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A blood-based signature of 
cerebrospinal fluid Aβ1–42 status
Benjamin Goudey  1,2,3, Bowen J. Fung  1,4, Christine Schieber1, Alzheimer’s Disease 
Metabolomics Consortium*, Alzheimer’s Disease Neuroimaging Initiative** &  
Noel G. Faux  1,5

It is increasingly recognized that Alzheimer’s disease (AD) exists before dementia is present and 
that shifts in amyloid beta occur long before clinical symptoms can be detected. Early detection of 
these molecular changes is a key aspect for the success of interventions aimed at slowing down rates 
of cognitive decline. Recent evidence indicates that of the two established methods for measuring 
amyloid, a decrease in cerebrospinal fluid (CSF) amyloid β1−42 (Aβ1−42) may be an earlier indicator of 
Alzheimer’s disease risk than measures of amyloid obtained from Positron Emission Tomography (PET). 
However, CSF collection is highly invasive and expensive. In contrast, blood collection is routinely 
performed, minimally invasive and cheap. In this work, we develop a blood-based signature that 
can provide a cheap and minimally invasive estimation of an individual’s CSF amyloid status using a 
machine learning approach. We show that a Random Forest model derived from plasma analytes can 
accurately predict subjects as having abnormal (low) CSF Aβ1−42 levels indicative of AD risk (0.84 AUC, 
0.78 sensitivity, and 0.73 specificity). Refinement of the modeling indicates that only APOEε4 carrier 
status and four plasma analytes (CGA, Aβ1−42, Eotaxin 3, APOE) are required to achieve a high level 
of accuracy. Furthermore, we show across an independent validation cohort that individuals with 
predicted abnormal CSF Aβ1−42 levels transitioned to an AD diagnosis over 120 months significantly 
faster than those with predicted normal CSF Aβ1−42 levels and that the resulting model also validates 
reasonably across pet Aβ1−42 status (0.78 AUC). This is the first study to show that a machine learning 
approach, using plasma protein levels, age and APOEε4 carrier status, is able to predict CSF Aβ1−42 
status, the earliest risk indicator for AD, with high accuracy.

Alzheimer’s disease (AD) is a terminal neurodegenerative disease that has historically been diagnosed based 
on “clinically significant” cognitive decline of an individual and exclusion of other conditions. However, it is 
increasingly recognized that AD is a decades-long neurodegenerative process, with shifts in amyloid β1–42 (Aβ1–42) 
providing the first indicators of disease development, long before “Alzheimer’s dementia” (significant cognitive 
decline) is clinically apparent1–5.

There is currently no cure or disease-modifying therapy for this terminal illness despite hundreds of clinical 
trials being conducted since 20026,7. It is hypothesized that the high failure rate of AD trials is in part due to the 
trials targeting AD patients with significant cognitive impairment, who are therefore in the late stages of the dis-
ease and likely have suffered a level of brain tissue loss that cannot be compensated for8. Compounding this is the 
discovery that many patients enrolled in clinical trials were retrospectively found to have normal levels of amyloid 
and hence did not have AD9, with this number as high as 20%10. Given these findings, there is a great interest in 
amyloid screening for clinical trial enrichment in order to recruit individuals at the earliest stages of AD, where 
intervention is thought to have the greatest chance of success8. It would also ensure that included individuals are 
amyloid positive (i.e. have abnormal levels of amyloid), a necessary precondition for the development of AD. This 
sort of selective screening is an important precursor for the longer-term goal of population screening for AD11.
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There are currently two established methods to measure an individual’s amyloid burden: either in vivo in 
the form of reduced levels of Aβ1–42 in the cerebrospinal fluid (CSF) or increased uptake of radioactive tracers 
that bind selectively to the Aβ fibrillary aggregates by PET imaging. Unfortunately, existing methodologies for 
measuring an individual’s amyloid levels suffer drawbacks that limit their utility for screening. Lumbar punctures 
are highly invasive, with this factor alone limiting the applicability of CSF biomarkers for screening. While PET 
scans are less invasive, they are far more expensive and access to PET scanning facilities is limited in some regions. 
Despite this, many current trials that target amyloid now require positive amyloid imaging at baseline to ensure 
accurate diagnosis, a cost-intensive process7.

Despite their invasiveness, recent studies have found evidence that changes in CSF Aβ1–42 may indicate AD 
risk long before these same changes are reflected in PET Aβ imaging12–14. Palmqvist et al.13 have shown compel-
ling evidence that changes in CSF Aβ1–42 occur up to a decade before the same signal is found by PET Aβ imaging. 
These results indicate that CSF may be a more suitable measure for early detection, whereas Aβ PET contributes 
independent information that is more related to disease progression and downstream pathology.

