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This dissertation explores the influence of extreme precipitation and the potential impacts 

of climate change on the vulnerable water resources of the southwestern United States. 

Specifically, it focuses on 1) the characteristics, origins, and impacts of historical extreme 
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warm-season precipitation in the Lake Mead watershed, 2) improving existing bias correction 

techniques for projected future streamflows, and 3) investigating the vulnerability of 

California’s largest reservoir, Lake Shasta, to climate change under existing and adaptive 

operating protocols.  

Although the North American Monsoon (NAM) is the main driver of summertime climate 

variability in the American southwest, considerable knowledge gaps exist regarding its impact 

at the northern extent of the core region (northwestern Mexico, southern Arizona, and New 

Mexico). The first part of this dissertation catalogues historical extreme precipitation events in 

the Lake Mead watershed (located at the NAM’s northern boundary) and identifies unique 

synoptic drivers of extreme precipitation between the canonical NAM region and watersheds 

to the north.  

From here, the dissertation shifts its focus from the historical period to future climate 

projections. Motivated by a desire to connect bias correction techniques to the underlying 

dynamics within earth systems models, a novel statistical method is developed for projected 

streamflow wherein data are windowed based on hydrograph-relative time, rather than Julian 

day. This method yields improved preservation of original climate model data for both extreme 

and non-extreme events.  

 Utilizing these bias corrected streamflow projections, and a simplified model of operations 

at California’s largest reservoir, Lake Shasta, developed by the author, coming threats to water 

supply and flood risk under existing operations and several forms of adaptive responses to 

climate change are analyzed. Compared to the historical period, we simulate 27% declines in 

carryover storage (storage on September 30th) at the end of the 21st century under a severe 

warming scenario if operations are left unchanged. Despite many simulated interventions 
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favoring water supply over flood risk, historical levels of carryover storage were irretrievable 

at the end of the century under the warmer of the two warming scenarios examined in this study. 
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Chapter 1 
 

Introduction  
 
1.1 Motivation and Background  
 

The southwestern United States is characterized by several distinct hydroclimates. 

Owing to its vast geographic extent and orographic features, the region is home to a diverse 

range of ecosystems transitioning from the lush Pacific coast, to the craggy snowcapped peaks 

of the Sierra Nevada and Rocky Mountain ranges, to the arid Mojave and Sonoran deserts. 

Despite stark differences in seasonal and average annual precipitation totals between these 

regions, all are characterized by water extremes (scarcity and flooding). The regions are also 

inextricably linked by their heavy reliance on water from the Colorado River, which flows 

southwest from the Rocky Mountains towards the Gulf of California.  

Much of the desert and interior intermountain southwest experiences a bimodal 

distribution of seasonal precipitation with distinct peaks in the winter and summer (Adams & 

Comrie, 1997 and references therein). While winter precipitation is often fueled by the same 

storms that soak the coast, summertime precipitation events occur during the North American 

Monsoon (NAM) season and can have devastating impacts on the built environment in the form 

of flooding, wind damage, dust storms, power outages, and crop loss (Brazel & Nickling, 1986; 

Ray et al., 2007). Additionally, quantifying and ultimately predicting how monsoon rains 

translate into water resources and ecosystem benefits, especially when the monsoon is extreme, 

is a continuing problem for scientists and engineers. 
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Typical of a Mediterranean climate, the coastal regions have distinct rainy and dry 

seasons with considerable interannual variability of precipitation wherein a small number of 

large storms (between 5-7 on average) contribute most of the wet season precipitation in a given 

year (Dettinger & Cayan, 2014; Dettinger et al., 2011). As rainfall quenches soils and greens 

up lowland ecosystems during the winter, the snow that accumulates at high elevations persists 

long after the final drops of rain have fallen. Slowly melting throughout the spring and into the 

dry season, the snowpack provides a vital water resource across the West.  

