Per-frame segmentation and global data fusion produce (a) a 3D volumetric panoptic

map with fine-grained semantics and geometry, served as the input for (B) physical common

sense reasoning that matches, aligns, and replaces segmented object meshes with function-

ally equivalent CAD alternatives. Specifically, (b) by geometric similarity, a ranking-based

matching algorithm selects a shortlist of CAD candidates, followed by an optimization-based

process that finds a proper transformation and scaling between the CAD candidates and ob-

ject mesh. A global physical violation check is further applied to finalize CAD replacements

to ensure physical plausibility. (C) This CAD augmented scene can be seamlessly imported

to existing simulators; (c) contact graph encodes the kinematic relations among scene enti-

ties in a scene and reflects the planning space for a robot.

ox, cx,Mx from the panoptic map, (ii) estimating a gravity-aligned, minimal 3D bounding

box Bxppx, qx, sxq based on Mx using the method in [MB02], (iii) detecting a set of surface

planes Πx on Mx by iteratively applying RANSAC [TJR13] and removing plane inliers. We

further classify each initialized scene entity node vx as a layout node, a rigid object node, or

an articulated object node based on its semantic class cx.

Given a set of scene entity nodes initialized on-the-fly, we apply a bottom-up process to

build up the structure of cg by estimating supporting relations among the entities. Specifi-
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cally, for each node vc, we find a parent node vp with a supporting plane πs
p that best satisfies

the constraints described in Eqs. (2.1) and (2.2). We consider all nodes tviu whose bottom

planes are spatially below the 3D bounding box of vc as vp candidates, and acquire their

gravity-opposed surface planes tπk
i u as potential supporting planes. Then the most likely

supporting relation is determined by maximizing the following score function:

Spvc, vi,π
k
i q “

␣

1 ´ min
“

1, }Dpvc,π
k
i q}

‰(

ˆ Apvi, vcq, (2.3)

where the first term indicates the alignment between the vc’s bottom surface and the sup-

porting plane, and the second term reflects an effective supporting area, both normalized to

r0, 1s. We may also uncover an invisible supporting plane (e.g ., a fully occluded tabletop).

When vc is well-overlapped with vi but vi has no valid supporting plane, the bottom plane

of vc with be registered as a new supporting plane of vi. This advantage is however hard to

guarantee at all time due to the complexity of real-world scenarios. Finally, we construct

cg and assign the attributes for each supporting edge based on the estimated supporting

relations.

We further refine the 3D bounding box Bi of each scene entity node vi such that Eq. (2.1)

is strictly satisfied and the cg is feasible. This step also compensates for the error of extract-

ing geometric features directly from incomplete reconstructed mesh. Fig. 2.2d illustrates an

example of the refinement process. The reconstructed scene only produces a partial mesh

of the chair; its legs are captured incompletely. Consequently, its 3D bounding box (in

dashed line) only encloses the detected portion of the chair, which is floating in the air. By

determining the supporting relation between the floor and the chair, our system automat-

ically extends the bounding box (in solid line) to the supporting plane on the floor, thus

reconstructed a physically plausible scene. In experiments, we also quantitatively evaluate

this refinement process; see the result in Table 2.4. As the last step of cg construction, we

determine the proximal relations by comparing pairwise 3D bounding boxes of scene entities.
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2.2.3 Interpreting a Contact Graph

As shown in Fig. 2.2a and described above, a cg hierarchically organizes segmented scene

entities with corresponding semantics, meshes, and extracted geometric features. To con-

vey richer actionable information, we convert the cg to a functionally equivalent cg1 by

maintaining the overall graph structure and replacing each object mesh with a CAD model

while preserving its semantic class, instance label, relative dimension, and surface planes;

see Fig. 2.2b.

The functionally equivalent cg1 with CAD models naturally encodes the full (detected)

geometry state of the scene. It can be interpreted as a kinematic tree, where nodes represent

links, and edges represent joints connecting two links with assumed joint type, range, and

joint value. Depending on the semantic class, individual objects may be replaced by artic-

ulated CAD models. For instance, the CAD model for the microwave in Fig. 2.2b consists

of two parts, the body and the door, connected by a revolute joint. The cg1 (the kinematic

tree) is an ideal representation to support robot planning; its joint specifications reflect the

possible ways a robot can change environment states and naturally define the task goal for a

robot to achieve. Although the knowledge of the object structure is injected when designing

the CAD model and is not likely to match with the real one strictly, it nevertheless provides

an approximation for most of the possible actions an agent can take and what the actions

like, sufficient for the agent’s long-term planning.

2.3 Robust Panoptic Mapping

Robust and accurate mapping of scene entities and segmenting them from clustered envi-

ronments are essential for constructing a cg and serving our downstream tasks. We develop

a robust 3D panoptic mapping module to generate object and layout segments in the form

of meshes from RGB-D streams; see the pipeline in Fig. 2.3A. Based on the architecture

of Voxblox++ [GFN19], our mapping module incorporates crucial modifications to improve
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the robustness of mapping against noisy and inconsistent segmentation at each frame.

Voxblox++ [GFN19] builds a volumetric object-centric semantic map by (i) generating

per-frame segments in point cloud form by combining RGB-based instance segmentation

and depth-based geometric segmentation, and (ii) associating the segments across different

frames and integrating them into a Truncated Signed Distance Field (TSDF)-based object-

level global map. Each per-frame segment is obtained by assigning a semantic label and

an instance label produced by instance segmentation to a geometric segment produced by

geometric segmentation. Assuming that segments computed using geometry cues are consis-

tent across different frames, Voxblox++ [GFN19] associates those per-frame segments from

different views with global map segments by their 3D overlapping ratio and integrates them

into the global map, while recording the history of predicted semantic and instance labels

for each global map segment.

However, we observe two major limitations of the Voxblox++ [GFN19]. First, the gen-

erated per-frame segments may not preserve all predicted instances and some segments of

far-away background may be labeled as foreground objects, negatively affecting the mapping

performance. We design two extra steps to handle this limitation, as detailed in Section 2.3.1.

Second, Voxblox++ separately tracks semantic and instance labels in data association and

map integration processes, making it less coherent when identifying instance and recognizing

semantics for the same global map segment. Our solution is to jointly account for seman-

tic and instance labels throughout the procedure to build a more consistent global map.

We describe our implementation of this strategy in data association (Section 2.3.2), map

integration and regularization (Section 2.3.3), and scene entity extraction (Section 2.3.4).

2.3.1 Per-frame Segmentation and Fusion

Following Voxblox++ [GFN19], we perform RGB-based panoptic segmentation and depth-

based geometric segmentation for each frame and then combine the two sets of segments.

Given a RGB-D image as the input, we use an off-the-shelf panoptic segmentation tool pro-
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vided by Detectron2 [WKM19] to produce panoptic segments in RGB domain. A convexity-

based depth segmentation approach [FNF18] can segment the corresponding depth image

following geometric boundaries. We denote each predicted 2D panoptic segment as Mi with

semantic label ci and instance label oi (whereas each stuff class has only one instance label),

and each 3D geometric segment (in point cloud) as Gj. Then the goal is to fuse the seg-

mentation from two sources to generate per-frame point cloud segments tpPk, ck, okqu, which

preserve the predicted geometric and semantic information.

Voxblox++ [GFN19] generates tpPk, ck, okqu by assigning semantic and instance labels to

geometric segments tGju greedily based on the 2D overlap between the 2D projection of each

Gj and tMiu on the image coordinate. In practice, this strategy leads to two drawbacks. The

first one is that predicted instances will be ignored if they are not recognized geometrically in

depth images. Fig. 2.3A shows an example, the missing keyboard marked by a green circle

in depth segmentation would be discarded by Voxblox++. We instead split a geometric

segment Gj to extract the point cloud corresponding to a panoptic segment Mi if the 2D

projection of Gj fully containsMi when aligned. Then we assign semantic and instance labels

for all Gj as well as the extracted point cloud segments as [GFN19] does to get tpPk, ck, okqu.

Secondly, an inaccurately segmented object in RGB image may consist of far-away geometric

segments in depth, e.g ., the floor marked by a red circle is regarded as part of the chair in

the panoptic segmentation in Fig. 2.3A. Our modification addresses this issue by adding

an extra step of Euclidean clustering. We compute pairwise Euclidean distances among

all geometric segments that belong to the same object instance, and applying Euclidean

clustering to obtain clusters of segments. Then we retrieve the largest cluster defined as

having the largest total number of points in its segments, and keep the segments within

as part of the instance. The rest of segments are regarded as outliers and assigned to the

background.

The above implementation relies on some defined heuristics that could limit the gener-

alizability of our panoptic segmentation approach; one direction to overcome this limitation
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is to introduce data-driven methods, which is beyond the scope of the paper. Nevertheless,

the two proposed steps are useful practice that significantly improves the per-frame segmen-

tation. As an example shown in Fig. 2.3a, our method (i) correctly segments the keyboard

and divides the two monitors when they are geometrically under-segmented, (ii) obtains

geometrically refined panoptic segmentation of the table, chair, and floor, and (iii) excludes

the far-away ground from the segmentation of the chair.

2.3.2 Data Association

We associate each per-frame point cloud segment to a global 3D segment (or global segment

for short) in the global map, while associating its panoptic prediction with a global panoptic

entity. Note that the global segments and panoptic entities are maintained and updated

throughout the entire mapping process. Following Voxblox++ [GFN19], we first draw the

correspondence between per-frame segments and global segments greedily based on their 3D

overlaps given the camera trajectory. We denote that each global segment is indexed with a

unique segment label l P L.

For each per-frame segment pPk, ck, okq associated with a global segment li, we aim to find

its associated global instance label pm by looking at the past panoptic predictions of segment

li. We introduce a triple-wise count Φpl, c, pq over a segment label l, a semantic label c, and an

instance label p in the global map to jointly track the semantic and instance predictions. This

is inspired by the observation that the prediction of instances and their semantic labels are

inter-dependent in typical object detection and segmentation algorithms [RHG16, HGD17].

Specifically, pm is assigned with the instance label p that maximizes the count Φpli, ck, pq ą 0.

When
ř

pΦpli, ck, pq “ 0, we assign a new global instance label pm “ pnew. We further

prevent assigning multiple labels with the segments that have the same instance labels.
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2.3.3 Map Integration and Regularization

We integrate per-frame segments into the 3D volumetric panoptic map by (i) integrating the

segments into a TSDF volume [OTF17] with each TSDF voxel labeled with a global seg-

ment label l, and (ii) recording the associated panoptic entities. For any per-frame segment

associated with pli, ck, pmq, we increase the triple-wise count:

Φpli, ck, pq “ Φpli, ck, pq ` 1. (2.4)

We also introduce a two-stage process to regulate the map by merging global segment

labels and instance labels. Specifically, we first merge global segment labels pairwise if

they share voxels over a certain ratio [GFN19]. Next, we merge two global instance labels

p1, p2 P P with the same semantic class c P C if the duration of association with common

segment labels exceeds a threshold:

ÿ

lPLX

rΦpl, c, p1q ` Φpl, c, p2qs ě mth ¨
ÿ

lPL

rΦpl, c, p1q ` Φpl, c, p2qs, (2.5)

where LX “ tl P L|Φpl, c, p1q ą 0,Φpl, c, p2q ą 0u. This step merges incorrectly split in-

stances, which can be introduced by the overcautious filtering step when generating per-

frame point cloud segments. We note that this map regularization process can be regarded

as a delayed data association that corrects potentially wrong association of global segments

and instances. It helps improve the consistency and scalability of the global map; i.e., it

reduces the map size.

2.3.4 Panoptic Entities Extraction

After the above mapping process, we extract the panoptic entities (i.e., objects and layouts)

from the global map as triangle meshes. For each global segment l, its semantic class ĉl and
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global instance label p̂l are determined following a greedy strategy:

ĉl “ argmax
cPC

ÿ

pPP

Φpl, c, pq,

p̂l “ argmax
pPP

Φpl, ĉl, pq.

(2.6)

For each global instance label p P P, we group all global segments in the map with labels in

the set Lp “ tl P L|p̂l “ pu and extract the corresponding TSDF volume, from which a mesh

is created. In a nutshell, our system outputs a set of scene entities in the form of triangle

meshes with their instance labels and semantic labels.

2.4 Scene Reconstruction with CAD Replacement

Due to occlusion or limited camera angle, the reconstructed scene and the segment meshes

are oftentimes incomplete and non-interactive before recovering them as full 3D models;

Fig. 2.5a and Fig. 2.6a show some examples of incomplete meshes. We introduce a multi-

stage framework to replace a segmented object mesh with a CAD model through (i) an

object-level CAD matching, (ii) pose alignment of the CAD model, and (iii) a scene-level,

global physical violation check; see Fig. 2.3B for an illustration of the framework.

2.4.1 CAD Pre-processing

We collect a CAD database consisting of both rigid and articulated CAD models, organized

by semantic classes. The rigid CAD models are obtained from ShapeNetSem [CFG15],

whereas articulated ones are first assembled and then properly transformed into one model.

Each CAD model is transformed to have its origin and axes aligned with its canonical pose.

Fig. 2.3B shows some instances of CAD models in the database, and Fig. 2.4 highlights some

articulated CAD examples with coordinate frames on the articulated parts. All the objects

can be uniformly scaled while persevering transformation and kinematic information for the

subsequent matching and alignment. Similar to a segmented scene entity x, a CAD model
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Figure 2.4: Examples of articulated CAD models in the database.

y is parameterized by oy, cy, My, while we further extract its Byppy, qy, syq, and Πy.

2.4.2 Ranking-based CAD Matching

Take the chair in Fig. 2.3b as an example: Given a segmented object entity x, the algorithm

retrieves all CAD models in the same semantic category (i.e., chair) from the CAD database

to best fit x’s geometric information. Since the exact orientation of x is unknown at this

step yet, we uniformly discretize the orientation space into 24 possible orientations. For each

rotated CAD model y that aligned to one of the 24 orientations, the algorithm computes a

22



Matching Error (ME):

Dpx, yq “ ω1 ¨ dspx, yq ` ω2 ¨ dπpx, yq ` ω3 ¨ dbpyq, (2.7)

where ω1 “ ω2 “ 1.0 and ω3 “ 0.2 are the weights of three terms, set empirically. We detail

these terms below.

(1) ds computes the difference of relative 3D bounding boxes sizes between the segmented

mesh and the CAD model:

dspx, yq “

∥∥∥∥ sx
}sx}2

´
sy

}sy}2

∥∥∥∥ . (2.8)

(2) dπ penalizes the misalignment between their surface planes in terms of plane normal

and relative distance:

dπpx, yq “min
fΠ

ÿ

πiPΠx

„
∥∥∥∥dpTx

Tπiq

}sx}2
´

dpfΠpπiqq

}sy}2

∥∥∥∥
`1 ´ npπiq

T
¨ npfΠpπiqq

‰

,

(2.9)

where Tx denotes the homogeneous transformation matrix from the map frame on the ground

to the frame of the bounding box Bx, dp¨q the offset of a plane, np¨q the normal vector of

a plane, and fΠ : Πx Ñ Πy a bijection function denoting the assignment of feature planes

between x and y. Note that fΠ is also constrained to preserve supporting planes as defined

in Eq. (2.1). As computing dπ involves solving an optimal assignment problem, we adopt a

variant of the Hungarian algorithm [JV87] to identify the best fΠ between the set of surfaces

extracted from a segmented object mesh and that from a candidate CAD model. Then we

can calculate the misalignment error term dπpx, yq that candidate CAD introduces.

(3) dbpyq is a bias term that adjusts the overall matching error for less preferable CAD

candidates:

dbpyq “ 1 ` gT
¨ zpyq, (2.10)

where zpyq denotes the up-direction of the CAD model in the oriented CAD frame, and g

is a unit vector along the gravity direction. Generally, we prefer CAD candidates that are

upright instead of leaning aside.
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Fig. 2.5b illustrates the matching process. Empirically, we observe that the discarded

CAD candidates of “chair” and “table” due to large Matching Error (ME) are indeed more

visually distinct from the segmented object meshes. Moreover, the “fridge” model with a

wrong orientation leads to a much larger ME and is thus discarded. These results demon-

strate that our ranking-based matching process can select visually more similar CAD models

with a roughly correct orientation. Our system maintains the top 10 orientated CAD can-

didates with the lowest ME for more accurate alignment in the next stage.

2.4.3 Optimization-based CAD Alignment

The overarching goal of this step to find an accurate transformation (instead of 24 discretized

orientations in the previous step) that aligns a given CAD candidate y to the original object

entity x, achieved by estimating a homogeneous transformation matrix between x and y:

T “

»

–

αR p

0T 1

fi

fl , s.t. min
T

J px, T ˝ yq, (2.11)

where ˝ denotes the transformation of a CAD candidate y, J is an alignment error function,

α is a scaling factor, R “ Rotpz, θq is a rotation matrix that only considers the yaw angle

under the gravity-aligned assumption, and p is a translation. This translation is subject to

the following constraint: pg “ ´ds ` α ¨ sgy{2, as the aligned CAD candidate is supported by

a supporting plane πs “ rns
¨
T , ds¨ s.

The objective function J can be written in a least squares form and minimized by the

Levenberg – Marquardt [Mor78] method:

J “ eT
b Σbeb ` eT

pΣpep, (2.12)

where eb is the 3D bounding box error, ep the plane alignment error, and Σb,Σp the error

covariance matrices of the error terms. Specifically: (i) eb aligns the height of the two 3D

bounding boxes while constraining the ground-aligned rectangle of the transformed By inside
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Figure 2.5: Examples of matching and aligning CAD candidates to (a) input object

meshes. (b) All CAD models within the same semantic class as the input object are retrieved

for matching. Matching Error (ME) indicates the similarity in terms of both shape and the

proximity in orientations. After selecting the CAD candidates with smallest MEs, (c) a fine-

grained CAD alignment process selects the best CAD model with a proper transformation

based on Alignment Error (AE).

that of Bx:

eb “ rApT ˝ yq ´ Apx X T ˝ yq, α ¨ sgy ´ sgxs
T , (2.13)
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and (ii) ep aligns all the matched feature planes as:

ep “ r∆π1, ...,∆π|Πx|s
T ,

∆πi “ r´dpπiq ` dpT´T
¨ fΠpπiqq,

1 ´ npπiq
T

¨ npT´T
¨ fΠpπiqqs,

(2.14)

where some of the notations are detailed in Section 2.2.

To evaluate how well an aligned CAD candidate fits the object mesh, we compute an AE

defined as the root mean square distance between the object mesh vertices and the closest

points on aligned CAD candidate; Fig. 2.5c shows both qualitative and quantitative results.

The CAD candidate with the smallest AE will be selected, whereas others are potential

substitutions if the selected CADs violate physical constraints, detailed next.

2.4.4 Global Physical Violation Check

Given a shortlist of matched and aligned CAD candidates, we propose a global physical

violation check to finalize the CAD replacement and generate a physically plausible cg1. We

first validate supporting relations and object-layout proximal relations for CAD candidates

of each object. Specifically, for an object node vp and its segmented object entity x, we

discard an aligned CAD candidate y if it fails to satisfy Eq. (2.2) with any supporting child

vc of vp. We also discard aligned CAD candidates that violate the proximal constraints with

layout entities.

After early discard of invalid CAD candidates, we check the inter-object proximal con-

straints and jointly select CAD candidates for each object entity. We address this by formu-

lating a constraint satisfaction problem; starting with a CAD candidate with the minimum

AE for each segmented object, we adopt the min-conflict algorithm [MJP92] to obtain a

global solution of CAD replacement. Finally, as the CAD alignment step cannot guarantee

the precise alignment of supporting planes, we adjust the position of CAD models so that

Eq. (2.1) is strictly satisfied for each supporting relation. Then we obtain a finalized cg1 with
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Figure 2.6: Physical common sense reasoning for CAD replacement. Given (a)

incomplete object meshes, our physical common sense reasoning for CAD replacement (b)

generates a functionally equivalent and physically plausible configuration. Specifically, the

CAD matching and alignment algorithms select and rank a shortlist of CAD candidates. A

global physical violation check prunes invalid configurations, such as (c) collision and (d)

unstable support.

CAD models.

Fig. 2.6 illustrates a typical example, where specific configurations of CAD replacements

lead to unstable support or colliding geometry. Then the abovementioned global physical

violation check prunes invalid configurations and outputs a physically plausible one.
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Figure 2.7: Convert a contact graph cg1 to a kinematic tree. (a) Given the 3D

panoptic segmentation produced by our mapping module, (b) a contact graph is built and

converted to (d) Unified Robot Description Format (URDF) with CAD models, which can

be seamlessly (c) imported to and visualized in ROS Rviz; (e) the corresponding ROS TF

describes the world states to robots.

2.4.5 Kinematic Tree Conversion

The finalized cg1 can be readily converted into a kinematic tree to support various robot

planning tasks. In this work, we develop an interface to generate a kinematic tree in the

form of Unified Robot Description Format (URDF), which is commonly used in the robotics

community.
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A kinematic tree contains rigid bodies (links) as nodes, and joints connecting two bodies

as edges. Each node in the kinematic tree can be created from either a scene root node,

a layout node, a rigid object node, or a rigid part of an articulated object node in cg1.

We preserve the joints within articulated CAD models in the kinematic tree, but alter the

supporting edges in cg1 to either fixed joints (no translation or rotation allowed) or floating

joints (allow 3D translation and 3D rotation unless is constrained by collision) based on

the semantics of the scene entity pairs. For example, a cup is connected to a table using a

floating joint as a robot can freely manipulate it, and a table is linked to the floor via a fixed

joint as it cannot be moved.

We show a detailed example of the kinematic tree conversion process in Fig. 2.7. Based

on the 3D panoptic segmentation and the contact graph, our interface generates a kinematic

tree in URDF, which can be further visualized as ROS TF and rendered in ROS Rviz. In

this example, the fridge is connected to the floor via a fixed joint, and the bottle to the fridge

via a floating joint. A revolute joint is inserted to connect the fridge body and the fridge

door as specified by the CAD model.

2.5 Experiments and Results

2.5.1 Dataset and Implementation

We evaluate our system primarily on the SceneNN dataset [HPN16]; it contains RGB-D

sequences of various room-size indoor scenes and ground-truth scene meshes annotated with

instance-level segmentation. We pick 20 test sequences/scenes that contain diverse object

categories to quantitative evaluate the robust panoptic mapping module and demonstrate

the interactive scene reconstruction. For baselines that require training on 3D segmentation

data, we roughly follow the train/test split in [HTY18] while using the test set we pick.

In our work, we choose the baseline panoptic segmentation model in Detectron2 [WKM19],

pre-trained on the COCO panoptic class [LMB14] for segmentation on RGB. We use [FNF18]
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as the baseline geometric segmentation method for depth images. Of note, our system is

designed in a modularized manner so that it is flexible enough to incorporate more powerful

models when available. For instance, the segmentation module is designed as a server-side

service that will be requested by a client in the perception system when a new image frame

arrives and produce a list of segmented masks with labels in the response. Any segmenta-

tion methods being wrapped as a service following this protocol could be connected to our

system.

2.5.2 Robust Panoptic Mapping

We evaluate our robust panoptic mapping module on three aspects: (i) 3D panoptic mapping

quality, (ii) 3D object instance segmentation, and (iii) oriented 3D bounding box estimation.

The first aspect focuses on how well the system reconstructs the scene and segments the

objects and layouts within, whereas the latter two emphasize individual objects. Such a

protocol design provides a holistic evaluation of the fundamental component of the proposed

system: The accuracy of object segmentation and bounding box estimation are crucial for the

overall quality of scene reconstruction when matching and aligning CAD models. An ablation

study (noted as “w/o joint fusion”) is also conducted, where we disable our modifications of

jointly processing semantic and instance labels in data fusion, i.e. the procedure described

in Sections 2.3.2 and 2.3.3. This study will not only better demonstrate how much the

introduced modifications influence the overall mapping performance, but also verify the

effectiveness of the per-frame segmentation and fusion technique by comparing the ablated

results with those from baselines.

For each sequence used in the experiment, our mapping module processes incoming RGB-

D frames with ground-truth camera poses provided by the dataset. We consider 10 semantic

classes including 2 stuff classes (wall and floor) and 8 most common thing classes (bed, table,

chair, monitor, sofa, bag, cabinet, and fridge) for evaluation.
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3D Panoptic Mapping This experiment evaluates the overall segmentation performance

for panoptic mapping, following the criteria defined in [KHG19] and [NSI19]:
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, (2.15)

where the Segmentation Quality (SQ) is the averaged Intersection over Union (IoU) of

predicted and ground-truth panoptic masks on all matched predictions in the same class,

and the Recognition Quality (RQ) is the F1 score [MFM04] of object recognition for the

aforementioned 10 semantic classes. Panoptic Quality (PQ) is simply the product of SQ and

RQ, which better reflects the overall segmentation results.

We compare our panoptic mapping module with the Voxblox++ [GFN19]. Table 2.1

(white columns) shows their corresponding PQ, RQ, and SQ of 7 individual SceneNN se-

quences, averaged on 10 classes. Table 2.2 further tabulates per-class panoptic segmentation

results of all 20 sequences. Of note, we compute PQ, RQ, and SQ in category-level for each

semantic class (Table 2.2), and average the PQ, RQ, and SQ of all classes to obtain those

values in scene-level (Table 2.1).

Overall, our panoptic mapping module significantly outperforms the baseline as indicated

by higher PQ for individual sequences and most of the semantic classes. Without applying

joint fusion, our system still performs better than the baseline Voxblox++, showing the

efficacy of our per-frame segmentation. But it is not as good as our full module, which

further demonstrates that our proposed strategies positively contribute to objects and layouts

recognition (higher RQ value indicates higher accuracy) and segmenting them well (higher SQ

value). The extra performance gain our modifications bring is very crucial for the subsequent

processes.

3D Instance Segmentation We also evaluate the performance of 3D instance segmenta-

tion on 8 thing classes using the mAP@0.5 metric, i.e., the Mean Average Precision (mAP)
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Table 2.1: Quantitative class-averaged results of 3D panoptic segmentation and 3D

instance segmentation on individual sequences in the SceneNN dataset [HPN16].

Note that ProgressFusion [PHN19] accounts for more classes than the other two methods.

All values are in percentage.

Ours Voxblox++ [GFN19] ProgressFusion [PHN19]

Panoptic Instance Panoptic Instance Instance

ID PQ SQ RQ mAP PQ SQ RQ mAP mAP

011 45.5 60.4 50.0 58.3 34.3 64.3 40.0 80.8 52.1

030 50.4 55.6 64.5 58.3 23.4 34.7 26 33.5 56.8

061 43.0 52.0 46.3 33.6 25.7 53.1 32.2 38.6 59.1

078 54.7 54.7 62.5 50.0 26.3 52.5 31.7 43.9 34.9

086 27.3 39.6 34.6 40.8 19.4 32.9 25.2 37.6 35.0

096 12.5 21.4 14.6 23.0 7.3 11.9 8.3 14.6 26.5

223 49.5 60.2 63.3 60.0 21.7 40.2 26.7 34.1 40.9

Table 2.2: Per-class 3D panoptic segmentation results in the SceneNN

dataset [HPN16]. All values are in percentage.

all stuff thing wall floor bed table chair monitor sofa bag cabinet fridge

Voxblox++ [GFN19]

PQ 24.5 10.9 27.9 4.0 17.8 18.0 14.4 35.5 48.5 46.0 24.0 7.2 29.5

SQ 77.6 73.7 78.6 69.3 78.0 72.0 71.3 77.0 81.4 82.8 84.0 86.0 73.9

RQ 31.2 14.3 35.4 5.7 22.9 25.0 20.3 46.0 59.6 55.6 28.6 8.3 40.0

Ours (w/o joint fusion)

PQ 27.8 12.6 31.6 5.6 19.5 8.7 26.7 31.7 48.8 45.7 16.1 21.9 53.4

SQ 77.5 71.8 78.9 64 79.6 65.9 73.8 76 89 82.2 72.6 78.5 93.4

RQ 34.2 16.6 38.6 8.7 24.5 13.3 36.1 41.8 54.9 55.6 22.2 27.9 57.1

Ours

PQ 35.4 44.2 33.2 25.2 63.1 11.5 27.4 40.1 65.7 34.3 17.4 20.1 48.7

SQ 80.5 79.3 80.9 73.5 85.0 77.6 76.1 79.1 88.8 80.0 78.3 81.7 85.2

RQ 43.1 54.3 40.3 34.3 74.3 14.8 36.0 50.6 73.9 42.9 22.2 24.6 57.2
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computed using an Intersection over Union (IoU) with a threshold of 0.5. The evaluation is

two-fold. First, we report the class-averaged results in the progressive mapping manner on 7

individual sequences compared with Voxblox++ [GFN19] and ProgressFusion [PHN19], an-

other online semantic mapping framework; see the grey columns in Table 2.1. Our approach

performs better than Voxblox++ on almost all the sequences. Note that the ProgressFusion

accounts for all NYUDv2 [SHK12] classes available in the dataset, and we evaluate the per-

formance only on the 8 thing classes for our method and Voxblox++. While it’s possible to

re-train our panoptic segmentation module to incorporate more classes, we believe the cur-

rent experiment is sufficient to demonstrate the advantage of our panoptic mapping module

without defeating its purpose of leveraging pre-trained perception models.

Second, in Table 2.3, we study the per-class mAP@0.5 of our approach compared with

Voxblox++ [GFN19] and two learning-based works [PNH19, HZX20] that directly segment

3D instances from the full point cloud of scenes instead of continual RGB-D data stream.

As the input formats are different, the results are not directly comparable. They neverthe-

less provide a better sense about how well our approach performs. We re-train [PNH19]

and report the results of its two variants on our test set, and adopt the results reported

by in [HZX20]. Overall, our method performs significantly better than Voxblox++ in most

classes, and our variant without joint fusion can still slightly outperform Voxblox++. Oc-

cuSeg appears to perform the best for object classes that are less likely to be severely occluded

in the dataset, but our approach also poses a unique advantage of handling partially-visibly

objects such as cabinets and fridges that usually attached to a wall.

Oriented 3D Bounding Box Estimation We further evaluate the accuracy of oriented

(gravity-aligned) 3D bounding boxes of object instances, which serve as essential geometric

cues for physical reasoning and CAD replacement. Similarly, the mAP@0.5 metric is adopted

to evaluate the oriented 3D bounding box estimation on the 8 thing classes. Table 2.4 tabu-

lates results using the baseline method [GFN19], two variants described in [PNH19], our ap-
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Table 2.3: Per-class 3D instance segmentation results on the SceneNN

dataset [HPN16]. The numbers in bold and numbers in underscore indicate the best

and the second best results, respectively. All values are in percentage.

Input Format bed table chair monitor sofa bag cabinet fridge

MT-PNet [PNH19] Full point cloud 0.0 12.5 42.8 26.5 0.0 0.0 0.0 0.0

MLS-CRF [PNH19] Full point cloud 0.0 27.3 50.9 38.6 0.0 0.0 0.0 0.0

OccuSeg [HZX20] Full point cloud 66.7 50.0 91.3 76.9 50.0 - 5.7 -

Voxblox++ [GFN19] RGB-D stream 39.4 22.3 55.6 63.6 72.4 56.4 8.5 51.6

Ours (w/o joint fusion) RGB-D stream 17.4 40.7 51.3 48.1 82.8 53.2 35.4 94.5

Ours RGB-D stream 27.5 46.6 65.3 69.4 64.3 53.2 43.9 94.5

proach, and our approach with supporting-based refinement (detailed in Section 2.2.2). Note

that since there is no native support for evaluating oriented 3D bounding boxes in [PNH19],

we re-train the models on the SceneNN dataset for this experiment. The results indicates that

our approach predicts their oriented 3D bounding boxes accurately for most object classes

compared with the baselines. The refinement process further improves the performance by

completing the partially-observed object boxes. Looking at the two variants in [PNH19],

while MLS-CRF introduces an extra post-processing step using a Conditional Random Field

(CRF) on top of the MT-PNet, its 3D bounding box estimation accuracy drops as extra

points from the background are merged into the foreground objects in CRF regularization.

An interesting disparity between [PNH19]’s instance segmentation results (Table 2.3) and its

bounding box estimation (Table 2.4) appears—having a zero-score in one place and turning

to positive in another. This is because a subtle change in segmenting instances may lead to

a large error in estimated bounding boxes.

In summary, the above three quantitative evaluations demonstrate that our robust panop-

tic mapping module well suited for (i) recognizing and segmenting scene entities progressively

during mapping and (ii) estimating objects’ 3D oriented bounding boxes in complex and clus-
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Table 2.4: Per-class oriented 3D bounding box estimation results on the SceneNN

dataset [HPN16] based on mAP@0.5 metric. All values are in percentage.

all bed table chair monitor sofa bag cabinet fridge

MT-PNet [PNH19] 10.4 25.8 12.8 19.3 25.0 0.0 0.0 0.0 0.0

MLS-CRF [PNH19] 5.7 0.0 12.6 33.0 0.0 0.0 0.0 0.0 0.0

Voxblox++ [GFN19] 24.1 39.4 19.5 31.8 37.0 47.9 0.0 4.0 13.4

Ours (w/o joint fusion) 28.5 17.4 21.4 36.6 29.4 55.8 53.2 14.1 0

Ours 45.3 27.5 54.9 44.6 42.5 53.7 53.2 29.8 56.4

Ours (refined) 47.2 22.9 68.2 49.2 38.7 59.1 53.2 29.8 56.4

tered real indoor environments. The former capability is essential for selecting a proper CAD

model to replace a segmented object, and the latter determines the size and scale of that

CAD. The ablation study highlights the performance gain introduced by our data fusion pro-

cedure, demonstrating the success of jointly dealing with semantic and instance predictions

during mapping.

Table 2.5: GED of four scenes between annotated cggt and inferred contact graph

from our panoptic mapping results cgours (i.e. Fig. 2.9b) and from ground-truth

maps cgmap (i.e. Fig. 2.9a). Note that editing a wrong support will need two operations,

removing an edge and adding an edge, resulting a graph distance of 2.

Scene
Total nodes Total distance Wrong support Missing detection Wrong detection

cggt v.s. cgours cgmap cgours cgmap cgours cgmap cgours cgmap

225 20 12 4 1 2 5 0 5 0

231 29 9 4 0 2 2 0 7 0

249 11 7 0 3 0 1 0 0 0

322 17 5 2 1 1 2 0 1 0
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Figure 2.8: Comparison between ground-truth and inferred contact graph. (a)

The annotated cggt v.s. the cgours inferred from our panoptic mapping results for scene

322. (b)(c)(d) highlight a missing detection (cabinet 266 is not detected), a wrong detection

(cabinet 405 is detected as oven 399), and a wrong support (cabinet 32 is supported by wall

instead of supported by cabinet 2), respectively.

2.5.3 Inferred Contact Graph

Having extracted object and layout meshes from the volumetric panoptic map, a contact

graph cg can be built based on inferred supporting relations before using it to bridge the

actual scene to a virtual one. It is worthwhile to evaluate the structure of an inferred cg as it

collectively reveals the performance of object recognition, supporting relation identification,

and overall results. To conduct this evaluation, we annotate the contact graphs for four

scenes in the SceneNN dataset [HPN16] based on their ground-truth segmentation shown

in Fig. 2.9a. Then, a Graph Editing Distance (GED) [ZS89] metric is applied to evaluate

the distance between an annotated contact graph and an inferred graph from a segmented

map. Specifically, GED measures the dissimilarity of two graph by how many graph editing

operations (here we consider insertion, removal of a node or an edge, and substitution of a

node ID, a total of five operations) are needed to convert one graph to the other.

The results are reported in Table 2.5, where we compare the GED between (grey columns)
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the annotated contact graph cggt and that inferred from our mapping results cgours, and

between (white columns) cggt and that inferred from ground-truth segmentation map cgmap.

The Total nodes column indicates the size of cggt, i.e. the number of scene entities a scene

has. The Total distance column shows the total editing operations required to covert cgours

or cgmap to cggt, indicating the overall quality of the inferred cg. A qualitative illustration

between two graphs is also shown in Fig. 2.8a. Moreover, the GED can be broken down

to three types of errors appeared in an inferred graph: (i) Wrong support (or wrong edge):

a supporting relation is not assigned correctly, i.e. the parent node of an entity should be

another; (ii) Missing detection (or missed node): an entity is not detected or segmented and

thus not included in the graph; (iii) Wrong detection (or extra node): an entity that is not

supposed to appear in the graph, and the reasons for having extra nodes could be having a

wrong semantic label, one entity is segmented as multiple ones, or both. Fig. 2.8bcd depict

some examples of error in scene 322.

In Table 2.5, we observe that our system mainly suffers from the clustered scene 225

and scene 231 with lots of small objects, indicated by the high costs of Missing and Wrong

detection. On the other hand, the relatively low cost caused by Wrong support indicates

that our criteria of determining supporting relations is effective.

2.5.4 Interactive Scene Reconstruction

Fig. 2.9 showcases the qualitative results for reconstructing functionally equivalent and in-

teractive scenes. Given a volumetric panoptic map (Fig. 2.9b) and a constructed contact

graph, our system reconstructs a high-quality, functionally equivalent, interactive scene by

replacing incomplete meshes with CAD models and perform physical reasoning on the con-

tact graph, as shown in Fig. 2.9c. Nevertheless, we find that our system performs poorly or

fails under two circumstances: (i) The incomplete object mesh has misguided or no feature

planes, resulting in the misalignment of the CAD model; (ii) The object is not supported by

its bottom face (e.g ., cabinets on the wall), resulting in the incorrectly reconstructed scene
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due to the wrong estimate of the supporting relations. Section 2.6 provides a more in-depth

discussion of the system limitations.

By converting the scene contact graph into a kinematic tree in URDF, we are able

to seamlessly import the reconstructed functionally equivalent and interactive scene into

various existing simulators. Practically, we also specify physical proprieties (such as link

mass, collision geometry, joint friction) in URDF to facilitate more sophisticated simulations.

We demonstrate the usage of our reconstructed interactive scenes with several examples:

(i) Fig. 2.9d shows the reconstructed scenes in the ROS environment, which subsequently

connects the reconstructed scenes and robot Task and Motion Planning (TAMP). Detailed

planning schemes and implementations could be found in the authors’ parallel work [JZW21,

JZJ21]. (ii) Fig. 2.9e demonstrates that the reconstructed scenes can be loaded into the VR

environment [XLZ19] for interactions with both virtual agents and human users, which opens

a new avenue for future studies. (iii) Fig. 2.10 presents keyframes of a robot executing a

long-horizon mobile manipulation task that involves interactions with articulated objects.

2.5.5 Reconstruction of Physical Scenes

To further evaluate our system under a real-world setting, we conduct experiments to recon-

struct physical scenes using a handheld Kinect v2 sensor. We obtain accurate camera poses

with a state-of-the-art feature-based SLAM system [MT17] based on RGB-D streams. The

resulting 3D volumetric panoptic map, reconstructed functionally equivalent and interactive

scene, and an example of robot interaction are shown in Figs. 2.11a to 2.11c, respectively.

This result reveals a huge potential of applying the proposed system to facilitate robot task

execution in the physical world.

We further analyze scene reconstruction results using three typical cases that highlight the

advantages and failure conditions. In case 1 (Fig. 2.11d), the table is occluded by the chair

and thus is identified as two instances floating in the air. These two tables are determined

as floor-supported, and their 3D bounding boxes are further refined on the basis of the
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(a) Ground-truth segmentation for scene 225, 231, 249, and 322 [HPN16]

(b) Segmentation results produced by the proposed panoptic mapping

(c) Scene reconstruction with functional and actionable CAD objects

(d) Robot interaction with functionally equivalent reconstructed scenes

(e) VR interaction with functionally equivalent reconstructed scenes

Figure 2.9: Qualitative results of four reconstructed scenes with actionable CAD

models. With functionally equivalent reconstruction, both robots and human users can

virtually enter the scene for Task and Motion Planning (TAMP) and VR applications.
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supporting relations. The system eventually outputs two separate tables in the reconstructed

interactive scene, where their poses aligned with the oriented 3D bounding boxes of the

partial meshes. Case 2 (Fig. 2.11e) shows an example of a better reconstructed workspace.

Given the incompletely segmented table and chair point cloud, our system can correctly

estimate the supporting relations and their orientations, replace each mesh with a similar

CADmodel, and finally produce a functionally equivalent and physically plausible workspace,

although the dimension of the table is not ideal as part of the point cloud behind the chair

is not detected and segmented correctly. Case 3 (Fig. 2.11f) provides a more challenging

example. The fridge and microwave are segmented and replaced by articulated CAD models,

whereas the chair is not successfully detected and is removed from the reconstructed scene.

Similar to case 1, the table is identified and replaced with two instances. To avoid mesh

penetration, the proximal constraints incorporated by the cg helps the CAD replacement

process to select a rounded table on the left side, but it is not a satisfactory replacement due

to the large discrepancy in shapes.

2.6 Discussion

We now discuss in greater depth six topics related to the presented work.

2.6.1 Scene Functionality

Most computer vision tasks focus on devising new methodologies and representations that are

beneficial within the scope of computer vision. However, this paper seeks to address a new

task of building a representational system with the emphasis of facilitating robot activities.

The core of the system is to represent the scene functionality, one of the key common

senses governing our understanding of a scene [ZGF20]. This goal is achieved by associating

high-level cues from object semantics (e.g ., whether they can be moved, opened, or can

support other interactions) and low-level cues (i.e., replacing the object meshes with CAD
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Approach the fridge Open the fridge Pick up the object Close the fridge Open the microwave

Figure 2.10: Robot executing a mobile manipulation task with multiple steps:

microwaving an item (indicated by the red ball) by first retrieving it from the fridge.

models, whose underlying kinematic indicate how exactly they interact). Additional object

attributes, affordance, or task-dependent information can be annotated to CAD models to

depict the scenes more comprehensively. A subsequent, interesting open question is how

to quantify the divergence between the actual scene and the reconstructed one with CAD

replacements.