To bypass the invasiveness of CSF collection, there is a strong interest in finding blood-based markers that 
yield the same information about amyloid status as would be obtained from CSF. There have been a number of 
studies which have shown that a blood protein signature can be found that reflects AD brain pathology as meas-
ured by PET15–24. Of particular interest is the recent study by Nakamura et al.25, whereby levels of Aβ1–40, Aβ1–42 
and APP669−771 in plasma, measured using specialised immunoprecipitation (IP) coupled with Matrix Assisted 
Laser Desorption/Ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) (henceforth referred to as 
IP-MALDI-TOF-MS), were shown in combination to have strong performance (>0.94 area under the receiver 
operating characteristic curve (AUC)) in predicting PET Aβ1–42 status across two cohorts. This combination 
of biomarkers was also found to be predictive of CSF Aβ1–42 status, with an AUC of 0.88 on a smaller subset of 
patients (n = 46). The novel IP-MALDI-TOF-MS method employed by Nakamura et al.25 is still in its infancy and 
it is unclear how easily this will be translated into a clinical setting. Thus, there is still strong interest in finding 
blood markers for CSF Aβ1–42 using alternative approaches that rely on more established assays.

Here, we evaluated the ability of proteomic and metabolomic data to predict the levels of CSF Aβ1–42 using a 
Random Forest (RF) approach and explore which types of measurements lead to the strongest predictive perfor-
mance. We then determine the minimal set of features required to achieve comparable predictive performance. 
Finally, we evaluate the robustness and utility of these predictive models across a held-out validation cohort of 
individuals with mild cognitive impairment (MCI), demonstrating that subjects with predicted abnormal CSF 
Aβ1–42 levels showed a faster rate of cognitive decline (measured by the transition to a clinical AD diagnosis) than 
those with predicted normal CSF Aβ1–42 levels.

Methods
Overview of cohort and measurements. The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is 
a large, multicenter, longitudinal neuroimaging study, launched in 2004 by the National Institute on Aging, the 
National Institute of Biomedical Imaging and Bioengineering, the Food and Drug Administration, private phar-
maceutical companies, and non-profit organizations.

ADNI is a longitudinal study of older adults, designed to test whether serial magnetic resonance imaging 
(MRI), positron emission tomography (PET), other biological markers, and clinical and neuropsychological 
assessment can be combined to measure the progression of MCI and early AD.

The data used in this study were obtained from the ADNI database (http://adni.loni.usc.edu/), downloaded 
10th October 2017 as the R package, ADNIMERGE.

The ADNI study protocols were approved by the institutional review boards of all participating sites (http://
www.adni-info.org/) and written informed consent was obtained from all participants or authorized represent-
atives. All the analytical methods were performed on the de-identified data and were carried out in accordance 
with the approved guidelines. Study inclusion criteria and definitions for each diagnosis class have been previ-
ously reported in detail26. Briefly, individuals diagnosed as AD had to meet the National Institute of Neurological 
and Communicative Disorders and Stroke-Alzheimer’s Disease and Related Disorders Association criteria for 
probable AD27. These individuals had issues with global cognition and memory function and they, or their care-
takers, reported significant concerns about their memory. In contrast, individuals with MCI exhibited subjective 
memory loss (CDR of 0.5 and were at least one standard deviation(SD) below the normal mean of the delayed 
recall of the Wechsler Memory Scale Logical Memory II) but showed preserved activities of daily living, the 
absence of dementia and scored 24–30 on the MMSE.

Data preparation. We examined 566 individuals in the ADNI cohort who had baseline measures of age, 
APOEε4 carrier status, 193 protein levels (including homocysteine, Aβ1–40, and Aβ1–42) and a further 190 proteins 
measured on a Rules-Based Medicine (RBM) platform) and 186 LC-MS/MS metabolites and lipids. After apply-
ing previously documented quality control procedures (Supplementary Methods) and removing analytes with 
more than 15% missingness, 149 proteins and 138 metabolites remained. No samples were removed from the 
analysis as missingness levels were less than 5%. Any remaining missing data points were imputed using an unsu-
pervised RF approach28, with the resulting 289 analytes listed in Supplementary Table 5, showing means, SD, and 
association across different CSF Aβ1–42 status. After quality control, a total of 566 individuals, each with measures 
for 289 analytes, age, and APOEε4 carrier status, were present in the ADNI cohort (Table 1).

