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Abstract1

Electric and Magnetic Response Properties of Topological Insulators
in Two and Three Dimensions

by

Andrew Michael Essin

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Joel E. Moore, Chair

This dissertation introduces some basic characteristics of a class of materials known as
topological insulators. These materials were introduced theoretically as crystalline band
insulators, in which electrons do not interact with each other and the atomic cores form
a perfectly ordered, fixed background potential for the electrons. It is shown that, in the
two-dimensional case, this definition can be relaxed to the case of disordered, noninteracting
insulators. It is further shown numerically that the introduction of disorder to these two-
dimensional insulators eliminates the direct transition between the topological and ordinary
insulating phases, consistent with the presence of an intervening metallic phase.

In the three-dimensional case, one formulation of the distinction between the topological
and ordinary phases involves a quantized response function (the magnetoelectric polarizabil-
ity). It is shown here that this characterization holds on quite general grounds, and therefore
allows an extension of the topological class to disordered and interacting systems. Finally,
a relatively rigorous derivation of the (fixed-ion, linear, orbital) magnetoelectric response of
crystalline band insulators is presented.

1 Yes, but some parts are reasonably concrete.
— Avron et al., Commun. Math. Phys. 123, 595 (1989)
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Chapter 1

Background and overview

One of the major driving motivations in condensed matter physics is the search for
new phases of matter, that is, new materials with novel properties. Sometimes these new
properties lead directly to important technologies. Sometimes they “merely” illuminate
previously obscure possibilities in the structure of the laws that govern the natural world.
Sometimes they even manage to do both.

The work I will present in the following chapters grows out of the recent theoretical
and, increasingly, experimental development of a new class of materials termed “topological
insulators”. In some sense the name is misleading, since there have been systems deserving
of the name for nearly thirty years, and in principle the new discoveries form only a subset
of all topological insulators. In particular, the new materials are nonmagnetic topological
band insulators.

In the rest of this chapter, I want to introduce the key features of topological insulators,
or at least those that are not covered in greater depth later on. Before doing so, it seems
worthwhile to start at a relatively basic level and review the notion of a band insulator (and
the contrasting notion of a metal) and that of a topological property.

1.1 Band theory of solids

In middle school, I was taught that materials are divided into two classes: conductors
(metals) that carry electricity, and insulators that don’t. The work I will be presenting deals
with new kinds of insulators (and a little about metals), so I want to review a simple picture
of how insulating or conducting behavior comes about, to serve as a reference point that
highlights why the new materials are interesting.

The electronic spectrum of an atom is divided into two pieces, the bound states and
the “scattering” (unbound) states. The bound state spectrum of an atom consists of levels
labeled by n, the “principal quantum number”, which are separated by energy gaps. This
discrete energy spectrum is a consequence of, or is at least related to, the localized nature of
the electron wave functions. An atom also has a “scattering” spectrum, consisting of those
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states that are not bound to the atom. Qualitatively, these are extended free-particle states
that get modified slightly by the presence of the nucleus.

Is the spectrum of a solid more like the bound-state state spectrum of an atom or the
continuum? Are the states localized or extended? On the one hand, a solid is frequently
conceived as being built of atoms, which suggests the former; on the other hand, thinking
about nuclei and electrons rather than atoms, the (relatively) tightly packed nuclei might
just provide an environment in which the electrons can run around.

The simplest picture starts from atoms. Consider a bunch of isolated atoms, all of the
same species for true simplicity. Because electrons are fermions and therefore obey the Pauli
exclusion principle (each state can only accommodate one electron at a time), they fill up the
lowest few states of the discrete atomic spectrum (at zero temperature, which is the situation
for all the work I will present here). In this situation, the electrons are localized, that is, not
free to run around in the system. In some sense this is like the vacuum itself, which also has
no particles. If we imagine bringing the atoms closer together, the small overlap in the wave
functions of two atoms will allow the electrons to tunnel back and forth. This also produces
an energy splitting, but the splitting is much smaller than the atomic energy spacing. In
this picture, each atomic level broadens into an energy “band”, see Figure 1.1.

E

a

Figure 1.1: Energy bands connect continuously to the limit of separated atoms, where the
atomic spacing a tends to ∞. At finite separation the hybrid orbitals develop a spread in
energy (“bandwidth”). The dashed line indicates the physical spacing in a material.

Now we can try to answer the question, Does the material conduct or not?; Are the elec-
trons free or bound? Each band n (generalizing the principal quantum number) is essentially
a continuum of states, in which a traveling wave packet can exist. However, if a band is
filled, there are no states available from which to assemble such a packet. An unfilled band
should be conducting, while a filled band will be insulating. In this way, the band theory of
solids gives a simple way to understand metals and insulators; metals have partially filled
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bands, while insulators have filled bands.
Of course, this simple picture cannot account for all metallic and insulating materials.

Most importantly, it assumes that the electrons do not interact with each other. Since
electrons repel, a situation can arise in which electrons localize (stop conducting) so as to
minimize the repulsive energy, even though the band theory would predict metallic behavior.

The topological insulators that are the primary subject of the work I will present are
band insulators, but with a difference. In particular, assuming that no magnetism develops
(technically, that time reversal symmetry is unbroken), the band gap will have to close upon
trying to take the (isolated) atomic limit of a topological insulator. When the band gap
closes, the system becomes a metal, and therefore fundamentally different from an insulator
(at least in its transport properties). In this sense, the topological insulator is a distinct
phase of matter from the “ordinary” or “trivial” insulator. It should be noted, however,
that time-reversal breaking allows the possibility of an atomic (or at least molecular) limit.
In this sense, the phase transition is more real than the phases themselves, rather like the
transition between liquid water and water vapor.

1.2 Insulators, metals, and quasiparticles

In the case of metals, I said above that partially filled bands can support traveling wave
packets. In such a situation, the dispersion relation between energy and momentum is crucial
for understanding the wave packet motion. Indeed, it is typically more intuitive to think
of particles of definite momentum and energy when possible, even though the associated
wave functions will not be normalizable in an infinite system. Now, the atomic cores in a
solid exert electrostatic forces on the electrons and break conservation of momentum, but a
metal will still have sharply defined excitations with good energy and momentum quantum
numbers; this is Landau’s notion of the “quasiparticle”, essentially an electron but with a
different dispersion relation (and also a finite lifetime).

k

Figure 1.2: A generic quasiparticle dispersion in a metal. The dashed line indicates the
chemical potential, below which all states are filled at zero temperature.
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An insulator does not have quasiparticles, almost by definition: quasiparticles give us a
microscopic picture for the mechanism of conduction. I should note here that I am using the
term conduction in a particular sense, namely that of dissipative transport. This is tied up
with the particle-like picture: charged particles respond to a small electric field by running
down the potential, thereby exchanging energy with the external field source (dissipating
energy, from the point of view of the material) and carrying a current. Insulators, lacking
quasiparticles, cannot do this. However, they could still support dissipationless transport,
which would necessarily run perpendicular to the applied field. As I will discuss soon, this
is precisely what happens in the quantum Hall effect.

Finally, it is important to recognize that a material that is insulating in its bulk could
have metallic surfaces (really boundaries, since I will also be discussing two-dimensional
systems whose boundaries are edges rather than surfaces). Indeed, this is precisely what
happens in the topological insulators, although it is also possible to conceive of topological
insulators for which this is not the case.

1.3 Topological properties

The systems of primary interest in this work are topological insulators. The term “topo-
logical” is used in a number of ways in condensed matter physics, and while many of them
are related they are not precisely identical, so it is worth giving a brief survey of meanings.

Topology is a mathematical notion of continuity. For a physicist, the relevant distinction
is between geometry, which has to do with shape and size, and topology, which is more basic.
In a popular and useful formulation, two spaces that can be deformed continuously into one
another are said to be topologically equivalent, irrespective of the details of shape and size.
Qualitatively, topological properties are then those that are insensitive to continuous changes.

One definition of a topological property, then, is a property that does not respond to
continuous changes. Typically this is used in a quantitative sense (the winding of the super-
fluid phase around a minimal vortex is always 2π) rather than a qualitative one (away from
a melting transition, changing the temperature of a solid does not change its solidity).

A related, perhaps more precise meaning, has to do with topological invariants. These
objects characterize the topology of mathematical spaces, and sometimes arise more or less
naturally in physics applications. For example, the superfluid winding mentioned above
determines an integer element of the “fundamental group” of the circle parameterized by the
phase; the minimal vortex corresponds to the unit element of the group of integers Z. This
meaning tends to imply the other. In the winding example, an integer is “topological” in
the sense that it cannot respond to continuous changes, or any changes really, continuously.

Another related notion is that of topological order. There is no single meaning of topo-
logical order, but it typically means that the important properties of the system in question
cannot be captured by any short-ranged probe or measurement. Instead, they can only be
seen in quantities sensitive to the system as a whole, such as the dependence of the ground
state degeneracy on boundary conditions (open or periodic, say). The degeneracy is again
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an integer, which makes this topological in the above sense. This example also illustrates
the sort of drastic change, like cutting open a boundary, needed to change a topological
property.

The topological insulators that are the subject of this dissertation fit most naturally into
the definition in terms of topological invariants, but all the characterizations above work to
greater or lesser degree.

I will review some of the known properties of topological insulators in this introduction
and in the subsequent chapters. For more complete coverage, I refer the reader to a few
good, general reviews of the subject that have appeared recently. Moore [58] and Qi and
Zhang [68] have written reasonably qualitative introductions for a general audience, while
Hasan and Kane [31] have written a detailed review of the theoretical and experimental state
of the art.

1.4 The quantum Hall effect

The prototypical topological systems are those that exhibit the quantum Hall effect.
The effect was originally seen in the two dimensional gas of electrons that forms at the
boundary between GaAs and AlGaAs, and has now also been seen in graphene, the truly
two dimensional crystalline form of carbon. In sufficiently clean samples, at low enough
temperatures,1 and in a strong enough magnetic field perpendicular to the plane of the
electrons, it is found that the (longitudinal) conductance σxx vanishes, while the (transverse)
Hall conductance σH = σxy takes values that are integer multiples, or simple fractions, of the
natural unit of conductivity e2/h, where e is the electron charge and h is Planck’s constant.2

Since the Hall conductance takes its values in a discrete set under these conditions, it qualifies
as a topological property by the above definitions.

The crucial prerequisites for quantum Hall physics are the dimensionality (two dimen-
sions, specifically) and the breaking of time reversal symmetry T supplied by the strong
magnetic field. To show this explicitly, Haldane constructed a theoretical band insulator
that provides a minimal model of the integer effect [29]; he considered spinless electrons
hopping on a honeycomb lattice, with broken time reversal symmetry but with vanishing
average magnetic field, and showed that the Hall conductance could be 0 or ±1 (in units
of e2/h), depending on parameters.3 It is quite straightforward to see that such an effect
must break T : in the equation Jx = σHE

y, the current J breaks T (run time backward and
the current will flow backward, not stay the same) but the electric field E does not, so the
material property σH must capture a symmetry breaking in the material.

Note that something quite mysterious must be going on here. These systems are band
insulators (the integer states, anyway), whose spectrum includes only “inert” filled bands.

1Room temperature in graphene.
2In two dimensions, conductance has the units of conductivity.
3This sort of thing could also occur in three dimensions, but essentially only as a collection of two

dimensional layers.
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Apparently these bands are not so inert after all. I noted earlier that this sort of thing could
arise in principle: since the Hall current is perpendicular to the applied field, no momentum
is transferred to the electrons and no energy dissipated. It may be hard to visualize the
mechanism of conduction, since there are no states from which to build wave packets, but
at least this phenomenon is consistent with energy conservation.

It turns out to be enlightening to consider the difference between open and periodic
boundary conditions. The statement that the Haldane model is a bulk insulator only refers
to the bulk of the system and not its boundaries. The standard theoretical device for
eliminating the effect of boundaries involves using periodic boundary conditions, but this
can mask effects that become apparent with open boundaries, as in cases of topological
order. In the present case, it turns out that the edges must be metallic; each edge carries
an integer number of “edge modes” (the same integer as the conductance) that are “chiral”
(propagate in one direction only) and so capture the broken time reversal symmetry [46, 30].
In a sample with one edge (disk topology), one can then take the view that all the physics
occurs at the edge, with the bulk completely inert. This goes by the name “bulk-boundary
correspondence”.

e

quantum
Hall fluid

Figure 1.3: The edge of a quantum Hall system carries an electronic mode that is chiral,
i.e., that propagates in only one direction.

1.5 Topological insulators with time reversal symme-

try

It was thought that there could be no analogous topologically nontrivial band insulators
that preserve T . However, a thought experiment by Kane and Mele [39, 40] shows that
there should be a two dimensional case. The construction is quite simple. First, suppose
there are two kinds of electron (say, in two layers), and the T breaking for one is equal and
opposite to that for the other. Then there is no overall T breaking, and no net quantum Hall
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effect, but there are still chiral edge modes, running in opposite directions. Now suppose
that the two kinds of electron are the two values for some component of spin. Spin, as an
angular momentum, breaks T , but spin up is precisely the time reverse of spin down, so
the two together still preserve T . In particular, the edge mode for one species of spin is the
time reverse of the other. It is not too difficult to show that no T -invariant perturbation
to the Hamiltonian can mix these states (i.e., no T -invariant operator has a nonzero matrix
element between these states), and so no T -invariant mixing of the two species in the bulk
of the system will affect the existence of the edge states. The crucial fact is that T 2 = −1
for half-odd spins (spin-1/2 in the case of electrons).

Figure 1.4: The edge of a topological insulator in two dimensions carries a counterpropa-
gating, “helical” pair of electronic modes.

This insensitivity points to the presence of a bulk topological invariant, although it is
not given simply by a conductivity or other response function. In this way, the T -invariant
topological insulator is a more subtle system than the integer quantum Hall insulator, and
probes sensitive to the edge states are needed to verify the presence of the topological state.
This state has been reported in HgCdTe/CdTe/HgCdTe wells; the experiment looked for
signatures of one-dimensional metallic conduction, characteristic of edge modes [8, 44].

Another difference from the quantum Hall case is the existence of an intrinsically three-
dimensional T -invariant topological insulator, not just layered versions of the two-dimensional
one just discussed [22, 56, 72]. This system, by contrast, does exhibit a topological bulk
response property, in this case the zero-field magnetoelectric polarizability. A number of
materials, including BiSb alloy, Bi2Se3, and Bi2Te3 [37, 85, 14], have been verified to be in
this class, although the probes have again been sensitive to the surface states and not to
the bulk response function. The surface states of the 3d topological insulator should again
span the bulk gap so that the surface is metallic at any chemical potential. In caricature,
the surface states look like a cone, which is typically referred to as a “Dirac cone”, because a
conical 2d dispersion relation can be described by a massless Dirac equation. In particular,
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the spin of the surface state at a given momentum is locked to the momentum and rotates
through 2π along any curve around the cone. This simple picture is not rigorous since, for
example, there need not be a well defined spin state at a given momentum, but there is still
a correlation between spin and momentum, and the Berry phase of −1 that results from
rotating the spin by 2π is robust.

Figure 1.5: The surface of a three-dimensional topological insulators carries an electronic
mode with a “massless Dirac” dispersion.

A necessary microscopic property of these materials is the presence of strong spin-orbit
coupling; without it, the spin is irrelevant to the electronic structure. Topological insulators
are all built of (relatively) heavy elements, which have large nuclear charge Z; since spin-orbit
coupling scales as Z4, it is very large. The doubled Haldane model also crucially involves spin-
orbit coupling, since (by construction) its most important constituent is a spin-dependent
kinetic term. Finally, notice that the correlation of spin and momentum in the edge modes
is crucial for the topological protection seen there.

1.6 Outline

There are (at least) two key questions that need to be asked about the time-reversal-
symmetric topological insulators described above. First, how robust are they? That is,
can they really be considered to be phases of matter, or are they just the result of some
fine-tuning? Since key signatures are seen experimentally, it is clear that there is some
robustness, but we need to understand why. In particular, why doesn’t the lack of perfect
crystal symmetry destroy the states, which were originally predicted in perfect crystals? And
why don’t weak electronic interactions destroy the states? The work in this dissertation
answers these questions, at least in part, by obtaining the topological invariants from a more
general perspective than their original formulations.

The second big question which this work addresses is, what physical response properties
result from the nontrivial topology? That is, what macroscopic behaviors do the topological
insulators display when probed by external fields, in particular electric and magnetic fields?
The “Dirac cone” described above can be seen in a kind of microscopy known as ARPES,
and can be deduced from scanning tunnelling microscopy as well, but one also wants to know
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the macroscopic characteristics as well; this both connects to well-established experimental
paradigms in condensed matter physics, and is important if these materials are ever to find
practical, technological application. The chapters to follow give partial answers to this crucial
question as well.

The remainder of this chapter will introduce in more detail the specific topics to be
covered in this dissertation. Chapter 2 reviews some important technical tools and results;
in particular, I discuss Bloch’s theorem for periodic potentials and the derivation of adiabatic
charge transport (the “Kubo formula”). Both these results are crucial for understanding the
Hall conductivity as a bulk topological invariant in the integer quantum Hall regime. I have
chosen to present the Kubo formula in a many-body formulation, which hopefully provides
conceptual clarity, as well as in a relatively idiosyncratic single-particle formulation that
explicitly allows degenerate energy levels and that relies on Bloch’s theorem (and hence
periodicity) minimally.

The original definitions of the topological invariant characterizing the two-dimensional
topological insulator rely on the strict periodicity of the material. Chapter 3 reviews one
of the more practically useful formulations of the topological invariant and generalizes it to
disordered systems. This generalization is important in its own right, and it provides a way
to make contact with an old result on 2d systems, namely, that a disordered 2d material
with strong spin-orbit coupling should be metallic. The bulk topological invariant does not
directly detect this metallic behavior; instead, it reveals the presence of a transition between
distinct insulating phases. The transition between integer quantum Hall states remains sharp
in the presence of disorder, whereas disorder turns out to broaden the transition between the
time-reversal invariant topological insulator and the ordinary insulator. This can be taken
as confirmation that a noninsulating, hence metallic, phase intervenes.

Chapters 4 and 5 treat three-dimensional band insulators. In contrast to the two-
dimensional case studied in Chapter 3, the three-dimensional topological invariant (or one
formulation of it, anyhow) gives a quantized magnetoelectric response [67], very analogous
to the quantized Hall conductivity in integer quantum Hall systems. The magnetoelectric
response is the response of the electronic polarization P to an applied magnetic field B,
or alternatively the response of the magnetization M to an applied electric field E. In the
absence of dissipation, as in an insulator (so long as the field frequency is smaller than the
gap to excitations), these two responses are equal.

The most important result in chapter 4 is that, like the quantum Hall case, this quantized
response is (at least in principle) robust to disorder and interactions, and therefore serves
to define topological insulators absolutely generally. This result follows directly from now-
standard results on the electronic contribution to the polarization of bulk systems, together
with some simple geometry. I will review the modern theory of polarization in Chapter
2 as part of the technical introduction, to serve as background for this result. Chapter
4 also uses a nice result from the modern treatment of semiclassical band dynamics [87]
to give a simple derivation of the expression for the invariant in the noninteracting case,
first derived by evaluating a Feynman diagram in a 4+1 dimensional field theory and then
dimensionally reducing down [67]. Finally, in Chapter 4 I show that it is possible to evaluate
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the topological invariant in a number of ways, both directly from the derived expression and
more physically as the polarization response to an applied magnetic field or as the surface
Hall conductivity of a slab. To make these results more general, I have also extended the first
model Hamiltonian of a 3d topological insulator [22], breaking time reversal symmetry by
adding a coupling to an antiferromagnetic parameter, which allows a smooth interpolation
(or “adiabatic continuation”) between the topological and trivial phases. This interpolation
can almost be seen as an extra dimension in the problem, making contact at some level with
the original derivation of the response.

Chapter 5 revisits the general problem of the magnetoelectric response, without much
specific reference to topological insulators, and derives the full orbital contribution to the
DC linear magnetoelectric response of a crystalline band insulator in the “frozen lattice”
limit.4 From the perspective of computing the properties of real materials, this can be seen
as a very limited result; however, it proves to be the most technically challenging part of the
linear response problem, and in fact it is already known how to compute all other contribu-
tions. Furthermore, the predicted value of this orbital coupling for topological insulators is
comparable to measured values of the full magnetoelectric effect in a benchmark material,
Cr2O3 [32], so the formulae presented here may prove useful as the interest in topological
insulators and related compounds continues to increase. Notably, the fully quantum me-
chanical derivation of Chapter 5 is able to compute explicitly terms that the semiclassical
method of Chapter 4 cannot. In particular, Chapter 5 provides a solution to the problem of
computing the response to a uniform magnetic field in a crystal, and it is my hope that the
methods developed here may prove more generally useful for such problems.

4This work was done concurrently with Ivo Souza and Andrei Malashevich at UC Berkeley, who gave a
different derivation of the same results and who have published them in a concurrent paper [51].



11

Chapter 2

Technical review and introduction

2.1 Insulators

The wave function of N electrons moving in a fixed background potential at zero temper-
ature is described by a fully antisymmetric function of the electron coordinates and spins.
In the picture provided by Kohn, the defining property of an electrical insulator is that this
wave function is composed of localized, nonoverlapping pieces in the 3N -dimensional con-
figuration space [45].1 The essential point can be seen by considering a single electron on a
ring of length L. Qualitatively, if the wave function wraps all the way around the ring, the
state can carry a current, but if the state is localized (decays exponentially with a length
scale substantially shorter than the ring, say) the charge cannot move and so there cannot
be a current.

solenoid

E

Figure 2.1: A time dependent flux generated by the central solenoid produces an EMF, or
electric field, in the ring.

Kohn introduces the key theoretical device of introducing a uniform vector potential
A into the system, equivalent to threading a magnetic flux through the ring, assuming the

1Really, dN -dimensional, since I also want to discuss one- and two-dimensional insulators.
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electron state to be the ground state (or at least an eigenstate) of an appropriate Hamiltonian
H. The vector potential enters H with the momentum in the combination p− eA, where e
is the electron charge; in a tight-binding model, it enters as a complex phase in the hopping
parameters, exp[(ie/})

∫
d`A]. More generally, and more usefully here, A is the conjugate

variable to the electron current,2

̂ = −∂H
∂A

, j = −∂E0

∂A
, (2.1)

where E0 is the energy of the state. This is essentially trying to drive a current adiabatically
by slowly ramping up the flux through the ring – recall that A could be interpreted as Et
as well as Bx.

