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Abstract 

The use of Clebsch-Gordan type coupling coefficients for finite point 

groups is applied to the problem of constructing symmetrized N-electron wave-

functions (configurations) for use by the Hartree-Fock SCF and CI methods of 

determining electronic wavefunctions for molecular systems. The configurations 

are eigenfunctions of electronic spin operators, and transform according to 

a particular irreducible representation of the relevant group of spatial 

operations which leave the Born-Oppenheimer Hamiltonian invariant. The 

method proposed for constructing the configurations involves a geneological 

coupling procedure. It is particularly useful for studies of molecules which 

belong to a group which has multiply degenerate irreducible representations. 

The advantage of the method is that it results in configurations which are 

real linear combinations of determinants of real symmetry orbitals. 

This procedure for constructing configurations also allows for the 

Identification of configurations which have no matrix element of the 

Hamiltonian with a reference configuration. It Is therefore possible to 

construct a Hartree-Fock interacting space of configurations which can 

speed the convergence of a CI wavefunction. 

The coupling method is applied to a study of the ground and two excited 

electronic states of BH3  in its D3h geometry. The theoretical approach 

involved }Lartree-Fock SCF calculations followed by single and double 

substitution CI calculations, both of which employed double-zeta plus 

polarization quality basis sets. The B-H bond length was found to be 

1.194 A for the ground state, 1.26 A for a E state lying 6.08 eV 

above the ground state, and 1.24 1 for a 3E" state lying 5.48 eV above 
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the ground state. Energies were calculated only for D3h geometries of 

the molecule, so the excited states may not be stable with respect to C 2  

distortions. In fact, since both excited states are spatially degenerate, 

they are expected to exhibit Jahn-Teller distortion. 

Finally, the effect of including only Hartree-Fock interacting 

configurations rather than all single and double substitution configurations 

in the CI calculation is demonstrated to be energetically quite small. 
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I. 	Introduction. 

if 	
In the application of quantum mechanics to the study of the electronic 

structure of molecular systems one is often confronted with the construction 

of N-electron functions which are symmetrized with respect to a group of 

operators which commute with the Born-Oppenheimer (B.O.) Hamiltonian. These 

functions are used as trial functions in variational procedures such as the 

self-consistent field molecular orbital (SCF-MO) method and the configuration 

interaction (CI) method. In both of these methods the N-particle trial 

functions are linear combinations of products of N single-particle syminetrized 

functions. In the SCF-MO procedure the best set of symmetrized single-particle 

functions (orbitals) is variationally determined with respect to the simplest 

possible symmetrized N-particle trial function constructed from these 

orbitals. In the CI procedure the best linear combination of syimnetrized 

N-particle functions is determined with respect to a given set of synimetrized 

orbitals. 

Among the groups of operators which may commute with the B.O. Hamiltonian 

is the permutation group and the group of rotations of the spin coordinates 

of all electrons. Symmetrization with respect to the permutation group 

results in the N-particle functions beiUg expressed as some linear combination 

of Slater determinants. Symmetrization with respect to rotations of electron 

spin coordinates results in linear combinations of determinants which are 

elgenfunctions of the operators S 2  and S. 

In addition to the permutation and spin rotation groups, for a particular 

choice of nuclear coordinates there may exist a group of spatial symmetry 

operations which Commute with the B.O. Hamiltonian. Groups of this nature 
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are the well-known point groups which are discussed at length in many 

quantum mechanics textbooks. 1 

The smallest N-electron function which is syunnetrized with respect 	 1 

to permutation, spin and space operations is called a "configuration 

function", or simply a "configuration". A configuration, therefore, is 

antisymmetric on particle exchange, and is characterized by its eigen- 

values of S 2  and S as well as the component of the irreducible representation 

(IR) of the point group to which the molecule belongs. Configurations 

are defined with respect to an electron occupation (e.o.) which specifies 

how the electrons are distributed among the single particle spatial functions 

without reference to the component of the function if it transforms as a 

degenerate IR. An example of an e.o. is la' 2a' 3a' 1  le' 3 . 

In general there are several determinants associated with a particular 

e.o. These determinants taken together constitute an invariant space under 

all the group operations. The configurations which can be constructed from 

this space of determinants allow for a partitioning of this space into 

smaller subspaces. 

There are many procedures for constructing the configurations 2  

associated with a particular e.o. from a set of syminetrized single-particle 

functions. 3  Since the B.O. Hamiltonian does not involve the spin coordinates 

of the electrons, the spin and space parts of the configuration may be 

synmietrized separately. In fact there are many ways to construct spin 

eigenfunctions, the most common of which are the projection operator 

and the geneological coupling techniques. 4  A geneological technique which 

uses Clebach-Gordan coefficients to couple successive electron spins will 

be used here. 
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General procedures for constructing spatially .  syinmetrized (i.e., 

with respect to the point group) N-electron functions 2  are less coon. 