Training and Validation cohorts. The 566 individuals in this study ranged from 54.4–89.6 years of age 
and could be categorized at baseline by their AD clinical diagnosis as cognitively normal (CN; n = 58), amnestic 
MCI (n = 396) or probable AD (n = 112). A breakdown of the demographics of the 566 individuals by baseline 
diagnosis and CSF availability is shown in Table 1.

https://doi.org/10.1038/s41598-018-37149-7
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This cohort was split into training and validation cohorts with 356 and 210 individuals with and without 
measures of CSF Aβ1–42, respectively. CSF Aβ1–42 was measured using the Luminex xMAP platform. The training 
set was used to build predictive models and evaluate their performance directly using the measured Aβ1–42 levels 
while the validation cohort was used to evaluate the generalizability and utility of the model’s predictions. For 
each cohort, we also considered a subset of individuals for whom Aβ1–42 status from PET was available at least 
one-time point (not just at baseline), either using 11C-Pittsburgh compound B (PiB) and 18F-AV-45 (florbetapir, 
AV45) tracers, for further validation of our modeling. Further demographic information for these cohorts can be 
found in Supplementary Tables 1, 2 and 3.

Binary and regression modeling tasks. The primary aim of this work was to produce a model that pre-
dicts if an individual’s CSF Aβ1–42 levels are below the recognized clinical threshold of 192 pg/ml for the Luminex 
platform, indicating an abnormal CSF Aβ1–42 level, and hence increased AD risk. Given the continuous CSF 
Aβ1–42 measures in the ADNI cohort, two approaches were considered

•	 a ‘regression’ task: learning the continuous CSF Aβ1–42 levels and thresholding these post-prediction
•	 a ‘binary’ task: learning the dichotomized CSF Aβ1–42 status based on clinical thresholds directly.

While both tasks result in a binary classifier, they face different trade-offs. The regression task makes use of 
the full information in the CSF levels but needs to learn a suitable threshold to convert its continuous predictions 
into suitable binary labels whereas the binary task only learns from the dichotomized CSF levels. Given these 
trade-offs, we have investigated both modeling approaches throughout this work.

Statistical modeling. We made use of Random Forests (RF) as the modeling approach to predict CSF 
Aβ1–42 levels for both the binary and regression tasks. RFs are a widely-used machine-learning ensemble method 
that have a number of advantages for the small sample size and disparate types of features observed in the ADNI 
dataset. RFs are invariant to the scale of the observed features and make few assumptions about the distributions 
of observed data allowing them to be applied to multiple data modalities easily. It can also detect non-additive 
relationships between variables without needing them to be included explicitly29.

All analysis in this work made use of the RF implementation in the R package ranger30. Each forest contained 
2000 individual trees, each making use of a random selection of p3/4 features, where p was the total number of 
variables used in a given model. These parameter choices were based on recommendations provided in Ishwaran 
et al.31. All other parameters in the ranger implementation were set to their default values. To get an estimate of 
the performance of our models, we have made use of a nested cross-validation (CV) framework, whereby an inner 
CV was used to determine model parameters, and the outer CV was used to gain an estimate of the model’s per-
formance on unseen data32. In this study, we used 3 repetitions of 3 fold CV for the inner loop and 10 repetitions 
of 10 fold CV for the outer loop.

As the RF used pre-determined parameter values, only a single parameter had to be determined: the threshold 
on the continuous regression predictions necessary to generate binary labels. This threshold was selected based 
on performance in the inner CV loop, using the R package OptimalCutoffs33 to evaluate six potential cutoff met-
rics (Supplementary Methods) and selecting the method which maximized the accuracy over all of the test folds 
from the inner cross validation loops. The best performing cutoff criterion was then used in the current iteration 
of the outer cross-validation loop and the accuracy, sensitivity, and specificity derived from this threshold was 
recorded for that fold. While this approach means that a different method could be used to derive the regression 
threshold for each fold in the outer CV loop, the resulting estimate of performance is unbiased and hence is likely 
to be more representative of performance on unseen data compared with selecting a threshold based on the entire 
set of training data.

Dataset Training Validation

Diagnosis CN MCI AD CN MCI AD

Number of participants (n) 58 198 102 0 198 10

Age (mean, (SD)) 75.11 (5.77) 74.35 (7.48) 74.90 (7.91) — 75.13 (7.32) 73.73 (10.04)

Gender; female (n, (%)) 28 (48.28) 65 (32.82) 43 (42.16) — 75 (37.88) 4 (40.00)

Years of education (mean, (SD)) 15.67 (2.78) 15.81 (2.99) 15.16 (3.29) — 15.48 (3.09) 14.70 (2.06)

APOEε4 carriers (n, (%)) 5 (8.62) 106 (53.54) 71 (69.61) — 105 (53.03) 5 (50.00)