Reflecting a regional predisposition for drought and deluge conditions, carefully 

engineered to leverage the asynchronous arrivals of rain-driven and snowmelt-fed streamflows, 

many western reservoirs provide both water supply and flood-risk mitigation benefits. To 

reduce downstream flooding, empty space (storage volume) is mandated behind most dams 

during boreal winter as a trap for possible flood inflow (this empty space is called the flood 

pool). Such operation relies on springtime snowmelt to rebuild storage levels after major flood 

risks begin their climatological seasonal declines (US. Army Corps of Engineers, 1977). 

However, the alpine snowpack, particularly in California’s Sierra Nevada range, is as 

vulnerable as it is valuable. Warming temperatures have led to declining snowpacks during 

recent decades (Berg & Hall, 2017; Mote et al., 2018; Pierce et al., 2008), a trend that is 

projected to worsen with higher levels of atmospheric greenhouse gases (Barnett et al., 2008; 

Leung et al., 2004; Nijssen et al., 2001), compounding existing challenges to the region’s water 

resources  (Christensen et al., 2004; Knowles et al., 2018; Knowles et al., 2006; Lee et al., 

2006). Additionally, rising freezing levels, resulting in a greater fraction of precipitation falling 

as rain versus snow (Barnett et al., 2008; Knowles et al., 2006; Leung et al., 2004; Nijssen et 

al., 2001), alongside projected increases in rain-on-snow events (McCabe et al., 2007; 
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Musselman et al., 2018), and more extreme winter precipitation (Gershunov et al., 2019) result 

in heightened simulated flood risk. Moreover, interannual variability of precipitation is 

projected to increase (Swain et al., 2018) as conditions favoring long-term droughts separating 

occasional large storms and streamflows become more likely (Mann & Gleick, 2015; Polade et 

al., 2014).  

Such hydroclimatic changes are expected to have direct implications for water 

management. In addition to baseline increases in flood risk, as streamflow shifts to earlier in 

the year in response to rising snowlines, a larger fraction of total reservoir inflows may not be 

converted to storage gains (being sapped instead by flood-management releases). Thus, in the 

absence of springtime snowmelt inflows, reservoirs will not be able to refill as much as they 

are designed for (Cohen et al., 2020; Knowles et al., 2018; Sterle et al., 2020) leaving water 

managers in difficult positions, needing to adapt operations to an increasingly volatile and 

uncertain future.  

Although many of the above global warming ‘fingerprints’ are robust and their impacts 

will be widespread, individual river basins, watersheds, and reservoir drainage areas will not be 

impacted uniformly (Das et al., 2011; Kalra et al., 2008; Mote et al., 2005, 2018). Both physical 

(e.g., elevation, topographic aspects, vegetation) and meteorological (e.g., moistening of the 

atmosphere, large-scale weather pattern changes and increased amplitudes of seasonal 

temperature cycles) factors will control the response of water supply-relevant variables, such 

as annual streamflow, total precipitation, or snowpack volume (Gonzalez et al., 2018; M. He et 

al., 2019; Huning & AghaKouchak, 2018; Pierce & Cayan, 2013). As a result, the potential 

impacts of climate change on water management and the health of riparian and riverine 
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ecosystems need to be examined on local scales and on a case-by-case basis, along with 

associated mitigation or adaptation strategies. 

Investigating the impacts of climate change, or assessing the efficacy of adaptation and 

mitigation strategies, at the local level requires high resolution simulations of projected future 

climate. Though a key part of the process, global climate models (GCMs) are necessary but 

insufficient tools due to the mismatch between their resolution (~100 km) and that required to 

study change at the local scale (~10 km or less) as well as inherent GCM biases. Prior to being 

used for local applications, future climate projections typically undergo a process called 

downscaling and bias correction in which GCM output is combined with higher-resolution 

historical observations, topography, and/or dynamics to resolve smaller-spatial scale features 

while removing systematic errors in the GCM. While valuable and widely applied, the resulting 

future climate data is sensitive to the downscaling methodology used and many bias correction 

schemes alter the GCM-predicted change for unphysical reasons (Hagemann et al., 2011; 

Maraun, 2013; Maurer & Pierce, 2014; Pierce et al., 2013). While downscaled and bias 

corrected GCM output (e.g., temperature, precipitation) is satisfactory for some planning 

studies, many require the use of a land-surface model to produce variables such as streamflow. 