However, if the point group of the molecule is abeliañ, each determinant 

constructed from symmetrized orbitals is itself already syinmetrized. 

The IR according to which such a determinant transforms has characters 

which are simply the products of the characters of the syinmetrized 

orbitals which constitute it. Complications may arise even for abelian 

groups which have a higher than two-fold axis of symmetry. These groups, 

such as C 3 , do have all one-dimensional IRs, but these are complex. Since 

it may be computationailY cumbersome to deal with complex orbitals (and,, hence, 

complex integrals) it is common to use real orbitals which then form a 

basis for a real reducible representation. When this is done, however, 

individual determinants may no longer by symmetrized. Spatially syinmetrized 

configurations are, in general, linear combinations of determinants. 

General methods exist for treating the non-abelian axial point groups 

all of which have at most two-dimensional IRs. These groups include C, 

D 
n 	nh 

and D (for n > 2), Dd  C and D . A method of constructing
COV 

configurations syinmetrized with respect to these groups has been presented 

by Gershgorn and Shavitt. 5  Their method employs complex orbitals, yet they 

demonstrated that calculations using the resulting configurations need 

only real integrals. Furthermore, their method of constructing configura-

tions can also be used for the abelian groups that have a higher than 

two-fold axis of symmetry (and hence 'one-dimensional IRs that are complex) 

as mentioned above. 

The preceeding method is not applicable to those groups with trebly 

degenerate IRs, the icosahedral and cubic point groups. A method for 



-6- 

constructing configurations syimnetrized with respect to the operations of 

these point groups was developed and used by Buenker and Peyerimhoff. 6  

Their method relies on resolving the partners of a degenerate IR by the 

use of a differentiating abelian subgroup g of the full point group C. 

Configurations symmetrized with respect to g are constructed very easily. 

Linear combinations of these configurations are taken which are the eigen-

functions of some non-commuting operator R in G, which is not, of course, 

in g. Their method is quite geaeral and can also treat molecules 

belonging to non-abelian axial groups. 

In Sections II through IV we will discuss an alternative method of 

constructing configurations. The method is general enough to handle all 

the spatial symmetries discussed above as well as atomic symmetry. Although it is 

not restricted to real orbitals, if it employs real synunetrized orbitals it produces 

configurations that are real, obviating the use of complex arithmetic. The configura 

tions which result may thuseasily be used for developing energy expressions for 

use in open-shell SCF programs and as input to any CI procedure which can 

already utilize abelian (non-degenerate IRs) spatial symmetry. In Section 

V a method of identifying which configurations have vanishing }Iamiltonian 

matrix elements between themselves and some reference (usually the SCF) 

configuration is presented. This method permits reduction of a list of 

configurations to the }Iartree-Fock interacting space and can substantially 

reduce the size of the calculation with only a minimal loss of correlation 

energy. 7 
	 - 

In Section VI the procedure is applied to the study of the electronic 

structure of the ground and some low-lying excited states of BH 3  in its 

D3h geometry. 
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II. The Coupling Procedure. 

The procedure is a geneological coupling method analogous to the 

Clebsch-Gordan technique used to couple spins. In fact it relies on 

Clebsch-Gordarl-like coefficients, coupling coefficients, for the various point 

groups. This method as applied to spatial symmetry has its roots in work 

already a decade old. In a 1969 paper Gabriel discussed this procedure 

as applied to CI calculations for molecules and showed its close relation-

ship with Racah theory and its application to nuclear shell theory. 8  

Gabriel displayed coupling coefficients for two particles in atomic 

orbitals transforming as p,, p and p. (The coupling coefficients for 

orbitals transforming as p0 , p are the usual Clebsch-Gordan coefficients.) 

He also discussed permutational and spin symmetry. 

The geneological procedure was also discussed in 1973 in a paper by 

9 
Wybourne. This paper did not discuss the derivation of coupling coefficients 

but did outline a method similar to that applied here. A general method for deriving 

coupling coefficients for finite point (and space) groups has been provided 

by Sakata) °  The coupling coefficients for the C, group are presented 

elsewhere) 1  

Because of this background we limit outselves to a brief overview 

of the procedure providing specific details only for clarity or to 

explain the methodology which is unique to our approach) 2  

To construct a configuration of the desired space and spin symmetry 

from a particular electron occupation (e.o.) (a) one first places the shells 

of the occupations in some canonical order. This order will determine the 
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sequence in which the shells are successively coupled and will depend on 

whether the interacting space or the entire invariant subspace of configurations 

is to be retained. (See Section V.) Next, (b) the possible space-spin 

states consistent with fermion statistics that can arise from each of the 

shells are determined. (See Section IV.) Then, for the decided ordering of 

shells, (c) the direct products of the states of each shell with the states 

resulting from the cumulative coupling of all previous shells is decomposed. 

