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Abstract 

Variability in wildfire emissions of nitrogen oxides as observed from space 

by 

Anna Kristina Mebust 

Doctor of Philosophy in Chemistry 

University of California, Berkeley 

Professor Ronald C. Cohen, Chair 

 

Wildfires are a significant source of nitrogen oxides (NOx ≡ NO + NO2) to the global 
atmosphere, representing approximately 15% of the total NOx budget. Fire conditions that 
govern NOx emission vary significantly from fire to fire, resulting in highly variable emissions. 
Emissions from fires burned in a laboratory setting fail to reproduce the conditions in which 
large wildfires occur, such as fire size and meteorology; however, in situ measurements of fire 
emissions are challenging to make, in part due to the destructive nature of large wildfires. As a 
result, systematic variability of NOx emissions—even when normalized for biomass burned—
across or within biomes is poorly understood and documented. 

In this dissertation, I demonstrate that the high spatial and temporal coverage of space-based 
observations can be used to greatly increase the number and scope of available observations of 
actively burning wildfires. I derive a method to estimate NOx emission coefficients (ECs in g 
NOx MJ-1) using NO2 column densities from the Ozone Monitoring Instrument (OMI) and fire 
radiative power from the Moderate Resolution Imaging Spectroradiometer (MODIS), two Earth-
observing satellite instruments. I show that this method, when applied in California and Nevada, 
reproduces differences in fire emission factors (EFs in g NOx kg-1) between fuel types that have 
been previously observed using in situ measurements. I then identify and explore sources of 
variability in NOx ECs in fires across the globe. I compare mean ECs for fires in different 
locations but similar biomes (e.g. grasses) and find that while most ECs cover a relatively narrow 
range, ECs for several locations are significantly different from the mean biome EC. I examine 
seasonal variability in ECs, finding that ECs in African woody savannas have a strong seasonal 
dependence that is not observed in open savannas; this behavior may be related to reallocation of 
nitrogen to below ground during the fire season by plants and/or the seasonal variation of fire 
fuel composition in woody savannas. I also find that this behavior extends to other woody 
savanna regions in South America and Australia, and that ECs in several biomes exhibit a 
dependence on wind speed.  
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Chapter 1 

Overview 
 

 

1.1 Background and summary 
Fires represent ~15% of total global nitrogen oxide (NOx ≡ NO + NO2) emissions and are 

similar in magnitude to other natural or partly natural sources of NOx—i.e., soils and lightning 
(Denman et al., 2007). These emissions are a major component of the nitrogen (N) cycle, 
releasing N from the biosphere to the atmosphere where it affects the composition of the 
atmosphere on global scales and is ultimately returned to the biosphere via deposition. Yearly 
global biomass burning emission estimates from the Global Fire Emission Database version 3 
(GFEDv3) range from 7.41 to 13.93 Tg N yr -1 over a 15-year span (1997-2011), indicative of 
the high interannual variability in these emissions (van der Werf et al., 2010). Given the episodic 
nature of fires, these emissions are even more variable on smaller temporal (e.g., days to weeks) 
and spatial (local, regional) scales. Biomass burning estimates like those provided by GFEDv3 
are highly parameterized estimates; it is generally understood that these estimates are tuned to 
capture a statistical ensemble and not the emissions from an individual fire and that there are 
limited observational constraints on regional biases. This underlines the basic lack of 
understanding in the scientific community with respect to the processes that govern variability in 
fire emissions.  

Factors considered in most current treatments of fire emissions of NOx are fire size and fuel 
type. Emissions are estimated as the product of the total biomass burned in the fire or fires (in 
kg) and an “emission factor” (EF in g kg-1) derived from measurements of an individual fire or 
several fires that are assumed to be representative of fire conditions for a particular fuel type 
(Andreae and Merlet, 2001). These EFs are typically based on in situ measurements of fire 
emissions, or occasionally laboratory measurements. While there is a growing body of laboratory 
EF measurements for increasingly specific fuel types (e.g., McMeeking et al., 2009), there 
remain questions with respect to the extrapolation of these measurements to the scale of a 
wildfire where the relative contributions of specific fuels are not characterized. Estimates of 
emissions in this framework are linearly dependent on fire size and discretely dependent on fuel 
type, with EFs derived independently for only a few (3-7) biomes (Andreae and Merlet, 2001; 
Hoelzemann et al., 2004; van der Werf et al., 2010; Akagi et al., 2011). These estimates neglect 
any potential for differences in emissions per unit mass between fires from a single biome type, 
and strategies that incorporate known variability in biomass burn rates on time scales shorter 
than monthly (e.g., diurnal and daily variability) have only recently been proposed (Mu et al., 
2011).  

The major question with respect to biomass burning emissions of NOx (and, indeed, for 
many other species emitted in fires) is what governs the variability in emissions (outside of fire 
size) and whether that variability is predictable. It is well-established that EFs for NOx are highly 
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variable from fire to fire, but the processes governing this variability are poorly understood. 
Proposed factors include the N content of the fuel and the modified combustion efficiency 
(MCE) of the fire (Andreae and Merlet, 2001). MCE is an index describing the relative 
contributions of flaming and smoldering combustion to a fire: an MCE of 1 indicates completely 
flaming combustion, with lower values indicating an increasingly important smoldering 
component (Battye and Battye, 2002). Theoretically, since NOx is formed via oxidation of N in 
the fuel, the more N available to be oxidized during combustion, the greater the NOx emissions; 
similarly, high MCE indicates a larger fraction of flaming combustion, which is more oxidizing 
than smoldering combustion, suggesting high NOx emissions at high MCE as a fraction of all N-
containing compounds—e.g., NH3, HCN, etc. (Andreae and Merlet, 2001). However, we note 
that observational support for the effects of these processes on emissions remains limited. Unlike 
many carbon-containing species which show a clear linear dependence on MCE, NOx is only 
weakly dependent on MCE with extremely low correlation coefficients (R2<0.2) (Battye and 
Battye, 2002; Yokelson et al., 2011). Fuel N is almost never measured in combination with EFs 
either in the laboratory or for wild or prescribed fires. When measured, there tends to be a strong 
correlation of fuel N with EFs (Lacaux et al., 1996). Thus it is unclear whether fuel N and MCE 
fully explain the variability in EFs, leaving open the possibility that other processes might play 
an important but as-yet unidentified role in emission variability. These processes potentially (or 
even probably) vary throughout the fire season or between different fire seasons, and so 
temporally resolved EFs might provide a clearer picture of the relevant processes; however, prior 
to this dissertation only two studies have performed such an analysis for NOx (both focused on 
seasonal variations), and both were extremely limited in scope (Lapina et al., 2008; Yokelson et 
al., 2011).  

To improve understanding of fire NOx emissions, a dramatic enhancement in the number of 
measurements of fires (often in remote locations) is needed. Instruments deployed on sun-
synchronous, polar-orbiting satellites offer a unique opportunity to make these observations 
because unlike ambient measurements, space-based observations are distributed evenly across 
the globe and include remote locations where in situ measurements are financially or logistically 
difficult. Satellite instruments generally sample continuously throughout the year, providing 
measurements of seasonal variability in emissions, and observational records span several years, 
covering a range of different environmental conditions that might impact emission behavior. 
Current instruments provide observations at high enough spatial resolution that individual 
emission plumes from point sources can be observed (Mebust et al., 2011; Chapter 2). When 
measuring fire emissions via satellite instruments, calculation of an “emission coefficient” (EC 
in g MJ-1 of fire radiative energy) is often chosen over an EF (Ichoku and Kaufman, 2005; Jordan 
et al., 2008; Vermote et al., 2009). This is because estimation of total biomass burned from a fire 
via satellite requires the combination of several observational products along with other 
assumptions that significantly increase uncertainties, while fire radiative power (FRP in MJ s-1) 
is directly measured by several instruments and so ECs are calculated with generally lower 
uncertainties. Studies have shown that the total radiative energy released by the fire is 
proportional to the biomass burned, indicating that ECs are proportional to EFs and thus can 
provide similar information with respect to fire emission processes (Wooster, 2002; Wooster et 
al., 2005; Freeborn et al., 2008).   

In this dissertation, I apply satellite observations to examine variability in NOx ECs across 
the globe. Using tropospheric NO2 column densities from the Ozone Monitoring Instrument 
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(OMI) and fire radiative power (FRP) from the Moderate Resolution Imaging Spectroradiometer 
(MODIS), I develop a method to measure NOx ECs; I then apply it to study within- and across-
biome ECs and also examine seasonal behavior in ECs. This work provides an especially 
comprehensive picture of systematic similarities and differences in ECs and identifies remaining 
uncertainties that are opportunities for future research.  

In Chapter 2, I describe the development of the method used to infer ECs from space-based 
observations of fires. I use observations of FRP from MODIS and tropospheric NO2 columns 
from OMI to derive NO2 ECs for three land types over California and Nevada. Retrieved 
emission coefficients are 0.279±0.077, 0.342±0.053, and 0.696±0.088 g MJ−1 NO2 for forest, 
grass and shrub fuels, respectively. I find that these emission coefficients reproduce ratios of 
emissions with fuel type reported previously using independent methods. However, the 
magnitude of these coefficients is lower than prior estimates. While it is possible that a negative 
bias in the OMI NO2 retrieval over regions of active fire emissions is partly responsible, 
comparison with several other studies of fire emissions using satellite platforms indicates that 
current emission factors may overestimate the contributions of flaming combustion and 
underestimate the contributions of smoldering combustion to total fire emissions. I find that in 
California and Nevada, 67% of the variability in emissions between individual fires is accounted 
for by FRP and fuel type. 

In Chapter 3, I extend this analysis to the global scale. I infer mean emission coefficients 
(ECs in g NO MJ-1) from fires for global biomes, and across a wide range of smaller-scale 
ecoregions. Mean ECs for all biomes fall between 0.250 – 0.362 g NO MJ-1, a range that is 
smaller than found in previous studies of biome-scale emission factors. The majority of 
ecoregion ECs fall within or near the range of biome-scale ECs observed here, implying that 
under most conditions, mean fire emissions per unit energy are similar regardless of fuel type or 
location. In contrast to these similarities, I find that about 24% of individual ecoregion ECs 
deviate significantly (p<0.05) from the mean EC for the associated biome (e.g., boreal forest 
fires in Asia vs. global boreal forest fires), showing that there are some regions where fuel type-
specific global emission parameterizations will fail to capture local mean fire NOx emission 
behavior. 

In Chapter 4, I show that satellite observations can be applied to identify and examine 
seasonal patterns in ECs and EFs, and demonstrate that these patterns can provide some 
information regarding the specific drivers of these patterns. I show that in Africa, ECs for NOx 
exhibit a pronounced seasonal cycle in woody savannas, with early-season ECs 20–40% above 
and late-season ECs 30–40% below the mean, while no cycle exists in nonwoody savannas. I 
discuss several possible mechanisms of the observed cycle, including seasonal differences in fuel 
N content and modified combustion efficiency. 

In Chapter 5, I discuss some examples of temporal behavior and specific meteorological 
drivers of ECs. I examine seasonal variability in ECs in woody savanna and savanna biomes on 
the global scale. I find that the seasonal pattern demonstrated in Chapter 4 also holds for 
important tropical savanna and woody savanna regions in South America and Australia, with 
ECs for woody savanna fires decreasing strongly throughout the fire season and ECs for savanna 
fires exhibiting little or no seasonal dependence. This pattern is not matched by woody savanna 
fires in regions outside of the tropics, which typically have much lower rates of fire occurrence, 
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suggesting that the behavior could be the result of a biome-specific adaptation to frequent fire. I 
also find that ECs in all global biomes are correlated with high wind speeds, consistent with a 
mechanism proposed previously that remained untested by observations.  

In Chapter 6, I conclude with a discussion of opportunities for future research. Areas of 
focus include greater investigation of temporal variability (e.g., broader assessment of 
seasonality, examination of interannual variability) and identifying and quantifying relationships 
with potential meteorological drivers of variability (e.g., precipitation). I also comment on the 
future of space-based observations of fires and how improvements to technology and sampling in 
the upcoming generation of satellite instruments might positively contribute to efforts to 
characterize wildfire emissions from space. 
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Chapter 2 

Characterization of wildfire NOx emissions 
using MODIS fire radiative power and OMI 
tropospheric NO2 columns 
 
This chapter has been adapted from the following peer-reviewed publication: A. K. Mebust, A. 

R. Russell, R. C. Hudman, L. C. Valin, and R. C. Cohen, Characterization of wildfire NOx 
emissions using MODIS fire radiative power and OMI tropospheric NO2 columns, Atmos. 
Chem. Phys. 11, 5839-5851, 2011. 

 

2.1 Introduction 
Emissions from vegetation fires are a significant source of trace gases (e.g. CO, NOx, 

VOCs) and particulate matter to the atmosphere (Andreae and Merlet, 2001); formation of 
secondary pollutants occurs as a result of these emissions with consequences that range from 
local to global in scale (e.g. Val Martin et al., 2006; Cook et al., 2007; Pfister et al., 2008; 
Hudman et al., 2009). NOx (NO +NO2) emissions play a major role both in the production of 
ozone, a monitored pollutant and tropospheric greenhouse gas, and in the regulation of oxidant 
concentrations. NOx emissions from biomass and biofuel burning contribute approximately 5.9 
Tg N y−1 to the atmosphere, roughly 15% of the global NOx budget (Denman et al., 2007), with 
total emissions from wildfires fluctuating from year to year due to interannual variability in fire 
frequency and intensity. However, there are significant uncertainties associated with biomass 
burning budgets due to the large uncertainties in NOx emission factors and global biomass 
burned. For example, Jaeglé et al. (2005) partitioned yearly GOME satellite NO2 data to 
determine budgets for individual NOx sources in 2000; while a priori and top-down global 
inventory totals for fire emissions agreed, regional differences of up to 50% between these two 
inventories were noted and attributed to uncertainties in regionally resolved NOx emission 
factors used in the study. Laboratory studies also indicate that biomass burning NOx emission 
factors can vary greatly–even among plants from similar ecosystems or categorized as similar 
under current emissions inventories, e.g. extratropical forest (McMeeking et al., 2009). These 
wide variations on regional scales raise questions as to whether existing parameterizations 
capture the mean emissions from the range of recent fires, and whether a more detailed 
parameterization could capture some of the variability in emissions. 

Biomass burning emissions have generally been estimated using a bottom-up approach 
(Wiedinmyer et al., 2006): 

  XTX EC×= MM       (1) 
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where MX is the mass of a species X emitted by the fire, MT is the total biomass burned, and EFX 
is the empirically measured emission factor (EF) for species X, expressed as the ratio of pollutant 
mass emitted to the total biomass burned. NOx emissions vary greatly based on individual fire 
conditions, such as differences in the flaming vs. smoldering fraction of the fuel burned and its 
nitrogen content; most NOx EFs used in atmospheric modeling applications are reported with 
high uncertainties (±50 %) as this variability is significant between different biomes and 
emissions in a given location are attributed to one of only a handful of biome categories 
(Andreae and Merlet, 2001; Battye and Battye, 2002). NOx EFs are primarily based on airborne 
and occasionally local measurements from wildfires or prescribed fires (e.g. Laursen et al., 1992; 
Goode et al., 2000; Yokelson et al., 2007; Alvarado et al., 2010), or measurements from small 
fires burned under controlled laboratory conditions (e.g. Goode et al., 1999; Freeborn et al., 
2008; Yokelson et al., 2008; McMeeking et al., 2009). Airborne measurements, while precise for 
a given fire, face obvious limitations with respect to the number and size of fires that can be 
sampled, limiting their ability to characterize variability in fire emissions on regional scales; 
these measurements may also exhibit a bias toward emissions from flaming combustion 
(Andreae and Merlet, 2001; Yokelson et al., 2008; van Leeuwen and van der Werf, 2011). 
Laboratory fires, on the other hand, do not accurately recreate several characteristics of typical 
large-scale natural wildfires including size, fuel moisture, flaming and smoldering fractions, and 
structural and meteorological characteristics, among others. Satellite measurements offer an 
opportunity to bridge the gap between global analyses that identify a need for representative 
emission factors at regional scales and observations at the fuel and individual fire level.  

In the mass-burned formalism MT is estimated as 

  CBAM ××=T       (2) 

where A is the burned area, B is the available fuel per unit area, and C is the combustion 
completeness, or fraction of available fuel that was burned (Seiler and Crutzen, 1980; 
Wiedinmyer et al., 2006). Poor knowledge of A, B and C leads to large uncertainties in the mass 
of pollutant emitted, and the lack of temporal and spatial resolution prevents air quality 
forecasting of individual fires in real time (Ichoku and Kaufman, 2005). In recent literature, a 
linear relationship between the biomass burned in a fire and the radiative energy released by the 
fire has been established (Wooster, 2002; Wooster et al., 2005; Freeborn et al., 2008), leading to 
a new expression of pollutant mass emission: 

  RXRXX EFEC EKEM ××=×=     (3) 

where ECX is an “emission coefficient” (EC) expressed as the mass of pollutant emitted per unit 
of radiative energy, ER is the total radiative energy, and K is an empirically measured coefficient 
with reported uncertainties of approximately 10–15% (Ichoku and Kaufman, 2005; Wooster et 
al., 2005; Vermote et al., 2009). ER can be measured remotely and so may have lower 
uncertainties than estimates of mass burned for larger fires; thus some recent studies of fire 
emissions have focused on directly establishing ECX for pollutants of interest (Ichoku and 
Kaufman, 2005; Freeborn et al., 2008; Jordan et al., 2008; Vermote et al., 2009). Although NOx 
ECs have been measured for small experimental fires (Freeborn et al., 2008), they may not 
accurately represent emissions for larger scale natural fires, and only a small number of fuel 
types are represented. Satellite observations with relatively high spatiotemporal resolution 
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provide us the opportunity to directly measure NOx ECs and to gather statistics of variation 
among wildfires using observations from a large number of fires. 