CSF Aβ1–42 abnormal (n, (%)) 0 (0) 146 (73.7) 94 (92.16) — — —

PET imaging (n, (%)) 28 (48.28) 71 (35.86) 9 (8.82) — 108 (65.55) —

Table 1. Demographic characteristics of the ADNI data set separated into training and validation cohorts, 
corresponding to individuals with and without CSF measures respectively. Columns in each cohort provide a 
further breakdown into individuals that are cognitively normal (CN), have mild cognitive impairment (MCI) 
or Alzheimer’s disease (AD). The units of each cell are shown in parentheses in the row names and commonly 
include number of patients (n) or mean of a given quantity (mean). If a secondary measure (percent (%) or 
standard deviation (SD)) is also present, it is listed in brackets next to the primary measure.

https://doi.org/10.1038/s41598-018-37149-7
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Measures of model performance. Model performance was summarized by the mean and standard devi-
ation of the area under the Receiver Operating Characteristic (ROC) curve (AUC), accuracy, sensitivity, and 
specificity from the testing performance across the different cross-validation runs. R2 values were also calculated 
for the regression task. Increases in AUC between models were tested for significance using a one-tailed Wilcoxon 
signed-rank test. Receiver operating curves were constructed by aggregating all of the test predictions from the 
outer cross-validation.

Evaluating the importance of different input modalities. The input variables were separated into 
three classes: a commonly used baseline model (B) including age and APOEε4 carrier status; Proteomics (P), 
which included the 146 analytes measured on the RBM panel as well as homocysteine and plasma Aβ1–40 and 
Aβ1–42; Metabolomics (M), including 138 metabolites and lipids. Four separate random forests were created using 
different subsets of these features to determine which were most useful for modeling CSF Aβ1–42. We denoted 
these models by the combination of features they included; for example ‘BPM’ refers to a model built using all 
three classes of features. The best performing model was selected for all subsequent analysis.

Discovery of the smallest set of markers needed for strong predictive performance. After eval-
uating the impact of the different input modalities, we determine the minimum set of individual analytes nec-
essary to achieve high predictive performance. This was done by treating the number of included features as a 
parameter to be determined in our nested CV framework. Within each fold of the inner CV loop, we used a recur-
sive feature elimination approach, ranking features according to their Variable Importance, the difference in the 
prediction error on the out-of-bag data when a given feature was permuted and unpermuted29 and removed the 
lowest ranking features in a stepwise fashion. The AUC of the resulting RF was recorded, and the procedure was 
repeated over increasingly smaller subsets of features until no features were left to be removed. After the inner CV 
loop finishes, we determine the number of features that achieved the optimal trade-off between model complexity 
and performance by selecting the smallest subset of features that achieved within 4% of the maximal observed 
AUC. A model using this subset of features was then trained on all training folds of the outer CV loop and evalu-
ated on the test fold. Again, by determining the number of features to include within our nested cross-validation 
framework, we are able to determine an unbiased estimate of the model’s expected performance over unseen data.

Survival analysis. Survival analysis was conducted to determine if the rate of conversion from MCI to AD 
was different between those with predicted low and normal CSF Aβ1–42 levels, enabling us to determine if our 
predictions lead to useful clinical outcomes in the validation cohort.

Four separate analyses were performed, using the:

 1. measured CSF status on the training set (n = 198)
 2. predicted CSF status from B model, the standard baseline, in the validation set (n = 198)
 3. predicted CSF status from BP model, the best performing model, in the validation set (n = 198)
 4. predicted CSF status from BPfs model, the most parsimonious model, in the validation set (n = 198),

where BPfs is the feature selected model with the smallest set of features. For each analysis, we have examined the 
hazard ratios using Cox regression and used log-rank tests to compare the survival distribution of low/normal 
CSF Aβ1–42 stratifications in the four analyses, as well to compare equivalence between the actual and predicted 
stratifications.

Validation performance over PET Aβ1–42 status. In order to further validate our model, we have exam-
ined the ability of our model to differentiate PET Aβ1–42 abnormal and normal status. While it is known that 
Aβ1–42 status from PET can differ from that observed in CSF, measurements from the two modalities are corre-
lated and should be very similar for individuals who are not close to the cutoff indicating pathology. This provides 
analysis provides further evidence of our model’s ability to determine Aβ1–42 status in individuals in the validation 
cohort, where CSF measurements are not available.

Given that only a limited number of individuals had associated measures of PET imaging at baseline (n = 18 
and 27 for training and validation cohorts respectively), we have made use of the earliest PET image available, 
leaving us with 108 and 68 individuals in the training and validation cohort to evaluate. The threshold for abnor-
mality was defined as an SUVR of 1.5 and 1.11 for PET images using PiB and AV45 tracers respectively. The mean 
number of years past baseline that a scan was taken was 3.07 and 2.97 years for training and validation cohorts 
respectively.