This decomposition can be done without regard for fermion statistics in 

contrast to W. Furthermore, the space and spin parts may be decomposed 

separately. The intermediate couplings that result in a state of the desired 

syletry are the geneologies. Next, (d) the geneologies are used along with 

the Clebsch-Gordan coefficients and the coupling coefficients associated with 

the point group to construct syunnetrized (according to space and spin) shell 

functions. The geneological procedure insures that shell functions of the 

same symmetry arising from a given e.o. through different genealogies are 

orthogonal. Finally, (e) the resulting shell functions are expanded in terms 

of spin orbitals and antisymmetrized to yield the required configuration 

functions expressed as linear combinations of determinants. 

Step (b) above Insures that each geneology results In a configuration 

which Is not annihilated by the antisyinmetrizer in step (e). The necessity 

for consideration of fermion statistics at this point only Is a result of 

the fact that the Paull exclusion principle will exclude particular couplings 

of electrons in the same shell, but not of electrons in different shells. An 

example of this is that for two s-type electrons as in He, the ls 2  e.o. gives 

rise to only a 1S state whereas the ls2s e.o. gives rise to both a 
S  and 

3 a S state. 
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To illustrate, consider an e.o. of BE3  1a' 2a' 3a' 1  2e' le' 2 . (In 

what follows, the primes will be dropped for typographical convenience.) 

Suppose that configurations of space-spin symmetry A2  are desired. The 

possible space-spin states for each shell that are consistent with fermion 

statistics are a: 1A1 ; a1 : A e: 	and e 2 : 'E, 
1  A 1 and 3A2 . For the 

ordering of shells as above, the first two shells can be coupled only one 

way, to a resultant 1A1 . This may then be coupled only one way with the 

third shell to give a resultant 2A1 . This may then be coupled two ways with 

the fourth shell to give 
1  E and 3E. Finally, coupling 1 E with the possible 

states of the last shell results in 1E, 1A1 , A2 , 1 E and 3E, and coupling 

3E with the possible states of the last shell results in 3E, 3A19  3A2 , 3E, 

5E, 3E and 1E. There is, therefore only one geneology resulting in the 

desired 
3 
 A 2  symmetry. 

The possible couplings arising from this occupation are illustrated in 

the figure. Lines connect intermediate cumulative couplings and above each 

line is listed the coupling of each shell. The decomposition of direct 

products of spin IRs is given by the Clebsch-Gordan series S = 1S 1+52 1, 

and the decomposition of direct products of spatial IRs is given by 

the usual expression13  

1 	 a. =1 EXCk)  x(Ck)Nk 
 

where aj  is the frequency index for the j IR, x(Ck) is the character of 

the jth  IR for the k 
th  class Ck of Nk elements in an h element group. x(Ck) 

is the character of the reducible representation for the kth class obtained 

by multiplying the characters of the two IRs whose direct product is being 

decomposed. 
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The coupling coefficients for spatial products of the form E a E and 

A1 a E are needed. These are as follows: 

[e (1) e (2) + e (1) e (2)] x 	x 	y 	y Vr2 

1 [e (1) e (2) 	e (1) e (2)] x 	y 	y 	x 

transforms as a1  

It 	 a2 

 

 

J [e(l) e(2)- e(l) e(2)] 

j4[_ex ( 1 ) e(2) - e(l) e( 2 )] 

(ai (l) e( 2 ) 

j a(l) e(2) 

The required coupling coefficients for the 

Clebsch-Gordan coefficients for coupling s 

Using the coupling coefficients above 

diagram, the results of coupling the first 

the functions (maximum m5  value only) 

spin functions are simply the 

ins s = o, 4 a nd 1. 

and the geneology given in the 

six electrons (four shells) are 

S (e a Ill>) = [ a1 lOO>][a1 O0>1[a1 I4 4 
6x 	

>]EexI44>] 

S6(e 
y 

0 Ill>) = 	 Lii 
	

[e4 4>1 
	

(6) 

These two functions transform as e X 
6 IS=l,m5 1> and e 

y 
 a IS=1,m 1>, 

respectively. The last shell, 1e 2 , is coupled according to Eq. (4) 

above to 1E resulting in 

nA 
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S2(e 	tOO>) 4 { (eeI44 ( e 	i4 _4>]_[e e 14 -4>][eI44] 

11 1 1  [e 	[e 	14 _4>]+[e 	14 _4>][e 	I>]} - 	I-->] 
y 2 	y 

11 
I4-4]+[e 	I+-4][e S (e 	100>) = 4 {-[e 	2> 

- [e to Ifl][e 	li_i>]+[e 	
1 1 

	

2 2 	x 	2 2 	y 	I--1Ee 
e 4-4>1) x 

(7) 

which transform as e X  a Is=0> and e y a 1s0>, i.e., as the components of 1E. 