Here we show that satellite observations of fire activity and NO2 can establish statistical 
properties of NO2 ECs. We evaluate emissions from 1960 fires in California and Nevada over the 
years 2005–2008 to derive NO2 ECs for three land cover classes (forest, shrub and grass) by 
combining NO2 columns from the Ozone Monitoring Instrument (OMI) aboard NASA’s EOS-
Aura satellite, wind vectors from the North American Regional Reanalysis (NARR), and 
measurements of fire radiative power (FRP) from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) instrument on NASA’s EOS-Aqua satellite. Although not 
considered a major contributor to global biomass burning emissions, this region has a number of 
fires over diverse land types which can aid our understanding of variations in emissions with fuel 
type. Further, emissions from individual fires in this region can significantly perturb NOx levels 
over the natural background, leading to local and regional degradation of air quality (Pfister et 
al., 2008). We note that in this work, the phrases “NO2 emissions” and “NO2 ECs” refer to 
emissions and ECs derived from the observed NO2 columns, and thus represent total NO2 present 
in plumes at NO-NO2 photostationary state, as opposed to direct NO2 emissions from fires. 

 

2.2 Datasets 
The MODIS instruments reside on the NASA EOS-Terra and EOS-Aqua satellites, 

measuring spectral radiance from Earth; the MODIS fire detection algorithm employs infrared 
spectral channels at 4 and 11 μm (Kaufman et al., 1998). We use daytime fire detections at 1 km 
nominal resolution from the MODIS Aqua Thermal Anomalies Level 2 Collection 5 data 
product, MYD14 (Giglio et al., 2003). FRP is provided for each fire pixel via an empirical 
relationship using the 4 μm band brightness temperatures (Kaufman et al., 1998; Justice et al., 
2002). Sensitivity studies indicate that the theoretical average standard error associated with this 
relationship is ±16 %, and is higher for small fires and lower for more energetic fires (Kaufman 
et al., 1998). Independent validation byWooster et al. (2003) using the Bi-spectral InfraRed 
Detection satellite instrument found that the two instruments agreed to within 15% for some fires 
but that MODIS underestimates FRP by up to 46% for fires where some of the less intensely 
radiating fire pixels are not detected by the MODIS algorithm. To identify the primary land type 
for each fire pixel we use the MODIS Aqua+Terra Land Cover Level 3 Collection 5 
(MCD12Q1) product, which provides yearly land cover classification at 500m×500m resolution 
(Friedl et al., 2010). 

To measure NO2 emissions we use tropospheric vertical column densities of NO2 obtained 
from the OMI NO2 standard product (Level 2, Version 1.0.5, Collection 3) available from the 
NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC). OMI is a 
nadir-viewing spectrometer, measuring backscattered solar radiation from earth at UV and 
visible wavelengths (270–500 nm) with a spectral resolution of ~0.5 nm. OMI employs 
differential optical absorption spectroscopy (DOAS) to measure NO2; the tropospheric vertical 
columns of NO2 and corresponding standard errors used in this work are retrieved as described 
by Boersma et al. (2004), Bucsela et al. (2006), and Celarier et al. (2008). With daily global 
coverage at a spatial resolution of 13 km×24 km at nadir, OMI has the highest resolution of any 
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remote instrument measuring NO2 columns. In this work, only the 40 inner pixels out of 60 total 
(in the across-track direction) were used, minimizing effects of poor resolution in the outer, 
larger pixels. OMI pixels with cloud fractions greater than 20% were not included in our analysis 
to reduce uncertainties associated with cloud cover (Boersma et al., 2002; Celarier et al., 2008). 

We use wind fields at 900 hPa (~1 km) from NARR, a data assimilation system that 
provides meteorological variables at 32 km horizontal resolution and 45 vertical layers every 
three hours from 1979–present (Mesinger et al., 2006). MODIS, OMI and NARR data for each 
fire were collocated in time to within one hour. 

 

2.3 Methods 
We follow the method outlined by Ichoku and Kaufman (2005), which computes regional 

ECs globally for smoke aerosol, with modifications to calculate ECs for NO2. We begin with a 
brief summary of the method presented in the aforementioned study. 

Ichoku and Kaufman (2005) first collocated MODIS aerosol pixels and MODIS fire 
detections. For each MODIS aerosol pixel identified as containing fire, a series of calculations 
were performed; first, the aerosol optical thickness (AOT) contributed by fire emissions was 
measured by subtracting the minimum AOT of the aerosol pixel containing fire and the eight 
surrounding aerosol pixels from the maximum AOT of these same pixels. Next, the authors 
converted AOT to column mass density. Ichoku and Kaufman (2005) then calculated the wind 
speed over the pixel and a characteristic length over which the wind must blow to clear the 
region of aerosol; this was given as the square root of the area of the aerosol pixel. Using this 
characteristic length and the wind speed to determine the clear time (defined below), the smoke 
mass emission rate is given as the total mass of aerosol contributed by fire emissions divided by 
the clear time. Ichoku and Kaufman (2005) then grouped aerosol pixels by their proximity and 
averaged these values for all pixels in a group. 

For fire NOx emissions, we began by collecting fire detections over California and Nevada 
and surrounding areas (31–44° N, 126–113° W) from 2005–2008. These fire pixels were 
assigned a primary fuel type of forest, shrub, grass or “other” (including sparsely vegetated, 
urban, or agricultural land) using the MODIS land cover product from the corresponding year 
(see Fig. 2.1a). For each day, OMI pixels and fire pixels were grouped into fire “events” such 
that adjacent OMI pixels containing fires were grouped together and rectangular regions were 
defined around each event (see Fig. 2.1b). Each event then represents all fire pixels in that 
location from a single day of observation, where the fire pixels are close enough to each other 
that the OMI spatial resolution cannot separately resolve their emissions. 

The total mass emitted by each fire as measured by OMI was calculated as follows: total 
OMI tropospheric NO2 columns for each event (XNO2,f) were obtained by averaging all columns 
in the rectangular region, weighted by pixel area, with the column standard deviation (σNO2,f) 
equal to the weighted average of column standard deviations reported in the retrieval. OMI 
columns over the rectangular region were measured in a similar way for 60 days before and after 
the fire; the average of these columns yielded an event background NO2 column (XNO2,b) with 
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corresponding background column standard deviation (σNO2,b). Columns containing MODIS fire 
detections were eliminated from the background average. The total mass of NO2 emitted by the 
fire MNO2 (in kg) was then given by 

( ) Rb,NOf,NONO 222
AMMM ×−=     (4) 

where AR is the regional area. The standard deviation for MNO2 is given by 

( ) Rb,NO,fNONO 222
A×−= σσσ .      (5) 

As FRP is the rate of radiative energy release (MJ s−1), the next step in the analysis was to 
determine the time over which the measured mass of NO2 had been emitted. The time for emitted 
NO2 to clear the region (tc) was derived using wind speed (w) and direction from NARR wind 
fields at 900 hPa (~1 km): 

,1
cc

−= wdt        (6)   

where dc is the distance from the center of the fire to the edge of the region along the wind 
direction. Standard error in dc was assumed to be at least 2 km (twice the nominal resolution of a 
MODIS pixel) and for larger fires, was given as the standard error associated with measuring the 
center of the fire; the center was found as an average of all fire pixel locations for that fire, 
weighted by FRP. Uncertainties in wind speed and direction for individual data points were 
difficult to assess and quantify, although we examine the effects of alternate wind data sets and 
assumptions about plume height in the discussion below; percent standard error in tc was 
assumed equal to percent standard error in dc. For each event, dividing MNO2 by tc yielded a mass 
emission rate (MER) of NO2 for the region, with percent standard error equal to percent standard 
error from tc and MNO2, summed in quadrature. Summing pixel FRP for each land type yielded 
the total event FRP for each land type (in MJ), with standard error estimated at 30 %, between 
15% and 46% as reported in Wooster et al. (2003). 

Satellite observations of fire emissions will necessarily contain a mixture of fresh and aged 
smoke, due to the spatial resolution of the observing instrument. NOx is a relatively short-lived 
species; observations and theoretical studies both support the notion that NOx concentrations in a 
fire plume will decay with time due to the formation of nitric acid (HNO3) and NOx reservoir 
species such as peroxyacetyl nitrate (PAN) (e.g. Jacob et al., 1992; Mauzerall et al., 1998; Leung 
et al., 2007; Real et al., 2007; Alvarado et al., 2010). Thus, the aged smoke present in satellite 
observations will bias our measured ECs low. To evaluate this effect, we consider a 1-D model 
of a fire plume, assuming a constant wind speed along the dependent axis; horizontal diffusion 
and vertical distribution of emissions are neglected. We also assume first-order reaction kinetics 
for NOx, governed by a rate constant k; the lifetime is τ = k−1. The concentration of NO2 as a 
function of distance from the fire is then: 

( ) ( ),exp 1
0 xkwCxC −−=       (7) 

where C0 is the concentration immediately over the source (kg m−1 in our 1-D model) and x is the 
distance downwind from the source. Note that since we assume a constant wind speed, the age of 
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the smoke at x is given by t = w−1x. The satellite will observe all NO2 between the source and 
some point x0 which represents the edge of the satellite pixel, and the total mass observed is 
equal to the integral of NO2 concentration from the origin to x0: 
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Here, the clear time, tc, is defined as the time required for transport from the source to the edge 
of the pixel: tc = w−1x0. We also note that C0x0 corresponds to the total mass that would be 
observed had no decay in NO2 occurred; thus C0x0tc−1 is equal to the mass emission rate that 
would have been measured with no decay, or equivalently, the initial mass emission rate at the 
fire source, MERinit. We can thus rewrite our total mass observed equation as: 
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Dividing both sides by tc yields our measured MER as a function of the initial MER, lifetime τ, 
and clear time tc: 

  ( )[ ].exp1MERMER c
11

cinitmeas tt −− −−= ττ    (10) 

Although this 1-D model neglects diffusion, in most cases the width of the rectangular region is 
large enough that horizontal diffusion does not remove the fire-emitted NO2 from the satellite 
field of view; thus this is a useful first order approximation of the relationship between initial and 
measured MER. We use this equation to apply a chemistry correction factor to each point in our 
analysis, assuming an appropriate lifetime. 

Previous studies offer a range of NOx lifetimes within fire plumes. Analyses have converged 
on lifetimes of less than 7 h with observationally constrained lifetimes closer to 2–3 h (Jacob et 
al., 1992; Yokelson et al., 1999; Alvarado et al., 2010). We select a lifetime of 2 h, which is in 
agreement with observations. A plot of MER decay for three different clear times (the time 
required to exit the satellite pixel) is shown in Fig. 2.2. These three clear times (5 min, 55 min, 
and 3 h) represent a short, average, and long clear time for our analysis, respectively. At a 
lifetime of 2 h, the apparent MER that would be inferred from the satellite observations for the 
average case is biased low by 20 %. Longer lifetimes result in less bias. Thus our choice of 
lifetime introduces at most a minor bias unless the lifetime is shorter than 45 min. We apply the 
correction to each point as a function of clear time, and assume an uncertainty from this 
correction equal to the percent difference between the measured and corrected MERs; overall 
uncertainty in the corrected MER is then obtained by summing in quadrature this uncertainty 
with the measured MER uncertainty. 

To ensure that only high quality observations were included in the analysis, all events with a 
background column greater than 3.5×1015 molecules cm−2 were omitted from further analysis as 
it was difficult to distinguish fire emissions from variations in the NOx background (361 points). 
Events with a clear time of greater than 3 h were removed to reduce errors associated with 
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changes in FRP or wind speed and direction during the transit time (199 points from the 
remaining dataset). Events from a region near Santa Barbara (34–35° N, 118–121° W) were also 
removed, due to errors in wind over this region that are likely associated with unresolved Santa 
Ana winds (37 points). Finally, points that had both high percent uncertainty (>100 %) and high 
absolute uncertainty (>1 kg s−1) in MER were removed (430 points); this preserved points with 
MER near zero and a high percent uncertainty but low overall uncertainty. Overall, 34% of data 
points were removed via filtering; 1960 events remained for this analysis. 

We identified several aspects of the study by Ichoku and Kaufman (2005) that did not 
translate to the OMI NO2 observations. The method used by Ichoku and Kaufman (2005) to 
measure total and background mass overestimated emitted NO2 when applied to our dataset, due 
to regional variation in NOx concentrations on the spatial scale of an OMI pixel; hence our 
development of the method described above to account for these variations. This method 
analyzes several pixels at once, so there was also no need to include an averaging step at the end 
of the analysis. We also use a more precise determination of the characteristic length using the 
direction of the wind and the center of the fire, as well as a higher resolution wind dataset 
(NARR at 32 km resolution instead of the NCEP global reanalysis at 2°×2.5°). The study 
presented by Ichoku and Kaufman (2005) performed regional and subregional analyses over the 
globe, and assumed these subregions were representative of a single fuel type; we instead applied 
the MODIS Land Cover product to individual fire pixels. Finally, our correction to account for 
photochemical processing is necessary for NOx but was not needed in the original study by 
Ichoku and Kaufman (2005). 

 

2.4 Results and discussion 
Figure 2.3 shows FRP vs. MER for all fires, as well as fires separated by their primary fuel 

type. Fires were identified as forest, grass, or shrub fires if at least 75% of FRP came from fire 
pixels of that fuel type. Best fit lines (with intercept fixed at zero) and R2 values are shown. 
Distinctly different slopes are measured for all three fuel types, and with the exception of forest 
fires, analyzing emissions separated by fuel type improves the correlation coefficient. Forest fires 
exhibit more variability in emissions than other fuel types; this may be due to variations in the 
extent to which trees contribute to the fuel in forest-type fire pixels as opposed to underbrush and 
leaf litter, or greater variation in extent of flaming combustion during which most NOx is 
emitted. The small number of larger fires (only four fires with FRP >5000 MJ s-1) may also have 
an effect, as percent uncertainty in FRP is likely greater for small fires (Kaufman et al., 1998). 

Limiting the analysis to individual fuel types reduces its statistical rigor. To obtain ECs with 
well-characterized uncertainties and including all of the data deemed reliable, a multiple 
regression with nonparametric bootstrap resampling was used. Since the emission 
parameterization scales linearly, the MER equation can be expanded to vary linearly with 
landtype: 

( ) ( ) ( )SSGGFF ECFRPECFRPECFRPMER ×+×+×=  (11) 
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where F, G and S correspond to forest, grass and shrub land types. Points were randomly 
sampled with replacement and the multiple regression on land type FRP was performed 300,000 
times; the resulting averaged ECs (in g MJ−1 NO2) and their standard deviations (Table 2.1) were 
used to calculate predicted MERs for each fire measured in the analysis, as shown in Fig. 2.4. 
The best fit line (slope of 0.988) demonstrates that these ECs appropriately reproduce overall 
emissions. The correlation coefficient indicates that this parameterization method accounts for 
approximately 67% of the variability in emissions on this scale. 

Previously, NOx EFs of 2.5±1.2 for forests, 3.5±0.9 for grass and 6.5±2.7 (g kg−1) for shrubs 
were reported for fires in North America by Battye and Battye (2002). As a ratio to the forest fire 
emissions, these reported NOx EFs are 2.4 times higher for shrub fires and 1.6 for grass fires, 
mainly reflecting differences in the C:N ratios of the fuels and differences in typical combustion 
efficiency. Our analysis gives ECs that are 2.5 times larger for shrub fires and 1.2 times larger 
for grass fires than forest fires, consistent with those reported by Battye and Battye (2002). 
Globally averaged NOx EFs presented in Andreae and Merlet (2001) do not include a shrub 
category, but the ratio of the grassland EF to the extratropical forest EF is 1.3 to 1; the grassland 
number was later revised down by 40% (Hoelzemann et al., 2004), however, a number of papers 
have provided evidence that the extratropical forest EF should also be revised downward 
(Spichtinger et al., 2001; Cook et al., 2007; Alvarado et al., 2010). 

To directly compare to previously reported NOx ECs and EFs, we can convert using a 
photostationary state NO/NO2 ratio and the aforementioned proportionality constant K, the ratio 
of biomass burned to FRE. For this comparison we assume that 75% of NOx in the plume is 
present as NO2, as the vast majority of fire plumes observed at OMI resolution are aged long 
enough for NO and NO2 to reach photostationary state. This value is also consistent with 
previous observed and modeled values in fire plumes (Laursen et al., 1992; Alvarado and Prinn, 
2009). We estimate that this value is accurate to within 20 %. We also use K = 0.41 kg MJ−1, the 
average of two values measured in previous studies (Wooster et al., 2005; Freeborn et al., 2008). 
This value was used in Vermote et al. (2009) and the uncertainty estimated to be at least 10 %. 
The resulting NOx EFs and ECs are presented in Table 2.1, in g NOx (as NO); we note that the 
overall bias induced by these conversions may be as high as 25% in either direction. 

Most reported NOx emission factors are substantially larger than the ones we derive here. 
The NOx EFs reported by Battye and Battye (2002) are roughly 3 times larger than our derived 
EFs. The grassland EF (2.32 g kg−1) revised from Andreae and Merlet (2001) and given in 
Hoelzemann et al. (2004) is also roughly 3 times larger than our reported grassland EF and the 
extratropical forest EF (3.0 g kg−1) from Andreae and Merlet (2001) is 5 times larger than our 
reported forest EF. Alvarado et al. (2010) used observations of NOx in boreal forest fire plumes 
to obtain an emission factor for NOx of 1.06 g kg−1, almost twice our extratropical forest EF, 
with a reported uncertainty of ~100 %. Freeborn et al. (2008) report an overall NOx EC of 
1.19±0.65 g MJ−1 for laboratory fires of a number of different fuel types, 2–5 times greater than 
the NOx ECs measured in this work (0.243–0.605 g MJ−1). 