The crucial observation is this: if the state is well localized and does not wrap around
the ring, the presence of the vector potential can be removed by a gauge tranformation

A→ A− ∂xχ, χ = Ax. (2.2)

The energy cannot depend on A, then, since a gauge transformation is not physical. On the
other hand, if the electron state extends all the way around, then the effect of the gauge
transformation on the wave function becomes important: the new wave function

ψ(x)→ eieAx/}ψ(x) (2.3)

does not satisfy the right boundary condition, since it is not single-valued (periodic). Hence,
this is not a valid gauge transformation when the electron state is extended, and so the state
can carry a current. In a strict sense the gauge transformation is not valid for the localized
function either, but because there is a point on the ring where the function is vanishingly
small, the mismatch is deemed negligible.3 Finally, notice for later use that when A = nh/e
for any integer n, the new wave function does satisfy the correct boundary condition, and
the effect of the gauge potential really can be removed by a gauge transformation, so that
the Hamiltonian is periodic in A with periodicity h/e.

In this way, the problem of currents in a material can be related to the sensitivity of the
wave functions to boundary conditions, or alternatively to the topology of the space (here a
ring).

For a system with many noninteracting electrons, localization of the many-body wave
function is an unnecessarily unwieldy criterion, since all the information in the wave func-
tion is encoded in the single particle density matrix ρ(r, r′), or alternatively in a set of
single particle orbitals ψ(x).4 The density matrix ρ is just the Fermi-Dirac distribution (the
temperature will always be assumed to vanish),

ρ = θ(µ−H), (2.4)

2Since A is uniform here, there is no need to worry about operator ordering, although it is a legitimate
concern in general.

3In fact, this argument is not quite sufficient to show that the conductivity vanishes.
4Dirac’s original discussion of the density matrix [17] is still illuminating.
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where θ is the Heaviside step function and µ is a chemical potential. The two crucial
properties of this operator for what follows are

• ρ2 = ρ (idempotency): ρ is a projection operator onto the filled single-electron states.

• [H, ρ] = 0: ρ is an eigenoperator of the Hamiltonian.

It is important to realize that all the occupied electronic levels, that is, those with energy less
than µ, are degenerate when considered as eigenstates of ρ, and similarly for the unoccupied
levels; the former have eigenvalue 1, the latter 0. Physical quantities should not depend
on the eigenstates and energies of H individually, but only as a group. This is effectively
another kind of “gauge invariance”, a redundancy introduced by using the (otherwise more
convenient) description of the many-electron wave function in terms of the single particle
density matrix.

2.2 Adiabatic conduction, charge pumping, and geom-

etry

It will prove useful to have a more quantitative account of an adiabatically driven current.
I will provide two derivations, one in terms of the many electron wave function and one in
terms of the one electron density matrix. The formula generated is called a Kubo formula,5

although zero-temperature derivations of the Kubo formula for conductivity typically assume
an electric field that oscillates at a finite frequency. There is another useful formalism,
“semiclassical dynamics”, which I will not review here but which is the basis for the main
derivation in Chapter 4. A comprehensive treatment from a modern viewpoint is given by
Xiao, Chang, and Niu [86]. That review also covers much of the material in this section and
the next, but it seems worthwhile to include it here anyway.

The adiabatic approximation to the ground state of a Hamiltonian H(λ(t)) that varies
slowly is just the instantaneous ground state ψ0,

ψ(t) ≈ eiφ(t)ψ0(λ), H(λ)ψ0(λ) = E0(λ)ψ0(λ), H(λ) = H(0) + λOλ. (2.5)

The phase factor takes care of the usual dynamical evolution in a time-independent Hamilto-
nian, as well as the arbitrariness inherent in identifying the ground states at different values
of the parameter. However, this is not a satisfactory approximation here; it predicts that
the current driven by an adiabatic change is just

〈ψ0(λ)|j|ψ0(λ)〉, (2.6)

which is just the current that would exist if the Hamiltonian were not varying. At the next
order of approximation,

|ψ(t)〉 ≈ exp iφ(t)

[
|ψ0(λ)〉+ i}λ̇

∑
m6=0

|ψm(λ)〉〈ψm(λ)|∂λψ0(λ)〉
Em(λ)− E0(λ)

]
, (2.7)

5Or Kubo-Greenwood or even Kubo-Greenwood-Peierls
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wherein it can be seen explicitly that the accuracy of the approximation is governed by the
size of the excitation gap E1 − E0 in addition to the rate of change λ̇.6 Then

〈Oλ′〉(t) = i}λ̇
∑
m 6=0

〈ψ0(λ)|Oλ′|ψm(λ)〉〈ψm(λ)|∂λψ0(λ)〉
Em(λ)− E0(λ)

+ c.c., (2.8)

assuming the zeroth order term vanishes. Now, a very useful relation follows directly from
the definition of the instantaneous eigenstates,

H(λ)ψ0(λ) = E0(λ)ψ0(λ)⇒ 〈ψm(λ)|∂λψ0(λ)〉 =
〈ψm(λ)|∂λH(λ)|ψ0(λ)〉

Em(λ)− E0(λ)
. (m 6= 0) (2.9)

This leads to two alternative formulations:

〈Oλ′〉(t) = i}λ̇
∑
m6=0

〈ψ0|Oλ′ |ψm〉〈ψm|Oλ|ψ0〉 − c.c.

(Em − E0)2
(2.10)

and
〈Oλ′〉(t) = i}λ̇ [〈∂λ′ψ0|∂λψ0〉 − 〈∂λψ0|∂λ′ψ0〉] . (2.11)

There is really a factor 1− |ψ0〉〈ψ0| in the latter inner products, but it drops out of the real
part. In the case of currents, the conjugate variables λ, λ′ are given by components of the
vector potential,

〈ji〉(t) = i}Ej
[
〈∂Ai

ψ0|∂Aj
ψ0〉 − 〈∂Aj

ψ0|∂Ai
ψ0〉
]
, (2.12)

that is,
σij = i}

[
〈∂Ai

ψ0|∂Aj
ψ0〉 − 〈∂Aj

ψ0|∂Ai
ψ0〉
]
. (2.13)

Notice that the diagonal conductivity, indeed the symmetric part, vanishes automati-
cally: the adiabatic approximation applies precisely when energy is not being pumped into
the system (excitations are gapped), and so there cannot be a longitudinal current (which
dissipates energy).

The derived expression for the conductivity has a geometric interpretation. Wave func-
tions Ψ live in a complex projective space, which we usually imagine to be embedded in a
Hilbert space. A natural metric exists to measure distances and angles, acting on tangent
vectors to the Hilbert space δΨ. This is called the Fubini-Study metric, and takes the form

g(δΨ1, δΨ1)(Ψ) = 〈δΨ1|(1− |Ψ〉〈Ψ|)|δΨ2〉, (2.14)

where Ψ is again a point in the complex projective space, while the inner product is the
Hilbert space inner product [94]. The projector 1−|Ψ〉〈Ψ| appears because any component of
δΨ parallel to Ψ does not point to a state physically different from Ψ. Now, if Ψ = ψ0(λ, λ

′),
δΨ1 = ∂λψ0δλ, and δΨ2 = ∂λ′ψ0δλ

′, this becomes

gλλ′δλδλ
′ = 〈∂λψ0|(1− |ψ0〉〈ψ0|)|∂λ′ψ0〉δλδλ′, (2.15)

6For an immensely detailed derivation of this old result, see [16].



15

and so
σij = −2} Im

(
gAiAj

)
. (2.16)

A more popular geometric interpretation is in terms of a curvature instead of a metric.
In this case we write

fλλ′ = 〈∂λψ0|∂λ′ψ0〉 − 〈∂λ′ψ0|∂λψ0〉
= ∂λ〈ψ0|∂λ′ψ0〉 − ∂λ′〈ψ0|∂λψ0〉
= ∂λaλ′ − ∂λ′aλ, aλ ≡ 〈ψ0|∂λψ0〉, (2.17)

where aλ is called the Berry connection and fλλ′ the Berry curvature. This a really is
the connection of the fiber bundle created by projecting the trivial bundle λ × H, with λ
the parameter space (λ, λ′) and H the Hilbert space, onto the ground-state subspace with
|ψ0〉〈ψ0|, and f is the corresponding curvature. These definitions make a and f imaginary, or
more generally anti-Hermitian; later on, it will sometimes be convenient to use a Hermitian
definition, A = ia and F = if .

The connection and curvature are named after Berry, who explored the effects of this
adiabatic geometric structure [9]. In particular, he noticed that after an adiabatic variation
of parameters that forms a closed loop in λ, the true ground state wave function picks up a
phase determined solely by a (or f) and quite independent of the usual factor

∫
E0(t)dt/}.

Indeed, it is possible to interpret both the Aharonov-Bohm effect and the nontrivial behavior
of a spin-1/2 under a 2π rotation as Berry phases.

Thouless [79] pointed out that such an effect can occur with a one-parameter adiabatic
variation if the Hamiltonian is periodic in the parameter. In particular, consider the insulator
Hamiltonian on a ring, as discussed briefly earlier. Then the parameter λ might be the
position of a potential well that could be dragged slowly around the ring, for example. The
current driven by any such variation that brings the Hamiltonian back to its original state
is, from before,

j = i}λ̇[∂λaA − ∂Aaλ]. (2.18)

The total charge that flows will be given by

∆Q = i
e

2π

∫ 1

0

dλ

∫ h/e

0

dA [∂λaA − ∂Aaλ], (2.19)

where the periodicity of the Hamiltonian in λ is assumed to be 1 and the periodicity in A
is h/e as noted earlier. The average over A is an admittedly strange thing to do, but since
the system is assumed to be an insulator, Kohn’s criterion allows it.

The integral can be argued to be quantized in units of 2πi. The essence of the argument
requires seeing the relation between the connection a and the phase of the instantaneous
ground state wave function ψ0. In particular, changes in phase are intimately tied to changes
in the former,

ψ0 → eiχ(A,λ)ψ0 ⇒ aλ → aλ + i∂λχ, (2.20)
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for example. Using Stokes’ theorem, the charge can be expressed as the line integral of the
“vector potential” a around the boundary of the integration region, which by the last relation
is tied to the winding of the phase around that boundary. If ψ0 is to be single-valued as a
function of parameters, this winding must be an integer multiple of 2π.

This argument means that ∆Q = ne for some integer n, that is, that adiabatic charge
transport, or pumping, is quantized in units of the fundamental charge. It is therefore our
first example of a topological quantity characterizing a physical process.

From a mathematical point of view, the charge pumped is given by the first Chern class
of the ground state fiber bundle over the parameter space. As far as the Hamiltonian is
concerned, the parameter space (A, λ) is a torus T 2, since it is periodic in both parameters;
so is the ground state projector |ψ0〉〈ψ0|, which generates the bundle in question. The Chern
class of a one-dimensional bundle over a compact two-dimensional manifold like T 2 is

C1 =
i

2π

∫
d2λ fλλ′ . (2.21)

The existence of such an integer can be deduced through a related construction. The
above construction computes the “cohomology class” of the fiber bundle, but it is sometimes
helpful to think about the “homotopy” classes instead. In this approach, the goal is to
find the set of topologically distinct ways that a torus can be embedded into the space of
projection matrices.

A simple example will serve to illustrate the connection. Consider a Hamiltonian

H(λ, λ′) = n̂ · σ, n̂(λ, λ′) = (cosφ sin θ, sinφ sin θ, cos θ) (2.22)

where the spherical angles φ and θ are functions of the parameters. Because H2 = 1, it is
easy to see that the ground state projector is

P =
1−H

2
=

(
sin2 θ

2
− cos θ

2
sin θ

2
e−iφ

− cos θ
2

sin θ
2
eiφ cos2 θ

2

)
=
(
sin θ

2
− cos θ

2
e−iφ

)( sin θ
2

− cos θ
2
eiφ

)
,

(2.23)
and from the ground state spinor it is straightforward to compute7

fλλ′ = − i
2

sin θ
∂(θ, φ)

∂(λ, λ′)
. (2.24)

Näıvely this makes

C1 =
1

4π

∫
sin θdθdφ = 1, (2.25)

but this is not quite right. For example, ∂(θ, φ)/∂(λ, λ′) can take both positive and negative
values, but the simple result given assumed that it was always positive. More importantly,

7For the computation, the differential forms notation simplifies things. In this notation, a = 〈ψ|d|ψ〉
and f = da, where the differential operator is d =

∑
i dλ

i∂λi and the differentials anticommute, dλidλj =
−dλidλj .



17

the integral over λ, λ′ could cover the unit sphere θ, φ more than once, in which case there
would need to be an integral over the sphere for each covering. This means that C1 is just the
“degree” of the map θ(λ, λ′), φ(λ, λ′). This is the idea of homotopy, which counts the ways
that one space can be mapped into another. The simple connection between cohomology
and homotopy indicated here does not hold in all cases, but it is important to recognize.

2.3 Electronic polarization (and magnetization)

Maybe it’s time to return to a more physical question for a while. In the charge pumping
example, what if the parameter λ is not varied through its full range? In that case, the
pumped charge need not be an integer. Suppose further that the ring-like system is composed
of a finite sample of the insulating material of interest and a voltmeter that connects the two
ends. Then the charge pumped is really the charge that flows through the zero-dimensional
surface of the material. In the absence of the voltmeter, that charge would build up at the
ends; in an insulator, it cannot flow back away from the surface. By allowing it to flow
through the voltmeter (which is really just a very large resistor, that measures the charge
pumped through the known resistance) this experimental paradigm prevents a static electric
field due to the charge buildup from developing. In this way, one can compute an intrinsic
difference in the end charges between the initial and final states of the material.

In fact, this is the experimental procedure to determine the polarization of an insulator.
This follows from the relation σ = P · n̂, where σ is the surface charge density (in this one-
dimensional example, just the end charge), P is the polarization (dipole moment density),
and n̂ the surface normal. Two important points are worth noting: 1. This definition relies
on the existence of a reference material with vanishing polarization, to which the substance of
interest can be adiabatically deformed (at least theoretically); 2. Since the periodic variation
could in principle be run through an arbitrary number of times, there is an arbitrariness to
the polarization, with the discrete unit of arbitrariness e.

As a slight digression, the magnetization can be obtained by linear response methods as
well, and the result comes out more simply than in the case of polarization. The electromag-
netic energy current density is given by the Poynting vector, S = E×H = E×B/µ0−E×M.
Therefore, a computation of the response of the energy current Tr[ρHv], or at least a properly
symmetrized version thereof, to an applied electric field will yield the zero-field magnetiza-
tion. The standard derivation of the orbital magnetization [78] starts from a finite system
and shows that the result can be written solely in terms of bulk quantities; this alternate
approach has the nice feature that it works entirely in the bulk.

2.4 Bloch’s theorem

From this point forward, almost all results will assume that electrons do not interact with
another except through a mean-field potential. Most results will also assume a crystalline
system, in which case the lattice translation symmetry can be used to simplify the problem
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of finding the ground state of the system, and thereby its response functions. The classic
result is Bloch’s theorem: the stationary states ψnk of a crystalline Hamiltonian satisfy the
following properties:

Hψnk = Enkψnk, ψnk(r + R) = eik·Rψnk(r). (2.26)

The quantum number k, called the wave number or the crystal momentum, takes values
in any primitive unit cell of the reciprocal lattice, which is the set of vectors G such that
G ·R = 2πm for any integer m and any “direct” lattice vector R. It is also possible to allow
k to take any value in the reciprocal lattice, in which case

ψnk+G = ψnk. (2.27)

I will use the name “the Brillouin zone” (BZ) for any useful choice of the primitive cell of
the reciprocal lattice, even though that term refers to a particular choice of cell. Because of
the periodicity in k, the BZ can be viewed as a torus, although one sometimes needs to be
careful about this.

The second characteristic property of the wave functions means they can be decomposed
into a plane wave part, with wave number inside the BZ, and a periodic part u whose Fourier
components have wave numbers in {G},

ψnk = eik·runk, unk(r + R) = unk(r). (2.28)

Notice that unk+G = e−iG·runk to be consistent with the periodicity of ψ, which is why it
is good to be cautious about considering the BZ a torus. It can be useful to think of the
relation between u and ψ as a unitary transformation; applying the same transformation to
the Hamiltonian allows us to define

Hk ≡ e−ik·rHeik·r, (2.29)

which I will call the Bloch Hamiltonian. The Bloch Hamiltonian is periodic in the spatial
coordinate r but, like the functions u it operates on, not in the reciprocal coordinate k.

The crucial object is the ground state density matrix,

ρ =
∑
n occ,k

|ψnk〉〈ψnk|, ρ(r, r′) =
∑
n occ,k

ψnk(r)ψ∗nk(r′). (2.30)

For future reference, note that
∑

k = Ω
∫
BZ

d3k
(2π)3

= NΩ0

∫
BZ

d3k
(2π)3

, where Ω is the volume of
the crystal, with N unit cells of volume Ω0. It may be instructive to look at the difference
between band metals and insulators in terms of the density matrix. For a metal, consider a
one dimensional crystal with a band structure symmetric in k:

ρ(r, r′) =
Na

2π

∫ kF

−kF
dk eik(r−r

′)unk(r)u
∗
nk(r

′). (2.31)
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Ignoring the presence of the us for the moment, the integral gives 2 sin[kF (r − r′)]/(r − r′),
where kF is the Fermi wave vector marking the boundary of the filled subspace. Two points
are noteworthy: 1. The decay of the matrix elements is algebraic,8 so that they are not
really short-ranged; 2. The oscillations become more rapid as kF increases. In the insulating
case, when there is no Fermi wave vector, the result is most clear on a lattice, in which case
ρ(R,R′) = NδR,R′ , and the correlations are short ranged. These qualitative features persist
when the factors of u are restored; in the continuum case, the decay will be exponential in
an insulator.

2.5 Adiabatic conduction and geometry revisited, with

projectors

Now we can derive the charge pumping results using the density matrix to describe the
ground state instead of the many-body wave function.

J i(t) =
e

Ω
Trρ(t)vi (2.32)

The lowest adiabatic approximation is J ∼ ρv with the instantaneous ground state ρ; this
current vanishes by assumption, and we need to know the leading adiabatic correction to
the density matrix. Since the leading correction involves

ρ̇ =
1

i}
[H, ρ], (2.33)

it will be useful to have the Hamiltonian appear explicitly, as in

v =
1

i}
[r, H]. (2.34)

Note that, while this looks like Heisenberg’s equation of motion, all equations are actually in
the Schrödinger representation, and this relationship is just the appropriate generalization
of the more familiar [r, .] = i}∂p. In any case,

J i(t) =
ie

}Ω
Trρ(t)[H, ri] =

ie

}Ω
TrH[ri, ρ(t)]. (2.35)

The last equality follows from cyclicity of the trace, but it is important to recognize that not
all expressions involving the operator r are admissible. In particular, the form given looks
like ∫

dr1dr2H12(r
i
2 − ri1)ρ21 (2.36)

in the position basis. The term (ri2−ri1) is potentially problematic because it diverges in some
directions in the six-dimensional configuration space, but this problem is avoided because

8That is, power-law rather than exponential.
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ρ21 is exponentially suppressed in r2 − r1. On the other hand, the alternate form ri[ρ,H]
looks like

∫
dr1r

i
1[ρ,H]11, which diverges in r1, and so is not really admissible.

To proceed, we need to know an important property of projection operators. Consider
a projector P and its complement Q, which will be functions of some parameter λ. It is
straightforward to show that

P(∂λP)P = Q(∂λP)Q = 0, (2.37)

that is, that the first order variation or derivative of a projection operator has no “interior”
matrix elements. For the density matrix, this means that matrix elements between pairs
of occupied states, or pairs of unoccupied states, vanish. In fact, this property extends
beyond derivatives, to any “derivation”, or operation that satisfies the product rule. Of
most importance for our current purpose, a commutator is a derivation, and so it follows
that

[ri, ρ(t)] = ρ(t)[ri, ρ(t)] + [ri, ρ(t)]ρ(t), (2.38)

and, with some algebra that makes use of idempotency (ρ2 = ρ), cyclicity, and the above
considerations,

J i(t) =
ie

}Ω
Trρ(t)[ri, ρ(t)][H, ρ(t)]− c.c.

= λ̇
e

Ω
Trρ(t)[ρ(t), ri]∂λρ(t) + c.c. (2.39)

This expression is first order in the small parameter λ̇, so this is the right point in this
argument to take the adiabatic approximation and drop the dependence on t,

J i = λ̇
e

Ω
Trρ[ρ, ri]∂λρ+ c.c. (2.40)

To find the quantum Hall response, we need to choose λ = −Aj again. We also need to
know how to write perturbation theory with density matrices. For the instantaneous ground
state,

[ρ,H] = 0⇒ [∂λρ,H] = [∂λH, ρ] = e[vj, ρ] =
e

i}
[[rj, H], ρ] = − e

i}
[[ρ, rj], H]. (2.41)

The last step used the Jacobi identity and [ρ,H] = 0. This equation essentially defines ∂λρ,
and it is acceptable to take

∂λρ = − e

i}
[ρ, rj]. (2.42)

Then

σij =
i

Ω

e2

}
Trρ[ρ, ri][ρ, rj]− c.c. (2.43)

That expression is quite general. In fact, it expresses a sort of noncommutative geometry
defined by the fermionic ground state. The coordinate of this geometry is

r = i[ρ, r], (2.44)
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and

σij =
e2

i}
1

Ω
tr[ri, rj], (2.45)

where tr in lower case is taken in the occupied subspace only. This looks just like the
situation of Landau levels (in a magnetic field) in two dimensions, for which the guiding
center coordinates satisfy [X, Y ] = i/2πnφ and σxy = −(e2/h)(ne/nφ), where ne is the
electronic density and nφ the magnetic flux density. The filling factor ne/nφ is an integer
when Landau levels are filled. It can be seen that [ri, rj] defines a measure of area intrinsic
to the quantum state; in the Landau level problem, this area is just 1/nφ.

When the system has crystal symmetry, the density matrix decomposes into sectors of
different k. We can write

ρ =

∫
BZ

ddk

(2π)d
eik·rPke

−ik·r, Pk =
∑
n occ

|unk〉〈unk|. (2.46)

Then

r
i = i[ρ, ri] =

∫
BZ

ddk

(2π)d
eik·r(∂kiPk)e−ik·r, r

i
k = ∂kiPk (2.47)

using the periodicity of ψnk in k. In two dimensions, this gives

σij =
e2

h

1

2πi

∫
BZ

d2kTrPk[∂iPk, ∂
jPk] (2.48)

or

σij =
e2

h

1

2π

∫
BZ

d2k
∑
n occ

f ijnn, f ijnn′(k) = 〈∂kiunk|Qk|∂kjun′k〉 − (i↔ j), Qk = 1k − Pk.

(2.49)
The tensor f defined here is the nonabelian (i.e., multicomponent) version of the Berry
curvature defined earlier.

The integral of the curvature is known as a Chern invariant, and is quantized in integer
steps, as discussed earlier. Analogous invariants appear in all even dimensions. In four
dimensions,

1

2!

1
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1

(2π)2

∫
BZ

d4k εabcdtrf
abf cd (2.50)

takes integer values, and the matrix product and trace take place solely in the occupied
subspace.