When one combines these two-particle functions with the six particle 

function above according to the coupling rule (3) one obtains an eight particle 

transforming as 

S 8 (a2 	Ill>) = I:. {s (e 	I11>)'S2 (e 	too>) J6x 

- S 6 y (e 	I11>).S2(e x a 100>)} . 	 (8) 

Finally, the above function must be expanded in terms of spin orbitals and 

antisymmetrized to yield the required configuration. Substitution of spin 

orbitals into (6), (7) and (8) yields 

A [ la2  

xi {[ 2e c*][ - I.e le + le le )  x 	x y 	y x5 

- [2e c)[- (le2-1e2)(cL8c)]} 	. 	 (9) 
y ff x y 
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A has been used to denote the antisymmetrizer. Eq. (9) reduces (up to 

a normalization constant) to 

-.(D-D + D 3-D4 ) 	 (10) 

where 

A[(1ac)(2acx)(3a cz)(2e ct)(le le cz)] 
1 	x 	xy 

D2  = A[ 	 (2e x 	x y 
()(1e le act)] 

D = A[ 	 (2e c)(1e2(t) 	] 
3 	 y 

D4  = A[ 	 (2e 0 (1e 2c) 	I 	• 	 ( 11) 

	

y 	y 

The importance of the relative phases of the component functions 

transforming as degenerate IRs, as in (4)-(7), cannot be overemphasized. 

The minus sight of the e component of function (4) eventually resulted in 

the phases of determinants in equation (10). The coupling method requires 

the partially coupled shells to transform in exactly the same way as the 

basis functions of the IRs. Related to this point is the requirement that 

all degenerate pairs of orbitals transform the same way. Particular attention 

must be paid to this point because many SCF-M0 procedures generate orbitals 

with random phases. 

ff 
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III. The Coupling Coefficien. 

In order to use the method of coupling successive orbitals to produce 

an N-particle function which transforms according to a particular representation, 

a set of coupling coefficients is needed.. The coupling coefficients, 

czy denoted Cki are defined by 

= 	cT f 	f 
	

(12) 

where fT is a function which transforms as the 
1th  component of the y 

th 
 IR. 

The coupling coefficients are defined with respect to a group and a set of 

IRs for the group. (The IRs must be the ones that describe the transformation 

properties of the single particle functions.) If the group is the full 

rotation group and the representations are those provided by the rotation 

of angular momentum vectors, the c's are the familiar Clebsch-Gordan 

coefficients. These are tabulated in most quantum mechanics textbooks. 

No such information exists for the finite point groups, however. 

The coupling coefficients for the finite point groups can be derived 

once the representation matrices are known. The method of Sakata1°  involves 

a series of matrix multiplications and is easily programed for use by a 

computer. (The coupling coefficients derived by Sakata for the finite 

point groups were complex because he used complex representations. The 

couplings used here are real, but the same technique may be used to 

generate them.) The coupling coefficients used in our algorithm were, 

however, derived by a related technique which exploits the Van Vieck 

projection operator formalism)'3 
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Recall that for a symmetrized single-particle function, P R is 

defined by 

R 	

= ii) 	
r(R) 	 (13) 

j =1 

for every operation.R in the group. In this equation F 1(R) is a matrix 

element of the matrix that represents element R as described by the cxth 

IR of degeneracy m(a). It is a consequence of the great orthogonality 

theorem that 

a 
ij k = 6jk ôci f 
	 (14) 

where P. is given by 
13 

= m(cx) Er.(RPR 
	. 	 (15) 

P. is called a projection operator because it projects out of an arbitrary 
ij 	

th 	 th function the part which corresponds to the 1 component of the cx  IR if 

the function contains a component which transforms like the j th component 

of the a 
th 
 IR. 

To extend this technique to a two-particle function space, we need only 

observe that on a direct product space 

m(a) m() 
f) = E 	E (f a f) r 1 (R) rk(R) 	. 	(16) 

j=l 	2=1 

For example, if the operations have been defined such that for some R, 
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1 
and PRe - - e - - e , then P e =--e Rx 	2x 2y 	 2x 2y 

Pe x
(1)e(2) 	[- 4 e(l) _4 e(l)][4e(2)  -4 e(2)) R 

= 4 	ffe (l)e (1) + e (l)e (2) -3 e (l)e (2) +ffe(l)e(2)] 
x 	x 	X 	Y 	Y 	X 

(17) 

If one uses the projection operator technique to determine the coupling 

coefficients, care must be taken to use the transverse projection operator 

(P., where ij) to determine the correct relative phases (as in equation 4) 

of functions transforming as components of a multiply degenerate IR. 

The task of determining the coupling coefficients is readily programmable 

and needs to be done only once for each point grotxp. In fact, there are many 

groups which have the same coupling coefficients, because they are isomorphic. 

Thus, the C 3  and D3  groups have identical coupling coefficients. 

R2a1 coupling coefficients have been determined for point groups C 6,, 

C4 ,, C, D4 , D6, 02h' D3h ,  D2a ,  Dw 	
12

h, and  Td. 	Of course, this also 

establishes the couplings for the various subgroups associated with the 

above as well as other groups which are isomorphic with them. Thus, once 

the coefficients for the C6  group are determined, one has them inunediately 

for C2 , C2 , and C3v (subgroups) as well as for D 6  (isomorphic) and its 

subgroups. The results for the C, group have been applied to a study of 

sulfur oxide which is presented elsewhere.11 
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IV. The Allowed Intrashell Couplig. 