A number of factors may be responsible for a bias in our measured values; these factors are 
presented in Table 2.2, and we discuss them here at length. First, we note that any assumptions 
we made about average fire behavior, such as NOx lifetime within the plume, NO2/NOx ratio, or 
the value for K, are a possible source of systematic error, with under- and overestimation being 
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equally likely; however, each of these sources is expected to induce less than 20% error unless a 
typical NOx lifetime in a fire plume is less than 1 h. A second source of systematic error is the 
diurnal cycle of fire behavior. A number of studies indicate that fire activity peaks in the 
afternoon (Giglio, 2007; Zhang and Kondragunta, 2008; Vermote et al., 2009). Data presented in 
Vermote et al. (2009) and Zhang and Kondragunta (2008) suggests that average activity 
increases roughly linearly from morning to peak activity. Our analysis assumes constant FRP 
throughout the time over which emissions were measured for each data point; while some fires 
will increase in FRP over this time and some fires will decrease, the diurnal cycles presented in 
these studies suggest that on average we are overestimating FRP by up to 20 %, depending on 
the average clear time. 

To verify this effect, we tested all points in our analysis that were also detected during the 
morning overpass of MODIS on the Terra satellite, approximately 25% of the fires we studied, 
including the majority of large fires. For each point, we assumed FRP varied linearly from the 
Terra overpass to the Aqua overpass, and using the clear time, calculated the average FRP over 
the time of our measurement. Bootstrapping with these average FRPs instead of the Aqua FRP 
resulted in shrub and grass EFs approximately 15% greater than those presented in this work, 
indicating a small low bias. The forest EF increased by 40 %, a much larger effect, but it is not 
clear that this is statistically significant. 

Another potential source of bias is from the use of NARR data at the selected wind level 
(900 hPa). Plume height varies significantly between individual fires; 900 hPa, which 
corresponds to approximately 1 km altitude, was selected as a result of data presented by val 
Martin et al. (2010) indicating that average fire plume heights in North America are less than 1 
km, and that the majority of fire plumes remain within the boundary layer. As a result, we expect 
wind level selection to induce some random error for individual fires, but the choice should be 
appropriate for an average fire. However, any bias in NARR wind speed at this level would 
result in a bias in this work. Additionally, val Martin et al. (2010) note a correlation with plume 
height and measured FRP, although the correlation is weak and the relationship may not be 
applicable to our analysis since the data presented in the study was obtained in the morning as 
opposed to the early afternoon, when meteorology governing plume injection height is very 
different. Still, increases in injection height with FRP could induce a bias in our results due to 
differences in wind speeds through the troposphere. However, even when fire plumes inject 
emissions to heights of a few kilometers, the vertical distribution of emissions is not well known 
(val Martin et al., 2010); the majority of emissions may remain in the boundary layer. 

We performed three separate tests to determine the magnitude of any possible bias due to 
wind selection. First, we repeated the analysis using 850 hPa wind (~1.5 km altitude) from 
NARR. Obtained NO2 EC values were within 0.020 g MJ−1 of the values obtained using 900 hPa 
wind, less than a 10% change and well within our reported uncertainties. We concluded that 
small changes in wind level do not significantly bias the results. In the second test, we repeated 
the analysis using wind at 850 hPa from the NCEP Climate Forecast System Reanalysis, a global 
reanalysis and forecast produced at 0.5°×0.5° resolution (Saha et al., 2010). Differences in NO2 
EC values calculated via the two data sets were all less than 0.070 g MJ−1 and again were within 
the reported uncertainties for all three land types. This test ensured that there is no large bias as a 
result of using NARR values instead of an alternative reanalysis. Finally, we performed the 
analysis again using NARR wind at 700 hPa (~3 km) for fires with FRP greater than 5000 MJ s−1 
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and NARR wind at 900 hPa for smaller fires. Due to increased wind speeds with increasing 
altitude in the troposphere, the use of this higher wind resulted in an increase in NO2 ECs for all 
three land types, ranging from 20% to 50 %. Thus we consider our assumption of plume 
injection height a possible source of negative bias. 

There are also some sources of systematic error that would bias our EFs high, including 
underestimation of FRP by MODIS due to clouds, smoke or canopy cover obscuring the satellite 
view of radiant fire energy (Vermote et al., 2009). The absence of coincident measurements of 
FRP from satellite and ground or airborne platforms prevents direct assessment of this 
uncertainty; however, OMI pixels used in this analysis are filtered for cloud fraction >20 %, 
largely eliminating fires that are partially obscured by clouds, or aerosol interpreted by the 
retrieval as cloud. We also note that comparison between FRP from other satellite platforms and 
FRP from MODIS suggests that when an individual fire is detected by both instruments, 
measured FRP is accurate to within 45%. For example, Roberts et al. (2005) compare FRP from 
MODIS to FRP derived from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) 
instrument, and find that for fires in Southern Africa detected by both instruments, the average 
underestimation by SEVIRI (which is less sensitive to pixels with low FRP) is 5%. Similarly, 
Wooster et al. (2003) indicate that MODIS-derived FRE differed by ~15–45% from FRE derived 
from the Bi-spectral InfraRed Detection (BIRD) satellite for fires detected by both instruments, 
with an average underestimation by MODIS of ~15% for all individually compared fires. Since 
the BIRD measurements are higher spatial resolution and expected to observe fires more 
accurately, this suggests an average underestimation of FRP of no more 15–30% in the MODIS 
product. 

There is other evidence for underestimation of total regional FRP based on the MODIS 
retrieval. Some biomass burned and fire emission inventories have been developed using FRP 
(e.g. Ellicott et al., 2009; Vermote et al., 2009) and these generally indicate that biomass burned 
derived from MODIS FRP are lower than estimates of biomass burned using GFEDv2, possibly 
by up to a factor of 3. Other studies indicate that biomass burned from GFEDv2 could be 
underestimated itself (e.g. Kopacz et al., 2010; Liousse et al., 2010), indicating a possible 
underestimation in MODIS estimates of total regional FRP that could be significant. However, it 
is likely that these discrepancies are largely due to omission of small fires that are either 
completely obscured by clouds or not detected by the MODIS algorithm which has limited 
sensitivity to pixels with low FRP. This effect was observed in the aforementioned studies: 
Roberts et al. (2005) noted a much larger underestimation in FRP of 38% by SEVIRI (which is 
not as sensitive as MODIS to fires with FRP<100MW) relative to MODIS when comparing total 
regional FRP measurements. Wooster et al. (2003) also observed that total regional MODIS FRP 
was only ~60% of total regional BIRD FRP, despite 15% average differences for individual fire 
comparisons. Our analysis evaluates emissions of individual detected fires to derive ECs; 
consequently, our conclusions are insensitive to fires that are too small to be detected and 
uncertainties specific to total regional FRP do not affect our results. However, the application of 
these ECs to predict total emissions in a region (as opposed to emission from a specific fire) will 
require evaluation of the contribution of fires that are undetected by MODIS to the total 
emissions. 

It is also possible that since our observations occur close to the peak in fire activity, the fires 
we observe may be more heavily weighted towards flaming emissions than an average wildfire, 
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and thus are biased high. This uncertainty is difficult to quantify, since precise measurements of 
diurnal patterns in NOx emission factors have not yet been performed. In addition, the diurnal 
pattern in wildfire flaming to smoldering fraction is not established, and while NOx emissions 
are correlated with flaming combustion and higher modified combustion efficiency (MCE), this 
correlation is small – R2 = 0.11 in Battye and Battye (2002) – and the slope of the line very 
uncertain. However, MCE for most fires ranges between 0.80 and 1.0 (McMeeking et al., 2009; 
Yokelson et al., 2008; Battye and Battye, 2002) and thus any diurnal change in average MCE 
would likely be well within this range. Using the Battye and Battye (2002) fit despite the weak 
correlation, we determine that for changes in average MCE from 0.95 to 0.90, there is a 30% 
decrease in NOx EF; for changes in average MCE from 0.90 to 0.85, there is a 40% decrease in 
NOx EF. This is consistent when compared to seasonal variations in NOx emission ratios 
presented by Lapina et al. (2008), who attribute the observed seasonal change in emission ratio 
of NOy to CO for boreal forests, from 7.3 mol mol−1 to 2.8 mol mol−1, to higher smoldering 
fraction in the late-season fires. In order to translate these values to differences in NOx EFs, the 
increase in CO emissions with increasing smoldering fraction must be accounted for. 
Unfortunately, Lapina et al. (2008) do not report MCE for the fires, but using equations 
presented in Battye and Battye (2002), a decrease in MCE from 0.95 to 0.90 results in a factor of 
~2.3 increase in the CO emission factor (from 45.6 g kg−1 to 103 g kg−1); a decrease from 0.90 to 
0.85 results in a factor of ~1.5 increase. If these CO emission factors are used with the NOy 
emission ratios from Lapina et al. (2008) to calculate NOx EFs, then the seasonal decrease in 
NOx EF inferred from the reported data would be 15–40%. Thus, while it is currently impossible 
to accurately quantify the potential bias induced by this diurnal variation in NOx EF, we suggest 
that the bias is at most 40%. 

A summary of all quantified potential biases is presented in Table 2.2, in the first seven 
rows. Summing these biases suggests that our values are nearly equally likely to be biased high 
or low (likely bias ranging from approximately 55% low to 55% high). In addition, these 
potential biases cannot entirely account for the discrepancy between our emission coefficients 
and prior estimates. 

We might interpret these results to indicate that there is a bias in the OMI retrieval process 
over wildfires. The NO2 tropospheric column retrieval does not account for specific temporal 
differences in NO2 vertical profile and aerosol loading associated with wildfire conditions, nor 
does it explicitly account for effects of aerosol loading due to fires, both of which can act to 
systematically bias NO2 columns over wildfires. Most analyses suggest the bias due to aerosol is 
relatively minor (<20 %), as aerosol is treated implicitly as part of the cloud correction (Boersma 
et al., 2004). Uncertainty due to profile shape is more difficult to constrain, as NO2 profile data is 
sparse; Lamsal et al. (2010) indicate that biases between the OMI standard product and ground 
based measurements range from −5.6% to 71%, and they attribute much of this difference to 
profile error. Unfortunately, any bias in this work cannot be assessed using data from another 
NO2 remote sensing platform e.g. SCIAMACHY, due to differences in overpass times and 
spatial coverage, lower spatial resolution, or the fact that these instruments generally use a 
similar retrieval process and so may be subject to similar biases. Simultaneous in situ and 
satellite observation of NO2 in plumes would be extremely useful as a constraint. Despite our 
inability to quantify the contributions to the values presented in this work, we include a bias in 
the OMI retrieval in Table 2.2. 



16 
 

Another possibility is that emissions from wildfires in California are lower than emissions 
used to derive prior estimates. However, this is not observed in previous measurements of 
emissions (e.g. Battye and Battye, 2002). Our own preliminary analysis of global measurements 
using the methods outlined in this work also provides no evidence that CA/NV fires are uniquely 
different from fires in other geographic locations. Nonetheless, we include this in Table 2.2 as a 
potential source of bias to be thorough. 

A third possible explanation for the difference is that previous in situ and laboratory studies 
overestimate NOx emissions from wildfires, due to oversampling of flaming emissions in the 
laboratory or from airborne platforms. There is evidence that laboratory and airborne emission 
measurements sample plumes with higher MCE and greater NOx emissions than ground stations 
(e.g. Yokelson et al., 2008). These low-level smoldering emissions have been suggested to 
contribute only very minimally to total fire emissions (Andreae and Merlet, 2001); however, if 
smoldering combustion contributes more significantly to overall emissions than previously 
suggested, that would result in an overestimation of EFs of species associated with flaming 
combustion (e.g. NOx) when these EFs are measured via airborne platforms and then applied to 
large-scale fires. We note that results from other studies producing ECs for aerosol using satellite 
data are consistent with this hypothesis (Ichoku and Kaufman, 2005; Vermote et al., 2009); 
aerosol is more strongly emitted during smoldering combustion, and both of the aforementioned 
studies measure higher aerosol emissions than are represented by currently accepted aerosol EFs. 
Kopacz et al. (2010) constrain CO emission sources using data from several satellite platforms, 
and find that wildfire emissions as a source of CO are underestimated using GFEDv2 emissions. 
While Kopacz et al. (2010) conclude that GFEDv2 biomass burned is underestimated, other 
studies suggest that GFEDv2 biomass burned may be overestimated (e.g. Ellicott et al., 2009), 
and the result in Kopacz et al. (2010) may also be consistent with the hypothesis that current EFs 
underestimate contributions of smoldering combustion, as emissions of both CO and 
hydrocarbons that oxidize rapidly to CO are associated with smoldering combustion. The support 
of this hypothesis across studies that measure different species, emitted during different stages of 
combustion, and across different satellite platforms is remarkably consistent. We recommend 
that a more systematic study of smoldering and flaming combustion as they pertain to wildfire 
emissions be conducted, and conclude that the NOx ECs and EFs presented here are a useful 
lower bound on NOx emissions and, if the contribution of smoldering combustion to total 
wildfire emissions is indeed underestimated, may provide a more accurate characterization of 
fire emissions than currently used values. 

 

2.5 Conclusions 
We derive NO2 ECs (in g MJ−1 NO2) for wildfires in California and Nevada using satellite 

measurements of NO2 column densities and fire radiative energy. ECs for forest, grass and shrub 
fuels were found to be 0.279±0.077, 0.342±0.053, and 0.696±0.088 g MJ−1 NO2, respectively, 
with reported uncertainties equal to the standard deviation in the measurement. The variation of 
these ECs with land type reproduces ratios seen in previous work; however, these ECs are 
significantly lower than previously reported emissions estimates. Systematic biases in 
assumptions within the analysis and in FRP measurement cannot fully account for these 
differences. We conclude that there may be a large (50–100 %) negative bias in the OMI 
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retrieval of NO2 columns over wildfire plumes, presumably due to errors in assumed profile 
shape. However, comparison of our results with those of Ichoku and Kaufman (2005), Vermote 
et al. (2009), and Kopacz et al. (2010) also indicates that previously reported NOx EFs are likely 
overestimated, due to oversampling of flaming combustion by laboratory and airborne 
measurements. Regardless of the contributions of these factors, the parameters derived here are 
unambiguously a lower bound on fire NOx emissions. 
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Figure 2.1. (a) MODIS fire detections (totaling ~2.8×104 1 km pixels) from the daytime EOS-
Aqua overpass over California and Nevada, for 2005–2008, colored by land type. (b) OMI 
tropospheric NO2 column densities (molecules cm−2), overlayed with MODIS fire detections 
(red) and NARR wind vectors (black arrows) for a fire detected in Nevada on 25 August 2008; 
OMI pixels analyzed for this fire are outlined in white. Average wind speed shown is 8.23 m s−1. 
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Figure 2.2. The NO2 mass emission rate (MER) measured in this analysis (as a fraction of the 
initial MER from the fire) vs. NOx lifetime in the plume (Eq. 10) for three sample clear times in 
our analysis: the shortest (5 min), average (55 min) and longest (180 min). 
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Figure 2.3. Plots of fire radiative power (FRP) vs. NO2 mass emission rate (MER) for fires 
grouped by land type: all (a), forests (b), shrubs (c), and grasses (d), with lines of best fit and R2 
values. Error bars are one standard deviation for MER and range for FRP as reported in the text. 
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Figure 2.4. Predicted NO2 mass emission rate (MER), calculated using fire radiative power and 
the multiple regression coefficients, vs. MER measured in the analysis. Error bars in measured 
MER are one standard deviation, calculated as reported; error bars in predicted MER are 
calculated using one standard deviation of each calculated emission coefficient. 
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Table 2.1. NO2 and NOx ECs and NOx EFs by fuel type. 
Reported uncertainties are 1σ, calculated via nonparametric bootstrap resampling. 
a assumes NO2/NOx of 0.75. Total NOx mass expressed as NO. 
b assumes K = 0.41 kg MJ−1. 

 

 

 

 

  

Land Type NO2 EC (g MJ-1) NOx EF (g kg-1) a,b NOx EC (g MJ-1) a 

Forest 0.279 ± 0.077 0.59 ± 0.16 0.243 ± 0.067 

Grass 0.342 ± 0.053 0.73 ± 0.11 0.297 ± 0.046 

Shrub 0.696 ± 0.088 1.48 ± 0.19 0.605 ± 0.077 
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Possible biases Bias range (%) Bias direction 

Assumed NOx lifetime 0-20 Indeterminate 

NO2:NOx ratio 0-20 Indeterminate 

Value for K 0-15 Indeterminate 

FRP overestimation due to diurnal fire cycle 15-20 Negative 

FRP underestimation due to clouds/smoke/canopy 15-30 Positive 

Increased flaming sampling due to diurnal fire cycle 10-20 Positive 

Emissions from CA/NV are lower than global average Indeterminate Indeterminate 

Bias in OMI retrieval Indeterminate Indeterminate 

 

Table 2.2. Possible biases in this analysis. 
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Chapter 3 

Space-based observations of fire NOx emission 
coefficients: a global biome-scale comparison 
 
This chapter has been adapted from the following publication: A. K. Mebust and R. C. Cohen, 

Space-based observations of fire NOx emission coefficients: a global biome-scale comparison, 
Atmos. Chem. Phys. Disc., 13, 21665-21702, 2013. 

 

3.1 Introduction 
Biomass burning emissions induce a variety of effects to climate and air quality. They  

impact the global radiative budget directly by absorbing or reflecting incoming radiation, e.g. 
CO2 and aerosols, and/or indirectly by influencing the chemistry of climate forcers, e.g. nitrogen 
oxides (NOx = NO + NO2) and CO acting as ozone (O3) precursors (Bowman et al., 2009; Fiore 
et al., 2012; Jaffe and Wigder, 2012). NOx, O3 and aerosols also have negative health impacts, 
especially at high concentrations. Understanding, quantifying and mitigating these effects 
requires an understanding of both the magnitude of the emissions, and their variability across a 
range of spatial and temporal scales.  