The curvature satisfies an equation analogous to the source-free Maxwell equations for
electrodynamics. Locally (in k, in this context), this means it can be written as

f ijnn′ = ∂iajnn′ − ∂jainn′ + [ai, aj]nn′ , (2.51)

and the connection a can be taken to be the nonabelian Berry connection

ainn′ = 〈unk|∂iun′k〉. (2.52)
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This allows us to define a further object called a Chern-Simons (CS) form, which lives
naturally in odd dimensions. In one dimension, the CS form is just the connection, while in
higher dimensions it takes a more complicated form:

CS1i = εij tr aj,
1

2
εij trf ij = ∂itr CS1i

CS3i = εijkl tr

[
aj∂kal +

2

3
ajakal

]
,

1

22
εijkl trf

ijfkl = ∂itr CS3i. (2.53)

The forms written here9 require an even-dimensional space (because of the number of in-
dices on the Levi-Civita tensor ε), but each component corresponds to an odd-dimensional
quantity.

9All of these expressions can be cast in the language of the exterior algebra of differential forms, but
since they emerge physically from tensors that are not obviously antisymmetric to begin with, I find it more
consistent to stick with the tensor notation. However, once an expression is in a form that can be translated
into differential forms, that translation can make the algebra significantly easier, especially if you’re not
worried about factors of 2 and the like.
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Chapter 3

Topological insulators with disorder
and a spin-orbit metal

3.1 Introduction

Considerable theoretical and experimental effort has been devoted to the quest for an
intrinsic spin Hall effect [59, 76, 41, 84] that would allow generation of spin currents by an
applied electric field. Interesting mechanisms for such spin current generation make use of
spin-orbit coupling, which breaks the SU(2) spin symmetry of free electrons but not time-
reversal symmetry. A dissipationless type of intrinsic spin Hall effect was predicted [39,
40] to arise in materials that have an electronic energy gap. This “quantum spin Hall
effect” (QSHE) in certain materials with time-reversal symmetry has a subtle relationship
to the integer quantum Hall effect, in which time-reversal symmetry is explicitly broken by
a magnetic field.

In a system with unbroken time-reversal symmetry, a dissipationless charge current is
forbidden, but a dissipationless transverse spin current is allowed, of the form

J i
j = αεijkEk. (3.1)

The current on the left is a spin current and ε is the fully antisymmetric tensor. Note
that a spin current requires two indices, one for the direction of the current and one for
the direction of angular momentum that is transported. The constant of proportionality α
depends on the specific mechanism: for example, the (dissipative) extrinsic D’yakonov-Perel
mechanism [18] predicts a small α that depends on impurity concentration. The QSHE
builds on the construction by Haldane [29] of a lattice “Chern insulator” model, with broken
time-reversal symmetry but without net magnetic flux, that shows a ν = 1 IQHE. The
simplest example of a QSHE is obtained by taking two copies of Haldane’s model, one for
spin-up electrons along some axis and one for spin-down. Time-reversal symmetry can be
maintained if the effective IQHE magnetic fields are opposite for the two spin components.
Then an applied electric field generates a transverse current in one direction for spin-up
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electrons, and in the opposite direction for spin-down electrons. There is no net charge
current, consistent with time-reversal symmetry, but there is a net spin current. However,
models like this in which one component of spin is perfectly conserved are both unphysical,
since realistic spin-orbit coupling does not conserve any component, and not very novel, since
for each spin component the physics is exactly the same as Haldane’s model and the spin
components do not mix.

More subtle physics emerges when one asks how the QSHE appears in more realistic band
structures. Remarkably, band insulators of noninteracting two-dimensional electrons with
spin-orbit coupling divide into two classes: the “ordinary insulator”, which in general has no
propagating edge modes and no spin Hall effect, and the “topological insulator”, which has
stable propagating edge modes and a generic spin Hall effect, although the amount of spin
transported (the coefficient α in (3.1)) is nonuniversal. These phases are associated with a
Z2-valued topological invariant (an “oddness” or “evenness”, in the language of parity1) in
the same way that IQHE phases are associated with an integer-valued topological invariant.
For explicitness, consider the model of graphene introduced by Kane and Mele [39]. This is
a tight-binding model for independent electrons on the honeycomb lattice (Fig. 3.1). The
spin-independent part of the Hamiltonian consists of a nearest-neighbor hopping, which alone
would give a semimetallic spectrum with Dirac nodes at certain points in the 2D Brillouin
zone, plus a staggered sublattice potential whose effect is to introduce a gap:

H0 = t
∑
〈ij〉σ

c†iσcjσ + λv
∑
iσ

ξic
†
iσciσ. (3.2)

Here 〈ij〉 denotes nearest-neighbor pairs of sites, σ is a spin index, ξi alternates sign between
sublattices of the honeycomb, and t and λv are parameters.

The insulator created by increasing λv is an unremarkable band insulator. However, the
symmetries of graphene also permit an “intrinsic” spin-orbit coupling of the form

HSO = iλSO
∑

〈〈ij〉〉σ1σ2

νijc
†
iσ1
szσ1σ2cjσ2 . (3.3)

Here νij = (2/
√

3)d̂1 × d̂2 = ±1, where i and j are next-nearest-neighbors and d̂1 and d̂2

are unit vectors along the two bonds that connect i to j. Including this type of spin-orbit
coupling alone would not be a realistic model. For example, the Hamiltonian H0 + HSO

conserves sz, the distinguished component of electron spin, and reduces for fixed spin (up
or down) to Haldane’s model [29]. Generic spin-orbit coupling in solids should not conserve
any component of electron spin. However, the unusual phase generated when HSO is strong
turns out to survive, with subtle changes, once the spin-orbit coupling is made more realistic,
as we now review.

The “topological insulator” phase created when |λSO| � |λv| is quite different from the
ordinary insulator that appears when |λv| � |λSO| (here we assume that there is an energy

1Throughout “parity” is used to denote oddness or evenness, rather than a spatial inversion eigenvalue.
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ψ

Figure 3.1: The honeycomb lattice on which the tight-binding Hamiltonian resides. For the
two sites depicted, the factor νij of equation (3.3) is νij = −1. The phases φx,y describe
twisted boundary conditions, introduced in equation (3.10).

gap between the lower and upper band pairs in which the Fermi level lies). The former has
counterpropagating edge modes and shows the QSHE, while the latter does not [39]. Does
this phase exist for more realistic spin-orbit coupling? The spin component sz is no longer
a good quantum number when the Rashba spin-orbit coupling is added:

HR = iλR
∑
〈ij〉σ1σ2

c†iσ1

(
sσ1σ2 × d̂ij

)
z
cjσ2 , (3.4)

with dij the vector from i→ j and d̂ij the corresponding unit vector. Note that Rashba spin-
orbit coupling is not intrinsic to graphene but generated by inversion-symmetry breaking in
the out-of-plane direction [11]. The Rashba coupling is a standard form that is believed to
be a reasonable model for the dominant spin-orbit coupling in adsorbed graphene.

The topological insulator survives but is strongly modified in the presence of the Rashba
term. For a general 2D band structure with sz conserved, there are many phases labeled by
an integer n, as in the IQHE: if spin-up electrons are in the ν = n state, then spin-down
electrons must be in the ν = −n state by time-reversal symmetry, where the sign indicates
that the direction of the effective magnetic field is reversed. Once sz is not conserved, as when
λR 6= 0, there are only two insulating phases, the “ordinary” and “topological” insulators.
A heuristic definition of the topological insulator, without reference to any particular spin
component or the spin Hall effect, is as a band insulator that is required to have gapless
propagating edge modes at the sample boundaries. The decoupled ν = ±n cases with sz

conserved are adiabatically connected, once sz is not conserved, to the ordinary insulator for
even n and to the topological insulator for odd n. A review of how these two cases emerge
as the only possibilities in 2D follows in Section II.
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It should be clarified that the intrinsic spin-orbit coupling is now believed to be quite weak
in graphene [38, 54, 92], so that the topological insulator is unlikely to be realized. However,
the same topological insulator phase is now believed to exist for realistic spin-orbit coupling
in other materials such as HgTe [8]. We choose to study the graphene model introduced
by Kane and Mele because it is the first and simplest model showing a transition between
ordinary and topological insulators. It is the simplest possible model in that it has four spin-
split bands, which is the minimum number required for the nontrivial phase to exist [56].
For this reason, it has received the most attention in the other studies [75, 64] to which our
results will be compared. It is straightforward to generalize the approach presented here for
the graphene model to another material with more complicated spin-orbit coupling, and the
same qualitative results are expected to apply.

It is not obvious at first glance how to generalize the topological insulator phase to
finite, noncrystalline systems, rather than band structures, as when the parameters of the
Hamiltonian H = H0 +HSO+HR are drawn from a random distribution. The first approach
was in terms of a spin Chern number [75] similar to the Chern integer in finite IQHE systems,
but there is now agreement that for a clean band structure the only invariants are of Z2

type, rather than integer type [23, 56, 26]. Two equivalent definitions of the appropriate
Z2 invariant for a finite disordered system, in the simple case when the disorder splits all
degeneracies other than Kramers degeneracies, are as follows (the full definition is given and
compared to previous work in the following section). The finite system can be considered
as a unit “supercell” of a large 2D lattice. A large, finite supercell gives many bands, but
each pair of bands connected by time reversal (Kramers pair) can be assigned its own Z2

invariant [56]. The phase of the supercell system, if the Fermi level lies in a gap, is then
identified by adding up all the invariants (mod 2). Alternately, a direct definition of the
phase in the finite system can be given that is related to the notion of “Z2 pumping” [23].
Real charge is pumped as the flux through the system is taken from 0 to hc/2e (half the usual
flux quantum that appears in IQHE pumping); we show that in the topological insulator,
any pumping cycle, properly defined, pumps an odd number of electron charges, while for
the ordinary insulator any cycle pumps an even number of charges.

We implement this definition numerically using an explicit algorithm introduced by Fukui
and Hatsugai [26, 25] for computing Z2 topological invariants on a Brillouin zone. The
topological insulator phase is robust to disorder: while different realizations of disorder assign
different “Chern parities” to individual subbands, it is found that the total for occupied
subbands is always “odd” for a wide range of parameters, which in our definition indicates a
topological insulator. In the IQHE, a pair of bands of opposite Chern number can annihilate
as the strength of disorder is increased; in the QSHE, two band pairs that both have odd
Chern parity can annihilate, i.e., become two even-parity band pairs. If the topological
insulator can be destroyed by band annihilation, then there are extended (i.e., topologically
nontrivial) states with an arbitrarily small gap; it may be the case that for some range of
parameters, there are extended states at the Fermi level even in the thermodynamic limit,
indicating a metallic phase.

In the IQHE, there is only a single energy with extended states rather than a range of
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energies, and hence no metallic phase. We find the phase diagram of the graphene model
with on-site disorder, and in the presence of non-zero Rashba coupling find evidence for a
metallic phase intervening between ordinary and topological insulators. The existence of the
metallic phase can be understood from work on 2D localization in the symplectic universality
class [34], in which time-reversal symmetry is unbroken but spin-orbit coupling is present.
It is found that extended states can be stable against this disorder over a nonzero range in
energy, unlike in the orthogonal class, in which there are no extended states, or the unitary
(integer quantum hall) class, in which there are extended states only at isolated energies.
The argument for the existence of the symplectic metal is beyond the scope of this work,
but there is a simple picture that captures some of the important ideas.

Consider the question, what is the probability that a spinless electron will return to its
starting point? In a path-integral picture, the amplitude associated with some return path γ
will be Aγ. In the presence of disorder, this amplitude will interfere incoherently with those
from other paths, but it will interfere coherently with the time reversed path (i.e., the same
path traversed in the opposite direction), no matter how strong the disorder is. This gives
an unnormalized probability |A + A|2 = 4|A|2. Hence the probability of return is enhanced
relative to the the probability to travel to the edge of the system and be lost, since there is no
time-reversed path which with to interfere in that case. [2, 1] The situation is different with
strong spin-orbit coupling. If the spin is locked to the direction of motion, then there is a
spin Berry phase that needs to be included with the amplitudes. In a remarkably simple and
comprehensible paper, Bergmann showed that this factor is −1/2 on average, due essentially
to the fact that a spin-1/2 electron picks up a sign upon rotation through 2π. [7] That is,
the interference is destructive rather than constructive, |A−A/2|2 = |A|2/4, and the spinful
electron is more likely to pass through the sample than return to its starting point, leading
to a nonzero conductivity.

Our result that there is a metallic phase can be understood as indicating that, although
the Z2 topological invariant allows one to distinguish two kinds of insulators when the Fermi
level has no extended states, this invariant does not modify the standard picture of bands
of extended states in the symplectic universality class.

Recent work by Obuse et al. [63] obtains a phase diagram and critical exponents using
a network model for the spin quantum Hall effect that is similar to the Chalker-Coddington
network model [13] for the IQHE (see also Onoda et al. [64] for a quasi-1D study of local-
ization in the Kane-Mele Hamiltonian with disorder). Our results on the phase diagram are
consistent with these works, although our method is unable to generate large enough sys-
tem sizes to confirm the exponents found for the phase transitions. To understand how the
network and Chern-parity approaches complement each other, consider the integer quantum
Hall effect (IQHE): while the phenomenological network approach to the IQHE is valuable
both to find the critical indices precisely and to identify the minimal necessary elements of a
theory for the transition, Chern-number studies remain important for studies of effects such
as the floating of extended states [47, 42, 90], where knowledge of the topological properties
of a state is required. The network model gives more accurate information about the phase
transitions but, if only the localization length is probed, does not distinguish the different
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phases in bulk. A more technical difference between the two approaches is discussed at the
end of Section II.

Section II reviews how the topological insulator phase in perfect crystals arises from a
parity-valued topological invariant of the band structure, similar to the TKNN [81] integers
in the IQHE. It then gives two mathematically equivalent definitions of the topological
insulator phase in disordered systems based on Chern parity. One definition simply considers
a finite disordered system as a supercell of an infinite lattice system, while the other is
based upon closed charge pumping cycles driven by application of flux to a finite periodic
system. Section III reviews the Fukui-Hatsugai algorithm [26, 25] adapted to numerical
computation of these invariants in disordered systems, then computes the phase diagram
of the Kane-Mele graphene model [39] with on-site disorder. The conclusions of our study
for general 2D disordered systems are summarized in a short Section IV. While there is a
three-dimensional version of the QSHE [56, 72, 22] that is less directly connected to the
IQHE and has interesting localization behavior, we will restrict our attention to 2D except
for some comments in the final section.

3.2 Chern parities for disordered noninteracting elec-

tron systems

3.2.1 The definition of the Z2 invariant in clean systems

We review one definition of the Z2 invariant of a band pair in a 2D band structure, then
explain its generalization to noncrystalline systems. With the Hamiltonian

H = H0 +HSO +HR (3.5)

defined in equations (3.2), (3.3), and (3.4), or any periodic, single-electron Hamiltonian, a
Berry connection A can be defined on the Brillouin zone (BZ) from the periodic part u(k)
of a Bloch state ψk = u(k)eik·r. For a single nondegenerate band j, Aj(k) = −i〈uj|∇k|uj〉.
This Berry connection serves as a potential for the Berry field strength F = (∇k×A)z, which,
when integrated over the BZ, returns an integer, called a TKNN integer in the context of
the IQHE [81]:

nj = − 1

2π

∫
BZ

Fj d2k

=
i

2π

∫
BZ

[〈
∂u

∂kx

∣∣∣ ∂u
∂ky

〉
−
〈
∂u

∂ky

∣∣∣ ∂u
∂kx

〉]
. (3.6)

When bands touch, only the total TKNN integer of the bands is well-defined [4], in which
case it makes sense to generalize A as

Aj = −i (〈uj1|∇k|uj1〉+ 〈uj2|∇k|uj2〉)
= −i truj

†∇kuj (3.7)
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for the degenerate Bloch functions uj1 and uj2. In the second equation, uj = (uj1, uj2)
where the Bloch functions are viewed as column vectors, i.e., uj is a matrix. This compact
notation follows Fukui and Hatsugai [26]. This generalization is always needed in the case of
a time-reversal-invariant system with half-odd integer spin, or fermionic statistics, because
such a system has “Kramers degeneracies” at certain time-reversal-invariant momenta (see,
for example, Ref. [73]). Briefly, time-reversal invariance requires that

ΘH(−k)Θ−1 = H(k), (3.8)

where H(k) is the Bloch Hamiltonian and Θ = −iσyK is the action of time reversal (K
performs complex conjugation and σy, the usual Pauli matrix, acts on spin indices). At
momenta for which −k = k, then, H(k) commutes with Θ, but there are no single-electron
eigenstates of Θ (time reversal will always flip the spin), so there must be a degenerate
pair of energy eigenstates at such momenta. Once we take these degeneracies into account,
however, the TKNN integers for the band pairs vanish in a time-reversal-invariant band
structure (see, e.g., Ref. [56]). Instead there is a Z2 invariant associated with a band pair in
a time-reversal-invariant 2D Fermi system [40].

Fu and Kane [23] give the following formula for the Z2 topological invariant in terms of
the Bloch functions of the clean system:

D =
1

2π

[∮
∂(EBZ)

dk ·A−
∫
EBZ

d2kF
]

mod 2. (3.9)

The notation EBZ stands for Effective Brillouin Zone [56], which describes one half of the
Brillouin zone together with appropriate boundary conditions. Since the BZ is a torus, the
EBZ can be viewed as a cylinder, and its boundary ∂(EBZ) as two circles, as in Fig. 3.2(b).
While F is gauge-invariant, A is not, and different (time-reversal-invariant) gauges can
change the boundary integral by an even amount.

A proof of the existence and Z2 nature of the topological invariant for multiple bands
and some intuition for (3.9) can be obtained [56] by considering time-reversal-invariant band
structures as maps from the EBZ to the space of Bloch Hamiltonians, following work on the
IQHE by Avron et al. [4] The Berry field strength can be written in terms of the (gauge-
invariant) projection operator onto the band pair rather than the (gauge-dependent) wave-
functions. In this approach, the ambiguity by an even integer that is crucial to obtain a
Z2 rather than Z invariant corresponds to the many different ways in which the circles that
form EBZ boundaries in Fig. 3.2(b) can be contracted to make the EBZ into a sphere. The
boundary integrals in (3.9) just calculate the contribution to the Chern number from these
“contractions.” On this sphere, Chern integers are well-defined for each nondegenerate band
pair, but the different ways of contracting the boundaries cause the resulting integers to
differ by even numbers. An explicit numerical implementation of the Fu-Kane formula (3.9)
was given by Fukui and Hatsugai [26] and will be reviewed in Section III.

What happens when disorder is added? We now explain how the definition of the topolog-
ical insulator generalizes to disordered systems. Just as TKNN integers of a band structure
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Figure 3.2: (a) A two-dimensional Brillouin zone; note that any such Brillouin zone, including
that for graphene, can be smoothly deformed to a torus. The labeled points are time-
reversal-invariant momenta. (b) The effective Brillouin zone (EBZ). The horizontal lines on
the boundary circles ∂(EBZ) connect time-reversal-conjugate points, where the Hamiltonians
are related by time reversal and so cannot be specified independently.

give rise to Chern integers in a disordered system of finite size, the Z2 invariants of band
pairs become “Chern parities”.

3.2.2 The topological insulator phase for Slater determinants via
Chern parity

The TKNN integers generalize in the presence of disorder and interactions to the Chern
number of the many-particle wavefunction [62]. A natural question is how disorder and
interactions modify the Z2 invariants of band pairs in spin-orbit-coupled 2D band structures.
All derivations of the Z2 invariants of clean systems depend on Fermi statistics in some way:
for example, the existence of Kramers degeneracies and the related fact that the time-reversal
operator squares to −1 both depend on Fermi statistics. A many-fermion wavefunction
describing an even number of fermions does not behave in the same way as single-fermion
wavefunctions under time-reversal. Hence, given only the many-fermion wavefunction, it
does not seem likely that there is a generalization of the Z2 invariant.

However, for the particular case of many-fermion wavefunctions that are single Slater
determinants of single-particle wavefunctions, the invariant can be generalized as we now
show. While the assumption of a single Slater determinant limits the treatment of interac-
tions to the Hartree-Fock level, there is no requirement that the wavefunctions in the Slater
determinant be Bloch states. As a result, the topological insulator and QSHE can be defined
and studied for any disorder strength.

Niu et al. [62] and Avron and Seiler [5] showed that for disordered quantum Hall systems
there exists a generalization of the TKNN invariant defined for clean systems [81]. They
introduce generalized periodic boundary conditions and find an invariant Chern number,
similar in form to the TKNN invariant, on the space of boundary phases. Consider a finite
system of noninteracting electrons with boundary conditions that are periodic up to phases
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φx, φy, as shown in Fig. 3.1: this is equivalent to putting magnetic fluxes Φx,y = φx,yΦ0/2π
through the two noncontractible circles on the torus (Φ0 = hc/e is the magnetic flux quan-
tum). As motivation, think of the finite system as a (possibly very large) unit cell of a lattice
system. Then in order to determine the phase of this lattice system, instead of integrating
over k to do the integrals in the Fu-Kane formula (3.9), we integrate over the boundary
phases, which introduce offsets to the wave vectors. We now carry out this procedure, show
that it reproduces the band-structure result for clean systems, and then discuss a physical
picture and its relation to previous definitions.

Consider the single-particle wavefunctions of a lattice Hamiltonian such as the graphene
model on a finite lattice of size Lx × Ly (see Fig. 3.1). Instead of the physical boundary
conditions ψ(x+Lx,y) = ψ(x) for a single-particle wavefunction ψ, introduce the boundary
phases, or “twists”, φ = (φx, φy) via

ψ(x+Lx) = eiφxψ(x), ψ(x+Ly) = eiφyψ(x). (3.10)

Then a unitary transformation of the form

χ(x) = e−i(φxx/Lx+φyy/Ly)ψ(x) (3.11)

will transfer the twist angles to the Hamiltonian. Under the change of basis (3.11), Kane and
Mele’s model Hamiltonian [39] H = H0 + HSO + HR (see Section I) becomes (suppressing
spinor indices)

H → H(φ) =
∑
〈ij〉

ci
†
[
t+ iλR(s× d̂ij)z

]
cje
−i∆·dij + iλSO

∑
〈〈ij〉〉

νijci
†szcje

−i∆·dij

+
∑
i

(λvξi + wi)ci
†ci, (3.12)

where ∆ = (φx/Lx, φy/Ly), dij is still the vector i→ j, and we have added a random term
for on-site disorder, wi, drawn from the Gaussian distribution of zero mean and standard
deviation σw. It is now clear that under time reversal,

ΘH(−φ)Θ−1 = H(φ), (3.13)

since the extra phase factors in H change sign under complex conjugation.2 Since this
directly parallels equation (3.8), the Z2 invariant D of the Brillouin zone passes directly to
twist space:

Dφ =
1

2π

[∮
∂(ETZ)

dφ ·A−
∫
ETZ

d2φF
]

mod 2, (3.14)

2Note that this means H is not generically time-reversal invariant. Indeed, there are only four boundary
conditions that respect time-reversal, namely those for which ψ picks up a real phase upon translation
around each cycle of the honeycomb lattice. These four correspond to the TRIM of the clean system in the
calculation of D.
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with ETZ for Effective Twist Zone, i.e., ETZ = {φ | 0 ≤ φx ≤ π, −π < φy ≤ π}. Note that
there is an independent Chern parity Dφ for each Kramers-degenerate band pair separated
from the rest of the spectrum by a gap at all φ: for such an isolated pair, A and F are
defined as in (3.7) and after, with k→ φ and u→ χ.