Not all N-particle functions are allowed by fermi statistics. Consider 

the case of two equivalent e-type electrons in a molecule of D3h symmetry. 

Without regard for fermi statistics, six states can be constructed. They 

are 1A1 , 3A1 , 
1A21  3A2 , 1E, and 3E. The corresponding wavefunctions may be 

constructed from coupling coefficients like those listed in equations 2, 3 

and 4. 

A . 	[e (l)e (2)-fe (l)e ( 2)][ct(l)( 2 ) - (l)cx( 2 )1 

	

1 2 x 	x 	y 	y 

3 	1 
[ 	 ' I 

1 A2. . 2 
I [e (l)e (2)-e (1)e (2))[cL(l)8(2)-8(l)cx(2)] 

	

x 	y 	y 	x 

3 	1 
j= [ 	

It 	JcL(l)cz(2) 

{1  

- [e (1)e(2)-e (1)e (2)1 [ct(l)8(2)-(1)c.z(2)] 
y 	y 

I 
2 [-e  x 	y 	y 

(l)e (2)-e (1)e X  (2)) 

13 

(1 
3E 	

2 [e (1)e (2)-e (1)e ( 2 )]c( 1 )cx( 2 ) 

.il
x X 	y y 

2 [-e (l)e (2)-e (l)e (2)1 	" 
x 	y 	y 	x 

Operation on these functions by the antisymmetrizer annihilates all except the 

1 	3 	1 
Al , A2  and E functions, leaving 
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1 
A 1 : 1- (A(eect8) + A(eecx)] 

3A 2 : A(e x  e y  ca) 

and 

(1 [A(e e c&8) A(e e 
xx 

lE:4%r 	
- 

[A(e e c) +A(e e c)] J 
Vr  

xy 	xy 

Therefore, the only states allowed from the e 2  occupation are the above 

three. It is these states to which step b of Section II refers. 

The coupling procedure requires either a tabulation of the allowed 

intrashell couplings for partially occupied shells or a fast and systematic 

way to determine them. Like the coupling coefficients themselves, these 

need only be determined once for a given point group. 

A simple method for the determination of the allowed couplings of a 

shell occupation has been presented by Goscinski and Ohm. 14  Their method, 

which uses a generalization of equation 1 where the frequency index a lists 

the frequency of states which are symmetrized with respect to space and spin 

as well as antisymmetric with respect to particle exchange, is exploited by 

our algorithm. 
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V. The Hartree-Fock Interacting Space of Configurations. 

Discussions concerning theHartree-Fock(HF) interacting space of 

configurations were first presented by Bunge and Bunge 7  and later by 

McLean and Liu. 7  The idea is to delete certain configurations from a 

list which do not "interact" with one or more reference configurations. 

Two configurations are said to interact if there is a non-zero matrix 

element of the Hamiltonian between them. The non-interacting configurations 

are not expected to contribute substantially to a CI wavefunction or its 

corresponding energy since these configurations do not contribute in a 

first (for energy and wavefunction) or second (for energy) order Rayleigh-

Schridinger perturbation series expansion. 

The configuration list used for the atomic CI calculations of Bunge and 

Bunge was generated by the application of projection operators to a list of 

determinants. The determinants were obtained from electron occupations 

which in turn were generated as single and double substitutions of electrons 

from the HF occupation. Some of the determinants so generated differed by 

more than two spin orbitals from any determinant of the HF configuration. 

It was found that some configurations projected from these non-interacting 

determinants consisted entirely of non-interacting determinants themselves. 

These were the non-interacting configurations. The maximum non-interacting 

space of Bunge was the one projected from the particular choice of 

determinants which yielded the largest number non-interacting configurations. 

It is important to note, however, that some of the determinants of Bunge's 

interacting space of configurations were non-interacting. 

McLean and Llu prescribed a procedure for constructing a smaller 

interacting space of configurations all of whose determinants interact with 
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the reference determinants. Their procedure cannot be used with the 

geneological procedure discussed here. 

All configurations generated from occupations that are single or 

double substitutions from a closed-shell reference occupation are 

interacting with respect to the reference configuration. If the 

reference is an open-shell configuration coupled with space-spin 

symmetry, say, SA  an interacting configuration arising from a given 

occupation is determined in this work as one which, if it has as part 

of its open shell exactly the same orbitals and occupation numbers as the 

reference, has the coinciding open shells coupled with the same space-spin 

symmetry (SA)as  the reference. (By "the same space-spin symmetry," it is 

meant to include not only the total spin (S) and spatial IR designation 

but also the component of spin (m 5) and IR when the IR is degenerate.) 