2.6.2 Scene Representation

The contact graph cg produced by the proposed system is a holistic, but approximate scene

representation. By itself is indeed insufficient for robot task executions where more precious

local scene representations are needed. Although the cg does not seem directly beneficial,

its importance is two-fold when considering a robot designed to operate over a long period

of time. Firstly, the representation maintains a global belief of the scene, helps a robot

to anticipate the effects of (sequence of) actions, and incorporates the actual action effects

back to the cg. This is essential for the robot to forward search for a task plan over a long

horizon [Kae20]. Secondly, given the variety of tasks a robot may anticipate, our cg can

serve as a carrier for those necessary local representations that can be annotated, trained

beforehand or build online with proper perception modules. Otherwise, different task-driven

representation are standalone, lacking proper organizations.
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2.6.3 Task and Motion Planning (TAMP)

Existing TAMP frameworks are oftentimes too brittle to handle a large variety of the en-

vironment for interactions. [KL11] and [SFR14] propose new TAMP frameworks, making

planning long-horizon manipulation tasks possible. Still, the framework focuses on pick-and-

place tasks with carefully defined environmental constraints, making it difficult for complex

indoor manipulation tasks. [GPL20] devise a framework for a complex problem, which re-

quires interaction with articulated objects. Similarly, this work is still limited to carefully

designed environments with limited variety in the setup. A key factor to this problem is the

lack of simulation environments that support various interactive actions (e.g ., door opening,

object picking) and semantic relations among objects. Crucially, it could be time-consuming

to generate these environments manually. In comparison, our framework can automatically

generate interactive environments from real sensory data of challenging physical world in

the wild and demonstrate a certain capability to support more complex TAMP study in the

future.

2.6.4 Embodied AI

Embodied AI researches focus on learning a policy, mostly in simulations, that can ulti-

mately be applied to real-world applications. Therefore, a significant amount of work is to

develop simulation platforms to support learning. Our perspective echoes the motivation of

task-oriented vision—designing a proper vision system that better suits a given task [IH92].

Specifically, our work allows the agent to acquire a policy specific to the given environment

for the given task by capturing and representing the actionable information in the environ-

ment from the agent’s view. Thus, our work goes beyond panoptic segmentation and 3D

reconstruction.
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(a) Volumetric panoptic map (b) Reconstructed scene (c) Robot interaction

(d) Case 1 (e) Case 2 (f) Case 3

Figure 2.11: Reconstructing a physical scene with a handheld RGB-D sensor. (a)

The panoptic segmentation and the overall mapping. (b) The reconstructed scene with CAD

models replacing the segmented objects, which supports (c) a robot to simulate its Task and

Motion Planning (TAMP). (d–f) Qualitative results of segmentation and reconstruction.

Our system recognizes most of the objects and properly replaces them with CAD models

that are similar to those objects in the physical scene; see Case 2 and 3. A common problem

is due to occlusion, which causes inaccurate detection, e.g ., one desk is recognized as two as

it is occluded by the chair; see case 1 and 3.
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2.6.5 Supporting Relations

Inferred supporting relations define the structure of contact graph. While this paper mainly

concerns about stable support, i.e. those satisfying Eq. (2.3), there are several other sup-

porting configurations, such as an object is hanging on wall and supporting from behind,

is supported by two adjacent tables, is placed on floor and tilted against another object

etc. These types of supports are not explicitly modeled and may not be well handled. Our

system can nevertheless reveal their supporting relations in part. For instances, the blue

bottle in Fig. 2.1c is regarded as supported by the wall because no valid supporting par-

ent is identified but it is very close to the wall. Whereas in Fig. 2.8d, the upper cabinet

that is supported by the wall (and possible the ceiling as well) is wrongly considered as

supported by the lower cabinet. In other cases where an object is supported by multiple

entities simultaneously, only one entity would be identify as a supporting parent based on

overlapping area defined in Eq. (2.2). For a tilted object on floor, only the floor would be

identified as the supporting object. Hanging objects that are supported from above, are not

handled in the present work either. Apparently, our strategy cannot fully address the above

less common supporting relations reliably at all time, but more specific spatial relations can

be modeled and incorporated into the contact graph representation as well to extend the

system’s capability.

2.6.6 Other Limitations

The system’s performance heavily relies on 3D panoptic segmentation of scene entities and

the CAD replacement of object meshes. Currently, our robust panoptic mapping module

utilizes open-sourced software to generate panoptic segmentation on RGB frames. While

its development is beyond this paper’s scope, new models and methods are emerging in the

fast-paced community, and our system is designed to easily incorporate newer methods to

improve the mapping performance further and support subsequent processes by reducing
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error propagated in each stage.

Our CAD replacement algorithm matches and aligns CAD models to incomplete meshes

based on simple geometric features, i.e., 3D bounding boxes and surface planes, which

are potentially fragile when the meshes are noisy and incomplete. In the future, we may

integrate deep learning-based methods [ADN19, PTL18] for more robust and accurate CAD

replacement.

The articulated CAD models are unlikely to match the structure of real objects exactly.

One potential solution is to detect and segment object parts and estimate the kinematics to

assemble more fine-grained CAD models. The PartNet dataset [MZC19] provides an initial

direction to start with.

There are various actionable information and many other information an object should

afford for a robot to sufficiently interact with it depending on different task specifications,

while this paper only studies a few, e.g . inferred supporting relations and annotated kine-

matics information. One central question remains unanswered is how to balance manual

efforts and algorithmic efforts so that an intelligent robot can better excel in ever-changing

environment.

2.7 Conclusions and Future Work

This paper proposes a new task of reconstructing functionally equivalent and interactive

scenes to simulate robot autonomy and develop a full system that demonstrates this new

perspective. Contrasting to the classic view of scene reconstruction that focuses on the geo-

information, our system captures semantics and associated actionable information in scene

entities by (i) a novel panoptic mapping module that reconstructs individuals objects and

layouts, (ii) a geometric and physical reasoning module to replace the incomplete objects

meshes with part-based interactive CADmodels, and (iii) a contact graph representation that

facilitates physically plausible scene reconstruction, and reflects action opportunities and ac-
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tion outcomes in terms of kinematic information. In experiments, we first quantitatively

demonstrate that our system can produce high-quality panoptic segmentation, a prerequi-

site for the subsequent processes. We further qualitatively showcase various reconstructed

scenes with functional CAD model replacements, from dataset and real-world scanning, that

support fine-grained interactions in ROS and VR environments.

In the future, we hope to improve the CAD matching and alignment processes by in-

troducing more robust feature extraction and exploring learning-based methods. Another

promising future direction is to incorporate sophisticated part-based object recognition and

modeling. Together with a CAD assembling module, it is possible to generate a CAD model

that matches a segmented object with much finer details and reflects its functionality better.

Meanwhile, more functional and attribute information can be encoded to CAD models to

better reveal the “Dark Matter [ZGF20]” of a scene. Finally, we will explore the feasibility

of promoting the embodied AI research from navigation tasks to fine-grained manipulation

tasks using our reconstruction framework.
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CHAPTER 3

Planning in the Geometry Fluent Space via a Virtual

Kinematic Chain

Inspired by the theory of body schema [Gal06] proposed by cognitive psychologies and

philosophers: Humans maintain a body’s representation during their motions and inter-

actions with the environment; this representation is malleable and can be extended to incor-

porate external objects, this chapter presents a present a Virtual Kinematic Chain (VKC)

perspective, a simple yet effective method, to improve task planning and motion planning for

mobile manipulation in the geometry fluent space. Although the idea of the body schema has

been introduced to the robotics community to represent robot structures and guide robot’s

behaviors [HMA10], it has left untouched whether the theory of body schema would pro-

mote a service robot’s (mobile manipulation in particular) planning and execution skills in

complex manipulation tasks. And if it does, what would be a proper representation at a

computational level?

By consolidating the kinematics of the mobile base, the arm, and the object being manip-

ulated collectively as a whole, this novel VKC perspective naturally defines abstract actions

and eliminates unnecessary predicates in describing intermediate poses. As a result, these

advantages simplify the design of the planning domain and significantly reduce the search

space and branching factors in solving planning problems. Accordingly, a mobile manip-

ulation task is represented by altering the state of the constructed VKC, which can be

converted to a motion planning problem, formulated and solved by trajectory optimization.

In experiments, we implement a task planner using Planning Domain Definition Language
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actions:

precondition:
goal:

move(base,b0,b1)
pick(bottle,pose)
(reachable b1,pose)
(carry bottle,arm)

No VKC
actions:

goal:

pick-vkc(bottle,pose)

(carry bottle,vkc)

VKC

Figure 3.1: A typical task planning setup, wherein the mobile manipulator is

tasked to navigate and pick up the object on the desk. The VKC-based domain

specification reduces the search space by removing the poses of the mobile base near red

cubes, resulting in a simpler and more intuitive task planning domain.

(PDDL) with VKC. Compared with conventional domain definition, our VKC-based domain

definition is more efficient in both planning time and memory. In addition, abstract actions

perform better in producing feasible motion plans and trajectories. We further scale up the

VKC-based task planner in complex mobile manipulation tasks and validate these advan-

tages by comparing the VKC-based approach with baselines that solely optimize individual

components. Taken together, these results demonstrate that task planning using VKC for

mobile manipulation is not only natural and effective but also introduces new capabilities.

The materials in this chapter have been published in [JZW21, JZJ21].
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3.1 Introduction

As one of the central themes in AI and robotics, task planning is typically solved by searching

a feasible action sequence in a domain. Researchers have demonstrated a wide range of suc-

cessful robotics applications [LaV06, KM20] with effective representations or programming

languages, such as STRIPS [FN71], hierarchical task network [NAI03], temporal and-or-

graph [EGL19, LZZ19], Markov decision process [Bel57], and PDDL [FL03].

An effective task planner in robotics generally possesses two characteristics. First, the

planning domain must be clearly designed, which includes a set of predicates that truthfully

describe the environment states, a set of actions that specify how states transit, and a goal

specification that indicates the desired result. However, the definitions of these components

are tightly coupled; thus, designing the planning domain could be tedious and error-prone.

Second, the abstract notion of symbolic actions should be realizable by motion planners; i.e.,

the design of these abstract symbols should have practical meaning. These two requirements

pose additional challenges in task planning for mobile manipulation; the robot consists of a

mobile base and an arm, which possess different motion patterns and capabilities.

To clearly illustrate the above challenges, let us take Fig. 3.1 as a concrete example,

wherein a mobile manipulator is tasked to navigate and pick up the bottle on the desk. A

dedicated set of predicates and actions must be specified for the mobile base and the arm; for

instance, moving the base (move(¨)) to a configuration, such that the arm can pick up the

object (pick(¨)). Of note, finding such a pose oftentimes requires to specify the mobile base

and the arm individually. However, this separation in the planning domain is artificial in

nature and ineffectively introduces an unnecessarily larger planning space: The valid poses

of the mobile base near the goal (i.e., the bottle) must be specified (indicated by the cubes

in Fig. 3.1) in advance, and exactly one (e.g ., the green cube) must be selected via sampling

or searching under pre-defined heuristic or criteria. This deficiency becomes increasingly

evident as the task sequence grows longer and prohibits natural motions that require foot-
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Figure 3.2: Diverse interactions a service robot needs to perform in a household

environment. By abstracting the objects’ kinematic structures and forming a VKC, a

service robot can plan and act more efficiently with improved foot-arm coordination.

arm coordination; coordinating the base and arm movements remains challenging even for

existing whole-body motion planning methods [Sha16, BAK17, CCL10], let alone realizing

a symbolic task plan with a feasible motion plan.

In particular, we propose a Virtual Kinematic Chain (VKC) perspective for mobile manip-

ulation, which consolidates the kinematics of the mobile base, the arm, and the object being

manipulated into a single kinematic model. By treating the robot as a whole, more abstract
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actions can be defined to jointly account for both the base and the arm; see pick-vkc(¨)

vs move(¨) and pick(¨) in Fig. 3.1. Such an abstraction alleviates the manually-defined

heuristic of where the robot can reach the goal and the unnecessary definitions of interme-

diate goals, e.g ., predicates describing the robot’s pose before reaching the goal. As a result,

this modification of the planning domain reduces the branching factor, making it scalable

to more complex tasks. Crucially, the abstraction introduced by VKC does not sacrifice the

success rate to generate a solvable motion planning problem.

From this new VKC-based perspective, a mobile manipulation task is represented by

altering the state or the structure of the VKC, which leads to a motion planning problem

on VKC, formulated and solved by trajectory optimization. This new perspective enables a

service robot to plan and act efficiently by allowing it to directly incorporate external objects

and plan the motion as a whole to achieve better foot-arm coordination; see examples in

Fig. 3.2.

In experiments, we validate the proposed VKC perspective in various mobile manipula-

tion tasks. Our experiments show that the consolidated kinematic models are particularly

suitable for robots by alleviating intermediate goal definitions for task planners and motion

planners; they offer a simple yet effective intermediate representation for domain specification

in task planning and promote coordinated motions among base, arm, and object.

3.1.1 Related Work

VKC in robot modeling and planning The idea of Virtual Kinematic Chain

(VKC) could be traced back to 1997 by Pratt et al . [PDP97] for bipedal robot locomo-

tion [PCT01]. This idea was later adopted to chain serial manipulators to form one kine-

matic chain [LNZ14] and to dual-arm manipulation tasks; for instance, connecting parallel

structures via rigid-body objects [WSK15], modeling whole-body control of mobile manipu-

lators [WSK16]. Recently, VKC is also adopted for wheeled-legged robot control [LHP19].

In this paper, we further push the idea of VKC to a mobile manipulator and demonstrate
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its advantages in modeling and planning complex manipulation tasks in household environ-

ments.

Motion planning is among the largest and most fundamental fields in robotics. In

essence, methods can be roughly categorized into three major doctrines: search-based (e.g .,

A‹ [HNR68], D‹ [Ste97]), sampling-based (e.g ., RRT [LK00] and its variants [KL00, KF10]),

and trajectory optimization (e.g ., CHOMP [RZB09], TrajOpt [SDH14]). We formulate the

motion planning problem on VKC following the conventions in TrajOpt, as it incorporates

kinematic constraints better than sampling-based methods while avoiding searching in large

spaces. Efficiently performing mobile manipulation tasks are challenging. Notable efforts

have recently been dedicated to algorithms or system implementations, focusing on inter-

active manipulation tasks. For instance, equilibrium point control [JK10] and impedance

control structure [SNT19] are introduced to open doors and drawers. To improve efficiency,

Gochev et al . used a heuristic-based method to reduce the search space [GSL12]. Taking

advantage of solving the inverse kinematics, Burget et al . proposed a whole-body motion

planning approach for humanoid’s constrained motion [BHB13], and Bodily et al . proposed

an algorithm for jointly optimizing a robot’s base position and joint motions [BAK17]. More

recently, Toussaint et al . proposed a multi-bounded tree search algorithm to solve multi-step

manipulation tasks involving tool-use [TAS18]. Despite their promising results, prior arts

primarily focus on a specific problem setup (e.g ., opening door and drawer, using tools).

In comparison, the proposed approach rethinks mobile manipulation from a more general

viewpoint using VKCs and tackles a broader range of tasks.

TAMP in mobile manipulation Thanks to the development of PDDL and other plan-

ning architectures, complex symbolic task planning can be solved using standard algo-

rithms [KM20]. Hence, the community has shifted the focus to corresponding a valid sym-

bolic action sequence to feasible motions, which leads to the field of TAMP [GCH20]. While

researchers tackle this problem from various angles, such as incorporating motion-level con-
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straints to the task planning [EHP11, KL11, GLK18], developing interfaces that communi-

cate between task and motion [SFR14], or inducing abstracted modes from motions [Tou15,

TAS18], it remains a largely unsolved problem. In addition, movements of a mobile base and

a manipulator are commanded by two or more separate actions [BKL17, GLK18, KWK19],

causing increased planning time, less coordinated movements, etc. In comparison, the VKC

perspective serves as an intermediate representation that benefits the task modeling of mobile

manipulation, improves computation efficacy, and facilitates motion planning.

3.2 Virtual Kinematic Chain (VKC) Modeling

3.2.1 Notations and Problem Definition

This section introduces the notations throughout the paper and the problem setup describing

a mobile manipulation task.

The physical properties and kinematics of links and joints are defined following the Unified

Robot Description Format (URDF) in Robot Operating System (ROS) and organized in a

tree representation T . Table 3.1 lists all the related notations:

Below, we further summarize the above notations:

‚ The group Robot refers to notations related to the mobile manipulator, which consists of

three components: mobile base, manipulator, and end-effector.

‚ The group Object refers to notations related to the manipulated objects, which could be

as simple as a rigid link or be an articulated object with two or more links connected

by either a prismatic, revolute, or fixed joint. We introduce a virtual joint defined as an

attachment, a local transformation at
eeT from the object’s attachable frame FO

at (i.e., the

link a mobile manipulator can grasp on) to the robot’s end-effector frame FR
ee.

‚ The group Others refers to constructed VKC, its state space, and other related notations

in a manipulation task.
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Table 3.1: Notations used for constructing VKCs.

Group Notation Description

R
ob

ot

T R A tree represents the robot kinematic model

FR
b Robot base link’s frame; the root of CR

FR
ee Robot end-effector link’s frame

CR Ă T R, a kinematic chain from FR
b to FR

ee

FR
i Frame of link i in the kinematic chain CR

O
b
je
ct

T O A tree represents the object kinematic model

FO
b Object base link’s frame; the root of T O

FO
at Object attachable link’s frame

CO Ă T O, a kinematic chain from FO
b to FO

at

FO
i Frame of link i in the kinematic chain CO

O
th
er
s

CV
n A serial VKC with n Degree of Freedom (DoF)

q P Rn, the state of VKC in joint space

g P Rk (k ď n), the joint goal state

a
bT A homogeneous transformation from Fa to Fb

w
i Tg The goal pose of Fi in the world frame

Constructing a VKC CV requires the inputs of robot kinematic tree T R, object kinematic

tree T O, and transformation from an object attachable frame to the robot end-effector frame

at
eeT . The chain’s forward kinematics (FK), inverse kinematics (IK), and Jacobians can be
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effectively solved by existing kinematic solvers (e.g ., KDL [SBA11]).

Assuming a rigid connection between the end-effector and the attachable link during

manipulation, performing a mobile manipulation task can be regarded as reaching desired

VKC poses. As a result, we treat a mobile manipulation task as a motion planning problem

on the VKC and solve it by trajectory optimization. Formally, it is equivalent to finding a

collision-free path q1:T from the initial pose qinit to goals g in joint space and/or goal poses

w
i Tg in Euclidean space.

The objective function of the trajectory optimization can be formally expressed as:

min
q1:T

T´1
ÿ

t“1

||W
1{2
vel δqt||

2
2 `

T´1
ÿ

t“2

||W 1{2
acc δ 9qt||

2
2, (3.1)

wherein we penalize the overall weighted squared traveled distance of every joint with the

finite forward difference δqt « qt`1 ´ qt and overall smoothness of the trajectory with the

second-order finite central difference δ 9qt « qt´1 ´ 2qt ` qt`1. Wvel and Wacc are diag-

onal weight matrices for each joint, respectively. q1:T represents the trajectory sequence

tq1, q2, . . . , qT u, where qt denotes the VKC state at the tth time step.

3.2.2 VKC Construction

The proposed VKC modeling constructs a serial kinematic chain by (i) incorporating both

robot and object kinematics via a virtual joint and (ii) augmenting a virtual base to the

robot base; see Fig. 3.3b for a graphic illustration.

Below we formally describe the 4-step procedure of constructing the VKC, CV , by con-

solidating the robot and the object kinematics models.

Original Structure The kinematic models of the mobile manipulator T R and the manip-

ulated object T O are assumed given by the perception module or by the simulator.
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(b) Constructed VKC

Robot Original Trans.

Object Original Trans.

Virtual Kinematic Chain

Object Virtual Inverse Trans.

Virtual Mechanism

VKC Con
str

uct
ion

1 

Revolute
Joint

(a) Physical Abstraction

Kinematics Robot
Abstraction Kinematics

Figure 3.3: Overview of the mobile manipulation planning schematics using the

proposed VKC-based approach. (a) After abstracting out the underlying kinematics of

the manipulated object and the mobile manipulator, (b) a VKC is constructed. The yellow

boxes denote where the virtual connections are established: (i) One between FV
b and FR

b ,

the virtual base frame in the world coordinate and the robot’s actual base frame, to reflect

the navigational information, and (ii) another between FR
ee and FO

at, the robot’s end-effector

frame and the attachable frame of the object, to transfer effects of the manipulator to the

manipulated object.

Kinematic Inversion Let us take the task of opening a door as an example. In conven-

tional kinematic notation, the door is the child link, and the door frame is its parent link

in the original T O. To construct a VKC, this parent-child relationship needs to be inverted
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before it can be attached to the robot’s end-effector, i.e., the door becomes the parent link

that “transforms” the door frame. Of note, such an inversion also requires updating the

joint connecting the two links, since a joint (i.e., revolute/prismatic) typically constrains the

child link’s motion w.r.t. the child link’s frame.

VKC Construction After inverting the original T O, a virtual joint between FOinv
b and FR

ee

is inserted, whose transformation is denoted as ee
atT . In our application, the transformation

of the virtual joint is updated by the actual grasping pose right before the VKC construction

to minimize kinematic discrepancies introduced by the execution error. Next, the motion

planner will be invoked to plan following motions for the actual VKC. The joint type could

also be determined by the grasping type between the gripper and the object (e.g ., revolute

joint for grasping a cylindrical handle, fixed joint for grasping a rigid ball) to alleviate the

inaccuracies during the execution.

Virtual Base Frame A virtual base frame FV
b is further added and connected to the

mobile base through two perpendicular prismatic joints and a revolute joint, enabling the

mobile base’s omnidirectional motions on the ground plane.

After the above procedure, the constructed VKC remains in serial and forms an equality

constraint to Eq. (3.1):

hchainpqtq “ 0, @t “ 1, 2, . . . , T (3.2)

It specifies the kinematics of the VKC, which includes its forward kinematics and other

physical constraints of the manipulated object; e.g ., the manipulated object is fixed to the

ground, which leads to a closed chain: w
b T

O
1:T ´w

b T
O “ 0. Failing to account for this constraint

may damage the manipulated object or the mobile manipulator.
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3.2.3 Goals of VKC

The goal of the mobile manipulation can be formulated as an inequality constraint, in addi-

tion to the equality constraint introduced by the VKC construction in Eq. (3.2):

||ftaskpqT q ´ g||
2
2 ď ξgoal, (3.3)

which bounds the squared l2 norm between the final state in the goal space ftaskpqT q and

the goal state g with a tolerance ξgoal. The function ftask : Rn Ñ Rk is a task-dependent

function that maps the joint space of a VKC to the goal space that differs from task to task.

Again, let us take the example of opening a door. In the first phase when the robot is

reaching the door handle, ftaskp¨q maps the joint space of a VKC to the robot’s end-effector

pose. In this case, the goal g is the robot’s end-effector pose w
eeTg, and Eq. (3.3) can be

rewritten in a simplified form ||ffkpqT q ´ w
i Tg||22 ď ξgoal. In the second phase when the robot

is opening the door, ftaskp¨q maps VKC’s joint space to the joint of the door’s revolute axis.

Hence, g is merely the angle θ of the revolute joint, and the trajectory of the other joints

in the VKC are implicitly generated by the optimization process, together with obstacle

avoidance and trajectory smoothing. Of note, Eqs. (3.2) and (3.3) are not the only forms

of constraints that a VKC-based approach can incorporate; in fact, it is straightforward to

add additional task constraints to the same optimization problem in Eq. (3.1), depending

on various task-specific requirements.

3.2.4 Additional Constraints for VKC

During the trajectory optimization, we further impose several safety constraints. Without

loss of generality, we assume an omnidirectional base and purely kinematic constraints in this

paper. However, extra constraints, such as nonholonomic constraints for non-omnidirectional

mobile bases or dynamic constraints for arms, could be formulated into the optimization
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problem by incorporating additional time, first-order, or second-order terms [RHB17].

qmin
ď qt ď qmax, @t “ 1, 2, . . . , T (3.4)

||δqt||8 ď ξvel, ||δ 9qt||8 ď ξacc, @t “ 2, 3, . . . , T ´ 1 (3.5)

Nlink
ÿ

i“1

Nobj
ÿ

j“1

|distsafe´fdistpLi, Ojq|
`

ď ξdist, (3.6)

Nlink
ÿ

i“1

Nlink
ÿ

j“1

|distsafe´fdistpLi, Ljq|
`

ď ξdist. (3.7)

Eq. (3.4) is an inequality constraint that defines joint limits, in which qmin and qmax specify

the lower and upper bound of every joint, respectively. Eq. (3.5) is an inequality constraint

that bounds the joint velocity by ξvel and the joint acceleration by ξacc to obtain a feasible

trajectory that can be executed without saturation. || ¨ ||8 denotes the infinity norm.

Eqs. (3.6) and (3.7) are inequality constraints that check link-object collisions and link-

link collisions, respectively, where Nlink and Nobj are the number of links and the number

of objects, respectively. distsafe is a pre-define safety distance, and fdistp¨q is a function that

calculates the signed distance [SDH14] between i-th link Li and j-th object Oj; the function

| ¨ |` is defined as |x|` “ maxpx, 0q.

The inequality constraints introduced by Eqs. (3.6) and (3.7) make the preceding op-

timization problem highly non-convex and unsolvable by a generic convex solver. In this

paper, we approximate it by a sequence of convex problems [SDH14], solved by a sequential

convex optimization method.

3.2.5 Advantages of VKC

As formally derived in the above sections, solving mobile manipulation as trajectory opti-

mization using the proposed VKC-based approach introduces two advantages:

1. Eliminating unnecessary intermediate goals. Let us use the example of opening a

door: Only one goal—the door’s angle to be opened to—is required. The final poses of
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the mobile base and the manipulator are directly produced during the trajectory opti-

mization process without manually specifying unnecessary intermediate goals. Hence, the

VKC-based approach provides versatility and simplicity for modeling mobile manipulation

tasks.

2. Coordinating locomotion and manipulation. Using VKCs, the trajectory optimiza-

tion jointly generates trajectories of the mobile base and the manipulator, producing co-

ordinated locomotion and manipulation, which is oftentimes challenging for conventional

methods.

These two advantages are crucial for a robot operating in a complex domestic environ-

ment. In the following sections, we demonstrate these advantages in a series of mobile

manipulation tasks.

3.3 Planning on VKC

3.3.1 Task Planning on VKC

Following the classic formalization of task planning, we describe the environment by a set

of states S. Possible transitions between these states are defined by T Ď S ˆ S, where a

transition t “ xs, s1y P T alters the environment state from s P S to s1 P S. The goal of the

task planning problem is to identify a sequence of transitions that alters the environment

from its initial state s0 P S to a goal state sg P Sg, where Sg Ď S is a set of goal states.

We primarily consider the task planning problems in mobile manipulation, which require

the robot to account for its base, arm, and the object being interacted (e.g ., pick and

place, door/drawer opening). We formulate the task planning problems and implement the

planning domains using PDDL.

In PDDL, the environment state s is described by a set of predicates that hold true.

Specifically:
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‚ (vkcState ?r ?q): A sub-chain ?r (e.g ., the base, an arm, or even a VKC) of a VKC is

at configuration ?q in joint space.

‚ (objConf ?o ?s): An object ?o is at the configuration ?s in SE(3).

‚ (free ?v): The robot end-effector is free to grasp.

‚ (carry ?o ?v): The robot end-effector is carrying an object ?o.

In this paper, to focus on demonstrating the benefit of task planning with VKC, we pre-

sampled feasible configurations ?s for all objects and corresponding grasping poses.

Transitions in PDDL are modeled by actions. Each action takes parameters as input

and can be called only when its preconditions hold true. After an action is called, its effect

indicates how the states in the current environment change from preconditions. Thanks to

the advantages introduced by the VKC, three simple action definitions—goto-vkc, pick-vkc,

and place-vkc—are sufficient to handle various mobile manipulation tasks, from pick-and-

place in different setups to foot-arm coordinated and constrained motions (e.g ., door/drawer

opening). Below is an example of the definitions for three actions; see Figs. 3.5b and 3.5c

and Section 3.4.1 for a comparison between VKC-based PDDL and a standard PDDL for

mobile manipulators.

(:action goto-vkc

:parameters (?r ?from ?to)

:precondition (vkcState ?r ?from)

:effect (and (vkcState ?r ?to)

(not (vkcState ?r ?from))))

(:action pick-vkc

:parameters (?o - obj ?s - state ?v - vkc)

:precondition (and (objConf ?o ?s)

(free ?v))

:effect (and (carry ?o ?v)
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(not (objConf ?o ?s))

(not (free ?v))))

(:action place-vkc

:parameters (?o - obj ?s - state ?v - vkc)

:precondition (and (carry ?o ?v)

(not (occupied ?s)))

:effect (and (not (carry ?o ?v))

(objConf ?o ?s)

(free ?v)))

3.3.2 From Task to Motion

The conventional task planning setup usually assumes a robot already knows how to execute

the actions defined in the task domain and, therefore, does not generate actionable motion

trajectories for the robot. However, in practice, this assumption does not always hold as

many abstract actions defined in the task domain are difficult to be instantiated at the

motion level. This section discusses how the actions defined using VKC can properly form

a motion planning problem solvable by existing motion planners.

We start by making the connections between the action semantics and the actual ma-

nipulation behaviors, followed by explaining how the predicates and variables in the action

definitions are processed by motion planners.

goto-vkc (r, q1, q2) This predicate moves the VKC from the current pose q1 to a desired

pose q2 for a chain r. It represents the tasks that do not require interaction with the

environment, wherein the VKC structure remains unchanged. Pure navigation is a typical

action falling into this category. For example, goto-vkc (base, qb1, q
b
2) moves the robot to

the location specified in qb2. Another example is to manipulate a picked object from the
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current pose q1 to a certain pose q2, i.e., goto-vkc (vkc, q1, q2)

pick-vkc (object, s, vkc) This predicate moves the VKC to the object to be manipulated

and extends the current VKC structure by adding a virtual joint to connect the object and

the arm’s end-effector at state s. Here, the state could be interpreted as a grasping pose,

the transformation between the robot gripper and the object to be manipulated (i.e., ee
atT ).

pick-vkc represents the group of tasks that require mobile manipulators to interact with

the environment, e.g ., picking up an object or grasping a handle.

place-vkc (object, s, vkc) This predicate moves the object connected to vkc to a

goal pose s, while the object to be manipulated is incorporated into the VKC and imposes

kinematic constraints to the planner. Once reaching the goal pose, place-vkc breaks the

current VKC at the virtual joint where it connects the mobile manipulator and the object,

and the object will be placed at where it was disconnected from VKC. place-vkc represents

the group of tasks that mobile manipulators stop interacting with the environment, such as

placing an object on the table.

In motion planning, configuration space Q describes the environment state. Q’s dimen-

sion n equals to VKCs’ degrees of freedom. A collision-free subspace Qfree Ď Q is the space

that VKCs can traverse freely without colliding with the environment or itself. The problem

of motion planning on VKC is equivalent to finding a collision-free path q1:T P Qfree from

the initial pose q1 P Qfree to reach the final state qT P Qfree. Each action predicate requires

to form a motion planning problem due to the kinematic structure changes.

3.3.3 Optimization-based Motion Planning

Finding a collision-free path q1:T P Qfree for given tasks can be formulated by trajectory

optimization, e.g ., CHOMP [RZB09] and TrajOpt [SDH14]. The objective function of the

trajectory optimization can be formally expressed as Eq. (3.1) where we penalize the overall
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velocities and acceleration of every joint with diagonal weights Wvel and Wacc for each joint,

respectively.

Meanwhile, the constructed VKC should also be subject to kinematic constraints of

the robot and the environment described in Eq. (3.2) which includes forward kinematics and

closed chain constraints. We can formulate the task goal as an inequality constraint described

in Eq. (3.3) which bounds the element-wise squared ℓ2 norm between the final state in the

goal space ftaskpqT q and the task goal g P Rk (k ď n) with a tolerance ξgoal. The function

ftask : Q Ñ Rk is a task-dependent function that maps the joint space of a VKC to the goal

space that differs from task to task. This definition relaxes hard constraints of goal state

and optimized the other n ´ k states with objective function Eq. (3.1). Of note, Eqs. (3.2)

and (3.3) are not the only forms of constraints that a VKC-based approach can incorporate;

in fact, it is straightforward to add additional task constraints to the same optimization

problem in Eq. (3.1), depending on various task-specific requirements. We further impose

several additional safety constraints (see Section 3.2.4), including joint limits, bounds for

joint velocity and acceleration, and link-link and link-object collisions.

3.3.4 Sampling-based Motion Planning

Alternatively, motion planning on VKC can also be viewed as a search procedure in the

configuration space Qfree. Given a path planning problem within Qfree, a sampling-based

method would attempt to find a set of collision-free way points that start from an initial

configuration q0 P Qfree and end in the goal configuration qgoal P Qfree.

Rapidly-exploring Random Tree (RRT) is a probabilistically complete search algorithm

that incrementally expands a collection of directional nodes T to explore space [LK00]. In

this paper, we adopted a RRT-connect algorithm [KL00] from the Open Motion Planning

Library (OMPL) [SMK12] as our sampling-based motion planner, which initiates exploration

from q0 and qgoal concurrently.
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Figure 3.4: The computing logic of instantiating the actions in a task plan to

trajectories at the motion level. Each action symbol encodes a (virtual) kinematic

chain and a goal pose, which are sufficient for a motion planner given the environmental

constraints.

Unlike the optimization-based method mentioned in Section 3.3.3, way-points collected by

RRT-connect are not smoothed by an objective function during search; instead, interpolation

was performed after the search is complete for a smooth trajectory to be executed on a mobile

manipulator.

Fig. 3.4 summarizes the computing logic of instantiating the actions to motion trajecto-

ries. The action sequence produced by the task planner encodes how the VKC changes over

each action and its desired goal pose. Together with environmental constraints (e.g ., the

actual robot kinematics and the objects’ geometry), the information provided by the VKC-

based task planner is sufficient for a typical motion planner to produce a feasible trajectory

from q0 to qgoal.
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3.4 Experiment

We conduct a series of experiments to evaluate the efficacy of the proposed VKC perspective

for planning mobile manipulation tasks in simulations. The first experiment compares the

designs of PDDL definition with VKC or without VKC and their corresponding planning

efficiency. Since the action definitions can be arbitrarily abstract at the symbolic task level,

we further validate the VKC-based action design in the second experiment that it indeed

provides sufficient information for motion planners to produce feasible trajectories. Finally,

in the third experiment, we showcase how the VKC perspective empowers more complex

task planning.

3.4.1 Simplifying Task Domain

Since the VKC perspective treats the base, the arm, and the object to be manipulated as a

whole, designing the planning domain becomes much simpler. In this experiment, we focus

on an object-arrangement task, where the robot is tasked to re-arrange m objects on m ` 1

tables into the desired order while satisfying the constraint that each table can only support

one object. Fig. 3.5a shows a typical example of this task’s initial and goal configuration

with m “ 8 objects, randomly sampled in each experimental trial.

Fig. 3.5b shows a PDDL domain designed by the actions mentioned in Section 3.3.1, which

requires less predicates and provides more abstract actions compared with those designed

by conventional domain definition shown in Fig. 3.5c. Specifically, the conventional method

would require (i) more predicates to describe the mobile base’s states and thus more complex

preconditions for actions, (ii) one more action to control the mobile base, and (iii) more

parameters for other actions. To solve for a task plan, we adopt the Iterated Width Search

(IWS) algorithm [LG14]; it is a width-limited version of the Breadth First Search (BFS)

that repeatedly runs with increasing width limits until a feasible task plan is found. If no

feasible task plan could be found within the maximum width limit of the IWS, a traditional
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BFS with no width limit will be deployed to search for a solution.
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Figure 3.5: VKC-based domain specification improves the task planning efficacy.

(a) An example setup of re-arranging 8 objects on 9 tables; one table can only support one

object. (b) The VKC-based PDDL specification has less variables and more abstract actions

than (c) a conventional PDDL specification. (d) The VKC-based domain specification allows

a solver to search for a feasible plan for tasks of re-arranging 2 to 16 objects with significantly

less time and generated nodes in search (i.e., less memory).
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In experiments, we run 50 trials for each setup; see the result summary in Fig. 3.5d. As

the task complexity increases, the average planning time and the number of nodes generated

in search (i.e., memory required) increase relatively slowly for the VKC-based task plan. In

comparison, the baseline using conventional methods increases much more rapidly.

This result is evident. As we can see in Fig. 3.5d, planning in the non-VKC version of the

task domain requires exploring more nodes at each depth level to find a plausible pose for

the mobile base. It also requires more actions to accomplish the task, which further yields

a deeper depth during the search. Suppose there are N nodes on average to be generated

at each depth level of the search algorithm, and a feasible solution is found at depth d, the

total number of nodes being generated is Nd. In theory, when the search algorithm performs

in the VKC domain, the total number of generated node is pc1Nqc2d, where c1 ď 1, c2 ď 1.

In the task with 16 objects, our experiment empirically finds c1 “ 0.75 and c2 “ 0.22 on

average over 50 trails.

Taken together, the results in the first experiment demonstrated that VKC-based task

planning requires much fewer explorations in both width and depth during the search algo-

rithm, therefore achieving higher efficacy with less memory.

3.4.2 Improving Mobile Manipulation

In general, actions that are more abstract and with fewer variables in the planning domain

specification would lead to more efficient task planning, but simultaneously could result in

less success rate in generating feasible plans at the motion level. In this experiment, we

validate that the VKC-based task planning provides efficacy at the task level and maintains

a high success rate at the motion level. Based on the generated task plans (i.e., action

sequences) and the encoded information (as described in Section 3.3.2), we apply a trajectory

optimization-based motion planner and a sampling-based motion planner and evaluate how

well they can produce feasible motion trajectories for the given task.
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(a) The drawer opening task.
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(b) Success rates and the corresponding base and arm movements.

Figure 3.6: Instantiating the task plans to motions in (a) a drawer opening task. The

domains, one with VKC and the other without, are specified similar to Figs. 3.5b and 3.5c.

The generated task plans are processed by an optimization-based and a sampling-based

motion planner. (b) Task success rates, and base and arm costs. Failure cases for sampling

include time-out for both sub-tasks: 5 mins for reach, 50 seconds for open

Specifically, we consider the task of pulling opening a drawer; see Fig. 3.6a. The task

plans: (i) place-vkc (drawer, s1d, vkc), (ii) move (q0b, q
1
b) + place (drawer, s1d, arm, q

1
b), are

produced by two PDDLs specified with and without VKC, respectively. We compare the

success rate of executing the trajectories planned by trajectory optimization and sampling

motion planning methods described in Sections 3.3.3 and 3.3.4, as well as the base and arm
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cost measured by the distances they travel; see Fig. 3.6b.

Both trajectory optimization-based and sampling-based motion planners can produce

feasible trajectories for the given task with high success rates. Of note, the symbolic actions

that are more abstract based on VKC further guide motion planners to produce more efficient

trajectories measured by the shorter arm traveling distance. The trajectory optimization-

based motion planner can produce feasible trajectories for the given task with high success

rates and produce more efficient trajectories measured by the shorter base and arm traveling

distance. Typically, sampling-based motion planners would struggle in incorporating kine-

matic constraints, making it less suitable for the VKC setup. But it is still more successful

in producing feasible trajectories under the VKC specification compared with that without

VKC. The most significant drawback of the sampling-based motion planner we discover is

that the produced trajectories are jerking, resulting in larger arm and base costs.

The trajectory optimization-based motion planner can produce feasible trajectories for

the given task with high success rates; the produced trajectories are more efficient in terms

of shorter base and arm traveling distances. Typically, sampling-based motion planners

would struggle in incorporating kinematic and safety constraints due to naturally uncon-

strained configuration spaces, which need extra effort to accommodate extra kinematic con-

straints [KMK19], making it less suitable for such tasks. However, it is still more successful

in producing feasible trajectories under the VKC specification compared with the setting

without VKC. The most significant drawbacks of sampling-based motion planners are the

high execution costs and violation of safety limits.

3.4.3 Solving Tasks with Multiple Steps

Complex multi-step mobile manipulation tasks with long action sequences can also be easily

accomplished using the action set introduced by the VKC-based task planner described in

Section 3.3.1. These actions contain high-level task semantics that could be adapted to

various tasks; e.g ., attaching to the doorknob could be expressed by a pick-vkc action, and
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(a)

(b)

with VKC

without VKC

(c)

Figure 3.7: Experimental results of planning via VKC. (a) The VKC-based task plan-

ner can easily scale up to a complex multi-step task, which can be (b) succinctly expressed

by merely two actions defined based on the VKCs. (c) More abstract action definitions

introduced by VKC instantiate better at the motion level, possessing an excellent foot-arm

coordination in each step of the task. Without VKC, to ensure successful planning for tasks

that require foot-arm coordination, several actions must be executed together to complete

certain steps in the task.

open the door to a certain angle could be expressed by a place-vkc.

Fig. 3.7a qualitatively shows a complex multi-step task planning using the VKC-based

domain specification and instantiating that to motions. For a more fair comparison, in

addition to the initial and goal state of the environment, both the VKC and non-VKC

methods are provided with the (identical) grasping poses for all movable objects, but not

the corresponding robot state. In this task, a mobile manipulator needs to (i) grasp the

stick, (ii) fetch the cube under the table using the stick, which is otherwise challenging to

reach, (iii) move the cube outside, (iv) place the stick down, (v) grasp the cabinet and open

it, (vi) place the cube inside the cabinet, and (vii) close the cabinet door. At each trial, the

mobile manipulator is randomly placed in the environment.

Fig. 3.7b illustrates that the above complex multi-step task can be accomplished by us-
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Table 3.2: Actions and predicates in the defined planning domains. Without VKC,

more actions must be specified, and extra predicates are required for generating a feasible

task plan.

Setup Group Notation Description

V
K
C

Actions
pick-vkcpo, s, vq

see Section 3.3.1
place-vkcpo, s, vq

Predicates

Graspablepo, vq Check if robot v is able to grasp object o v

RigidObjpoq Check if object o is rigid object

ArtiObjpoq Check if object o is articulated object

ToolObjpoq Check if object o could be used as a tool

Occupiedpsq Check if a position s being occupied

Carriedpoq Check if an object o is carried by robot

ContainSpacepo, sq Check if a position s being contained in the object o

N
on

-V
K
C Actions

moveps1, s2q Move robot from s1 to s2

pickpo, s1, s2q Pick the object o at location s1 given robot state s2

placepo, s1, s2q Place the object o at location s1 given robot state s2

openpo, s1, s2q Open the object o at location s1 given robot state s2

closepo, s1, s2q Close the object o at location s1 given robot state s2

Extra HasToolpsq Check if the robot at current state s holding a tool

Predicates AbleToPickpsq Check if the robot at state s is able to do pick action

for Non-VKC Reachablepo, sq Check if object o is reachable by mobile base at state s

ing only two abstract actions defined based on VKC, one action in each step. Without the

VKC perspective, significantly more effects must first be devoted to designing the planning

domain. Furthermore, to ensure successful planning of actions that require foot-arm coor-

dination, each step may require several actions to be executed together; see Table 3.2 for a

comparison between the two setups. Even after the additional efforts of specifying base pose

from a feasible region, its accumulated success rate at the motion level produced by the cor-
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responding actions still underperforms the VKC version, shown in Fig. 3.7c. Without VKC,

the motion planner particularly suffers at step 2 when the robot needs to fetch the cube in

a confined space, as it requires the planner to deliver proper navigation and manipulation

with excellent foot-arm coordination (i.e., coordinating move and place). In sum, this ex-

periment demonstrates that VKC-based mobile task planning for mobile manipulation tasks

is advantageous by simplifying domain specification and improving motion planning.