In this case, due to biases introduced by the land-surface model, streamflow projections may 

undergo ‘secondary’ bias correction before they are used for planning even if downscaled and 

bias corrected GCM output is used to drive the land surface model. 

This dissertation is motivated by the impacts of extreme weather on the people and 

ecosystems of the southwestern United States, the reliance (and risk exposure) of local-, 

regional-, and national economies on the water resources of the west, and the threat that climate 

change poses to each of these topics. 
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1.2 Dissertation Overview  

Through the combination of observational-, reanalyzed-, and GCM data, in addition to 

the development of novel statistical methods and modeling, the objective of this body of work 

is to evaluate both existing warm season precipitation extremes and projected impacts of 

climate change on the vulnerable water resources of the southwestern United States. The 

dissertation is organized in the following manner. 

In Chapter 2, the synoptic drivers of extreme summertime (defined here as July-

September) precipitation over the Lake Mead watershed are examined through composite and 

individual event analysis. Lake Mead is the nation’s 2nd largest reservoir and is located on the 

Colorado River, spanning segments of the borders of Utah, Nevada, and Arizona. This location 

is particularly interesting as it exists in the transition zone between the core of the North 

American Monsoon (NAM) region and the area to the north, which is very much on the 

periphery of the NAM’s influence. A greater understanding of the atmospheric conditions most 

conducive to extreme precipitation may help improve emergency preparedness and even water 

management. Following this evaluation of summer precipitation in the observed record and at 

synoptic timescales, the focus of this dissertation shifts to future climate projections and decadal 

timescales.   

Chapter 3 evaluates whether the current standard streamflow bias-correction technique 

of applying a calendar-based time window, often 1-month long, to adjust a given global climate 

model (GCM) datapoint is suitable for systems characterized by changes in both magnitude and 

seasonality. Motivated by a desire to connect bias correction techniques to the underlying 

dynamics within hydrologic models, a novel statistical method is developed for correcting 
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projected streamflows wherein biases are determined and windowed based on hydrograph-

relative time, rather than by rigid day-of-year considerations. 

Building from the dataset produced in Chapter 3, Chapter 4 investigates projected 

climate change impacts on California’s Lake Shasta and identifies specific variables that govern 

its vulnerability. Through the development of a highly flexible reservoir-operations model, 

climate-change challenges to water supply and flood risk under existing operations and with 

several different adaption responses are simulated and evaluated.  
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Chapter 2 
 
Characteristics, Origins, and Impacts of 
Summertime Extreme Precipitation in the Lake 
Mead Watershed 
 
Abstract 

The North American Monsoon (NAM) is the main driver of summertime climate 

variability in the American southwest. Previous studies of the NAM have primarily focused on 

the Tier I region of the North American Monsoon Experiment (NAME), spanning central-

western Mexico, southern Arizona and New Mexico. This manuscript, however, presents a 

climatological characterization of summertime precipitation, defined as July, August, and 

September (JAS), in the Lake Mead watershed, located in the NAME Tier II region. 

Spatiotemporal variability of JAS rainfall is examined from 1981-2016 using gridded 

precipitation data and the meteorological mechanisms that account for this variability are 

investigated using reanalyses. The importance of the number of wet days (24-hr rainfall ≥1 mm) 

and extreme rainfall events (95th percentile of wet days) to the total JAS precipitation are 

examined and show extreme events playing a larger role in the west and central basin. An 

investigation into the dynamical drivers of extreme rainfall events indicates that anticyclonic 

Rossby wave breaking (RWB) in the midlatitude westerlies over the US west coast is associated 

with 89% of precipitation events >10 mm (98th percentile of wet days) over the Lake Mead 

basin. This is in contrast to the NAME Tier I region where easterly upper-level disturbances 

such as inverted troughs are the dominant driver of extreme precipitation. Due to the synoptic 
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nature of RWB events, corresponding impacts and hazards extend beyond the Lake Mead 

watershed and are relevant for the greater U.S. southwest. 