Current models of fire emissions rely on a biomass-burned approach: to estimate the mass of 
a compound emitted, an empirically measured emission factor (EF) is multiplied by an estimate 
of the total biomass burned, often calculated as the product of other factors (e.g. burn area, fuel 
loading, combustion completeness) that are simpler to measure or estimate (Andreae and Merlet, 
2001; Wiedinmyer et al., 2006; van der Werf et al., 2010). This strategy has weaknesses, as the 
uncertainty in biomass burned for a particular fire is high, and even aggregate estimates at lower 
spatial and temporal resolution can have significant biases (van der Werf et al., 2010; Granier et 
al., 2011). Additionally, measured EFs vary greatly between individual fires due to differences in 
fire conditions, e.g. fuel type, structure, moisture, etc. (Andreae and Merlet, 2001; Korontzi et 
al., 2003; van Leeuwen and van der Werf, 2011; van Leeuwen et al., 2013). In this work, we 
focus on emissions of NOx, which are produced in wildfires as the result of oxidative combustion 
of nitrogen (N) contained in the biomass (Andreae and Merlet, 2001). Measured NOx EFs for 
fires are generally considered to be positively correlated with modified combustion efficiency 
(MCE) and fuel N content (e.g. Lacaux et al., 1996; Battye and Battye, 2002). A high MCE 
indicates a greater contribution of higher-temperature flaming combustion which is thought to 
oxidize the N more effectively, while high fuel N provides a larger source of N to ultimately be 
oxidized to NOx (Andreae and Merlet, 2001). However, observational evidence confirming these 
effects is limited. Observed correlations between NOx EFs and MCE are typically poor (e.g. 
Battye and Battye, 2002; Yokelson et al., 2011), and fuel nitrogen content is rarely quantified. 
Models of fire NOx emissions typically use EFs for a few (3-7) fuel types, based on averages of 
EFs measured for fires of each particular fuel type (e.g. Andreae and Merlet, 2001; Hoelzemann 
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et al., 2004; van der Werf et al., 2010; Akagi et al., 2011). The number of fires from which each 
EF is derived ranges from a handful (3-5) to tens or perhaps even hundreds, depending on the 
fuel type and the emitted species in question. However, even when EFs are derived from large 
numbers of fires, these observations come from only a few targeted measurement campaigns that 
sample many fires with fuels comprised of a relatively small range of plant species and over a 
short temporal span (e.g. Akagi et al., 2011). This raises the question of whether the observations 
are representative of variations in emissions that would be observed under a more spatially and 
temporally comprehensive sampling strategy that incorporates spatially distinct fire regimes with 
the same fuel type and covers seasonal and interannual variations in rainfall, wind speed and 
other climatic conditions.  

Several satellite instruments measure fire-related properties, providing data that span the 
globe, have full annual coverage, and sample many fires in each region, allowing for statistical 
evaluation of variance in emissions and reducing the potential for bias due to an unrepresentative 
sample. Deriving an EF from satellite observations, however, is challenging due to the difficulty 
in estimating biomass burned in the fire and connecting that information to instantaneous 
measurements of atmospheric composition. Instead, methods for estimating the mass of a 
pollutant emitted per unit radiative energy released from the fire—a value we define as the 
emission coefficient (EC) to distinguish it from the EF—have been developed (Ichoku and 
Kaufman, 2005; Jordan et al., 2008; Vermote et al., 2009; Mebust et al., 2011; Mebust and 
Cohen, 2013). The idea for an EC was born out of laboratory work that established a linear 
relationship between the amount of energy released by a fire and the total biomass burned, 
suggesting that (a) an energy-based parameterization is a logical alternative to a mass-based one, 
and (b) measured ECs should be proportional to EFs (Wooster, 2002; Wooster et al., 2005; 
Freeborn et al., 2008). ECs provide a straightforward way to estimate EFs from satellite 
observations because measurements of fire radiative power (FRP) are made daily with near-
global coverage from the two Moderate Resolution Imaging Spectroradiometer (MODIS) 
instruments, allowing for simultaneous estimation of energy and pollutant emissions for any 
species measured from space near the MODIS overpass times.  

In two previous papers, we developed a method to combine global observations of FRP from 
MODIS with NO2 tropospheric column density measurements from the Ozone Monitoring 
Instrument (OMI) to calculate ECs for NOx and assessed the method as applied to fires in 
California and Nevada, and also examined seasonal variability in ECs in African savannas 
(Mebust et al., 2011; Mebust and Cohen, 2013). Here we adapt this method to provide a global 
picture of variations in NOx emissions. We calculate ECs for several global biomes and for 
different ecoregions within these biomes, and describe how these ECs compare to each other and 
to EFs reported in previous studies. 

 

3.2 Datasets 
This analysis incorporates information from OMI, MODIS, a climate classification system, 

and the Climate Forecast System Reanalysis (CFSR) and Version 2 Reforecast (CFSv2). We use 
global observations from years 2005-2011. 
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3.2.1 OMI 

OMI is a nadir-viewing spectrometer onboard the polar-orbiting EOS-Aura satellite, with an 
equatorial overpass time of ~1:45pm (local time). OMI measures the solar irradiance and 
backscatter radiance from earth at UV and visible wavelengths (270-500 nm with 0.5 nm 
resolution) to derive column densities for several trace gases. We use tropospheric vertical NO2 
column densities obtained from the OMI NO2 standard product (OMNO2, Level 2, Version 2.1, 
Collection 3). The retrieval process for these columns is described in detail elsewhere (Bucsela et 
al., 2013); briefly, slant NO2 columns are derived using differential optical absorption 
spectroscopy (DOAS), separated into stratospheric and tropospheric components, and converted 
to vertical column densities using an air mass factor, which is derived from several parameters 
including terrain reflectivity and height and an estimated NO2 vertical profile. The spatial 
footprint is 13 × 24 km2 at nadir. We use data from the inner 40 (of 60) across-track pixels, 
omitting the low spatial resolution observations at the edge of the swath. We also limit 
observations to those with a cloud fraction of less than 20%, as pixels with a high cloud fraction 
have reduced sensitivity to NO2 below the clouds (Boersma et al., 2002), and we reject all pixels 
affected by the row anomaly.  

It is plausible that the a priori NO2 vertical profile shapes used in the retrieval process might 
lead to a bias in measured NO2 columns over smoke plumes. The OMNO2 standard product v2.1 
uses GMI CTM monthly mean modeled NO2 vertical profile shapes at 2° × 2.5° (Bucsela et al., 
2013). Previous work has identified a negative bias over persistent features smaller than this 
model resolution that results from the low spatial resolution of the estimated NO2 profile. 
Specifically, Russell et al. (2011) developed a regional OMI NO2 retrieval and found that urban 
NO2 columns increased by 8%, and this increase was primarily attributed to using WRF-Chem 
profiles at 4 km × 4 km resolution as opposed to the lower resolution profiles in the NASA 
standard product v1.0. This is consistent with the observation by Boersma et al. (2011) that when 
near-surface NO2 gradients were less strong, it resulted in a decrease in measured NO2 for a 
different retrieval of OMI, because a larger fraction of NO2 was distributed relatively higher in 
the atmosphere where the OMI instrument sensitivity is higher. Given that fires are episodic, 
heavy-emitting point sources in regions that are typically remote with few NOx emission sources, 
the assumed NO2 vertical profile will have very little NO2 distributed in the lowest layer as 
compared to the “true” NO2 vertical profile over most fires. This difference will be much more 
pronounced than in an urban area where the assumed profile, while diluted over a large spatial 
scale, still represents some of the vertical gradient over a NOx source, and thus we expect a much 
larger bias. The impact of high aerosol loading may also have an effect, as one study considered 
the effects of mixed and/or layered aerosol and NO2 on the NO2 retrieval and found that effects 
are theoretically small when NO2 and aerosol are collocated but much larger of the aerosol is 
above or below the plume (Leitao et al., 2010). However, the importance of this effect to our 
work is uncertain, as it is expected that fresh smoke plumes will generally contain well-mixed 
NO2 and aerosol. Regardless, there is a theoretical basis for a low bias in OMI NO2 
measurements over smoke plumes. 

In Mebust et al. (2011) we found that EFs derived from measurements of MODIS FRP and 
OMI NO2 were lower than reference EFs by a factor of approximately 2-5 (depending on the 
reference EF). The source of that discrepancy is not understood, although it potentially stems in 
part from the aforementioned low bias in OMI NO2 over fires.  However, we do not believe it 
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varies in a statistically representative ensemble of fires, and thus relative differences in ECs are 
believed to be reliable.  

3.2.2 MODIS 

MODIS instruments operate on NASA’s Aqua and Terra satellites. MODIS measures 
spectral radiance in 36 bands which cover visible and IR wavelengths. We use the Thermal 
Anomalies product (MYD14, Level 2, Collection 5) and the Land Cover product (MCD12Q1, 
Level 3, Collection 5.1). We only include fires detected by the Aqua MODIS instrument during 
daytime, as this allows near-coincident measurement of fires and NO2 column densities. Fires are 
detected using the 4 μm and 11 μm bands; pixels with elevated radiance in these bands as 
compared to surrounding pixels are labeled as containing fire. The spatial resolution of the bands 
is 1 × 1 km2, but the algorithm is sensitive enough to detect fires as small as 100 m2. An estimate 
of pixel FRP is derived from the 4 μm brightness temperature. Further details on the fire 
detection and FRP estimation algorithms are discussed elsewhere (Kaufman et al., 1998; Justice 
et al., 2002; Giglio et al., 2003).  

It has been suggested that there exists a low bias in MODIS FRP resulting from reduced 
sensitivity to radiance under conditions where fires are too small to be detected, obscured by 
clouds or canopy cover, or burning below ground (e.g. Wooster et al., 2003; Boschetti and Roy, 
2009; Vermote et al., 2009; Freeborn et al., 2011). In this analysis we minimize most of these 
biases because we use only detected fires and compare with NO2 columns directly over the 
source. In most of these cases, the percentage of undetected FRP due to undetected or cloud-
obscured actively burning locations is likely small. Nevertheless, our analysis may be sensitive 
to canopy effects or underground burning, particularly because we consider relative differences 
in ECs between different biomes where this effect may vary in magnitude. A low bias in FRP in 
particular biomes would elevate reported EC values in those biomes.  

Land cover classifications are assigned to 500 × 500 m2 pixels using the International 
Geosphere-Biosphere Programme (IGBP) classification (Friedl et al., 2010). We assume that 
land cover in 2011 is the same as in 2010 because at the time of this analysis, the land cover 
product was only available for years 2005-2010. The IGBP classification scheme provides 17 
different categorizations of land type; we assign many of these categories to biome categories as 
shown in Table 3.1, but occasionally use the direct IGBP classifications.  

3.2.3 Köppen-Geiger climate classification 

Common EF schemes distinguish between tropical, temperate, and boreal forests; to identify 
these distinct forest types we use the Köppen-Geiger global climate classification system at 0.5° 
× 0.5° resolution (Kottek et al., 2006). This dataset classifies climate as one of five main climate 
types (“equatorial,” “arid,” “warm temperature,” “snow,” “polar”), with additional sub-
classifications related to precipitation and temperature. We classify forests as “tropical” if they 
are found in “equatorial” climates, “temperate” if they are found in “arid” or “warm temperate” 
climates, and “boreal” if they are found in “snow” or “polar” climates. We also use sub-
classifications of the “equatorial” regime (“fully humid”, “monsoonal” and “winter-dry”) to 
separately examine differences in tropical evergreen vs. tropical dry deforestation. 
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3.2.4 CFSR, CFSv2 

The CFSR is a global reanalysis and forecast for years from 1979 through 2010; CFSR was 
extended starting in 2011 using CFSv2 and continues as an operational real-time product (Saha 
et al., 2010; Saha et al., submitted 2013). Wind fields used in this work are from the 850 hPa 
vertical level (corresponding to approximately 1.5 km altitude) and are available at 0.5° × 0.5° 
resolution hourly. The reanalysis is performed with 6 hr time steps and this is coupled with 
forecasts to provide output for every hour. 

 

3.3 Methodology 
We build on the methodology described in Mebust et al. (2011), which was adapted from 

Ichoku and Kaufman (2005). All fire pixels detected by the Aqua MODIS instrument daytime 
overpasses during 2005-2011 are assigned a land type using the MODIS land cover product for 
the appropriate year (or 2010 for fire pixels detected in 2011) and matched with OMI pixels 
coincident in time and space. OMI pixels that contain fire pixels with FRP above 250 MW are 
aggregated using a sorting algorithm such that adjacent OMI pixels are analyzed as a single fire 
“event”. We note that Mebust et al. (2011) included OMI pixels containing less than 250 MW of 
FRP. Globally, we observed that there are many regions where fires occur more densely than in 
California and Nevada. Here, we chose the 250 MW criterion because we determined through 
testing that it was the minimum possible cutoff at which most pixels in these fire-dense regions 
did not aggregate into extremely large groups; we also calculated that under standard conditions 
of wind speed and predicted emission rates, the change in column density of NO2 over an 
individual fire with FRP equal to 250 MW would generally be below the detection limit of OMI. 
To further ensure removal of data that cannot be attributed to an individual fire, we did not 
analyze any fire events that were greater in size than 3 OMI pixels in the along-track dimension 
or 2 OMI pixels in the across-track direction. 

The total mass of NO2 emitted by each fire was calculated using the total area of OMI pixels 
in the event and the column density of NO2 over the fire after subtracting a background column 
density, calculated using fire-free OMI observations in the same location covering a period of 60 
days before and 60 days after the fire. Events for which there were less than 10 valid background 
observations were considered to have a poorly characterized background column and were not 
analyzed further. Tests in Mebust and Cohen (2013) established that deriving the background 
from a smaller range of observations (e.g. 30 days before and 30 days after) reduced the 
observational sample size but did not otherwise affect the results. The time over which the 
observed NO2 was emitted, the “clear time”, was then calculated using the wind speed and 
direction near the fire, the OMI pixel edges, and the center of the fire, calculated as the mean of 
fire pixel locations weighted by pixel FRP. Dividing the mass of NO2 emitted by the clear time 
yields the mass emission rate (MER), or rate at which the fire is emitting NO2 as observed by the 
satellite. This is not, however, the direct NO2 EC from the fire, since the NO2 observed by 
satellite is at photostationary state. We assume that at photostationary state, 75% of NOx is 
present as NO2 to obtain the EC for NOx. This assumption is consistent with previous in situ 
measurements which typically find that NO2 constitutes 50-100% of NOx. Since we are 
concerned with relative comparisons of EFs, it is important to establish that this fraction will not 
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vary significantly as a result of background ozone concentration. We estimate that the impact 
from this effect is small because our ECs scale by (NO+NO2):NO2 rather than the direct ratio 
NO:NO2, and calculate that factor-of-two differences in background ozone will result in <20% 
change to (NO+NO2):NO2. In Mebust and Cohen (2013) we presented evidence that seasonal 
variations in NOx ECs in African savannas were not primarily driven by changes in background 
ozone.  

Satellite observations of fire plumes inevitably contain a mix of fresh (immediately over the 
source) and aged (downwind) emissions. Although the OMI spatial resolution is relatively high, 
NOx loss is fast enough (lifetime on the scale of hours) that significant loss of NOx can occur by 
the time the plume reaches the edge of the OMI pixel. We correct for this effect using a 1D 
model and 2 hr lifetime assumption as described in Mebust et al. (2011). All data subsequently 
presented in this paper has been adjusted using this model and assumed lifetime. 

To ensure the data is representative of emissions from fires, we remove points with high 
background column density (3.5 × 1015 molecules cm-2), or either long (>3 hr) or short (<15 min) 
clear times. Observations with a high background tend to yield higher uncertainty in calculated 
mass of NO2 emitted by the fire; long clear times increase the likelihood that the fire violates the 
assumption that the fire properties have not changed significantly over the time of observation; 
and short clear times can result in an anomalously high (or negative) MER as the clear time 
appears in the denominator of the MER, amplifying uncertainty in the difference between the 
observed NO2 column density over the fire and the background NO2 column density. 
Approximately 30% of observations are removed by these filters.  

We present results for all fires of a particular fuel type across the globe (i.e. a “biome-scale” 
EC) and for spatially distinct clusters of fires of similar fuel types (i.e. an “ecoregion-scale” EC). 
Fire biomes are identified using primary land cover type (for all fires) and climate classifications 
(for forests). To be classified as a particular biome type, 75% of FRP from a fire must come from 
fire pixels identified as that biome type. We use a spatial clustering method to further classify 
fires into ecoregions; fires of an individual fuel type (e.g forests) that occur within 250 km (100 
km for grasses) of each other are grouped and each group is considered an ecoregion for the 
purpose of this analysis. ECs for both biomes and ecoregions are derived via linear regression 
with nonparametric bootstrap resampling (5000 resamples). The intercept is not forced through 
zero to account for any possible small bias in emission estimates from low-energy fires. 
Typically we require at least 100 observations to consider an EC adequately constrained. We 
also remove extreme high-weight points by removing all points that affect the fit by 100% or 
more. There are only two ecoregions (and no biomes) that contain points that fall into this 
category; one ecoregion contained one such point and the other contained two. For all ECs and 
EFs described in this work, the mass of NOx is calculated as NO, a common practice for fire NOx 
emissions. 

 

3.4 Results 
3.4.1 Biome-scale ECs 
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Figure 3.1 shows a map of all fires used to derive ECs. Fires are labeled as “other” if at least 
75% of FRP came from fire pixels not assigned to a biome type (see Table 3.1), or as “mixed” if 
they fail to meet the 75% criteria for any individual biome type. We derive ECs for seven 
different biomes, keeping in mind that similar classifications are used in most fire emission 
modeling frameworks (e.g. GFED). The results are presented in Table 3.2, along with an 
estimate for conversion to an EF, the number of fires (N), and R2. Calculated ECs fall between 
0.250-0.362 g NO MJ-1; the lowest calculated EC (boreal forest) is ~70% of the highest 
calculated EC (grasslands).  

In the process of deriving ECs, we must distinguish between variance and uncertainty. 
Consider a linear regression between FRP and MER. Variance describes the distribution of 
observations with respect to the line of best fit. This distribution can result from uncertainty in 
individual measurements, and also from the natural variability of the system. In situations where 
the natural variability is comparable or large compared to the measurement uncertainty, it will be 
at least partially reflected in the variance. However, the variance does not by itself describe the 
uncertainty in the parameters of the best fit. That is best described by the standard error of the fit, 
which partly derives from the variance but also from the number of observations included in the 
fit—as the number of observations increases, the variance does not change, but the standard error 
of the fit decreases. This is because the standard error of the fit does not estimate the distribution 
of the observations, but rather estimates the distribution of values that would be measured for the 
parameters if the experiment was repeated with the same number of observations. As this 
number increases, the parameters are less likely to be anomalously high or low, and so the 
standard error decreases.  