3.5 Discussion and Conclusion

We presented a modeling method that incorporates the kinematics of a robot’s mobile base,

arm, and the manipulated object in VKCs. From this new perspective, a mobile manipula-

tion task is regarded as a planning problem on VKCs. Particularly, the motion planning on

VKC is solved by trajectory optimization. This approach alleviates the definition of inter-

mediate goals and well coordinates base and arm movements, resulting in a higher success

rate with more efficient trajectories in various mobile manipulation tasks. On the other

hand, in task planning, more abstract action symbols become possible and fewer predi-

cates/variables/intermediate goals are required in designing the planning domain when in-

troducing the VKC. In a series of experiments, we demonstrate that incorporating VKC in

robot planning facilitating the manipulation of geometry fluent in various environment. The

VKC-based domain specification using PDDL supports more efficient task planning, works

better with existing motion planners, and scales up to more complex tasks compared with

the one without VKC. We argue the proposed VKC perspective has significant potential in

promoting mobile manipulation in real-world daily tasks.
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CHAPTER 4

Understanding the Topology Fluent via an Attributed

Grammar

Modeling and understanding objects is the crux of computer vision and robot manipulation.

Prior methods primarily focus on treating objects as a whole, which have made tremendous

success recently by discriminating object shape (e.g ., recognition) or tracking object pose

(e.g ., manipulation). However, objects can sometimes break into pieces (e.g ., object frag-

mentation), violating the assumption of “object-as-a-whole”. This common phenomenon has

been largely neglected in recent literature.

In this dissertation, we model the event of topology fluent changes (e.g ., fragmentation)

using an attributed stochastic grammar model. A probabilistic framework is devised to

induce such a grammar from observation; this learned grammar and its probability model

serve as a new indication of object status during topology fluent changes, and are useful

for downstream tasks. In the experiments, we demonstrate the efficacy of the proposed

method by reasoning about the fragmentation retrospectively and by planning for object

fragmentation tasks in unseen setups.

4.1 Introduction

Modeling and understanding object is one of the most fundamental problems in computer

vision and robot manipulation. In literature, object modeling can be categorized into two

primary schools of thoughts: (i) appearance- or geometry-based approaches, including re-
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<latexit sha1_base64="1cGqSi8IFJCz0vhnLdJXizc4SHY=">AAAB83icbVDLSsNAFL2pr1pfVZduhhZBUErSLnRZdOOygn1AE8JkOmmHTiZhZiKE0L8QNy4UcevPuOvfOH0stPXAhcM593LvPUHCmdK2PbUKG5tb2zvF3dLe/sHhUfn4pKPiVBLaJjGPZS/AinImaFszzWkvkRRHAafdYHw387tPVCoWi0edJdSL8FCwkBGsjeS6OfHrV4j4DXfil6t2zZ4DrRNnSarNinv5PG1mLb/87Q5ikkZUaMKxUn3HTrSXY6kZ4XRSclNFE0zGeEj7hgocUeXl85sn6NwoAxTG0pTQaK7+nshxpFQWBaYzwnqkVr2Z+J/XT3V44+VMJKmmgiwWhSlHOkazANCASUo0zwzBRDJzKyIjLDHRJqaSCcFZfXmddOo1p1GrP5g0bmGBIpxBBS7AgWtowj20oA0EEniBN3i3UuvV+rA+F60FazlzCn9gff0A362T5g==</latexit>

{c4, c3, c3}
<latexit sha1_base64="wpLxmaVbzWuQ4ZUHzXvItekcDxE=">AAAB+nicbVDLSsNAFJ3UV62vVJduhhZBUErSCrosunFZwT6gCWEynbRDJ5MwM1FC7F+4deNCEbd+ibv+jdO0C209cC+Hc+5l7hw/ZlQqy5oahbX1jc2t4nZpZ3dv/8AsH3ZklAhM2jhikej5SBJGOWkrqhjpxYKg0Gek649vZn73gQhJI36v0pi4IRpyGlCMlJY8s+xk2Ls4h9hr5M2ZeGbVqlk54CqxF6TarDhnz9Nm2vLMb2cQ4SQkXGGGpOzbVqzcDAlFMSOTkpNIEiM8RkPS15SjkEg3y0+fwBOtDGAQCV1cwVz9vZGhUMo09PVkiNRILnsz8T+vn6jgys0ojxNFOJ4/FCQMqgjOcoADKghWLNUEYUH1rRCPkEBY6bRKOgR7+curpFOv2Y1a/U6ncQ3mKIJjUAGnwAaXoAluQQu0AQaP4AW8gXfjyXg1PozP+WjBWOwcgT8wvn4ADmmVjA==</latexit>

{c4, c5, c5, c5, c5}
<latexit sha1_base64="NAz85/DKS0gGkc6Nxa5nNhs/jxM=">AAACAHicbVDLSsNAFJ3UV62vqAsXboYWQVBKUhVdFt24rGAf0IQwmU7aoZNJmJkIIWTjN/gHblwo4tbPcNe/cfpY1NYDFw7n3Mu99/gxo1JZ1sgorKyurW8UN0tb2zu7e+b+QUtGicCkiSMWiY6PJGGUk6aiipFOLAgKfUba/vBu7LefiJA04o8qjYkboj6nAcVIackzj5wMe5fn2LuaLyf3zIpVtSaAy8SekUq97Jy9jOppwzN/nF6Ek5BwhRmSsmtbsXIzJBTFjOQlJ5EkRniI+qSrKUchkW42eSCHJ1rpwSASuriCE3V+IkOhlGno684QqYFc9Mbif143UcGNm1EeJ4pwPF0UJAyqCI7TgD0qCFYs1QRhQfWtEA+QQFjpzEo6BHvx5WXSqlXti2rtQadxC6YogmNQBqfABtegDu5BAzQBBjl4Be/gw3g23oxP42vaWjBmM4fgD4zvXyrcl9I=</latexit>

{ci}
<latexit sha1_base64="5gCXhPsn56M3iA83tFXiRnE3Ns4=">AAAB73icbVDLSgNBEOz1GeMr6tHLkCAIQtiNBz0GvXiMYB6QXcLsZDYZMjO7zswKy5KfEMGDIl79HW/5GyePgyYWNBRV3XR3hQln2rjuxFlb39jc2i7sFHf39g8OS0fHLR2nitAmiXmsOiHWlDNJm4YZTjuJoliEnLbD0e3Ubz9RpVksH0yW0EDggWQRI9hYqePnpMeQP+6VKm7VnQGtEm9BKvWyf/EyqWeNXunb78ckFVQawrHWXc9NTJBjZRjhdFz0U00TTEZ4QLuWSiyoDvLZvWN0ZpU+imJlSxo0U39P5FhonYnQdgpshnrZm4r/ed3URNdBzmSSGirJfFGUcmRiNH0e9ZmixPDMEkwUs7ciMsQKE2MjKtoQvOWXV0mrVvUuq7V7m8YNzFGAUyjDOXhwBXW4gwY0gQCHZ3iDd+fReXU+nM9565qzmDmBP3C+fgDeFZLU</latexit>

topology fluentci
<latexit sha1_base64="4PBgaqhV9Lsb1APPYgTbLoZcYlU=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFM0DwgLmF2cpMMmZ1dZmaFsOQTbCwUsbX1L/wCOxu/xcmj0MQDFw7n3Mu99wSx4Nq47peTWVldW9/Ibua2tnd29/L7Bw0dJYphnUUiUq2AahRcYt1wI7AVK6RhILAZDK8mfvMeleaRvDWjGP2Q9iXvcUaNlW5Yh3fyBbfoTkGWiTcnhfJR7Zu/Vz6qnfznXTdiSYjSMEG1bntubPyUKsOZwHHuLtEYUzakfWxbKmmI2k+np47JqVW6pBcpW9KQqfp7IqWh1qMwsJ0hNQO96E3E/7x2YnqXfsplnBiUbLaolwhiIjL5m3S5QmbEyBLKFLe3EjagijJj08nZELzFl5dJo1T0zoulmk2jAjNk4RhO4Aw8uIAyXEMV6sCgDw/wBM+OcB6dF+d11ppx5jOH8AfO2w8giJFk</latexit>

frag. type production

(b) inferring ancestor

ob
se

rv
at

io
n

c1
<latexit sha1_base64="0xdR3zViMte8/fl10NteNOe8ioY=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFM0DwgLmF2cpMMmZ1dZmaFsOQTbCwUsbX1L/wCOxu/xcmj0MQDFw7n3Mu99wSx4Nq47peTWVldW9/Ibua2tnd29/L7Bw0dJYphnUUiUq2AahRcYt1wI7AVK6RhILAZDK8mfvMeleaRvDWjGP2Q9iXvcUaNlW5Yx+vkC27RnYIsE29OCuWj2jd/r3xUO/nPu27EkhClYYJq3fbc2PgpVYYzgePcXaIxpmxI+9i2VNIQtZ9OTx2TU6t0SS9StqQhU/X3REpDrUdhYDtDagZ60ZuI/3ntxPQu/ZTLODEo2WxRLxHERGTyN+lyhcyIkSWUKW5vJWxAFWXGppOzIXiLLy+TRqnonRdLNZtGBWbIwjGcwBl4cAFluIYq1IFBHx7gCZ4d4Tw6L87rrDXjzGcO4Q+ctx/LmZEs</latexit>

c3
<latexit sha1_base64="w1t9Hovc26BDaWe+m/WP5toe6UA=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuUmgZYmOZoHlAsoTZyWwyZHZmmZkVwpJPsLFQxNbWv/AL7Gz8FiePQhMPXDiccy/33hPEnGnjul9OZm19Y3Mru53b2d3bP8gfHjW1TBShDSK5VO0Aa8qZoA3DDKftWFEcBZy2gtH11G/dU6WZFHdmHFM/wgPBQkawsdIt6ZV7+YJbdGdAq8RbkELlpP7N3qsftV7+s9uXJImoMIRjrTueGxs/xcowwukk1000jTEZ4QHtWCpwRLWfzk6doHOr9FEolS1h0Ez9PZHiSOtxFNjOCJuhXvam4n9eJzHhlZ8yESeGCjJfFCYcGYmmf6M+U5QYPrYEE8XsrYgMscLE2HRyNgRv+eVV0iwVvXKxVLdpVGGOLJzCGVyAB5dQgRuoQQMIDOABnuDZ4c6j8+K8zlszzmLmGP7AefsBzqGRLg==</latexit>

c2
<latexit sha1_base64="igEePN2139RbXxCqnUIZaI5XJDY=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFM0DwgLmF2cpMMmZ1dZmaFsOQTbCwUsbX1L/wCOxu/xcmj0MQDFw7n3Mu99wSx4Nq47peTWVldW9/Ibua2tnd29/L7Bw0dJYphnUUiUq2AahRcYt1wI7AVK6RhILAZDK8mfvMeleaRvDWjGP2Q9iXvcUaNlW5Yp9TJF9yiOwVZJt6cFMpHtW/+XvmodvKfd92IJSFKwwTVuu25sfFTqgxnAse5u0RjTNmQ9rFtqaQhaj+dnjomp1bpkl6kbElDpurviZSGWo/CwHaG1Az0ojcR//Paield+imXcWJQstmiXiKIicjkb9LlCpkRI0soU9zeStiAKsqMTSdnQ/AWX14mjVLROy+WajaNCsyQhWM4gTPw4ALKcA1VqAODPjzAEzw7wnl0XpzXWWvGmc8cwh84bz/NHZEt</latexit>

ancestors

c1 ! c2c3
<latexit sha1_base64="KcR8oGjjzzgOfoWkZR0EQgX4aIQ="></latexit>

c6
<latexit sha1_base64="QEanEmeaBZyCeq8oAQFYZqY6GOo=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuBLUMsbFM0DwgWcLsZDYZMjuzzMwKYckn2FgoYmvrX/gFdjZ+i5NHoYkHLhzOuZd77wlizrRx3S8ns7K6tr6R3cxtbe/s7uX3DxpaJorQOpFcqlaANeVM0LphhtNWrCiOAk6bwfB64jfvqdJMijsziqkf4b5gISPYWOmWdC+6+YJbdKdAy8Sbk0L5qPbN3isf1W7+s9OTJImoMIRjrdueGxs/xcowwuk410k0jTEZ4j5tWypwRLWfTk8do1Or9FAolS1h0FT9PZHiSOtRFNjOCJuBXvQm4n9eOzHhlZ8yESeGCjJbFCYcGYkmf6MeU5QYPrIEE8XsrYgMsMLE2HRyNgRv8eVl0igVvfNiqWbTqMAMWTiGEzgDDy6hDDdQhToQ6MMDPMGzw51H58V5nbVmnPnMIfyB8/YD0y2RMQ==</latexit>

c7
<latexit sha1_base64="hj1Yc229K8WELFgAaHAKP/di8ZY=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLGIZYmOZoHlAsoTZyWwyZHZmmZkVwpJPsLFQxNbWv/AL7Gz8FiePQhMPXDiccy/33hPEnGnjul9OZm19Y3Mru53b2d3bP8gfHjW1TBShDSK5VO0Aa8qZoA3DDKftWFEcBZy2gtH11G/dU6WZFHdmHFM/wgPBQkawsdIt6ZV7+YJbdGdAq8RbkELlpP7N3qsftV7+s9uXJImoMIRjrTueGxs/xcowwukk1000jTEZ4QHtWCpwRLWfzk6doHOr9FEolS1h0Ez9PZHiSOtxFNjOCJuhXvam4n9eJzHhlZ8yESeGCjJfFCYcGYmmf6M+U5QYPrYEE8XsrYgMscLE2HRyNgRv+eVV0iwVvctiqW7TqMIcWTiFM7gAD8pQgRuoQQMIDOABnuDZ4c6j8+K8zlszzmLmGP7AefsB1LGRMg==</latexit>

c6
<latexit sha1_base64="QEanEmeaBZyCeq8oAQFYZqY6GOo=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuBLUMsbFM0DwgWcLsZDYZMjuzzMwKYckn2FgoYmvrX/gFdjZ+i5NHoYkHLhzOuZd77wlizrRx3S8ns7K6tr6R3cxtbe/s7uX3DxpaJorQOpFcqlaANeVM0LphhtNWrCiOAk6bwfB64jfvqdJMijsziqkf4b5gISPYWOmWdC+6+YJbdKdAy8Sbk0L5qPbN3isf1W7+s9OTJImoMIRjrdueGxs/xcowwuk410k0jTEZ4j5tWypwRLWfTk8do1Or9FAolS1h0FT9PZHiSOtRFNjOCJuBXvQm4n9eOzHhlZ8yESeGCjJbFCYcGYkmf6MeU5QYPrIEE8XsrYgMsMLE2HRyNgRv8eVl0igVvfNiqWbTqMAMWTiGEzgDDy6hDDdQhToQ6MMDPMGzw51H58V5nbVmnPnMIfyB8/YD0y2RMQ==</latexit>

c7
<latexit sha1_base64="hj1Yc229K8WELFgAaHAKP/di8ZY=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLGIZYmOZoHlAsoTZyWwyZHZmmZkVwpJPsLFQxNbWv/AL7Gz8FiePQhMPXDiccy/33hPEnGnjul9OZm19Y3Mru53b2d3bP8gfHjW1TBShDSK5VO0Aa8qZoA3DDKftWFEcBZy2gtH11G/dU6WZFHdmHFM/wgPBQkawsdIt6ZV7+YJbdGdAq8RbkELlpP7N3qsftV7+s9uXJImoMIRjrTueGxs/xcowwukk1000jTEZ4QHtWCpwRLWfzk6doHOr9FEolS1h0Ez9PZHiSOtxFNjOCJuhXvam4n9eJzHhlZ8yESeGCjJfFCYcGYmmf6M+U5QYPrYEE8XsrYgMscLE2HRyNgRv+eVV0iwVvctiqW7TqMIcWTiFM7gAD8pQgRuoQQMIDOABnuDZ4c6j8+K8zlszzmLmGP7AefsB1LGRMg==</latexit>

c3 ! c6c6
<latexit sha1_base64="dxqz1Mev7lTgmHfzZPGWFCOPB3w="></latexit>

c2 ! c7c7
<latexit sha1_base64="BXYZ+suohv8lVPDu1BWY9d1ElSY="></latexit>

(c) planning action
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c0
<latexit sha1_base64="3Kj5lkGLsNwXnACaEpKa/migLWw=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFM0DwgLmF2cpMMmZ1dZmaFsOQTbCwUsbX1L/wCOxu/xcmj0MQDFw7n3Mu99wSx4Nq47peTWVldW9/Ibua2tnd29/L7Bw0dJYphnUUiUq2AahRcYt1wI7AVK6RhILAZDK8mfvMeleaRvDWjGP2Q9iXvcUaNlW5Yx+3kC27RnYIsE29OCuWj2jd/r3xUO/nPu27EkhClYYJq3fbc2PgpVYYzgePcXaIxpmxI+9i2VNIQtZ9OTx2TU6t0SS9StqQhU/X3REpDrUdhYDtDagZ60ZuI/3ntxPQu/ZTLODEo2WxRLxHERGTyN+lyhcyIkSWUKW5vJWxAFWXGppOzIXiLLy+TRqnonRdLNZtGBWbIwjGcwBl4cAFluIYq1IFBHx7gCZ4d4Tw6L87rrDXjzGcO4Q+ctx/KFZEr</latexit>

c8
<latexit sha1_base64="sDTzWE4rlebIYn9OYHXCakJKa8s=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLEwZYmOZoHlAsoTZyWwyZHZmmZkVwpJPsLFQxNbWv/AL7Gz8FiePQhMPXDiccy/33hPEnGnjul9OZm19Y3Mru53b2d3bP8gfHjW1TBShDSK5VO0Aa8qZoA3DDKftWFEcBZy2gtH11G/dU6WZFHdmHFM/wgPBQkawsdIt6ZV7+YJbdGdAq8RbkELlpP7N3qsftV7+s9uXJImoMIRjrTueGxs/xcowwukk1000jTEZ4QHtWCpwRLWfzk6doHOr9FEolS1h0Ez9PZHiSOtxFNjOCJuhXvam4n9eJzFh2U+ZiBNDBZkvChOOjETTv1GfKUoMH1uCiWL2VkSGWGFibDo5G4K3/PIqaZaK3mWxVLdpVGGOLJzCGVyAB1dQgRuoQQMIDOABnuDZ4c6j8+K8zlszzmLmGP7AefsB1jWRMw==</latexit>

c8
<latexit sha1_base64="sDTzWE4rlebIYn9OYHXCakJKa8s=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLEwZYmOZoHlAsoTZyWwyZHZmmZkVwpJPsLFQxNbWv/AL7Gz8FiePQhMPXDiccy/33hPEnGnjul9OZm19Y3Mru53b2d3bP8gfHjW1TBShDSK5VO0Aa8qZoA3DDKftWFEcBZy2gtH11G/dU6WZFHdmHFM/wgPBQkawsdIt6ZV7+YJbdGdAq8RbkELlpP7N3qsftV7+s9uXJImoMIRjrTueGxs/xcowwukk1000jTEZ4QHtWCpwRLWfzk6doHOr9FEolS1h0Ez9PZHiSOtxFNjOCJuhXvam4n9eJzFh2U+ZiBNDBZkvChOOjETTv1GfKUoMH1uCiWL2VkSGWGFibDo5G4K3/PIqaZaK3mWxVLdpVGGOLJzCGVyAB1dQgRuoQQMIDOABnuDZ4c6j8+K8zlszzmLmGP7AefsB1jWRMw==</latexit>c0 ! c8c8

<latexit sha1_base64="nkSFc18m3V5Q1uRWCn+tOfs2DlA="></latexit>

a1
<latexit sha1_base64="E0HLsyAoADZ0VMRsm5Q+j3pWAMc=">AAAB6nicdVDLSgNBEOz1GeMrKnjxMhgET8vuJiTxFuLFY4LmAckSZiezyZDZBzOzQgj5BC8eFPHq1b/wC7x58VucTRRUtKChqOqmu8uLOZPKst6MpeWV1bX1zEZ2c2t7Zze3t9+SUSIIbZKIR6LjYUk5C2lTMcVpJxYUBx6nbW98nvrtayoki8IrNYmpG+BhyHxGsNLSJe7b/VzeMs8qJadYQpZpWWXbsVPilIuFIrK1kiJfPWy8s+faS72fe+0NIpIENFSEYym7thUrd4qFYoTTWbaXSBpjMsZD2tU0xAGV7nR+6gydaGWA/EjoChWaq98npjiQchJ4ujPAaiR/e6n4l9dNlF9xpyyME0VDsljkJxypCKV/owETlCg+0QQTwfStiIywwETpdLI6hK9P0f+k5Zh2wXQaOo0aLJCBIziGU7ChDFW4gDo0gcAQbuAO7g1u3BoPxuOidcn4nDmAHzCePgAoq5Fs</latexit>

action plan

c8 ! c3c3
<latexit sha1_base64="hNqzH9d0mr8N09vszOGcPvN5we4="></latexit>

a2
<latexit sha1_base64="E6BfcF8do2bm9OTCZ4R/HIqzxms=">AAAB6nicdVDLSgNBEOz1GeMrKnjxMhgET8vuJiTxFuLFY4LmAckSZiezyZDZBzOzQgj5BC8eFPHq1b/wC7x58VucTRRUtKChqOqmu8uLOZPKst6MpeWV1bX1zEZ2c2t7Zze3t9+SUSIIbZKIR6LjYUk5C2lTMcVpJxYUBx6nbW98nvrtayoki8IrNYmpG+BhyHxGsNLSJe47/VzeMs8qJadYQpZpWWXbsVPilIuFIrK1kiJfPWy8s+faS72fe+0NIpIENFSEYym7thUrd4qFYoTTWbaXSBpjMsZD2tU0xAGV7nR+6gydaGWA/EjoChWaq98npjiQchJ4ujPAaiR/e6n4l9dNlF9xpyyME0VDsljkJxypCKV/owETlCg+0QQTwfStiIywwETpdLI6hK9P0f+k5Zh2wXQaOo0aLJCBIziGU7ChDFW4gDo0gcAQbuAO7g1u3BoPxuOidcn4nDmAHzCePgAqL5Ft</latexit>

c6
<latexit sha1_base64="QEanEmeaBZyCeq8oAQFYZqY6GOo=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuBLUMsbFM0DwgWcLsZDYZMjuzzMwKYckn2FgoYmvrX/gFdjZ+i5NHoYkHLhzOuZd77wlizrRx3S8ns7K6tr6R3cxtbe/s7uX3DxpaJorQOpFcqlaANeVM0LphhtNWrCiOAk6bwfB64jfvqdJMijsziqkf4b5gISPYWOmWdC+6+YJbdKdAy8Sbk0L5qPbN3isf1W7+s9OTJImoMIRjrdueGxs/xcowwuk410k0jTEZ4j5tWypwRLWfTk8do1Or9FAolS1h0FT9PZHiSOtRFNjOCJuBXvQm4n9eOzHhlZ8yESeGCjJbFCYcGYkmf6MeU5QYPrIEE8XsrYgMsMLE2HRyNgRv8eVl0igVvfNiqWbTqMAMWTiGEzgDDy6hDDdQhToQ6MMDPMGzw51H58V5nbVmnPnMIfyB8/YD0y2RMQ==</latexit>

c6
<latexit sha1_base64="QEanEmeaBZyCeq8oAQFYZqY6GOo=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuBLUMsbFM0DwgWcLsZDYZMjuzzMwKYckn2FgoYmvrX/gFdjZ+i5NHoYkHLhzOuZd77wlizrRx3S8ns7K6tr6R3cxtbe/s7uX3DxpaJorQOpFcqlaANeVM0LphhtNWrCiOAk6bwfB64jfvqdJMijsziqkf4b5gISPYWOmWdC+6+YJbdKdAy8Sbk0L5qPbN3isf1W7+s9OTJImoMIRjrdueGxs/xcowwuk410k0jTEZ4j5tWypwRLWfTk8do1Or9FAolS1h0FT9PZHiSOtRFNjOCJuBXvQm4n9eOzHhlZ8yESeGCjJbFCYcGYkmf6MeU5QYPrIEE8XsrYgMsMLE2HRyNgRv8eVl0igVvfNiqWbTqMAMWTiGEzgDDy6hDDdQhToQ6MMDPMGzw51H58V5nbVmnPnMIfyB8/YD0y2RMQ==</latexit>

c6
<latexit sha1_base64="QEanEmeaBZyCeq8oAQFYZqY6GOo=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuBLUMsbFM0DwgWcLsZDYZMjuzzMwKYckn2FgoYmvrX/gFdjZ+i5NHoYkHLhzOuZd77wlizrRx3S8ns7K6tr6R3cxtbe/s7uX3DxpaJorQOpFcqlaANeVM0LphhtNWrCiOAk6bwfB64jfvqdJMijsziqkf4b5gISPYWOmWdC+6+YJbdKdAy8Sbk0L5qPbN3isf1W7+s9OTJImoMIRjrdueGxs/xcowwuk410k0jTEZ4j5tWypwRLWfTk8do1Or9FAolS1h0FT9PZHiSOtRFNjOCJuBXvQm4n9eOzHhlZ8yESeGCjJbFCYcGYkmf6MeU5QYPrIEE8XsrYgMsMLE2HRyNgRv8eVl0igVvfNiqWbTqMAMWTiGEzgDDy6hDDdQhToQ6MMDPMGzw51H58V5nbVmnPnMIfyB8/YD0y2RMQ==</latexit>

c6
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Figure 4.1: Model object fragmentation by a stochastic grammar. (a) The proposed

grammar-based model represents not only the abstracted change of object status (fluent) by

variables but also the part-whole relations and one-to-many transitions (its fluent space) by

production rules, resulting in a compact and flexible description of fragmentation events. (b-

c) Two tasks used to evaluate the grammar representation: inferring ancestors of fragmented

objects and planning for fragmentation sequences, respectively.

construction [MSK04], object recognition and detection [HZR16], and (ii) task-oriented ap-

proaches, including object generalization [IH92, ZZZ15, LWZ17, ZJW22], robot manipula-

tion [LZZ19], and grasping [LLJ21]. Despite rapid progress, the primary focus is restricted

to rigid objects, represented by point clouds, meshes, voxel grids, or graphical models.

Recently, two emerging directions greatly expand an agent’s manipulation capabilities: (i)

deformable object modeling, solved by physics-based simulation [TPB87, HLS19, LHL22]

or tactile sensing [SWD21], and (ii) articulated object modeling, including human pose

estimation [FGM10, CSW17], kinematics estimation [HZJ21, JLC21], and part-based recog-

nition and tracking [MZC19, WWZ21, HWB21].
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However, either rigid, deformable, or articulated object modeling treats an object as a

whole; modeling objects with topology changes (i.e., object fragmentation) is still largely

an unexplored area with its unique challenges:

1. A fragmenting object involves significant changes in configuration, including instance

(fragment) number, shape, and even appearance. Hence, the change of object status,

fluent [New36], is challenging to define. The corresponding fluent space includes both

a large number of fluent values and complex one-to-many fluent transitions.

2. Our perception of object fragments is altered and transited when the fragments appear

individually, collectively, or temporally, similarly to the entropy principle in natural im-

ages [WGZ08].

To overcome these challenges, a desired object representation should be reconfigurable

and extendable to account for the drastic fluent changes when an object is fragmented.

Further, the representation should properly discriminate fragments under different contexts,

from strictly separating every fragment from each other (as texton [Jul84, ZGW05]) to

loosely tracking the collection of fragments (as texture [Jul81, ZWM98]), enabling efficient

computations within the large fluent space.

In this dissertation, we represent the object fluent during fragmentation and its fluent

space using a stochastic grammar. Successful in modeling scenes [ZM07, HQZ18, QZH18]

and dynamic events [EGL19, QJH20, ZZZ15], a grammar consists of a set of production rules

that generates terminal or non-terminal variables from existing non-terminal ones, akin to an

object breaking into pieces—the original object generates newly appeared fragment instances.

Specifically, the grammar presents all possible configurations an object may finally be as

fragmentation repeats; the production rules of the grammar indicate all valid one-to-many

transitions; and each parse tree of the grammar reflects a specific fragmentation process,

whose terminal nodes correspond to all the fragments in the current configuration.

Fig. 4.1a gives an example of cutting a carrot, where the carrot is fragmented multiple

times due to the cutting actions. The recursive and compositional nature of grammar allows
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us to compactly and flexibly model its fluent and fluent spaces. In addition to encoding

fragments into feature embeddings based on their geometric shape, we further cluster frag-

ment features to obtain a much smaller set of variables and production rules. Crucially,

the cluster number is determined such that the resulting grammar seeks to reduce its com-

plexity by having less types of variables while preserving the necessary discriminability of

fragments. This top-down view provides a new quantification of fragmented objects—we

term it as fragment ensemble, wherein two groups of fragments are considered the same

when their statistics are matched, akin to the Julesz Ensemble [Jul62] that defines textures.

In the experiments, we demonstrate the efficacy of the proposed grammar-based rep-

resentation for object fragmentation on a perception task and an action task: (i) Reason

about the fragmentation event from fragments in retrospect; see Fig. 4.1b. (ii) Plan efficient

fragmentation sequence to reach goal configurations at the fragment ensemble level for far-

transfer cases; see Fig. 4.1c. By providing a means to model fluent and the transition within

the fluent space, our representation not only provides a new view of object modeling beyond

object-as-a-whole but also enables a new capability of transforming objects with significant

topology changes.

4.2 Grammar Representation

Problem definition of object fragmentation An object fragmentation event ro : Ωo Ñ

Ωo can be regarded as transforming a set of object fragments Ipre P Ωo into another set

of fragments Ipost P Ωo, where I “ toiu represents a configuration of objects (fragments),

1 ď |Ipre| ď |Ipost|, and Ωo “ tIu is the configuration space. An oi represents an object or

fragment by its shape (e.g ., point cloud), pose, etc.

Since the configuration space Ωo is extremely large and complex as every fragment could

have different shape, we instead regard some fragments oi P I as the same type cj P C via a

mapping f : O Ñ C, where fpoiq Ñ cj, and S “ tcju defines an object fluent (of the initial
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whole object or the collection of object fragments). As such, we obtain a simpler fluent space

Ωs “ tSu that depicts a fragmentation rs : Ωs Ñ Ωs with a better abstraction.

Representing fragmentation by grammar We use an attributed stochastic gram-

mar [PNZ17], wherein the terminal variables with their attributes represent the fragments,

and the production rules capture the valid fragmentation. Formally, an attributed stochastic

grammar is defined by a 5-tuple G “ xVNT , VT , vS, R,Py, where vNT P VNT is the non-terminal

variable that denotes a fragment’s type c P C, vT P VT is the terminal variable that denotes

a fragment type c P C with pose q P SEp3q and shape feature z as its attributes, vS is the

start symbol, P is the probability of the production rules defined over the grammar, and

ri P R is the production rule ri : VNT Ñ pVNT YVT q˚, where p¨q˚ is the Kleene star operation,

which enables a production rule to describe an arbitrary fragmentation within the domain

of VNT Y VT . A fluent S is defined by terminals generated from a parse tree pt of G, and
the fluent space is define by Ωs “ LpGq, where LpGq represents the set of all possible strings

generated by G. Intuitively, a parse tree pt of G represents a plausible fragmentation se-

quence: the collection of terminals corresponds to current fragments, and the non-terminals

indicate the intermediate fragments in the past that subsequently fragment into the current

configuration due to the sequence of applied production rules.

4.3 Grammar Learning

We propose to learn stochastic grammar from object fragmentation events generated by

human demonstrations.

Corpus generation Given a set of fragmentation events where object and fragment shapes

are represented by point clouds, we train a point cloud encoder following IM-NET [CZ19] to

extract shape feature z for each fragment oi P I. A corpus Dz “
␣

zprei Ñ tzposti,j u
(

is subse-

quently obtained by recording the fragment features before and after each fragmentation.

78



Inducing a grammar directly from Dz would lead to an overly complex grammar by

treating most fragments as unique instances, resulting in poor generalizability. Rather, we

cluster all features tzu into k fragment types tcu and learn a grammar from this new corpus:

Dk
c “

␣

fpzprei q Ñ tfpzposti,j qu
ˇ

ˇ zprei Ñ tzposti,j u P Dz

(

“
␣

cprei Ñ tcposti,j u
(

.
(4.1)

A critical question is how to determine the proper number of fragment types k to re-

duce the grammar complexity while maintaining a sufficient level of discriminability among

fragments. We solve it by balancing the data likelihood and model complexity in grammar

induction; see details below.

Grammar induction Given corpus Dk
c , we use maximum a posteriori (MAP) estimation

to learn an optimal grammar,

G˚
“ argmax

Gk

ppDk
c |Gk

qppGk
q

“ argmax
Gk

ź

pαiÑβiqPDk
c

ppαi Ñ βi|Gk
q

loooooooooooooomoooooooooooooon

data likelihood

¨ eγ|Gk|
loomoon

model prior

, (4.2)

where αi Ñ βi is the i-th production rule in Dk
c , γ a scalar coefficient, |Gk| the model size,

and ppαi Ñ βi|Gq the branching probability of the production rule αi Ñ βi defined in P.

The production rule probability is computed via maximum likelihood estimation and aligns

with the frequency of each alternative choice [ZM07]:

ppα Ñ βiq “ #pα Ñ βiq{

npαq
ÿ

j“1

#pα Ñ βjq, (4.3)

where #pα Ñ βq is the number of the production α Ñ β is observed in demonstrations, and

npαq the number of production rules whose left-side (the non-terminals) is α.

We first adopt an iterative non-parametric clustering approach, similar to DP-means [KJ12],

to solve for G˚ in Eq. (4.2) by alternating two steps: search for a better k, and estimate the
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best production rules. Next, we add a start variable vS to the non-terminal set VNT with

production rules vS Ñ VNT |VT |vSvS so that the grammar can derive all possible variables

from the start variable. We also fit a classifier on the clustered fragments to model the

distribution of ppc|zq, the probability of a fragment’s type c given its shape feature z, for

ease of downstream tasks.

4.4 A Probabilistic Model of Fluent Change

We define the posterior probability of a parse tree pt given a fragment configuration Ig (e.g .,

a goal or an observation) and a grammar G:

pppt | Ig,Gq ∝ ppIg
| pt,Gq

loooooomoooooon

observation
likelihood

pppt | Gq
looomooon

grammar
prior

, (4.4)

where the first term is the likelihood of observing Ig given pt, and the second term is a prior

probability of obtaining the parse tree pt given G. The overall posterior probability measures

the alignment between pt and Ig according to G.

Grammar prior The grammar prior estimates pt based on the learned production rules

and branching probability:

pppt | Gq “ ppRpt
| Gq “

ź

pαiÑβiqPRpt

ppαi Ñ βi | Gq, (4.5)

where Rpt represents the set of production rules contained in the parse tree pt, and ppαi Ñ

βi | Gq is the conditional probability of choosing the production rule αi Ñ βi given that the

non-terminal node being expanded is αi.

Observation likelihood Akin to the perception of texton [Jul84, ZGW05] and texture [Jul81,

ZWM98], human perception of object fragment also falls into a continuous spectrum. Here,

we measure the observation likelihood at the two ends of this continuum. At the individual
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level, the likelihood computes how well terminal nodes of pt match fragments in Ig via a

one-to-one mapping, which is useful for robot planning and the reconstruction of the fragmen-

tation sequence retrospectively. At the ensemble level, the likelihood purses the statistical

difference between the distribution of fragment types in terminal nodes of pt and that of Ig,

which is useful for transferring knowledge to a similar task (e.g ., cutting a potato given the

observation of carrot fragments). Computationally, we extract shape feature z and pose q

for each fragment in Ig and obtain Ig
Z “ tziu and Ig

Q “ tqiu (i refers to the i-th fragment).

Below, we further detail the formulation of these likelihoods.

4.4.1 Observation likelihood at the individual level

To measure the observation likelihood at the individual level, each fragment in Ig is matched

with a terminal node in pt. The observation likelihood can be formulated as:

pidvpIg
| pt,Gq “ pidvpIg

Z | ptq
loooooomoooooon

individual
shape matching

pidvpIg
Q| ptq

looooomooooon

layout
grouping

. (4.6)

Individual shape matching The individual shape matching term evaluates how well the

fragment types in terminal nodes of pt (i.e., the fluent) match the features of corresponding

fragments in Ig
Z :

pidvpIg
Z | ptq “ ppIg

Z | xviT yq “ ppxziy | xciyq

“

N
ź

i“1

ppzi | ciq ∝
N
ź

i“1

ppci | ziqppziq,
(4.7)

where x¨y represents an ordered sequence, viT refers to the i-th terminal node in the parse tree,

ci the fragment type denoted by viT , zi the shape feature extracted from the corresponding

fragment, and N the number of fragments in Ig
Z . We assume the prior probability ppziq

is a normal distribution fitted on the train set. The value of ppci|ziq is obtained from the

classifier given the shape feature zi.
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Layout grouping The layout grouping term measures how likely the production rules in

the given pt assemble the layout of fragments—the relative poses between fragments:

pidvpIg
Q | ptq “ ppIg

Q | Rpt
q

“
ź

pαiÑβiqPRpt

p pβi | αi Ñ βiq

“
ź

pαiÑβiqPRpt

ź

v
βi
j Pβi

p
´

vβi

j | αi Ñ βi

¯

,

(4.8)

where Rpt represents the set of production rules contained in the parse tree pt. αi Ñ βi

is the i-th production rule in Rpt, where αi is the non-terminal node being expanded, and

βi represents the produced nodes from the rule. vβi

j is the j-th produced node in βi, and

ppvβi

j |αi Ñ βiq gives the probability of the production rule αi Ñ βi produces the node vβi

j .

Assuming that the closer the fragments, the more likely they come from the same piece,

we formulate the distribution ppvβi

j | αi Ñ βiq by an energy function:

p
´

vβi

j | αi Ñ βi

¯

“
1

Z
exp

´

´distpqαi , qβi

j q

¯

, (4.9)

where Z is the partition function, qβi

j the averaged pose of objects in descendants under the

node vβi

j , qαi the averaged poses of descendants in αi, and distp¨, ¨q the distance function that

measures the distance between two poses. In practice, we calculate the euclidean distance

between the positions of two nodes and adopt dynamic programming when computing qαi

and qβi

j to avoid redundant computations.

4.4.2 Observation likelihood at the ensemble level

Fragment ensemble Different from treating fragments as individuals akin to texton mod-

eling [ZGW05], another perspective of the observation likelihood is to consider all fragments

as an ensemble akin to texture modeling [ZWM98]. Specifically, we compute the statistical

difference of fragment types between the fluent in pt and the observed fragment ensemble.