2.1 Introduction  

Enhanced knowledge of Colorado River basin hydrometeorology is necessary for 

effective water resource management throughout the arid Southwest US. This need is increasing 

in urgency given future projections of prolonged regional drought and growing water demand 

(Colorado River Basin Water Supply and Demand Study: Executive Summary, 2012). 

Accordingly, this manuscript presents a characterization of summertime meteorology over the 

Lake Mead watershed in the Lower Colorado River basin. 

Lake Mead supplies water to over 25 million people for household use, agriculture and 

power generation across the American southwest (Rosen et al., 2012). While roughly 90% of 

annual inflow is generated via upstream releases from Lake Powell on the Colorado River 

(primarily fed by snowmelt in the Upper Colorado River basin), 10% of inflow is generated 

locally (Bunk, 2018), 25% of which occurs during the months of July, August, and September 

(JAS) (streamflow data available at https://waterdata.usgs.gov/usa/nwis/). 

Although the average annual inflow contributed by summertime precipitation within the Lake 

Mead watershed represents only a fraction of overall storage, multidecadal drought and 

historical over-allocation of existing water resources have placed the reservoir on the precipice 

of a litigated shortage threshold that, when crossed, will trigger delivery cut backs. As a result, 

interannual variability in this comparatively small inflow contribution by local summertime 

precipitation is highly relevant to overall water resource management and can be the difference 

between normal or historically unprecedented reservoir operations. 
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The precipitation events that generate summertime inflow to Lake Mead occur during 

the North American Monsoon (NAM) season. The NAM is the main driver of summertime 

climate variability in the region and is associated with a marked increase in precipitation during 

the months of July, August, and September (Adams & Comrie, 1997). Weather associated with 

the NAM can have devastating impacts on the built environment such as flooding, wind 

damage, dust storms, power outages, and crop loss (Brazel & Nickling, 1986; Ray et al., 2007). 

Apart from hazards, precipitation falling during the monsoon season is vital for ecosystem 

processes (Notaro et al., 2010) which can affect the surface energy balance (Vivoni, 2012; 

Watts et al., 2007) and feedback on summer precipitation (Dominguez et al., 2008; Small, 

2001). 

Meteorologically, the NAM is characterized by the development of a surface heat low 

and 500-hPa ‘monsoon ridge’ over the southwest U.S. (Adams & Comrie, 1997; Douglas, 1995; 

Douglas et al., 1993; Tang & Reiter, 2002). The subsequent seasonal reversal of winds and 

enhanced moisture transport into northwest Mexico and the southwestern US at this time are 

essential to the development of precipitation, though it has been demonstrated for the North 

American Monsoon Experiment (NAME) Tier I region that synoptic scale variability in the 

strength and position of the NAM ridge influence the organization and growth of convective 

systems and drive precipitation variability across a range of spatial and temporal scales (Bieda 

et al., 2009; Carleton, 1986, 1987; Fuller & Stensrud, 2000; R. W. Higgins et al., 2004; Johnson 

et al., 2007; Pascale & Bordoni, 2016; Pytlak & Goering, 2005; Stensrud et al., 1997). For 

example, the interactions between the monsoon ridge and easterly disturbances, such as inverted 

troughs, are often associated with moisture surges and extreme precipitation in southern 

Arizona and northern Mexico (Brenner, 1974; Hales, 1974; Lahmers et al., 2016; Pytlak & 
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Goering, 2005; Stensrud et al., 1997). Midlatitude westerly disturbances (e.g. cutoff lows, open 

wave troughs, shortwaves) have also been shown to produce synoptic forcing for ascent and 

low level moisture transport into the NAM region leading to extreme precipitation (Carleton, 

1986; Corbosiero et al., 2009; Favors & Abatzoglou, 2013; Johnson et al., 2007). 