In order to make contact with the band-structure definition, we note that if there is no
disorder in the Hamiltonian (i.e., σw = 0), there are discrete translational symmetries within
the Lx × Ly supercell that induce additional non-Kramers degeneracies at some points in
twist space. With such degeneracies only the total Chern parity of all the degenerate states is
well-defined. Disorder, as discussed in the following section, breaks all degeneracies resulting
from translational invariance, leaving only separated band pairs, each of which has its own
Chern parity. We now discuss to what extent Chern parities can be connected to observable
quantities in a finite system.

3.2.3 Charge pumping cycles in time-reversal-invariant systems

The total Chern number in a finite IQHE system can be interpreted as measuring the
number of charges pumped when the flux through one noncontractible circle on the torus
increases adiabatically by one flux quantum. Briefly, one of the boundary phases corresponds
to this driving flux, and the average over the other can be shown to yield the pumped
charge [61]. The idea of “Z2 pumping” suggested by Fu and Kane [23] is the following: in
a finite cylinder with boundaries, the operation of increasing the phase φx (in the periodic
direction, around the cylinder) from 0 to π, corresponding to a magnetic flux of one-half
flux quantum through the cylinder, has the following effect in the topological insulator. The
values φx = 0 and φx = π are special because, unlike general values, they are consistent
with time-reversal invariance. At these special fluxes there are gapless states at the Fermi
level that are localized near the edges because of the bulk gap. Fermi statistics requires that
these states lie in Kramers doublets. If at zero flux, the Kramers doublet at one edge is
partially occupied (has one state occupied), then the operation of changing the flux changes
its occupancy to either double or zero occupancy. Since total charge is conserved, this
requires a flow of Z2 from one boundary to the other: the final state differs from the initial
state.

We now give an alternate definition of the topological insulator in terms of cyclic pumping
of ordinary charge. This definition is mathematically equivalent to the definition of 3.2.2
based on treating the finite system as a supercell. In order to describe a closed pumping cycle,
we need to add a second stage to the process of increasing boundary phase φx from 0 to π:
although both these phases are consistent with time-reversal invariance, physical properties,
like the occupancy of an edge doublet, are not identical at these different values of φx (even
at the same φy). Hence the charge pumped in this process is not automatically well-defined.
The only requirement on the second stage is essentially that it return the system to its
original state without applying a time-reversal-breaking flux. While this definition precisely
reproduces the supercell definition above, it should be noted that it is slightly different from
pumping in the IQHE since, in some cases, the second stage requires changing the system’s
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Hamiltonian and not just the boundary phase.
Although the number of charges pumped is dependent not only on the first stage but on

the second stage as well, whether this is an even or odd number is entirely determined by
the first stage, as we now show. A closed pumping cycle is shown in Fig. 3.3. The original
physical system’s ETZ is the first stage of the cycle: the Hamiltonians are functions of φx
from 0 to π and φy from −π to π, with time-reversal constraints that act on the boundary
circles at φx = 0 and φx = π. If φx takes one of these values, then the Hamiltonian at φy
is time-reversal conjugate to that at φ′y = −φy. The second stage can be any continuous
change of the Hamiltonians that takes the φx = π system back to the φx = 0 system
and always satisfies the conjugacy condition between φy and φ′y. This is the key difference
between the second stage and the first stage: for intermediate values 0 < φx < π, there is
no such conjugacy condition. The physical interpretation is that the second stage should
be possible without introducing flux through the first noncontractible circle. The Fukui-
Hatsugai algorithm [26] reviewed in the following section can be used to “choose a gauge”
and determine a second stage with desired Chern numbers, which we have done as a check
for graphene.

Γ

B

A

C

A

C B

Stage I:
insert flux, breaking T

Γ

φx = 0 φx = π

Stage II:
complete the cycle

φy = 0

φy = π

Figure 3.3: Graphical representation of charge pumping cycle for Chern parities. The first
stage takes place on the ETZ (as in equation (3.14)), and the flux φx increases adiabatically
from 0 to π. In the second stage the Hamiltonian at (φx = π, φy) is adiabatically transported
through the space of Hamiltonians to return to the Hamiltonian at (φx = 0, φy). The
difference between the second stage and the first is that at every step of the second stage,
the Hamiltonians obey the time-reversal conditions required at φx = 0 or φx = π. The bold
lines indicate paths along which all Hamiltonians are time-reversal invariant, and the disk
with horizontal lines indicates, as before, how pairs of points in the second stage are related
by time-reversal.

Now the torus shown in Fig. 3.3 has one Chern integer for each isolated band pair.
Summing over occupied bands gives the amount of charge pumped in the cycle. Although
this integer charge depends on the second stage, its parity is solely determined by the first
stage, i.e., the physical system. In particular, for the ordinary insulator there is some closed
cycle that pumps zero charge, while for the topological insulator there is some closed cycle
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Figure 3.4: Schematic phase diagram. (a) Phase diagram for a clean system, with fixed t and
λSO 6= 0 (after Kane and Mele [40]). (b) Again a clean system, now with fixed t and λv 6= 0.
(c) The expected form of the phase diagram at nonzero disorder (we run all simulations at
fixed λv). The phase boundary in (b) opens up into a metallic phase, closing only when
λR = 0, where there should be an IQHE transition.

that pumps unit charge. These results follow from the same proof as for the band structure
case in Ref. [56]: one shows that the differences in resulting Chern integers between any
two second stages are even. The pumping definition gives a different physical picture for
the “contractions” introduced there; instead of contracting the EBZ to a sphere, here the
ETZ is contracted to a torus by adding the second stage. The technical reason that these
two constructions are equivalent is that, since the appropriate spaces of Hamiltonians are
contractible (i.e., have π1 = 0), the two closed manifolds, the torus and the sphere, both
have the same topological invariants, namely integer-valued Chern numbers.

The topological insulator in disordered systems has been studied previously by locating
the transition between topological and ordinary insulators as a point or region where the
localization length of single-electron eigenstates diverges. The existence of the topological
insulator is inferred from the existence of this transition region (or alternately from the edge
states in the topological insulator phase). In principle this approach could give a different
result from ours, in that our definition probes the existence not just of extended states but
specifically of extended states that contribute to the pumping of charge, or alternately that
can give rise to edge states. The same distinction arises in the quantum Hall effect, where
looking for extended states of nonzero Chern number is a more direct probe of quantum Hall
physics than considering the inverse participation ratio, for example, which would detect
extended states of zero Chern number in addition to topological states. However, as in the
quantum Hall case, we find that the phase boundaries from our Chern-parity definition are
consistent with those obtained from calculations of the localization length [64, 63].
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3.3 Graphene Model and Numerics

3.3.1 The phase diagram of the disordered graphene model

It is useful to review some general expectations before applying the definitions of the
previous section to study a disordered version of the graphene model. In two-dimensional
systems with time-reversal invariance and no spin-orbit coupling, even very weak disorder
will localize electron wavefunctions, so that these systems do not ever conduct in the ther-
modynamic limit. In the presence of a magnetic field, as in the IQHE, there are isolated
energies with extended states, but no finite-width range of energies with extended states,
and hence no true metallic phase. Hikami et al. showed [34] that disordered two-dimensional
systems with spin-orbit coupling can nevertheless support a metallic phase, referred to as a
“symplectic metal”. They calculated ladder diagrams for the problem of random potential
scattering in 2D in order to obtain a renormalization-group equation for the resistance, and
found that, in the presence of strong spin-orbit scattering without magnetic scattering (so
that the system is time-reversal invariant), the resistance flows to zero, indicating extended
states and a metallic phase. In the presence of strong magnetic scattering (i.e., the IQHE),
by contrast, the resistance does not flow at that order, and at next order grows (see also
Ref. [33]).

In the case studied here, any metallic phase induced by disorder would presumably appear
in a region around the parameter set that closes the (clean) gap, as depicted schematically in
Fig. 3.4. At λR = 0 the z component of spin is a good quantum number (sz commutes with
H), so the system reduces to two copies of the Haldane model [29], which has a quantum
Hall plateau transition with no metallic phase. Hence when λR = 0 there should be a direct
transition between insulators even with disorder.

3.3.2 Lattice Implementation

For numerical work we use the algorithm of Fukui and Hatsugai, which we review
here [26]. The formula (3.9) for D requires a gauge choice for the Hamiltonian eigenstates
at each φ on the two boundaries of the half-torus 0 ≤ φx ≤ π, −π < φy ≤ π. That is, the
“field strength” F is gauge invariant, but the gauge potential A is not. The eigenstates form
Kramers pairs related by time reversal, and the gauge choice must respect this constraint.

Now, at the time-reversal invariant points φ = (0, 0), (0, π), (π, 0), and (π, π), the solid
points in Fig. 3.5, the spectrum is degenerate, with two states at each energy. The gauge
condition requires that Θ interchange the two with a phase factor e±iπ/2 (so that Θ2 = −1
as required for single-fermion states). Numerical diagonalization will not, in general, return
eigenvectors that obey this condition, but we can force them to do so as follows: choosing
one of the two members of each Kramers pair at energy ε2n−1 = ε2n and calling that vector
χ2n−1, we discard the other and replace it by

χ2n = Θχ2n−1. (3.15)
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Figure 3.5: Twist Space. The bold lines indicate the boundaries of the “Effective Twist
Zone”, the region we integrate (or sum) over to calculate the Chern parity. The arrows
indicate the direction to perform the sum over the boundary terms, and the lattice sites
in gray indicate those for which the Hamiltonian eigenvectors are independently specified.
That is, time reversal symmetry determines the eigenvectors on the white sites once those
at the gray sites are found.

On the rest of the boundary, eigenvectors can be chosen freely on 0 < φy < π. On −π <
φy < 0 the algorithm takes

χn(−φ) = Θχn(φ). (3.16)

In summary, the algorithm leaves alone the results of numerical diagonalization at all the
gray points in Fig. 3.5, and by hand enforces the gauge condition on the rest of ∂(ETZ).3

With the eigenstates fixed at each point on the ETZ, we follow Fukui and Hatsugai and
construct U(1) parallel transporters on the links, as

Ux(φ) =
gx
|gx|

, gx = detχ†(φ)χ(φ+ x̂) (3.17)

and Uy similarly. Like u in (3.7), χ is a matrix built from occupied state vectors, and x̂
translates by one link in the φx direction. In the continuum limit g should approach a pure
phase, but for non-zero lattice spacing it will in general have |g| ≤ 1, since the occupied
subspace of interest will not embed in the total Hilbert space in the same way at every
lattice point.

In the end, the only retained information will be the variation of the relative phases (hence
the definition of U), which can be captured by choosing a lattice constant so small that the

3The points (φx, π) and (φx,−π) are not physically distinct; as pointed out earlier, a gauge transformation
relates H(φx,−π) to H(φx, π) as given, for example. We therefore impose H(φx,−π) ≡ H(φx, π) in the
calculation. Alternatively, we could introduce boundary terms along φy = π, −π to compensate for the
discrepancy.
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phase field varies slowly over one link. However, the scale of variation will presumably differ
for different disorder realizations, and we would like a way to diagnose this and throw out
those realizations for which fast variation makes the calculation unreliable. The phase is
periodic, and if it were to wind through 2π over the distance of one link the algorithm would
miss this fact, so the relative phase will not provide a good diagnostic. As a proxy, we choose
to cull out disorder realizations that result in small determinants in most simulations, since
a small overlap between adjacent occupied eigenspaces indicates rapid variation. Of course,
this filtering could introduce a selection bias into the results; these effects are within the
statistical uncertainty of our analysis (in particular, within the error bars of Fig. 3.9).

Associated with the transporter on each link is a gauge potential Ax,y = logUx,y. This
A is pure imaginary, and the logarithm is defined to return the branch A/i ∈ (−π, π).
Associated with the transport around each plaquette is a flux

F (φ) = logUx(φ)Uy(φ+ x̂)U−1x (φ+ ŷ)U−1y (φ), (3.18)

again satisfying F/i ∈ (−π, π). With these definitions in hand, the lattice Z2 invariant
corresponding to Dφ (3.14) is

DL =
1

2πi

 ∑
|∈∂(ETZ)

Ay −
∑

�∈ETZ

F

 mod 2. (3.19)

Of course, the sum over the boundary should have the same orientation as the corresponding
contour integral in (3.14); in Fig. 3.5, this means the sum on the left boundary should carry a
minus sign, following the arrows. As mentioned previously, this formalism has the desirable
property of guaranteeing that DL = 0or1, but using too coarse a mesh can return the wrong
value.

3.3.3 Numerical Results

As noted after equation (3.14), the number of nondegenerate Kramers pairs in a disor-
dered system will generically be extensive, and we can use equation (3.19) to calculate the
Chern parity of each pair separately. Fig. 3.6 shows the results of such calculations on a
4×6 lattice to present a picture of the three phases: normal insulator, symplectic metal, and
topological insulator. In all phases, there are Kramers pairs with Dφ = 1 in the lower half of
the energy spectrum, as indicated by the bars. However, in the normal insulator (λSO well
below the transition, or gap closure) there are an even number of such pairs in the occupied
half of all realizations, so that the overall Chern parity is even. The presence of a very small
number of realizations (2 of 215 for a 6× 8 lattice) with odd parity indicates either the tail
of the disorder-broadened transition or, more likely, that the weak filter applied for these
simulations failed to catch all realizations with rapidly varying link variables.

When λSO is large, almost all realizations have an odd number of Z2-odd Kramers pairs
(as with the small-λSO case, 2 realizations do not follow the rule), and in the region near the
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Figure 3.6: Distribution of Chern parities for band pairs. The bar heights represent the
fraction of disorder realizations (out of ∼ 200 trials) that have a given number # of band
pairs with DL = 1 in the occupied (half-filled) subspace. Those with an even number #
will have an overall DL = 0, those with an odd number will have overall DL = 1. All these
simulations were done with t = −1, λR = λv = 1, and σw = 0.3. Reading across, λSO
increases and the system transitions from all realizations having even parity at small λSO to
odd parity at large λSO. Reading down, doubling the system size doubles the total number
of Kramers pairs and roughly doubles the number of Z2-odd pairs.

transition of the clean system there are instances of both types. The presence of disorder
causes the “gap” to close at different values of λSO for different realizations, and also at
different energies. The latter fact means that extended states are present throughout a finite
spread of energies, while the former means that the metallic state exists over a finite region
of parameter space.

For an integer quantum Hall system, Yang and Bhatt [90] have shown how to extract
the localization length exponent ν from such calculations, in their case the Chern numbers
of Landau sublevels. Specifically, sublevels with non-zero Chern number contain extended
states, which should only occur at isolated energies in the IQHE. Therefore, the number Nc

of such sublevels should decrease as the system size Ns increases, and in fact 〈Nc〉 ∝ N
1−1/2ν
s ,

where 〈〉 indicates an average over disorder realizations. A similar approach for the QSH
system here should reveal 〈ND〉 ∝ Ns, where ND is the number of Z2-odd Kramers pairs,
since we expect a stable metallic band of energies in the thermodynamic limit (as observed
by Obuse et al. [63] and Onoda et al. [64]). With enough data and large enough systems,
finite-size-induced broadening of the edges of this band should also make ν accessible via
a subleading term in the scaling. We find that larger system sizes require a finer mesh in
twist space for these Kramers-pair-resolved simulations to return stable results, so that the
requirements quickly outstrip our resources. Nevertheless, comparison of the two rows in
Fig. 3.6 indicates that the location of the mean roughly doubles. This is what would be
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expected for the middle case given the above considerations; the mean for the topological
insulator (the right-hand panels in Fig. 3.6) should grow more slowly, as in the case studied
by Yang and Bhatt.

The total phase of the system, given by the total Chern parity, is more relevant to
possible measurements than the Chern parity of each Kramers pair. The former maintains
its meaning if we consider the ground state wave function of the many-electron system,
formed as a Slater determinant of the single-electron states we use here. There is also a
computational benefit to calculating Dφ for the whole occupied subspace rather than for
individual pairs, as well — at larger system sizes, and also at stronger disorder, the link
variables for the half-filled subspace vary much more slowly than those for the individual
Kramers pairs, making the calculation more robust. For these reasons the remaining plots
in this paper depict only the Chern parity of the half-filled system.

To show that a metallic region of non-zero extent in parameter space exists in the ther-
modynamic limit, we need to verify that the mixed-phase region does not shrink to zero as
we increase the system size. Figure 3.7(a) shows that as we make the system larger, the
transition region certainly does not get narrower, and in fact the largest system size seems
to have the broadest transition.

We can quantify the scaling of the metallic region’s width with system size by assuming
a simple one-parameter scaling form for the curves in Fig. 3.7(a) and defining the width
of the curve to be proportional to the reciprocal of the maximum slope: width ∼ 1/slope.
With sufficient data, one could expand the approximately linear region near the middle of
the transition in a power series with a few coefficients as fit parameters. Since our simulation
data are limited, we opt instead to assume the form (tanhα(s) + 1)/2, which has roughly
the right shape. If α = m(λSO − λ∗SO), then m is exactly the maximum slope we want.
Figure 3.7(b) plots the data versus the best-fit scaling variable α for each system size; the
points appear to fill out a smooth curve, justifying the scaling hypothesis. The best fit
for m and λ∗SO is determined by minimizing a weighted χ2 statistic [91]. In particular, we
assume that the results (DL = ±1) of independent simulations at a fixed parameter set are
distributed binomially, and that for each system size there are the same number of trials at
each value of λSO (which is roughly true). In that case, the variance of the distribution can
be estimated as σ2 ∝ p(1− p) [15], where p is the fraction of disorder realizations returning
DL = 1, and then 1/σ2 is an appropriate weight for the statistical test. The error bars in
Figs. 3.7 and 3.8 are also assigned based on a binomial model of the data [91].

By contrast, at λR = 0 the Hamiltonian (3.5) reduces to two copies of the Haldane model
and so should exhibit the quantum Hall plateau transition, which looks like a step function
at zero temperature in the thermodynamic limit. In Fig. 3.8(a) the width of the transition
region shrinks as the system size grows, consistent with the prediction.

More quantitatively, Pruisken [66] has shown in a renormalization group framework that
the functional form of the crossover for the IQHE looks like

p(L,B) = f(α), α ∝ L1/ν(B −B∗), (3.20)

where L is the linear size of the finite sample, B is the applied magnetic field, and ν is
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Figure 3.7: (a) At finite λR, the “metallic” region persists as the system size grows, and
even broadens in the case shown here (t = −1, λR = λv = σw = 1). We identify the metallic
region as those values of λSO for which some, but not all, disorder realizations have DL = 1.
As explained in the text, the fits to the simulation data have the form (tanhα + 1)/2, with
α = m(λSO − λ∗SO). (b) The scaling collapse of the data in (a), based on the best fit m
and λ∗SO) for each system size. The error bars represent 95% confidence intervals assuming
a binomial distribution of outcomes for each λSO.

again the localization length exponent. The function p could be either the longitudinal or
transverse conductivity in the IQHE. Therefore, p(∞, B∗ ± ε) = f(±∞), i.e., the transition
is sharp in the thermodynamic limit. In our system the analogous parameter to B is λSO:
in the Haldane model, the spin-orbit coupling breaks time-reversal invariance locally, like B
does in the IQHE. The width of the transition region in B is governed by the way the Landau
level energies respond to changing B, and the width of the transition region in our model (for
fixed λv) is determined by the response of the gap to changing λSO. Since both responses
are linear, we expect that the appropriate scaling variable will be α ∝ L1/ν(λSO − λ∗SO).

This form would allow us to extract the exponent ν from the scaling of the maximum slope
with system size for large systems (there are corrections at small system sizes). Again making
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Figure 3.8: (a) At λR = 0, the metallic region gets narrower as the system size increases. As
in Fig. 3.7, t = −1, λv = σw = 1. (b) The scaling variable α again comes from fitting to a
tanh, and error bars represent 95% confidence intervals.

the fit to a tanh described above, Fig. 3.8(b) shows the scaling form, and Fig. 3.9 shows the
scaling of width with linear system size. In particular, a regression gives 1/ν = 0.78± 0.03,
to be compared with the accepted value of 1/ν ≈ 0.42. That is far from good agreement,
but the observed scaling should not be taken as implying a new universality class. (For
reference, the network-model work by Obuse et al. [63] found 1/ν ≈ 0.37, and Onoda et
al. [64] recently found a value 1/ν ≈ 0.63) First, there should be finite-size corrections to
the simple scaling assumed for the small systems considered here. Second, the scaling form
is in principle different for different geometries, and the simulations were done for systems
of varying aspect ratio (1 to 1.5). Nevertheless, it is clear that the qualitative behavior at
λR = 0 is as expected, showing no metallic phase, and the behavior at λR = 1 is consistent
with the presence of a metallic region.

Finally, by varying λR and noting the λSO values that mark the edges of the transition
region for each λR, we can map out the phase diagram of the Hamiltonian (3.5) on a system
of fixed size, as in Fig. 3.10. The widths obtained this way are in rough agreement with
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Figure 3.9: Width of the metallic transition region as a function of linear size L. The width
is determined by the reciprocal of the maximum slope of the simulation data in Figures 3.7
and 3.8, and the linear size is taken to be the square root of the number of sites.

the scaling analysis outlined above, which returns the behavior of the width and not its
normalization. As the finite-size scaling results in Figures 3.7 and 3.8 show, this phase
diagram overestimates the width of the metallic phase at λR = 0, which is really zero.
Together, these simulations confirm the expectation of Fig. 3.4 within the accuracy of our
computational methods.