To perform this selection, the shells of the occupation are ordered so 

that those open shells which coincide with the open shells of the reference 

are last. The geneologies which are kept (which produce the interacting 

configurations) are those which have a cumulative space-spin coupling up 

to, but not including, the coinciding open shells which are the same as that 

for the reference. 

An example will serve to clarify this process. Consider a calculation 

of the low-lying 3E state of BR3  arising from an occupation la 2a 3a1  1e3 . 

If this occupation is used as a reference occupation in a CI calculation, 

an occupation which would appear in a list of single and double substitutions 

2 	3 2 is 1a1  3a1  le 2e . For the purpose of constructing the geneologies, the 

shells are reordered to la 2e 2  3a1  le3  so that the shells which appear also 

in the reference are coupled last. From this occupation there are four 
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geneologies which would yield 3 E configurations. However, there is only 

one geneology which yields a potentially interacting configuration. This 

is the geneology which has la 2e 2  coupled to the same space-spin symmetry 

as la 2a in the reference, namely 1A1 . It is easily verified that the 

other three configurations are non-interacting. 

This criterion for selecting an interacting space of configurations 

sometimes produces configurations with determinants which differ by more 

than two spinorbitals from the reference determinants. It is, therefore, 

a larger interacting space than that formulated by McLean and Liu and one 

of roughly the same size as that of Bunge. 

This simple criterion for dropping non-interacting configurations can 

reduce the number of configurations by as much as a half with only a small 

cost in correlation energy. The reason for the large reduction is two-fold. 

First, since the number of open-shell electrons is usually much smaller than 

the number of closed-shell eleôtrons for an open-shell reference configuration, 

there is usually a larger number of occupations part of whose open shells 

match the open shells of the reference than there are occupations whose open 

shells are completely different than those of the reference. In a singles 

and doubles substitution CI, these occupations are obtained from substitutions 

of electrons from the closed shell to the virtual orbitals; substitutions 

which leave the open shell occupations as they are in the reference. It 

is to all these occupations that the criterion for selecting the interacting 

space can be applied. Secondly, for these same types of occupations there 

are, in general, the largest number of geneologies resulting in the correct 

space-spin synetry because these occupations usually have more open shells. 



-21- 

Another advantage of using the interacting space is that the non-interacting 

configurations are often (for the same reasons as mentioned above) longer, in 

terms of the number of determinants they contain, than the interacting configura-

tions. Because of this the fraction of time to generate the formulas for 
S 

the CI Ramiltonian matrix elements is even smaller than the square of the 

ratio of the number of interacting configurations to the total number of 

configurations. 



VI. Application of the Coupling Procedure to the Study of Excited Electronic 

States of BHin the D3h  Geomey. 

There have been literally dozens of theoretical studies done on 

bbrane, BH3 . The interest in this molecule is two-fold. Diborane, 

the borane dimer, is used by organic chemists as a standard reagent for 

hydroboration (cis-addition of H-OH to alkenes) as well as a. powerful reducing 

agent. 15  It is believed that in some cases the monomer is the reactive species 

in these processes 5  Secondly, the dimerization to produce diborane is the 

simplest reartion that forms three-center (B-H-B) bonds from two center 

(B-H) bonds. 16  Furthermore, the relatively small size of the molecules 

allows a fairly thorough theoretical treatment to be performed. Most 

studies to date, however, have been concerned with the dimerization 

reaction and have only treated the ground X 	state. 

Of the many ab initio studies 17  of borane which have been performed, 

perhaps the best which has been done at the Hartree-Fock level of theory 

was by Hall, Marynick and Lipscomb17  in 1972. Their treatment, which is 

near the Hartree-Fock limit, utilized a double zeta plus polarization basis 

of Slater-type orbitals on the hydrogen centers and a triple zeta plus 

polarization basis on the boron center. Their calculations yielded an 

energy of -26.4014 hartrees with a D3h  geometry and bond length of 2.25 a.u. 

Considerable work has also been done in an attempt to treat the electron 

correlation energy contribution to the dimerization energy. There have been 

18 	 19 
minimum basis configuration interaction calculations, valence bond calculations, 

and several studies 2°  which determine electron pair correlation energies. Of the work 
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which treats electron correlation probably the most complete is that of 

Ahlrichs20  presented in 1974 and that of Ahlrichs, etal., 2°  presented 

in 1975. 

- 	 In his 1974 work Ahlrichs used a basis slightly larger than a double 

zeta plus polarization ((5s3pld/2slp]) basis of gaussian type orbitals and 

obtained an SCF energy of -26.39697hartrees at a D3h  geometry with a bond 

length of 2.25 a.u. His treatment of correlation energy involved the use 

of the independent electron pair approximation (IEPA) method, the pair 

natural orbital configuration interaction (PNO-CI) method, and the coupled 

electron pair approximation (CEPA) method. Of these, only the PNO-CI method 

is variational. The PNO-CI energy obtained in that work was -26.51107 hartrees 

which did not reflect the correlation of the 1a ( Is on B) core_electrons. 