82



cS
<latexit sha1_base64="7xB/Qrjj8nYXgIA6N3kMWNpuJpY=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFMiHlAsoTZyWwyZHZmmZkVwpJPsLFQxNbWv/AL7Gz8FiePQhMPXDiccy/33hPEnGnjul9OZm19Y3Mru53b2d3bP8gfHjW1TBShDSK5VO0Aa8qZoA3DDKftWFEcBZy2gtHN1G/dU6WZFHdmHFM/wgPBQkawsVKd9Oq9fMEtujOgVeItSKF8Uvtm75WPai//2e1LkkRUGMKx1h3PjY2fYmUY4XSS6yaaxpiM8IB2LBU4otpPZ6dO0LlV+iiUypYwaKb+nkhxpPU4CmxnhM1QL3tT8T+vk5jw2k+ZiBNDBZkvChOOjETTv1GfKUoMH1uCiWL2VkSGWGFibDo5G4K3/PIqaZaK3mWxVLNpVGCOLJzCGVyAB1dQhluoQgMIDOABnuDZ4c6j8+K8zlszzmLmGP7AefsB/yGRTg==</latexit>

cS
<latexit sha1_base64="7xB/Qrjj8nYXgIA6N3kMWNpuJpY=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFMiHlAsoTZyWwyZHZmmZkVwpJPsLFQxNbWv/AL7Gz8FiePQhMPXDiccy/33hPEnGnjul9OZm19Y3Mru53b2d3bP8gfHjW1TBShDSK5VO0Aa8qZoA3DDKftWFEcBZy2gtHN1G/dU6WZFHdmHFM/wgPBQkawsVKd9Oq9fMEtujOgVeItSKF8Uvtm75WPai//2e1LkkRUGMKx1h3PjY2fYmUY4XSS6yaaxpiM8IB2LBU4otpPZ6dO0LlV+iiUypYwaKb+nkhxpPU4CmxnhM1QL3tT8T+vk5jw2k+ZiBNDBZkvChOOjETTv1GfKUoMH1uCiWL2VkSGWGFibDo5G4K3/PIqaZaK3mWxVLNpVGCOLJzCGVyAB1dQhluoQgMIDOABnuDZ4c6j8+K8zlszzmLmGP7AefsB/yGRTg==</latexit>

cS
<latexit sha1_base64="7xB/Qrjj8nYXgIA6N3kMWNpuJpY=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFMiHlAsoTZyWwyZHZmmZkVwpJPsLFQxNbWv/AL7Gz8FiePQhMPXDiccy/33hPEnGnjul9OZm19Y3Mru53b2d3bP8gfHjW1TBShDSK5VO0Aa8qZoA3DDKftWFEcBZy2gtHN1G/dU6WZFHdmHFM/wgPBQkawsVKd9Oq9fMEtujOgVeItSKF8Uvtm75WPai//2e1LkkRUGMKx1h3PjY2fYmUY4XSS6yaaxpiM8IB2LBU4otpPZ6dO0LlV+iiUypYwaKb+nkhxpPU4CmxnhM1QL3tT8T+vk5jw2k+ZiBNDBZkvChOOjETTv1GfKUoMH1uCiWL2VkSGWGFibDo5G4K3/PIqaZaK3mWxVLNpVGCOLJzCGVyAB1dQhluoQgMIDOABnuDZ4c6j8+K8zlszzmLmGP7AefsB/yGRTg==</latexit>

c·<latexit sha1_base64="phA5jw/3hFsS6uxQYJM+T7pKjmI=">AAAB8HicbVC7SgNBFL3rM8ZXVLCxWQyCVdiNhZYhNpYJmIckS5idnU2GzGOZmRXCkq+wsVDEVvAv/AI7G7/FyaPQxAMXDufcy733hAmj2njel7Oyura+sZnbym/v7O7tFw4Om1qmCpMGlkyqdog0YVSQhqGGkXaiCOIhI61weD3xW/dEaSrFrRklJOCoL2hMMTJWusO9rIsjaca9QtEreVO4y8Sfk2LluP5N36sftV7hsxtJnHIiDGZI647vJSbIkDIUMzLOd1NNEoSHqE86lgrEiQ6y6cFj98wqkRtLZUsYd6r+nsgQ13rEQ9vJkRnoRW8i/ud1UhNfBRkVSWqIwLNFccpcI93J925EFcGGjSxBWFF7q4sHSCFsbEZ5G4K/+PIyaZZL/kWpXLdpVGGGHJzAKZyDD5dQgRuoQQMwcHiAJ3h2lPPovDivs9YVZz5zBH/gvP0A9WqUNQ==</latexit>

cr<latexit sha1_base64="aaGpDs2ENtq4owONRAtwJgCM3ao=">AAAB7HicbVC7SgNBFL0TXzG+ooKNzWAQrMJuLLQMsbFMwE0CyRJmJ7PJkNnZZWZWCEu+wcZCEVs7/8IvsLPxW5w8Ck08cOFwzr3ce0+QCK6N43yh3Nr6xuZWfruws7u3f1A8PGrqOFWUeTQWsWoHRDPBJfMMN4K1E8VIFAjWCkY3U791z5Tmsbwz44T5ERlIHnJKjJU82svUpFcsOWVnBrxK3AUpVU8a3/y99lHvFT+7/ZimEZOGCqJ1x3US42dEGU4FmxS6qWYJoSMyYB1LJYmY9rPZsRN8bpU+DmNlSxo8U39PZCTSehwFtjMiZqiXvan4n9dJTXjtZ1wmqWGSzheFqcAmxtPPcZ8rRo0YW0Ko4vZWTIdEEWpsPgUbgrv88ippVsruZbnSsGnUYI48nMIZXIALV1CFW6iDBxQ4PMATPCOJHtELep235tBi5hj+AL39APLZknk=</latexit>

cr<latexit sha1_base64="aaGpDs2ENtq4owONRAtwJgCM3ao=">AAAB7HicbVC7SgNBFL0TXzG+ooKNzWAQrMJuLLQMsbFMwE0CyRJmJ7PJkNnZZWZWCEu+wcZCEVs7/8IvsLPxW5w8Ck08cOFwzr3ce0+QCK6N43yh3Nr6xuZWfruws7u3f1A8PGrqOFWUeTQWsWoHRDPBJfMMN4K1E8VIFAjWCkY3U791z5Tmsbwz44T5ERlIHnJKjJU82svUpFcsOWVnBrxK3AUpVU8a3/y99lHvFT+7/ZimEZOGCqJ1x3US42dEGU4FmxS6qWYJoSMyYB1LJYmY9rPZsRN8bpU+DmNlSxo8U39PZCTSehwFtjMiZqiXvan4n9dJTXjtZ1wmqWGSzheFqcAmxtPPcZ8rRo0YW0Ko4vZWTIdEEWpsPgUbgrv88ippVsruZbnSsGnUYI48nMIZXIALV1CFW6iDBxQ4PMATPCOJHtELep235tBi5hj+AL39APLZknk=</latexit>

cg
<latexit sha1_base64="797hGyTLiSY+qJcuXvikqFpjRvM=">AAAB7HicbVC7SgNBFL3rMyY+opY2g1GwCrux0DJoYxnBTQLJEmYns8mQmdllZjYQlnyDjYUitn6CP+Af2PkhWjt5FJp44MLhnHu5954w4Uwb1/10VlbX1jc2c1v5wvbO7l5x/6Cu41QR6pOYx6oZYk05k9Q3zHDaTBTFIuS0EQ6uJ35jSJVmsbwzo4QGAvckixjBxko+6WS9cadYcsvuFGiZeHNSqp58vb0PC9+1TvGj3Y1JKqg0hGOtW56bmCDDyjDC6TjfTjVNMBngHm1ZKrGgOsimx47RqVW6KIqVLWnQVP09kWGh9UiEtlNg09eL3kT8z2ulJroMMiaT1FBJZouilCMTo8nnqMsUJYaPLMFEMXsrIn2sMDE2n7wNwVt8eZnUK2XvvFy5tWlcwQw5OIJjOAMPLqAKN1ADHwgwuIdHeHKk8+A8Oy+z1hVnPnMIf+C8/gDFSpMW</latexit>

cg
<latexit sha1_base64="797hGyTLiSY+qJcuXvikqFpjRvM=">AAAB7HicbVC7SgNBFL3rMyY+opY2g1GwCrux0DJoYxnBTQLJEmYns8mQmdllZjYQlnyDjYUitn6CP+Af2PkhWjt5FJp44MLhnHu5954w4Uwb1/10VlbX1jc2c1v5wvbO7l5x/6Cu41QR6pOYx6oZYk05k9Q3zHDaTBTFIuS0EQ6uJ35jSJVmsbwzo4QGAvckixjBxko+6WS9cadYcsvuFGiZeHNSqp58vb0PC9+1TvGj3Y1JKqg0hGOtW56bmCDDyjDC6TjfTjVNMBngHm1ZKrGgOsimx47RqVW6KIqVLWnQVP09kWGh9UiEtlNg09eL3kT8z2ulJroMMiaT1FBJZouilCMTo8nnqMsUJYaPLMFEMXsrIn2sMDE2n7wNwVt8eZnUK2XvvFy5tWlcwQw5OIJjOAMPLqAKN1ADHwgwuIdHeHKk8+A8Oy+z1hVnPnMIf+C8/gDFSpMW</latexit>

cg
<latexit sha1_base64="797hGyTLiSY+qJcuXvikqFpjRvM=">AAAB7HicbVC7SgNBFL3rMyY+opY2g1GwCrux0DJoYxnBTQLJEmYns8mQmdllZjYQlnyDjYUitn6CP+Af2PkhWjt5FJp44MLhnHu5954w4Uwb1/10VlbX1jc2c1v5wvbO7l5x/6Cu41QR6pOYx6oZYk05k9Q3zHDaTBTFIuS0EQ6uJ35jSJVmsbwzo4QGAvckixjBxko+6WS9cadYcsvuFGiZeHNSqp58vb0PC9+1TvGj3Y1JKqg0hGOtW56bmCDDyjDC6TjfTjVNMBngHm1ZKrGgOsimx47RqVW6KIqVLWnQVP09kWGh9UiEtlNg09eL3kT8z2ulJroMMiaT1FBJZouilCMTo8nnqMsUJYaPLMFEMXsrIn2sMDE2n7wNwVt8eZnUK2XvvFy5tWlcwQw5OIJjOAMPLqAKN1ADHwgwuIdHeHKk8+A8Oy+z1hVnPnMIf+C8/gDFSpMW</latexit>

c·<latexit sha1_base64="phA5jw/3hFsS6uxQYJM+T7pKjmI=">AAAB8HicbVC7SgNBFL3rM8ZXVLCxWQyCVdiNhZYhNpYJmIckS5idnU2GzGOZmRXCkq+wsVDEVvAv/AI7G7/FyaPQxAMXDufcy733hAmj2njel7Oyura+sZnbym/v7O7tFw4Om1qmCpMGlkyqdog0YVSQhqGGkXaiCOIhI61weD3xW/dEaSrFrRklJOCoL2hMMTJWusO9rIsjaca9QtEreVO4y8Sfk2LluP5N36sftV7hsxtJnHIiDGZI647vJSbIkDIUMzLOd1NNEoSHqE86lgrEiQ6y6cFj98wqkRtLZUsYd6r+nsgQ13rEQ9vJkRnoRW8i/ud1UhNfBRkVSWqIwLNFccpcI93J925EFcGGjSxBWFF7q4sHSCFsbEZ5G4K/+PIyaZZL/kWpXLdpVGGGHJzAKZyDD5dQgRuoQQMwcHiAJ3h2lPPovDivs9YVZz5zBH/gvP0A9WqUNQ==</latexit>

c·<latexit sha1_base64="phA5jw/3hFsS6uxQYJM+T7pKjmI=">AAAB8HicbVC7SgNBFL3rM8ZXVLCxWQyCVdiNhZYhNpYJmIckS5idnU2GzGOZmRXCkq+wsVDEVvAv/AI7G7/FyaPQxAMXDufcy733hAmj2njel7Oyura+sZnbym/v7O7tFw4Om1qmCpMGlkyqdog0YVSQhqGGkXaiCOIhI61weD3xW/dEaSrFrRklJOCoL2hMMTJWusO9rIsjaca9QtEreVO4y8Sfk2LluP5N36sftV7hsxtJnHIiDGZI647vJSbIkDIUMzLOd1NNEoSHqE86lgrEiQ6y6cFj98wqkRtLZUsYd6r+nsgQ13rEQ9vJkRnoRW8i/ud1UhNfBRkVSWqIwLNFccpcI93J925EFcGGjSxBWFF7q4sHSCFsbEZ5G4K/+PIyaZZL/kWpXLdpVGGGHJzAKZyDD5dQgRuoQQMwcHiAJ3h2lPPovDivs9YVZz5zBH/gvP0A9WqUNQ==</latexit>

c·<latexit sha1_base64="phA5jw/3hFsS6uxQYJM+T7pKjmI=">AAAB8HicbVC7SgNBFL3rM8ZXVLCxWQyCVdiNhZYhNpYJmIckS5idnU2GzGOZmRXCkq+wsVDEVvAv/AI7G7/FyaPQxAMXDufcy733hAmj2njel7Oyura+sZnbym/v7O7tFw4Om1qmCpMGlkyqdog0YVSQhqGGkXaiCOIhI61weD3xW/dEaSrFrRklJOCoL2hMMTJWusO9rIsjaca9QtEreVO4y8Sfk2LluP5N36sftV7hsxtJnHIiDGZI647vJSbIkDIUMzLOd1NNEoSHqE86lgrEiQ6y6cFj98wqkRtLZUsYd6r+nsgQ13rEQ9vJkRnoRW8i/ud1UhNfBRkVSWqIwLNFccpcI93J925EFcGGjSxBWFF7q4sHSCFsbEZ5G4K/+PIyaZZL/kWpXLdpVGGGHJzAKZyDD5dQgRuoQQMwcHiAJ3h2lPPovDivs9YVZz5zBH/gvP0A9WqUNQ==</latexit>

cb<latexit sha1_base64="/ttt2YRcZpie7WcdVPXpHwHVgE4=">AAAB7HicbVC7SgNBFL0TXzG+ooKNzWAQrMJuLLQMsbFMwE0CyRJmJ7PJkNnZZWZWCEu+wcZCEVs7/8IvsLPxW5w8Ck08cOFwzr3ce0+QCK6N43yh3Nr6xuZWfruws7u3f1A8PGrqOFWUeTQWsWoHRDPBJfMMN4K1E8VIFAjWCkY3U791z5Tmsbwz44T5ERlIHnJKjJU82suCSa9YcsrODHiVuAtSqp40vvl77aPeK352+zFNIyYNFUTrjuskxs+IMpwKNil0U80SQkdkwDqWShIx7WezYyf43Cp9HMbKljR4pv6eyEik9TgKbGdEzFAve1PxP6+TmvDaz7hMUsMknS8KU4FNjKef4z5XjBoxtoRQxe2tmA6JItTYfAo2BHf55VXSrJTdy3KlYdOowRx5OIUzuAAXrqAKt1AHDyhweIAneEYSPaIX9DpvzaHFzDH8AXr7AdqJkmk=</latexit>

c·<latexit sha1_base64="phA5jw/3hFsS6uxQYJM+T7pKjmI=">AAAB8HicbVC7SgNBFL3rM8ZXVLCxWQyCVdiNhZYhNpYJmIckS5idnU2GzGOZmRXCkq+wsVDEVvAv/AI7G7/FyaPQxAMXDufcy733hAmj2njel7Oyura+sZnbym/v7O7tFw4Om1qmCpMGlkyqdog0YVSQhqGGkXaiCOIhI61weD3xW/dEaSrFrRklJOCoL2hMMTJWusO9rIsjaca9QtEreVO4y8Sfk2LluP5N36sftV7hsxtJnHIiDGZI647vJSbIkDIUMzLOd1NNEoSHqE86lgrEiQ6y6cFj98wqkRtLZUsYd6r+nsgQ13rEQ9vJkRnoRW8i/ud1UhNfBRkVSWqIwLNFccpcI93J925EFcGGjSxBWFF7q4sHSCFsbEZ5G4K/+PIyaZZL/kWpXLdpVGGGHJzAKZyDD5dQgRuoQQMwcHiAJ3h2lPPovDivs9YVZz5zBH/gvP0A9WqUNQ==</latexit>

cb<latexit sha1_base64="/ttt2YRcZpie7WcdVPXpHwHVgE4=">AAAB7HicbVC7SgNBFL0TXzG+ooKNzWAQrMJuLLQMsbFMwE0CyRJmJ7PJkNnZZWZWCEu+wcZCEVs7/8IvsLPxW5w8Ck08cOFwzr3ce0+QCK6N43yh3Nr6xuZWfruws7u3f1A8PGrqOFWUeTQWsWoHRDPBJfMMN4K1E8VIFAjWCkY3U791z5Tmsbwz44T5ERlIHnJKjJU82suCSa9YcsrODHiVuAtSqp40vvl77aPeK352+zFNIyYNFUTrjuskxs+IMpwKNil0U80SQkdkwDqWShIx7WezYyf43Cp9HMbKljR4pv6eyEik9TgKbGdEzFAve1PxP6+TmvDaz7hMUsMknS8KU4FNjKef4z5XjBoxtoRQxe2tmA6JItTYfAo2BHf55VXSrJTdy3KlYdOowRx5OIUzuAAXrqAKt1AHDyhweIAneEYSPaIX9DpvzaHFzDH8AXr7AdqJkmk=</latexit>

cb<latexit sha1_base64="/ttt2YRcZpie7WcdVPXpHwHVgE4=">AAAB7HicbVC7SgNBFL0TXzG+ooKNzWAQrMJuLLQMsbFMwE0CyRJmJ7PJkNnZZWZWCEu+wcZCEVs7/8IvsLPxW5w8Ck08cOFwzr3ce0+QCK6N43yh3Nr6xuZWfruws7u3f1A8PGrqOFWUeTQWsWoHRDPBJfMMN4K1E8VIFAjWCkY3U791z5Tmsbwz44T5ERlIHnJKjJU82suCSa9YcsrODHiVuAtSqp40vvl77aPeK352+zFNIyYNFUTrjuskxs+IMpwKNil0U80SQkdkwDqWShIx7WezYyf43Cp9HMbKljR4pv6eyEik9TgKbGdEzFAve1PxP6+TmvDaz7hMUsMknS8KU4FNjKef4z5XjBoxtoRQxe2tmA6JItTYfAo2BHf55VXSrJTdy3KlYdOowRx5OIUzuAAXrqAKt1AHDyhweIAneEYSPaIX9DpvzaHFzDH8AXr7AdqJkmk=</latexit>

cb<latexit sha1_base64="/ttt2YRcZpie7WcdVPXpHwHVgE4=">AAAB7HicbVC7SgNBFL0TXzG+ooKNzWAQrMJuLLQMsbFMwE0CyRJmJ7PJkNnZZWZWCEu+wcZCEVs7/8IvsLPxW5w8Ck08cOFwzr3ce0+QCK6N43yh3Nr6xuZWfruws7u3f1A8PGrqOFWUeTQWsWoHRDPBJfMMN4K1E8VIFAjWCkY3U791z5Tmsbwz44T5ERlIHnJKjJU82suCSa9YcsrODHiVuAtSqp40vvl77aPeK352+zFNIyYNFUTrjuskxs+IMpwKNil0U80SQkdkwDqWShIx7WezYyf43Cp9HMbKljR4pv6eyEik9TgKbGdEzFAve1PxP6+TmvDaz7hMUsMknS8KU4FNjKef4z5XjBoxtoRQxe2tmA6JItTYfAo2BHf55VXSrJTdy3KlYdOowRx5OIUzuAAXrqAKt1AHDyhweIAneEYSPaIX9DpvzaHFzDH8AXr7AdqJkmk=</latexit>

c·<latexit sha1_base64="phA5jw/3hFsS6uxQYJM+T7pKjmI=">AAAB8HicbVC7SgNBFL3rM8ZXVLCxWQyCVdiNhZYhNpYJmIckS5idnU2GzGOZmRXCkq+wsVDEVvAv/AI7G7/FyaPQxAMXDufcy733hAmj2njel7Oyura+sZnbym/v7O7tFw4Om1qmCpMGlkyqdog0YVSQhqGGkXaiCOIhI61weD3xW/dEaSrFrRklJOCoL2hMMTJWusO9rIsjaca9QtEreVO4y8Sfk2LluP5N36sftV7hsxtJnHIiDGZI647vJSbIkDIUMzLOd1NNEoSHqE86lgrEiQ6y6cFj98wqkRtLZUsYd6r+nsgQ13rEQ9vJkRnoRW8i/ud1UhNfBRkVSWqIwLNFccpcI93J925EFcGGjSxBWFF7q4sHSCFsbEZ5G4K/+PIyaZZL/kWpXLdpVGGGHJzAKZyDD5dQgRuoQQMwcHiAJ3h2lPPovDivs9YVZz5zBH/gvP0A9WqUNQ==</latexit>

c·<latexit sha1_base64="phA5jw/3hFsS6uxQYJM+T7pKjmI=">AAAB8HicbVC7SgNBFL3rM8ZXVLCxWQyCVdiNhZYhNpYJmIckS5idnU2GzGOZmRXCkq+wsVDEVvAv/AI7G7/FyaPQxAMXDufcy733hAmj2njel7Oyura+sZnbym/v7O7tFw4Om1qmCpMGlkyqdog0YVSQhqGGkXaiCOIhI61weD3xW/dEaSrFrRklJOCoL2hMMTJWusO9rIsjaca9QtEreVO4y8Sfk2LluP5N36sftV7hsxtJnHIiDGZI647vJSbIkDIUMzLOd1NNEoSHqE86lgrEiQ6y6cFj98wqkRtLZUsYd6r+nsgQ13rEQ9vJkRnoRW8i/ud1UhNfBRkVSWqIwLNFccpcI93J925EFcGGjSxBWFF7q4sHSCFsbEZ5G4K/+PIyaZZL/kWpXLdpVGGGHJzAKZyDD5dQgRuoQQMwcHiAJ3h2lPPovDivs9YVZz5zBH/gvP0A9WqUNQ==</latexit>

cS
<latexit sha1_base64="7xB/Qrjj8nYXgIA6N3kMWNpuJpY=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFMiHlAsoTZyWwyZHZmmZkVwpJPsLFQxNbWv/AL7Gz8FiePQhMPXDiccy/33hPEnGnjul9OZm19Y3Mru53b2d3bP8gfHjW1TBShDSK5VO0Aa8qZoA3DDKftWFEcBZy2gtHN1G/dU6WZFHdmHFM/wgPBQkawsVKd9Oq9fMEtujOgVeItSKF8Uvtm75WPai//2e1LkkRUGMKx1h3PjY2fYmUY4XSS6yaaxpiM8IB2LBU4otpPZ6dO0LlV+iiUypYwaKb+nkhxpPU4CmxnhM1QL3tT8T+vk5jw2k+ZiBNDBZkvChOOjETTv1GfKUoMH1uCiWL2VkSGWGFibDo5G4K3/PIqaZaK3mWxVLNpVGCOLJzCGVyAB1dQhluoQgMIDOABnuDZ4c6j8+K8zlszzmLmGP7AefsB/yGRTg==</latexit>

…

… …

ct
i1<latexit sha1_base64="SYjfhVad8fR/YptGlQIk7+OgTtc=">AAAB8XicbVDLSgNBEOz1GeMr6tHLkiDkFHbjIR6DXjxGMA9MYpidzCZDZmeXmV4hLPsXXkQU8eqXePUm+jFOHgdNLGgoqrrp7vIiwTU6zqe1srq2vrGZ2cpu7+zu7ecODhs6jBVldRqKULU8opngktWRo2CtSDESeII1vdHFxG/eMaV5KK9xHLFuQAaS+5wSNNINvU0w7SXcTXu5glNyprCXiTsnhWq++P1VeX+s9XIfnX5I44BJpIJo3XadCLsJUcipYGm2E2sWEToiA9Y2VJKA6W4yvTi1T4zSt/1QmZJoT9XfEwkJtB4HnukMCA71ojcR//PaMfpn3YTLKEYm6WyRHwsbQ3vyvt3nilEUY0MIVdzcatMhUYSiCSlrQnAXX14mjXLJPS2Vr0wa5zBDBo4hD0VwoQJVuIQa1IGChHt4gmdLWw/Wi/U6a12x5jNH8AfW2w/8WJTY</latexit>

ct
j1

<latexit sha1_base64="qe5+20er0vCM+pcH3Y6rlElEXVg=">AAAB8XicbVA9SwNBEJ2LXzF+RS1tDoMgCOEuFloGbSwjmA9MzrC32UvW7O0du3NCOO4X2NpYKCJ2/hs7f4i9m8RCEx8MPN6bYWaeHwuu0XE+rdzC4tLySn61sLa+sblV3N5p6ChRlNVpJCLV8olmgktWR46CtWLFSOgL1vSH52O/eceU5pG8wlHMvJD0JQ84JWika3qTYtZNb92sWyw5ZWcCe564P6RUPfp6u2eluNYtfnR6EU1CJpEKonXbdWL0UqKQU8GyQifRLCZ0SPqsbagkIdNeOrk4sw+M0rODSJmSaE/U3xMpCbUehb7pDAkO9Kw3Fv/z2gkGp17KZZwgk3S6KEiEjZE9ft/uccUoipEhhCpubrXpgChC0YRUMCG4sy/Pk0al7B6XK5cmjTOYIg97sA+H4MIJVOECalAHChIe4AmeLW09Wi/W67Q1Z/3M7MIfWO/fjsKUhA==</latexit>

cS
<latexit sha1_base64="7xB/Qrjj8nYXgIA6N3kMWNpuJpY=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFMiHlAsoTZyWwyZHZmmZkVwpJPsLFQxNbWv/AL7Gz8FiePQhMPXDiccy/33hPEnGnjul9OZm19Y3Mru53b2d3bP8gfHjW1TBShDSK5VO0Aa8qZoA3DDKftWFEcBZy2gtHN1G/dU6WZFHdmHFM/wgPBQkawsVKd9Oq9fMEtujOgVeItSKF8Uvtm75WPai//2e1LkkRUGMKx1h3PjY2fYmUY4XSS6yaaxpiM8IB2LBU4otpPZ6dO0LlV+iiUypYwaKb+nkhxpPU4CmxnhM1QL3tT8T+vk5jw2k+ZiBNDBZkvChOOjETTv1GfKUoMH1uCiWL2VkSGWGFibDo5G4K3/PIqaZaK3mWxVLNpVGCOLJzCGVyAB1dQhluoQgMIDOABnuDZ4c6j8+K8zlszzmLmGP7AefsB/yGRTg==</latexit>

cS
<latexit sha1_base64="7xB/Qrjj8nYXgIA6N3kMWNpuJpY=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFMiHlAsoTZyWwyZHZmmZkVwpJPsLFQxNbWv/AL7Gz8FiePQhMPXDiccy/33hPEnGnjul9OZm19Y3Mru53b2d3bP8gfHjW1TBShDSK5VO0Aa8qZoA3DDKftWFEcBZy2gtHN1G/dU6WZFHdmHFM/wgPBQkawsVKd9Oq9fMEtujOgVeItSKF8Uvtm75WPai//2e1LkkRUGMKx1h3PjY2fYmUY4XSS6yaaxpiM8IB2LBU4otpPZ6dO0LlV+iiUypYwaKb+nkhxpPU4CmxnhM1QL3tT8T+vk5jw2k+ZiBNDBZkvChOOjETTv1GfKUoMH1uCiWL2VkSGWGFibDo5G4K3/PIqaZaK3mWxVLNpVGCOLJzCGVyAB1dQhluoQgMIDOABnuDZ4c6j8+K8zlszzmLmGP7AefsB/yGRTg==</latexit>

cS
<latexit sha1_base64="7xB/Qrjj8nYXgIA6N3kMWNpuJpY=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFMiHlAsoTZyWwyZHZmmZkVwpJPsLFQxNbWv/AL7Gz8FiePQhMPXDiccy/33hPEnGnjul9OZm19Y3Mru53b2d3bP8gfHjW1TBShDSK5VO0Aa8qZoA3DDKftWFEcBZy2gtHN1G/dU6WZFHdmHFM/wgPBQkawsVKd9Oq9fMEtujOgVeItSKF8Uvtm75WPai//2e1LkkRUGMKx1h3PjY2fYmUY4XSS6yaaxpiM8IB2LBU4otpPZ6dO0LlV+iiUypYwaKb+nkhxpPU4CmxnhM1QL3tT8T+vk5jw2k+ZiBNDBZkvChOOjETTv1GfKUoMH1uCiWL2VkSGWGFibDo5G4K3/PIqaZaK3mWxVLNpVGCOLJzCGVyAB1dQhluoQgMIDOABnuDZ4c6j8+K8zlszzmLmGP7AefsB/yGRTg==</latexit>

ct
jn

<latexit sha1_base64="KToFSs3al3uDhhYh2frpcpI1jXc=">AAAB8XicbVA9SwNBEJ2LXzF+RS1tDoMgCOEuFloGbSwjmA9MzrC32UvW7O0du3NCOO4X2NpYKCJ2/hs7f4i9m8RCEx8MPN6bYWaeHwuu0XE+rdzC4tLySn61sLa+sblV3N5p6ChRlNVpJCLV8olmgktWR46CtWLFSOgL1vSH52O/eceU5pG8wlHMvJD0JQ84JWika3qTYtZNb2XWLZacsjOBPU/cH1KqHn293bNSXOsWPzq9iCYhk0gF0brtOjF6KVHIqWBZoZNoFhM6JH3WNlSSkGkvnVyc2QdG6dlBpExJtCfq74mUhFqPQt90hgQHetYbi/957QSDUy/lMk6QSTpdFCTCxsgev2/3uGIUxcgQQhU3t9p0QBShaEIqmBDc2ZfnSaNSdo/LlUuTxhlMkYc92IdDcOEEqnABNagDBQkP8ATPlrYerRfrddqas35mduEPrPdv63OUwQ==</latexit>

ct
in<latexit sha1_base64="6MAX28v/bkBDCwZhSYCK4rl0cQw=">AAAB8XicbVC7SgNBFL3rM8ZX1NJmSRBShd1YxDJoYxnBPDCJYXYymwyZnV1m7gph2b+wEVHE1i+xtRP9GCePQhMPDBzOuZe553iR4Bod59NaWV1b39jMbGW3d3b39nMHhw0dxoqyOg1FqFoe0UxwyerIUbBWpBgJPMGa3uhi4jfvmNI8lNc4jlg3IAPJfU4JGumG3iaY9hIu016u4JScKexl4s5JoZovfn9V3h9rvdxHpx/SOGASqSBat10nwm5CFHIqWJrtxJpFhI7IgLUNlSRguptML07tE6P0bT9U5km0p+rvjYQEWo8Dz0wGBId60ZuI/3ntGP2zrskTxcgknX3kx8LG0J7Et/tcMYpibAihiptbbTokilA0JWVNCe5i5GXSKJfc01L5yrRxDjNk4BjyUAQXKlCFS6hBHShIuIcneLa09WC9WK+z0RVrvnMEf2C9/QBZGJUV</latexit>

cS
<latexit sha1_base64="7xB/Qrjj8nYXgIA6N3kMWNpuJpY=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFMiHlAsoTZyWwyZHZmmZkVwpJPsLFQxNbWv/AL7Gz8FiePQhMPXDiccy/33hPEnGnjul9OZm19Y3Mru53b2d3bP8gfHjW1TBShDSK5VO0Aa8qZoA3DDKftWFEcBZy2gtHN1G/dU6WZFHdmHFM/wgPBQkawsVKd9Oq9fMEtujOgVeItSKF8Uvtm75WPai//2e1LkkRUGMKx1h3PjY2fYmUY4XSS6yaaxpiM8IB2LBU4otpPZ6dO0LlV+iiUypYwaKb+nkhxpPU4CmxnhM1QL3tT8T+vk5jw2k+ZiBNDBZkvChOOjETTv1GfKUoMH1uCiWL2VkSGWGFibDo5G4K3/PIqaZaK3mWxVLNpVGCOLJzCGVyAB1dQhluoQgMIDOABnuDZ4c6j8+K8zlszzmLmGP7AefsB/yGRTg==</latexit>

cS
<latexit sha1_base64="7xB/Qrjj8nYXgIA6N3kMWNpuJpY=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFMiHlAsoTZyWwyZHZmmZkVwpJPsLFQxNbWv/AL7Gz8FiePQhMPXDiccy/33hPEnGnjul9OZm19Y3Mru53b2d3bP8gfHjW1TBShDSK5VO0Aa8qZoA3DDKftWFEcBZy2gtHN1G/dU6WZFHdmHFM/wgPBQkawsVKd9Oq9fMEtujOgVeItSKF8Uvtm75WPai//2e1LkkRUGMKx1h3PjY2fYmUY4XSS6yaaxpiM8IB2LBU4otpPZ6dO0LlV+iiUypYwaKb+nkhxpPU4CmxnhM1QL3tT8T+vk5jw2k+ZiBNDBZkvChOOjETTv1GfKUoMH1uCiWL2VkSGWGFibDo5G4K3/PIqaZaK3mWxVLNpVGCOLJzCGVyAB1dQhluoQgMIDOABnuDZ4c6j8+K8zlszzmLmGP7AefsB/yGRTg==</latexit>

cS
<latexit sha1_base64="7xB/Qrjj8nYXgIA6N3kMWNpuJpY=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFMiHlAsoTZyWwyZHZmmZkVwpJPsLFQxNbWv/AL7Gz8FiePQhMPXDiccy/33hPEnGnjul9OZm19Y3Mru53b2d3bP8gfHjW1TBShDSK5VO0Aa8qZoA3DDKftWFEcBZy2gtHN1G/dU6WZFHdmHFM/wgPBQkawsVKd9Oq9fMEtujOgVeItSKF8Uvtm75WPai//2e1LkkRUGMKx1h3PjY2fYmUY4XSS6yaaxpiM8IB2LBU4otpPZ6dO0LlV+iiUypYwaKb+nkhxpPU4CmxnhM1QL3tT8T+vk5jw2k+ZiBNDBZkvChOOjETTv1GfKUoMH1uCiWL2VkSGWGFibDo5G4K3/PIqaZaK3mWxVLNpVGCOLJzCGVyAB1dQhluoQgMIDOABnuDZ4c6j8+K8zlszzmLmGP7AefsB/yGRTg==</latexit>

VNT
<latexit sha1_base64="G/noAmKkz/uXgB6yNRevJEgA/KQ=">AAAB7nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbGSBPKCZAmzk9lkyOzsMjMrhCUfYWOhiK2Nf+EX2Nn4Lc5uUmjigQuHc+7l3nu8iDOlbfvLyq2tb2xu5bcLO7t7+wfFw6O2CmNJaIuEPJRdDyvKmaAtzTSn3UhSHHicdrzJTep37qlULBRNPY2oG+CRYD4jWBup0x4kd81ZYVAs2WU7A1olzoKUqieNb/Ze+6gPip/9YUjigApNOFaq59iRdhMsNSOczgr9WNEIkwke0Z6hAgdUuUl27gydG2WI/FCaEhpl6u+JBAdKTQPPdAZYj9Wyl4r/eb1Y+9duwkQUayrIfJEfc6RDlP6OhkxSovnUEEwkM7ciMsYSE20SSkNwll9eJe1K2bksVxomjRrMkYdTOIMLcOAKqnALdWgBgQk8wBM8W5H1aL1Yr/PWnLWYOYY/sN5+AIS/kro=</latexit>

VT
<latexit sha1_base64="o8mkfnDYEuH9B/VaIC4cJYl8LeY=">AAAB7XicbVA9TwJBEJ3DL8Qv1MTGZiMxsSJ3WGhJsLGEBA4SuJC9ZQ9W9vYuu3sm5MJ/sLHQGFsr/4W/wM7G3+IeUCj4kkle3pvJzDw/5kxp2/6ycmvrG5tb+e3Czu7e/kHx8MhVUSIJbZGIR7LjY0U5E7Slmea0E0uKQ5/Ttj++yfz2PZWKRaKpJzH1QjwULGAEayO5bj9tTgv9Ysku2zOgVeIsSKl60vhm77WPer/42RtEJAmp0IRjpbqOHWsvxVIzwum00EsUjTEZ4yHtGipwSJWXzq6donOjDFAQSVNCo5n6eyLFoVKT0DedIdYjtexl4n9eN9HBtZcyESeaCjJfFCQc6Qhlr6MBk5RoPjEEE8nMrYiMsMREm4CyEJzll1eJWyk7l+VKw6RRgznycApncAEOXEEVbqEOLSBwBw/wBM9WZD1aL9brvDVnLWaO4Q+stx/ncJJi</latexit>

production
instance
attribute shape

pose
zi<latexit sha1_base64="FcClVOEqAl7OwLXTiKR8TJN5fEk=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFM0DwgWcLsZDYZMjO7zMwKcckn2FgoYmvrX/gFdjZ+i5NHoYkHLhzOuZd77wlizrRx3S8ns7K6tr6R3cxtbe/s7uX3Dxo6ShShdRLxSLUCrClnktYNM5y2YkWxCDhtBsOrid+8o0qzSN6aUUx9gfuShYxgY6Wb+y7r5gtu0Z0CLRNvTgrlo9o3e698VLv5z04vIomg0hCOtW57bmz8FCvDCKfjXCfRNMZkiPu0banEgmo/nZ46RqdW6aEwUrakQVP190SKhdYjEdhOgc1AL3oT8T+vnZjw0k+ZjBNDJZktChOOTIQmf6MeU5QYPrIEE8XsrYgMsMLE2HRyNgRv8eVl0igVvfNiqWbTqMAMWTiGEzgDDy6gDNdQhToQ6MMDPMGzw51H58V5nbVmnPnMIfyB8/YDQ5KRew==</latexit>

qi
<latexit sha1_base64="vbDVkBYzwi1b81pKp+SjQXQjerY=">AAAB6nicbVC7SgNBFL3jM8ZX1FKRwSBYhd1YaBm0sUzQPCBZwuxkNhkyO7vOzAphSWlpY6GIrR+R77DzG/wJJ49CEw9cOJxzL/fe48eCa+M4X2hpeWV1bT2zkd3c2t7Zze3t13SUKMqqNBKRavhEM8ElqxpuBGvEipHQF6zu96/Hfv2BKc0jeWcGMfNC0pU84JQYK93et3k7l3cKzgR4kbgzki8djSrfj8ejcjv32epENAmZNFQQrZuuExsvJcpwKtgw20o0iwntky5rWipJyLSXTk4d4lOrdHAQKVvS4In6eyIlodaD0LedITE9Pe+Nxf+8ZmKCSy/lMk4Mk3S6KEgENhEe/407XDFqxMASQhW3t2LaI4pQY9PJ2hDc+ZcXSa1YcM8LxYpN4wqmyMAhnMAZuHABJbiBMlSBQhee4AVekUDP6A29T1uX0GzmAP4AffwARDORfA==</latexit>

vS
<latexit sha1_base64="11lBDIPqgTHMjAPk5JxZdoOkGNQ=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFMiHlAXMLsZDYZMjuzzMwGwpJPsLFQxNbWv/AL7Gz8FiePQhMPXDiccy/33hPEnGnjul9OZm19Y3Mru53b2d3bP8gfHjW1TBShDSK5VO0Aa8qZoA3DDKftWFEcBZy2guHN1G+NqNJMijszjqkf4b5gISPYWKk+6ta7+YJbdGdAq8RbkEL5pPbN3isf1W7+874nSRJRYQjHWnc8NzZ+ipVhhNNJ7j7RNMZkiPu0Y6nAEdV+Ojt1gs6t0kOhVLaEQTP190SKI63HUWA7I2wGetmbiv95ncSE137KRJwYKsh8UZhwZCSa/o16TFFi+NgSTBSztyIywAoTY9PJ2RC85ZdXSbNU9C6LpZpNowJzZOEUzuACPLiCMtxCFRpAoA8P8ATPDncenRfndd6acRYzx/AHztsPHCKRYQ==</latexit>

MCST node expansion
tree edge rollout

(b) Monte Carlo
search treeIt

<latexit sha1_base64="lGrxbqPAjBJxZTqrmzy4ImrnlAA=">AAAB9HicbVC7TsMwFL3hWcKrwMhiUSExVUkZYEFUsMBWJPqQ2lA5rtNadZxgO5WqqN/BwgCqWPkNdhbE3+C0HaDlSJaOzrlX9/j4MWdKO863tbS8srq2ntuwN7e2d3bze/s1FSWS0CqJeCQbPlaUM0GrmmlOG7GkOPQ5rfv968yvD6hULBL3ehhTL8RdwQJGsDaS1wqx7hHM09vRg27nC07RmQAtEndGCpcf9kU8/rIr7fxnqxORJKRCE46VarpOrL0US80IpyO7lSgaY9LHXdo0VOCQKi+dhB6hY6N0UBBJ84RGE/X3RopDpYahbyazkGrey8T/vGaig3MvZSJONBVkeihIONIRyhpAHSYp0XxoCCaSmayI9LDERJuebFOCO//lRVIrFd3TYunOKZSvYIocHMIRnIALZ1CGG6hAFQg8whO8wKs1sJ6tsfU2HV2yZjsH8AfW+w9u75WG</latexit>

z1
<latexit sha1_base64="IrUkQz5uCcK+/8fSq3Jw1v+n5z4=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFM0DwgWcLsZDYZMjO7zMwKcckn2FgoYmvrX/gFdjZ+i5NHoYkHLhzOuZd77wlizrRx3S8ns7K6tr6R3cxtbe/s7uX3Dxo6ShShdRLxSLUCrClnktYNM5y2YkWxCDhtBsOrid+8o0qzSN6aUUx9gfuShYxgY6Wb+67XzRfcojsFWibenBTKR7Vv9l75qHbzn51eRBJBpSEca9323Nj4KVaGEU7HuU6iaYzJEPdp21KJBdV+Oj11jE6t0kNhpGxJg6bq74kUC61HIrCdApuBXvQm4n9eOzHhpZ8yGSeGSjJbFCYcmQhN/kY9pigxfGQJJorZWxEZYIWJsenkbAje4svLpFEqeufFUs2mUYEZsnAMJ3AGHlxAGa6hCnUg0IcHeIJnhzuPzovzOmvNOPOZQ/gD5+0H7qORQw==</latexit>

z2
<latexit sha1_base64="rk64d895fnuInB6K9l4fcflYTs0=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFM0DwgWcLsZDYZMjO7zMwKcckn2FgoYmvrX/gFdjZ+i5NHoYkHLhzOuZd77wlizrRx3S8ns7K6tr6R3cxtbe/s7uX3Dxo6ShShdRLxSLUCrClnktYNM5y2YkWxCDhtBsOrid+8o0qzSN6aUUx9gfuShYxgY6Wb+26pmy+4RXcKtEy8OSmUj2rf7L3yUe3mPzu9iCSCSkM41rrtubHxU6wMI5yOc51E0xiTIe7TtqUSC6r9dHrqGJ1apYfCSNmSBk3V3xMpFlqPRGA7BTYDvehNxP+8dmLCSz9lMk4MlWS2KEw4MhGa/I16TFFi+MgSTBSztyIywAoTY9PJ2RC8xZeXSaNU9M6LpZpNowIzZOEYTuAMPLiAMlxDFepAoA8P8ATPDncenRfnddaaceYzh/AHztsP8CeRRA==</latexit>

z1
<latexit sha1_base64="IrUkQz5uCcK+/8fSq3Jw1v+n5z4=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFM0DwgWcLsZDYZMjO7zMwKcckn2FgoYmvrX/gFdjZ+i5NHoYkHLhzOuZd77wlizrRx3S8ns7K6tr6R3cxtbe/s7uX3Dxo6ShShdRLxSLUCrClnktYNM5y2YkWxCDhtBsOrid+8o0qzSN6aUUx9gfuShYxgY6Wb+67XzRfcojsFWibenBTKR7Vv9l75qHbzn51eRBJBpSEca9323Nj4KVaGEU7HuU6iaYzJEPdp21KJBdV+Oj11jE6t0kNhpGxJg6bq74kUC61HIrCdApuBXvQm4n9eOzHhpZ8yGSeGSjJbFCYcmQhN/kY9pigxfGQJJorZWxEZYIWJsenkbAje4svLpFEqeufFUs2mUYEZsnAMJ3AGHlxAGa6hCnUg0IcHeIJnhzuPzovzOmvNOPOZQ/gD5+0H7qORQw==</latexit>

z9
<latexit sha1_base64="K5SBmmRLpfQwLm8fpYTki77xrT8=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLNQuxMYyQfOAuITZyWwyZHZmmZkV4pJPsLFQxNbWv/AL7Gz8FiePQhMPXDiccy/33hPEnGnjul9OZml5ZXUtu57b2Nza3snv7jW0TBShdSK5VK0Aa8qZoHXDDKetWFEcBZw2g8Hl2G/eUaWZFDdmGFM/wj3BQkawsdL1feeiky+4RXcCtEi8GSmUD2rf7L3yUe3kP2+7kiQRFYZwrHXbc2Pjp1gZRjgd5W4TTWNMBrhH25YKHFHtp5NTR+jYKl0USmVLGDRRf0+kONJ6GAW2M8Kmr+e9sfif105MeO6nTMSJoYJMF4UJR0ai8d+oyxQlhg8twUQxeysifawwMTadnA3Bm395kTRKRe+0WKrZNCowRRYO4QhOwIMzKMMVVKEOBHrwAE/w7HDn0XlxXqetGWc2sw9/4Lz9APrDkUs=</latexit>