The use of imaging at non-baseline times assumes that differences between the baseline and the  time that the 
image was taken are relatively small (which may be reasonable assuming a slow rate of Aβ1–42 accumulation) and 
that few individuals are close to the defined threshold for abnormality. If these assumptions do not hold, it is likely 
to worsen predictive performance, making this analysis somewhat conservative.

Results
Models utilizing protein levels accurately predict CSF positivity. We evaluated the ability of blood-
based biomarkers to predict CSF Aβ1–42 normal/abnormal status using RFs trained using different subsets of input 
variables, treating the modeling of CSF Aβ as either a regression or binary task. Summaries of the performance 
metrics from the resulting models are shown in Table 2 with their corresponding ROC curves shown in Fig. 1.

We observed strong overall predictive performance for both the regression and binary tasks within our 
cross-validation framework. All sets of features outperformed the base model of age and APOEε4 carrier status 

https://doi.org/10.1038/s41598-018-37149-7
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with BP based models leading to the highest AUC of 0.84 and 0.83 for the regression and binary tasks respectively. 
The standard deviation for the AUC was relatively high (7–8%), likely due to the noise inherent in both the ana-
lytes being used for prediction as well as in the CSF Aβ1–42 measurements.

The BP models resulted in a mean R2 of 0.29 for the regression task. The automatically derived threshold for 
this regression RF yielded a mean accuracy of 0.77, with a sensitivity of 0.78 and a specificity of 0.73. Across the 
100 cross-validation runs, the chosen threshold ranged from 164 pg/ml to 194 pg/ml with a median of 185 pg/ml. 
Similar AUC and accuracy could be observed for learning the dichotomized CSF labels directly (e.g. 0.83 AUC, 
0.77 accuracy for the BP model). For the binary task, a slight drop in both AUC, as well as an altered trade-off 
between sensitivity and specificity, was observed across all different feature sets compared to the regression task. 
Given this, we chose to focus on the regression model for much of the follow-up analysis.

While all models making use of blood analytes outperformed the base model of age and APOEε4, models 
that made use of the protein level measurements consistently achieved the strongest predictive performance, 
whereas metabolites appeared to be of limited utility. In both the regression and binary tasks, models containing 
metabolites and proteomic data (BPM) achieved equivalent or worse AUCs than models containing only the 
proteomic data (BP). Furthermore, we observed that the use of the base features and metabolites alone (BM) lead 
to decreased performance compared to the baseline model, indicating that the set of measured metabolites may 
have contributed little predictive information or may have been too noisy to be useful for predicting CSF status. 
These findings are in contrast to the previously reported utility of metabolites in predicting PET Aβ positivity22.

While the results presented in this section include clinically diagnosed AD individuals, who are almost all 
CSF Aβ positive, it is worth considering only ‘pre-clinical’ individuals as this may be more relevant for selective 

Feature 
set

Regression Binary

AUC R2 Acc Sens Spec AUC Acc Sens Spec

BPM 0.830 (0.08) 0.274 (0.11) 0.771 (0.07) 0.784 (0.09) 0.748 (0.13) 0.826 (0.07) 0.766 (0.06) 0.884 (0.06) 0.536 (0.14)

BM 0.788 (0.08) 0.209 (0.13) 0.744 (0.08) 0.779 (0.09) 0.679 (0.16) 0.784 (0.08) 0.737 (0.08) 0.855 (0.08) 0.507 (0.15)

BP 0.839 (0.07) 0.293 (0.11) 0.765 (0.08) 0.782 (0.10) 0.731 (0.13) 0.834 (0.07) 0.769 (0.07) 0.882 (0.08) 0.552 (0.14)

B 0.795 (0.08) 0.275 (0.14) 0.746 (0.06) 0.751 (0.08) 0.747 (0.15) 0.800 (0.07) 0.745 (0.07) 0.731 (0.09) 0.780 (0.11)

BPfs 0.812 (0.08) 0.270 (0.14) 0.749 (0.07) 0.807 (0.10) 0.638 (0.15)

Table 2. Mean and standard deviation (in parentheses) of performance metrics (area under the receiver 
operator curve, AUC; accuracy, Acc; sensitivity, Sens; specificity, Spec and R2 for the regression models) for 
the different Random Forest models using different feature sets across all cross-validation folds. Left and right 
halves are for the regression and binary tasks respectively. For each metric, bold faced text indicates the highest 
mean score or models whose performance is not significantly lower (via a Wilcox rank signed test, Bonferroni 
corrected significance threshold of 0.05/5 = 0.01). Features sets describe combinations of (B) baseline model 
(age and APOEε4 carrier status), (P) Proteomics, (M) Metabolomics.