The same numerical methods could be used to study different forms of spin-orbit coupling
quantitatively. The phase diagram of the model we have studied is reasonably simple in that,
when the spin-independent part of the Hamiltonian is fixed and the spin-orbit couplings
are not too strong, the intrinsic SO coupling pushes the system toward the topological
insulator, and the Rashba coupling pushes the system toward the ordinary insulator. For
more complicated forms of the spin-orbit coupling, the same analysis could be carried out to
find the phase diagram, but it is not always possible to parametrize spin-orbit coupling with
two parameters as for the graphene model. Also note that in an experiment, modifying the
system using a perturbation such as a gate voltage is likely to modify both the spin-orbit and
spin-independent parts of the Hamiltonian, so that a purely spin-orbit phase diagram would
be insufficient. However, an important and potentially universal feature of the graphene
phase diagram is that, unless there is an extra conservation law such as the Sz conservation
when Rashba coupling is absent, a metallic region always appears between ordinary and
topological insulators in the presence of disorder. The existence of this metallic region is an
important difference between the spin Hall effect and the integer quantum Hall effect.
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Figure 3.10: Approximate width of metallic region for a 4 × 6 lattice (fixed λv = σw = 1).
The dashed curves indicate the parameter values at which 98% and 2% of the disorder
realizations have DL = 1. This underestimates the true width of the “metallic” region
but hopefully avoids some amount of the inevitable error due to small system size. This
diagram should offer a reasonable approximation to the thermodynamic (infinite-system)
phase diagram away from λR = 0. At λR = 0, there should be no metallic phase, but a sharp
transition between the two insulating phases in the thermodynamic limit. Given the plots
in Fig. 3.7, it appears that finite size effects also reduce the width of the metallic phase at
large λR.

3.4 Summary

Previous work [39, 40, 71, 23, 56] defined a Z2 topological invariant in infinite lattices
that is similar to the TKNN invariant for the integer quantum Hall effect [81]. In disor-
dered systems with boundaries, Fu and Kane [23] defined a topological invariant in terms
of pumping of the occupancy of Kramers-degenerate edge states. We have given a defini-
tion of a topological invariant valid for disordered systems without boundary, i.e., without
appeal to edge states. The “Chern parity” can be thought of as describing either a finite
system with boundary phases or an arbitrarily large supercell in an infinite lattice system
with well defined wavevector. A physical effect of Chern parity is that it determines whether
the amount of charge pumped in a certain type of closed pumping cycle is even or odd. The
“ordinary” and “topological” insulator phases can be distinguished by this invariant as long
as many-body effects do not prevent description of the ground state as a Slater determinant.
Chern parity in the spin quantum Hall effect is the natural generalization of Chern number
in the integer quantum Hall effect.

In a disordered system, the only degeneracies expected to survive are Kramers degenera-
cies at time-reversal invariant values of the boundary phases. In this case, each pair of states
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related by Kramers degeneracies can be assigned its own Chern parity, and the overall Chern
parity of all occupied state pairs determines the observable phase. The lattice algorithm for
Z2 topological invariants laid out by Fukui and Hatsugai [26, 25] allugows numerical iden-
tification of the topological insulator phase in disordered QSH systems. Implementing this
algorithm for the specific graphene model Hamiltonian of Kane and Mele [40] with added
on-site disorder, we observe the ordinary and topological insulator phases in simulations.
While the number of “odd” pairs (state pairs with odd Chern parity) varies with the disor-
der realization, there is an even number of odd pairs in the ordinary insulator, and an odd
number of odd pairs in the topological insulator.

We find that a metallic phase opens up between the two insulating phases for generic
spin-orbit coupling. This agrees with the prediction of Hikami et al. [34] that spin-orbit
coupling can protect a 2D metallic phase from disorder, and confirms the simulation results
of Onoda et al. [64] and Obuse et al. [63] The methods in this paper could in principle be
used to study the three-dimensional case and confirm the argument in Ref. [24] that only one
of the four invariants of a band structure [56, 72, 22] is stable to disorder. While there is now
strong evidence [63] that the phase transitions in the 2D QSHE are, except for special points,
in the previously studied symplectic metal-insulator class, there is as yet no numerical study
of the phase transitions in three-dimensional topological insulators.
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Chapter 4

Magnetoelectric polarizability and
axion electrodynamics in crystalline
insulators

The previous chapter dealt with the two-dimensional topological insulator, and showed
that its topological invariant can be generalized to the case of finite samples with disorder.
It also verified that the combination of spin-orbit coupling and disorder lead to a metallic
phase in two dimensions. There are also three-dimensional topological insulators, which
have a topological invariant that can be built from the 2d invariant already discussed. This
(shorter) chapter uses an alternative formulation, in which the topological invariant is a
physical response function, the magnetoelectric polarizability.

Magnetoelectric couplings in solids have recently been the subject of intense experimental
and theoretical investigations [77, 21, 32]. A quantity of central importance is the linear
magnetoelectric polarizability αij defined via

αij =
∂Mj

∂Ei

∣∣∣
B=0

=
∂Pi
∂Bj

∣∣∣
E=0

(4.1)

where E and B are electric and magnetic fields, P and M are the polarization and magneti-
zation, and the equality can be obtained from commuting derivatives of an appropriate free
energy. In general the tensor α has nine independent components, and can be decomposed
as

αij = α̃ij +
θe2

2πh
δij (4.2)

where the first term is traceless and the second term, written here in terms of the dimension-
less parameter θ, is the pseudoscalar part of the coupling. Here we focus on magnetoelectric
coupling resulting from the orbital (frozen-lattice) magnetization and polarization, which we
label the orbital magnetoelectic polarizability (OMP).

In field theory, the pseudoscalar OMP coupling is said to generate “axion electrodynam-
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ics” [82], and corresponds to a Lagrangian of the form (c = 1)

∆LEM =
θe2

2πh
E ·B =

θe2

16πh
εαβγδFαβFγδ. (4.3)

An essential feature of the axion theory is that, when the axion field θ(r, t) is constant,
it plays no role in electrodynamics; this follows because θ couples to a total derivative,
εαβγδFαβFγδ = 2εαβγδ∂α(AβFγδ), and so does not modify the equations of motion. However,
the presence of the axion field can have profound consequences at surfaces and interfaces,
where gradients in θ(r) appear.

A second essential feature is that electrodynamics is invariant under θ → θ + 2π [82]. In
order to reconcile this peculiar fact with the phenomenology of the magnetoelectric effect,
observe that the axion coupling can alternatively be described in terms of a surface Hall
conductivity σH whose value θe2/2πh is determined by bulk properties, but only modulo
the quantum e2/h. More generally, at an interface between two samples, σH = (θ1 − θ2 +
2πr)e2/2πh, where the integer r depends on the details of the interface. Recall that, in
general, a 2D gapped crystal has an integer TKNN invariant C in terms of which the its
Hall conductivity is σH = Ce2/h [81]. The “modulo e2/h”, or integer r, discussed above
corresponds to modifying the surface or interface by adsorbing a surface layer of nonzero C.

When time-reversal (T ) invariance is present, the TKNN invariants vanish, but other in-
variants arise that have been the focus of much recent work. In 2D there is a Z2 invariant [40]
distinguishing “ordinary” from “Z2-odd” insulators, with “quantum spin Hall” states [39, 8]
providing examples of the latter. In 3D there is a similar invariant [56, 72, 22] that can
be computed either from the 2D invariant on certain planes [56] or from an index involving
the eight T -invariant momenta [22]. If this is odd, the material is a “strong topological
insulator” (STI). In the context of the OMP, note that T maps θ → −θ; the ambiguity of θ
modulo 2π then implies that T invariance is consistent with either θ = 0 or θ = π, with the
latter corresponding to the STI [67]. Note that if T -invariance extends to the surfaces, these
become metallic by virtue of topologically protected edge states, as observed experimentally
for the Bi0.9Sb0.1 system [37]. If the surface is gapped by a T -breaking perturbation, then
σH = e2/h modulo 2e2/h at the surface of a STI [82, 24, 67].

In the noninteracting case, a Berry-phase expression for θ has been given in terms of the
bulk bandstructure by Qi, Hughes, and Zhang [67] by integrating out electrons in one higher
dimension. Defining the Berry connection Aµνj = i〈uµ|∂j|uν〉 where |uν〉 is the cell-periodic
Bloch function of occupied band ν and ∂j = ∂/∂kj, they obtain

θ = − 1

4π

∫
BZ

d3k εijk Tr[Ai∂jAk − i
2

3
AiAjAk] (4.4)

where the trace is over occupied bands.
In the present letter, we first provide an alternate derivation of Eq. (4.4) for the OMP.

Our derivation clarifies that θ is a polarizability and in fact describes the entire orbital con-
tribution to magnetoelectric polarizability. That is, the orbital α̃ vanishes in Eq. (4.2), and
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the orbital contribution is a perfect pseudoscalar. The derivation follows from an extension
[87] of the Berry-phase theory of polarization [43] to the case of slow spatial variations of
the Hamiltonian. (Indeed, the OMP angle θ is a bulk property in exactly the same sense as
electric polarization [65, 43].) We find that the OMP can be generalized to the interacting
case and calculated from the many-particle wavefunction, even though Eq. (4.4) is not valid;
this reflects a subtle difference between OMP and polarization. Explicit numerical calcu-
lations on model crystals are presented to validate the theory, establish the equivalence of
Eq. (4.4) to the prior definition, and illustrate how a non-zero θ corresponds to a “fractional”
quantum Hall effect at the surface of a magnetoelectric or topological insulator [82, 24, 67].

From Eq. (4.1) it is evident that the OMP can be viewed in several ways. (i) It describes
the electric polarization arising from the application of a small magnetic field. (ii) It describes
the orbital magnetization arising from the application of a small electric field. (iii) It also
gives the (dissipationless) surface Hall conductivity σH at the surface of the crystal, provided
that the surface is insulating. Note that (iii) follows from (ii): for a surface with unit normal
n̂ and electric field E, the resulting surface current K = M × n̂ is proportional to E × n̂.
There is an elegant analogy here to the case of electric polarization, where the surface charge
of an insulating surface is determined, modulo the quantum e/S, by the bulk bandstructure
alone (S is the surface cell area).

The above discussion suggests two approaches to deriving a bulk formula for the OMP θ.
One is to follow (ii) and compute the orbital magnetization [78, 88] in an applied electrical
field. We focus here on (i) instead, working via dP/dB. The modern theory of polariza-
tion starts from the polarization current jP = dP/dt under slow deformation of the Bloch
Hamiltonian, and contains, to first order in d/dt, one power of the Berry curvature defined
below [43]. Using semiclassical wavepacket dynamics, Xiao et al. [87] have shown how to
compute the polarization current to second order and to incorporate slow spatial variations
in the electronic Hamiltonian. For the case of an orthorhombic 3D crystal with M occupied
bands in which the slow spatial variation occurs along the y direction in a supercell of length
ly, they obtain

〈∆P (in)
x 〉=

e

8

∫ 1

0

dλ

∫
BZ

d3k

(2π)3

∫ ly

0

dy

ly
εijklTr[FijFkl] (4.5)

for the change in the supercell-averaged inhomogeneously induced polarization that occurs as
a global parameter λ evolves adiabatically from 0 to 1. Here indices ijkl run over (kx, ky, y, λ),
Fij = ∂iAj − ∂jAi − i[Ai,Aj] is the Berry curvature tensor (Aµνλ = i〈uµ|∂λ|uν〉), and the
trace and commutator refer to band indices.

Because F is gauge-covariant, the integrand in Eq. (4.5) is explicitly gauge-invariant;
it is the non-Abelian second Chern class [60], so that Eq. (4.5) is path-invariant modulo a
quantum e/azly, where az is the lattice constant in the z direction. Moreover, the λ integral
can be performed to obtain an expression in terms of the non-Abelian Chern-Simons 3-form
[60]. Thus,

〈P (in)
x 〉 = −e

2

∫
BZ

d3k

(2π)3

∫ ly

0

dy

ly
εijkTr[Ai∂jAk −

2i

3
AiAjAk] (4.6)
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where ijk now run only over (kx, ky, y). Here the integrand is not gauge-invariant, but the
integral is gauge-invariant modulo the quantum e/azly.

We apply this result to study the polarization

〈P (in)
x 〉=−

Be2

2~

∫
BZ

d3k

(2π)3
εijkTr[Ai∂jAk − i

2

3
AiAjAk] (4.7)

induced by a magnetic field described by the inhomogeneous vector potential A = Byẑ with
B = h/eazly, i.e., a B-field along x̂ with one flux quantum threading the supercell. This has
the effect of taking kz → kz + eBy/~, and this is the only y-dependence in the Hamiltonian,
so that |∂yu〉 = (Be/~)|∂kzu〉 and where ijk now run over (kx, ky, kz). Using Eqs. (4.1,4.2)
we arrive directly at Eq. (4.4).

There is an important geometrical relationship in this (noninteracting) derivation that
applies equally well to the many-body case and gives a bulk interpretation of the 2π ambiguity
in θ, whose surface interpretation was in terms of allowed surface IQHE layers. Polarization
in a crystal is defined modulo the “quantum of polarization” [43] which, for the flux-threaded
supercell of Eq. (4.7), is ∆Px = e/azly. Since the magnetic field is Bx = h/eazly, it follows
that ∆(Px/Bx) = e2/h. Hence the unit-cell-independent ambiguity of dP/dB results from
the relationship in a finite periodic system between the unit-cell-dependent polarization
quantum and the quantization of applied flux, and this relationship remains valid in the
many-body case.

Before studying the OMP in a specific model, we discuss its symmetry properties and
how to obtain it when Bloch states are unavailable, as in the many-particle case. Clearly
the combination E ·B in Eq. (4.3) is odd under T and under inversion P (although it is even
under the combination PT ). It is also odd under any improper rotation, such as a simple
mirror reflection. This implies that θ = −θ if the crystal has any of the above symmetries.
This would force an aperiodic coupling to vanish, but since θ is only well-defined modulo 2π,
it actually only forces θ = 0 or π. Thus, one can obtain an insulator with quantized θ = π
not only for T -invariant systems (regardless of whether they obey inversion symmetry), but
also for inversion- and mirror-symmetric crystals regardless of T symmetry [24]. When none
of these symmetries are present, one generically has a non-zero (and non-π) value of θ, but
still retaining the simple scalar form of Eq. (4.3).

In an interacting system, the OMP should be obtained from the many-particle wavefunc-
tion. However, modifying Eq. (4.4) to the Abelian Chern-Simons integral over the many-body
wavefunction fails 1, in important contrast to the case of the polarization (the integral of
A), where such a generalization works [65]. Instead the OMP can be found using the change
in the many-body polarization due to an applied magnetic field to compute dP/dB, i.e.,
the many-body version of the supercell dP/dB calculation. This fact is important beyond
computing θ with interactions, as it defines the topological insulator phase in the many-body

1Mathematically, obtaining a nontrivial second Chern or Chern-Simons integral depends on having a
degenerate set of bands somewhere in parameter space, which is not the case for a gapped many-body
wavefunction.



49

case more simply than before [48]. Like the IQHE, the topological insulator is defined via
a response function (dP/dB) to a perturbation that, in the limit of a large system with
periodic boundary conditions, is locally weak and hence does not close the insulating gap.
In the IQHE, this response function is to a boundary phase (i.e., a flux that does not pass
through the 2D system), while for the topological insulator, the defining response is to a
magnetic flux through the 3D system.

In the remainder of this Letter, we demonstrate the above theory via numerical cal-
culations on a tight-binding Hamiltonian that generates non-zero values of θ, then discuss
experimental measurements of θ. We start with the model of Fu, Kane, and Mele [22] for a
3D topological insulator on the diamond lattice,

HFKM =
∑
〈ij〉

tijc
†
icj + i

4λSO
a2

∑
〈〈ij〉〉

c†iσ · (d1
ij × d2

ij)cj. (4.8)

In the first term, the nearest-neighbor hopping amplitude depends on the bond direction;
we take tij = 3t + δ for direction [111] (in the conventional fcc unit cell of linear size a)
and tij = t for the other three bonds. The second term describes spin-dependent hopping
between pairs of second neighbors 〈〈ij〉〉, where d1

ij and d2
ij are the connecting first-neighbor

legs and σ are the Pauli spin matrices. With |δ| < 2t and λSO sufficiently large, this model
has a direct band gap of 2|δ|.

To break T we add a staggered Zeeman field with opposite signs on the two fcc sublattices

A and B, h ·
(∑

i∈A c
†
iσci −

∑
i∈B c

†
iσci

)
. We take |h| = m sin β and choose h in the [111]

direction; setting δ = m cos β and varying the single parameter β keeps the gap constant and
interpolates smoothly between the ordinary (β = 0) and the topological (β = π) insulator.

We have calculated the OMP angle θ using four different methods with excellent agree-
ment (Fig. 4.1). First, we obtain θ from Eq. (4.4); this requires a smooth gauge for A,
which can be found using now-standard Wannier-based methods [52]. Results are shown for
β = π/4 and β = π/2 (filled squares).

Next, we have calculated the polarization [43]

Pi = e

∫
BZ

d3k

(2π)3
TrAi . (4.9)

resulting from a single magnetic flux quantum in a large supercell. Varying the supercell
size (and thereby B) allows us to approximate dP/dB, yielding the open squares in Fig. 4.1.
The points in Fig. 4.1 are from the surface Hall response in a slab geometry, described
below. Finally, to obtain the curve in Fig. 4.1, we also computed θ(β) from the second
Chern expression [87, 67]

θ =
1

16π

∫ β

0

dβ′
∫
d3k εijklTr[Fij(k, β′)Fkl(k, β′)] (4.10)

(derived above as Eq. (4.5)). Clearly, the various approaches are numerically equivalent.
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Figure 4.1: The magnetoelectric polarizability θ (in units of e2/2πh). The filled squares
are computed by the Chern-Simons form, Eq. (4.4). The open squares are dP/dB from
Eq. (4.9). The points are obtained by layer-resolved σH calculations using Eq. (4.12). The
curve is obtained from Eq. (4.10).

We now discuss the surface Hall conductivity, whose fractional part in units of e2/h is
just θ/2π [82]. Consider a material with coupling θ in a slab geometry that is finite in
the ẑ direction and surrounded by θ = 0 vacuum. The simplest interfaces will then lead
to σH = θe2/(2πh) at the top surface and −θe2/(2πh) at the bottom surface, for a total
σxy of zero. More generally, arbitrary surface quantum Hall layers change the total integer
quantum Hall state, but not the fractional parts at each surface.

The spatial contributions to the Hall conductance in the slab geometry can be resolved
as follows. The unit cell is a supercell containing some number N of original unit cells in the
ẑ direction, with translational invariance remaining in the x̂ and ŷ directions. The TKNN
integer for the entire slab is [81, 4]

C =
i

2π

∫
d2kTr [Pεij∂iP∂jP ] . (4.11)

Here i and j take the values kx and ky and P =
∑

ν |uν〉〈uν | is the projection operator
onto the occupied subspace (ν runs over occupied bands). To find how different ẑ layers
contribute to C, define a projection P̃n onto layer n within the supercell, and compute

C(n) =
i

2π

∫
d2kTr

[
Pεij(∂iP)P̃n(∂jP)

]
. (4.12)

The results, presented in Fig. 4.2, confirm that the surface layers have half-integer Hall
conductance when β = π in (4.8) and that the sign on each surface is switched by local
T -breaking perturbations (in this example, a uniform Zeeman coupling in the surface layer).

To gain some insight into the microscopic origin of θ in the noninteracting case, using
Eq. (4.4) we have calculated θ for a Hamiltonian that breaks PT (as well as P and T ) by
adding a weak, uniform (i.e., not staggered) Zeeman coupling. For some values of β this
lifts all degeneracies, enabling us to isolate the single-band and interband contributions to θ.
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Figure 4.2: The layer-resolved Hall conductivity (in units of e2/h) at β = π in a slab of
twenty layers, with m = t/2 and λSO = t/4, terminated in (1̄11) planes.

A single filled band can have nonzero θ only if there are more than two bands in total [57].
Because interband contributions are nonzero in general, θ is a property of the whole occupied
spectrum, unlike polarization, which is a sum of individual band contributions.

Experimental detection of θ is more difficult for a topological insulator than for a generic
magnetoelectric insulator because some T -breaking perturbation is needed to gap the surface
state. Furthermore, a large surface density of states, as in BiSb, may complicate the mea-
surement: while even a weak magnetic field will in principle lead to a gap and half-integer
quantum Hall effect at each surface, the large number of filled surface Landau levels may
make it difficult to isolate the half-integer part of surface σH in, e.g., optical conductivity.
In the presence of broken discrete symmetries, as in antiferromagnets or multiferroics, the
surface gap exists naturally and experiments are easier. For example, the theoretical meth-
ods of this paper could be used to compute the orbital part of the recently measured θ in
Cr2O3 [32].
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Interlude: magnetoelectric response
of a finite material

The previous chapter gave a semiclassical derivation of the Chern-Simons term in the
magnetoelectric polarizability in a bulk insulator. Before proceeding to the full, and fully
quantum mechanical, derivation of the orbital magnetoelectric response in the next chapter,
it is worth recording the result in a finite (insulating) sample of material. These results can
also be found in Malashevich et al. [51]. To linear order in the magnetic field, the (explicitly
Hermitian) Hamiltonian is

Htot = H − 1

2
(j ·A + A · j) = H − 1

2
{ji, Ai}. (4.13)

We use curly braces {, } for the anticommutator. A convenient gauge for the vector potential
A is

Ai =
1

2
εijkB

jrk, (4.14)

where εijk is the fully antisymmetric Levi-Civita symbol. This gives

∂BjHtot =
1

4
εjab{ja, rb} (4.15)

The response of the electronic polarization will then be

αij = ∂Bj

〈eri〉
Ω

=
1

Ω

∑
n occ

〈n|eri|∂Bjn〉+ c.c. (4.16)

=
eεjab
2Ω

Re
∑
n occ

〈n|riG(En){ja, rb}|n〉

=
eεjab
2Ω

Re
∑
n occ,l

〈n|ri|l〉〈l|{ja, rb}|n〉
En − El + iε

,

where G(En) = (En − H + iε)−1 is the Schrödinger Green function for the unperturbed
Hamiltonian. We here take e to be the sign of the charge carrier, so it is negative for
electrons; Ω is the volume of the material in question. Observe that the real part of the sum
over occupied states l vanishes automatically, which is to say, there is effectively a factor
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1− f(El), where f(E) is the Fermi-Dirac distribution at zero temperature. Leaving the sum
in this form is not helpful numerically, but it makes plain that α is a band-by-band sum of
a single-band response function, a property we shall call band additivity.

In an infinite system, the position is unbounded, and in a system with periodic (Born-von
Karman) boundary conditions it is either multivalued or discontinuous, implying that the
expression we have used for the electronic polarization, 〈er〉, is of questionable validity in
such cases. On the other hand, the current is perfectly well behaved, making it preferable
to work with the current operator when possible. The two are related in the unperturbed
system by

j =
e

i}
[r, H], (4.17)

or in the basis of energy eigenstates,

〈l′|r|l〉 =
i}
e

〈l′|j|l〉
El − El′

. (4.18)

Matrix elements between occupied and unoccupied states are finite, then, because of the
gap, while potential problems only appear in those between the (possibly degenerate) occu-
pied states, making it worthwhile to separate out those contributions to α that have such
problematic matrix elements. Using Eq. (4.18) and [ri, rj] = 0 it follows that

αij =
eεjab

Ω
Re

∑
n occ

m unocc

〈n|ri|m〉〈m|j
a(1− ρ)rb|n〉+ 〈m|rbρja|n〉

En − Em

+
ie2

3}Ω
δijεabc

∑
n,n′,
n′′occ

〈n|ra|n′〉〈n′|rb|n′′〉〈n′′|rc|n〉. (4.19)

Here ρ is the projector onto the occupied states, otherwise known as the Fermi-Dirac density
matrix at zero temperature, and 1− ρ is the complementary projector onto the unoccupied
states. Note that the first sum looks very like Eq. (4.16) but with a factor of 2 difference.
Remarkably, the troublesome (diagonal) matrix elements of r only contribute to the trace
part of the magnetoelectric tensor, that is, to θ.