We demonstrate the natural variability (with contributions from individual measurement 
uncertainty) by calculating ECs directly (dividing MER by FRP) for fires of all fuel types with 
high FRP (>5000 MJ s-1); we note that the standard deviation is the square root of the variance. 
The distribution, with both arithmetic and geometric mean and standard deviation, of the 
directly-calculated ECs is shown in Fig. 3.2. The arithmetic standard deviation of ECs is 72% of 
the arithmetic mean. However, the distribution is not normal, limiting the value of arithmetic 
statistics. A log-normal distribution and geometric statistics offer a better description of the 
observations. The geometric mean for a log-normal distribution is equal to the median; the 
geometric standard deviation is a multiplicative factor rather than an additive one. In this case, a 
geometric standard deviation of ~2 indicates that approximately 68% of observations are 
contained between one-half and twice the geometric mean. Another way to highlight the natural 
variability of ECs between individual fires is to consider the R2 value, which is also the fraction 
of explained variance. An R2 of ~0.3 (as observed in the case of most of our biome-scale ECs) 
indicates that about 70% of the variance is unexplained by a linear relationship between FRP and 
MER. 

Despite the large variance, however, most of our ECs have a relatively low standard error 
(15% or lower). This is because of the large number of observations that factor into each EC. 
Uncertainty in the best fit (i.e. the EC) is given by the standard error, which is the estimated 
standard deviation of the best fit parameter (i.e. the slope) as the experiment is repeated with the 
same number of observations. In our case, we use nonparametric bootstrap resampling to 
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calculate the EC. One advantage of the bootstrap is that it provides a direct estimate of this 
distribution of variability in the best fit parameter via the distribution of bootstrap resamples. 
Therefore we can estimate the standard error in our ECs by calculating the standard deviation of 
the bootstrap resamples. We use this method to provide the standard error of all ECs presented in 
this work. The bootstrap resamples are generally normally distributed, so we provide arithmetic 
standard deviations as our estimate of the standard error. 

3.4.2 Spatial variability within biomes 

Within each biome there are several spatially distinct ecoregions. We calculate 45 ECs for 
42 separate ecoregions; forests are not separated by climate classification for the purposes of 
determining ecoregions, but for the three forest ecoregions with sufficient sampling of multiple 
forest biomes, we include multiple ECs. Maps of ecoregions and corresponding ECs are shown 
in Figures 3.3-3.6; ECs, R2 and N for each ecoregion are available in Tables 3.3-3.6. We also 
calculate p values for statistical testing directly using bootstrap distributions of the difference 
between each ecoregion EC and the mean EC for that biome. We find that most (34 out of 45, or 
approximately ~75%) ecoregion ECs are not statistically significantly different than the mean 
biome EC at the 0.05 level. However, there are ecoregions with statically significantly different 
ECs in all biomes. We include the p value in Tables 3.3-3.6 for these cases. When differences 
between ecoregion and mean biome ECs are statistically significant, they tend to be large, with 
most differences ranging from 50% to more than a factor of 2. 

3.4.2.1 Forests 

Figure 3.3 shows a map of all forest ecoregions containing more than 100 separate 
observations and ECs for those ecoregions. Fires from clusters with fewer than 100 observations 
are shown in black. ECs are calculated separately for each biome category (e.g. tropical vs. 
temperate forest) and biomes are indicated by marker shape. The range of mean biome ECs for 
all biomes is indicated in grey. We find that one of six tropical forest ecoregion ECs is 
significantly different from the mean tropical forest EC (Region B); similarly, one of six 
temperate forest ecoregion ECs is significantly different from the mean temperate forest EC 
(Region G). One of two boreal forest ecoregion ECs is different from the mean boreal forest EC 
(Region K). Correlation coefficients (R2) for each ecoregion range between 0.1 and 0.5 (see 
supplementary material).  

3.4.2.2 Grasses 

Results for grass fire ecoregions are found in Fig. 3.4. These ecoregion ECs are the most 
variable of all the biomes; six of the seventeen ecoregions have ECs that are significantly 
different from the mean grassland EC (Regions L, P, R, X, Y, and Z). In these ecoregions, ECs 
range from as large as 0.95 to as small as 0.187 g NO MJ-1. However, ECs in the remaining 
ecoregions are all within 30% of the mean grassland EC. Correlation coefficients (R2) for each 
ecoregion range from 0.1 to 0.7; seven of the seventeen ecoregions have R2 greater than 0.4. 
Three of those have ECs that differ significantly from the mean (Regions X, Y and Z). 

3.4.2.3 Shrubs 



32 
 

The shrubland biome is not considered in most global treatments of fire NOx emissions, 
likely because there are few measurements of shrub EFs and shrub fires generally do not make 
up a large portion of the global biomass consumed by fire. These fires are (presumably) 
partitioned into other biome categories. Our mean biome EC for shrubs falls within the range of 
other mean biome ECs, suggesting that treating shrub fires as grass or forest fires would not 
cause a large bias in global total fire emissions. Results from our shrub ecoregion analysis are 
presented in Fig. 3.5. The range of variation is smaller than in other biomes, although one of five 
ecoregions is statistically significantly different from the mean shrub EC (Region DD). 
Correlation coefficients for these ecoregions are generally much higher than for ecoregions in 
other biomes, ranging from 0.3 to 0.7 with four of five regions having R2 ~0.4 or above. This 
may be due to better consistency in emission conditions as a result to the smaller size of the 
shrub regions vs. grass or forest regions and/or to the greater number of highly energetic fires as 
a percent of observations (>10% of observations have FRP above 2000 MJ s-1 for shrub fires, as 
opposed to less than 10% for grass and forest fires).  

3.4.2.4 Agriculture 

Results for agricultural fires are presented in Fig. 3.6. Fire emissions of NOx from this 
biome are perhaps the hardest to characterize, because these controlled fires are usually small. 
This is reflected in the relatively larger uncertainties (see Fig. 3.6b) and also in much lower 
correlation coefficients; R2 is below 0.15 for all but one of the 9 crop regions shown below. Only 
one of the nine ecoregion ECs is statistically significantly different from the mean agricultural 
EC (Region NN); however, that may partly be due to the higher uncertainties in ECs for this crop 
type. Using a harvested crop area dataset (Monfreda et al., 2008), we identify the main crop type 
for most regions to be wheat, except region HH (sorghum) and regions KK and LL (soybeans). 
There is no obvious relationship between crop type and EC. 

 

3.5 Discussion 
3.5.1 Biome- and ecoregion-scale similarities and differences 

Broadly, the ECs presented here suggest that mean fire behavior is similar regardless of 
biome or ecoregion. We find that 75% of ecoregion ECs are not significantly different from the 
corresponding biome-scale EC. These ECs fall within 32% of the mean biome EC for all biomes 
except agriculture, and for individual biomes the range can be as low as a few percent. 
Differences in the agricultural biome are larger partly because of larger uncertainties in the 
derived ECs. As previously noted, biome-scale ECs themselves cover a relatively narrow range 
(the lowest value is ~70% of the highest value). We find that almost half of the ecoregion-scale 
ECs (21 out of 45) fall directly into this range, and 9 more overlap the range within the standard 
error of the EC. However, there are several ecoregion-scale ECs that do not overlap this range 
within standard error or even twice the standard error. These ECs are generally substantially 
different (i.e. by 50% or more) from the biome scale ECs. These differences suggest that 
emissions differ more with location than with fuel type, challenging the traditional model of 
emissions as fuel type-specific.  
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Ecoregions observed to deviate from mean ECs contain a moderate number of observations 
rather than a small number, suggesting that the differences are robust. The large differences in 
these ECs as compared to the mean biome EC will result in significant biases in emission 
estimates for these specific regions. The most notable of these is for boreal forest in Asia 
(Region K). Most conventional estimates of boreal forest NOx EFs are derived from 
measurements of fires in North America; however, we find that ECs in boreal forest in Asia are 
fully twice those in North America (Region J). This is particularly important because emissions 
from boreal forest fires lay an especially important role in global atmospheric composition and 
chemistry (Jacob et al., 2010; Simpson et al., 2011).  

We do not fully understand causes of the observed ecoregion-scale differences. It is possible 
that differences in fuel N content and/or fire MCE are responsible, but evaluating these factors 
on the scale of an ecoregion requires an in-depth understanding of local fire behavior as well as 
observations of these factors that currently do not exist on the spatial or temporal scale of this 
analysis. Rather than speculating on specific causes here, we instead hope that identification of 
clear differences in different ecoregions guides future efforts to reveal and assess processes that 
govern fire emissions. 

3.5.2 Comparison to previous work 

We compare both to our previous work quantifying fire emissions from space, and to global 
biome EFs from conventional fire emission schemes.  

3.5.2.1 California and Nevada revisited 

In Mebust et al. (2011) we applied the same basic methodology with minor differences to 
fires over California and Nevada (126-113°W, 31-44°N) and found that our calculated MER was 
correlated with FRP with R2 ranging from 0.3 to 0.8, that relative differences in emissions 
between fuel types previously obtained by in situ measurements were reproduced by our 
analysis, and that the absolute values of the EC and EFs we measured were several times smaller 
than previously obtained EF and EC measurements. In this work we update our analysis to 
incorporate a more recent version of the OMI NO2 retrieval (Standard Product v2.1 vs. v1.0), a 
different wind dataset (CFSR winds at 850 hPa and 0.5° × 0.5° resolution vs. NARR winds at 
900 hPa and 32 km resolution),  additional years of observations (2009-2011), removal of OMI 
pixels containing less than 250 MW of total FRP from further analysis, and adjustments to how 
observations were selected for removal with respect to e.g. background, clear time, etc. Here we 
include a comparison to those previous results. 

Figure 3.7 shows MER vs. FRP for (a) all fires, (b) forest fires, (c) shrub fires and (d) grass 
fires in the California/Nevada region indicated above. In most cases, the R2 for each category is 
slightly higher than observed in Mebust et al. (2011), possibly due to improvements in 
methodology, improvements to the NO2 retrieval in the Standard Product v2.1 vs. v1.0, and/or a 
reduction in the number of points scattered around zero. We also perform a multiple regression 
as in Mebust et al. (2011), and derive ECs of 0.203 ± 0.042, 0.290 ± 0.040, and 0.195 ± 0.022 g 
NOx MJ-1 (as NO) for forest, shrub, and grass fires, respectively. In an absolute sense, these 
values are lower than those derived in Mebust et al. (2011) by 52% for shrubs, 34% for grasses, 
and 16% for forests. Much of the decrease is due to generally lower values of tropospheric NO2 
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columns in version 2.1 of the NASA OMNO2 standard product relative to version 1.0. Further 
reduction in the case of shrub fires is due to inclusion of the years 2009-2011 which had 
generally lower ECs (~26% below the mean EC for all years).  

In Mebust et al. (2011) we found that the relative differences between grass, shrub and forest 
fire ECs derived from OMI and MODIS data reproduced similar relative differences in EFs 
measured for primarily North American fires in situ. In this analysis, we find that the relative 
differences in ECs and EFs remain within one standard deviation of one another, though the 
agreement in the ratio is slightly worse. For example, the ratio of grass to forest fire EFs obtained 
in Battye and Battye (2002) is 1.4 ± 0.8; the ratio of ECs for the same fuels as reported in Mebust 
et al. (2011) is 1.2 ± 0.4 and in this work is 1.0 ± 0.2. The ratio between shrub and forest fire ECs 
in both studies is similarly within one standard deviation of the ratio of shrub and forest fire EFs. 
As in both Battye and Battye (2002) and Mebust et al. (2011), we find that shrub fires in this 
region emit more NOx per unit energy (or mass) than either grass or forest fires. In both this 
work and Mebust et al. (2011), we find that forest ECs are higher (relative to grass and shrub 
fires) than EFs presented in Battye and Battye (2002).  

3.5.2.2 Comparison with global EF summaries 

There exist several previously published EFs intended for use in global models: an initial 
comprehensive summary of EFs for many species and fuel types presented by Andreae and 
Merlet (2001); two updates to that work (Hoelzemann et al., 2004; van der Werf et al., 2010); 
and a recent summary using a more selective set of observations (Akagi et al., 2011). EFs from 
each of these references, along with ECs from this work, are shown in Fig. 3.8 (on different y-
axes). Values for temperate forest, extratropical forest and chaparral from Akagi et al. (2011) are 
updated to include observations that were published after the summary (Akagi et al., 2013; 
Yokelson et al., 2013); these updates are available at http://bai.acd.ucar.edu/Data/fire/. We note 
that EFs in previous studies are derived as the mean of several measurements, and the associated 
“error” bars shown in Fig. 3.8 are one standard deviation of the measurements. As we previously 
discussed, this means they reflect some of the natural variability in individual fire emissions, and 
are not an estimate of the uncertainty in the mean EF. This uncertainty could be estimated using 
the number of fires from which the EFs are derived, but this information is not easily and 
uniformly accessible and so we do not attempt it. The error bars for our work in Fig. 3.8 are 
estimates of the uncertainty in the EC, not the variance in individual measurements, and so they 
estimate a different quantity than the “error” bars from the other studies and should not be 
directly compared.  

The previously published summaries differ substantially from one another, a reflection of 
the large variability in measured NOx EFs for individual fires even within a single global-scale 
biome, and the relatively small sample size which results in substantial changes to the mean 
when new measurements are added. We find that our biome-scale ECs fall within a narrower 
range than all of the previous studies. In a relative sense, our values compare best with those 
updated from Akagi et al. (2011), although in forested regions they are generally higher (relative 
to other biomes). This difference may reflect the improvements in sampling coverage in the full 
satellite record vs. fire emissions measured in situ. However, it is also plausible that this 
difference results from a low bias in FRP over forested regions. We estimate the plausible 
magnitude of this bias by assuming that the observed difference results entirely from the bias and 
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not from sampling differences; in that case, FRP is biased low by ~34%, ~40%, and ~67%  for 
tropical, temperate, and boreal forest fires, respectively. The difference in bias for boreal forest 
(vs. tropical and temperate forest) could be due to a higher proportion of burning of ground-level 
or below-ground burning (e.g. peat) in boreal fires. While the differences we observe relative to 
Akagi et al. (2011) are almost certainly varied in source, this nevertheless provides a rough 
estimate of one plausible bias. We note that this estimate is specific to the accuracy of FRP as it 
pertains to actively detected fires, not the accuracy of FRP at e.g. 0.5° × 0.5° scale where canopy 
cover might e.g. completely obscure fires that would otherwise be detected by the MODIS 
algorithm.  

Detailed information on the EF calculations in Akagi et al. (2011) is available in 
supplementary material of that paper, and thus we can directly compare regional differences in 
ECs presented here with the EFs used in Akagi et al. (2011) to examine how consistent our 
results are beyond broad biome categorizations. Akagi et al. (2011) divide the tropical forest NOx 
EF into two EFs: one for tropical evergreen deforestation, and one for tropical dry deforestation 
that is approximately twice as high. When we calculate ECs separately for forest fires in 
“monsoonal” and “winter-dry” equatorial regimes, that value is higher (by a factor of 1.89) than 
the EC calculated for forest fires in the “fully humid” equatorial regime. If these climate 
classifications provide an adequate proxy for evergreen vs. dry deforestation, this result is 
consistent with Akagi et al. (2011). We also find that the temperate forest EC from Region J is 
very slightly below the mean temperate forest EC, and forest fire ECs in the California/Nevada 
region are even lower than in Region J; this is consistent with results from Akagi et al. (2011) in 
that measurements of California pine understory EFs made by Burling et al. (2011) are slightly 
below the mean temperate forest understory EF, and EFs from Oregon wildfires measured by 
Radke et al. (1991) are below the mean temperate forest EF.  

In contrast, in Akagi et al. (2011) EFs reported for tropical forest fires in Mexico (Yokelson 
et al., 2011) are higher (3-5 g NOx as NO kg-1) on average than EFs for tropical forest fires in 
Brazil (1-2 g NOx as NO kg-1; Ferek et al., 1998; Yokelson et al., 2008), while our analysis 
suggests that ECs from tropical forests in Mexico and Brazil are similar to each other, with ECs 
in Mexico slightly lower (see Fig. 3.3, regions D and E). We also find that ECs for the region 
that encompasses North and South Carolina in our analysis (region G) are much higher than the 
mean EC for temperate forests, which is inconsistent with the below-mean (Akagi et al., 2013) or 
slightly above mean (Burling et al., 2011) EFs in the aggregate EF from Akagi et al. (2011) for 
this biome. 

 

3.6 Conclusions 
We present biome- and ecosystem-resolved NOx ECs, based on satellite measurements of 

tropospheric NO2 from OMI and of FRP from MODIS, for several different biome and 
ecosystem categories. These ECs are obtained via a method that was adapted from Mebust et al. 
(2011) for application to global fires and is also updated to include subsequent years of 
observations and an improved version of the OMI NO2 retrieval. We compare our biome-scale 
ECs with summaries of EFs based on in situ measurements and find that the range of biome-
scale ECs observed here is smaller than for EFs in previous works. Our results are for the most 
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part consistent with relative differences in EFs from Akagi et al. (2011) although emissions in 
forest biomes are relatively higher.  