...<latexit sha1_base64="7t24ksjV8fObpViH8enJRBZbKaQ=">AAAB7XicbZC7SgNBFIbPeo3rLWppMxgEq7AbC23EoI1lBHOBZAmzs5NkzOzMMjMbCEvewcZCERsLH8XeRnwbJ5dCE38Y+Pj/c5hzTphwpo3nfTtLyyura+u5DXdza3tnN7+3X9MyVYRWieRSNUKsKWeCVg0znDYSRXEccloP+9fjvD6gSjMp7swwoUGMu4J1GMHGWrXWIJJGt/MFr+hNhBbBn0Hh8sO9SN6+3Eo7/9mKJEljKgzhWOum7yUmyLAyjHA6cluppgkmfdylTYsCx1QH2WTaETq2ToQ6UtknDJq4vzsyHGs9jENbGWPT0/PZ2Pwva6amcx5kTCSpoYJMP+qkHBmJxqujiClKDB9awEQxOysiPawwMfZArj2CP7/yItRKRf+0WLr1CuUrmCoHh3AEJ+DDGZThBipQBQL38ABP8OxI59F5cV6npUvOrOcA/sh5/wEsU5KD</latexit>

· · ·<latexit sha1_base64="HizBLF/eww/NXksVAtI5HCWfU4M=">AAAB7XicbZC7SgNBFIZn4y2ut6ilzWAQrMJuLLQRgzaWEcwFkiXMzs4mY2ZnlpmzQgh5BxsLRWwsfBR7G/FtnFwKTfxh4OP/z2HOOWEquAHP+3ZyS8srq2v5dXdjc2t7p7C7Vzcq05TVqBJKN0NimOCS1YCDYM1UM5KEgjXC/tU4b9wzbbiStzBIWZCQruQxpwSsVW/TSIHpFIpeyZsIL4I/g+LFh3uevn251U7hsx0pmiVMAhXEmJbvpRAMiQZOBRu57cywlNA+6bKWRUkSZoLhZNoRPrJOhGOl7ZOAJ+7vjiFJjBkkoa1MCPTMfDY2/8taGcRnwZDLNAMm6fSjOBMYFB6vjiOuGQUxsECo5nZWTHtEEwr2QK49gj+/8iLUyyX/pFS+8YqVSzRVHh2gQ3SMfHSKKugaVVENUXSHHtATenaU8+i8OK/T0pwz69lHf+S8/wAPO5Jw</latexit>

· · ·<latexit sha1_base64="HizBLF/eww/NXksVAtI5HCWfU4M=">AAAB7XicbZC7SgNBFIZn4y2ut6ilzWAQrMJuLLQRgzaWEcwFkiXMzs4mY2ZnlpmzQgh5BxsLRWwsfBR7G/FtnFwKTfxh4OP/z2HOOWEquAHP+3ZyS8srq2v5dXdjc2t7p7C7Vzcq05TVqBJKN0NimOCS1YCDYM1UM5KEgjXC/tU4b9wzbbiStzBIWZCQruQxpwSsVW/TSIHpFIpeyZsIL4I/g+LFh3uevn251U7hsx0pmiVMAhXEmJbvpRAMiQZOBRu57cywlNA+6bKWRUkSZoLhZNoRPrJOhGOl7ZOAJ+7vjiFJjBkkoa1MCPTMfDY2/8taGcRnwZDLNAMm6fSjOBMYFB6vjiOuGQUxsECo5nZWTHtEEwr2QK49gj+/8iLUyyX/pFS+8YqVSzRVHh2gQ3SMfHSKKugaVVENUXSHHtATenaU8+i8OK/T0pwz69lHf+S8/wAPO5Jw</latexit>

· · ·<latexit sha1_base64="HizBLF/eww/NXksVAtI5HCWfU4M=">AAAB7XicbZC7SgNBFIZn4y2ut6ilzWAQrMJuLLQRgzaWEcwFkiXMzs4mY2ZnlpmzQgh5BxsLRWwsfBR7G/FtnFwKTfxh4OP/z2HOOWEquAHP+3ZyS8srq2v5dXdjc2t7p7C7Vzcq05TVqBJKN0NimOCS1YCDYM1UM5KEgjXC/tU4b9wzbbiStzBIWZCQruQxpwSsVW/TSIHpFIpeyZsIL4I/g+LFh3uevn251U7hsx0pmiVMAhXEmJbvpRAMiQZOBRu57cywlNA+6bKWRUkSZoLhZNoRPrJOhGOl7ZOAJ+7vjiFJjBkkoa1MCPTMfDY2/8taGcRnwZDLNAMm6fSjOBMYFB6vjiOuGQUxsECo5nZWTHtEEwr2QK49gj+/8iLUyyX/pFS+8YqVSzRVHh2gQ3SMfHSKKugaVVENUXSHHtATenaU8+i8OK/T0pwz69lHf+S8/wAPO5Jw</latexit>

· · ·<latexit sha1_base64="HizBLF/eww/NXksVAtI5HCWfU4M=">AAAB7XicbZC7SgNBFIZn4y2ut6ilzWAQrMJuLLQRgzaWEcwFkiXMzs4mY2ZnlpmzQgh5BxsLRWwsfBR7G/FtnFwKTfxh4OP/z2HOOWEquAHP+3ZyS8srq2v5dXdjc2t7p7C7Vzcq05TVqBJKN0NimOCS1YCDYM1UM5KEgjXC/tU4b9wzbbiStzBIWZCQruQxpwSsVW/TSIHpFIpeyZsIL4I/g+LFh3uevn251U7hsx0pmiVMAhXEmJbvpRAMiQZOBRu57cywlNA+6bKWRUkSZoLhZNoRPrJOhGOl7ZOAJ+7vjiFJjBkkoa1MCPTMfDY2/8taGcRnwZDLNAMm6fSjOBMYFB6vjiOuGQUxsECo5nZWTHtEEwr2QK49gj+/8iLUyyX/pFS+8YqVSzRVHh2gQ3SMfHSKKugaVVENUXSHHtATenaU8+i8OK/T0pwz69lHf+S8/wAPO5Jw</latexit>

...<latexit sha1_base64="7t24ksjV8fObpViH8enJRBZbKaQ=">AAAB7XicbZC7SgNBFIbPeo3rLWppMxgEq7AbC23EoI1lBHOBZAmzs5NkzOzMMjMbCEvewcZCERsLH8XeRnwbJ5dCE38Y+Pj/c5hzTphwpo3nfTtLyyura+u5DXdza3tnN7+3X9MyVYRWieRSNUKsKWeCVg0znDYSRXEccloP+9fjvD6gSjMp7swwoUGMu4J1GMHGWrXWIJJGt/MFr+hNhBbBn0Hh8sO9SN6+3Eo7/9mKJEljKgzhWOum7yUmyLAyjHA6cluppgkmfdylTYsCx1QH2WTaETq2ToQ6UtknDJq4vzsyHGs9jENbGWPT0/PZ2Pwva6amcx5kTCSpoYJMP+qkHBmJxqujiClKDB9awEQxOysiPawwMfZArj2CP7/yItRKRf+0WLr1CuUrmCoHh3AEJ+DDGZThBipQBQL38ABP8OxI59F5cV6npUvOrOcA/sh5/wEsU5KD</latexit>

shape
encoding

frag. type
prediction

(MLP)

p(c|z)
<latexit sha1_base64="ai5CpkbZgLM23mpWaXbFYeu+KOM=">AAAB7XicbVDLSgNBEOyNrxhfUY9ehgQhIoTdeNBj0IvHCOYByRJmJ5NkzOzMMjMrrGv+wYMeFPHq/3jL3zh5HDRa0FBUddPdFUScaeO6Eyezsrq2vpHdzG1t7+zu5fcPGlrGitA6kVyqVoA15UzQumGG01akKA4DTpvB6GrqN++p0kyKW5NE1A/xQLA+I9hYqRGVyOPDSTdfdMvuDOgv8RakWC10Tp8n1aTWzX91epLEIRWGcKx123Mj46dYGUY4Hec6saYRJiM8oG1LBQ6p9tPZtWN0bJUe6ktlSxg0U39OpDjUOgkD2xliM9TL3lT8z2vHpn/hp0xEsaGCzBf1Y46MRNPXUY8pSgxPLMFEMXsrIkOsMDE2oJwNwVt++S9pVMreWblyY9O4hDmycAQFKIEH51CFa6hBHQjcwRO8wpsjnRfn3fmYt2acxcwh/ILz+Q0555Hf</latexit>

frag. type
probability

(a) visual preprocessing

cS
<latexit sha1_base64="7xB/Qrjj8nYXgIA6N3kMWNpuJpY=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFMiHlAsoTZyWwyZHZmmZkVwpJPsLFQxNbWv/AL7Gz8FiePQhMPXDiccy/33hPEnGnjul9OZm19Y3Mru53b2d3bP8gfHjW1TBShDSK5VO0Aa8qZoA3DDKftWFEcBZy2gtHN1G/dU6WZFHdmHFM/wgPBQkawsVKd9Oq9fMEtujOgVeItSKF8Uvtm75WPai//2e1LkkRUGMKx1h3PjY2fYmUY4XSS6yaaxpiM8IB2LBU4otpPZ6dO0LlV+iiUypYwaKb+nkhxpPU4CmxnhM1QL3tT8T+vk5jw2k+ZiBNDBZkvChOOjETTv1GfKUoMH1uCiWL2VkSGWGFibDo5G4K3/PIqaZaK3mWxVLNpVGCOLJzCGVyAB1dQhluoQgMIDOABnuDZ4c6j8+K8zlszzmLmGP7AefsB/yGRTg==</latexit>

cS
<latexit sha1_base64="7xB/Qrjj8nYXgIA6N3kMWNpuJpY=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFMiHlAsoTZyWwyZHZmmZkVwpJPsLFQxNbWv/AL7Gz8FiePQhMPXDiccy/33hPEnGnjul9OZm19Y3Mru53b2d3bP8gfHjW1TBShDSK5VO0Aa8qZoA3DDKftWFEcBZy2gtHN1G/dU6WZFHdmHFM/wgPBQkawsVKd9Oq9fMEtujOgVeItSKF8Uvtm75WPai//2e1LkkRUGMKx1h3PjY2fYmUY4XSS6yaaxpiM8IB2LBU4otpPZ6dO0LlV+iiUypYwaKb+nkhxpPU4CmxnhM1QL3tT8T+vk5jw2k+ZiBNDBZkvChOOjETTv1GfKUoMH1uCiWL2VkSGWGFibDo5G4K3/PIqaZaK3mWxVLNpVGCOLJzCGVyAB1dQhluoQgMIDOABnuDZ4c6j8+K8zlszzmLmGP7AefsB/yGRTg==</latexit>

cS
<latexit sha1_base64="7xB/Qrjj8nYXgIA6N3kMWNpuJpY=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFMiHlAsoTZyWwyZHZmmZkVwpJPsLFQxNbWv/AL7Gz8FiePQhMPXDiccy/33hPEnGnjul9OZm19Y3Mru53b2d3bP8gfHjW1TBShDSK5VO0Aa8qZoA3DDKftWFEcBZy2gtHN1G/dU6WZFHdmHFM/wgPBQkawsVKd9Oq9fMEtujOgVeItSKF8Uvtm75WPai//2e1LkkRUGMKx1h3PjY2fYmUY4XSS6yaaxpiM8IB2LBU4otpPZ6dO0LlV+iiUypYwaKb+nkhxpPU4CmxnhM1QL3tT8T+vk5jw2k+ZiBNDBZkvChOOjETTv1GfKUoMH1uCiWL2VkSGWGFibDo5G4K3/PIqaZaK3mWxVLNpVGCOLJzCGVyAB1dQhluoQgMIDOABnuDZ4c6j8+K8zlszzmLmGP7AefsB/yGRTg==</latexit>

c·<latexit sha1_base64="phA5jw/3hFsS6uxQYJM+T7pKjmI=">AAAB8HicbVC7SgNBFL3rM8ZXVLCxWQyCVdiNhZYhNpYJmIckS5idnU2GzGOZmRXCkq+wsVDEVvAv/AI7G7/FyaPQxAMXDufcy733hAmj2njel7Oyura+sZnbym/v7O7tFw4Om1qmCpMGlkyqdog0YVSQhqGGkXaiCOIhI61weD3xW/dEaSrFrRklJOCoL2hMMTJWusO9rIsjaca9QtEreVO4y8Sfk2LluP5N36sftV7hsxtJnHIiDGZI647vJSbIkDIUMzLOd1NNEoSHqE86lgrEiQ6y6cFj98wqkRtLZUsYd6r+nsgQ13rEQ9vJkRnoRW8i/ud1UhNfBRkVSWqIwLNFccpcI93J925EFcGGjSxBWFF7q4sHSCFsbEZ5G4K/+PIyaZZL/kWpXLdpVGGGHJzAKZyDD5dQgRuoQQMwcHiAJ3h2lPPovDivs9YVZz5zBH/gvP0A9WqUNQ==</latexit>

cr<latexit sha1_base64="aaGpDs2ENtq4owONRAtwJgCM3ao=">AAAB7HicbVC7SgNBFL0TXzG+ooKNzWAQrMJuLLQMsbFMwE0CyRJmJ7PJkNnZZWZWCEu+wcZCEVs7/8IvsLPxW5w8Ck08cOFwzr3ce0+QCK6N43yh3Nr6xuZWfruws7u3f1A8PGrqOFWUeTQWsWoHRDPBJfMMN4K1E8VIFAjWCkY3U791z5Tmsbwz44T5ERlIHnJKjJU82svUpFcsOWVnBrxK3AUpVU8a3/y99lHvFT+7/ZimEZOGCqJ1x3US42dEGU4FmxS6qWYJoSMyYB1LJYmY9rPZsRN8bpU+DmNlSxo8U39PZCTSehwFtjMiZqiXvan4n9dJTXjtZ1wmqWGSzheFqcAmxtPPcZ8rRo0YW0Ko4vZWTIdEEWpsPgUbgrv88ippVsruZbnSsGnUYI48nMIZXIALV1CFW6iDBxQ4PMATPCOJHtELep235tBi5hj+AL39APLZknk=</latexit>

cr<latexit sha1_base64="aaGpDs2ENtq4owONRAtwJgCM3ao=">AAAB7HicbVC7SgNBFL0TXzG+ooKNzWAQrMJuLLQMsbFMwE0CyRJmJ7PJkNnZZWZWCEu+wcZCEVs7/8IvsLPxW5w8Ck08cOFwzr3ce0+QCK6N43yh3Nr6xuZWfruws7u3f1A8PGrqOFWUeTQWsWoHRDPBJfMMN4K1E8VIFAjWCkY3U791z5Tmsbwz44T5ERlIHnJKjJU82svUpFcsOWVnBrxK3AUpVU8a3/y99lHvFT+7/ZimEZOGCqJ1x3US42dEGU4FmxS6qWYJoSMyYB1LJYmY9rPZsRN8bpU+DmNlSxo8U39PZCTSehwFtjMiZqiXvan4n9dJTXjtZ1wmqWGSzheFqcAmxtPPcZ8rRo0YW0Ko4vZWTIdEEWpsPgUbgrv88ippVsruZbnSsGnUYI48nMIZXIALV1CFW6iDBxQ4PMATPCOJHtELep235tBi5hj+AL39APLZknk=</latexit>

cg
<latexit sha1_base64="797hGyTLiSY+qJcuXvikqFpjRvM=">AAAB7HicbVC7SgNBFL3rMyY+opY2g1GwCrux0DJoYxnBTQLJEmYns8mQmdllZjYQlnyDjYUitn6CP+Af2PkhWjt5FJp44MLhnHu5954w4Uwb1/10VlbX1jc2c1v5wvbO7l5x/6Cu41QR6pOYx6oZYk05k9Q3zHDaTBTFIuS0EQ6uJ35jSJVmsbwzo4QGAvckixjBxko+6WS9cadYcsvuFGiZeHNSqp58vb0PC9+1TvGj3Y1JKqg0hGOtW56bmCDDyjDC6TjfTjVNMBngHm1ZKrGgOsimx47RqVW6KIqVLWnQVP09kWGh9UiEtlNg09eL3kT8z2ulJroMMiaT1FBJZouilCMTo8nnqMsUJYaPLMFEMXsrIn2sMDE2n7wNwVt8eZnUK2XvvFy5tWlcwQw5OIJjOAMPLqAKN1ADHwgwuIdHeHKk8+A8Oy+z1hVnPnMIf+C8/gDFSpMW</latexit>

cg
<latexit sha1_base64="797hGyTLiSY+qJcuXvikqFpjRvM=">AAAB7HicbVC7SgNBFL3rMyY+opY2g1GwCrux0DJoYxnBTQLJEmYns8mQmdllZjYQlnyDjYUitn6CP+Af2PkhWjt5FJp44MLhnHu5954w4Uwb1/10VlbX1jc2c1v5wvbO7l5x/6Cu41QR6pOYx6oZYk05k9Q3zHDaTBTFIuS0EQ6uJ35jSJVmsbwzo4QGAvckixjBxko+6WS9cadYcsvuFGiZeHNSqp58vb0PC9+1TvGj3Y1JKqg0hGOtW56bmCDDyjDC6TjfTjVNMBngHm1ZKrGgOsimx47RqVW6KIqVLWnQVP09kWGh9UiEtlNg09eL3kT8z2ulJroMMiaT1FBJZouilCMTo8nnqMsUJYaPLMFEMXsrIn2sMDE2n7wNwVt8eZnUK2XvvFy5tWlcwQw5OIJjOAMPLqAKN1ADHwgwuIdHeHKk8+A8Oy+z1hVnPnMIf+C8/gDFSpMW</latexit>

cg
<latexit sha1_base64="797hGyTLiSY+qJcuXvikqFpjRvM=">AAAB7HicbVC7SgNBFL3rMyY+opY2g1GwCrux0DJoYxnBTQLJEmYns8mQmdllZjYQlnyDjYUitn6CP+Af2PkhWjt5FJp44MLhnHu5954w4Uwb1/10VlbX1jc2c1v5wvbO7l5x/6Cu41QR6pOYx6oZYk05k9Q3zHDaTBTFIuS0EQ6uJ35jSJVmsbwzo4QGAvckixjBxko+6WS9cadYcsvuFGiZeHNSqp58vb0PC9+1TvGj3Y1JKqg0hGOtW56bmCDDyjDC6TjfTjVNMBngHm1ZKrGgOsimx47RqVW6KIqVLWnQVP09kWGh9UiEtlNg09eL3kT8z2ulJroMMiaT1FBJZouilCMTo8nnqMsUJYaPLMFEMXsrIn2sMDE2n7wNwVt8eZnUK2XvvFy5tWlcwQw5OIJjOAMPLqAKN1ADHwgwuIdHeHKk8+A8Oy+z1hVnPnMIf+C8/gDFSpMW</latexit>

c·<latexit sha1_base64="phA5jw/3hFsS6uxQYJM+T7pKjmI=">AAAB8HicbVC7SgNBFL3rM8ZXVLCxWQyCVdiNhZYhNpYJmIckS5idnU2GzGOZmRXCkq+wsVDEVvAv/AI7G7/FyaPQxAMXDufcy733hAmj2njel7Oyura+sZnbym/v7O7tFw4Om1qmCpMGlkyqdog0YVSQhqGGkXaiCOIhI61weD3xW/dEaSrFrRklJOCoL2hMMTJWusO9rIsjaca9QtEreVO4y8Sfk2LluP5N36sftV7hsxtJnHIiDGZI647vJSbIkDIUMzLOd1NNEoSHqE86lgrEiQ6y6cFj98wqkRtLZUsYd6r+nsgQ13rEQ9vJkRnoRW8i/ud1UhNfBRkVSWqIwLNFccpcI93J925EFcGGjSxBWFF7q4sHSCFsbEZ5G4K/+PIyaZZL/kWpXLdpVGGGHJzAKZyDD5dQgRuoQQMwcHiAJ3h2lPPovDivs9YVZz5zBH/gvP0A9WqUNQ==</latexit>

c·<latexit sha1_base64="phA5jw/3hFsS6uxQYJM+T7pKjmI=">AAAB8HicbVC7SgNBFL3rM8ZXVLCxWQyCVdiNhZYhNpYJmIckS5idnU2GzGOZmRXCkq+wsVDEVvAv/AI7G7/FyaPQxAMXDufcy733hAmj2njel7Oyura+sZnbym/v7O7tFw4Om1qmCpMGlkyqdog0YVSQhqGGkXaiCOIhI61weD3xW/dEaSrFrRklJOCoL2hMMTJWusO9rIsjaca9QtEreVO4y8Sfk2LluP5N36sftV7hsxtJnHIiDGZI647vJSbIkDIUMzLOd1NNEoSHqE86lgrEiQ6y6cFj98wqkRtLZUsYd6r+nsgQ13rEQ9vJkRnoRW8i/ud1UhNfBRkVSWqIwLNFccpcI93J925EFcGGjSxBWFF7q4sHSCFsbEZ5G4K/+PIyaZZL/kWpXLdpVGGGHJzAKZyDD5dQgRuoQQMwcHiAJ3h2lPPovDivs9YVZz5zBH/gvP0A9WqUNQ==</latexit>

c·<latexit sha1_base64="phA5jw/3hFsS6uxQYJM+T7pKjmI=">AAAB8HicbVC7SgNBFL3rM8ZXVLCxWQyCVdiNhZYhNpYJmIckS5idnU2GzGOZmRXCkq+wsVDEVvAv/AI7G7/FyaPQxAMXDufcy733hAmj2njel7Oyura+sZnbym/v7O7tFw4Om1qmCpMGlkyqdog0YVSQhqGGkXaiCOIhI61weD3xW/dEaSrFrRklJOCoL2hMMTJWusO9rIsjaca9QtEreVO4y8Sfk2LluP5N36sftV7hsxtJnHIiDGZI647vJSbIkDIUMzLOd1NNEoSHqE86lgrEiQ6y6cFj98wqkRtLZUsYd6r+nsgQ13rEQ9vJkRnoRW8i/ud1UhNfBRkVSWqIwLNFccpcI93J925EFcGGjSxBWFF7q4sHSCFsbEZ5G4K/+PIyaZZL/kWpXLdpVGGGHJzAKZyDD5dQgRuoQQMwcHiAJ3h2lPPovDivs9YVZz5zBH/gvP0A9WqUNQ==</latexit>

cb<latexit sha1_base64="/ttt2YRcZpie7WcdVPXpHwHVgE4=">AAAB7HicbVC7SgNBFL0TXzG+ooKNzWAQrMJuLLQMsbFMwE0CyRJmJ7PJkNnZZWZWCEu+wcZCEVs7/8IvsLPxW5w8Ck08cOFwzr3ce0+QCK6N43yh3Nr6xuZWfruws7u3f1A8PGrqOFWUeTQWsWoHRDPBJfMMN4K1E8VIFAjWCkY3U791z5Tmsbwz44T5ERlIHnJKjJU82suCSa9YcsrODHiVuAtSqp40vvl77aPeK352+zFNIyYNFUTrjuskxs+IMpwKNil0U80SQkdkwDqWShIx7WezYyf43Cp9HMbKljR4pv6eyEik9TgKbGdEzFAve1PxP6+TmvDaz7hMUsMknS8KU4FNjKef4z5XjBoxtoRQxe2tmA6JItTYfAo2BHf55VXSrJTdy3KlYdOowRx5OIUzuAAXrqAKt1AHDyhweIAneEYSPaIX9DpvzaHFzDH8AXr7AdqJkmk=</latexit>

c·<latexit sha1_base64="phA5jw/3hFsS6uxQYJM+T7pKjmI=">AAAB8HicbVC7SgNBFL3rM8ZXVLCxWQyCVdiNhZYhNpYJmIckS5idnU2GzGOZmRXCkq+wsVDEVvAv/AI7G7/FyaPQxAMXDufcy733hAmj2njel7Oyura+sZnbym/v7O7tFw4Om1qmCpMGlkyqdog0YVSQhqGGkXaiCOIhI61weD3xW/dEaSrFrRklJOCoL2hMMTJWusO9rIsjaca9QtEreVO4y8Sfk2LluP5N36sftV7hsxtJnHIiDGZI647vJSbIkDIUMzLOd1NNEoSHqE86lgrEiQ6y6cFj98wqkRtLZUsYd6r+nsgQ13rEQ9vJkRnoRW8i/ud1UhNfBRkVSWqIwLNFccpcI93J925EFcGGjSxBWFF7q4sHSCFsbEZ5G4K/+PIyaZZL/kWpXLdpVGGGHJzAKZyDD5dQgRuoQQMwcHiAJ3h2lPPovDivs9YVZz5zBH/gvP0A9WqUNQ==</latexit>

cb<latexit sha1_base64="/ttt2YRcZpie7WcdVPXpHwHVgE4=">AAAB7HicbVC7SgNBFL0TXzG+ooKNzWAQrMJuLLQMsbFMwE0CyRJmJ7PJkNnZZWZWCEu+wcZCEVs7/8IvsLPxW5w8Ck08cOFwzr3ce0+QCK6N43yh3Nr6xuZWfruws7u3f1A8PGrqOFWUeTQWsWoHRDPBJfMMN4K1E8VIFAjWCkY3U791z5Tmsbwz44T5ERlIHnJKjJU82suCSa9YcsrODHiVuAtSqp40vvl77aPeK352+zFNIyYNFUTrjuskxs+IMpwKNil0U80SQkdkwDqWShIx7WezYyf43Cp9HMbKljR4pv6eyEik9TgKbGdEzFAve1PxP6+TmvDaz7hMUsMknS8KU4FNjKef4z5XjBoxtoRQxe2tmA6JItTYfAo2BHf55VXSrJTdy3KlYdOowRx5OIUzuAAXrqAKt1AHDyhweIAneEYSPaIX9DpvzaHFzDH8AXr7AdqJkmk=</latexit>

cb<latexit sha1_base64="/ttt2YRcZpie7WcdVPXpHwHVgE4=">AAAB7HicbVC7SgNBFL0TXzG+ooKNzWAQrMJuLLQMsbFMwE0CyRJmJ7PJkNnZZWZWCEu+wcZCEVs7/8IvsLPxW5w8Ck08cOFwzr3ce0+QCK6N43yh3Nr6xuZWfruws7u3f1A8PGrqOFWUeTQWsWoHRDPBJfMMN4K1E8VIFAjWCkY3U791z5Tmsbwz44T5ERlIHnJKjJU82suCSa9YcsrODHiVuAtSqp40vvl77aPeK352+zFNIyYNFUTrjuskxs+IMpwKNil0U80SQkdkwDqWShIx7WezYyf43Cp9HMbKljR4pv6eyEik9TgKbGdEzFAve1PxP6+TmvDaz7hMUsMknS8KU4FNjKef4z5XjBoxtoRQxe2tmA6JItTYfAo2BHf55VXSrJTdy3KlYdOowRx5OIUzuAAXrqAKt1AHDyhweIAneEYSPaIX9DpvzaHFzDH8AXr7AdqJkmk=</latexit>

cb<latexit sha1_base64="/ttt2YRcZpie7WcdVPXpHwHVgE4=">AAAB7HicbVC7SgNBFL0TXzG+ooKNzWAQrMJuLLQMsbFMwE0CyRJmJ7PJkNnZZWZWCEu+wcZCEVs7/8IvsLPxW5w8Ck08cOFwzr3ce0+QCK6N43yh3Nr6xuZWfruws7u3f1A8PGrqOFWUeTQWsWoHRDPBJfMMN4K1E8VIFAjWCkY3U791z5Tmsbwz44T5ERlIHnJKjJU82suCSa9YcsrODHiVuAtSqp40vvl77aPeK352+zFNIyYNFUTrjuskxs+IMpwKNil0U80SQkdkwDqWShIx7WezYyf43Cp9HMbKljR4pv6eyEik9TgKbGdEzFAve1PxP6+TmvDaz7hMUsMknS8KU4FNjKef4z5XjBoxtoRQxe2tmA6JItTYfAo2BHf55VXSrJTdy3KlYdOowRx5OIUzuAAXrqAKt1AHDyhweIAneEYSPaIX9DpvzaHFzDH8AXr7AdqJkmk=</latexit>

c·<latexit sha1_base64="phA5jw/3hFsS6uxQYJM+T7pKjmI=">AAAB8HicbVC7SgNBFL3rM8ZXVLCxWQyCVdiNhZYhNpYJmIckS5idnU2GzGOZmRXCkq+wsVDEVvAv/AI7G7/FyaPQxAMXDufcy733hAmj2njel7Oyura+sZnbym/v7O7tFw4Om1qmCpMGlkyqdog0YVSQhqGGkXaiCOIhI61weD3xW/dEaSrFrRklJOCoL2hMMTJWusO9rIsjaca9QtEreVO4y8Sfk2LluP5N36sftV7hsxtJnHIiDGZI647vJSbIkDIUMzLOd1NNEoSHqE86lgrEiQ6y6cFj98wqkRtLZUsYd6r+nsgQ13rEQ9vJkRnoRW8i/ud1UhNfBRkVSWqIwLNFccpcI93J925EFcGGjSxBWFF7q4sHSCFsbEZ5G4K/+PIyaZZL/kWpXLdpVGGGHJzAKZyDD5dQgRuoQQMwcHiAJ3h2lPPovDivs9YVZz5zBH/gvP0A9WqUNQ==</latexit>

c·<latexit sha1_base64="phA5jw/3hFsS6uxQYJM+T7pKjmI=">AAAB8HicbVC7SgNBFL3rM8ZXVLCxWQyCVdiNhZYhNpYJmIckS5idnU2GzGOZmRXCkq+wsVDEVvAv/AI7G7/FyaPQxAMXDufcy733hAmj2njel7Oyura+sZnbym/v7O7tFw4Om1qmCpMGlkyqdog0YVSQhqGGkXaiCOIhI61weD3xW/dEaSrFrRklJOCoL2hMMTJWusO9rIsjaca9QtEreVO4y8Sfk2LluP5N36sftV7hsxtJnHIiDGZI647vJSbIkDIUMzLOd1NNEoSHqE86lgrEiQ6y6cFj98wqkRtLZUsYd6r+nsgQ13rEQ9vJkRnoRW8i/ud1UhNfBRkVSWqIwLNFccpcI93J925EFcGGjSxBWFF7q4sHSCFsbEZ5G4K/+PIyaZZL/kWpXLdpVGGGHJzAKZyDD5dQgRuoQQMwcHiAJ3h2lPPovDivs9YVZz5zBH/gvP0A9WqUNQ==</latexit>

(d) rollout evaluation 
(individual)

(c) rollout evaluation (ensemble)

· · ·<latexit sha1_base64="HizBLF/eww/NXksVAtI5HCWfU4M=">AAAB7XicbZC7SgNBFIZn4y2ut6ilzWAQrMJuLLQRgzaWEcwFkiXMzs4mY2ZnlpmzQgh5BxsLRWwsfBR7G/FtnFwKTfxh4OP/z2HOOWEquAHP+3ZyS8srq2v5dXdjc2t7p7C7Vzcq05TVqBJKN0NimOCS1YCDYM1UM5KEgjXC/tU4b9wzbbiStzBIWZCQruQxpwSsVW/TSIHpFIpeyZsIL4I/g+LFh3uevn251U7hsx0pmiVMAhXEmJbvpRAMiQZOBRu57cywlNA+6bKWRUkSZoLhZNoRPrJOhGOl7ZOAJ+7vjiFJjBkkoa1MCPTMfDY2/8taGcRnwZDLNAMm6fSjOBMYFB6vjiOuGQUxsECo5nZWTHtEEwr2QK49gj+/8iLUyyX/pFS+8YqVSzRVHh2gQ3SMfHSKKugaVVENUXSHHtATenaU8+i8OK/T0pwz69lHf+S8/wAPO5Jw</latexit>p(cb|z1)
<latexit sha1_base64="Z+L75nCH0OZPNLVpiF+Fx1RQKd4=">AAAB8XicbVDLSsNAFL3xWeur6tLN0CJUhJLUhS6LblxWsA9sQ5hMJ+3QySTMTIQY+xfduFDErX/jrn/j9LHQ1gMXDufcy733+DFnStv2xFpb39jc2s7t5Hf39g8OC0fHTRUlktAGiXgk2z5WlDNBG5ppTtuxpDj0OW35w9up33qiUrFIPOg0pm6I+4IFjGBtpMe4TDz/5dlzzr1Cya7YM6BV4ixIqVbsXowntbTuFb67vYgkIRWacKxUx7Fj7WZYakY4HeW7iaIxJkPcpx1DBQ6pcrPZxSN0ZpQeCiJpSmg0U39PZDhUKg190xliPVDL3lT8z+skOrh2MybiRFNB5ouChCMdoen7qMckJZqnhmAimbkVkQGWmGgTUt6E4Cy/vEqa1YpzWanemzRuYI4cnEIRyuDAFdTgDurQAAICxvAG75ayXq0P63PeumYtZk7gD6yvH9d4k1g=</latexit>

· · ·<latexit sha1_base64="HizBLF/eww/NXksVAtI5HCWfU4M=">AAAB7XicbZC7SgNBFIZn4y2ut6ilzWAQrMJuLLQRgzaWEcwFkiXMzs4mY2ZnlpmzQgh5BxsLRWwsfBR7G/FtnFwKTfxh4OP/z2HOOWEquAHP+3ZyS8srq2v5dXdjc2t7p7C7Vzcq05TVqBJKN0NimOCS1YCDYM1UM5KEgjXC/tU4b9wzbbiStzBIWZCQruQxpwSsVW/TSIHpFIpeyZsIL4I/g+LFh3uevn251U7hsx0pmiVMAhXEmJbvpRAMiQZOBRu57cywlNA+6bKWRUkSZoLhZNoRPrJOhGOl7ZOAJ+7vjiFJjBkkoa1MCPTMfDY2/8taGcRnwZDLNAMm6fSjOBMYFB6vjiOuGQUxsECo5nZWTHtEEwr2QK49gj+/8iLUyyX/pFS+8YqVSzRVHh2gQ3SMfHSKKugaVVENUXSHHtATenaU8+i8OK/T0pwz69lHf+S8/wAPO5Jw</latexit> · · ·<latexit sha1_base64="HizBLF/eww/NXksVAtI5HCWfU4M=">AAAB7XicbZC7SgNBFIZn4y2ut6ilzWAQrMJuLLQRgzaWEcwFkiXMzs4mY2ZnlpmzQgh5BxsLRWwsfBR7G/FtnFwKTfxh4OP/z2HOOWEquAHP+3ZyS8srq2v5dXdjc2t7p7C7Vzcq05TVqBJKN0NimOCS1YCDYM1UM5KEgjXC/tU4b9wzbbiStzBIWZCQruQxpwSsVW/TSIHpFIpeyZsIL4I/g+LFh3uevn251U7hsx0pmiVMAhXEmJbvpRAMiQZOBRu57cywlNA+6bKWRUkSZoLhZNoRPrJOhGOl7ZOAJ+7vjiFJjBkkoa1MCPTMfDY2/8taGcRnwZDLNAMm6fSjOBMYFB6vjiOuGQUxsECo5nZWTHtEEwr2QK49gj+/8iLUyyX/pFS+8YqVSzRVHh2gQ3SMfHSKKugaVVENUXSHHtATenaU8+i8OK/T0pwz69lHf+S8/wAPO5Jw</latexit>p(cg|z6)
<latexit sha1_base64="dyrN3oFS6GbMHTagPAQVMf8BgWI=">AAAB8XicbVC7SgNBFL3rMyY+opY2g1GITdiNoJZBG8sI5oHJEmYns8mQ2dllZjYQ1/yFjYUitvb+gH9g54do7eRRaOKBC4dz7uXee7yIM6Vt+9NaWFxaXllNraUz6xubW9ntnaoKY0lohYQ8lHUPK8qZoBXNNKf1SFIceJzWvN7FyK/1qVQsFNd6EFE3wB3BfEawNtJNlCetzt1t6+Solc3ZBXsMNE+cKcmVDr7e3vuZ73Ir+9FshyQOqNCEY6Uajh1pN8FSM8LpMN2MFY0w6eEObRgqcECVm4wvHqJDo7SRH0pTQqOx+nsiwYFSg8AznQHWXTXrjcT/vEas/TM3YSKKNRVkssiPOdIhGr2P2kxSovnAEEwkM7ci0sUSE21CSpsQnNmX50m1WHCOC8Urk8Y5TJCCPdiHPDhwCiW4hDJUgICAe3iEJ0tZD9az9TJpXbCmM7vwB9brD43llJw=</latexit>

· · ·<latexit sha1_base64="HizBLF/eww/NXksVAtI5HCWfU4M=">AAAB7XicbZC7SgNBFIZn4y2ut6ilzWAQrMJuLLQRgzaWEcwFkiXMzs4mY2ZnlpmzQgh5BxsLRWwsfBR7G/FtnFwKTfxh4OP/z2HOOWEquAHP+3ZyS8srq2v5dXdjc2t7p7C7Vzcq05TVqBJKN0NimOCS1YCDYM1UM5KEgjXC/tU4b9wzbbiStzBIWZCQruQxpwSsVW/TSIHpFIpeyZsIL4I/g+LFh3uevn251U7hsx0pmiVMAhXEmJbvpRAMiQZOBRu57cywlNA+6bKWRUkSZoLhZNoRPrJOhGOl7ZOAJ+7vjiFJjBkkoa1MCPTMfDY2/8taGcRnwZDLNAMm6fSjOBMYFB6vjiOuGQUxsECo5nZWTHtEEwr2QK49gj+/8iLUyyX/pFS+8YqVSzRVHh2gQ3SMfHSKKugaVVENUXSHHtATenaU8+i8OK/T0pwz69lHf+S8/wAPO5Jw</latexit>p(cr|z5)
<latexit sha1_base64="1qlMO0XlHDQpkthwThCVJ8zRaM8=">AAAB8XicbVDLSgNBEOyNrxhfUY9ehgQhIoTdiOgx6MVjBPPAZFlmJ7PJkNnZZWZWWGP+IhcPinj1b7zlb5w8DppY0FBUddPd5cecKW3bEyuztr6xuZXdzu3s7u0f5A+PGipKJKF1EvFItnysKGeC1jXTnLZiSXHoc9r0B7dTv/lEpWKReNBpTN0Q9wQLGMHaSI9xiXjy5dm7PPPyRbtsz4BWibMgxWqhcz6eVNOal//udCOShFRowrFSbceOtTvEUjPC6SjXSRSNMRngHm0bKnBIlTucXTxCp0bpoiCSpoRGM/X3xBCHSqWhbzpDrPtq2ZuK/3ntRAfX7pCJONFUkPmiIOFIR2j6PuoySYnmqSGYSGZuRaSPJSbahJQzITjLL6+SRqXsXJQr9yaNG5gjCydQgBI4cAVVuIMa1IGAgDG8wbulrFfrw/qct2asxcwx/IH19QP2HJNs</latexit>

· · ·<latexit sha1_base64="HizBLF/eww/NXksVAtI5HCWfU4M=">AAAB7XicbZC7SgNBFIZn4y2ut6ilzWAQrMJuLLQRgzaWEcwFkiXMzs4mY2ZnlpmzQgh5BxsLRWwsfBR7G/FtnFwKTfxh4OP/z2HOOWEquAHP+3ZyS8srq2v5dXdjc2t7p7C7Vzcq05TVqBJKN0NimOCS1YCDYM1UM5KEgjXC/tU4b9wzbbiStzBIWZCQruQxpwSsVW/TSIHpFIpeyZsIL4I/g+LFh3uevn251U7hsx0pmiVMAhXEmJbvpRAMiQZOBRu57cywlNA+6bKWRUkSZoLhZNoRPrJOhGOl7ZOAJ+7vjiFJjBkkoa1MCPTMfDY2/8taGcRnwZDLNAMm6fSjOBMYFB6vjiOuGQUxsECo5nZWTHtEEwr2QK49gj+/8iLUyyX/pFS+8YqVSzRVHh2gQ3SMfHSKKugaVVENUXSHHtATenaU8+i8OK/T0pwz69lHf+S8/wAPO5Jw</latexit>

fragment
point clouds

fragment
point clouds

· · ·<latexit sha1_base64="HizBLF/eww/NXksVAtI5HCWfU4M=">AAAB7XicbZC7SgNBFIZn4y2ut6ilzWAQrMJuLLQRgzaWEcwFkiXMzs4mY2ZnlpmzQgh5BxsLRWwsfBR7G/FtnFwKTfxh4OP/z2HOOWEquAHP+3ZyS8srq2v5dXdjc2t7p7C7Vzcq05TVqBJKN0NimOCS1YCDYM1UM5KEgjXC/tU4b9wzbbiStzBIWZCQruQxpwSsVW/TSIHpFIpeyZsIL4I/g+LFh3uevn251U7hsx0pmiVMAhXEmJbvpRAMiQZOBRu57cywlNA+6bKWRUkSZoLhZNoRPrJOhGOl7ZOAJ+7vjiFJjBkkoa1MCPTMfDY2/8taGcRnwZDLNAMm6fSjOBMYFB6vjiOuGQUxsECo5nZWTHtEEwr2QK49gj+/8iLUyyX/pFS+8YqVSzRVHh2gQ3SMfHSKKugaVVENUXSHHtATenaU8+i8OK/T0pwz69lHf+S8/wAPO5Jw</latexit>

· · ·<latexit sha1_base64="HizBLF/eww/NXksVAtI5HCWfU4M=">AAAB7XicbZC7SgNBFIZn4y2ut6ilzWAQrMJuLLQRgzaWEcwFkiXMzs4mY2ZnlpmzQgh5BxsLRWwsfBR7G/FtnFwKTfxh4OP/z2HOOWEquAHP+3ZyS8srq2v5dXdjc2t7p7C7Vzcq05TVqBJKN0NimOCS1YCDYM1UM5KEgjXC/tU4b9wzbbiStzBIWZCQruQxpwSsVW/TSIHpFIpeyZsIL4I/g+LFh3uevn251U7hsx0pmiVMAhXEmJbvpRAMiQZOBRu57cywlNA+6bKWRUkSZoLhZNoRPrJOhGOl7ZOAJ+7vjiFJjBkkoa1MCPTMfDY2/8taGcRnwZDLNAMm6fSjOBMYFB6vjiOuGQUxsECo5nZWTHtEEwr2QK49gj+/8iLUyyX/pFS+8YqVSzRVHh2gQ3SMfHSKKugaVVENUXSHHtATenaU8+i8OK/T0pwz69lHf+S8/wAPO5Jw</latexit>