That is to say, the first term presented has a simple generalization to infinite and/or
periodic systems. The second term does not, and is therefore the piece of most interest here.
Let us rewrite it in terms of the density matrix as

(αCS)ij =
ie2

3}Ω
δijεabcTrρraρrbρrc =

ie2

3}Ω
δijεabcTrρ[ρ, ra][ρ, rb]ρrc (4.20)

Ignoring the prefactors, this looks very much like a measure of volume, Tr(ρr) · (ρr)× (ρr),
and evidently gives a measure of the “quantum volume” of the state ρ. Unfortunately, it
does not seem to be possible to express it solely in terms of the noncommutative position
operator r = i[ρ, r].
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An alternative interpretation is as a polarization of Hall conductivities, since these are
given by εabcρ[ρ, ra][ρ, rb]ρ. This formulation is essentially equivalent to reading off the re-
sponse from the surface conductivity as was done in the last chapter. In the chapter to
follow, the derivation of the orbital magnetoelectric response is given in full for an infinite
(boundaryless) system. The results look very similar to those derived here, and allow us to
conclude that the “quantum volume” introduced here corresponds precisely to the Chern-
Simons integral derived earlier from the semiclassical equations of motion.
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Chapter 5

General orbital magnetoelectric
coupling in band insulators

5.1 Introduction

Understanding the response of a solid to applied magnetic or electric fields is of both fun-
damental and applied interest. Two standard examples are that metals can be distinguished
from insulators by their screening of an applied electric field, and superconductors from met-
als by their exclusion of magnetic field (the Meissner effect). Magnetoelectric response in
insulators has been studied for many years and is currently undergoing a renaissance driven
by the availability of new materials. The linear response of this type is the magnetoelectric
polarizability: in “multiferroic” materials that break parity and time-reversal symmetries,
an applied electric field creates a magnetic dipole moment and a magnetic field creates an
electric dipole moment, and several applications have been proposed for such responses. Such
responses are observed in a variety of materials and from a variety of mechanisms [77, 21].
From a theoretical point of view, the most intriguing part of the polarizability is that due to
the orbital motion of electrons, because the orbital motion couples to the vector potential
rather than the more tangible magnetic field.

The orbital magnetoelectric polarizability has also been studied recently in non-magnetic
materials known as “topological insulators.” These insulators have Bloch wavefunctions with
unusual topological properties, that lead to a magnetoelectric response described by an E ·B
term in their effective electromagnetic Lagrangians, [67] with a quantized coefficient. Qi,
Hughes, and Zhang [67] (QHZ) gave a formula for the coefficient of this term. For the
specific case of topological band insulators, their result reproduces earlier formulas for the
relevant topological invariant, [22, 56, 72] but it is more generally valid: it describes a
contribution to the magnetoelectric polarizability non just in topological insulators but in
any band insulator. Their formula has a periodicity or ambiguity by e2/h that is related to
the possibility of surface quantum Hall layers on a three-dimensional sample and generalizes
the ambiguity of ordinary polarization.
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The same E · B coupling, known as “axion electrodynamics” and originally studied in
the 1980s, [82] was obtained in a previous paper by three of the present authors [20] using
a semiclassical approach [87] to compute dP/dB, the polarization response to an applied
magnetic field. However, in a general material, that semiclassical approach leads to an
explicit formula for only part of the orbital magnetoelectric polarizability, the part found by
QHZ. [67] The remainder, which is generically nonvanishing in materials that break inversion
and time-reversal symmetries, is expressed only implicitly in terms of the modification of the
Bloch wavefunctions by the magnetic field.

In this paper, we develop a more microscopic approach that enables us to compute all
terms in the orbital response explicitly in terms of the unperturbed wavefunctions, thereby
opening the door to realistic calculations using modern band-structure methods (e.g., in the
context of density-functional theory). Moreover, beyond its importance for computation,
this expression clarifies the physical origins of the orbital magnetoelectric polarizability and
resolves some issues that arose in previous efforts to describe the “toroidal moment” in
periodic systems.

In the remainder of this introduction, we review some macroscopic features of the magne-
toelectric response, while subsequent sections will be devoted mainly to a detailed treatment
of microscopic features. The magnetoelectric tensor can be decomposed into trace and trace-
less parts as

∂P i

∂Bj
=
∂Mj

∂Ei
= αij = α̃ij + αθδ

i
j, (5.1)

where α̃ is traceless and

αθ =
θ

2π

e2

h
(5.2)

is the trace part expressed in terms of the dimensionless parameter θ; α has the physical
dimension of conductance. The trace is the most difficult term to determine, as its physical
effects are elusive. It should be noted that equality between ∂P i/∂Bj and ∂Mj/∂Ei only
holds in the absence of dissipation and dispersion, which describes the low frequency, low
temperature responses of an insulator. [32, 35] The placement of the indices in Eq. (5.1) is
not essential for the arguments and calculations in this paper, and the reader can choose
to treat α as a Cartesian tensor αij if desired. 1 As a Cartesian tensor, the traceless part
decomposes further into symmetric and antisymmetric parts

α̃Sij =
1

2
(α̃ij + α̃ji) , α̃Aij =

1

2
(α̃ij − α̃ji) = −εijkTk, (5.3)

1The index structure can be used as a check, somewhat like dimensional analysis. For example, it is a
reminder that ∂P x/∂By = ∂My/∂Ex, which has matching indices, rather than ∂Mx/∂Ey. One only has to
remember that P and B have upper indices, while M and E have lower indices. Vectors with upper indices
correspond to directions in space. For example P has an upper index because it is given by er, while E
has a lower index, in order for E · d` = Eid`

i in Faraday’s law to be balanced. The index structure is also
useful when using “internal coordinates”, especially in the case of nonorthorhombic crystals. One writes
P =

∑
i P

iai, B =
∑
iB

iai, M =
∑
iMig

i/(2π), and E =
∑
iEig

i/(2π), where ai are the primitive lattice
vectors and gi are the reciprocal lattice vectors, gi ·aj = 2πδij . This amounts to setting the primitive vectors

to x̂, ŷ, ẑ.
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where Ti = −εijkα̃jk/2 is the toroidal response. (Unless otherwise stated, in our work
repeated indices are implicitly summed.) The terminology reflects that this part of the orbital
magnetoelectric response is related to the “toroidal moment”, which is an order parameter
that has recently been studied intensively; in a Landau effective free energy, the toroidal
moment and the toroidal part of the magnetoelectric response are directly related [19, 6].

The primary goal of this paper is to compute the contribution to α that arises solely
from the motion of electrons due to their couplings to the electromagnetic potentials ρφ and
−j·A. We call this contribution the orbital magnetoelectric polarizability, or OMP for short.
Other effects, such as those mediated by lattice distortions or the Zeeman coupling to the
electron’s spin, are calculable with known methods [83]. We shall only treat the polarization
response to an applied magnetic field here; concurrent work by Malashevich, Souza, Coh,
and one of us obtains an equivalent formula by developing methods to compute the orbital
magnetization induced by an electrical field [51].

The magnetoelectric tensor’s physical consequences arise through the bound current and
charge [67, 32], given by ρb = −div P and Jb = ∂tP + curl M. Besides having a ground
state value, each moment responds (instantaneously and locally, as appropriate for the low-
frequency response of an insulator) to applied electric and magnetic fields, e.g., P i = P i

0 +
χijEEj+αijB

j; we will concentrate on the magnetoelectric response. (Unless otherwise stated,
in this article repeated indices are implicitly summed.) It is useful to allow αij, a material
property, to vary in space and time by allowing the electronic Hamiltonian to vary; this
leads to a formula that covers the effects of boundaries and time-dependent shearing of the
crystal, for example. Then the relevant terms are

J ib = (α̃ljε
ikj − α̃ijεjkl)∂kEl + (∂tα

i
j)B

j + εijk(∂jα
l
k)El

ρb = −α̃ij∂iBj − (∂iα
i
j)B

j, (5.4)

We have used two of Maxwell’s equations to simplify the first term in each line. The most
important point to notice here is that αθ does not appear except in derivatives, so that any
uniform and static contribution to θ has no effect on electrodynamics. Hence in a uniform,
static crystal, the components of α̃ can be computed or measured from the current or charge
response to spatially varying fields, given by the first term in each line. On the other hand,
if we wish similarly to obtain αθ from charge or current responses to applied fields, we need
to consider a crystal that varies either spatially or temporally, so that E or B will couple
to ∂iαθ or ∂tαθ, as in the second terms of Eqs. (5.4). These considerations, which we will
elaborate later, motivate our theoretical approach to the OMP in this paper.

We will proceed as follows. In Section II, we present the results of our calculation of
the OMP in the independent-electron approximation. This section includes a review of
known results, followed by a discussion of the new contributions we compute and when
those contributions can be expected to vanish (so that the OMP reduces to the form found
in the literature previously). We follow these discussions with a detailed presentation of
the calculation in Section III. This calculation involves a novel method for dealing with a
uniform magnetic field in a crystal. An alternative derivation is presented in the Appendix.
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5.2 General features of the orbital magnetoelectric re-

sponse

In this section we discuss properties of the OMP and its explicit expression in the inde-
pendent electron approximation. There is a natural decomposition into two parts, which is,
however, not equivalent to the standard symmetry decomposition given in Eq. (5.1) of the
Introduction.

The first part is the scalar “Chern-Simons” term αCS obtained by QHZ [67] that con-
tributes only to the trace part αθ. It is formally similar to the Berry-phase expression for
polarization [43] in that it depends only on the wavefunctions, not their energies, which ex-
plains the terminology “magneto-electric polarization” introduced by QHZ for αCS. [67] The
second part of the response is not simply scalar. It has a different mathematical form that
is not built from the Berry connection, looking like a more typical response function in that
it involves cross-gap contributions and is not a “moment” determined by the unperturbed
wavefunctions. We label this term αG because of its connection with cross-gap contributions.
This term does not seem to have been obtained previously although its physical origin is not
complicated.

5.2.1 The OMP expression and the origin of the cross-gap term
αG

We first give the microscopic expression of the new term in the OMP and discuss its
interpretation. The later parts of this section explain why the new term vanishes in most
of the models that have been introduced in the literature to study the OMP, and discuss
to what extent the two terms in the OMP expression are physically separate. The OMP
expression that we discuss here will be derived later in Section III as follows: we compute the
bulk current in the presence of a small, uniform magnetic field as the crystal Hamiltonian is
varied adiabatically. The result is a total time derivative which can be integrated to obtain
the magnetically induced bulk polarization.

The most obvious property of the new term αG in the response is that, unlike the Chern-
Simons piece, it has off-diagonal components; for instance, ∂P x/∂By 6= 0. To motivate the
expression for αG intuitively, we note that it is very similar to what one would expect based
on simple response theory: An electric dipole moment, er, is induced when a magnetic field
is applied. This field couples linearly to the magnetic dipole moment (e/4)(r × v − v × r)
(this form takes care of the operator ordering when we go to operators on Bloch states).
The expression we actually get for the OMP is expressed in terms of the periodic part of
the Bloch wave functions ulk and the energies Elk describing the electronic structure of a
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crystal:

αij = (αG)ij + αCSδ
i
j (5.5a)

(αG)ij =
∑
n occ

m unocc

∫
BZ

d3k

(2π)3
Re

{〈unk|e6rik|umk〉〈umk|e(vk×6rk)j−e(6rk×vk)j−2i∂H ′k/∂B
j|unk〉

Enk − Emk

}
(5.5b)

αCS = − e
2

2}
εabc

∫
BZ

d3k

(2π)3
tr

[
Aa∂bAc − 2i

3
AaAbAc

]
. (5.5c)

Here the Berry connection Aann′(k) = i〈unk|∂kaun′k〉 is a matrix on the space of occupied
wave functions unk,2 and the derivative with an upper index ∂a = ∂ka is a k-derivative,
as opposed to the spatial derivative ∂i in Eq. (5.4). The velocity operator is related to
the Bloch Hamiltonian, }vi(k) = ∂iHk, while the operator 6 rik is defined as the derivative
∂iPk of the projection P onto the occupied bands at k. This operator is closely related
to the position operator; its “cross-gap” matrix elements between occupied and unoccupied
bands are 〈umk|6rik|unk〉 = 〈unk|6rik|umk〉∗ = −i〈umk|ri|unk〉, while its “interior” matrix ele-
ments between two occupied bands or two unoccupied bands vanish. Finally, the operator
H ′ is introduced for generality, as discussed in Section 5.3.1; it vanishes for the continuum
Schrödinger Hamiltonian and for tight-binding Hamiltonians whose hoppings are all recti-
linear, and so will be ignored for most of the analysis that follows. Neglecting this subtlety,
the form of αG is nearly what would be expected for the response in electric dipole moment
to a field coupling linearly to the magnetic dipole moment.

The main difference between the explicit form of αG and the näıve expectation from the
dipole moment argument above is that αG excludes terms of the form 〈n|r|m〉〈m|v|n′〉〈n′|r|n〉,
for example, that include interior matrix elements of r. In some sense, this omission is com-
pensated for by the extra factor of 2 relative to the näıve expectation and by a remainder
term, namely, αCS, the Chern-Simons part. The Chern-Simons term αCS alone has appeared
previously [67, 20]. The next subsection reviews the properties of αCS and gives a geometri-
cal picture for its discrete ambiguity, which is not present in the αG term. We then explain
how the existence of the previously unreported αG can be reconciled with previous studies
on model Hamiltonians that found only αCS, and then show that the two terms are more
intimately related than they first appear.

5.2.2 The Chern-Simons form, axion electrodynamics, and topo-
logical insulators

The Chern-Simons response αCS has been discussed at some length in the literature [67,
20]. It does not emerge as clearly as αG from the intuitive argument above about dipole

2In general there will be k points at which un will not be differentiable. Since A only enters in a matrix
trace, however, any orthornormal basis of occupied functions is acceptable, not just the energy basis, and
there will be a basis at every point such that A is well defined. A prescription for a smooth A can be
constructed from maximally localized Wannier functions [52].
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moment in a field; rather, in Ref. [20], it was derived by treating the vector potential as a
background inhomogeneity and utilizing a general formalism for computing the polarization
in such a background [87].

The most important feature of the microscopic expression for the isotropic OMP is that
it suffers from a discrete ambiguity. The dimensionless parameter θ quantifying the isotropic
susceptibility contains the term

θCS = − 1

4π
εabc

∫
d3k tr

[
Aa∂bAc − 2i

3
AaAbAc

]
, (5.6)

which is only defined up to integer multiples of 2π. This is tied to a “gauge” invariance:
ground state properties of a band insulator should only be determined by the ground state
density matrix ρgk, which is invariant under unitary transformations Unn′(k) that mix the
occupied bands. Now, the Berry connection A is not invariant under such a transformation,
but there is no inconsistency because, in the expression for θCS, all the terms produced by
the gauge transformation cancel except for a multiple of 2π. An analogous phenomenon,
slightly easier to understand, is found in the case of electric polarization [43]

P i = e

∫
BZ

d3k

(2π)3
Ai , (5.7)

which has invariance only up to a discrete “quantum,” or ambiguity, which counts the number
of times U(k) winds around the Brillouin zone (e.g., if U11 = eikxa and Uii = 1, i 6= 1, then P x

changes by one quantum). The Chern-Simons response αCS behaves similarly, although the
“winding” that leads to the ambiguity is more complicated (in particular, it is non-Abelian).

These ambiguities can be understood from general arguments, without relying on the
explicit formulae. In the case of the polarization, the quantum of uncertainty of P x, e/Sx,
depends on the lattice structure, with Sx the area of a surface unit cell normal to x. The
ambiguity results because the bulk polarization does not completely determine the surface
charge: isolated surface bands can be filled or emptied, changing the number of surface
electrons per cell by an integer. For the magnetoelectric response, the quantum of magneto-
electric polarizability is connected with the fact that θ gives a surface Hall conductance, as
can be seen from the term Jb = (∇αθ) × E in Eq. (5.4). Therefore, the ambiguity in αθ is
just e2/h, the “quantum of Hall conductance,” because it is possible to add a quantum Hall
layer to the surface. (This remains a theoretical possibility even if no intrinsic quantum Hall
materials have yet been found.)

Now let us show that this ambiguity afflicts only the trace of the susceptibility. This
can be seen directly by measuring the bound charge and currents. For example, all the
components of α̃ can be deduced from a measurement of ρb in the presence of a nonuniform
magnetic field [see Eq. (5.4)], but αθ itself does not determine any bulk properties.

More concretely, one can derive the ambiguities in the magnetoelectric response from the
ambiguities in the surface polarization. In a periodic system, which for simplicity we take
to have a cubic unit cell, the smallest magnetic field that can be applied without destroying
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Figure 5.1: A supercell admits a small magnetic flux, and the quantum of polarization
transverse to the long direction is correspondingly small, but the quantum for polarization
along the long direction is much larger.

the periodicity of the Schrödinger equation corresponds to one flux quantum per unit cell,
or B = h/(eS), where S is again a transverse cell area. The ambiguity in the polarization
of the system in this magnetic field corresponds to an ambiguity in dP/dB of

∆P

B
=

e/S

h/(eS)
=
e2

h
. (5.8)

Hence on purely geometrical grounds there is a natural quantum e2/h of the diagonal mag-
netoelectric polarizability [20].

In order to see that this uncertainty remains the same when a small magnetic field is
applied (after all, α is defined as a linear response), we will have to construct large supercells
in a direction perpendicular to the applied B (Fig. 5.1). While a supercell of N fundamental
cells has a less precisely defined polarization (the quantum decreases by a factor N , so the
uncertainty increases), the minimum field that can be applied also decreases by this factor,
so that the uncertainty in the polarizability dP i/dBi (no sum) remains constant. On the
other hand, if we consider the off-diagonal response, we can consider a supercell with its
long axis parallel to the applied B. In this case, the polarization quantum remains constant
as the supercell grows large and the minimum applied flux becomes small; the quantum in
dP i/dBj (for i 6= j) then becomes large, which means that the uncertainty vanishes. For this
geometry, a small B acts like a continuous parameter, and the change in polarization induced
by B can be continuously tracked, even if the absolute polarization remains ambiguous.

Thus, with or without interactions, there is a fundamental difference between the isotropic
response and the other components of the response. For the trace-free components, we
indeed do not find a quantum of uncertainty in the polarizability formula. In particular,
if the toroidal response is defined by Ti = −εijkα̃jk/2, then we believe that a “quantum
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of toroidal moment” [6] can only exist when there is a spin direction with conserved “up”
and “down” densities. (This toroidal moment is typically defined as t = (1/2)

∫
r × µdr,

with µ the magnetization density [19], or more generally in terms of a tensor T ij such that
∂iT ij = −2µj [6].) It then reduces to the polarization difference between up and down
electrons.

A particular class of materials for which the ambiguity in αθ is extremely important is the
strong topological insulators [22, 56, 72], in which θ = π (Ref. [67]). These are time-reversal
(T ) symmetric band insulators. At first blush, T invariance should rule out magnetoelectric
phenomena at linear order, since M and B are T -odd. However, the ambiguity by 2π in θ
provides a loophole, since −π is equivalent to π. Here we regard the ambiguity/periodicity
of θ as a consequence of its microscopic origin (alternately, its coupling to electrons); because
θ can be modified by 2πn by addition of surface integer quantum Hall layers, only θ modulo
2π is a meaningful bulk quantity for systems with charge-e excitations. This is consistent
with the gauge-dependence of the integral for αCS. An alternate approach is to derive
an ambiguity in θ by assuming that the U(1) fields are derived from a non-Abelian gauge
field [82]. The view here that periodicity of θ results from the microscopic coupling to
electrons is similar to the conventional understanding of the polarization quantum.

5.2.3 Conditions causing αG to vanish

It is worthwhile to understand in more detail the conditions under which the response
αG is allowed. It is forbidden in systems with inversion (P ) or time-reversal (T ) symmetry,
which can be seen explicitly from the presence of three k-derivatives acting on gauge-invariant
matrices in the formula written in terms of Pk and Hk. 3 However, this alone is not sufficient
to explain why αG did not appear in the T -breaking models previously introduced to study
the OMP [20, 67, 50]. This is explained by the fact that the interband contribution αG
[Eq. (5.5b)] will also vanish if dispersions satisfy the following “degeneracy” and “reflection”
conditions:

• At a given k, all the occupied valence bands have the same energy Ev
k.

• Similarly, all the unoccupied conduction bands have the same energy Ec
k.

• Ev
k + Ec

k is independent of k (and can be taken to be zero).

3This argument does not quite hold for the Chern-Simons piece since the gauge chosen for the Berry
connection may not share the symmetry of the system, accounting for the nontrivial value in a topological
insulator.
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E

k

µ

Figure 5.2: Schematic band structure that leads to vanishing αG. The bands below the chem-
ical potential are degenerate with energy Ev

k, while the bands above the chemical potential
have energy Ec

k = const.− Ev
k.

This can be seen immediately in an expanded form of the integrand of αG, [see Eqs. (B.11c)
and (B.11d)]

−
∑

n,n′ occ
m unocc

(En−En′)
〈∂bn|n′〉〈∂an′|m〉〈m|∂in〉

En − Em
+

∑
n occ

m,m′ unocc

(Em−Em′)
〈∂bn|m′〉〈m′|∂am〉〈m|∂in〉

En − Em

−
∑
n occ

m unocc

∂b(En + Em)
〈∂an|m〉〈m|∂in〉

En − Em
, (5.9)

where |n〉 = |unk〉 and En = Enk, etc. Such a structure is automatic when only two orbitals
(with both spin states) are taken into account and the system has particle-hole and PT
symmetries. PT symmetry guarantees that the bands remain spin-degenerate even if spin
is not a good quantum number. To see this, recall that T acts on wave functions as iσyK
and maps k → −k. Here, K is complex conjugation and σy takes the form of the usual
Pauli matrix in the z basis of spin. Then P maps k → −k again, so that PT effectively
acts as “T at each k” [3] . Then particle-hole symmetry implies that the dispersion is
reflection-symmetric, Ev

k = −Ec
k.