We find that the majority of ecoregion-scale ECs are not statistically significantly different 
from the corresponding mean biome EC, while biome-scale ECs themselves fall into a narrow 
range with the smallest EC (0.250 g MJ-1) fully 70% of the largest (0.362 g MJ-1) EC. We do, 
however, observe ecoregion-scale ECs that are both significantly and substantially different from 
the mean biome EC and/or from the range of biome-scale ECs, demonstrating that there exist 
regions where mean fire NOx emission behavior is very different from the global mean. While 
mean biome and ecoregion ECs are relatively similar, variability in individual fire ECs remains 
high. Future efforts should focus on elucidating the particular processes that govern this 
variability; the observed differences in ECs can hopefully guide these efforts by identifying 
regions where there are important differences in fire NOx emission behavior. 
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Figure 3.1. Map of fires used in this analysis. Color indicates fuel type as determined using land 
cover and climatology. Fires were identified as having a particular fuel if greater than 75% of 
measured FRP for that fire came from fire pixels of a single fuel type; fires not meeting this 
criterion are designated “mixed fuels”. 
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Figure 3.2. Histogram of ECs measured for fires with FRP above 5000 MJ s-1. ECs were 
calculated by dividing the MER by FRP for individual fires. 
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Figure 3.3. A map of forest fire regions determined by a clustering analysis (a) and ECs 
calculated individually for each region (b). In (a), black markers identify forest fires belonging to 
clusters with less than 100 observations. In (b), marker shapes are used to identify biomes for 
each EC, determined via climate classifications: triangles indicate tropical, squares indicate 
temperate, and diamonds indicate boreal forests. In regions where there is adequate sampling of 
more than one biome type, ECs are calculated for both biomes (e.g. region E). The range of 
mean biome ECs (as presented in Table 3.2) is indicated in grey.  
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Figure 3.4. A map of grass fire regions determined by a clustering analysis (a) and ECs 
calculated individually for each region (b). In (a), black markers identify grass fires belonging to 
clusters with less than 100 observations. In (b), the range of mean biome ECs (as presented in 
Table 3.2) is indicated in grey. 
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Figure 3.5. A map of shrub fire regions determined by a clustering analysis (a) and ECs 
calculated individually for each region (b). In (a), black markers identify shrub fires belonging to 
clusters with less than 100 observations. In (b), the range of mean biome ECs (as presented in 
Table 3.2) is indicated in grey. 
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Figure 3.6. A map of agricultural fire regions determined by a clustering analysis (a) and ECs 
calculated individually for each region (b). In (a), black markers identify agricultural fires 
belonging to clusters with less than 100 observations. In (b), the range of mean biome ECs (as 
presented in Table 3.2) is indicated in grey. 
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Figure 3.7. Regressions of fire radiative power (FRP) vs. mass emission rate (MER) for (a) all 
fires, (b) forest fires, (c) shrub fires and (d) grass fires in the California/Nevada region (126-
113°W, 31-44°N). Listed on each plot are the calculated EC (i.e. the slope of the best fit line), 
R2, and number of points. 
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Figure 3.8. Bar graph showing the different EFs (left y-axis) in previous work and ECs (right y-
axis) presented here at the global biome scale. EFs from previous studies (from left to right) are: 
Andreae and Merlet (2001), Hoelzemann et al. (2004), van der Werf et al. (2010), Akagi et al. 
(2011). In previous work, error bars indicate one standard deviation of the mean; in the case of 
van der Werf et al. (2010), no standard deviation was reported. Error bars for this work indicate 
the standard error of the fit. 
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IGBP class Biome category 

Water Not assigned 

Evergreen needleleaf forest Forest 

Evergreen broadleaf forest Forest 

Deciduous needleleaf forest Forest 

Deciduous broadleaf forest Forest 

Mixed forest Forest 

Closed shrublands Shrub 

Open shrublands Shrub 

Woody savannas Grass 

Savannas Grass 

Grasslands Grass 

Permanent wetlands Not assigned 

Croplands Agricultural 

Urban and built-up Not assigned 

Cropland/natural vegetation mosaic Not assigned 

Snow and ice Not assigned 

Barren/sparsely vegetated Not assigned 

 
Table 3.1. Classification of IGBP classes to broad biome categories.  
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Fuel type NOx EC (g MJ-1)a NOx EF (g kg-1)a,b N R2 

Tropical forests 0.356 ± 0.044 0.87 ± 0.11 6266 0.307 

Temperate forests 0.298 ± 0.019 0.727 ± 0.047 3417 0.293 

Boreal forests 0.250 ± 0.033 0.609 ± 0.079 1633 0.308 

Extratropical forestsc 0.275 ± 0.020 0.670 ± 0.049 5050 0.298 

Grasslands 0.362 ± 0.015 0.883 ± 0.037 73789 0.290 

Shrublands 0.275 ± 0.030 0.671 ± 0.075 4764 0.439 

Agriculture 0.266 ± 0.024 0.650 ± 0.061 4732 0.068 

 

Table 3.2. Summary of calculated emission coefficients and emission factors for NOx as NO. 
Reported uncertainties are 1σ, calculated via nonparametric bootstrap resampling. 
a assumes NO2/NOx of 0.75. Total NOx mass expressed as NO. 
b assumes K = 0.41 kg MJ−1. 
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Region Type EC (g MJ-1) SE (g MJ-1) N R2 p<0.05 

A Tropical 0.357 0.058 366 0.193 

 B Tropical 0.179 0.035 351 0.207 =0.0096 

C Tropical 0.333 0.055 653 0.100 

 D Tropical 0.341 0.061 402 0.226 

 E Tropical 0.360 0.051 3493 0.307 

 

 

Temperate 0.326 0.030 778 0.352 

 F Tropical 0.374 0.046 579 0.362 

 

 

Temperate 0.285 0.028 1147 0.214 

 G Temperate 0.80 0.18 320 0.253 <0.0004 

H Temperate 0.298 0.072 336 0.358 

 I Temperate 0.34 0.15 129 0.490 

 J Temperate 0.275 0.056 257 0.440 

 

 

Boreal 0.240 0.035 776 0.465 

 K Boreal 0.480 0.078 740 0.221 =0.0028 

       Biome means: Tropical 0.356 0.044 6266 0.307 

 

 

Temperate 0.298 0.019 3417 0.293 

 

 

Boreal 0.250 0.033 1633 0.308 

  

Table 3.3. ECs, standard error, number of observations (N) and R2 for forest ecoregions. 

Note: for Tables 3.3-3.6, the column "p<0.05" provides p values measured for all ecoregions 
with ECs that are significantly different than the mean biome EC at the p<0.05 level. The p value 
is estimated using a nonparametric boostrap technique where the ecoregion and mean biome 
slope are resampled with replacement and the difference is recorded; there are 5000 resamples 
and p is calculated directly from the distribution of the differences in slope. 
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Region EC (g MJ-1) SE (g MJ-1) N R2 p<0.05 

L 0.597 0.075 633 0.257 =0.0012 

M 0.404 0.016 22747 0.271 

 N 0.397 0.019 26944 0.260 

 O 0.353 0.031 10698 0.286 

 P 0.85 0.16 313 0.259 =0.0004 

Q 0.401 0.022 5110 0.510 

 R 0.263 0.029 814 0.283 =0.014 

S 0.291 0.062 176 0.123 

 T 0.277 0.045 748 0.215 

 U 0.291 0.047 375 0.178 

 V 0.43 0.13 175 0.200 

 W 0.450 0.065 310 0.452 

 X 0.258 0.031 109 0.571 =0.0272 

Y 0.187 0.018 280 0.657 <0.0004 

Z 0.717 0.060 1884 0.527 <0.0004 

AA 0.433 0.059 286 0.417 

 BB 0.444 0.064 200 0.404 

 
      Biome mean: 0.362 0.015 73789 0.290 

  

Table 3.4. ECs, standard error, number of observations (N) and R2 for grass ecoregions. 

  



49 
 

 
 
 
 
 
 
 
 
 
 
 

Region EC (g MJ-1) SE (g MJ-1) N R2 p<0.05 

CC 0.246 0.038 2944 0.390 

 DD 0.420 0.056 506 0.557 =0.0088 

EE 0.277 0.049 307 0.657 

 FF 0.365 0.046 183 0.583 

 GG 0.330 0.066 440 0.287 

 
      Biome mean: 0.275 0.030 4764 0.439 

  

Table 3.5. ECs, standard error, number of observations (N) and R2 for shrub ecoregions. 
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Region EC (g MJ-1) SE (g MJ-1) N R2 p<0.05 

HH 0.293 0.051 425 0.237 

 II 0.29 0.12 224 0.085 

 JJ 0.24 0.10 111 0.114 

 KK 0.07 0.15 108 0.001 

 LL 0.39 0.17 154 0.115 

 MM 0.176 0.059 314 0.050 

 NN 0.120 0.038 101 0.131 =0.006 

OO 0.212 0.095 233 0.065 

 PP 0.356 0.042 2214 0.081 

 
      Biome mean: 0.266 0.024 4732 0.068 

  

Table 3.6. ECs, standard error, number of observations (N) and R2 for crop ecoregions. 
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Chapter 4 

Observations of a seasonal cycle in NOx 
emissions from fires in African woody savannas 
 
This chapter has been adapted from the following peer-reviewed publication: A. K. Mebust and 

R. C. Cohen, Observations of a seasonal cycle in NOx emissions from fires in African woody 
savannas, Geophys. Res. Lett. 40, 7, 1451-1455, 2013. 

 

4.1 Introduction 
Wildfire emissions of nitrogen oxides (NOx ≡ NO + NO2) perturb atmospheric chemistry 

at a wide range of spatial scales with impacts on air quality and climate (Andreae and Merlet, 
2001). NOx emissions from fires are known to depend on the total biomass burned, the percent 
nitrogen (N) of the fuel, and the extent of flaming versus smoldering combustion (Andreae and 
Merlet, 2001). To understand the role of fires in the global atmosphere, numerical models 
represent emissions as the product of an emissions factor (EF, in g of emitted species per kg of 
consumed fuel) and an estimate of the mass burned for each fire. EFs for a variety of 
species/biomes have been previously estimated from laboratory and field observations of 
wildfires (Andreae and Merlet, 2001; Akagi et al., 2011). However, even for a single species in a 
single biome, these studies indicate that there can be large variability in estimates of the EF 
(Andreae and Merlet, 2001; Freeborn et al., 2008; Yokelson et al., 2011; Akagi et al., 2011).  

Satellite instruments provide observations of NO2 at the high spatiotemporal resolution 
needed to observe wildfire emissions with sufficient statistics to examine variability in fire 
emissions between distinct biomes and over time within biomes. The highest resolution products 
currently available allow observation of plumes from individual fires (Mebust et al., 2011). 
Several recent studies have described strategies for combining satellite observations of fire 
radiative power (FRP in MJ s-1) with trace gas or aerosol observations to provide emission 
coefficients (ECs in g emitted species MJ-1) for fires (Ichoku and Kaufman, 2005; Mebust et al., 
2011; Vermote et al., 2009). Laboratory studies indicate that total fire radiative energy (FRE, or 
time-integrated FRP) is proportional to the total biomass burned in a fire, implying ECs and EFs 
are proportional to one another (Freeborn et al., 2008; Wooster et al., 2005). In a study of 
California and Nevada fires, we found that satellite-observed NOx ECs depended on fuel type 
(forest, grassland, etc.) and that, despite differences in absolute emissions per unit mass 
measured in that study and in previous work, the ratios of the derived ECs for different biomes 
were consistent with estimates of emissions per unit mass burned based on in situ and laboratory 
observations, implying that satellite-derived ECs capture relative differences in emissions 
(Mebust et al., 2011). Here we extend the methods used in that prior work to infer seasonal 
variation in ECs for fires in Africa, using NO2 observations from the Ozone Monitoring 
Instrument (OMI) and fires detected by the Moderate Resolution Imaging Spectroradiometer 
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(MODIS), as well as wind and land cover data. At the scale resolved by OMI, NO2 and NO in 
the fire plume are in photostationary state, allowing us to infer differences in NOx emissions 
from NO2 columns.  

 

4.2 Methods 
Satellite and reanalysis data used in this analysis include the Dutch OMI NO2 

(DOMINO) data product (Version 2.0) (Boersma et al., 2011); the MODIS Aqua Thermal 
Anomalies (MYD14, Level 2, Collection 5) data product (Giglio et al., 2003); the MODIS 
Aqua+Terra Land Cover (MCD12Q1, Level 3, Collection 5) data product (Friedl et al., 2010); 
and wind fields from the National Centers for Environmental Prediction (NCEP) Climate 
Forecast System Reanalysis (CFSR) at 850 hPa and 0.5°×0.5° resolution (Saha et al., 2010).  

The method used to derive ECs is described in detail in Mebust et al. (2011); here we 
outline the general strategy and discuss changes that have been made to the original method. We 
analyze Aqua MODIS fire detections (1 km2 pixel resolution at nadir) collected from 2005-2008 
over Africa (35°S-30°N, 20°W-60°E). All OMI pixels (13×24 km2 at nadir) containing fire 
pixels from the corresponding MODIS Aqua daytime overpass were identified and grouped 
together into single fire events using a sorting algorithm as described in Mebust et al. (2011); 
here, however, OMI pixels containing fire pixels with FRP totaling less than 250 MW were not 
included in the sorting algorithm to avoid aggregating close small fires into single large events. 
Also, in this analysis we use the DOMINO retrieval whereas Mebust et al. (2011) used the OMI 
standard product (SP; Level 2, Version 1.0.5, Collection 3) (Bucsela et al., 2006); we focus on 
results from DOMINO here since the version of the SP retrieval used in Mebust et al. (2011) is 
known to be seasonally biased due to the yearly averaged NO2 profiles employed in the retrieval 
(Lamsal et al., 2010), whereas the version of DOMINO used here employs daily output 
(Boersma et al., 2011). However, we note that similar results were found using the SP retrieval. 
As in Mebust et al. (2011), only OMI pixels with <20% cloud fraction are used, and only the 
inner 40 pixels (of 60 across-track pixels) are used to avoid the significant decrease in resolution 
in the outer pixels. Because we use MODIS Aqua daytime fire detections only, measurements of 
FRP and NO2 column density are coincident in time (within 15 minutes).  

Once each fire event is defined, the analysis proceeds as outlined in Mebust et al. (2011). 
Briefly, the total mass of NO2 within each region emitted by fire is calculated using OMI 
observations of tropospheric column density of NO2 on the day of the fire and subtracting a 
background value for NO2 column density calculated using observations over the same region in 
the 60 days before and after the fire. Using wind fields as well as fire pixel locations and OMI 
pixel geometry, the “clear time” or time over which the observed mass of NO2 was emitted is 
obtained. We note that in Mebust et al. (2011), wind fields were obtained from the North 
American Regional Reanalysis (NARR) at 900 hPa; in this work, to enable analysis of emissions 
over Africa, we use the CFSR wind fields previously mentioned. We then use a 1D model to 
correct the measured mass of NO2 for chemical loss and deposition over the clear time. Dividing 
the corrected measured mass of emitted NO2 by the clear time yields the fire mass emission rate 
(MER in g s-1); the total FRP in each region is also calculated as a sum of FRP over all individual 
fire pixels contained in the region. For any collection of fires, a linear regression of FRP vs. 
MER yields the EC as the slope. We note that in this study, we produce NO2 ECs because the 
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satellite observes only NO2 (not NOx); however, these are not direct NO2 emissions from the fire, 
but rather represent NO2 at photostationary state and are proportional to the NOx EC via the 
NO2:NOx ratio. Thus any percent change in NO2 EC should be equal to the percent change in 
NOx EC assuming there is no change in the NO2:NOx ratio. We use nonparametric bootstrap 
resampling as a method to minimize the impact of outliers on the calculated slope and standard 
deviation; points were sampled randomly with replacement, and 1000 bootstrap samples were 
used for each calculation. When the percent error is >100% the slope is considered poorly 
constrained and is not presented. An extensive assessment of the sources of error in deriving 
these values can be found in the appendix.  

Some data was filtered out to maintain data quality as in Mebust et al. (2011); however, 
the methods used to filter data were slightly different. Simple filters were applied instead of 
propagating uncertainty and applying an uncertainty filter; the uncertainty-based approach 
skewed the distribution of points along the y-axis, leading to a statistically-derived bias in the 
analysis, while simple filters removed most unrealistic points without skewing the distribution of 
points. We applied a high background column density filter (>3.5 × 1015 molecules cm-2) as it 
was difficult to distinguish fire emissions from anthropogenic variability in these regions (~5% 
of data); a long clear time filter (>3 hrs) as the analysis requires that we approximate wind speed 
and fire radiative power as constant over this time, and this approximation breaks down at long 
clear times (~4% of data); and a short clear distance filter (<7 km) as the higher percent 
uncertainty associated with short clear distances can produce unrealistic values for the fire MER 
(~29% of data). We also removed fires with a region of analysis more than 3 OMI pixels in the 
along-track dimension, or more than 2 OMI pixels in the across-track dimension (<1% of data). 
The analysis assumes the fire can be treated as a point source within the region; regions larger 
than this are likely aggregates of small but close-together fires for which the point source 
approximation breaks down. Approximately 35% of data was filtered out.  

We focus on African savanna fires because the fire season in these locations is well-
established and the mass of emissions is globally significant (Giglio et al., 2006). Fires are 
identified as “savanna” or “woody savanna” fires if at least 75% of the measured FRP comes 
from the given land type identified using the MODIS Land Cover product (Friedl et al., 2010). 
Figure 4.1 shows a map of Africa with four distinct fire biomes highlighted: northern vs. 
southern hemisphere and savanna vs. woody savanna. The borders between each region are 
generally well-established with very little overlap in location between woody savanna and 
savanna in each hemisphere.  

We also identify some properties of the fire season within the study areas using Aqua 
MODIS fire pixels from the daytime overpass. The number of fires, total FRP, and mass burned 
all have an approximately Gaussian distribution in time, peaking in the middle of the fire season 
in each biome. Within each biome, fires generally move from north to south (independent of 
hemisphere) throughout the season; thus early season measurements within a biome are more 
heavily weighted towards fires in the north, while late season measurements are more heavily 
weighted towards fires in the south. Despite these differences, however, the total length of fire 
season is spatially consistent throughout each biome, with typical season length ~5 months in the 
northern hemisphere and ~6 months in the southern hemisphere. Annual rainfall and wet season 
length increase as distance to the equator decreases in both hemispheres (Nicholson, 2000); 
however, according to MODIS fire observations, the shorter wet season does not seem to impact 
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the length of fire season in the northern and southern extremes. Unfortunately, little to no 
information is available regarding systematic biome-wide variations in mean fuel nitrogen 
content.  