· · ·<latexit sha1_base64="HizBLF/eww/NXksVAtI5HCWfU4M=">AAAB7XicbZC7SgNBFIZn4y2ut6ilzWAQrMJuLLQRgzaWEcwFkiXMzs4mY2ZnlpmzQgh5BxsLRWwsfBR7G/FtnFwKTfxh4OP/z2HOOWEquAHP+3ZyS8srq2v5dXdjc2t7p7C7Vzcq05TVqBJKN0NimOCS1YCDYM1UM5KEgjXC/tU4b9wzbbiStzBIWZCQruQxpwSsVW/TSIHpFIpeyZsIL4I/g+LFh3uevn251U7hsx0pmiVMAhXEmJbvpRAMiQZOBRu57cywlNA+6bKWRUkSZoLhZNoRPrJOhGOl7ZOAJ+7vjiFJjBkkoa1MCPTMfDY2/8taGcRnwZDLNAMm6fSjOBMYFB6vjiOuGQUxsECo5nZWTHtEEwr2QK49gj+/8iLUyyX/pFS+8YqVSzRVHh2gQ3SMfHSKKugaVVENUXSHHtATenaU8+i8OK/T0pwz69lHf+S8/wAPO5Jw</latexit>

...<latexit sha1_base64="7t24ksjV8fObpViH8enJRBZbKaQ=">AAAB7XicbZC7SgNBFIbPeo3rLWppMxgEq7AbC23EoI1lBHOBZAmzs5NkzOzMMjMbCEvewcZCERsLH8XeRnwbJ5dCE38Y+Pj/c5hzTphwpo3nfTtLyyura+u5DXdza3tnN7+3X9MyVYRWieRSNUKsKWeCVg0znDYSRXEccloP+9fjvD6gSjMp7swwoUGMu4J1GMHGWrXWIJJGt/MFr+hNhBbBn0Hh8sO9SN6+3Eo7/9mKJEljKgzhWOum7yUmyLAyjHA6cluppgkmfdylTYsCx1QH2WTaETq2ToQ6UtknDJq4vzsyHGs9jENbGWPT0/PZ2Pwva6amcx5kTCSpoYJMP+qkHBmJxqujiClKDB9awEQxOysiPawwMfZArj2CP7/yItRKRf+0WLr1CuUrmCoHh3AEJ+DDGZThBipQBQL38ABP8OxI59F5cV6npUvOrOcA/sh5/wEsU5KD</latexit>

rollout result

p(c|z1)
<latexit sha1_base64="a75vGtELP/Y+SxEcnpMhy0DxHkY=">AAAB73icbVDLSgNBEOyNrxhfUY9ehgQhIoTdeNBj0IvHCOYByRJmJ7PJkNnZzcyssK75CRE8KOLV3/GWv3HyOGhiQUNR1U13lxdxprRtT6zM2vrG5lZ2O7ezu7d/kD88aqgwloTWSchD2fKwopwJWtdMc9qKJMWBx2nTG95M/eYDlYqF4l4nEXUD3BfMZwRrI7WiEnl67Dpn3XzRLtszoFXiLEixWuicv0yqSa2b/+70QhIHVGjCsVJtx460m2KpGeF0nOvEikaYDHGftg0VOKDKTWf3jtGpUXrID6UpodFM/T2R4kCpJPBMZ4D1QC17U/E/rx1r/8pNmYhiTQWZL/JjjnSIps+jHpOUaJ4Ygolk5lZEBlhiok1EOROCs/zyKmlUys5FuXJn0riGObJwAgUogQOXUIVbqEEdCHB4hjd4t0bWq/Vhfc5bM9Zi5hj+wPr6AWLlkoM=</latexit>

p(c|z2)
<latexit sha1_base64="RMhxU1Q879h9aXkJuT1TElcqBhc=">AAAB73icbVDLSgNBEOyNrxhfUY9ehgQhIoTdeNBj0IvHCOYByRJmJ7PJkNnZzcyssK75CRE8KOLV3/GWv3HyOGhiQUNR1U13lxdxprRtT6zM2vrG5lZ2O7ezu7d/kD88aqgwloTWSchD2fKwopwJWtdMc9qKJMWBx2nTG95M/eYDlYqF4l4nEXUD3BfMZwRrI7WiEnl67FbOuvmiXbZnQKvEWZBitdA5f5lUk1o3/93phSQOqNCEY6Xajh1pN8VSM8LpONeJFY0wGeI+bRsqcECVm87uHaNTo/SQH0pTQqOZ+nsixYFSSeCZzgDrgVr2puJ/XjvW/pWbMhHFmgoyX+THHOkQTZ9HPSYp0TwxBBPJzK2IDLDERJuIciYEZ/nlVdKolJ2LcuXOpHENc2ThBApQAgcuoQq3UIM6EODwDG/wbo2sV+vD+py3ZqzFzDH8gfX1A2RqkoQ=</latexit>

p(c|z9)
<latexit sha1_base64="TgIqN68aZaH8tlbxfhJ3gTYc9kg=">AAAB73icbVDLSgNBEOyNrxhfUY9ehgQhIoTdeFBvQS8eI5gHJEuYncwmQ2Zn15lZYV3zEyJ4UMSrv+Mtf+PkcdDEgoaiqpvuLi/iTGnbHluZldW19Y3sZm5re2d3L79/0FBhLAmtk5CHsuVhRTkTtK6Z5rQVSYoDj9OmN7ye+M0HKhULxZ1OIuoGuC+YzwjWRmpFJfL02L086eaLdtmeAi0TZ06K1ULn9GVcTWrd/HenF5I4oEITjpVqO3ak3RRLzQino1wnVjTCZIj7tG2owAFVbjq9d4SOjdJDfihNCY2m6u+JFAdKJYFnOgOsB2rRm4j/ee1Y+xduykQUayrIbJEfc6RDNHke9ZikRPPEEEwkM7ciMsASE20iypkQnMWXl0mjUnbOypVbk8YVzJCFIyhACRw4hyrcQA3qQIDDM7zBu3VvvVof1uesNWPNZw7hD6yvH28Nkos=</latexit>

...<latexit sha1_base64="7t24ksjV8fObpViH8enJRBZbKaQ=">AAAB7XicbZC7SgNBFIbPeo3rLWppMxgEq7AbC23EoI1lBHOBZAmzs5NkzOzMMjMbCEvewcZCERsLH8XeRnwbJ5dCE38Y+Pj/c5hzTphwpo3nfTtLyyura+u5DXdza3tnN7+3X9MyVYRWieRSNUKsKWeCVg0znDYSRXEccloP+9fjvD6gSjMp7swwoUGMu4J1GMHGWrXWIJJGt/MFr+hNhBbBn0Hh8sO9SN6+3Eo7/9mKJEljKgzhWOum7yUmyLAyjHA6cluppgkmfdylTYsCx1QH2WTaETq2ToQ6UtknDJq4vzsyHGs9jENbGWPT0/PZ2Pwva6amcx5kTCSpoYJMP+qkHBmJxqujiClKDB9awEQxOysiPawwMfZArj2CP7/yItRKRf+0WLr1CuUrmCoHh3AEJ+DDGZThBipQBQL38ABP8OxI59F5cV6npUvOrOcA/sh5/wEsU5KD</latexit>

h({cj})
<latexit sha1_base64="XUM6ew6Cey0vTh2K6+I8XW4qVJA=">AAAB8XicbVC7TsNAEFyHV0h4BChpTgSk0ER2KKCMoKEMEnmI2IrOl3Ny5Hy27s6RIit/QUMBQrT0/AB/QMeHQM3lUUBgpJVGM7va3fFjzpS27Q8rs7S8srqWXc/lNza3tgs7uw0VJZLQOol4JFs+VpQzQeuaaU5bsaQ49Dlt+oOLid8cUqlYJK71KKZeiHuCBYxgbaSbfslNSefWHR93CkW7bE+B/hJnTorVw8/Xt2H+q9YpvLvdiCQhFZpwrFTbsWPtpVhqRjgd59xE0RiTAe7RtqECh1R56fTiMToyShcFkTQlNJqqPydSHCo1Cn3TGWLdV4veRPzPayc6OPNSJuJEU0Fmi4KEIx2hyfuoyyQlmo8MwUQycysifSwx0SaknAnBWXz5L2lUys5JuXJl0jiHGbKwDwdQAgdOoQqXUIM6EBBwBw/waCnr3nqynmetGWs+swe/YL18A74dlLw=</latexit>

{
<latexit sha1_base64="kOqkhLPPBUmIHHb1UhfkEDxEvBk=">AAAB6XicbVDLSgNBEOz1GeMr6tHLkCAIQtiNBz0GvXiMYh6QXcLsZDYZMjuzzMwKy5I/8CKoiFf/yFv+xsnjoIkFDUVVN91dYcKZNq47cdbWNza3tgs7xd29/YPD0tFxS8tUEdokkkvVCbGmnAnaNMxw2kkUxXHIaTsc3U799hNVmknxaLKEBjEeCBYxgo2VHvy8V6q4VXcGtEq8BanUy/7F66SeNXqlb78vSRpTYQjHWnc9NzFBjpVhhNNx0U81TTAZ4QHtWipwTHWQzy4dozOr9FEklS1h0Ez9PZHjWOssDm1njM1QL3tT8T+vm5roOsiZSFJDBZkvilKOjETTt1GfKUoMzyzBRDF7KyJDrDAxNpyiDcFbfnmVtGpV77Jau7dp3MAcBTiFMpyDB1dQhztoQBMIRPAMb/DujJwX58P5nLeuOYuZE/gD5+sHt3uQdA==</latexit>

sampled from
p({ĉi}|{zi})

<latexit sha1_base64="11YE4ywe0yNURZAfCb2fvCLfcis=">AAACAXicbVDLSsNAFJ3UV62vqBvBzdAiVISS1IUui25cVrAPaEKYTCft0MkkzEyEGOvGX/AT3LhQxK1/4a5/46TtQqsHLvdwzr3M3OPHjEplWROjsLS8srpWXC9tbG5t75i7e20ZJQKTFo5YJLo+koRRTlqKKka6sSAo9Bnp+KPL3O/cEiFpxG9UGhM3RANOA4qR0pJnHsRVJ3OGSGV47FFnfO9kd3k/9syKVbOmgH+JPSeVRtk5eZo00qZnfjn9CCch4QozJGXPtmLlZkgoihkZl5xEkhjhERqQnqYchUS62fSCMTzSSh8GkdDFFZyqPzcyFEqZhr6eDJEaykUvF//zeokKzt2M8jhRhOPZQ0HCoIpgHgfsU0GwYqkmCAuq/wrxEAmElQ6tpEOwF0/+S9r1mn1aq1/rNC7ADEVwCMqgCmxwBhrgCjRBC2DwAJ7BK3gzHo0X4934mI0WjPnOPvgF4/MbFZiaRQ==</latexit>

Ig
<latexit sha1_base64="PA8y8Aaum9MerDliALYCHyYYVAQ=">AAAB9HicbVC7TsMwFL3hWcKrwMhiUSExVUkZYEFUsMBWJPqQ2lA5rtNadZxgO5WqqN/BwgCqWPkNdhbE3+C0HaDlSJaOzrlX9/j4MWdKO863tbS8srq2ntuwN7e2d3bze/s1FSWS0CqJeCQbPlaUM0GrmmlOG7GkOPQ5rfv968yvD6hULBL3ehhTL8RdwQJGsDaS1wqx7hHM09vRQ7edLzhFZwK0SNwZKVx+2Bfx+MuutPOfrU5EkpAKTThWquk6sfZSLDUjnI7sVqJojEkfd2nTUIFDqrx0EnqEjo3SQUEkzRMaTdTfGykOlRqGvpnMQqp5LxP/85qJDs69lIk40VSQ6aEg4UhHKGsAdZikRPOhIZhIZrIi0sMSE216sk0J7vyXF0mtVHRPi6U7p1C+gilycAhHcAIunEEZbqACVSDwCE/wAq/WwHq2xtbbdHTJmu0cwB9Y7z9bO5V5</latexit>

H(It)
<latexit sha1_base64="E2ENuQZP1RdiCBD44Yb1uiuq1Mc="></latexit>

PC
Encoder

PC
Encoder p(c|z)

<latexit sha1_base64="ai5CpkbZgLM23mpWaXbFYeu+KOM=">AAAB7XicbVDLSgNBEOyNrxhfUY9ehgQhIoTdeNBj0IvHCOYByRJmJ5NkzOzMMjMrrGv+wYMeFPHq/3jL3zh5HDRa0FBUddPdFUScaeO6Eyezsrq2vpHdzG1t7+zu5fcPGlrGitA6kVyqVoA15UzQumGG01akKA4DTpvB6GrqN++p0kyKW5NE1A/xQLA+I9hYqRGVyOPDSTdfdMvuDOgv8RakWC10Tp8n1aTWzX91epLEIRWGcKx123Mj46dYGUY4Hec6saYRJiM8oG1LBQ6p9tPZtWN0bJUe6ktlSxg0U39OpDjUOgkD2xliM9TL3lT8z2vHpn/hp0xEsaGCzBf1Y46MRNPXUY8pSgxPLMFEMXsrIkOsMDE2oJwNwVt++S9pVMreWblyY9O4hDmycAQFKIEH51CFa6hBHQjcwRO8wpsjnRfn3fmYt2acxcwh/ILz+Q0555Hf</latexit>

frag. type
probability

{zi}
<latexit sha1_base64="2cPBL1vweg5QnO7RkZH7cyGZ/9U=">AAAB7nicbVDLSgNBEOz1GeMr6tHLkCAIQtiNBz0GvXiMYB6QXcLsZDYZMjO7zMwK65KPEMSDIl79Hm/5GyePgyYWNBRV3XR3hQln2rjuxFlb39jc2i7sFHf39g8OS0fHLR2nitAmiXmsOiHWlDNJm4YZTjuJoliEnLbD0e3Ubz9SpVksH0yW0EDggWQRI9hYqe3nTz3mj3ulilt1Z0CrxFuQSr3sX7xM6lmjV/r2+zFJBZWGcKx113MTE+RYGUY4HRf9VNMEkxEe0K6lEguqg3x27hidWaWPoljZkgbN1N8TORZaZyK0nQKboV72puJ/Xjc10XWQM5mkhkoyXxSlHJkYTX9HfaYoMTyzBBPF7K2IDLHCxNiEijYEb/nlVdKqVb3Lau3epnEDcxTgFMpwDh5cQR3uoAFNIDCCZ3iDdydxXp0P53PeuuYsZk7gD5yvH6mbksE=</latexit>

{ĉi} {zi}
<latexit sha1_base64="YU5itRSDAKjwPB1fCajEJ3HfQ84=">AAACCXicbVC7SgNBFJ2Nrxhfq5Y2Q4IgCGE3FloGbSwjmAdkwzI7mU2GzD6YuausS1obWz/DxkIRW//ALn/jbJJCEw9cOJxzL/fe48WCK7CsiVFYWV1b3yhulra2d3b3zP2DlooSSVmTRiKSHY8oJnjImsBBsE4sGQk8wdre6Cr323dMKh6Ft5DGrBeQQch9TgloyTWxkzlDAhkdu9wZY0cwH4iU0b02HnLJNStW1ZoCLxN7Tir1snP6PKmnDdf8dvoRTQIWAhVEqa5txdDLiAROBRuXnESxmNARGbCupiEJmOpl00/G+FgrfexHUlcIeKr+nshIoFQaeLozIDBUi14u/ud1E/AvehkP4wRYSGeL/ERgiHAeC+5zySiIVBNCJde3YjokklDQ4ZV0CPbiy8ukVavaZ9XajU7jEs1QREeojE6Qjc5RHV2jBmoiih7RC3pD78aT8Wp8GJ+z1oIxnzlEf2B8/QB00J3K</latexit>

...
<latexit sha1_base64="7t24ksjV8fObpViH8enJRBZbKaQ=">AAAB7XicbZC7SgNBFIbPeo3rLWppMxgEq7AbC23EoI1lBHOBZAmzs5NkzOzMMjMbCEvewcZCERsLH8XeRnwbJ5dCE38Y+Pj/c5hzTphwpo3nfTtLyyura+u5DXdza3tnN7+3X9MyVYRWieRSNUKsKWeCVg0znDYSRXEccloP+9fjvD6gSjMp7swwoUGMu4J1GMHGWrXWIJJGt/MFr+hNhBbBn0Hh8sO9SN6+3Eo7/9mKJEljKgzhWOum7yUmyLAyjHA6cluppgkmfdylTYsCx1QH2WTaETq2ToQ6UtknDJq4vzsyHGs9jENbGWPT0/PZ2Pwva6amcx5kTCSpoYJMP+qkHBmJxqujiClKDB9awEQxOysiPawwMfZArj2CP7/yItRKRf+0WLr1CuUrmCoHh3AEJ+DDGZThBipQBQL38ABP8OxI59F5cV6npUvOrOcA/sh5/wEsU5KD</latexit>

h({ĉi})
<latexit sha1_base64="0qUMTG43kJLGQdDZ2Wvk21UU2zw=">AAAB+XicbVDLSsNAFL3xWesr6tJNaBEqQknqQpdFNy4r2Ac0IUymk3boZBJmJoUQ8hcu3bhQxK1/4q5/4/Sx0NYDFw7n3Mu99wQJo1LZ9tTY2Nza3tkt7ZX3Dw6Pjs2T046MU4FJG8csFr0AScIoJ21FFSO9RBAUBYx0g/H9zO9OiJA05k8qS4gXoSGnIcVIack3zVHNzd0RUjkufOoWl75Ztev2HNY6cZak2qy4V8/TZtbyzW93EOM0IlxhhqTsO3aivBwJRTEjRdlNJUkQHqMh6WvKUUSkl88vL6wLrQysMBa6uLLm6u+JHEVSZlGgOyOkRnLVm4n/ef1UhbdeTnmSKsLxYlGYMkvF1iwGa0AFwYplmiAsqL7VwiMkEFY6rLIOwVl9eZ10GnXnut541GncwQIlOIcK1MCBG2jCA7SgDRgm8AJv8G7kxqvxYXwuWjeM5cwZ/IHx9QNs65Z/</latexit>

h({ĉi})
<latexit sha1_base64="0qUMTG43kJLGQdDZ2Wvk21UU2zw=">AAAB+XicbVDLSsNAFL3xWesr6tJNaBEqQknqQpdFNy4r2Ac0IUymk3boZBJmJoUQ8hcu3bhQxK1/4q5/4/Sx0NYDFw7n3Mu99wQJo1LZ9tTY2Nza3tkt7ZX3Dw6Pjs2T046MU4FJG8csFr0AScIoJ21FFSO9RBAUBYx0g/H9zO9OiJA05k8qS4gXoSGnIcVIack3zVHNzd0RUjkufOoWl75Ztev2HNY6cZak2qy4V8/TZtbyzW93EOM0IlxhhqTsO3aivBwJRTEjRdlNJUkQHqMh6WvKUUSkl88vL6wLrQysMBa6uLLm6u+JHEVSZlGgOyOkRnLVm4n/ef1UhbdeTnmSKsLxYlGYMkvF1iwGa0AFwYplmiAsqL7VwiMkEFY6rLIOwVl9eZ10GnXnut541GncwQIlOIcK1MCBG2jCA7SgDRgm8AJv8G7kxqvxYXwuWjeM5cwZ/IHx9QNs65Z/</latexit>

distribution of 
terminals{

<latexit sha1_base64="kOqkhLPPBUmIHHb1UhfkEDxEvBk=">AAAB6XicbVDLSgNBEOz1GeMr6tHLkCAIQtiNBz0GvXiMYh6QXcLsZDYZMjuzzMwKy5I/8CKoiFf/yFv+xsnjoIkFDUVVN91dYcKZNq47cdbWNza3tgs7xd29/YPD0tFxS8tUEdokkkvVCbGmnAnaNMxw2kkUxXHIaTsc3U799hNVmknxaLKEBjEeCBYxgo2VHvy8V6q4VXcGtEq8BanUy/7F66SeNXqlb78vSRpTYQjHWnc9NzFBjpVhhNNx0U81TTAZ4QHtWipwTHWQzy4dozOr9FEklS1h0Ez9PZHjWOssDm1njM1QL3tT8T+vm5roOsiZSFJDBZkvilKOjETTt1GfKUoMzyzBRDF7KyJDrDAxNpyiDcFbfnmVtGpV77Jau7dp3MAcBTiFMpyDB1dQhztoQBMIRPAMb/DujJwX58P5nLeuOYuZE/gD5+sHt3uQdA==</latexit>

}
<latexit sha1_base64="KNMRv8VJu3pSBRJxThoMPgezCBs=">AAAB6XicbVDLSgNBEOz1GeMr6tHLkCAIQtiNBz0GvXiMYh6QXcLsZDYZMjuzzMwKy5I/8CKoiFf/yFv+xsnjoIkFDUVVN91dYcKZNq47cdbWNza3tgs7xd29/YPD0tFxS8tUEdokkkvVCbGmnAnaNMxw2kkUxXHIaTsc3U799hNVmknxaLKEBjEeCBYxgo2VHvxxr1Rxq+4MaJV4C1Kpl/2L10k9a/RK335fkjSmwhCOte56bmKCHCvDCKfjop9qmmAywgPatVTgmOogn106RmdW6aNIKlvCoJn6eyLHsdZZHNrOGJuhXvam4n9eNzXRdZAzkaSGCjJfFKUcGYmmb6M+U5QYnlmCiWL2VkSGWGFibDhFG4K3/PIqadWq3mW1dm/TuIE5CnAKZTgHD66gDnfQgCYQiOAZ3uDdGTkvzofzOW9dcxYzJ/AHztcPuoOQdg==</latexit>

p({cj}|{ĉi})
<latexit sha1_base64="gBcwAlMHoXPOQl9FOinrUvvNebM=">AAACAXicbVC7TsMwFHXKq7Q8AixILBYFqSxVUgYYK1gYi0QfUlNFjuu0po4T2U6lKoSFX2FhACEGFkb+gI0PgRn3MUDLka50dM69uvceL2JUKsv6NDILi0vLK9nVXH5tfWPT3NquyzAWmNRwyELR9JAkjHJSU1Qx0owEQYHHSMPrn4/8xoAISUN+pYYRaQeoy6lPMVJacs3dqOgk2L120hsncXpIJTh1qZMeuWbBKlljwHliT0mhcvD1+j7If1dd88PphDgOCFeYISlbthWpdoKEopiRNOfEkkQI91GXtDTlKCCynYw/SOGhVjrQD4UuruBY/T2RoEDKYeDpzgCpnpz1RuJ/XitW/mk7oTyKFeF4ssiPGVQhHMUBO1QQrNhQE4QF1bdC3EMCYaVDy+kQ7NmX50m9XLKPS+VLncYZmCAL9sA+KAIbnIAKuABVUAMY3IJ78AiejDvjwXg2XiatGWM6swP+wHj7AZp4m2k=</latexit>

computation of

Figure 4.2: An illustration of the inference process of the optimal parse tree pt˚

through MCTS. (a) Given fragment point clouds in an observation, the shape feature is

extracted from each fragment via a pre-trained point cloud encoder, and the probability of

fragment types ppc|zq is estimated via an MLP. (b) We show an example of a Monte Carlo

search tree where the state of a search node is a parse tree derived from the grammar. The

expansion of a search node is to apply production rules on the parse tree of that node. The

yellow region HpItq is a set of search nodes whose states (i.e., parse trees) are sampled from

each fragment in It according to ppc|zq. (c) We evaluate the rollout at the ensemble level by

measuring the statistical difference of fragment types between the parse tree and observed

fragments. (d) We evaluate the rollout at the individual level by assigning each terminal

node with a specific fragment in Ig. The dotted lines represent an optimal assignment that

maximizes the individual shape matching likelihood in Eq. (4.7) and are further refined to

solid lines that maximize the layout grouping likelihood in Eq. (4.8) while the optimality of

Eq. (4.7) is preserved.

Formally, the observation likelihood in Eq. (4.4) could be formulated as:

pesmpIg
|pt,Gq “ pesmpIg

Z |ptq “ pptziu|tcjuq

9pptcju|tziuqpptziuq

“ Epptĉiu|tziuq

”

pptcju|tĉiuq

ı

pptziuq,

(4.10)

where tcju is the set of fragment types in the terminal nodes of pt (i.e., the fluent).
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The number of fragments in tziu and tcju are usually not necessarily the same, and it

is infeasible to directly estimate pptcju|tziuq. Hence, we introduce a potential fluent tĉiu,

where each ĉi corresponds to an observed fragment zi, and the resulting expectation term

evaluates how well the potential fluent tĉiu aligns with the fluent tcju in pt. We formulate

the alignment between two fragment ensembles pptcju|tĉiuq based on the statistical difference

between tcju and tĉiu:

pptcju|tĉiuq “
1

Z
exp

´

´DKL

`

hptcjuq
ˇ

ˇ

ˇ

ˇhptĉiuq
˘

¯

, (4.11)

where Z is the partition function, hp¨q the distribution of fragment types, and DKLp¨q the

Kullback–Leibler divergence that measures the difference between hptcjuq and hptĉiuq.

4.5 Inference of Optimal Parse Tree

The learned fluent space describes the recursive and compositional nature of object fragmen-

tation, which affords to recognize the fluent of object fragments and plan for actions that

change the object to a desired fluent or reason about a fragmentation event in retrospect.

Inference in the fluent space is a parsing process that finds the optimal parse tree pt˚ best

aligned with a goal configuration Ig. When a known fragment configuration It is observed

(common in robot planning tasks), we generate pt˚ from It to Ig; otherwise, we generate

pt˚ from the start variable.

Instead of merely classifying the observed fluent, either a reasoning or planning task would

further require a joint inference of fluent from Ig and feasible transitions. We formulate this

process as an MAP estimate:

pt˚
“ argmax

ptPHpItq

ppIg
| pt,Gq pppt | Gq, (4.12)

where HpItq is a set of parse trees, whose expansions from the start variable are sequentially

sampled from each fragment in It according to ppc|zq.
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Since the computation of pt˚ in Eq. (4.12) is intractable, we infer the approximately

optimal parse tree via Monte Carlo Tree Search (MCTS) as shown in Fig. 4.2. Initially, the

algorithm starts with the root node of the search tree, which contains the start variable vS of

the grammar. The expansion and simulation step of MCTS is a process of applying feasible

production rules on the parse tree of the search node, and the rollout results in each round

are evaluated by measuring the likelihood described by the objective function in Eq. (4.12).

During the back-propagation step, we use the likelihood value as the score to update the

nodes on the path from the root to the rollout result. Finally, the best rollout result among

all rounds in MCTS will be selected as pt˚.

By substituting different observation likelihood formulations (Eqs. (4.6) and (4.10)) into

Eq. (4.12), we can infer at either the individual or the ensemble level, to be detailed below.

4.5.1 Inference at the individual level

Since the rollout result (see Fig. 4.2d for examples) represents a top-down derivation from

the start variable, the terminal nodes have not been grounded to fragments in Ig. Hence, for

the i-th round of rollout, we need to compute an optimal assignment function f˚
i : VT Ñ O

that grounds each terminal node vT in pti to an unique fragment o in Ig, such that the

resulting parse tree ptf
˚

i maximizes the likelihood in Eq. (4.6):

f˚
“ argmax

f
pidv

´

Ig
Q

ˇ

ˇ

ˇ
ptfi

¯

pidv

´

Ig
Z

ˇ

ˇ

ˇ
ptfi

¯

, (4.13)

where ptfi denotes the parse tree whose terminal nodes are grounded to fragments in Ig by

the assignment function f .

Since direct computing f˚ is intractable (factorial to the number of fragments), we obtain

an approximate solution in two steps: (i) Compute an assignment function f init that maxi-

mizes the individual shape matching likelihood pidvpIg
Z |ptf q in Eq. (4.7); see dotted lines in

Fig. 4.2d. (ii) Refine f init into f˚ that maximizes the layout grouping likelihood pidvpIg
Q|ptf q

in Eq. (4.8) while conserving the optimality obtained in the previous step; see solid lines in
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Fig. 4.2d.

The first step formulates a linear assignment problem:

f init
“ argmax

f

N
ź

j“1

p
´

cvjT

ˇ

ˇ

ˇ
zfpvjT q

¯

p
´

zfpvjT q

¯

“ argmax
f

N
ÿ

j“1

log
”

p
´

cvjT

ˇ

ˇ

ˇ
zfpvjT q

¯

p
´

zfpvjT q

¯ı

,

(4.14)

where N is the number of terminal nodes of the parse tree, vjT the j-th terminal node in the

parse tree, cv the fragment type of node v, and zfpvq the shape feature of the fragment that

associated with node v according to the assignment function f .

The optimization problem in Eq. (4.14) could be rewrite as an integer linear program in

a matrix form:

max
A

ÿ

i,j

WijAij

s.t.
ÿ

i

Aij “ 1, @i,
ÿ

j

Aij “ 1, @j

0 ď Aij ď 1, @i, j

Aij P Z, @i, j

(4.15)

where Z represents the set of integers, A is the assignment matrix, Aij “ 1 means assigning

the j-th object to the i-th terminal node, and W is a weight matrix whose entry Wij “

logrppcvi |zjqppzjqs represents the probability of the j-th object matches the fragment type of

the i-th terminal node. We adopt the Hungarian algorithm [Kuh55] to solve this program

in a polynomial time.

Of note, the program in Eq. (4.15) assumes a balanced assignment problem, that is,

the number of terminal nodes m equals to the number of fragments n (i.e. A is a square

matrix and m “ n). Otherwise, the constraints
ř

i Aij “ 1, @i and
ř

j Aij “ 1, @j can-

not be satisfied. In practice, such an assumption does not always hold (i.e., the number

of fragments and the number of terminal nodes are not the same). However, such an un-

balanced assignment can be reduced to a balanced assignment. In our implementation,
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we add |m ´ n| new entities to the smaller part and set their weights to 0. Such that the

least-matched entities in the larger part will be matched to the newly added entities with

weights of 0. Then, the optimal assignment between the terminal nodes and the fragments

is obtained from the assignment of non-zero weights (i.e. Aij “ 1 and Wij ‰ 0).

In the second step, f init is further refined to have the parse tree aligned with the layout

of the fragments while preserving the optimality obtained in Eq. (4.14). We adopt the

simulated annealing algorithm [KGV83] to maximize pidvpIg
Q|ptf q. To preserve the optimality

of Eq. (4.14) while the assignment f is optimized, the key is to ensure the fragment types of

fragments remain the same after swapping the terminal nodes; see Fig. 4.2d. Hence, instead

of randomly swapping all terminal nodes, only terminals whose matched fragments have the

same fragment type would be considered candidates to be swapped.

4.5.2 Inference at the ensemble level

For ensemble-level inference, the observation likelihood in Eq. (4.12) is substituted with

pesmpIg
Z |ptq in Eq. (4.10). The key is to compute pesmpIg

Z |ptq for evaluating the rollout results

during the MCTS. Since computing the expectation term in pesmpIg
Z |ptq is intractable, we

approximate it by Monte Carlo sampling. Specifically, we draw samples from pptĉiu|tziuq

according to the classification probability ppc|zq given fragment features in Ig
Z and use the

drawn samples to estimate the expectation; see Fig. 4.2c.

4.6 Experiments

We develop an object-cutting simulator based on BulletPhysics [CB21] to collect fragmen-

tation events and to validate the efficacy of the grammar-based representation for under-

standing such events in three experimental settings; see Section 4.6.1 for details of the sim-

ulation setup. First, we show that our algorithm can recover the fluent transitions of object

fragmentation—how it transit to the current fragment configuration—through retrospective
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reasoning on the grammar. Next, we show that a robot plans a fragmentation sequence to

achieve a desired fluent value—how to cut objects into a certain goal configuration—through

forward reasoning. Third, in some far-transfer cases when reaching the exact goal is infea-

sible, our grammar produces a plan that approximates the observed effects by matching

underlying statistics.

4.6.1 Data preparation

To collect fragmentation events, we asked human subjects to cut virtual objects presented in

the simulator into one of the four fragment categories (i.e., chunks, slices, cubes, and strips)

or their combinations.

Figure 4.3: An example of graphical user interface for object cutting. The red

translucent region indicates a 3D cutting plane determined by the two points clicked on the

screen. The left figure shows the initial object configuration, whereas the right figure shows

the fragment configuration after executing the cutting action.

Specifically, we develop a simulation environment based on the BulletPhysics engine [CB21],

where we implement a cutting system that slice objects into pieces according to a given 3D

cutting plane. Sliced objects preserve their dynamics (i.e., velocity and acceleration) after
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being cut, and the collision and gravity system follows the original implementation of the

BulletPhysics.

We design and implement an intuitive graphical user interface for collecting object cutting

sequences from humans, where a 3D cutting plane is generated by two points clicked on the

screen from an user, as shown in Fig. 4.3. More precisely, according to the projection matrix

of synthetic rendering camera, each clicked point on the 2D screen is converted to a 3D ray

that casts from the origin of camera to the clicked point in the 3D space of the simulator.

These two 3D casting rays determine a 3D cutting plane, and all objects that intersect with

the plane will be cut. In addition, users are able to change the angle of view in the simulator

and conduct more flexible cutting actions.

Human subjects are asked to cut virtual objects presented in the simulator into one of

the four fragment categories (i.e., chunks, slices, cubes, and strips) or their combinations.

We recorded each fragmentation event as a sequence of fragment configurations and the

corresponding cutting actions parameterized as 3D planes; the ground-truth 3D geometry

of each fragment and its pose can be directly retrieved from the simulator. A total of 110

fragmentation events were collected and partitioned based on the initial number of objects

N and the number of fragment categories in the goal configurations M ; see Fig. 4.4 for some

examples. We split the collected data, use a subset of N “ 1,M “ 1 as the train set, and test

on the rest of events (i.e., the rest of partition N “ 1,M “ 1 and partitions N ą 1,M ą 1).

4.6.2 Perceiving object fragments

Looking at a pile of fragments, humans can reconstruct the events retrospectively. Formally,

given a current observation of object fragments It, we ask the algorithm to infer their

ancestors in It´∆t. With the learned grammar, solving this task is to infer an optimal parse

tree that reveals the fluent transitions between the two fragment configurations.

Fig. 4.5 depicts a qualitative result. The inference algorithm successfully identifies the
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N=1, M=1 N=1, M=2 N=2, M=1 N=2, M=2 N=3, M=4

Figure 4.4: Examples of collected data with different levels of task complexity.

N is the initial number of objects, and M the number of fragment categories in the goal

configurations. The bottom right corner of each sub-figure shows the initial configuration.

Observed sequence {I0, I1, ..., I8}
<latexit sha1_base64="tzLIaOtJgUdmarLobM3pey1wPF8=">AAACHXicbVDLSsNAFJ3UV62vqEs3Q4sgWEJSBbssutFdBfuAJpbJdNIOnTyYmQgh5C9cufFX3LhQxIUb6d84fSz68MDAmXPu5d573IhRIU1zpOXW1jc2t/LbhZ3dvf0D/fCoKcKYY9LAIQt520WCMBqQhqSSkXbECfJdRlru8Gbst54IFzQMHmQSEcdH/YB6FCOppK5+aae2j+QAI5beZY9mGc5/rTI0DGNRq9pZVy+ZhjkBXCXWjJRqRfv8eVRL6l39x+6FOPZJIDFDQnQsM5JOirikmJGsYMeCRAgPUZ90FA2QT4STTq7L4KlSetALuXqBhBN1viNFvhCJ76rK8Zpi2RuL/3mdWHpVJ6VBFEsS4OkgL2ZQhnAcFexRTrBkiSIIc6p2hXiAOMJSBVpQIVjLJ6+SZsWwLozKvUrjGkyRByegCM6ABa5ADdyCOmgADF7AG/gAn9qr9q59ad/T0pw26zkGC9B+/wCh66P4</latexit>

GT It
<latexit sha1_base64="lGrxbqPAjBJxZTqrmzy4ImrnlAA=">AAAB9HicbVC7TsMwFL3hWcKrwMhiUSExVUkZYEFUsMBWJPqQ2lA5rtNadZxgO5WqqN/BwgCqWPkNdhbE3+C0HaDlSJaOzrlX9/j4MWdKO863tbS8srq2ntuwN7e2d3bze/s1FSWS0CqJeCQbPlaUM0GrmmlOG7GkOPQ5rfv968yvD6hULBL3ehhTL8RdwQJGsDaS1wqx7hHM09vRg27nC07RmQAtEndGCpcf9kU8/rIr7fxnqxORJKRCE46VarpOrL0US80IpyO7lSgaY9LHXdo0VOCQKi+dhB6hY6N0UBBJ84RGE/X3RopDpYahbyazkGrey8T/vGaig3MvZSJONBVkeihIONIRyhpAHSYp0XxoCCaSmayI9LDERJuebFOCO//lRVIrFd3TYunOKZSvYIocHMIRnIALZ1CGG6hAFQg8whO8wKs1sJ6tsfU2HV2yZjsH8AfW+w9u75WG</latexit>

Heuristic Ours

I0
<latexit sha1_base64="WqX2JoCYwv90LmV+YxZ/aHXTnUA=">AAAB9HicbVC7TsMwFL3hWcKrwMhiUSExVUkZYEFUsMBWJPqQ2lA5rtNadZxgO5WqqN/BwgCqWPkNdhbE3+C0HaDlSJaOzrlX9/j4MWdKO863tbS8srq2ntuwN7e2d3bze/s1FSWS0CqJeCQbPlaUM0GrmmlOG7GkOPQ5rfv968yvD6hULBL3ehhTL8RdwQJGsDaS1wqx7hHM09vRg9POF5yiMwFaJO6MFC4/7It4/GVX2vnPViciSUiFJhwr1XSdWHsplpoRTkd2K1E0xqSPu7RpqMAhVV46CT1Cx0bpoCCS5gmNJurvjRSHSg1D30xmIdW8l4n/ec1EB+deykScaCrI9FCQcKQjlDWAOkxSovnQEEwkM1kR6WGJiTY92aYEd/7Li6RWKrqnxdKdUyhfwRQ5OIQjOAEXzqAMN1CBKhB4hCd4gVdrYD1bY+ttOrpkzXYO4A+s9x8H35VC</latexit>

I1
<latexit sha1_base64="613L8+wkdyrA7Gs2DEBz84iJSAM=">AAAB+HicbVDLSsNAFL3xWeOjUZduBovgqiR1oRux6EZ3FewD2lgm00k7dPJgZiLUkC9xI6iIW3/CvRvxb5y0XWjrgYHDOfdyzxwv5kwq2/42FhaXlldWC2vm+sbmVtHa3mnIKBGE1knEI9HysKSchbSumOK0FQuKA4/Tpje8yP3mHRWSReGNGsXUDXA/ZD4jWGmpaxU7AVYDgnl6ld2mTta1SnbZHgPNE2dKSmcf5mn89GXWutZnpxeRJKChIhxL2XbsWLkpFooRTjOzk0gaYzLEfdrWNMQBlW46Dp6hA630kB8J/UKFxurvjRQHUo4CT0/mMeWsl4v/ee1E+SduysI4UTQkk0N+wpGKUN4C6jFBieIjTTARTGdFZIAFJkp3ZeoSnNkvz5NGpewclSvXdql6DhMUYA/24RAcOIYqXEIN6kAggQd4hhfj3ng0Xo23yeiCMd3ZhT8w3n8ATeGWgA==</latexit>

I2
<latexit sha1_base64="F6HeNGfVkJUx9KDflqLXJ3WOK94=">AAAB+HicbVDLSsNAFL3xWeOjUZduBovgqiR1oRux6EZ3FewD2lgm00k7dPJgZiLUkC9xI6iIW3/CvRvxb5y0XWjrgYHDOfdyzxwv5kwq2/42FhaXlldWC2vm+sbmVtHa3mnIKBGE1knEI9HysKSchbSumOK0FQuKA4/Tpje8yP3mHRWSReGNGsXUDXA/ZD4jWGmpaxU7AVYDgnl6ld2mlaxrleyyPQaaJ86UlM4+zNP46cusda3PTi8iSUBDRTiWsu3YsXJTLBQjnGZmJ5E0xmSI+7StaYgDKt10HDxDB1rpIT8S+oUKjdXfGykOpBwFnp7MY8pZLxf/89qJ8k/clIVxomhIJof8hCMVobwF1GOCEsVHmmAimM6KyAALTJTuytQlOLNfnieNStk5Kleu7VL1HCYowB7swyE4cAxVuIQa1IFAAg/wDC/GvfFovBpvk9EFY7qzC39gvP8AT2aWgQ==</latexit>

I3
<latexit sha1_base64="QPltcymuxjM2GIt7XjgF4NbKjaY=">AAAB+HicbVDLSsNAFL2prxofjbp0EyyCq5K0C92IRTe6q2Af0MYymU7aoZNJmJkINfRL3Agq4tafcO9G/BsnbRfaemDgcM693DPHjxmVynG+jdzS8srqWn7d3Njc2i5YO7sNGSUCkzqOWCRaPpKEUU7qiipGWrEgKPQZafrDi8xv3hEhacRv1CgmXoj6nAYUI6WlrlXohEgNMGLp1fg2rYy7VtEpORPYi8SdkeLZh3kaP32Zta712elFOAkJV5ghKduuEysvRUJRzMjY7CSSxAgPUZ+0NeUoJNJLJ8HH9qFWenYQCf24sifq740UhVKOQl9PZjHlvJeJ/3ntRAUnXkp5nCjC8fRQkDBbRXbWgt2jgmDFRpogLKjOauMBEggr3ZWpS3Dnv7xIGuWSWymVr51i9RymyMM+HMARuHAMVbiEGtQBQwIP8Awvxr3xaLwab9PRnDHb2YM/MN5/AFDrloI=</latexit>