The work presented by Ahlrichs, et al., in 1975 used basis sets made 

larger than those in the 1974 work by the addition of more polarization 

functions ([5s3p2dlf/3s2p]). This extensive basis yielded an SCF energy 

of -26.39881 hartrees and a PNO-CI energy of -26.52325 hartrees when computed 

with a bond length of 2.25 a.u. As before, the core electrons were not 

correlated. The fact that all the extra functions resulted in an SCF energy 

that is lower by only 0.002 hartrees and yielded only 0.01 hartrees more 

correlation energy is significant. The reason that this large basis set 

did not yield an energy as close to the Hartree-Fock limit as that of Hall, 

is that the latter, used a basis of Slater functions which describes 

the nuclear cusp of the orbitals better than a basis of Gaussian functions. 

This deficiency is not expected to affect the calculation of properties which 

will be discussed here. 
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All of the past theoretical studies have involved only the ground 

X 
1  A state of borane which arises from the electron occupation 

1a12  2a 2  le' 2. Since borane is isoelectronic with 
methylene, which 

has a ground state symmetry of 	with low-lying states of 	
and 

1 A 1 symmetry, 21  it is interesting to determine if there are low- 

lying bound (with respect to D3h stretch) electronic states of borane 

and, if so, how they relate to the electronic states of methylene. 

The basis set used in this study consisted of a set (9s5p/4s) of 

primitive gaussian functions on the boron and hydrogen centers generated 

by Huzirtaga and contracted to a slightly larger than double zeta set 

[4s3p12s] by Dunning. 22  This double zeta set was then augmented with 

d-type polarization functions on the boron center (zeta = 0.471) and p-type 

polarization functions on the hydrogen centers (zeta = 0.725). This 

double zeta plus polarization basis is almost of the quality of Aldrich's 

1974 work. In fact our basis yields an SCF energy only 0.0005 hartrees 

higher than Ahirich's. 

The strategy behind the search for higher bound electronic states 

involved performing a series of SCF calculations for the geometry 2.25 a.u. 

The SCF calculations utilized energy expressions which were obtained from 

symmetrized wavefunction forms which were constructed by the geneological 

procedure outlined in the earlier sections. The various syuxmetrized wave- 	r 

functions represented all space-spin couplings derived from electron occupations 

which were single substitutions of an electron from the orbital of the highest 

orbital energy of the ground state (the le' orbital) to the unoccupied orbital 

of lowest orbital energy of each symmetry type. •The electron occupations 

produced by this procedure are 
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'2 	'2 	'3 
1a1  2a1  le 3a1  

'I 

la. 

- 	2e '  

II 

le 

Of the states arising from these occupations the two of lowest energy at the 

11 

SCF level have 1 
	3 
E and E synmietry and both arise from the third occupation. 

It is not surprising that these occupations produce the lowest excited 

states for these geometries. The 
1
A1  state is analogous to the 

IA state 

of methylene which arises from an occupation la 2a lb 34. If the IRs 

of D are resolved into those of C2v  aj -' a1  and e' - (a1 ,b2 ), and it is 

easily seen that the two molecules actually have the same occupation in the 
to 

lowest co=on point group. Similarly, a 2  + b1  in going from D3h  to C2.,, and 

so the 1 • 
	3 tt E and E states arise from an occupation that would be characterized 

i4 24 (3a1  1b 2 ) 31b1  in C2 . The ground 3B1  and the 
1  B states of methylene, 

in fact, arise from the occupation i4 24 i4 3a1  lb 1 . It is unfortunate 

that this simple analysis does not predict the ordering of the states 

correctly; the ground state occupation of methylene corresponds to excited 

states of borane and vice versa. 

The next step of the investigation involved performing single and double 

substitution configuration interaction (CI) calculations at various 

geometries on the ground and two excited states of the molecule. For this 

step the BERKELEY 23  system of CI programs was used together with the 

configuration generating procedure discussed above. Substitutions of all 

eight electrons were made into all available orbitals during the construction 
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of the configuration list. (I.e., no orbitals, occupied or virtual, were 

held frozen.) Only HF interacting configurations were generated. This 

procedure results in different numbers of configurations for each of the 

three electronic states, but treats them with comparable quality. 

For each electronic state, energies were computed at several D3h 

geometries. The resulting energies were fit to an analytic form. Not 

surprising for the ground state, but possibly surprising for the two excited 

states, all three states exhibit a local minimum in energy with respect 

to D3h geometry distortions. The results are displayed in the table. 

It is important to note that we have not referred to the energies and 

geometries of the E" states as excitation energies (Te) and bond lengths 

(re) because BH3  in these electronic states may not be stable with respect 

to C2  distortions, forming H + BH 2  or H2  + BH. Furthermore, since these 

excited states are spatially degenerate, they are expected to show a Jahn-

Teller distortion to aC2geometrY (E" - A 2  + B 2 ) even if they are bound. 