 

4.3 Results and Discussion 
ECs are presented for each month with more than 150 valid observations and <100% 

percent error. The seasonal variation in ECs, as the percent anomaly from the mean of all 
monthly ECs, is shown in Fig. 4.2 for all four biome types, with error bars indicating one 
standard deviation of the value calculated via nonparametric bootstrap resampling. In woody 
savannas in both the northern (Fig. 4.2a) and southern (Fig. 4.2c) hemispheres, a clear seasonal 
pattern emerges, with ECs above the mean by 20-40% early in the season and decreasing 
approximately linearly to 30-40% below the mean by the end of the season. In contrast, no 
systematic variation is observed in the savanna biomes in either hemisphere. We tested several 
other possible sources of the observed seasonal cycle, such as aerosol shielding of NO2 or FRP, 
or regional-scale seasonal variation in the NO:NO2 ratio. Our analysis indicates that the impacts 
of these effects are too small to explain the observed cycle. This is underscored by the lack of a 
similar seasonal cycle in observations of savanna fires (Fig. 4.2b,d), as well as a lack of a 
seasonal cycle in crop and forest fire emissions in the same region (not shown).  

Few studies have examined the seasonal variability of EFs, even for a single biome. 
Korontzi et al. (2003) examined early dry season field measurements of modified combustion 
efficiency (MCE), a measure of the ratio of flaming to smoldering combustion, and EFs for a few 
trace gases (not including NOx) from a series of prescribed fires at a savanna site in southern 
Africa. They concluded that there were significant differences between early dry season EFs (and 
MCE) and late dry season EFs (and MCE), due to the decrease in fuel moisture across the 
season. Yokelson et al. (2011) measured EFs for several species in early dry season fires in the 
savanna biome in Mexico, and found that EFs for NOx, as well as several products of incomplete 
combustion (e.g. CO, CH4, aerosol, etc.) were much higher than late-season measurements from 
the African savanna. These two studies hint at the potential for significant seasonal variability in 
fire emissions even in identical ecosystems. Meyer et al. (2012), on the other hand, compared 
early- and late-season measurements of emission factors of CH4 and N2O in Australian savannas 
and found no significant seasonal difference. No variation in fuel moisture was observed across 
the season due to rapid drying out of grass; differences in MCE between fires were attributed to 
differences in fuel structure. None of the studies included sufficient statistics within a single 
biome to examine a seasonal cycle in emissions in detail.  

We consider possible mechanisms for a seasonal variation in the two quantities thought 
to be the primary factors affecting variability in NOx emissions from otherwise similar fires: 

1) Higher fuel N content yields greater NOx emissions per unit of biomass burned 
(Andreae and Merlet, 2001). Temperatures in most wildfires are not high enough to 
produce significant amounts of NOx by oxidation of atmospheric N2; most NOx 
originates from N in the fuel (Andreae and Merlet, 2001). Vegetation in African 
savannas reallocates N to rhizomes and roots during the dry season, with observations 
of above-ground plant N twice as high during the wet season as during the dry (fire) 
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season (e.g. Ratnam et al., 2008). While senesced matter likely makes up the majority 
of the fuel in any fire, a seasonal variation in the contribution of greener vegetation to 
the fire fuel might result in seasonal changes in emissions per unit energy or biomass.  

2) N in the fuel is thought to be more efficiently converted to NOx during the higher-
temperature flaming combustion (high MCE), whereas smoldering combustion (lower 
MCE) produces more NH3, amines, and nitriles (Andreae and Merlet, 2001; Battye 
and Battye, 2002) although correlations between NOx emissions per unit mass burned 
and MCE tend to be poor (Battye and Battye, 2002; Yokelson et al., 2011). There has 
been little systematic investigation of seasonal variability in MCE, which is heavily 
impacted by fuel moisture (Korontzi et al., 2003; Meyer et al., 2012; Hoffa et al., 
1999). For regions that experience a dry season and wet season, like these African 
savannas, MCE may be lower in the early dry season, implying a higher contribution 
of smoldering combustion, and increase as the dry season continues and fuels dry out, 
leading to a greater contribution of flaming combustion (Korontzi et al., 2003). 
However, this effect was not observed in Australian savannas by Meyer et al. (2012), 
who instead found that MCE variation between fires was typically due to fire fuel 
structure. 

While no comprehensive set of MCE or fuel nitrogen observations exists over these large 
regions, given what we know about the processes that govern NOx emissions from fires we can 
speculate about some possible causes of the seasonal variation in ECs we observe. We consider 
only mechanisms that are specific to woody savanna environments. Differences in fuel N or 
MCE can both potentially play a role in the mechanisms governing this seasonal variation. For 
example, if aboveground grass biomass has fully senesced by the start of the fire season but trees 
are still reallocating N, woody savanna fire fuels might experience a decrease in N content across 
the season consistent with the observed cycle while little or no cycle is observed in savannas. 
Increasing leaf litter in woody savannas across the season might also decrease fire MCE and thus 
impact NOx emissions in a manner consistent with the observed cycle. In both cases, however, 
competing effects occur; for example, greener material will contain more N yet burn with a 
lower MCE, while leaves generally contain more nitrogen than savanna grasses. Regardless, 
variability due to MCE remains of particular interest since EFs of several other compounds (e.g. 
CO, CH4, aerosols, etc.) are highly correlated with MCE (Yokelson et al., 2011) and we 
recommend further research on seasonal cycles of emissions of these other chemicals, as well as 
a more detailed mechanistic assessment of the changes observed here. 

The results presented here have important implications for numerical representations of 
fire emissions and tropospheric chemistry. Current models do not include seasonal variability in 
EFs for any species; furthermore, depending on the timing of the measurements from which the 
EFs were derived, they may not be representative of the mean or median of emissions over the 
full fire season. Scaling monthly woody savanna NOx emissions according to the observed cycle 
does not change the month of peak NOx emissions, but it skews the emissions distribution 
towards the early season. We estimate that incorporation of seasonally varying fire NOx 
emissions alters monthly surface ozone by up to 6%—small but significant changes. 

 

4.4 Conclusions 
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Here we present space-based observations of a seasonal cycle in NOx emissions per unit 
mass burned for fires in African woody savannas. The cycle shown here has never before been 
observed due to the lack of spatiotemporal resolution in previous in situ studies. Emission 
coefficients for woody savannas are 20-50% higher than the seasonal mean emission coefficient 
at the beginning of the fire season and decrease roughly linearly to 30-50% below the seasonal 
mean by the end of the season, whereas (non-woody) savanna biomes show no systematic 
seasonal variation. Possible mechanisms include seasonal variation in fuel nitrogen content or 
modified combustion efficiency in woody savannas, but further research is recommended to 
explicitly identify the source of this variability.  

 

4.5 Appendix: uncertainty analysis 
We note that sources of uncertainty in the derivation of an EC are described in detail in 

Mebust et al. (2011). The total uncertainty we derive is based on the measurement uncertainties 
e.g. the uncertainty associated with the retrieved OMI NO2 column densities; the methodological 
uncertainties in deriving emissions for individual fires; and the uncertainty in the derivation of 
the ECs. 

4.5.1 Uncertainties in measurements 

Tropospheric NO2 column densities derived from OMI are subject to primary errors due to 
measurement (i.e. the uncertainty of the fit of measured radiances to reference spectra) as well as 
derived errors from the retrieval process used to convert the spectra to columns (Boersma et al., 
2004). Errors can result from the subtraction of the stratospheric NO2 column from the total 
column, and from parameters (cloud fraction, cloud pressure level, surface albedo and NO2 
profile shape) used to calculate the air mass factor, which is used to convert the slant column 
density to a vertical column density. The presence of aerosols can also induce errors in the 
retrieval, although in the case of OMI, this is at least partially corrected for by the cloud retrieval 
algorithm which is somewhat sensitive to the presence of aerosols and interprets them as clouds 
(Boersma et al., 2004; Boersma et al., 2011). These sources of error and their estimation are 
described in detail elsewhere (Boersma et al., 2004; Boersma et al., 2007; Boersma et al., 2011). 
An estimate of the standard error is reported with OMI tropospheric NO2 columns, calculated 
separately for each pixel. For the observations used here, the median percent standard error is 
54.7%; approximately 93% of observations reported a standard error of less than 100% of the 
measured value. These uncertainties are largely systematic, as shown for example in Russell et 
al. (2012). However, we note that in the case of fires, a large systematic bias, not accounted for 
by the estimated standard error, may arise due to inaccuracies associated with the assumed NO2 
profile shape and with the presence of aerosols. Evidence for this is presented by Mebust et al. 
(2011) who suggest that the OMI NO2 Standard Product retrieval underestimates NO2 columns 
over fires by as much as a factor of 2. A similar bias should affect the DOMINO retrieval used in 
this paper as it similarly does not use any special treatment for fire containing pixels. As a result, 
an absolute measurement of fire ECs is likely to be biased low by a factor of ~2. However, 
Mebust et al. (2011) found that relative differences in NOx ECs measured by OMI between 
different fuel types reproduced differences in measured EFs for the same fuel types; this suggests 
that any systematic bias in OMI NO2 retrievals is proportional across a large column density 
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range, implying that relative differences between ECs (like those presented here) is not impacted 
by the biases.  

Estimations of FRP from MODIS are based on an empirical relationship with radiance in the 
4 μm band; this relationship was established by a fit using several theoretical fires containing a 
mix of flaming and smoldering combustion at different temperatures. The average standard error 
between this empirical relationship and the theoretical fires is ±16% (Kaufman et al., 1998). 
However, validation of MODIS FRP has been extremely limited. A comparison with the Bi-
spectral InfraRed Detection satellite instrument indicated that MODIS FRP was within 15% of 
BIRD FRP for several fires but that in a few cases MODIS FRP underestimated BIRD FRP by 
up to 46% (Wooster et al., 2003). This is likely because the MODIS detection algorithm may 
miss some fire pixels that are less intensely radiating. MODIS FRP may be further 
underestimated as the detection algorithm may not identify fires (or energy) obscured by clouds, 
smoke, or canopy cover. Fires that are entirely obscured are not included in the analysis, i.e. the 
effect only matters to the extent that small parts of larger fires are obscured. Regardless, while a 
bias in MODIS FRP may affect the absolute value of an EC or EF, it is unlikely to impact the 
relative values we express here, for the same reasons given for a bias in OMI NO2 columns. We 
also note that fire radiative power as measured by the satellite is not expected to be correlated 
with the extent of flaming combustion or modified combustion efficiency (MCE), which might 
induce some non-linearity in the relationship between NOx emission rate and fire radiative 
power. While higher intensity fires are likely to have a higher MCE and thus may have a higher 
NOx emission rate, MODIS pixels do not contain an estimate of fire size; thus, measured fire 
radiative power is equally indicative of a small, high-intensity fire and a large, low-intensity fire.  

Estimates of uncertainty in CFSR wind speed and direction are not available as part of the 
data product. However, there are uncertainties associated both with the model and assimilated 
data, as well as with scaling the hourly-resolved data at 0.5°×0.5° spatial resolution down to the 
time and location of each fire. We consider systematic errors here and discuss random ones 
below. The mean impact of wind speeds on this analysis was investigated thoroughly and is 
described in Mebust et al. (2011); there we found that the choice of dataset and of wind pressure 
level close to 1km resulted in small differences in calculated ECs (<15%). A similar check on the 
results in this manuscript produced similar results. The choice of wind pressure level near 1km 
for all fires may, however, bias ECs systematically low, as some large fires can inject emissions 
much higher into the atmosphere; however, the majority of fire emissions are typically in the 
boundary layer (Martin et al., 2010).  

4.5.2 Uncertainties in individual fire emissions 

Mebust et al. (2011) address uncertainty in individual fire emissions in detail, including 
assumptions that fire conditions are constant over the period of measurement, that the NO2/NO 
ratio does not vary greatly between fires, that NOx loss can be approximated as a first-order 
exponential loss, that the lifetime of NOx is similar across most fires, and that ECs do not vary 
diurnally—or rather that ECs are not particularly higher or lower as a result of being measured at 
the OMI/MODIS overpass time. We note that for these assumptions to bias the relative 
relationships demonstrated in this work, the accuracy of these assumptions would have to be 
seasonally varying. We have no evidence for such an effect or a hypothesis for one at this time. 
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Wind speed or direction is a possible source of systematic error that could potentially 
influence the observed seasonal cycle, manifested as a seasonal cycle in wind speed or direction 
in the CFSR data. However, polar histograms of wind direction show that the distribution of 
wind direction within each category is nearly identical across the fire season. Monthly means of 
wind speeds used in this analysis for each category also show no relationship with the monthly 
measured ECs, as regressions of mean wind speed and measured EC in each category have very 
low R2 values and extremely different slopes (varying from negative to positive).  

The method of estimating background could also potentially impact the seasonal cycle. 
Background columns are estimated using observations in the same location as the fire on 60 days 
before and 60 days after the fire. At least 10 observations are required and the column is 
estimated as the average of all observations. This method was selected over a more traditional 
approach (i.e. using observations directly upwind of the fire) because of the uncertainties in wind 
direction and the size of the pixels which both make it difficult to be sure that the column 
“upwind” of the fire according to the data is indeed clean. Another strategy could be to select the 
minimum column density in the pixels surrounding the fire as the background column; however, 
our experience showed that this strategy resulted in a low bias to the background. Because the 
method used here calculates the background as an average over roughly a 4-month period, it is 
plausible that the method decreases or removes natural seasonal variation in background column 
and thus potentially biases the data. On the other hand, the background column tends to be only a 
small percentage of the total column measured over the fire, so small changes to the background 
column are unlikely to significantly impact the estimated emissions. We compared the original 
analysis results to an analysis using backgrounds of 30 days before and after the fire 
(corresponding to an average calculated over roughly 2 months). Using a 2-month average 
resulted in a 50% decrease in the number of observations because they did not make the 
minimum 10 observation cutoff. When this cutoff was decreased to 5 observations, the collection 
of data was still 25% smaller than when using a 4-month average. The smaller number of 
observations resulted in slightly higher reported uncertainties for most months but no change in 
the inferred seasonal cycle.  

4.5.3 The bootstrap method and associated uncertainties 

Given the large data set and the predominance of systematic errors (some of which are 
poorly characterized), we compare relative values rather than absolute ones. Here we describe 
the statistics of our observations and results and assess uncertainty in the context of the bootstrap 
method.  

As described in the text, ECs are calculated using observations from each category and 
month separately, and each EC must be derived from a minimum of 150 observations. ECs for 
months near the beginning and end of the season are calculated from a smaller number of 
observations (a few hundred) while sample sizes for the peak of the season are closer to 2,000-
3,000. Because of the high variability in emissions from fire to fire coupled with the sources of 
random error (e.g. winds), correlation coefficients from a linear regression are low to moderate 
(R2 ranging from 0.21 – 0.66 and typically ~0.4) indicating that a linear relationship only 
partially describes the observed variability. However, the nonparametric bootstrap resampling 
method used to calculate the ECs and the large sample size ensures that we capture the mean 
behavior. The purpose of the bootstrap is to generate an estimate of the mean and standard 
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deviation that are independent of the assumptions required by most linear regression strategies, 
such as normality of the distribution, homoscedasticity and that the x values are free of error. 
These assumptions, when not met, generally lead to underestimation of the error associated with 
the estimated slope, an effect especially prevalent for large datasets. The bootstrap, in this case, 
can provide a more robust estimate of the uncertainty, as well as reducing the impact of outliers 
on the calculated slope.  

Figure 4.3 demonstrates several of these issues. Here we have plotted mass emission rate vs. 
fire radiative power measured in woody savanna in northern Africa over the months of 
November (early season, A1a) and April (late season, A1b). While there is some scatter and the 
R2 values are low, the difference in slope between the two months is still visible. Also plotted are 
the bootstrap fit and 95% CI. A Welch’s t-test between the slopes for the two months indicates 
that they are significantly different (p<0.000001), and this is true whether the OLS or bootstrap 
slopes and standard errors are used. Thus the difference between the early season and late season 
ECs is, in fact, highly statistically significant. This is similarly true for the seasonal change 
observed in woody savanna in northern Africa.  
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Figure 4.1. A map of the dominant fire type (savanna vs. woody savanna) at 0.33° × 0.33° 
spatial resolution. Fires in northern and southern hemispheres are indicated separately. 
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Figure 4.2. Monthly anomaly in EC as a percentage of the mean for north African woody 
savanna (a) and savanna (b), and south African woody savanna (c) and savanna (d). Months are 
indicated on the x-axis and begin in July for northern Africa (a, b) and January for southern 
Africa (c, d). January 1st is indicated by the grey vertical dotted line. Error bars indicate one 
standard deviation of the value. 
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Figure 4.3. Scatter plots of fire radiative power vs. mass emission rate of NO2 for woody 
savannas in northern Africa, in the early season (November, a) and late season (April, b). Solid 
lines show the best fit, calculated using nonparametric bootstrap resampling, and the dotted lines 
show the 95% confidence interval.  
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Chapter 5 

Observations of variability in wildfire NOx 
emission coefficients: seasonal variability and 
wind speed dependence 
 

 

5.1 Introduction 
Combustion of biomass, like other forms of incomplete combustion, produces substantial 

quantities of CO, CH4, aerosols, volatile and semi-volatile organics, and a variety of nitrogen (N) 
containing species including nitrogen oxides (NOx ≡ NO + NO2) as well as NH3 and HCN 
(Andreae and Merlet, 2001). These species go on to play pivotal roles in the local, regional and 
global atmosphere, impacting local air quality and influencing radiative forcing (Fiore et al., 
2012). To fully understand the net impacts of these emissions and assess how they will respond 
to geophysical forcings, it is critical that the processes governing the emissions are elucidated.  