Here, we investigate the role of synoptic disturbances on NAM precipitation in the Lake 

Mead watershed in the NAME Tier II region, where considerably less is known about the 

impact of the individual mechanisms discussed above (Higgins & Gochis, 2007). Motivated by 

the gap in understanding of hydrometeorology in the northern extent of the NAM, the ecological 

and societal impacts of monsoon rainfall, and declining Lake Mead reservoir elevations, the 

purpose of this manuscript is to examine the impact of summertime (JAS) precipitation on the 

Lake Mead watershed from a climatological perspective and to understand the synoptic drivers 

of regional extreme precipitation events. 

2.2 Data and Methods  

2.2.1 Watershed Subdivisions  

To examine spatial variability across the Lake Mead watershed, USGS stream gages on 

major Lake Mead tributaries were used to define 7 sub-basins (Table 2.1, Fig. 2.1). For each 

tributary, the furthest downstream gage with the longest record of daily discharge was used to 

delineate the sub-basin boundary (except for the Colorado River, which was split into 2 

watersheds using a single USGS gage). 

2.2.2 Precipitation  

Daily precipitation totals, defined as 12-12 UTC, were obtained from the PRISM 4-km 

gridded AN81d dataset for the period 1981-2016 (Daly et al., 1994). The individual sub-basins 
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are reasonably sampled by PRISM precipitation stations, although fewer exist in the proximity 

of the Grand Canyon. Although the onset and retreat of the NAM varies inter-annually, this 

work uses the months of July, August, and September (JAS) as a proxy for “monsoon 

season/summertime” which generally agrees with Bieda et al. (2009) for the NAME Tier II 

region. The spatial variability of seasonal (JAS) precipitation within the Lake Mead basin was 

examined in addition to the temporal variability of precipitation on sub-seasonal, seasonal, and 

interannual timescales. One such metric used to infer relative interannual variability is the 

coefficient of variation (cv) hereby defined as cv = standard deviation/mean. Note that this 

metric is always positive and normalizes the variability by the mean of a given distribution. 

To understand the drivers of interannual variability in total JAS precipitation, the 

relationship between the number of wet days as well as accumulation from extreme and non-

extreme precipitation to the total JAS precipitation were independently examined using 

Spearman’s rank correlation. Extreme (non-extreme) events were categorized as the 95th (<95th) 

percentile of wet days, defined here as 24-hr mean basin precipitation ³ 1 mm (Cavazos et al., 

2008). Extreme events must be separated by more than one day to be considered independent 

and consecutive days >95th percentile were counted as a single event on the first extreme 

precipitation date. The contribution of the top 5% of wet days to the JAS precipitation total was 

assessed for each sub-basin and the entire Lake Mead watershed using the methodology of 

Dettinger and Cayan (2014). 

2.2.3 Meteorology  

Atmospheric reanalysis variables from NASA’s Modern-Era Retrospective and 

Applications, Version 2 (Gelaro et al., 2017) were taken at 23 vertical levels from 1000-200 

hPa at 0.5º x 0.625º horizontal resolution. Daily mean (12PM-12PM UTC) values were 
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computed by averaging across 3-hourly model output. Synoptic conditions for extreme events 

were examined via lagged composite analysis and on a case-by-case basis. Atmospheric 

conditions were examined 10 days prior through 1 day after each extreme precipitation event. 

Attention was focused on evaluating synoptic features identified in previous studies as 

important for southwest extreme precipitation, including: tropical easterly waves (Fuller & 

Stensrud, 2000; Stensrud et al., 1997), inverted troughs (Bieda et al., 2009; Pytlak & Goering, 

2005), upper-level potential vorticity anomalies (Carleton, 1986; Pytlak & Goering, 2005), and 

500-hPa ridge position (Carleton, 1986, 1987; Maddox et al., 1995; Watson et al., 1994), in 

addition to integrated water vapor (IWV), and integrated vapor transport (IVT) (Schmitz & 

Mullen, 1996). 