Most model Hamiltonians discussed in the literature that access the topological insulator
phase [22, 67, 20, 36, 50], as well as the Dirac Hamiltonian (in the context of which the axion
electrodynamics was first discussed [82]), can be defined in terms of a Clifford algebra,4

and this ensures that the dispersions are degenerate and reflection symmetric. The only
exception of which we are aware is the model of Guo and Franz on the pyrochlore lattice,

4Concretely, the generators of a Clifford algebra are a set of Nc matrices Γa that satisfy the relation
{Γa,Γb} = 2δab. Then the Hamiltonians cited take the form H(k) =

∑Nc

a=1 εa(k)Γa. This automatically

satisfies the degeneracy and dispersion-reflection properties, since H(k)’s eigenvalues are ±
√∑

a εa(k)2.
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which has four orbitals per unit cell [28]. The topological insulator phase itself will not have
a contribution from αG, since it is T -invariant, and so the Guo and Franz model will not
show such a response; however, the addition of any T -breaking perturbation to their model
should produce off-diagonal magnetoelectric responses.

Finally, there is a simple mathematical condition that will cause αG to vanish. Namely,
αG decreases as the gap becomes large without changing the wave functions, and in the limit
of infinite bulk gap the only magnetoelectric response comes from the Chern-Simons part,
which is not sensitive to the energies and depends only on the electron wave functions.

5.2.4 Is the Chern-Simons contribution physically distinct?

Apart from the ambiguity in αCS that is not present in αG, there seems to be no real
physical distinction between the two terms of the linear magnetoelectric response. We discuss
two aspects that relate to this observation below.

Localized vs. itinerant contributions
The ambiguity in θCS can be interpreted as a manifestation of the fact that bulk quantities

cannot determine the surface quantum Hall conductance, since a two-dimensional quantum
Hall layer could appear on a surface independent of bulk properties. This suggests, perhaps,
that the Chern-Simons term appears only in bulk systems with extended wave functions, and
is a consequence of the itinerant electrons, while αG is a localized molecule-like contribution.
However, this turns out not to be the case.

Consider a periodic array of isolated molecules, which is an extreme limit of the class of
crystalline insulators. Such a system has flat bands, with energies equal to the energies of the
molecular states, since the electrons cannot propagate. It is certainly possible to construct
a molecular system where all the unoccupied states have one energy and all the occupied
states have another, by tuning the potentials. In this case αG will vanish. However, such
a molecule can still display a magnetoelectric response; it will therefore have to be given
by αCS (and so restricted to diagonal responses). For example, consider the “molecule” of
Fig. (5.3) with the shape of a regular tetrahedron. If the two low-energy levels are occupied,
the magnetoelectric response is

∂P i

∂Bj
= ±δij

1√
6

e2

}
,

where P i here is the electric dipole moment divided by the volume of the tetrahedron; the
sign of the polarizability reverses when the complex phases are reversed. This shows that
the Chern-Simons term does not require delocalized orbitals.

Additivity
Another argument against distinguishing between the Chern-Simons part and the rest of

the susceptibility is based on band additivity. When interactions are not taken into account,
each occupied band can be regarded as an independent physical system (at least if there are
no band crossings). Applying a magnetic field causes each band n to become polarized by a
certain amount Pn, and so the net polarization should be P =

∑
n Pn. The Pauli exclusion
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Figure 5.3: A tetrahedral tight-binding molecule for spinless electrons, with one orbital per
site and complex hoppings. The hopping integrals are all equal, except that those around
one face have a phase of i relative to the other three. There are then two pairs of degenerate
levels.

principle does not lead to any “interactions” between pairs of bands, because the polarization
(like any single-body operator) can be written as the sum of the mean polarization in each
of the orthonormal occupied states.

Now the Chern-Simons form does not look particularly additive in this sense, and is
not by itself. Because it is the trace of a matrix product in the occupied subspace, it
necessarily involves matrix elements between different occupied states, while an additive
formula would not. Nevertheless, αG and αCS are together additive, as can be seen most
simply in Eq. (B.9), where the two terms combine into a single sum over occupied bands. In
terms of αG and αCS separately, one finds that when the values of αG, assuming just band 1
or 2 is occupied, are added together, some terms occur that are not present in the expression
for αG(1 + 2) (where both bands are occupied), and vice-versa. Using Eqs. (B.11c) and
(B.11d) we see, in fact, that αG is a sum of contributions which depend on three bands, as
αG =

∑
n,m,m′ C(n;m,m′) +

∑
n,n′,mD(n, n′;m). Terms such as C(1; 2,m′) are not present

in the expression for αG(1 + 2). (Likewise D(1, 2;m) appears in αG(1 + 2) but not in αG(1)
and αG(2).) Adding up the discrepancies, one finds that the energy-denominators all cancel,
and the non-diagonal terms from the Chern-Simons form appear!

Seemingly paradoxical is the fact that for band structures satisfying the degeneracy and
reflection conditions of the last subsection, the magnetoelectric susceptibility is given by
the Chern-Simons term alone, which does not seem to be additive. However, the additivity
property applies only to bands that do not cross. It does not make any sense to ask whether
the susceptibility is the sum over the susceptibilities for the systems in which just one of the
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degenerate bands is occupied, since those systems are not gapped.

5.3 The OMP as the current in response to a chemical

change

Now we will tackle the problem of deriving the formula for the OMP α discussed in the
last section. There are two impediments we need to overcome, a physical one, and a more
technical one (which we will overcome starting from an insight of Levinson) [49].

In order to determine α, we would like to carry out a thought experiment in which a
crystal is exposed to appropriate electromagnetic fields. For specificity, we will apply a
uniform magnetic field. To make the calculation of the response clean, we wish to deal with
an infinite crystal. Then the polarization does not simply reduce to the first moment of the
charge density [43], so we will instead have to calculate the current or charge distribution
induced by the fields, and then use Eq. (5.4) to deduce α. If both the crystal and the
electromagnetic fields are independent of space and time, there is no macroscopic charge or
current density. We will assume spatial uniformity, so that there are two choices for how
to proceed. Either the magnetic field can be varied in time or the crystal parameters, and
thus α, can be varied. In either case, we measure the current that flows through the bulk
and try to determine α. As ever, the diagonal response αθ is the most difficult to capture:
while either time-dependent experiment can be used to determine α̃, only the latter approach
sheds light on the value of αθ.

To see why αθ can be determined only in this way (given that we want to work with a
spatially homogeneous geometry), let us discuss how currents flow through the crystal. The
necessity of varying the crystal in time can be deduced from Maxwell’s equations (see below)
but we will give a more intuitive discussion here. Suppose that α̃ = 0. Then in an applied
magnetic field there is a polarization P = αθB; thus the crystal gets charged at the surface.
As the magnetic field is turned on, this surface charge has to build up (charge density n̂ ·P).
This occurs entirely due to flows of charge along the surface. Suppose, for example, that
the sample is a cylinder (radius R) with the magnetic field along its z axis, as illustrated
in Fig. 5.4(a). Then an electric field Eind = −ḂRφ̂/2 is induced at the surface according
to Faraday’s law. Besides being the magnetoelectric response, θ also represents the Hall
coefficient for surface currents. Therefore, a current of Js = αθḂR/2 flows to the top of
the cylinder, adding up to a surface charge of 2πR

∫
Js(t)dt = αθBfπR

2 and producing the
entire polarization αθBf . No current flows through the bulk! In fact, the Hall conductance
on the circular face produces a radial current as well, so that the charge distributes over the
surface rather than just accumulating in a ring. Note that the surface current grows with
the radius of the cylinder. This sounds like a nonlocal response, but it can be understood
as follows: the electric field is determined by the non-local Faraday law, but the crystal’s
response to the electric field (namely, the surface current) is local.

The current distribution can be understood directly from Maxwell’s equations: there
are two contributions to the bulk current, ∂tP and curl M. The polarization is αθB while
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Figure 5.4: As outlined in the text, (a) turning on a magnetic field produces a macroscopic
polarization through the flow of surface currents, while (b) varying the crystal Hamiltonian
in the presence of a fixed magnetic field produces a polarization through the flow of current
through the bulk.

the magnetization is indirectly produced by the induced electric field, αθEind. The two
contributions thus cancel by Faraday’s law in the bulk: Jbulk

b = αθ(∂tB + curl E) = 0. There
is a surface current because αθ is discontinuous there.

On the other hand, if θ changes in time, while the magnetic field is time-independent
(as in Fig. 5.4b), the polarization at the ends of the cylinder builds up entirely by means
of flows of charge through the bulk. Surface flows cannot be large enough to explain the net
polarization in this situation. Since there is no induced electric field, the surface current is
just proportional to the lateral surface area and is negligible compared to the bulk current.
Therefore the bulk current is equal to (∂tαθ)B and can be integrated to give αθB.

For the other component of the OMP, α̃, either thought experiment can be used. The
simplest approach, however, is still the crystal-variation method, since the surface currents
are negligible in that case, 5 and in any case this method allows us to find all the components
of α simultaneously.

Difficulties with the operator r and uniform magnetic fields
There are two technical difficulties in the theory. First, the operator r has unbounded

matrix elements and thus the matrix elements of the magnetic dipole moment (e/4)(v× r−
r × v) are not well-defined. This rules out the straightforward use of perturbation theory
to calculate the electric dipole moment of an infinite crystal in a uniform magnetic field.

5The surface currents and bulk currents both give a definite contribution to the polarization when the
magnetic field is varied.
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Second, if we consider a crystal in a uniform magnetic field, Bloch’s theorem does not hold.
Although the magnetic field is uniform, the vector potential that appears in the Hamiltonian
depends on r.

We avoid the problems of r as follows. The key idea is to work with the ground state
density matrix, rather than wave functions. The individual eigenstates change drastically
when a magnetic field, no matter how small, is applied (consider the difference between
a plane wave and a localized Landau level). However, the density matrix of an insulator
summed over the occupied bands only changes by a small amount when B is applied; over
short distances the magnetic field cannot have a strong effect (even in the example of Lan-
dau levels), and the density matrix has only short-range correlations because it describes an
insulating state. More technically, we show (subsection 5.3.1) that the broken translation
invariance of any single-body operator O (such as the density matrix) can be dealt with by
factoring out an Aharonov-Bohm-like phase from its matrix Or1r2 . This solves the problem
of the nonuniform gauge field and leads to expressions that depend only on differences be-
tween r’s. In addition, since the exponentially decaying ground-state density matrix appears
multiplying every expression, the factors of r1 − r2 are suppressed.

The calculation then proceeds as follows. First, using the symmetries of the electron
Hamiltonian in a uniform magnetic field, we find how the density matrix changes in a weak
magnetic field. Next we compute the current response to an adiabatic variation of the crystal
Hamiltonian. Finally, we show that this current can be expressed as a total time derivative,
and therefore can be integrated to give the polarization; at linear order in B we can read off
the coefficients, the magnetoelectric tensor α.

5.3.1 Single-body operators for a uniform magnetic field

Recall the form of the Schrödinger Hamiltonian for a single electron in a crystal and
under the influence of a magnetic field,

HS(p, r) =
1

2m
[p− eA(r)]2 + V (r), (5.10)

where V (r + R) = V (r) for lattice vectors R. The necessity of using the vector potential
A seems at first to spoil the lattice translation symmetry one would expect in a uniform
magnetic field. However, as noted by Brown [10] and Zak [93], a more subtle form of
translation symmetry remains. In particular, choosing the gauge

A =
1

2
B× r, (5.11)

the Hamiltonian has “magnetic translation symmetry”:

HS(p, r + R) = eieB·(R×r)/2}HS(p, r)e−ieB·(R×r)/2}. (5.12)

This condition defines magnetic translation symmetry for general single-body operators.
Any operator O possessing this symmetry can be written in the position basis as

Or1r2 = Ōr1r2e
−ieB·(r1×r2)/2}, (5.13a)



69

where Ō has lattice translation invariance,

Ōr1+R,r2+R = Ōr1r2 . (5.13b)

Note that the phase is just (ie/})
∫
d` ·A calculated along the straight line from r2 to r1,

which agrees with the intuition that comes from writing the second-quantized form of the
operator,

O =

∫
d3r1d

3r2 Ōr1r2c
†
r1
e−ieB·(r1×r2)/2}cr2 . (5.14)

This argument shows how to couple general Hamiltonians to uniform fields:

H = exp[(ie/~)

∫ r1

r2

d` ·A][H0r1r2 +H ′r1r2
(B)].

The vector potential appears explicitly only in A, while H ′(B) gives the rest of the depen-
dence on the magnetic field. The Schrödinger Hamiltonian (5.10) is obtained if we take

H̄0,r1r2 =

[
− }2

2m
∇2

r2
+ V (r2)

]
δ(3)(r2 − r1). (5.15)

and set H ′ = 0. Our results also apply to tight-binding models. We introduce H ′ to capture
the possibility that in a tight-binding model the hoppings will not be rectilinear, and hence
that the phases in Eq. (5.14) do not capture the full field dependence of the Hamiltonian.

5.3.2 The ground state density operator

We find it convenient to work with the one-body density matrix ρg, or equivalently the
projector onto the occupied states, whenever possible, because it is a basis-independent
object. Also, in an insulator, ρgr1r2

is exponentially suppressed in the distance |r2 − r1|,
which tempers the divergences that arise from the unboundedness of r [45]. In any case, if
the ground state is translationally symmetric, the structure described above will apply to ρg
and we can be sure that the density matrix has translational symmetry apart from a phase:

ρgr1r2
= ρ̄gr1r2

e−ieB·(r1×r2)/2}, (5.16)

where ρ̄g possesses the translation symmetry of the crystal lattice and hence should connect
smoothly to the field-free density matrix. Hence we will write

ρ̄g = ρ0 + ρ′, (5.17)

where ρ0 is the density operator of the crystal in the absence of the
Density matrix perturbation theory: Now we have to calculate ρ′, using a kind of pertur-

bation theory that focuses on density matrices rather than wave functions, since the wave-
functions suffer from the problems discussed above. This perturbation theory starts from
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two characteristic properties of the density matrix: it commutes with H, and for fermions
at zero temperature it is a projection operator. The latter means that all states are either
occupied or unoccupied, so the eigenvalues of the density operator are 0 and 1, which is
formalized as

ρgρg = ρg (5.18)

(idempotency) [17]. Expressed in the position basis,

ρgr1r3
=

∫
dr2ρ

g
r1r2

ρgr2r3

ρ̄gr1r3
=

∫
dr2ρ̄

g
r1r2

ρ̄gr2r3
e−(ie/2})B·(r1×r2+r2×r3+r3×r1). (5.19)

The exponent is just −iφ123/φ0, proportional to the magnetic flux through triangle 123, and
the exponential can be expanded for small B. At first order this gives

ρ′r1r3
=

∫
dr2[ρ

′
r1r2

ρ0r2r3 + ρ0r1r2ρ
′
r2r3
− ρ0r1r2ρ0r2r3 (iφ123/φ0)]. (5.20)

The problem of the unbounded r’s is resolved in this equation because the area A123 of the
triangle is finite and independent of the origin, and also suppressed by the factor of ρ.

Calculation of ρ′: In the last term of Eq. (5.20), we can rewrite 2A123 = r1 × r2 + r2 ×
r3 + r3 × r1 = (r2 − r1)× (r3 − r2) and then use (r2 − r1)ρ0r1r2 = [ρ0, r]r1r2 , etc., to obtain

(1− ρ0)ρ′(1− ρ0)− ρ0ρ′ρ0 = −i e
2}

B · ([ρ0, r]× [ρ0, r]). (5.21)

If we define
H̄ = H0 +H ′, (5.22)

then analogous manipulations (including (r1−r2)Hr1r2 = i}vr1r2) on the equation [H, ρg] = 0
give

[ρ′, H0] =
e

2
B · ([ρ0, r]× v − v × [ρ0, r])− [ρ0, H

′]. (5.23)

Eqs. (5.21) and (5.23) have an intuitive meaning. The former equation determines the
“interior” matrix elements of ρ′, those between two occupied or two unoccupied states of
the zero-field Hamiltonian. A perturbation with the full crystal symmetry does not change
the interior matrix elements of the density matrix because of the exclusion principle [53]. In
our case, however, multiplying ρ0 by the phase e(ie/2})B·r1×r2 gives a density matrix with the
correct magnetic translation symmetry, but also changes the momentum of the states and
so results in a small probability for states to be douby occupied. Therefore ρ′ must correct
for this “violation of the exclusion principle.” On the other hand Eq. (5.23) determines the
“cross-gap” matrix elements of ρ′ (those between unoccupied and occupied states). These
matrix elements capture the expected “transitions across the gap” induced by the field. The
rest of this section is devoted to calculating all these matrix elements. The results are given
in Eqs. (5.24) and (5.28); the derivations could be skipped on a first reading.
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Calculation of ρ′. Precisely speaking, Eq. (5.21) gives the matrix elements of ρ̄g between
pairs of occupied (n and n′) or unoccupied (m and m′) states:

〈ψnk|ρ̄g|ψn′k〉 = δnn′ − e

4}
BjεjabFabnn′(k)

〈ψmk|(1− ρ̄g)|ψm′k〉 = δmm′ − e

4}
BjεjabF̌abmm′(k), (5.24)

where F is the non-Abelian Berry curvature associated with the occupied bands,

Fabnn′ = i〈unk|∂aPk∂
bPk − ∂bPk∂

aPk|un′k〉
= ∂aAbnn′ − ∂bAann′ − i[Aa,Ab]nn′ , (5.25)

and F̌ is the corresponding quantity for the unoccupied bands. To derive these relations, we
use

ρg =

∫
BZ

d3k

(2π)3
eik·rPke

−ik·r (5.26)

where P =
∑

n occ |unk〉〈unk| is the projector onto filled bands at k. This gives

i[ρg, r] =

∫
BZ

d3k

(2π)3
eik·r(∇kPk)e−ik·r

=

∫
BZ

d3k

(2π)3
eik·r 6 rke

−ik·r (5.27)

after discarding a total derivative. The notation 6r = ∇kP was introduced in Eq. (5.5).
By contrast, Eq. (5.23) describes to what extent ρ̄g fails to commute with H0, the crystal

Hamiltonian, and gives the matrix elements of ρ′ between occupied and unoccupied states. In
this sense it is analogous to the more usual results for density-matrix perturbation theory [53].
In the basis of unperturbed energy eigenstates,

〈ψnk|ρ′|ψmk〉 = i
e

2}
Bjεjab

〈unk|{∂aPk, ∂
bHk}|umk〉

Enk − Emk

+
〈unk|H ′k|umk〉
Enk − Emk

. (5.28)

Recall that }vb = ∂bHk and that H ′ is introduced only to capture unusual situations such as
tight-binding models with non-straight hoppings, and vanishes for the continuum problem.
Eqs. (5.24) and (5.28) are the key technical results of this formalism, good to linear order in
the magnetic field.

5.3.3 Adiabatic current

Now we need to calculate the current as the Hamiltonian is changed slowly as a function of
time, as in the ordinary theory of polarization [70, 43]. We have to be careful, however, since
the current vanishes in the zero-order adiabatic ground state described by density matrix
ρg(t). It is necessary to go to first order in adiabatic perturbation theory, which takes
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account of the fact that the true dynamical density matrix ρ(t) has an extra contribution
proportional to dH/dt = Ḣ. However, once the current has been expressed in terms of
ρ̇, which is proportional to Ḣ, the distinction is no longer important and the adiabatic
approximation can be made.

Preparing for the adiabatic approximation: We can write the current as

J(t) =
e

Ω
Trρ(t)v =

e

Ω

i

}
Trρ[H, r] (5.29)

where Ω is the crystal volume. Here H is the full Hamiltonian including the magnetic
field. By unitarity of time evolution, it remains a projector if the initial state describes
filled bands only. The operator r appears here, but in a commutator. Since 〈r1|[O, r]|r2〉 =
(r2 − r1)Or1r2 , such expressions do not suffer from the difficulties of an “unprotected” r,
namely its unboundedness. We can only use cyclicity of the trace to the extent that this
property can be preserved. In particular, the expression Tr r[ρ,H], which seems formally
equivalent to Eq. (5.29), poses problems, but

J(t) =
e

Ω

i

}
Tr[ρ, [ρ, r]][ρ,H] (5.30)

does not. This expression can be derived from Eq. (5.29) using again the idempotency of ρ
(ρρ = ρ). Using the equation of motion for the density matrix,

i~ρ̇(t) = [H(t), ρ(t)], (5.31)

and making the approximation ρ ≈ ρg on the right-hand side at this stage, the current
becomes

J =
e

Ω

∫
dr1dr2dr3(r1 − 2r2 + r3)ρ

g
r1r2

ρgr2r3
ρ̇gr3r1

. (5.32)

Magnetic field dependence of the current : The considerations given in the last subsection
make the integrand

ρgr1r2
ρgr2r3

ρ̇gr3r1
= ρ̄gr1r2

ρ̄gr2r3
˙̄ρgr3r1

e−iφ123/φ0 , (5.33)

where, again, φ123 = B ·(r1×r2+r2×r3+r3×r1)/2 is the magnetic flux through the triangle
with vertices r1r2r3 and does not suffer from the pathologies of r itself, which allows us to
expand e−iφ123/φ0 = 1− iφ123/φ0 to lowest order in B (recall again that the matrix elements
of ρ are exponentially suppressed with distances).

Recalling our division ρ̄g = ρ0+ρ′ where ρ′ is of first order in the magnetic field, Eq. (5.32)
becomes

J =
e

Ω

∫
dr1dr2dr3(r1 − 2r2 + r3)

[
ρ0r1r2ρ0r2r3 ρ̇

′
r3r1

+ ρ′r1r2
ρ0r2r3 ρ̇0r3r1

+ ρ0r1r2ρ
′
r2r3

ρ̇0r3r1 − i
φ123

φ0

ρ0r1r2ρ0r2r3 ρ̇0r3r1

]
(5.34)
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at first order. The rest of the calculation involves substituting the expressions for the
magnetic-field dependence of ρg obtained earlier, and integrating the result to obtain α.
The energy-dependent part of α, namely αG, will come from the mixing of the occupied
and unoccupied bands, Eq. (5.28). The Chern-Simons term will come from the “exclusion-
principle–correcting” terms, Eq. (5.24), as well as the φ123 term in the previous equation.

Integrating the results : The four terms in the current can be collected and rearranged
into the form

J = JG + JCS1 + JCS2 (5.35a)

and integrated with respect to time as follows. The first term can be rewritten with

ρ0r1r2ρ0r2r3 ρ̇
′
r3r1

= ∂t(ρ0r1r2ρ0r2r3ρ
′
r3r1

)− ρ̇0r1r2ρ0r2r3ρ
′
r3r1
− ρ0r1r2 ρ̇0r2r3ρ

′
r3r1

and combined with the next two terms to give

JG =
e

Ω
∂tTr[ρ0, r][ρ′, ρ0] (5.35b)

and

JCS1 = −3
e

Ω
Trρ′[ρ̇0, [ρ0, r]], (5.35c)

while the final term in Eq. (5.34) (i.e., the term involving φ123) becomes

JCS2 = −i e
2

2}Ω
BjεjabTr[ρ0, r][ρ0, r

a][rb, ρ̇0] + c.c. (5.35d)

upon rewriting

(r1 − 2r2 + r3)(r1 × r2 + r2 × r3 + r3 × r1)

= (r1 − r2)[(r1 − r3)× (r2 − r3)] + (r3 − r2)[(r1 − r2)× (r1 − r3)].