Figure 1. ROC curves comparing different sets of features to determine predictive value for the (a) regression, 
and (b) binary tasks. Different colours of lines correspond to different feature sets, (B) baseline model (age and 
APOEε4 carrier status), (P) Proteomics, (M) Metabolomics, with corresponding AUCs shown in the legend 
under each plot. The model BPfs in subplot (a) indicates the performance of the RF using feature selection.

https://doi.org/10.1038/s41598-018-37149-7


www.nature.com/scientificreports/

6Scientific RepoRts |          (2019) 9:4163  | https://doi.org/10.1038/s41598-018-37149-7

screening in drug trials. Evaluating our model’s performance on CN and MCI individuals only, we find that sim-
ilarly strong predictive performance can be obtained (Supplementary Table 4, Fig. 1, 0.80 AUC, 0.77 accuracy 
for the BP model) supporting our primary findings that plasma protein levels can be utilized to predict amyloid 
pathology status.

To ensure that our imputation procedure did not bias our results, we also built similar models using only 
complete cases after applying more stringent quality control (removal of plasma analytes where more than 1% of 
measurements were missing), obtaining similar AUCs of 0.81 for the regression and binary tasks (Supplementary 
Fig. 2).

Strong predictive performance is maintained using only four proteins. The models described so 
far used all (>140) available features in this dataset. In practice, measuring hundreds of analytes is costly, negat-
ing a key advantage of using blood biomarkers for screening. Given this, we have applied feature selection to the 
BP regression model to identify the smallest number of features that still achieved high predictive performance. 
Within cross-validation, we find that the average performance of this feature selection approach, denoted BPfs, 
yields an AUC, sensitivity, and specificity of 0.81, 0.81 and 0.63. The number of features selected in the model 
ranges from 2 to 15, with a median of 5 features included.

When applying this feature selection procedure to the entire set of training data, we identified a subset of four 
plasma analytes as well as APOE4 genotype status critical for model performance: Chromogranin-A (CGA), Aβ1–

42 (AB42), Eotaxin 3, and Apolipoprotein E (APOE). This combination of protein levels, together with APOEε4 is 
denoted as BP5. Figure 2 indicates how each variable influences the model predictions after we have accounted for 
the influence of the other four variables. As expected, the strongest relationship with CSF Aβ1–42 is with APOEε4 
carrier status, where being a carrier (APOEε4 = 1) leads to a low predicted Aβ level. While the relationships 
between the proteins and CSF Aβ1–42 are non-linear (a common outcome given the nature of RFs), the overall cor-
relation with CSF Aβ1–42 is positive for CGA, Plasma Aβ1–42, and APOE protein levels and negative for Eotaxin 3.

Validation of clinical utility. To demonstrate the utility of our modeling on unseen data, we conducted 
a survival analysis over the validation cohort (n = 198), evaluating the probability of baseline MCI individuals 
transitioning to AD diagnosis over 120 months, stratified by predicted CSF Aβ1–42 status from either the B, BP or 
reduced BP5 model. These survival distributions could then be compared to those of the real Aβ status observed 
over the training cohort. Given the demographic similarity of the two cohorts, we would expect to see strong 
similarities in rates of conversion.

From Fig. 3, we observed that in all cases, the predicted low CSF Aβ1–42 group transitioned to AD signifi-
cantly faster than the Aβ normal group. Comparing the predictions from the BP, BP5 and B models on the val-
idation cohort to the actual CSF Aβ status on the training cohort, we find that there is no significant difference 
between the survival distributions for either the normal (log-rank test p = 0.19, 0.2, 0.21) or abnormal (log-rank 
test p = 0.97, 0.31, 0.23) survival distributions, respectively, reflecting the overlapping confidence intervals of 
the hazard ratios. However, it can be observed that due to differences in the thresholding of the Aβ levels, fewer 
individuals are deemed as CSF Aβ1–42 ‘normal’ in the actual data (n = 53), compared with any of the three mod-
els applied to the validation datasets (n = 95, 73, and 71 for BP, BP5, and B models respectively), highlighting 
the well-recognized issues of defining standardized cutoff values across studies34. The significant differences in 
conversion rates between the predicted normal/low strata, especially from the more parsimonious BP5 model, 
together with their similarity to the survival distributions of the actual CSF measures, provide strong evidence 
that our blood-based model can help stratify individuals based on their risk of developing clinical AD (Table 1).

Concordance with PET Aβ status. To further validate and quantify our model’s performance, we have 
explored the relationship between the predicted CSF Aβ scores and PET imaging status. Confirming that the 
PET Aβ and CSF Aβ1–42 status are correlated, we find that they differed in only 7 out of 108 individuals for whom 
both CSF and PET amyloid status were available. As such, evaluating our model against the PET Aβ status should 
provide a conservative estimate for the AUC on the validation cohort, despite the lack of CSF measures.