An investigation of the C 2  geometries of the resulting four electronic 

states was felt to be beyond the scope of this work, which is concerned 

primarily with point groups involving degenerate IRs. 

From the table it is clear that our lowest energy, -26.52872 a.u. for 

X 
1  A 1 at equilibrium, is significantly lower than that reported by Ahlrichs 

in 1974, -26.51107 a.u., even though the basis sets are comparable. This 

is due to the fact that our configuration lists allow for correlation 

of the i.a1  core electrons whereas his did not. 

The table displays a rather striking example of the considerable 

savings involved in using only HF interacting configurations in a CI 

1is 
calculation, particularly for the E state, where the interacting space 

IF 
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has only 62% as many configurations as the full space of single and double 

substituted configurations. Since the work involved in a CI calculation 

goes roughly as the square of the number of configurations, this saving 

- 	is considerable. Moreover, the non-interacting configurations are usually 

the longest (more determinants) and so the effort saved by doing the 

smaller calculation is even more. One might well ask how much electronic 

energy this savings in effort has cost us. To determine this, a calculation

of  
was performed on the 

1E state at the D geometry with R(B-H) = 2.373 using 

all 4002 configurations constructed from the single and double substitutions. 

The larger calculation, which required more than four times the computational 

effort, yielded an energy of -26.30582, only 0.0006 hartrees lower than the 

more easily obtained energy. Although this difference is not expected to 

be constant over the range of geometries needed to compute vibrational 

24  frequencies, it is so small as to be inconsequential for our purposes.  
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Appendix: Coupling Coefficients for the D3h Point Group 

The coupling coefficients used in this study of the BR 3  molecule were 

derived by a projection operator technique from the following set of 

representations : 

for the E" representation, 

	

/1 O\ 	 f-c -s\ 	2  f-c -s 
E=( 	I; 	ahE ; 	C3 1 	 c3 =( 	I 

	

o 1/ 	 s -Cl 	 •\-s -c/ 

s 3 =-c 3  ; 	s=-c ;C 2 	
( 	

0) 

	 (CS 

C23 = _) 	
= -C2 ; 	= 	; 	Gv3 = 

and for the V representation 

/i 	0' /c-s\ f-c 	s\ 
E= Gh_E 	; 

1) 
C3=s_c) ; C=) 

/1 	o\ f-  c 	s 
S 3  s 2 =c2  = C3 	; 	3 	3 

c2 	= ; c2 =( j 
1 \o -iF 2 S 	S 

i -S -C ' 
C2  

) 	
= c ; 	

= c 	; 
22 

a = 

3 
V1 	2i -SC 1 v2 V3 
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where C cos7r/3 1/2 and S - sin7t/3 	The representations for the 

one-dimensional representations are simply the characters and these may be 

found in any group theory text. 1  

These representations are adequate to define the coupling coefficients 

for single particle functions which are syminetrized with respect to the 

representations. 

The coupling coefficients for the direct products of functions 

transforming as the one-dimensional IRs may be trivially found from the 

character table. For the product of a function transforming as a one-

dimensional IR with a function transforming as one component of a two-

dimensional IR, there are two situations. If the one-dimensional IR 

is a or all  the couplings are given as 

fa I 	fe

X 	transforms as 	
X 

	

Se y  	y I 
where e. can be a component of either an e'- or e"-type function. This 

situation describes a1 	e' = e', aj e e" = e", a ll a e' = e", and 

a2  S e" = e'. If the one-dimensional IR is a or a 1 , the couplings 

are given as 

(aSe fex i
J  

ase 
¶ 	 transforms as 
(.- e 

	

x 	 y 

This situation describes a S e' = e', a S e" = e", a1  S e' = e". and 

a1  S e" = e'. 
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For the product of two functions each of which transforms as an e-type 

function, the couplings are given as 

1 (e e e + e a e ) 	transforms as x 	x 	y 	y 

e -e ee) x 	y 	y 	x 

-1 
I —(ee -e 	e) 

x 	x 	y 	y 

1 k (_e 	e - e a e) 
{::} 

These last couplings are used for e' a e' = a • a • e', e" o e" = aj • a 4 e', 

and e' to e" = a1  4 a2  8 e". 

a1  

a2  
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Minimum Energyt 

of D3 çeome try 

-26.30521 

-26.32745 

-26.52872 

R(B-H) at 

This Enegy 

2.37 a.u. 

2.34 a.u. 

.2.255 a.u. 

Table 

Electronic Size of D3h Size of CI 

State CI Space Interacting Space 

4002/ 19608*  2485/12148 

6337/13658 3676/7982 

X 1 Aj 774/4515 774*/4515 

-35- 

tEnergies  are single and double substitution (HF interacting) CI energies in 

atomic units. 

For closed-shell reference states, all single and double configurations are 

interacting. 

*Size is expressed as [the number of configurations used in the calculationh/[the 

number of unique determinants used to construct these configurations]. 

nJ 
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