Many recent efforts to quantitatively describe emissions have aimed to parameterize 
emissions as a function of fire radiative energy (FRE), yielding a value known as an emission 
coefficient or EC in g of pollutant emitted per MJ (Ichoku and Kaufman, 2005; Freeborn et al., 
2008; Jordan et al., 2008; Vermote et al., 2009; Mebust et al., 2011; Mebust and Cohen, 2013). 
Estimates of FRE and fire radiative power (FRP or rate of FRE release) are available via satellite 
observations, enabling high temporal resolution modeling of fire emissions as compared to 
traditional mass-based methods. ECs are typically derived for specific fuel types but are 
otherwise considered to be unvarying; however, observations suggest that at the individual fire 
scale, ECs (and related emission factors or EFs expressing the mass of pollutant emission per 
unit mass burned) are highly variable from fire to fire (Andreae and Merlet, 2001; Akagi et al., 
2011; Mebust and Cohen, submitted 2013). Different combustion stages and/or temperatures can 
result in a different degree of oxidation of organic material; emissions of highly oxidized species 
like CO2 and NOx are associated with flaming combustion, while less-oxidized species like CO, 
CH4, organic molecules, etc. are associated with smoldering combustion (Andreae and Merlet, 
2001). Emissions of NOx also depend on the amount of available N as they are produced via 
combustion of N-containing fuel (Andreae and Merlet, 2001).  

Assessments of fire emissions have, for the most part, neglected this inherent natural 
variability in ECs and EFs between individual fires in an attempt to characterize mean behavior 
(e.g. van der Werf et al., 2010). To achieve this, parameters are derived from observations of 
fires that are assumed to be typical of a particular biome and then applied uniformly to all fires 
within that biome, regardless of local fire conditions (Andreae and Merlet, 2001; Hoelzemann et 
al., 2004; van der Werf et al., 2010; Akagi et al., 2011). The assumption of an unvarying EC or 
EF is supported neither by theory nor by observation, but has been necessary because in situ 
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observations have lacked the temporal and spatial coverage to provide information on systematic 
variation in fire emissions, while theoretical variability is neither validated nor quantified.  

Satellite measurements of fire emissions offer the opportunity to fill some of the gaps in our 
knowledge of spatial and temporal variability of fire emissions. Observations of FRP and 
associated pollutants can be used to derive ECs directly for individual fires, and the greatly 
expanded spatiotemporal coverage (where measurements are made throughout the fire season 
and across the globe) provides sufficient statistics to distinguish spatial and temporal differences 
in emissions that have escaped characterization by in situ measurements (Mebust and Cohen, 
2013). By examining differences between ECs at different spatial and/or temporal resolution, or 
as a function of biogeophysical or meteorological characteristics (e.g. wind speed), we can 
identify some sources of the observed variability. Conveniently, conclusions about variability in 
ECs are also generally extendable to EFs because laboratory studies have shown the two values 
are proportional to one another (Wooster et al., 2005; Freeborn et al., 2008), so understanding 
variability in ECs can also result in improvement of a wide variety of models that do not yet 
depend directly on ECs.  

In Chapter 3, I used satellite observations to examine variability in mean NOx ECs for 
biomes and spatial variability within each biome. Here I focus instead on temporal variability 
and potential biogeophysical drivers of variability in emissions. Previous studies that have 
attempted to examine seasonal variability in EFs have relied on a small number of measured fires 
or inconsistent sampling strategies, e.g. comparing early-season measurements from one 
ecoregion to late-season measurements in another (Korontzi et al., 2003; Yokelson et al., 2011; 
Meyer et al., 2012). In Chapter 4 I demonstrated that there exists clear seasonally varying 
behavior in ECs for woody savannas in Africa, using measurements that offer continuous 
coverage throughout the fire season (Mebust and Cohen, 2013). Systematic differences in EFs as 
a function of local meteorological or biogeophysical properties e.g. precipitation, temperature, 
dry season length have been studied by van Leeuwen and van der Werf (2011), who used EFs 
from a wide range of previous studies to show that EFs for CO2, CO and CH4 were each 
correlated to some (statistically significant) degree with some of these likely drivers of a 
mechanism affecting fire behavior. A subsequent study found that the inclusion of a varying EF 
scheme in a global model resulted in significant differences in emissions as compared to the 
static EF scheme (van Leeuwen et al., 2013). These results emphasize the importance of 
identifying and quantifying drivers of EC and EF variability.  

In this chapter, I examine seasonal variability in savanna ecoregions across the globe and 
compare to the observed seasonal patterns in Africa. I also explore correlations between ECs and 
wind speed at the biome scale.  

 

5.2 Methods 
The data and methods used here have been described previously (Chapter 3). Briefly, I 

combine observations of tropospheric NO2 vertical column densities from the Ozone Monitoring 
Instrument (OMI) Standard Product (OMNO2, Level 2, Version 2.1, Collection 3; Bucsela et al., 
2013), FRP from the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) Thermal 
Anomalies product (MYD14, Level 2, Collection 5; Kaufman et al., 1998; Justice et al., 2002; 
Giglio et al., 2003), and wind vectors at 850 hPa from the Climate Forecast System 
Reanalysis/version 2 (CFSR/CFSv2; Saha et al., 2010; Saha et al., submitted 2013). I include all 
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observations from the period of 2005-2011, subject to quality control as described in Mebust and 
Cohen (submitted 2013). I aggregate coincident OMI and MODIS pixels to identify individual 
fires and include observed fires with total FRP > 250 MW. I use OMI NO2 column densities in 
conjunction with wind observations and fire pixel locations to determine a “mass emission rate” 
(MER in g s-1) of NO2 for each fire, and calculate ECs as the slope of a regression between FRP 
and MER (g MJ-1). ECs and corresponding standard errors are derived via nonparametric 
bootstrap resampling with replacement.  

I include observations of land cover from the MODIS Land Cover product (MCD12Q1, 
Level 3, Collection 5.1; Friedl et al., 2010), as well as Köppen-Geiger climate classification data 
at 0.5°×0.5° (Kottek et al., 2006), to differentiate between biomes and within biomes (e.g. 
savannas vs. woody savannas). To further divide biomes into ecoregions, I perform a spatial 
aggregation, in which observations of forest, grass, shrub or agricultural fires are grouped 
according to proximity (within 100 km for grasses). For the results presented here, only grass 
ecoregions are used. Fires are considered to be “grass” if at least 75% of FRP comes from fire 
pixels determined to be “grassland”, “savanna” or “woody savanna” by the MODIS Land Cover 
product. As a result, ECs can also be determined for sub-categories of grasses (grasslands, 
savannas, and woody savannas). In all work here, ECs are only presented when based on a 
minimum of 100 observations and the standard error of the EC is less than 75%.  

 

5.3 Results and discussion 
5.3.1 Seasonal variability in savanna biomes 

In Chapter 4, I demonstrated that ECs for woody savanna fires in Africa decrease throughout 
the fire season, while ECs for savanna fires have no distinct seasonal pattern. Here I examine 
seasonal variations in ECs in savannas across the globe. I  separately assess seasonal behavior in 
ecoregions as defined in Mebust and Cohen (submitted 2013) with substantial sampling of 
savanna and/or woody savanna fires. A map of grassland ecoregions is shown in Fig. 5.1; I find 
that Regions M, N, O, and Q sample woody savanna fires at a sufficiently high rate such that it is 
possible to examine seasonal variability in ECs. In all figures showing seasonally resolved ECs, I 
show the number of observations for each month as light grey bars; this also provides an 
approximate sense of the fire season. Note that the sample size scales vary between the different 
figure panels. 

In tropical ecoregions, ECs in woody savanna or mixed savanna/woody savanna biomes 
decrease systematically throughout the fire season. This behavior appears to be due almost 
exclusively to woody savannas. Figure 5.2 shows the seasonal behavior in these tropical 
ecoregions (Regions M, N, O, and Q): across all ecoregions there is a distinct decreasing pattern 
in ECs across the fire season. Additionally, when ECs in these mixed savanna/woody savanna 
regions are calculated separately for each of the two biomes, strong seasonal decreases are 
apparent for woody savanna ECs while little to no decrease is observed in ECs for savannas (Fig. 
5.3). This result is consistent with the previous observation of seasonal behavior in woody 
savannas and not in savannas in Africa (Mebust and Cohen, 2013).  

I suggest that this biome-specific process is a result of long term ecological adaptation to 
frequent fire exposure. The ecoregions in which the seasonal pattern is observed generally 
contain large numbers of observations, sugggesting that fire occurs at regular intervals (i.e. every 
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few years) in areas within these ecoregions and it would be appropriate to consider them fire-
adapted. In contrast, it is not possible to fully characterize seasonal behavior in ECs in temperate 
and polar woody savanna regions, but the limited evidence suggests that ECs in those regions are 
consistent or increasing throughout the season. Such regions contain substantially fewer 
observations of fires as compared to the tropical savanna regions, suggesting that they may not 
be adapted to frequent fire. While there is no direct evidence that fire adaptation accounts for this 
pattern, I suggest it as a possible and plausible explanation.  

5.3.2 Wind speed dependence of ECs 

I evaluate the relationship with wind speed by binning observations into 2 m s-1 bins and 
measuring an EC for each bin. The results for such an analysis on the biome scale are shown in 
Fig. 5.4. In most biomes, there appears to be a relationship between wind speed and ECs, with 
higher wind speeds correlated with increasing ECs. The relationship is approximately linear and 
is stronger in some biomes than in others. This result is consistent with our previous knowledge 
about the effects of wind on fires. It is commonly known that high winds can impact fire 
intensity, rate of spread, etc. High wind speeds might be correlated with increased MCE which 
could result in increased NOx emissions. It has also been previously proposed that high wind 
speeds could also induce green, live vegetation to burn under flaming conditions, as opposed to 
the smoldering combustion normally associated with live vegetation (Yokelson et al., 2011); 
since green (live) vegetation generally contains more N than senesced (dead) vegetation (Ratnam 
et al., 2008), this could also result in increased NOx emissions in high wind conditions.  

I do not show individual ecoregion analyses here, because on the ecoregion scale this 
relationship exhibits greater variability. In some ecoregions there is a strong correlation; in others 
ECs appear relatively constant with wind speed; and in still others ECs peak at moderate wind 
speed and are smaller at low and high wind speeds. It is possible that different mechanisms 
influence how wind speed impacts emissions from ecoregion to ecoregion. Reduced statistics 
due to smaller sample sizes can also affect the reliability of any conclusions for individual 
ecoregions.  

I note that the observed correlations with wind speed must be viewed with caution, as wind 
speeds are directly used in the process of deriving ECs. I have investigated the possibility that 
the correlation between wind speed and ECs is an artifact of the analysis, but I can find no 
evidence that it is; on the other hand, it is difficult to rule that effect out completely. Other 
processes not related to emissions may also play a role. For example, wind speeds will likely 
affect the rate of plume mixing with background ozone, and thus might impact our measured 
ECs by affecting the amount of NOx present as NO2 or by affecting aerosol loading which can 
influence the NO2 retrieval. In low-wind scenarios, mixing with background ozone will be slow, 
and thus a greater percentage of NOx might be present as NO, meaning that our analysis may 
underestimate the EC under these conditions. Correlations between wind speed and boundary 
layer height theoretically may also play a role. Higher wind speeds could indicate a higher 
boundary layer height, increasing the signal of NO2 as measured by the satellite due to increased 
sensitivity at higher altitudes. This would not be accounted for by the satellite retrieval which 
assumes an invariant vertical profile, resulting in a high bias.  

 

5.4 Conclusions 
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I present observations of systematic variability in NOx ECs from fires including seasonal 
variability in ECs in savanna and woody savanna ecoregions and correlations with wind speed. I 
find that ECs for five separate tropical woody savannas exhibit clear linear decreasing behavior 
across the season, while savannas in four of the same regions do not exhibit this same behavior 
and neither do more temperate woody savannas. I suggest that this is the result of biogeophysical 
fire adaptation processes in woody savannas. I also find that for most biomes, increasing wind 
speeds are correlated with increasing ECs, consistent with processes suggested by a previous 
analysis (Yokelson et al., 2011).  
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Figure 5.1. A map of grass fire ecoregions as developed in Chapter 3.   
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Figure 5.2. Seasonal patterns for ECs in four ecoregions that contain a mix of savanna and 
woody savanna fires.   
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Figure 5.3. Seasonally resolved ECs from four ecoregions (Regions M, N, O and Q) separately 
calculated for savanna and for woody savanna fires. Woody savanna ECs exhibit a clear 
decreasing pattern throughout the season, while savanna fires have little or no seasonal pattern.   
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Figure 5.4. ECs as a function of wind speed for six primary biome types (tropical, temperate, 
and boreal forests, grasslands, shrublands, and agricultural fires).  
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Chapter 6 

Future directions for wildfire NOx emission 
research 
 

 

6.1 Introduction 
In this dissertation, I have presented a new strategy for analyzing variability in wildfire NOx 

emissions using space-based observations. This strategy has enabled the study of systematic 
variability in NOx ECs at a scale never even approached in previous in situ research. As a result, 
I have been able to produce the first large-scale within-biome comparisons in emission 
parameters, discovering important spatial differences (Chapter 3); I also presented the first 
complete seasonally resolved emission parameters for savannas and woody savannas, providing 
conclusive evidence that emissions from some biomes vary seasonally in a way that has never 
been possible to observe through laboratory or in situ measurements (Chapters 4 and 5). Despite 
these important contributions, however, there remains significant untapped power in applying 
these observations to explore systematic variability in fire NOx emissions. Here I present some 
ideas for future work in which the strategy presented here can be used to provide a wealth of 
process-oriented information regarding variability in emissions.   

6.2 Future directions 
6.2.1 Seasonal variability 

Building on the observed seasonally dependent behavior of ECs in tropical woody savanna 
environments (Chapters 4 and 5; Mebust and Cohen, 2013), I suggest that future efforts should 
attempt to provide seasonally resolved measurements of ECs for other biomes. I have made some 
preliminary observations of seasonal behavior in non-grassland biomes. Results suggest that 
there are two kinds of patterns observed in forested ecoregions, while shrubland and agricultural 
ecoregions behave in a less consistent manner, with seasonal patterns differing substantially 
between ecoregions of the same biome. Some of the difficulties in evaluating seasonal behavior 
in these biomes are due to the much smaller sample size per ecoregion relative to the savanna 
biomes. In cases where the sample size is large, typically there is some sort of visible seasonal 
pattern (see e.g. Fig. 6.1), but in many cases there are insufficient data to provide rigorous 
seasonally-resolved ECs across the full fire season. One way to overcome this would be to 
normalize observations in each ecoregion to the peak month of the fire season and then combine 
all observations from similar ecoregions. This would increase the sample size and allow 
characterization of ECs throughout the season.  

6.2.2 Interannual variability 

The extent to which emission parameters vary between different years has not been explored 
in any previous analysis. Such an analysis could prove very useful in identifying driving 
processes when combined with observations about each year’s fire season (length, drought 
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record, biomass loading, etc.). The multiyear satellite record can prove very useful in such an 
analysis. Initial observations suggest that interannual differences in ECs can be observed. In 
most cases where ECs were derived for 6 or more years, the difference between the minimum 
and maximum yearly ECs in a single ecoregion is approximately a factor of 2, with these ECs 
differing from each other by more than one standard deviation. This suggests that there is 
information that could be extracted from annually resolved ECs, especially in combination with 
observations about the fire season during these years. For example, I separately determine 
annually resolved ECs for tropical and temperate forests in two mixed forest ecoregions (Fig. 
6.2). ECs for tropical forest fires in Region F are consistently higher than ECs for temperate 
forest fires, and this difference is approximately the same regardless of year—in other words, the 
ECs vary together, presumably with some sort of large-scale biogeophysical process that affects 
both biomes. Tropical forest fires in Region E, on the other hand, are not consistently higher or 
lower than temperate forest fires, and the interannual variations in the two fuel types are not 
correlated (either positively or negatively). That suggests that in Region E, factors driving 
interannual variability in these two biomes are specific to each biome.  

6.2.3 Observations of local vegetation and meteorology 

Modified combustion efficiency (MCE) and fuel nitrogen (N) are both suggested to correlate 
with NOx emissions (e.g. Andreae and Merlet, 2001; Battye and Battye, 2002). Since MCE can 
be impacted by fuel thickness/density (e.g. logs burn with lower MCE than leaves), fuel 
moisture, and other properties; and fuel N is variable both within the plant (e.g., logs vs. leaves) 
and as a function of plant conditions (e.g., senesced or dry, dead plant material will generally 
contain less nitrogen); a logical plan of action would be to test ECs for correlation with 
meteorological and/or vegetation observations. Some potentially relevant observations include 
precipitation records, vegetation indices (e.g., EVI, NDVI), surface temperature, relative 
humidity, soil moisture, soil N, or percent tree cover. Many of these observations are available at 
a global scale either as satellite observations or assimilated observations (e.g., from the CFSR). 
Preliminary tests with precipitation and vegetation indices suggest that biome-scale ECs vary as 
a function of these factors, but the relationships tend to be complicated (e.g., not necessarily 
linear) and different behavior is observed with different months (e.g., ECs might be positively 
correlated with precipitation from 3 months previous to the fire and negatively correlated with 
precipitation from 6 months previous).  

6.2.4 The next generation of satellite instruments 

Future efforts can make use of upcoming launches of new space-based observing 
instruments, including those launched on polar-orbiting satellites with higher spatial resolution 
than OMI (e.g., TROPOMI) and instruments deployed on geostationary satellites (e.g., TEMPO). 
Improvements in the technology on which the satellite observations are based can help reduce 
certain sources of uncertainty and can also prove better at isolating emissions from proximate 
fires and allow characterization of how the NO2 column changes downwind of the fire source. 
Geostationary satellite observations would also allow diurnal resolution of emission parameters, 
which is not possible with polar orbiting satellite observations given that observations are made 
at the same local time globally.  

  



74 
 

 
 
 

 

 

 

 

 
Figure 6.1. Seasonally resolved ECs for Region E, a mixed tropical-temperate forest region in 
South America.  
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Figure 6.2. ECs calculated by year (2005-2008) and biome for Regions E and F, both mixed 
tropical-temperate forests. Triangles indicate ECs for tropical forests, while diamonds indicate 
ECs for temperate forests. In Region E, interannual variability in ECs varies significantly for the 
two biomes, while in Region F the interannual variability is small and is similar between the two 
biomes.  
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