APOE4 CGA AB42 EOTAXIN3 APOE
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Figure 2. Partial dependency plots of the five features selected from the full BP model using a recursive feature 
elimination approach. Each subplot shows how the variation of a specific feature impacts that predicted levels of 
CSF Aβ1–42 assuming the other four features are fixed.
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The resulting ROC curves in Fig. 4 provide further evidence that the BP and BP5 models are able to predict 
Aβ status, with AUCs against PET Aβ on the validation cohort of 0.78 and 0.8 for the BP and BP5 models respec-
tively. These results are similar to those from predicting CSF status from the training data (Fig. 1), with a small 
expected drop in AUC due to the inherent differences between CSF and PET amyloid. Interestingly, we observe 
stronger performance for the reduced BP5 model (AUC 0.80) compared to the full BP model (AUC 0.78), with 
both models significantly improving upon the baseline model of age and APOEε4 status (AUC 0.71).

Discussion
The most positive results from AD trials to date have been found in patients with early forms of the disease, lead-
ing to an increasing awareness that treatments are likely to be most successful if applied at the earliest stages of 
AD8. Some AD clinical trials are enriching pre-symptomatic AD individuals with PET screening. However, recent 
findings that shifts in CSF amyloid can be observed up to a decade before those from PET may indicate that CSF 
positive individuals are even more suitable for clinical trial enrichment35. Direct measurement of CSF biomarkers 
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Figure 3. Kaplan-Meier curves for (a) the training cohort stratified by actual CSF Aβ status, and the validation 
cohort stratified by predicted CSF Aβ1–42 status from the (b) B model, (c) BP model and (d) BP5 model. The 
bands along the curves represent the 95% confidence intervals. Hazards ratios and 95% confidence intervals 
for the abnormal group compared to the normal are shown in the bottom left of each subplot. In all cases, the 
low CSF Aβ1–42 group transitioned to AD diagnosis significantly faster then the normal group (p = 3.97 × 10−7, 
7.89 × 10−6, 9.96 × 10−4, 1.65 × 10−3 for the four plots left-right). CN individuals were not included in this 
analysis because there were no CN individuals present in the validation cohort.

Figure 4. ROC curves comparing different sets of features to determine PET-based Aβ status on the (a) 
training and (b) validation cohorts. Different colours of lines correspond to different feature sets with 
corresponding AUCs shown in the legend under each plot. Results in the training cohort are more useful as a 
measure of similarity between the tasks of predicting CSF and PET Aβ status given that this was the data used to 
train the CSF model and hence the AUC are upwardly biased, especially for more complex models (e.g. BP).
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is too invasive to be used in such a screening test36 motivating the development of a minimally-invasive, low-cost 
solution that provides the same type of information to overcome these limitations.

This current study evaluates the utility of a blood-based signature of CSF Aβ1–42 status using a Random Forest 
approach. We demonstrated that CSF Aβ1–42 normal/abnormal status using age, APOEε4 carrier status, and 
protein levels can be predicted with a high AUC, sensitivity and specificity of 0.84, 0.78 and 0.73 respectively. 
Compared to the baseline model (age and APOEε4 genotype) the inclusion of the plasma analytes improved the 
performance (AUC) by 6%. To make the model more suitable for clinical application, we identified four plasma 
analytes which, together with APOEε4 carrier status, still achieved a high AUC, sensitivity, and specificity of 0.81, 
0.81 and 0.64 respectively. These predictive models were then validated on a separate cohort of individuals to 
demonstrate that MCI subjects with predicted abnormal CSF Aβ1–42 (low) levels transitioned to an AD diagnosis 
at a significantly higher rate than those predicted with normal CSF Aβ1–42 levels. Furthermore, these rates were 
similar to those observed in a demographically similar cohort of MCIs using actual CSF Aβ1–42 levels. This is a 
strong validation of our modeling as the blood-based biomarkers for CSF Aβ1–42 status is only useful if they can 
replicate the behavior of the actual Aβ1–42 status for clinically relevant endpoints for individuals that were not 
used to build the predictive model. Strong predictive power of PET Aβ1–42 status on the validation cohort provides 
further evidence for the generalizability and robustness of our modeling.

A number of studies have previously investigated the use of blood analytes to predict the burden of amyloid 
in the neocortex, as measured by PET15,16,18–20,22,23. Some of these studies showed similar performance metrics 
to those reported in this work (>0.80 AUCs15,23–25 or >0.78 accuracy17), indicating that prediction of PET Aβ 
and CSF Aβ1–42 status are of similar difficulty. PET Aβ is directly related to brain fibrillar amyloid, whereas CSF 
amyloid is a marker of soluble Aβ1–42 and they may, therefore, give different insights into AD progression and 
mechanisms. For example, CSF Aβ1–42 has been shown to be associated with APOEε4 whereas PET Aβ has been 
shown to have a greater association with tau37. Thus, the development of a blood-based screening test for CSF 
Aβ1–42 levels is a complementary approach to existing blood-based biomarkers of PET amyloid status.