The total derivative term JG [Eq. (5.35b)] can be written

J iG = ∂t(αG)ijB
j (5.36)

with αG as given in Eq. (5.5b),

(αG)ij =
e2

}
Re

∑
n occ

m unocc

∫
BZ

d3k

(2π)3
〈un|∂iP|um〉〈um|εjab{∂aH, ∂bP}|un〉

En − Em

+ 2e Im
∑
n occ

m unocc

∫
BZ

d3k

(2π)3
〈un|∂iP|um〉〈um|∂H ′/∂Bj|un〉

En − Em
, (5.37)

where the dependence on k has been suppressed. This result follows immediately upon taking
the trace in the basis of energy eigenstates. Matrix elements of [ρ0, r

i] appear as 6rik = ∂iPk,
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from Eq. (5.27), and the cross-gap matrix elements of ρ′ in are given in Eq. (5.28). Note
that since JG is a total time derivative, αG is uniquely defined for a given Hamiltonian (this
assumes the existence of a reference Hamiltonian with αG = 0, that is, the existence of a
topologically trivial, time-reversal-invariant band insulator).

In JCS2 [Eq. (5.35d)], we can replace r → [[r, ρ0], ρ0] in the third commutator. This has
the same cross-gap matrix elements as r; the interior matrix elements do not contribute
to the trace because the other three factors, ρ̇0 and two components of [ρ0, r

i], have only
cross-gap matrix elements. Then

JCS2 = i
e2

2}Ω
BjεjabTr[ρ0, r][ρ0, r

a][[[ρ0, r
b], ρ0], ρ̇0] + c.c.

or

JCS2 = − e
2

2}
BjεjabTr∇kPk∂

aPk[[∂bPk,Pk], Ṗk] + c.c.,

where an integral over k is suppressed for brevity and the trace is taken in the Hilbert space
at k. Dropping the subscripts k everywhere, this can be expanded and rearranged to give

JCS2 =
e2

2}
BjεjabTrP{[∇P , Ṗ ]∂aP∂bP + 2[Ṗ , ∂bP ][∇P , ∂aP ]

+ 3(Ṗ∂bP∂aP∇P + ∂bPṖ∇P∂aP)}. (5.35d’)

In manipulating these strings of projection operators and their derivatives, it is very useful
to realize that derivatives of projectors only have cross-gap matrix elements: P∂aPP =
Q∂aPQ = 0, where Q = 1 − P is the projector onto unoccupied bands. This means, for
example, that P(∇P)(Ṗ) = P(∇P)Q(Ṗ)P .

To JCS2 we must add JCS1 [Eq. (5.35c)],

JCS1 =
3e2

2}
BjεjabTr(P −Q)[Ṗ ,∇P ]∂aP∂bP

=
3e2

2}
BjεjabTrP{[Ṗ ,∇P ]∂aP∂bP − (Ṗ∂bP∂aP∇P + ∂bPṖ∇P∂aP)}, (5.35c’)

to get

JCS = JCS1 + JCS2

=
e2

}
BjεjabTrP{[Ṗ ,∇P ]∂aP∂bP + [Ṗ , ∂bP ][∇P , ∂aP ]}. (5.38)

By checking the different components explicitly one can see that this is

JCS = B
e2

}
TrP{[Ṗ , ∂xP ][∂yP , ∂zP ] + [Ṗ , ∂yP ][∂zP , ∂xP ] + [Ṗ , ∂zP ][∂xP , ∂yP ]}, (5.39)

so we get the “topological current”

JCS = −B
e2

}

∫
BZ

d3k

(2π)3
tr(F txFyz + F tyF zx + F tzFxy), (5.40)
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where the lower-case trace (tr) is only over the occupied bands, and the Brillouin-zone
integral has been restored.

It remains only to show that JCS is a total time derivative that integrates to αCSB.
Allowing the indices to run over t, x, y, z, in that order (so that εtxyz = +1),

JCS = −B
e2

8}

∫
BZ

d3k

(2π)3
εabcdtrFabF cd

= −B
e2

2}
εabcd

∫
BZ

d3k

(2π)3
∂atr

(
Ab∂cAd − i2

3
AbAcAd

)
. (5.41)

The derivatives with respect to kx, ky, kz will vanish when integrated over the Brillouin zone
assuming that A is defined smoothly and periodically over the zone, leaving just

JCS =−B
e2

2}
∂t

∫
BZ

d3k

(2π)3
εabctr

(
Aa∂bAc − i2

3
AaAbAc

)
, (5.42)

where the indices now only run over xyz, as originally. This obviously gives αCS as in
Eq. (5.5c), completing the proof. It must be reiterated that this integral is not always
entirely trivial. In particular, if the adiabatic evolution brings the crystal back to its initial
Hamiltonian in a nontrivial way, the Brillouin zone integral need not return to its initial
value because A is not uniquely defined. In other words,

∫
dtJCS can be multivalued as a

function of the Hamiltonian deformation parameters. However, the change can only be such
that θ changes by an integer multiple of 2π, as discussed in subsection 5.2.2.

5.4 Summary

The theoretical calculation of the magnetoelectric polarizability in insulators presents a
difficulty similar to that known well from the theory of polarization; both quantities suffer
an inherent ambiguity in the bulk. The magnetoelectric polarizability adds another level of
difficulty because the vector potential is unbounded and breaks lattice translation symme-
try. However, we have developed a formalism that allows us to deal directly with a uniform
magnetic field. In the appendix, we further show that a long-wavelength regularization of
the vector potential together with a suitable generalization of the polarization (to deal with
the broken crystal symmetry) provides a (relatively) simple, though less rigorous, way to
compute the response function. The final expression for the OMP rederives known results
for particular model systems and topological insulators and completes the picture with ad-
ditional terms that have a relatively straightforward and intuitive interpretation. We hope
that these results and the method of their derivation will be valuable for future work on
magnetoelectric effects and topological electronic phases.
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Chapter 6

Conclusion

In the introduction it was claimed that the time-reversal-invariant topological insulators
considered here, as well as the quantum Hall phases of matter, are generically characterized
either by bulk properties (invariants) or edge properties (like the number of zero crossings
of the edge dispersion). The foregoing chapters have focused almost exclusively on the bulk
side of this correspondence in the case of topological insulators. Chapter 3 discussed a
variant of the original two-dimensional topological invariant that is stable to disorder away
from the clean transition, and that therefore serves to classify disordered (noninteracting,
time-reversal-invariant) insulators. Chapters 4 and 5 discussed the magnetoelectric response
properties of three-dimensional bulk insulators, which again give a topological invariant when
time reversal symmetry T is not broken.

Much of the activity in the field of topological insulators to date, by contrast, has focused
on the edge and surface states, not the bulk properties. This is certainly fair, since the edges
carry low-energy excitations, which frequently dominate physical properties of materials
in the experimental regimes of interest. Indeed, discussions of quantum Hall physics often
maintain that the really “physical” characteristic is the chiral edge modes, since these modes
carry the current in experimental setups.

However, in that case there are bulk measurements as well, like the low-frequency Faraday
rotation, that detect the Hall conductance, so that having the bulk characterization is not
irrelevant. Furthermore, as pointed out in Chapters 4 and 5, there is great interest in
materials with bulk magnetoelectric properties, and so the results derived there may prove
to be useful in the not-too-distant future. For example, in unpublished work, Sinisa Coh has
already used them to compute the (small) orbital contributions to the magnetoelectric effect
in the benchmark magnetoelectric Cr2O3. Hopefully a deeper understanding of topological
insulators will lead to applications in this area.

Still, the fact that the work presented here excludes the boundaries by construction
means that there should be more to the story. First, the presence of gapless surface states
pose some difficulties for the derivations and numerics presented in the preceding chapters.
Fundamentally, when there are gapless excitations none of the derivations in Chapters 3 or
5 are valid, since they utilize the adiabatic theorem, and hence its assumption of a spectral
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gap. Of course, it is still possible to compute transport properties of gapless systems; the
computation of the current through an insulator, as here, is actually a rather anomalous
activity. The semiclassical formalism used in Chapter 4, for example, assumes that there is a
gap but not that the chemical potential is in the gap; and there is a way to apply the Kubo
formula to metals, although it is apparently a tricky business. So, it should be possible to
compute the transport for a given metallic surface, but it needs to be said that it will be
messier than the what has been explored here; the dissipationless transport considered here
has a nice rigidity to it, which is lost in a metal.

As a specific example of the issues that can arise when the surfaces are taken into account,
consider the following situation. As described in Chapter 4, the surface states of the topo-
logical insulator can be “gapped out” by applying a magnetic perturbation at the surface,
and the sign of the surface Hall conductance then depends on the details of the perturbation.
At an edge between two different signs of surface perturbation there is a change in the Hall
conductance of ±e2/h, which means on very general grounds that the edge must carry a
gapless chiral mode. Does this mean that the magnetoelectric polarizability of a topological
insulator is generically not measurable, since one should expect to have such edge modes?
Or should there be a some stability to a low density of such edges? It may be possible to
treat this case by analogy with the integer quantum Hall effect, where disorder can lead to
the presence of such modes in the bulk as well. However, the more general case, in which
the surface Dirac modes are not gapped everywhere, may require a more novel treatment.

Another open question stems from the very different approaches taken to the topological
invariant in Chapters 4 and 5 as compared to that of Chapter 3. The classification of
topological insulators in Chapter 3 depended on the fact that T 2 = −1 for spin-1/2 particles
(electrons), and the three-dimensional invariant built from this two-dimensional invariant
therefore seems to require this as well. This requirement is obscured in the formulation of the
invariant as the k-space Chern-Simons integral, or the noncommutative volume introduced
in the Interlude, but it can be seen (at least numerically) that the nontrivial value of the
integral requires the sort of band degeneracy implied by T 2 = −1 (i.e., Kramers degeneracy).
Even more strikingly, the crucial object in the derivation of Chapter 5 is the density matrix
ρ =

∑ |ψ〉〈ψ|. If time reversal is represented by Θ, and Θ2ψ = −ψ, then Θ2ρ(Θ−1)2 = ρ and
the information about the spin-1/2 nature of the electron is apparently lost. On the other
hand, the argument in Chapter 4 implying that T -protected topological insulators exist even
in the presence of electron-electron interactions does not depend at all on the spin of the
electron (i.e., Kramers degeneracy).

It may be that the only way to see the effect of strong spin-orbit coupling in general
is to look at the surface modes. For example, this is how the 3D topological insulator is
characterized in a recent treatment of disordered, noninteracting insulators [74]. Similarly,
a bulk OMP of θ = π should be associated with something like gapless Dirac surface modes
even in strongly interacting systems (recall, however, that the precise Dirac structure is not
generic in the noninteracting, crystalline case, and so cannot be said to be truly fundamental).

It would be more satisfying to be able to trace the connection between the spin of the
electron (i.e., strong spin-orbit coupling) and the topological nature of the phase from bulk
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considerations, even in the disordered and interacting cases. How does the requirement of
degeneracy enter? In this regard, it is interesting to note that surface Hall conductances
±e2/2h are consistent with the bulk topological insulator, even in the interacting case; that
is, there seems to be a degeneracy lurking in plain sight. Will the bulk degeneracy depend
on the topology of the material, as in the case of the fractional quantum Hall effect? That
would be one way to reconcile the apparent discrepancy in the descriptions. In any case, the
computation of the orbital magnetoelectric polarizability in the fully interacting case stands
as an interesting and important open problem in this field.

Other questions involve the coupling of the electrons in topological and magnetoelectric
materials to fields or perturbations other than the electric and magnetic fields, as well as
to the electromagnetic field at higher orders. As an example, the old work on axion elec-
trodynamics from particle physics points out that there will be higher order responses (F 4

rather than F 2, where F is the field tensor) suppressed by the electron “mass”, i.e., the band
gap. At first glance, a strong magnetic field would seem to simply break the time-reversal
invariance of the topological insulator and remove the interesting physics associated with
that symmetry; these higher-order terms may indicate that a strong field may reveal other
interesting, although probably not topological, effects.

This nonzero electric or magnetic field, at least when not too strong, can be seen as
a perturbation away from the topological insulator, or more general OMP material. It is
not immediately clear what sorts of perturbations will serve to enhance the magnetoelectric
response of a material. The construction in Chapter 4, in which a coupling to an anti-
ferromagnetic order parameter is added to the topological insulator, allows θ to be tuned
continuously in that model, but in other cases such a coupling may have no effect at all
on θ [55]. The non-Chern-Simons response αG derived in Chapter 5 should generically be
enhanced by perturbations that reduce the band gap, but since the Chern-Simons response
depends crucially on the wave functions, it is not enough to look at the energy spectrum to
understand the effects of varying the Hamiltonian.

On a similar note, it is interesting to ponder how the magnetoelectric response can
actually be varied in the laboratory. After all, the derivation proceeds by assuming the
possibility of such variation, at least in principle. Furthermore, it is constructed by analogy
with the derivation of the modern theory of polarization [43], which is modeled in turn on the
actual experimental protocol for determining changes in polarization. Finding a way to vary
the Hamiltonian is like adding an extra dimension to the space in which the material lives,
raising the possibility of effectively “looking in the bulk” without having to pass through the
surface.

Finally, an area that has not been much explored to date is the question of the coupling
between the electrons and other excitations in these materials. For starters, there is a
theoretically intriguing, but hardly relevant experimentally, effect know from old work: a
material with a nonzero value of θ should have a nontrivial coupling to the gravitational field,
i.e., the metric of spacetime [12].1 While this sounds at first blush completely removed from

1While the effect due to coupling to the real gravitational field is highly unlikely to be measurable, it
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the realm of condensed matter physics, it actually raises an interesting point, since the charge
that couples to gravity is energy, and so the associated current is the energy, or heat, current
in the material. It is know that the electronic properties of topological insulator thin films
can affect the thermal currents in thin-film geometries [27]. What happens as a result of the
coupling between the electrons and other excitations of the material, say, acoustic phonons
or magnons? These are linearly dispersing bosons that couple to the electrons, like photons
(and gravitons); it is therefore reasonable to expect that the unusual electronic structure
that generates the magnetoelectric effect (and the “gravitational Hall effect”) should also
generate an interesting effect due to this coupling. More generally, orbital magnetoelectrics
should be expected to serve as a background for exciting future developments in condensed
matter physics.

should be noted that there are condensed matter models that have emergent gravitational fields [89], and
it would be interesting to try to construct such a model that also had nonzero θ, in which case this effect
would appear.
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Appendix A

Analogies between polarization and
orbital magnetoelectric polarizability

Polarization Magnetoelectric
polarizability

dmin 1 3

EM coupling −P · E −αE ·B

Observable P =
∂〈H〉
∂E

αij = − ∂〈H〉
∂Ei∂Bj

= δij
θ

2π

e2

h

Quantum ∆P = e
R

Ω
∆α =

e2

h

Surface q = (P1 −P2) · n̂ σxy = (α1 − α2)

Chern-Simons form Ai εijk

[
Ai∂jAk − i2

3
AiAjAk

]
Table A.1: Comparison of Berry-phase theories of polarization and magnetoelectric
polarizability.
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Appendix B

Calculating the OMP using static
polarization

As noted in the text, matrix elements of the operator r are ill-behaved in a basis of
extended, Bloch-like states. That problem was solved by working with the density operator
ρ, whose matrix elements are exponentially suppressed with distance. Another approach is
to use a Wannier-like basis of localized states. In this appendix, we take this approach to
present an alternative derivation of the OMP.

The Bloch functions ψnk(r) of the unperturbed crystal will evolve, under the application
of a long-wavelength magnetic field A = A0 sin q · r, into the exact energy eigenfunctions
Ψnk(r). These no longer have a sharp crystal momentum k, but may be expanded in a
perturbation series in the unperturbed ψnk(r). Then the analogue to the standard Wannier
function wnR(r) for lattice vector R will be

WnR(r) =
Ω√
N

∫
BZ

d3k

(2π)3
Ψnk(r)e−ik·R

= wnR(r) + δwnR(r), (B.1)

where Ω is the volume of the crystal and N is the number of unit cells. The Wannier orbitals
centered at R become polarized when the magnetic field is applied, and this distortion gives
a polarization density of

δP(R) =
1

Ω

∑
n occ

〈wnR|er|δwnR〉+ c.c. (B.2)

Although it is not obvious that the bulk polarization appearing in Maxwell’s equations is the
same as the polarization of a set of Wannier orbitals, this expression leads to Eq. (5.5). To en-
sure that the Wannier orbitals are localized, we will have to suppose that each band has a van-
ishing Chern number,[80] so that the phase of unk can be chosen so that it is a periodic func-
tion of k. In this case the unperturbed Wannier functions are localized, and (though there
are usually subtleties in defining Wannier functions in a magnetic fields),[69] the regulariza-
tion used here leads to localized orbitals. Presumably these arguments can be extended to
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the case where the total Chern number for all occupied bands Cij =
∑

n occ

∫
BZ
d3kF ijnn(k)/2π

vanishes.
Here we want to take a relatively direct approach to perturbation theory in the field, and

write[88]

Ψnk = ψnk + δψnk (B.3)

δψnk =
eB

2iq

∑
l

[
ψlk+q

〈ulk+q|vx|unk〉
Enk − Elk+q + iε

− (q → −q)
]
.

For definiteness we take A = −(B/q) sin(qy)x̂, and the velocity operator can be alternatively
expressed as vx = ∂xHk/}, with Hk the Bloch Hamiltonian of the unperturbed crystal.

Then the first-order correction to the dipole moment of the generalized Wannier functions
will be

δP i(R) = e
∑
n occ

∫
dr

∫
BZ

d3k

(2π)3
(
rieik·(R−r)u∗nk(r)

) ∫
BZ

d3k′

(2π)3
δψnk′(r)e−ik

′·R + c.c. (B.4)

The position integral must be taken over the whole crystal at this point. In the integral over
k, ri can be converted into a k derivative of the exponential, and then partial integration
leaves a factor −i∂kiu∗ (the boundary term vanishes because the Bloch function ψ is strictly
periodic in k). Then

δP i = −e
2B

2q

∑
n occ
l

[
〈∂iunk|ulk〉〈ulk|vx|unk−q〉

Enk−q − Elk + iε
eiq·R − (q → −q)

]
+ c.c. (B.5)

(From now on, we will omit the integral over k and the associated factor of (2π)3.) Because
of the variation of the magnetic field the magnetoelectric polarization δP i(R) = αijB

j(R)
should vary as cos q ·R. The polarization seems to have both cosine and sine terms, but the
coefficient of the latter is −B sin(qy)Cix/q, and the vanishing of C is a prerequisite for using
Wannier functions.

To lowest order in q and B, then, the magnetoelectric response is

αij = −e
2

2
εjab∂qb

∑
l

n occ

〈∂iunk|ulk〉〈ulk|va|unk−q〉
Enk−q − Elk + iε

+ c.c., (B.6)

where we have symmetrized over Landau gauges to make the expression nicer.
Switching to the shorthand |n〉 = |unk〉,

αij =
e2

}
εjabRe

∑
n occ
l

[〈∂in|l〉〈l|∂aH|∂bn〉
En − El + iε

− 〈∂
in|l〉〈l|∂aH|n〉∂bEn
(En − El + iε)2

]
. (B.7)
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Simplifying the second term of this expression makes use of the “Sternheimer equation”

(∂aH)|n〉 = (En −H)|∂an〉+ (∂aEn)|n〉 (B.8)

and the antisymmetry in the indices a and b to give

αij =
e2

2}
εjab

∑
n occ
l

〈∂in|l〉〈l|∂a(H + En)|∂bn〉
En − El + iε

+ c.c. (B.9)

Note the formal similarity to the expression for orbital magnetization,

Mj =
1

2
Im
∑
n occ

εjab〈∂an|(H + En)|∂bn〉 = −1

2
Im
∑
n occ

εjab〈n|∂a(H + En)|∂bn〉, (B.10)

in particular the appearance of the combination H + En.[78, 88]
To bring our compact expression into the form given in terms of αG and αCS in the

main text, we need to break the sum over l into contributions from occupied and unoccupied
states. Omitting the factor (e2/2~)εjab for the moment, the sum over the occupied states
takes the form

∑
n,l
occ

〈∂in|l〉〈l|∂a(H + En)|∂bn〉
En − El + iε

+ c.c. =
∑
n,l
occ

〈∂in|l〉〈l|∂
a(H − El)|∂bn〉+ 〈∂bl|∂a(H − En)|n〉

En − El + iε

=
∑
n,n′
occ

〈∂in|n′〉〈∂bn′|∂an〉 (B.11a)

using the antisymmetry in a and b and the Sternheimer equation again. Because the two
sums are not symmetric when we take l in the unoccupied space, however, the terms do not
cancel as nicely. Inserting a resolution of the identity, broken into two parts, gives:∑

n,n′ occ
m unocc

〈∂in|m〉〈m|∂aH|n′〉〈n′|∂bn〉
En − Em

+ c.c.

=
∑

n,n′ occ
m unocc

〈∂in|m〉〈m|∂an′〉〈n′|∂bn〉+ c.c. (B.11b)

−
∑

n,n′ occ
m unocc

〈∂in|m〉〈m|∂an′〉〈n′|∂bH|n〉
En − Em

+ c.c. (B.11c)

+
∑
n occ

m unocc

〈∂in|m〉〈m|∂an〉∂bEn
En − Em

+ c.c.
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and ∑
n occ

m,m′ unocc

〈∂in|m〉〈m|∂aH|m′〉〈m′|∂bn〉
En − Em

+ c.c. (B.11d)

+
∑
n occ

munocc

〈∂in|m〉〈m|∂bn〉∂aEn
En − Em

+ c.c.

The unnumbered pieces of these equations cancel by antisymmetry in a and b.
Defining P as the projector onto occupied bands as in the text, Eqs. (B.11c) and (B.11d)

combine to give

(αG)ij =
e2

2}
εjab

∑
n occ

m unocc

〈n|∂iP|m〉〈m|{∂aH, ∂bP}|n〉
En − Em

+ c.c., (B.12)

which is equivalent to Eq. (5.5b) upon identifying va with ∂aH and 6ri with ∂iP . This quantity
has the crucial property that it is “gauge invariant,” meaning that it can be written as a
matrix trace, and hence does not change under a change of basis of the Hilbert space. Of
course, this property is not evident here, where the formula makes explicit reference to
energy eigenfunctions and their energies, but it follows from the expression in terms of a
matrix given in Eq. (5.35b). The remainder, Eqs. (B.11a) and (B.11b), becomes

(αCS)ij = − e
2

2}
δijεabc tr

[
Aa∂bAc − 2i

3
AaAbAc

]
, (B.13)

which reproduces Eq. (5.5c).
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