I4
<latexit sha1_base64="Tow7pNZUGsZa4tHZ9pGVtM+2hOY=">AAAB+HicbVDLSsNAFL2prxofjbp0EyyCq5JUQTdi0Y3uKtgHtLFMptN26GQSZiZCDfkSN4KKuPUn3LsR/8ZJ24W2Hhg4nHMv98zxI0alcpxvI7ewuLS8kl8119Y3NgvW1nZdhrHApIZDFoqmjyRhlJOaooqRZiQICnxGGv7wIvMbd0RIGvIbNYqIF6A+pz2KkdJSxyq0A6QGGLHkKr1NjtKOVXRKzhj2PHGnpHj2YZ5GT19mtWN9trshjgPCFWZIypbrRMpLkFAUM5Ka7ViSCOEh6pOWphwFRHrJOHhq72ula/dCoR9X9lj9vZGgQMpR4OvJLKac9TLxP68Vq96Jl1AexYpwPDnUi5mtQjtrwe5SQbBiI00QFlRntfEACYSV7srUJbizX54n9XLJPSyVr51i5RwmyMMu7MEBuHAMFbiEKtQAQwwP8Awvxr3xaLwab5PRnDHd2YE/MN5/AFJwloM=</latexit>

I5
<latexit sha1_base64="k/Pupyl5ZqAGFVpyN2VcNj+UTwQ=">AAAB+HicbVDLSsNAFL2prxofjbp0EyyCq5JURDdi0Y3uKtgHtLFMptN26GQSZiZCDfkSN4KKuPUn3LsR/8ZJ24W2Hhg4nHMv98zxI0alcpxvI7ewuLS8kl8119Y3NgvW1nZdhrHApIZDFoqmjyRhlJOaooqRZiQICnxGGv7wIvMbd0RIGvIbNYqIF6A+pz2KkdJSxyq0A6QGGLHkKr1NjtKOVXRKzhj2PHGnpHj2YZ5GT19mtWN9trshjgPCFWZIypbrRMpLkFAUM5Ka7ViSCOEh6pOWphwFRHrJOHhq72ula/dCoR9X9lj9vZGgQMpR4OvJLKac9TLxP68Vq96Jl1AexYpwPDnUi5mtQjtrwe5SQbBiI00QFlRntfEACYSV7srUJbizX54n9XLJPSyVr51i5RwmyMMu7MEBuHAMFbiEKtQAQwwP8Awvxr3xaLwab5PRnDHd2YE/MN5/AFP1loQ=</latexit>

I6
<latexit sha1_base64="fOp3lze8zcXGYHERSuqb9Ns35I0=">AAAB+HicbVDLSsNAFL2prxofjbp0EyyCq5JUUDdi0Y3uKtgHtLFMptN26GQSZiZCDfkSN4KKuPUn3LsR/8ZJ24W2Hhg4nHMv98zxI0alcpxvI7ewuLS8kl8119Y3NgvW1nZdhrHApIZDFoqmjyRhlJOaooqRZiQICnxGGv7wIvMbd0RIGvIbNYqIF6A+pz2KkdJSxyq0A6QGGLHkKr1NjtKOVXRKzhj2PHGnpHj2YZ5GT19mtWN9trshjgPCFWZIypbrRMpLkFAUM5Ka7ViSCOEh6pOWphwFRHrJOHhq72ula/dCoR9X9lj9vZGgQMpR4OvJLKac9TLxP68Vq96Jl1AexYpwPDnUi5mtQjtrwe5SQbBiI00QFlRntfEACYSV7srUJbizX54n9XLJPSyVr51i5RwmyMMu7MEBuHAMFbiEKtQAQwwP8Awvxr3xaLwab5PRnDHd2YE/MN5/AFV6loU=</latexit>

I7
<latexit sha1_base64="Lg8Ql4dUu3pYxXixMtmmDRtClxA=">AAAB+HicbVC7SgNBFL0bX3F9ZNXSZjAIVmE3FrERgzbaRTAPSNYwO5lNhsw+mJkV4pIvsRFUxNafsLcR/8bZJIUmHhg4nHMv98zxYs6ksu1vI7e0vLK6ll83Nza3tgvWzm5DRokgtE4iHomWhyXlLKR1xRSnrVhQHHicNr3hReY376iQLApv1CimboD7IfMZwUpLXavQCbAaEMzTq/FtWhl3raJdsidAi8SZkeLZh3kaP32Zta712elFJAloqAjHUrYdO1ZuioVihNOx2UkkjTEZ4j5taxrigEo3nQQfo0Ot9JAfCf1ChSbq740UB1KOAk9PZjHlvJeJ/3ntRPknbsrCOFE0JNNDfsKRilDWAuoxQYniI00wEUxnRWSABSZKd2XqEpz5Ly+SRrnkHJfK13axeg5T5GEfDuAIHKhAFS6hBnUgkMADPMOLcW88Gq/G23Q0Z8x29uAPjPcfVv+Whg==</latexit>

I8
<latexit sha1_base64="hxbSzLYJeGYlwmBP0RGbLTH7G98=">AAAB+HicbVC7SgNBFL0bX3F9ZNXSZjAIVmE3FqYRgzbaRTAPSNYwO5lNhsw+mJkV4pIvsRFUxNafsLcR/8bZJIUmHhg4nHMv98zxYs6ksu1vI7e0vLK6ll83Nza3tgvWzm5DRokgtE4iHomWhyXlLKR1xRSnrVhQHHicNr3hReY376iQLApv1CimboD7IfMZwUpLXavQCbAaEMzTq/FtWhl3raJdsidAi8SZkeLZh3kaP32Zta712elFJAloqAjHUrYdO1ZuioVihNOx2UkkjTEZ4j5taxrigEo3nQQfo0Ot9JAfCf1ChSbq740UB1KOAk9PZjHlvJeJ/3ntRPkVN2VhnCgakukhP+FIRShrAfWYoETxkSaYCKazIjLAAhOluzJ1Cc78lxdJo1xyjkvla7tYPYcp8rAPB3AEDpxAFS6hBnUgkMADPMOLcW88Gq/G23Q0Z8x29uAPjPcfWISWhw==</latexit>

I4�3
<latexit sha1_base64="tIu0x3YUZIQj9QWZ5XrOQL3ZQr0=">AAAB+nicbVDLSsNAFJ34rPGV6tLNYBHcWJJW0I1YdKO7CvYBbSyT6aQdOpmEmYlSYj7FjYIibv0H927Ev3HSdqGtBwYO59zLPXO8iFGpbPvbmJtfWFxazq2Yq2vrG5tWfqsuw1hgUsMhC0XTQ5IwyklNUcVIMxIEBR4jDW9wnvmNWyIkDfm1GkbEDVCPU59ipLTUsfLtAKk+Riy5TG+Sw4Ny2rEKdtEeAc4SZ0IKpx/mSfT0ZVY71me7G+I4IFxhhqRsOXak3AQJRTEjqdmOJYkQHqAeaWnKUUCkm4yip3BPK13oh0I/ruBI/b2RoEDKYeDpySyonPYy8T+vFSv/2E0oj2JFOB4f8mMGVQizHmCXCoIVG2qCsKA6K8R9JBBWui1Tl+BMf3mW1EtFp1wsXdmFyhkYIwd2wC7YBw44AhVwAaqgBjC4Aw/gGbwY98aj8Wq8jUfnjMnONvgD4/0HOdSW9w==</latexit>

I6�3
<latexit sha1_base64="ZN1OC0p7WJkku+xapKSXiN5grb0=">AAAB+nicbVDLSsNAFJ34rPGV6tLNYBHcWJIW1I1YdKO7CvYBbSyT6aQdOpmEmYlSYj7FjYIibv0H927Ev3HSdqGtBwYO59zLPXO8iFGpbPvbmJtfWFxazq2Yq2vrG5tWfqsuw1hgUsMhC0XTQ5IwyklNUcVIMxIEBR4jDW9wnvmNWyIkDfm1GkbEDVCPU59ipLTUsfLtAKk+Riy5TG+Sw4Ny2rEKdtEeAc4SZ0IKpx/mSfT0ZVY71me7G+I4IFxhhqRsOXak3AQJRTEjqdmOJYkQHqAeaWnKUUCkm4yip3BPK13oh0I/ruBI/b2RoEDKYeDpySyonPYy8T+vFSv/2E0oj2JFOB4f8mMGVQizHmCXCoIVG2qCsKA6K8R9JBBWui1Tl+BMf3mW1EtFp1wsXdmFyhkYIwd2wC7YBw44AhVwAaqgBjC4Aw/gGbwY98aj8Wq8jUfnjMnONvgD4/0HPOKW+Q==</latexit>

I8�3
<latexit sha1_base64="9FwdAADWj30bF4fCIO2+m2/7S6A=">AAAB+nicbVDLSsNAFJ34rPGV6tLNYBHcWJJ2YTdi0Y3uKtgHtLFMppN26GQSZiZKifkUNwqKuPUf3LsR/8ZJ24W2Hhg4nHMv98zxIkalsu1vY2FxaXllNbdmrm9sbm1b+Z2GDGOBSR2HLBQtD0nCKCd1RRUjrUgQFHiMNL3heeY3b4mQNOTXahQRN0B9Tn2KkdJS18p3AqQGGLHkMr1JKkfltGsV7KI9BpwnzpQUTj/Mk+jpy6x1rc9OL8RxQLjCDEnZduxIuQkSimJGUrMTSxIhPER90taUo4BINxlHT+GBVnrQD4V+XMGx+nsjQYGUo8DTk1lQOetl4n9eO1Z+xU0oj2JFOJ4c8mMGVQizHmCPCoIVG2mCsKA6K8QDJBBWui1Tl+DMfnmeNEpFp1wsXdmF6hmYIAf2wD44BA44BlVwAWqgDjC4Aw/gGbwY98aj8Wq8TUYXjOnOLvgD4/0HP/CW+w==</latexit>

t
=

4
<latexit sha1_base64="hQwtmmygsADY8+i+4zGhWmNbzfo=">AAAB6nicbZC7SgNBFIbPxltcb1FLm8UgWIXdKGgTDNpYRjQXSJYwO5kkQ2Znl5mzQljyCDYWiljqu9jbiG/j5FJo4g8DH/9/DnPOCWLBNbrut5VZWl5ZXcuu2xubW9s7ud29mo4SRVmVRiJSjYBoJrhkVeQoWCNWjISBYPVgcDXO6/dMaR7JOxzGzA9JT/IupwSNdYul03Yu7xbciZxF8GaQv/iwS/Hbl11p5z5bnYgmIZNIBdG66bkx+ilRyKlgI7uVaBYTOiA91jQoSci0n05GHTlHxuk43UiZJ9GZuL87UhJqPQwDUxkS7Ov5bGz+lzUT7J77KZdxgkzS6UfdRDgYOeO9nQ5XjKIYGiBUcTOrQ/tEEYrmOrY5gje/8iLUigXvpFC8cfPlS5gqCwdwCMfgwRmU4RoqUAUKPXiAJ3i2hPVovViv09KMNevZhz+y3n8AN0+Qvg==</latexit>

t
=

6
<latexit sha1_base64="VAJ9xq02mfTYZsWY0oV1XYAxm5E=">AAAB6nicbZC7SgNBFIbPxltcb1FLm8UgWIXdCGoTDNpYRjQXSJYwO5kkQ2Znl5mzQljyCDYWiljqu9jbiG/j5FJo4g8DH/9/DnPOCWLBNbrut5VZWl5ZXcuu2xubW9s7ud29mo4SRVmVRiJSjYBoJrhkVeQoWCNWjISBYPVgcDXO6/dMaR7JOxzGzA9JT/IupwSNdYul03Yu7xbciZxF8GaQv/iwS/Hbl11p5z5bnYgmIZNIBdG66bkx+ilRyKlgI7uVaBYTOiA91jQoSci0n05GHTlHxuk43UiZJ9GZuL87UhJqPQwDUxkS7Ov5bGz+lzUT7J77KZdxgkzS6UfdRDgYOeO9nQ5XjKIYGiBUcTOrQ/tEEYrmOrY5gje/8iLUigXvpFC8cfPlS5gqCwdwCMfgwRmU4RoqUAUKPXiAJ3i2hPVovViv09KMNevZhz+y3n8AOleQwA==</latexit>

t
=

8
<latexit sha1_base64="KrsaQqGRldf4KKExGDevqUUNBTU=">AAAB6nicbZC7SgNBFIbPxltcb1FLm8EgWIXdWJgmGLSxjGgukCxhdjJJhsxemDkrhCWPYGOhiKW+i72N+DZOLoUm/jDw8f/nMOccP5ZCo+N8W5mV1bX1jeymvbW9s7uX2z+o6yhRjNdYJCPV9KnmUoS8hgIlb8aK08CXvOEPryZ5454rLaLwDkcx9wLaD0VPMIrGusVyqZPLOwVnKrIM7hzyFx92OX77squd3Ge7G7Ek4CEySbVuuU6MXkoVCib52G4nmseUDWmftwyGNODaS6ejjsmJcbqkFynzQiRT93dHSgOtR4FvKgOKA72YTcz/slaCvZKXijBOkIds9lEvkQQjMtmbdIXiDOXIAGVKmFkJG1BFGZrr2OYI7uLKy1AvFtyzQvHGyVcuYaYsHMExnIIL51CBa6hCDRj04QGe4NmS1qP1Yr3OSjPWvOcQ/sh6/wE9X5DC</latexit>

It��t
<latexit sha1_base64="Zu1E0XOaLwDxCkpYSNLuPFMhRQE=">AAACAXicbVC7SgNBFJ2Nr7i+Vm0Em8Eg2Bh2Y6GNGNRCuwjmAUkMs5NJMmT2wcxdISxr46doY6GIrR9gbyP+jbNJCk08cOFwzr3ce48bCq7Atr+NzMzs3PxCdtFcWl5ZXbPWNyoqiCRlZRqIQNZcopjgPisDB8FqoWTEcwWruv2z1K/eMql44F/DIGRNj3R93uGUgJZa1lbDI9CjRMSXyU0M+41zJoBgSFpWzs7bQ+Bp4oxJ7uTDPA4fvsxSy/pstAMaecwHKohSdccOoRkTCZwKlpiNSLGQ0D7psrqmPvGYasbDDxK8q5U27gRSlw94qP6eiImn1MBzdWd6r5r0UvE/rx5B56gZcz+MgPl0tKgTCQwBTuPAbS4ZBTHQhFDJ9a2Y9ogkFHRopg7BmXx5mlQKeecgX7iyc8VTNEIWbaMdtIccdIiK6AKVUBlRdIce0TN6Me6NJ+PVeBu1ZozxzCb6A+P9B9tbmiQ=</latexit>

It
<latexit sha1_base64="lGrxbqPAjBJxZTqrmzy4ImrnlAA=">AAAB9HicbVC7TsMwFL3hWcKrwMhiUSExVUkZYEFUsMBWJPqQ2lA5rtNadZxgO5WqqN/BwgCqWPkNdhbE3+C0HaDlSJaOzrlX9/j4MWdKO863tbS8srq2ntuwN7e2d3bze/s1FSWS0CqJeCQbPlaUM0GrmmlOG7GkOPQ5rfv968yvD6hULBL3ehhTL8RdwQJGsDaS1wqx7hHM09vRg27nC07RmQAtEndGCpcf9kU8/rIr7fxnqxORJKRCE46VarpOrL0US80IpyO7lSgaY9LHXdo0VOCQKi+dhB6hY6N0UBBJ84RGE/X3RopDpYahbyazkGrey8T/vGaig3MvZSJONBVkeihIONIRyhpAHSYp0XxoCCaSmayI9LDERJuebFOCO//lRVIrFd3TYunOKZSvYIocHMIRnIALZ1CGG6hAFQg8whO8wKs1sJ6tsfU2HV2yZjsH8AfW+w9u75WG</latexit>

It
<latexit sha1_base64="lGrxbqPAjBJxZTqrmzy4ImrnlAA=">AAAB9HicbVC7TsMwFL3hWcKrwMhiUSExVUkZYEFUsMBWJPqQ2lA5rtNadZxgO5WqqN/BwgCqWPkNdhbE3+C0HaDlSJaOzrlX9/j4MWdKO863tbS8srq2ntuwN7e2d3bze/s1FSWS0CqJeCQbPlaUM0GrmmlOG7GkOPQ5rfv968yvD6hULBL3ehhTL8RdwQJGsDaS1wqx7hHM09vRg27nC07RmQAtEndGCpcf9kU8/rIr7fxnqxORJKRCE46VarpOrL0US80IpyO7lSgaY9LHXdo0VOCQKi+dhB6hY6N0UBBJ84RGE/X3RopDpYahbyazkGrey8T/vGaig3MvZSJONBVkeihIONIRyhpAHSYp0XxoCCaSmayI9LDERJuebFOCO//lRVIrFd3TYunOKZSvYIocHMIRnIALZ1CGG6hAFQg8whO8wKs1sJ6tsfU2HV2yZjsH8AfW+w9u75WG</latexit>

I4
<latexit sha1_base64="Tow7pNZUGsZa4tHZ9pGVtM+2hOY=">AAAB+HicbVDLSsNAFL2prxofjbp0EyyCq5JUQTdi0Y3uKtgHtLFMptN26GQSZiZCDfkSN4KKuPUn3LsR/8ZJ24W2Hhg4nHMv98zxI0alcpxvI7ewuLS8kl8119Y3NgvW1nZdhrHApIZDFoqmjyRhlJOaooqRZiQICnxGGv7wIvMbd0RIGvIbNYqIF6A+pz2KkdJSxyq0A6QGGLHkKr1NjtKOVXRKzhj2PHGnpHj2YZ5GT19mtWN9trshjgPCFWZIypbrRMpLkFAUM5Ka7ViSCOEh6pOWphwFRHrJOHhq72ula/dCoR9X9lj9vZGgQMpR4OvJLKac9TLxP68Vq96Jl1AexYpwPDnUi5mtQjtrwe5SQbBiI00QFlRntfEACYSV7srUJbizX54n9XLJPSyVr51i5RwmyMMu7MEBuHAMFbiEKtQAQwwP8Awvxr3xaLwab5PRnDHd2YE/MN5/AFJwloM=</latexit>

I6
<latexit sha1_base64="fOp3lze8zcXGYHERSuqb9Ns35I0=">AAAB+HicbVDLSsNAFL2prxofjbp0EyyCq5JUUDdi0Y3uKtgHtLFMptN26GQSZiZCDfkSN4KKuPUn3LsR/8ZJ24W2Hhg4nHMv98zxI0alcpxvI7ewuLS8kl8119Y3NgvW1nZdhrHApIZDFoqmjyRhlJOaooqRZiQICnxGGv7wIvMbd0RIGvIbNYqIF6A+pz2KkdJSxyq0A6QGGLHkKr1NjtKOVXRKzhj2PHGnpHj2YZ5GT19mtWN9trshjgPCFWZIypbrRMpLkFAUM5Ka7ViSCOEh6pOWphwFRHrJOHhq72ula/dCoR9X9lj9vZGgQMpR4OvJLKac9TLxP68Vq96Jl1AexYpwPDnUi5mtQjtrwe5SQbBiI00QFlRntfEACYSV7srUJbizX54n9XLJPSyVr51i5RwmyMMu7MEBuHAMFbiEKtQAQwwP8Awvxr3xaLwab5PRnDHd2YE/MN5/AFV6loU=</latexit>

I8
<latexit sha1_base64="hxbSzLYJeGYlwmBP0RGbLTH7G98=">AAAB+HicbVC7SgNBFL0bX3F9ZNXSZjAIVmE3FqYRgzbaRTAPSNYwO5lNhsw+mJkV4pIvsRFUxNafsLcR/8bZJIUmHhg4nHMv98zxYs6ksu1vI7e0vLK6ll83Nza3tgvWzm5DRokgtE4iHomWhyXlLKR1xRSnrVhQHHicNr3hReY376iQLApv1CimboD7IfMZwUpLXavQCbAaEMzTq/FtWhl3raJdsidAi8SZkeLZh3kaP32Zta712elFJAloqAjHUrYdO1ZuioVihNOx2UkkjTEZ4j5taxrigEo3nQQfo0Ot9JAfCf1ChSbq740UB1KOAk9PZjHlvJeJ/3ntRPkVN2VhnCgakukhP+FIRShrAfWYoETxkSaYCKazIjLAAhOluzJ1Cc78lxdJo1xyjkvla7tYPYcp8rAPB3AEDpxAFS6hBnUgkMADPMOLcW88Gq/G23Q0Z8x29uAPjPcfWISWhw==</latexit>

I4
<latexit sha1_base64="Tow7pNZUGsZa4tHZ9pGVtM+2hOY=">AAAB+HicbVDLSsNAFL2prxofjbp0EyyCq5JUQTdi0Y3uKtgHtLFMptN26GQSZiZCDfkSN4KKuPUn3LsR/8ZJ24W2Hhg4nHMv98zxI0alcpxvI7ewuLS8kl8119Y3NgvW1nZdhrHApIZDFoqmjyRhlJOaooqRZiQICnxGGv7wIvMbd0RIGvIbNYqIF6A+pz2KkdJSxyq0A6QGGLHkKr1NjtKOVXRKzhj2PHGnpHj2YZ5GT19mtWN9trshjgPCFWZIypbrRMpLkFAUM5Ka7ViSCOEh6pOWphwFRHrJOHhq72ula/dCoR9X9lj9vZGgQMpR4OvJLKac9TLxP68Vq96Jl1AexYpwPDnUi5mtQjtrwe5SQbBiI00QFlRntfEACYSV7srUJbizX54n9XLJPSyVr51i5RwmyMMu7MEBuHAMFbiEKtQAQwwP8Awvxr3xaLwab5PRnDHd2YE/MN5/AFJwloM=</latexit>

I4
<latexit sha1_base64="Tow7pNZUGsZa4tHZ9pGVtM+2hOY=">AAAB+HicbVDLSsNAFL2prxofjbp0EyyCq5JUQTdi0Y3uKtgHtLFMptN26GQSZiZCDfkSN4KKuPUn3LsR/8ZJ24W2Hhg4nHMv98zxI0alcpxvI7ewuLS8kl8119Y3NgvW1nZdhrHApIZDFoqmjyRhlJOaooqRZiQICnxGGv7wIvMbd0RIGvIbNYqIF6A+pz2KkdJSxyq0A6QGGLHkKr1NjtKOVXRKzhj2PHGnpHj2YZ5GT19mtWN9trshjgPCFWZIypbrRMpLkFAUM5Ka7ViSCOEh6pOWphwFRHrJOHhq72ula/dCoR9X9lj9vZGgQMpR4OvJLKac9TLxP68Vq96Jl1AexYpwPDnUi5mtQjtrwe5SQbBiI00QFlRntfEACYSV7srUJbizX54n9XLJPSyVr51i5RwmyMMu7MEBuHAMFbiEKtQAQwwP8Awvxr3xaLwab5PRnDHd2YE/MN5/AFJwloM=</latexit>

I8
<latexit sha1_base64="hxbSzLYJeGYlwmBP0RGbLTH7G98=">AAAB+HicbVC7SgNBFL0bX3F9ZNXSZjAIVmE3FqYRgzbaRTAPSNYwO5lNhsw+mJkV4pIvsRFUxNafsLcR/8bZJIUmHhg4nHMv98zxYs6ksu1vI7e0vLK6ll83Nza3tgvWzm5DRokgtE4iHomWhyXlLKR1xRSnrVhQHHicNr3hReY376iQLApv1CimboD7IfMZwUpLXavQCbAaEMzTq/FtWhl3raJdsidAi8SZkeLZh3kaP32Zta712elFJAloqAjHUrYdO1ZuioVihNOx2UkkjTEZ4j5taxrigEo3nQQfo0Ot9JAfCf1ChSbq740UB1KOAk9PZjHlvJeJ/3ntRPkVN2VhnCgakukhP+FIRShrAfWYoETxkSaYCKazIjLAAhOluzJ1Cc78lxdJo1xyjkvla7tYPYcp8rAPB3AEDpxAFS6hBnUgkMADPMOLcW88Gq/G23Q0Z8x29uAPjPcfWISWhw==</latexit>

I8
<latexit sha1_base64="hxbSzLYJeGYlwmBP0RGbLTH7G98=">AAAB+HicbVC7SgNBFL0bX3F9ZNXSZjAIVmE3FqYRgzbaRTAPSNYwO5lNhsw+mJkV4pIvsRFUxNafsLcR/8bZJIUmHhg4nHMv98zxYs6ksu1vI7e0vLK6ll83Nza3tgvWzm5DRokgtE4iHomWhyXlLKR1xRSnrVhQHHicNr3hReY376iQLApv1CimboD7IfMZwUpLXavQCbAaEMzTq/FtWhl3raJdsidAi8SZkeLZh3kaP32Zta712elFJAloqAjHUrYdO1ZuioVihNOx2UkkjTEZ4j5taxrigEo3nQQfo0Ot9JAfCf1ChSbq740UB1KOAk9PZjHlvJeJ/3ntRPkVN2VhnCgakukhP+FIRShrAfWYoETxkSaYCKazIjLAAhOluzJ1Cc78lxdJo1xyjkvla7tYPYcp8rAPB3AEDpxAFS6hBnUgkMADPMOLcW88Gq/G23Q0Z8x29uAPjPcfWISWhw==</latexit>

I6
<latexit sha1_base64="fOp3lze8zcXGYHERSuqb9Ns35I0=">AAAB+HicbVDLSsNAFL2prxofjbp0EyyCq5JUUDdi0Y3uKtgHtLFMptN26GQSZiZCDfkSN4KKuPUn3LsR/8ZJ24W2Hhg4nHMv98zxI0alcpxvI7ewuLS8kl8119Y3NgvW1nZdhrHApIZDFoqmjyRhlJOaooqRZiQICnxGGv7wIvMbd0RIGvIbNYqIF6A+pz2KkdJSxyq0A6QGGLHkKr1NjtKOVXRKzhj2PHGnpHj2YZ5GT19mtWN9trshjgPCFWZIypbrRMpLkFAUM5Ka7ViSCOEh6pOWphwFRHrJOHhq72ula/dCoR9X9lj9vZGgQMpR4OvJLKac9TLxP68Vq96Jl1AexYpwPDnUi5mtQjtrwe5SQbBiI00QFlRntfEACYSV7srUJbizX54n9XLJPSyVr51i5RwmyMMu7MEBuHAMFbiEKtQAQwwP8Awvxr3xaLwab5PRnDHd2YE/MN5/AFV6loU=</latexit>

I6
<latexit sha1_base64="fOp3lze8zcXGYHERSuqb9Ns35I0=">AAAB+HicbVDLSsNAFL2prxofjbp0EyyCq5JUUDdi0Y3uKtgHtLFMptN26GQSZiZCDfkSN4KKuPUn3LsR/8ZJ24W2Hhg4nHMv98zxI0alcpxvI7ewuLS8kl8119Y3NgvW1nZdhrHApIZDFoqmjyRhlJOaooqRZiQICnxGGv7wIvMbd0RIGvIbNYqIF6A+pz2KkdJSxyq0A6QGGLHkKr1NjtKOVXRKzhj2PHGnpHj2YZ5GT19mtWN9trshjgPCFWZIypbrRMpLkFAUM5Ka7ViSCOEh6pOWphwFRHrJOHhq72ula/dCoR9X9lj9vZGgQMpR4OvJLKac9TLxP68Vq96Jl1AexYpwPDnUi5mtQjtrwe5SQbBiI00QFlRntfEACYSV7srUJbizX54n9XLJPSyVr51i5RwmyMMu7MEBuHAMFbiEKtQAQwwP8Awvxr3xaLwab5PRnDHd2YE/MN5/AFV6loU=</latexit>

Figure 4.5: Qualitative evaluation on inferring ancestors of fragments with interval

∆t “ 3. A fragment in It is shown in the same color as its ancestor from It´∆t.

one-to-many fluent transitions and grounds each fragment in It to its ancestor in It´3.

For comparison, we design a heuristics-based baseline due to the lack of existing baselines.

Specifically, the baseline ground each fragment in It to the nearest fragment with a volume

larger than it in It´∆t.

Table 4.1 summarizes detailed quantitative evaluations with two ablation settings: with-

out fragment shape matching term in Eq. (4.7) (w/o Idv Frag), and without the layout
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Table 4.1: Accuracy (mean and standard deviation) of fragment ancestor inference

given two fragment configurations with different intervals.

Model ∆t “ 1 ∆t “ 3 ∆t “ 5

Heuristic 0.68˘0.09 0.71˘0.11 0.77˘0.13

Ours (w/o Idv Frag) 0.71˘0.08 0.63˘0.14 0.69˘0.19

Ours (w/o Layout) 0.80˘0.18 0.78˘0.14 0.79˘0.19

Ours 0.93˘0.08 0.88˘0.10 0.86˘0.11

grouping term in Eq. (4.8) (w/o Layout). Specifically, we compare the accuracy of identi-

fying the association between fragments and their ancestors across different I for all four

methods with ∆t set to 1, 3, and 5 steps. For each fragmentation event, we repeat this

evaluation multiple times for each pIt, It´∆tq pair when t ě ∆t. Our method achieves the

best performance in all cases, indicating that the complexity of object fragmentation could

not be resolved solely by heuristics. Our ablation studies further show that an ideal solution

must account for both individual fragment shapes and the layout of fragments.

4.6.3 Planning for exact goals

We further demonstrate the grammar’s forward reasoning capability of producing a sequence

of fragmentation; it is tasked to achieve a specific goal configuration based on the current

object (fragment) configuration.

As the production rules in the learned grammar correspond to feasible fragmentation

actions this task becomes a planning task, solved by inferring an optimal parse tree between

the two fragment configurations It (current) and Ig (goal).

In our experiment, we have the models to cut one object at a time in the simulation.

Each action requires selecting a specific object (fragment) and computing a 3D cutting
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(a)

VNT
<latexit sha1_base64="G/noAmKkz/uXgB6yNRevJEgA/KQ=">AAAB7nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbGSBPKCZAmzk9lkyOzsMjMrhCUfYWOhiK2Nf+EX2Nn4Lc5uUmjigQuHc+7l3nu8iDOlbfvLyq2tb2xu5bcLO7t7+wfFw6O2CmNJaIuEPJRdDyvKmaAtzTSn3UhSHHicdrzJTep37qlULBRNPY2oG+CRYD4jWBup0x4kd81ZYVAs2WU7A1olzoKUqieNb/Ze+6gPip/9YUjigApNOFaq59iRdhMsNSOczgr9WNEIkwke0Z6hAgdUuUl27gydG2WI/FCaEhpl6u+JBAdKTQPPdAZYj9Wyl4r/eb1Y+9duwkQUayrIfJEfc6RDlP6OhkxSovnUEEwkM7ciMsYSE20SSkNwll9eJe1K2bksVxomjRrMkYdTOIMLcOAKqnALdWgBgQk8wBM8W5H1aL1Yr/PWnLWYOYY/sN5+AIS/kro=</latexit>

VT
<latexit sha1_base64="o8mkfnDYEuH9B/VaIC4cJYl8LeY=">AAAB7XicbVA9TwJBEJ3DL8Qv1MTGZiMxsSJ3WGhJsLGEBA4SuJC9ZQ9W9vYuu3sm5MJ/sLHQGFsr/4W/wM7G3+IeUCj4kkle3pvJzDw/5kxp2/6ycmvrG5tb+e3Czu7e/kHx8MhVUSIJbZGIR7LjY0U5E7Slmea0E0uKQ5/Ttj++yfz2PZWKRaKpJzH1QjwULGAEayO5bj9tTgv9Ysku2zOgVeIsSKl60vhm77WPer/42RtEJAmp0IRjpbqOHWsvxVIzwum00EsUjTEZ4yHtGipwSJWXzq6donOjDFAQSVNCo5n6eyLFoVKT0DedIdYjtexl4n9eN9HBtZcyESeaCjJfFCQc6Qhlr6MBk5RoPjEEE8nMrYiMsMREm4CyEJzll1eJWyk7l+VKw6RRgznycApncAEOXEEVbqEOLSBwBw/wBM9WZD1aL9brvDVnLWaO4Q+stx/ncJJi</latexit>

production
instance
attribute shape

pose

Ig
Z = {zi}, Ig

Q = {qi}
<latexit sha1_base64="5rsRx6okkPYZRbG1LH4mR/sWXAk=">AAACHXicbZC7SgNBFIZnvcZ4W2NpMxgEC4m7UdBGCNpol4C5YDYus5PZZMjsxZlZIS5b+RY2vkoaC4NY2Ihv42ySwiQeGPj5v3OYc34nZFRIw/jRFhaXlldWM2vZ9Y3NrW19J1cTQcQxqeKABbzhIEEY9UlVUslII+QEeQ4jdad3lfL6I+GCBv6t7Iek5aGOT12KkVSWrZ9aHpJdjFh8k9x37Dt4Aa34yaZWcgSnUWWEHlJk63mjYIwKzgtzIvKl48pw8JwLyrb+ZbUDHHnEl5ghIZqmEcpWjLikmJEka0WChAj3UIc0lfSRR0QrHl2XwAPltKEbcPV8CUfu34kYeUL0PUd1pguLWZaa/7FmJN3zVkz9MJLEx+OP3IhBGcA0KtimnGDJ+kogzKnaFeIu4ghLFWhWhWDOnjwvasWCeVIoVlQal2BcGbAH9sEhMMEZKIFrUAZVgMELGIB3MNRetTftQ/scty5ok5ldMFXa9y88zaUD</latexit>

zi
<latexit sha1_base64="FcClVOEqAl7OwLXTiKR8TJN5fEk=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFM0DwgWcLsZDYZMjO7zMwKcckn2FgoYmvrX/gFdjZ+i5NHoYkHLhzOuZd77wlizrRx3S8ns7K6tr6R3cxtbe/s7uX3Dxo6ShShdRLxSLUCrClnktYNM5y2YkWxCDhtBsOrid+8o0qzSN6aUUx9gfuShYxgY6Wb+y7r5gtu0Z0CLRNvTgrlo9o3e698VLv5z04vIomg0hCOtW57bmz8FCvDCKfjXCfRNMZkiPu0banEgmo/nZ46RqdW6aEwUrakQVP190SKhdYjEdhOgc1AL3oT8T+vnZjw0k+ZjBNDJZktChOOTIQmf6MeU5QYPrIEE8XsrYgMsMLE2HRyNgRv8eVl0igVvfNiqWbTqMAMWTiGEzgDDy6gDNdQhToQ6MMDPMGzw51H58V5nbVmnPnMIfyB8/YDQ5KRew==</latexit>

qi
<latexit sha1_base64="vbDVkBYzwi1b81pKp+SjQXQjerY=">AAAB6nicbVC7SgNBFL3jM8ZX1FKRwSBYhd1YaBm0sUzQPCBZwuxkNhkyO7vOzAphSWlpY6GIrR+R77DzG/wJJ49CEw9cOJxzL/fe48eCa+M4X2hpeWV1bT2zkd3c2t7Zze3t13SUKMqqNBKRavhEM8ElqxpuBGvEipHQF6zu96/Hfv2BKc0jeWcGMfNC0pU84JQYK93et3k7l3cKzgR4kbgzki8djSrfj8ejcjv32epENAmZNFQQrZuuExsvJcpwKtgw20o0iwntky5rWipJyLSXTk4d4lOrdHAQKVvS4In6eyIlodaD0LedITE9Pe+Nxf+8ZmKCSy/lMk4Mk3S6KEgENhEe/407XDFqxMASQhW3t2LaI4pQY9PJ2hDc+ZcXSa1YcM8LxYpN4wqmyMAhnMAZuHABJbiBMlSBQhee4AVekUDP6A29T1uX0GzmAP4AffwARDORfA==</latexit>

(b)

vS
<latexit sha1_base64="11lBDIPqgTHMjAPk5JxZdoOkGNQ=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFMiHlAXMLsZDYZMjuzzMwGwpJPsLFQxNbWv/AL7Gz8FiePQhMPXDiccy/33hPEnGnjul9OZm19Y3Mru53b2d3bP8gfHjW1TBShDSK5VO0Aa8qZoA3DDKftWFEcBZy2guHN1G+NqNJMijszjqkf4b5gISPYWKk+6ta7+YJbdGdAq8RbkEL5pPbN3isf1W7+874nSRJRYQjHWnc8NzZ+ipVhhNNJ7j7RNMZkiPu0Y6nAEdV+Ojt1gs6t0kOhVLaEQTP190SKI63HUWA7I2wGetmbiv95ncSE137KRJwYKsh8UZhwZCSa/o16TFFi+NgSTBSztyIywAoTY9PJ2RC85ZdXSbNU9C6LpZpNowJzZOEUzuACPLiCMtxCFRpAoA8P8ATPDncenRfndd6acRYzx/AHztsPHCKRYQ==</latexit>

cS
<latexit sha1_base64="7xB/Qrjj8nYXgIA6N3kMWNpuJpY=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFMiHlAsoTZyWwyZHZmmZkVwpJPsLFQxNbWv/AL7Gz8FiePQhMPXDiccy/33hPEnGnjul9OZm19Y3Mru53b2d3bP8gfHjW1TBShDSK5VO0Aa8qZoA3DDKftWFEcBZy2gtHN1G/dU6WZFHdmHFM/wgPBQkawsVKd9Oq9fMEtujOgVeItSKF8Uvtm75WPai//2e1LkkRUGMKx1h3PjY2fYmUY4XSS6yaaxpiM8IB2LBU4otpPZ6dO0LlV+iiUypYwaKb+nkhxpPU4CmxnhM1QL3tT8T+vk5jw2k+ZiBNDBZkvChOOjETTv1GfKUoMH1uCiWL2VkSGWGFibDo5G4K3/PIqaZaK3mWxVLNpVGCOLJzCGVyAB1dQhluoQgMIDOABnuDZ4c6j8+K8zlszzmLmGP7AefsB/yGRTg==</latexit>

c1
<latexit sha1_base64="ROpG8iTP5f+rs5/cKoZEyRo1ZgY=">AAAB63icbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFMwDwgWcLsZDYZMjO7zMwKYckv2FgoYmvpX/gFdjZ+i7NJCk08cOFwzr3ce08Qc6aN6345ubX1jc2t/HZhZ3dv/6B4eNTSUaIIbZKIR6oTYE05k7RpmOG0EyuKRcBpOxjfZH77nirNInlnJjH1BR5KFjKCTSaRvlfoF0tu2Z0BrRJvQUrVk8Y3e6991PvFz94gIomg0hCOte56bmz8FCvDCKfTQi/RNMZkjIe0a6nEgmo/nd06RedWGaAwUrakQTP190SKhdYTEdhOgc1IL3uZ+J/XTUx47adMxomhkswXhQlHJkLZ42jAFCWGTyzBRDF7KyIjrDAxNp4sBG/55VXSqpS9y3KlYdOowRx5OIUzuAAPrqAKt1CHJhAYwQM8wbMjnEfnxXmdt+acxcwx/IHz9gMAq5FA</latexit>

c2
<latexit sha1_base64="igEePN2139RbXxCqnUIZaI5XJDY=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFM0DwgLmF2cpMMmZ1dZmaFsOQTbCwUsbX1L/wCOxu/xcmj0MQDFw7n3Mu99wSx4Nq47peTWVldW9/Ibua2tnd29/L7Bw0dJYphnUUiUq2AahRcYt1wI7AVK6RhILAZDK8mfvMeleaRvDWjGP2Q9iXvcUaNlW5Yp9TJF9yiOwVZJt6cFMpHtW/+XvmodvKfd92IJSFKwwTVuu25sfFTqgxnAse5u0RjTNmQ9rFtqaQhaj+dnjomp1bpkl6kbElDpurviZSGWo/CwHaG1Az0ojcR//Paield+imXcWJQstmiXiKIicjkb9LlCpkRI0soU9zeStiAKsqMTSdnQ/AWX14mjVLROy+WajaNCsyQhWM4gTPw4ALKcA1VqAODPjzAEzw7wnl0XpzXWWvGmc8cwh84bz/NHZEt</latexit>

c5
<latexit sha1_base64="+FK1Jv1ttasjNkUSi6eQcmmjxYg=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuRLQMsbFM0DwgWcLsZDYZMjuzzMwKYckn2FgoYmvrX/gFdjZ+i5NHoYkHLhzOuZd77wlizrRx3S8ns7K6tr6R3cxtbe/s7uX3DxpaJorQOpFcqlaANeVM0LphhtNWrCiOAk6bwfB64jfvqdJMijsziqkf4b5gISPYWOmWdC+6+YJbdKdAy8Sbk0L5qPbN3isf1W7+s9OTJImoMIRjrdueGxs/xcowwuk410k0jTEZ4j5tWypwRLWfTk8do1Or9FAolS1h0FT9PZHiSOtRFNjOCJuBXvQm4n9eOzHhlZ8yESeGCjJbFCYcGYkmf6MeU5QYPrIEE8XsrYgMsMLE2HRyNgRv8eVl0igVvfNiqWbTqMAMWTiGEzgDDy6hDDdQhToQ6MMDPMGzw51H58V5nbVmnPnMIfyB8/YD0amRMA==</latexit>

c5
<latexit sha1_base64="+FK1Jv1ttasjNkUSi6eQcmmjxYg=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuRLQMsbFM0DwgWcLsZDYZMjuzzMwKYckn2FgoYmvrX/gFdjZ+i5NHoYkHLhzOuZd77wlizrRx3S8ns7K6tr6R3cxtbe/s7uX3DxpaJorQOpFcqlaANeVM0LphhtNWrCiOAk6bwfB64jfvqdJMijsziqkf4b5gISPYWOmWdC+6+YJbdKdAy8Sbk0L5qPbN3isf1W7+s9OTJImoMIRjrdueGxs/xcowwuk410k0jTEZ4j5tWypwRLWfTk8do1Or9FAolS1h0FT9PZHiSOtRFNjOCJuBXvQm4n9eOzHhlZ8yESeGCjJbFCYcGYkmf6MeU5QYPrIEE8XsrYgMsMLE2HRyNgRv8eVl0igVvfNiqWbTqMAMWTiGEzgDDy6hDDdQhToQ6MMDPMGzw51H58V5nbVmnPnMIfyB8/YD0amRMA==</latexit>

c6
<latexit sha1_base64="QEanEmeaBZyCeq8oAQFYZqY6GOo=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuBLUMsbFM0DwgWcLsZDYZMjuzzMwKYckn2FgoYmvrX/gFdjZ+i5NHoYkHLhzOuZd77wlizrRx3S8ns7K6tr6R3cxtbe/s7uX3DxpaJorQOpFcqlaANeVM0LphhtNWrCiOAk6bwfB64jfvqdJMijsziqkf4b5gISPYWOmWdC+6+YJbdKdAy8Sbk0L5qPbN3isf1W7+s9OTJImoMIRjrdueGxs/xcowwuk410k0jTEZ4j5tWypwRLWfTk8do1Or9FAolS1h0FT9PZHiSOtRFNjOCJuBXvQm4n9eOzHhlZ8yESeGCjJbFCYcGYkmf6MeU5QYPrIEE8XsrYgMsMLE2HRyNgRv8eVl0igVvfNiqWbTqMAMWTiGEzgDDy6hDDdQhToQ6MMDPMGzw51H58V5nbVmnPnMIfyB8/YD0y2RMQ==</latexit>

c6
<latexit sha1_base64="QEanEmeaBZyCeq8oAQFYZqY6GOo=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuBLUMsbFM0DwgWcLsZDYZMjuzzMwKYckn2FgoYmvrX/gFdjZ+i5NHoYkHLhzOuZd77wlizrRx3S8ns7K6tr6R3cxtbe/s7uX3DxpaJorQOpFcqlaANeVM0LphhtNWrCiOAk6bwfB64jfvqdJMijsziqkf4b5gISPYWOmWdC+6+YJbdKdAy8Sbk0L5qPbN3isf1W7+s9OTJImoMIRjrdueGxs/xcowwuk410k0jTEZ4j5tWypwRLWfTk8do1Or9FAolS1h0FT9PZHiSOtRFNjOCJuBXvQm4n9eOzHhlZ8yESeGCjJbFCYcGYkmf6MeU5QYPrIEE8XsrYgMsMLE2HRyNgRv8eVl0igVvfNiqWbTqMAMWTiGEzgDDy6hDDdQhToQ6MMDPMGzw51H58V5nbVmnPnMIfyB8/YD0y2RMQ==</latexit>

c0
<latexit sha1_base64="3Kj5lkGLsNwXnACaEpKa/migLWw=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFM0DwgLmF2cpMMmZ1dZmaFsOQTbCwUsbX1L/wCOxu/xcmj0MQDFw7n3Mu99wSx4Nq47peTWVldW9/Ibua2tnd29/L7Bw0dJYphnUUiUq2AahRcYt1wI7AVK6RhILAZDK8mfvMeleaRvDWjGP2Q9iXvcUaNlW5Yx+3kC27RnYIsE29OCuWj2jd/r3xUO/nPu27EkhClYYJq3fbc2PgpVYYzgePcXaIxpmxI+9i2VNIQtZ9OTx2TU6t0SS9StqQhU/X3REpDrUdhYDtDagZ60ZuI/3ntxPQu/ZTLODEo2WxRLxHERGTyN+lyhcyIkSWUKW5vJWxAFWXGppOzIXiLLy+TRqnonRdLNZtGBWbIwjGcwBl4cAFluIYq1IFBHx7gCZ4d4Tw6L87rrDXjzGcO4Q+ctx/KFZEr</latexit>
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Figure 4.6: Acquiring planned action(s) from inferred parse tree. (a) lists the pro-

duction rules of the learned grammar. (b) shows the optimal parse tree pt˚ inferred at

individual level. The next action (green region) is selected at the node that directly ex-

panded from the start variable. The cutting plane π is acquired according to the distribution

ppπ|c0 Ñ c1c2, z1q given the production rule c0 Ñ c1c2 and shape feature z1 from fragment

o1.

plane π to cut the selected object. A cutting plane is represented as a homogeneous vector

π “ rnT , dsT P R4 in the projective space with unit plane normal vector }n}2 “ 1, and any

point v P R3 on the plane that satisfies a constraint: nT ¨ v ` d “ 0. As the distribution

of π in the demonstration dataset is naturally multi-modal, we model π using a Gaussian

Mixture Model [Rey09] with k components (we use k “ 4):

ppπ|¨q “

k
ÿ

i“1

wip¨qN
`

µip¨q,σip¨q
˘

(4.16)

where ¨ indicates potential given conditions.
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Instead of directly predicting π, all planning models regress parameters of the distribu-

tion including means µi, standard derivations σi and component weights ωi, i “ 1, 2, ..., k

using a two-layer Multi-layer Perceptron (MLP) as in the Mixture Density Network [Bis94].