Of the above studies, the study by Nakamura et al.25 showed a very high AUC in discovery and validation data-
sets for PET Aβ1–42 status (AUC 0.94 and 0.96 respectively) as well as a strong performance for predicting abnor-
malities in CSF Aβ1–42 levels (AUC 0.88%), in a small cohort (n = 46) of their validation set. While these results 
are promising, the automation of the novel technique used (IP-MALDI-TOF-MS), and hence transfer to a clinical 
setting, is non-trivial, motivating the search for complementary approaches. The protein signature presented in 
this study, based on a multiplex immunoassay, is likely to require a far shorter timeframe for clinical translation 
given the high level of automation that already exists for multiplex immunoassays, and that biomarkers from such 
platform have already been used in commercially available diagnostic tests that have been approved by the FDA.

The use of metabolites appeared to be of limited utility for predicting CSF Aβ1–42. In both the regression and 
binary tasks, models containing metabolites achieved equivalent or worse AUCs than models without. These find-
ings can be contrast with the utility of metabolites in predicting PET Aβ positivity22 and their association with AD 
more broadly38. Alternative methods for integrating this source of data39 may be required in order to find robust 
associations with CSF Aβ1–42 status.

The subset of features used in our BP5 model included APOEε4 genotype and plasma levels of 
Chromogranin-A (CGA), Eotaxin 3, Aβ1–42 (AB42), and Apolipoprotein E (APOE). Several of these identified 
proteins have known associations with Alzheimer’s disease. Unsurprisingly, the levels of plasma APOE are asso-
ciated with CSF amyloid levels. APOEε4 is the strongest genetic risk factor for AD. APOE is involved in the clear-
ance of Aβ1–42

40–42 and there is a strong relationship between APOEε4 genotype and APOE plasma levels, where 
APOEε4 carriers have lower plasma levels43,44. Plasma Aβ1–42 showed a positive relationship in our model for CSF 
Aβ1–42, in line with a prior observation45. This is interesting as the link between alterations of Aβ1–42 levels in the 
blood and the progression of the disease is still controversial and studies assessing the Aβ1–42 concentration in 
blood of AD patients have produced conflicting results45–51. Chromogranin A (CGA) is associated with synaptic 
function and has traditionally been used as an indicator of neuroendocrine tumors52. More recent work has 
shown that CGA has a degree of co-localisation with amyloid plaques in the brain53,54. However, levels of CGA 
in the CSF and blood serum do not appear to be correlated55 and serum CGA has not previously been linked to 
AD. Eotaxin 3, also known as C-C chemokine ligand 26 (CCL26), plays an important role in the innate immune 
system and has been found to be dysregulated in AD patients56. CSF Eotaxin 3 has been shown to be significantly 
elevated in patients with prodromal AD, however, Eotaxin 3 levels in plasma or the CSF has not been shown to 
correlate with rates of disease progression56,57.

This study has several limitations. The training and validation cohorts are both composed of individuals in 
the ADNI study and thus all measures were conducted on the same platforms. Hence further cross-cohort and 
cross-platform replication is required. This remains an ongoing issue within the development of all AD biomark-
ers relating to early screening and requires significant future investment58. Furthermore, the current cohort is 
neuropathology biased, i.e. 84% of the cohort have MCI or AD, and thus likely to have neuronal damage, poten-
tially confounding the analysis of CSF Aβ1–42 status. Finally, it needs to be noted that there are other medical 
conditions that are known to affect CSF Aβ1–42 levels and it is unclear whether these affect any of the patients in 
our cohort.

The early identification of AD disease is paramount and a major global focus as the success of 
disease-modifying or preventative therapies in AD may depend on detecting the earliest signs of abnormal 
amyloid-beta load. The differences between CSF Aβ1–42 and PET Aβ in preclinical stages of AD are likely to 
have implications for clinical trial enrichment. Blood-based biomarkers of amyloid can serve as the first step in a 
multistage screening procedure, similar to those that have been clinically-implemented in cancer, cardiovascular 
disease, and infectious diseases58. Inconjunction with biomarkers for neocortical amyloid burden, the CSF Aβ1–42 
biomarkers presented in this work may help yield a cheap, non-invasive tool for both improving clinical trials 
targeting amyloid and for  population screening.
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Data Availability
The dataset analysed during the current study is available from the ADNI repository, (http://adni.loni.usc.edu/).
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