Particularly, we fit the mixture model and estimate a cutting plane π relative to the canon-

ical coordinate of the object to cut. Then cutting planes are sampled from the distribution

for execution.

In our method, parameters of the mixture model are conditioned on the production rule

r : α Ñ β and the shape feature z of the object (fragment) to be cut. Fig. 4.6 shows an

example of how we acquire a planned action from an inferred optimal parse tree and sample

a cutting plane from the distribution ppπ|r, zq.

We infer at the individual level (see Section 4.5.1) for planning for exact goals. Although

this setup seems similar to that in the last experiment, where a single optimal parse tree

is sufficient to identify the transitions among fragments in different time steps, planning

requires the inference to happen iteratively due to the imperfect alignment between the

optimal parse tree and the actual configuration and the discrepancy between the expected

fluent transition and the resulted one after action execution. Therefore, after executing the

action corresponding to the production rule at depth level one in the parse tree, we repeat

the inference process until the number of fragments in the goal is reached.

Of note, this task involves an enormously large state and action space (see Section 4.2).

Given the recent success of learning-to-plan methods [LCP21, MKS15, HLN20] in handling

large spaces, we design two baselines: (i) Behavioral Cloning (BC) learns a goal-directed

policy parameterized by a neural network to mimic human actions in collected demonstra-

tions; (ii)Offline Deep Q Network (QNet), a model-free reinforcement learning approach

trained offline on logged demonstration data, where we use a neural network to approximate

an action value function (Q function) of producing a certain fragment while regressing the ac-

tion plane parameters. Further, we recruit (iii)Human participants to perform the planning

tasks under the same setup, which serves as the performance upper bound.
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Figure 4.7: Qualitative evaluation on planning for exact goals in object fragmen-

tation tasks. Each row presents a sample case of a certain combination of N and M .

We design two metrics to evaluate how well the produced fragments match the goal

configuration: (i) Mean best-matched IoU. This objective metric is the IoU between the

produced final fragments and the fragments in the goal configuration. More precisely, the
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Mean best-matched IoU computes the averaged IoU of best-matched fragment pairs between

two fragment configurations. (ii) HR. We recruit human participants to subjectively rate

the fitness of the goal configurations. The rating ranges from 1 to 5 in discrete values; a

higher score indicates a better match.

Table 4.2: Quantitative evaluation on planning for exact goals in object fragmen-

tation tasks. We evaluate all methods using the best-matched IoU and HR on the test set

with various N,M combinations, averaged across five runs; ˘ denotes standard deviation.

Method
N=1, M=1 N=1, M=2 N=2, M=1

IoU HR IoU HR IoU HR

BC 0.37 ˘ 0.11 2.19˘1.07 0.35 ˘ 0.08 1.76˘0.87 0.44 ˘ 0.08 1.64˘0.65

QNet 0.40 ˘ 0.16 2.14˘1.21 0.32 ˘ 0.12 1.95˘0.87 0.34 ˘ 0.16 1.19˘0.39

Ours 0.58 ˘ 0.08 4.32˘0.77 0.49 ˘ 0.06 3.60˘1.02 0.56 ˘ 0.03 3.69˘0.89

Human 0.57 ˘ 0.03 4.48˘0.96 0.62 ˘ 0.07 4.86˘0.35 0.62 ˘ 0.09 4.83˘0.37

Method
N=2,M=2 N=2,M=3 N=3,M=4

IoU HR IoU HR IoU HR

BC 0.42 ˘ 0.03 2.07˘0.86 0.38 ˘ 0.03 1.73˘0.99 0.38 ˘ 0.04 1.57˘0.62

QNet 0.29 ˘ 0.09 1.24˘0.43 0.28 ˘ 0.09 1.52˘0.92 0.22 ˘ 0.08 1.26˘0.49

Ours 0.52 ˘ 0.04 3.74˘0.90 0.52 ˘ 0.03 3.21˘0.86 0.52 ˘ 0.02 3.21˘0.86

Human 0.56 ˘ 0.04 4.79˘0.56 0.60 ˘ 0.04 4.81˘0.55 0.56 ˘ 0.04 4.81˘0.55

We compare the proposed method with the baselines and tabulate the results in Table 4.2;

Fig. 4.7 further shows a qualitative comparison. While the testing setup (N “ 1,M “ 1) is

similar to the training data, those in the other four columns require certain generalization

capability by involving more objects N ą 1 and/or a composition capability M ą 1. Our

method greatly outperforms the BC and QNet in all five setups, approaching human-level

performance. These results indicate that planning for object fragmentation cannot only rely

on pursuing the goal configuration as the goal-directed policy produced by BC. Associating
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an action and a value function fitted from data, as modeled by QNet, would also fail. Rather,

it requires a proper understanding of the fluent space and the well-defined transitions within

it to succeed in this complex planning task. This experiment sufficiently shows that the

proposed grammar-based representation allows an effective abstraction of such a space and

generalizes well to challenging settings due to its compositional nature.

4.6.4 Planning in fragment ensemble

We further evaluate the fluent space learned by the grammar in a more challenging planning

setting—the desired goal configuration is infeasible to achieve from the given initial config-

uration (e.g ., cutting a potato based on the observation of carrot fragments). The inference

scheme at the ensemble level (see Section 4.5.2) naturally applies to this challenging task.

As shown in Fig. 4.8, the BC performs poorly as mimicking human actions cannot ad-

dress these far-transfer cases, whereas the QNet can perform slightly better as some fluent

transitions still apply. In comparison, the proposed grammar-based representation enables a

new planning at the fragment ensemble level–pursuing an approximate goal that shares the

underlying statistics with the exact goal.

We argue that this planning objective is more similar to human’s pre-attentive perception

of fragments, demonstrated by the small difference in human ratings between the results

generated by our method and by other human participants; see Table 4.3; two baseline

methods receive much lower ratings.

Fig. 4.9 shows how the stopping threshold ϵ affects the planning results. Similar to Julesz

Ensemble [Jul62], when the fragment ensemble likelihood pesmpIg|pt,Gq is greater than ϵ, we

assume the goal is reached as the fluent described in pt and fragments in Ig share adequate

statistics in terms of fragment types. A larger ϵ prohibits the algorithm from finding a

feasible solution that strictly matches the goal, whereas a tiny ϵ fails to capture the essence

of the fragment configuration. In our experiment, we set log ϵ “ ´0.8.
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Goal Given Init. Ours HumanBC QNet

Figure 4.8: Qualitative evaluation on planning with the ensemble goal; each row

is a test case. The bottom-right corner of the goal represents the initial configuration from

which the goal is produced. In this experiment, while the goal configuration cannot be di-

rectly achieved from the initial configuration, our method produces configurations equivalent

to the goal configuration at the ensemble level.
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Figure 4.9: Comparisons between the goal (left) and configurations produced by

our method (right) with different stopping thresholds.

Table 4.3: Human evaluation of planning with ensemble goals.

Model BC QNet Ours Human

HR 1.80˘0.56 1.98˘0.64 4.54˘0.62 4.97˘0.20

4.7 Conclusion

We presented a grammar-based representation for understanding object fragmentation events.

A specific fragmentation was represented by a parse tree derived from the grammar, whose

terminal nodes define the fluent of the fragment configuration, and the production rules

indicate the plausible transitions within the fluent space. Given a current configuration of

fragments, the grammar representation supports (i) a retrospective reasoning capability that

identifies fragments’ ancestors in a past configuration, and (ii) a forward reasoning scheme

that plans a sequence of fragmentation to reach a goal configuration or to reach an ensem-

ble configuration that matches the human pre-attentive perceptual experience of fragments

when the goal is infeasible.

Collectively, this new perspective surpasses prior work that treats objects as a whole,

introducing a new dimension for robots to perceive objects (fragments) and utilize fragmen-

tation in complex tasks. We hope our work, as the initial effort, could shed light on future

work on more complex object modeling, especially objects with topology changes.
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CHAPTER 5

Understanding Physical Effects for Effective Tool-use

In this chapter, we study the interconnection between the geometry and topology fluent in

a tool-use scenario. Particularly, we present a robot learning and planning framework that

learns the essential physical properties contributing to the effects of a tool-use event (e.g .,

how a hammer cracks a walnut) and produces an effective tool-use strategy with the least

joint efforts. Leveraging a Finite Element Method (FEM)-based simulator that reproduces

fine-grained, continuous visual and physical effects given observed tool-use events, the es-

sential physical properties contributing to the effects are identified through the proposed

Iterative Deepening Symbolic Regression (IDSR) algorithm. We further devise an optimal

control-based motion planning scheme to integrate robot- and tool-specific kinematics and

dynamics to produce an effective trajectory that enacts the learned properties. In simulation,

we demonstrate that the proposed framework can produce more effective tool-use strategies,

drastically different from the observed ones in two exemplar tasks. The materials in this

chapter have been published in [ZJW22].

5.1 Introduction

A robot extends its capability to a broader range of tasks by using tools. Unlike treating

a tool as a part of the end-effector that commonly appears in industrial settings [AA88,

HLR19], researchers have proposed various learning-based approaches that empower more

adept tool-use behaviors. However, existing learning objectives either focus on low-level

motions [KOI21, SOF21] without an explicit understanding of the tasks or on higher-level
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Figure 5.1: Overview of the proposed framework. (a) After observing tool-use events,

we learn the essential physical properties involved in the processes from the effects reproduced

by physics-based simulation. (b) The learned results are formulated into a motion planning

scheme to produce various strategies to use an object, and the most effective strategy with

minimal joint efforts among others is selected.

concepts with simplified motion patterns [AA18, QFZ20, TWT21]. As a result, robots are

still far from producing situational tool-use strategies: Given a set of objects (typical tools

or canonical objects), which one would be the best to accomplish the task? Once an object

is chosen as the tool, how to efficiently use it given robot- and tool-specific kinematics and

dynamics?

To tackle these challenges, we propose an integrated learning and planning framework
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wherein robots understand and produce effective tool-use strategies by reasoning about the

essential physical properties that contribute to the success of the task. Fig. 5.1 shows an

overview of our integrated framework. Compared to prior arts in robotics literature, our

framework identifies the invariant learning objective of tool-uses at a more fundamental

level; instead of using pure vision-based methods [LWZ17, TWL20], our framework focuses

on the physical effects produced by the tool and learns to recognize the essential physical

properties in accomplishing the task. Specifically, we adopt a state-of-the-art Finite Element

Method (FEM) [LFS20] to simulate how both visual and physical effects evolve over time

(e.g ., stress, energy, contact) in a continuous manner. A symbolic regression-based Iterative

Deepening Symbolic Regression (IDSR) algorithm is devised to trace the set of physical

properties produced by the simulator and to efficiently identify how much each property

contributes to the effect.

Next, we formulate the learned results into an optimal control-based motion planning

scheme that allows the robot to generate various tool-use strategies whose efficiency is eval-

uated by joint efforts. To ease the motion planning problem and make the scheme more

generic (i.e., handle robots with different morphology, tools in diverse shapes, and various

ways to operate tools), we introduce a VKC perspective [JZJ21, JZW21] that treats the tool

as an additional link of the robot and integrates their kinematic and dynamic properties as

a whole in motion planning.

In two exemplar tasks—cracking walnut and cutting carrot, we demonstrate that the

proposed learning and planning framework can (i) identify the essential physical properties

significant to the success of the task and (ii) produce an effective tool-use strategy that

emulates the essential properties while minimizing joint efforts using seen and unseen objects

as tools. As a result, the proposed framework allows the robot to better understand the

physical environment by leveraging physics-based simulations and become more competent

in bootstrapping novel (i.e., not observed) tool-use strategies.
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5.1.1 Related Work

Learning tool-use involves several cognitive and intelligent processes, challenging even for hu-

mans. Replicating such a skill set at the full spectrum is thus difficult, and existing literature

mainly focuses at one of three different levels. Low-level planning and control methods

track desired tool-use trajectories with impedance control [AA88], alter force and motion

constraints at different stages [HLR19], or apply learning-based control [KOI21, SOF21];

robust execution is of the central interest. At mid-level, various intermediate representa-

tions are identified for better understanding tool-uses, such as keypoints [QFZ20, TWT21],

primitive parts [NBC19, NSE19, WS15, WS20], and kinematic models [TKO17, JZW21].

Although introducing these representations facilitates learning more diverse tool-use skills,

they are still restricted to the geometric association between shapes and task specifications.

To capture high-level concepts embedded in tool-uses, researchers adopt task and motion

planning [TAS18], functionality and affordance [ZZZ15, AA18, LC15], causality [BQS20],

and commonsense [AST20, TBP21], achieving better generalization capabilities. Empow-

ered by physics-based simulation, we advance this line of work by taking all three views

into account: (i) learning related physical properties as the concepts from the tasks at the

high-level, (ii) integrating tool’s properties to robots by adopting VKC as the intermediate

representation at the mid-level, and (iii) planning tool-use strategies via optimal control at

the low-level.

Recently, physics-based simulation significantly facilitates various robotics tasks, e.g .,

Liu et al . simulate forces to bridge human and robot’s embodiments [LZZ19], Kennedy et al .

plan liquid pouring [KST19], Matl et al . infer granular materials’ properties [MNB20], Hahn

et al . approximate soft objects’ motions by estimating visco-elastic parameters [HBB19],

Geilinger et al . develop simulation framework for rigid and soft bodies with fictional contact

to promote robot locomotion [GHZ20], Li et al . improve UAV designs [LML21], and Heiden

et al . optimize robot’s cutting and slicing motions [HMN21]. Though sharing a similar spirit,

the FEM simulator adopted in the paper [LFS20] is designed to produce a wider range of
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physical properties for robot learning instead of optimizing for dedicated applications.

(a) Various partitions of a hammer. The green denotes affordance bases Ba, whereas the red denotes

functional bases Bf . Surface normals calculated at the regions’ center are the directions to grasp.

(b) VKCs can be constructed by consolidating the kinematic and dynamics of the robot and tool.

Figure 5.2: A VKC perspective that promotes motion planning. (a) Given a sampled

bases combination (highlighted in red box) of Ba and Bf , (b) a VKC is constructed by

assigning a virtual joint between the robot’s gripper and the Ba, and Bf becomes the new

end-effector. This VKC conversion and construction supports efficient and optimal motion

planning to produces proper tool-use trajectories by taking both kinematic and dynamic

factors into account.
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5.2 Problem Definition

We define a tool-use strategy S “ pBa,Bf ,Qq by (i) an affordance basis Ba to be grasped by

the robot gripper, (ii) a functional basis Bf to act on the target object, and (iii) a trajectory

Q directing the functional basis to move towards the target object. Given a tool partitioned

into a set of sub-meshes tMiu, a sampling process assigns one sub-mesh as Ba and another as

Bf , as illustrated in Fig. 5.2a. The surface normal vector n at the center of the corresponding

sub-mesh indicates the direction for the robot’s gripper to approach or for the tool to act

on the target object. Assuming the robot can firmly grasp the tool at Ba, generating a tool-

use strategy S can be formulated as a motion planning problem that finds a collision-free

trajectory Q “ q1:T given Ba and Bf .

5.2.1 VKC for Motion Planning

The theory of body schema [Gal06] suggests that humans can extend the body’s representa-

tion to incorporate an external object and treat it as part of their limb for efficient motions

and manipulations, which plays a significant role in tool-use [HS06]. This idea has been

introduced to the robotics community to represent robot structures and guide robot’s be-

haviors [HMA10]. Recent modeling approaches adopting VKC [JZW21, JZJ21] provide an

effective means to model robot tool-uses: By inserting a virtual joint between robot end-

effector and tool’s Ba, the kinematics and dynamics of the robot and the tool are integrated,

and their motions are planned collectively, resulting in more coordinated motion and higher

planning success rate [JZW21, JZJ21].

We first adopt an articulated body algorithm [Fea14] to compute the forward dynamics

analytically for the constructed VKC. Next, the objective of the motion planning for robot

tool-use is formulated by optimal control:

min
x,u,T

ż T

0

Lpxptq, uptqqdt ` ϕpxpT qq (5.1)
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Lpxptq, uptqq “ 9qJW 9q 9q ` uJWuu, (5.2)

ϕpxpT qq “ T, T P R`, (5.3)

where W 9q and Wu are weight matrices for joint velocities and joint torques, u : R Ñ Rn the

control input consisted of joint torques, ϕpxpT qq measures the quality of the terminal state,

particularly, we penalize the total elapsed time T . x : R Ñ R2n`2m`1 is the state variable,

which includes (i) joint positions q and velocities 9q of a manipulator with n DoF, (ii) q and

9q of underactuated joints in a tool, and (iii) the virtual joint at the grasp point with a total

of m DoF. Eq. (5.1) penalizes the weighted quadratic cost on joint velocity and torques for

the entire trajectory and the total elapsed time.

During the motion planning, we further impose several safety constraints:

9xptq “ fpxptq, uptqq, t P r0, T s (5.4)

gpxptq, uptqq “ 0, t P r0, T s (5.5)

xlb ď xptq ď xub, t P r0, T s (5.6)

ulb ď uptq ď uub, t P r0, T s (5.7)

where Eq. (5.4) is the system dynamics, Eq. (5.5) is a task-dependent constraint for tool-use,

Eq. (5.6) and Eq. (5.7) are safety constraints that bound the robot workspace and control

limit.

5.2.2 Goal Specification

Formally, the goal for a tool-use is expressed as:

ftaskpnTpGq,VKCq ñ gp¨q, (5.8)

where nTpGq is a set of physical properties that are essential to the task, to be detailed in

Section 5.3. ftask maps these physical properties and VKCs (as constructed in Fig. 5.2b) to

a constraint function g for motion planning. The intuition is for the robot to emulate those
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essential physical properties in execution while considering the robot and tool’s kinematics

and dynamics.

To be more specific, let us take the walnut cracking task as an example. Given the goal

position where the contact occurs pg, the tool should act on the target object with a velocity

vector vtool and the tool’s orientation dtool (to be detailed in Section 5.3.4), both represented

in world frame. Eq. (5.9) first finds a possible robot goal pose qg through solving inverse

kinematics to regulate the tool’s orientation when contacting the target object:

fzpqgq ¨ vtool

||fzpqgq|| ¨ ||vtool||
“ cospdtoolq, (5.9)

where fz : Rn Ñ R3 finds the surface normal of Bf . Then, the goal joint velocities are

computed by:

9qg “ JJ
VKCpJVKCJ

J
VKCq

´1vtool, (5.10)

where JVKC is the geometric Jacobian from the robot’s base frame to the tool’s functional

basis at the joint position qg. Finally, Eq. (5.8) can be expressed in terms of joint velocity

w.r.t. two constraint functions qg and 9qg:

gqpxptq, uptqq “xqpT q ´ qg “ 0 (5.11)

g 9qpxptq, uptqq “x 9qpT q ´ 9qg “ 0 (5.12)

5.3 Simulation and Learning

This section starts with the technical background of physics-based simulation, followed by

how it reproduces fine-grained physical properties and helps understand tool-uses events.

5.3.1 Background

Solid simulation approximates objects’ physical status. It is oftentimes formulated with the

Finite Element Method (FEM) [ZT00], which discretizes each object into small elements with
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a discrete set of sample points as the degree-of-freedoms. Mass and momentum conservation

equations are discretized on the mesh and integrated overtime to capture the dynamics. This

paper utilizes an Incremental Potential Contact (IPC) handling method [LGL19, LFS20,

LKJ21], a state-of-the-art FEM-based simulator, to address the difficulty of simulating non-

smooth contacts between a tool and a target object. To further support object fracture

during tool-uses, our simulator measures the displacement of every pair of points that both

connect to all the nodes of a triangle on the mesh. If the displacement relative to their original

distance exceeds a certain strain threshold, we mark the triangle in-between as separated.

5.3.2 Reproducing Effect

To produce similar effects in the simulation that sufficiently match those in the physical

world, some parameters governing an object’s material property need to be appropriately

set. In particular, Young’s modulus reflects the object’s stiffness—the stiffer the object is,

the harder for it to deform or fracture, and fracture limit determines the number and the size

of segments a large piece will fracture into. Fig. 5.3a qualitatively shows how the resulting

effects vary given different Young’s modulus and fracture limit. These two parameters are

calibrated such that the simulated effects match the observation in physical world.

We use two VIVE Trackers to capture the tool-use events. One to track the movement

of the tool (e.g ., a hammer), and another placed on the table serving as the reference point

for the target object (e.g ., a walnut). Both VIVE trackers are calibrated such that their

relative poses and captured trajectories are expressed in the same coordinate frame, with a

time step of the inverse of their sampling frequency. The meshes of the target object and

the tool are pre-scanned using an RGB-D camera. Combining scanned meshes and captured

trajectories, we can fully reconstruct an observed event in both space and time and further

simulate the effects of the target object both visually and physically. Examples of keyframes

of the collected data with corresponding simulated results are shown in Fig. 5.1a. Fig. 5.3b

visualizes the continuous numerical values of some notable physical properties obtained from
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Figure 5.3: Examples of qualitative and quantitative results produced by the FEM-

based simulation. (a) We qualitatively choose the parameters (in red) that best match

the final effect of observed tool-use events. (b) By adopting an FEM-based simulator, the

data collection process records physical properties evolved in time.
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simulation. Of note, capturing how the object’s status changes and its physical properties

evolve over time is highly challenging, if not impossible, using visual information alone.

5.3.3 Learning Essential Physical Properties

We quantize the space of physical properties into three different levels; see Fig. 5.1a for an

illustration. (i) Action (in blue) includes the trajectory data (position and orientation)

directly observed in tool-use events and its velocity and acceleration calculated by finite-

difference; these properties are usually controllable by robots. (ii) Simulation (in green)

includes the physical properties estimated by the simulation given the observed Action. (iii)

Effect (in red) includes the physical properties representing the tool-use effect. In the case

of cracking and cutting tasks, we represent the effect by the number of pieces the target

object transforms into.

Given various physical properties estimated and reproduced by the simulation, a robot has

to learn how much these properties contribute to the success of the task and distill knowledge

at all three levels, such that it can plan its motion in new and even unseen scenarios. To

encode the connections across all three levels of physical properties, we propose to learn

a PRG representation through symbolic regression [SL09, UT20]. Specifically, setting the

Effect as the target variable y, the symbolic regression is tasked to find a valid expression of

y using the set of given variables x in Simulation and Action: y “ fpxq. To prevent over-

fitting, we further balance the expression’s complexity (i.e., how many physical properties

are involved) and accuracy (i.e., how well it expresses the target variable). As such, the

relations in PRG is sparse and only involve a small subset of the variables that succinctly

express the target variable.

Typical symbolic regression problems oftentimes have a large search space. To tackle it,

we devise an IDSR algorithm, a variant of symbolic regression, that utilizes the hierarchical

information among physical properties at each level to prune the searching space. Specifically,

as illustrated in Fig. 5.4a, typical symbolic regression algorithms directly explore the entire
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domain with all variables, whereas the proposed IDSR would iteratively deepen the domain

based on the hierarchy among them. If one variable is not selected after an iteration, the

domain will replace it with its child variables and reiterate the algorithm, and the resulting

expression will only be updated if those child variables play a more significant role. This

process continues until all the variables from one level in the domain are selected, or non-

selected variables have no child. Algorithm 1 outlines the procedure.

In the case of cracking a walnut (see Fig. 5.4b), only after the set of relations between

Effect and Simulation is explored would the algorithm subsequently identify the set of rela-

tions between Simulation and Action, expanding the PRG. As a result, this algorithm design

saves the memory compared to conventional symbolic regression algorithms while preserving

the full capability of distilling the essential relations among variables. The sub-graph high-

lighted in red in Fig. 5.1a shows the learned PRG of cracking a walnut, wherein the edge

thicknesses are proportional to the physical properties’ contribution to the effect. In another

task of cutting a carrot by half using a knife (see Fig. 5.4c), the IDSR algorithm identifies

the contact area governed by the orientation as an essential physical property, since the

deviation from a proper orientation range may lead to the increment of contact area.

5.3.4 Reasoning about Goal Specification

The G identified by IDSR is still insufficient to support the proposed planning scheme because

it only deduces the relation among those physical properties in a symbolic level, i.e. velocity

for the task of cracking a walnut, and both velocity and orientation dtool for cutting as shown

in Fig. 5.4bc. The corresponding values of vtool and/or dtool applicable for robot planning is

not determined yet.

To address this issue, we devise a sequential inference pipeline based on learned G. As

illustrated in Fig. 5.4d, by modeling the values of observed effect as a Gaussian distribution

P pEq, a Gaussian Mixture Model (GMM) is learned to capture the joint probability between

the effect and an identified physical property according to G, e.g . P pE,F q for effect and con-
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Figure 5.4: Learning relations among physical properties using IDSR. (a) An ex-

ample of deepening the variable domain. Since x4 is not included in the resulted expression

in the iteration 0, it is thus removed, and its children are added to the domain in the next

iteration. (b) An example of constructing PRG. G 1

isthe updated graph after inserting the

expression T into the previous graph G; newly added nodes and edges are highlighted in red.

(c) The PRG constructed for the cutting task. (d) Inferring necessary values at the Action

level for the goal specification in planning.
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tact force in Fig. 5.4cd, using the EM algorithm [DLR77]. Specifically, the mixture models

are fitted on the data obtained from the simulator that reproduces human demonstrations.

Next, given a desired effect, inferring specific values of contact force is performed by drawing

samples from the distribution P pF |Eq “ P pE,F q{P pEq [BN06], and a velocity in z direction

vz is subsequently obtained by sampling from P pvz|F q following the same protocol. Eventu-

ally, this process produces the necessary values at the Action level (vtool and dtool) as goal

specifications for Eqs. (5.9) and (5.10).

Algorithm 1: IDSR
Data: Data samples: D. Target variable: vt. Variable set: V
Result: Best matched expression tree: T

1 Domain Ð tAllRoots(V)u while not terminate do

2 terminate Ð True;

//Symbolic regression on Domain

3 T Ð SR(D, vt, Domain);

4 diff Ð Domain z T .leaveSymbols();

//Deepening the searching domain

5 foreach v in diff do

6 if v has child then

7 Domain.add(v.children());

8 Domain.remove(v);

9 terminate Ð False;

10 end

11 end

12 end

13 return T //Return the latest T
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Figure 5.5: Different strategies of tool-use using an approximated human arm

model. Bas and Bfs are sampled from partitioned regions on the hammer, and the trajectory

Q is produced by the optimal control using VKCs. The optimal strategy (in red) indeed

follows human intuition of operating a hammer. C 9q is the trajectory smoothness cost, and

Cu is the joint torque effort cost.

5.4 Experiments

We conduct three sets of studies regarding different types of manipulators with various

settings. Using a human arm model [WHV05], we first validate that our planning scheme

produces a feasible tool-use strategy identical to human choices; see Section 5.4.1. Next,

113



we show that our proposed framework produces diverse tool-use strategies for Baxter arm

and UR5 manipulator under different scenarios; the most effective ones in terms of least

joint effort are demonstrated in Section 5.4.2. Finally, the produced strategies are fed to

simulations for robot planning and execution; see Section 5.4.3. Experimental results verify

that the framework indeed captures the essential physical properties, capable of converting

these learned relations into goal specification, resulting in the success of motion planning

and task completion.

In all experiments, we solve the motion planning problem defined in Section 5.2 by

CasADi [AGH19] with the OpenOCL [KLA17] support. A tool-use is considered invalid if

the planner cannot produce a feasible solution. We assume the manipulators’ bases are fixed.

The tool structures are scanned by an RGB-D camera and reconstructed into watertight

meshes, and the tool’s material is homogeneous. For fair comparisons, the target object

(e.g ., walnut) is placed at the same location within the operational space for each type of

manipulator, and the initial pose of the manipulator is identical across all trials. In each

trial, the target object has 1229 mesh vertices and is simulated for 200 time steps. The

simulation runs on a 16-core AMD Ryzen 9 5950X machine and the average run time for

one trial is 77.08 minutes with parallelization for the linear system computations [LFS20].

Algorithm-wise parallelization for FEM still remains an open problem.

5.4.1 Validating Optimal Planning by Task Efficiency

In this experiment, we evaluate whether the optimal control-based planning scheme is ef-

fective by comparing the produced tool-use strategies with that of human’s rational choice,

which should be regarded as near-optimal. Using the human arm model [WHV05] that

consists of 7 DoFs (3 for shoulder, 2 for elbow, and 2 for wrist) with corresponding arm’s

physical properties (i.e., mass, inertia) measured by human subjects, we sample various

combinations of Ba and Bf and produce the corresponding tool-use trajectories. Fig. 5.5

shows initial and final arm postures and their computed costs of replicated human tool-uses
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(a) Comparison of joint effort costs in hammering between mimicking human’s strategy and the

most effective one produced by our framework.

(b) Examples of various strategies to use the hammer.

Figure 5.6: Generated various strategies in using a hammer. (a) Given an inferred

velocity vector acting on the walnut, the best tool-use strategy for each robot found by our

framework is more efficient than simply mimicking human’s strategy, indicated by lower cost.

(b) Other strategies found by the proposed framework: low cost (in green), high cost (in

yellow), and invalid with violation of constraints (in red).

and nine examples of alternative solutions.

Our results show that Strategy 1 is the most efficient one. Compared with a conven-

tional swinging action, holding hammerhead reduces the inertia compensated by actions,

resulting in a lower joint torque effort costs Cus in Strategy 2 and 3. However, the trajectory

smoothness costs C 9qs are higher as a larger acceleration is required to reach the goal velocity,

making their total costs higher than the cost in Strategy 1. Since both Strategy 4 and 5 start

from a similar Ba as in Strategy 1 followed by a swinging trajectory, their Cus are similar

to that of Strategy 1; however, their C 9qs are higher since their Bfs do not well aligned with
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arm postures. Strategy 6 to 10 are some less typical examples with high Cus and C 9qs; we

seldom observe these strategies in real life. Together, these results indicate that our planning

scheme can produce an efficient tool-use trajectory with underlying rationales akin to human

tool-use behaviors, and thus we expect it to uncover similar insights into robot tool-uses.

5.4.2 Effective Tool-Uses

After validating our optimal control-based planning scheme, we test the efficacy of tool-use

strategies derived from learned physical properties using two different robots (a Baxter robot

and a UR5 manipulator) in two tasks (cracking and cutting).

Due to significant differences in kinematic structures, the observed human strategy of

tool-uses may not be ideal for robots. In Fig. 5.6a, two robots first mimic human’s strategy.

Specifically, the robots select the observed human’s Ba and Bf and mimic the observed

trajectory Q by inverse kinematics to operate the hammer. The resulting costs are higher

than those of the best strategy found by our framework; the ones found by the proposed

framework are dramatically different but more effective for the robots. Fig. 5.6b further

displays some other tool-use strategies with low-cost (effective), high-cost (ineffective), or

are invalid by violating constraints.

Our framework is generic and generalizable to more challenging cases. It can further

generate effective strategies using unconventional daily objects. The costs of operating those

objects are ranked from low to high in Fig. 5.7a (Baxter) and Fig. 5.7b (UR5). The ex-

periment reveals some objects (piler and wrench for Baxter, and axe and pan for UR5) are

surprisingly more handy for robots compared with the hammer (indicated by the black bar).

We further visualize the executed trajectories in Fig. 5.7c. Of note, the same pan is more

suitable for UR5 as the cost of operating it is lower than using a hammer but not that ef-

fective for Baxter. In comparison, the efficiency of using the rock and the toy (Psyduck) are

similar for both robots. These results demonstrate that our learning and planning framework

enables a situational tool-use skill for various robots.
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(a) Best strategies found for the Baxter robot. (b) Best strategies found for a UR5 manipulator.

(c) Trajectories of using some of the unconventional tools: a pan, a rock, and a toy.

Figure 5.7: Effective tool-uses with unseen objects for the walnut-cracking task.

(a)(b) The best strategies (least cost) for ten different objects to crack a walnut use a Baxter

robot and a UR5 manipulator, respectively. (c) Examples of valid trajectories of the Baxter

robot (upper) and a UR5 manipulator (lower) using a pan (left), a piece of rock (middle),

and a Psyduck toy (right).

In another task of cutting carrot, both robots do not perform well if concerned only about

the velocity as they did in walnut-cracking; the target object will not align with the knife’s

blade properly as illustrated in Fig. 5.8a. By incorporating tool’s orientation as uncovered

in Fig. 5.4c, the robots overcome this deficiency and produce desired effects successfully; see

Fig. 5.8b. Compared with the walnut-cracking task, the cutting task poses greater challenges

in selecting unseen objects as tools since not all objects can lead to task completion; i.e.,

one cannot use a hammer to successfully cut a carrot as a knife does. Yet in Fig. 5.8c, the

result still demonstrates the robots’ reasonable efforts in this difficult situation by choosing

a sharp edge to contact with the object, showing that our framework successfully captures

the essential physics in tool-uses and leverages them in producing its own strategies.
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(a) (b) (c)

Figure 5.8: Tool-use strategies for cutting the carrot. (a) Robots fail to accomplish

the task without incorporating a tool’s orientation. (b) The successful use of a knife requires

incorporating orientation properties as learned in Fig. 5.4c. (c) Even using an object (a

hammer) unsuitable for this task, our framework still produces an effective strategy by

finding a tool orientation that minimize contact.

5.4.3 Testing Robot Tool-use in Simulation

Finally, we evaluate how well the best strategy found by the proposed framework (e.g .,

produced strategies in Fig. 5.6a) can be executed in the simulator. This step is crucial as it

separates the proposed framework from purely vision-based methods.

Since no existed work can solve the proposed task, we design a kinematic-based motion

planner as a baseline that accounts for the physical properties involved in the task. In

the case of the walnut-cracking task, the baseline needs to plan a trajectory that moves the
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functional basis of the tool to the center of the walnut while keeping its surface normal aligned

with the gravity direction. Fifty trials are simulated for both the Baxter robot and the UR5

manipulator using trajectories produced by the baseline and the proposed framework, and

the parameters governing walnut’s fracturing properties in each trial are set based on the

values shown in Fig. 5.3a with a randomness of 10% for variations.

Due to the lack of quantitative evaluation of the performance of the walnut cracking task,

we conducted a human study to compare the results between the baseline and the proposed

framework. Ten participants were recruited online and asked to classify the total of 200

simulated execution results into one of the three statuses based on three instances shown

in Fig. 5.9a. An execution is considered successful if more participants regard the walnut’s

status as cracked. Fig. 5.9bc show eight examples of the results based on the human study.

The success rates are shown in Table 5.1, demonstrating the necessity of understanding

the physics in tool-use. Together, the results show the proposed framework indeed enables

a better understanding of complex physical events that occurred during the tool-uses and

successful productions of tool-use behaviors for robots.

5.5 Conclusion and Discussion

We presented a learning and planning framework for robots to understand the physics behind

tool-use events and generate tool-use strategies suitable for the robots’ own kinematics and

dynamics. A physics-based FEM simulator was developed to generate physical properties

Table 5.1: Success Rate in Cracking Walnut in Simulator.

Robot Type Baseline Proposed

Baxter 14% 62%

UR5 16% 52%

119



1 2 3 4 5 6 7 8
Sample ID

0

2

4

6

8

10

N
o.

 o
f V

ot
es

Uncracked
Cracked just right
Smashed

1 2 3 4

5 6 7 8

(a) (b) (c)

Figure 5.9: Human evaluation of classifying the status of simulated execution

results. (a) After presenting three instances of walnut being uncracked, cracked just right,

and smashed, (b) participants are asked to classify observed simulation results (eight samples

for illustration) into one of these three statuses. (c) Sample 3 to 5 are considered successful

as most participants regard them as cracked.

in a continuous manner, from which we devised an IDSR algorithm to learn the essential

properties critical to the success of the task. By formulating the learned properties into

an optimal control-based motion planning scheme, our experiments demonstrated that the

proposed framework allows robots to find tool-use strategies different from human demon-

strations when handling seen and unseen objects, with better efficiency measured by least

joint efforts.

While our work is conducted in simulation, our planning scheme outputs torque com-

mands that are possible for deployment on physical robots in the future. As grasping remains

an unsolved problem, we plan to incorporate more sophisticated methods (e.g ., [LLJ22]) to

generate firm grasp configurations on the tool, such that we can produce more realistic and

adaptive tool-uses. The reality gap is another major challenge to realize the physical de-

ployment of the proposed framework. Physics-based simulation is difficult to tune or match

the real world precisely. However, it is still a powerful tool for robot understanding and

uncovering the task goal.
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CHAPTER 6

Conclusion

This dissertation is intended to provide a new perspective for robot perception, where per-

ception is guided by the understanding of potential actions in a scene. As such, the acquired

actionable fluent enables a robot to reason about actions a scene affords as well as the

potential outcomes of actions and to reach a higher level of autonomy.

Understanding and perceiving the geometry fluent In Chapter 2, we propose a

new perspective that emphasizes perceiving the geometry fluent that provides actionable

information for enabling an agent to reason about actions an object affords as well as the

potential outcomes of actions. Particularly, the geometry fluent is defined as the kinematics

of a scene which reflects the underlying functions and constraints of the environment. The

functionality of objects and their contextual relations are further organized by a graph-based

scene representation, i.e., contact graph, that describe the geometry fluent of the perceived

scene.

Understanding and perceiving the topology fluent In Chapter 4, we model the

events of object form changes (e.g ., fragmentation) using an attributed stochastic grammar

model. By understanding the actions of fragmentation, we could perceive the topology

fluent, i.e., a new indication of object status during topology fluent changes. Specifically, we

propose a probabilistic framework to induce such a grammar from observation to describe

the space of topology fluent. This new perspective surpasses prior work that treats objects as

a whole, introducing a new dimension for robots to perceive objects (fragments) and utilize
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fragmentation in complex tasks.

Planning in the fluent space In Chapter 3 and Chapter 5, we introduce how we leverage

the perceived geometry and topology fluent to have a robot plan for their actions to accom-

plish a variety of complex tasks. In Chapter 3, we consolidate the kinematics of the mobile

base, the arm, and the object being manipulated collectively as a whole via a Virtual Kine-

matic Chain (VKC), this novel VKC perspective naturally defines an abstract action that

treats the manipulated object as an extended robot limb and incorporates the kinematics of

object into that of the robot. By adopting the idea of VKC, planning in the geometry fluent

space is reduced to be a planning problem on the VKC. In Chapter 5, we study the intercon-

nection between the geometry and topology fluent in a tool-use scenario. We present a robot

learning and planning framework that learns the essential physical properties contributing

to the effects of a tool-use event (e.g ., how a hammer cracks a walnut) and produces an

effective tool-use strategy with the least joint efforts.

We hope our work, as the initial effort, could shed light on future work on more complex

object modeling and a more generalized action space a scene affords. In the future, ulti-

mately, an embodied AI agent or a robot could possess a human-level perceptual capability

to understand the surroundings and achieve a wide range of task goals in the physical world

on its own initiative.
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