Field significance for synoptic patterns was computed via bootstrapping with 

resampling in which the distribution of 5,000 randomly selected representative data is compared 

to an individual event or composite signal. If the individual event or composite signal falls 

beyond the top or bottom 2.5% of the randomly selected distribution, the signal is deemed 

statistically significant. Standard anomalies for the above variables were computed using the 

following formula, Standard Anomaly = (Data – Climatology)/Standard Deviation, where the 

climatology and standard deviation were computed using a centered 28-day window across the 

36-year record at each grid point for each variable. 

2.2.4 Tropical Cyclone Inventory  

To quantify the importance of tropical cyclones to JAS precipitation in the Lake Mead 

watershed, intensity and position were taken from the International Best Track Archive for 

Climate Stewardship (IBTrACS) dataset (Knapp et al., 2010) to identify tropical cyclone (TC) 

tracks that passed through 28.5oN ± 2oN, 113.5oW ± 3oW. This region was chosen primarily to 
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identify and flag TCs which track northeast enough to directly influence precipitation over the 

study area and encapsulates the core region of TC tracks impacting the southwest in Corbosiero 

et al. (2009). Similar to Seastrand et al. (2015), precipitation falling within 7 days from the 

flagged date was assumed to be associated with the concurrent TC. Flagged dates were excluded 

from the extreme event synoptic composite and case-by-case study to investigate drivers of 

extreme precipitation apart from tropical storms, which can produce extreme precipitation 

events in the study region but are infrequent enough to necessitate separate consideration in the 

climatology. 

2.3 Data and Methods  

2.3.1 Climatology of JAS Precipitation  

The average JAS total precipitation in the entire Lake Mead watershed is 103.0 mm ± 

32.6 mm. Summertime rainfall maxima occur over high terrain features such as the Mogollon 

Rim, Kaibab Plateau, and other isolated peaks (Fig. 2.2). The highest average values are located 

in the southeastern basin, on the northern side of the Mogollon Rim, which bifurcates the low 

deserts of southwestern Arizona from higher terrain to the north. On the sub-basin scale, a 

strong increasing west-to-east gradient in average JAS precipitation exists with 57.2 mm ± 46.9 

mm falling in the westernmost Las Vegas Wash sub-basin and 128.2 mm ± 33.0 mm in the 

easternmost Little Colorado sub-basin. In contrast, a strong decreasing west-to-east gradient 

exists in the coefficient of variation of average JAS precipitation. In general, the western sub-

basins are drier on average with larger inter-annual variability while the eastern basins are 

wetter with smaller interannual variability (Table 2.2). Further, the fraction of annual water year 

(WY, October 1 – September 30) precipitation occurring during JAS over the entire Lake Mead 
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watershed is 36% ± 13%. A similar increasing west-to-east gradient is found with 29% of 

annual WY precipitation occurring in the Las Vegas Wash sub-basin compared to 44% over 

the Little Colorado (Table 2.2). 

2.3.2 Relationship Between Number of Wet Days and Total JAS 

Precipitation  

The total number of wet days during JAS explains 75% of the year-to-year variability 

in total summertime precipitation for the Lake Mead watershed. In contrast to the coefficient 

of variation and contribution to annual precipitation results shown above, a west-to-east trend 

is not apparent, with rank correlated r-squared values falling between 0.65 and 0.77. 

The relationship between the mean total number of wet days during JAS and mean total 

JAS precipitation for each sub-basin is shown in Fig. 2.3 and demonstrates a distinct difference 

between the western and easternmost sub-basins’ precipitation distributions (For an individual 

basin, mean values of each variable mark the center of an ellipse, and the distance from the 

center to the ellipse’s edge in either direction represents ± 1 standard deviation of that variable. 

Data from individual years are shown in translucent dots). In the Las Vegas Wash basin, the 

narrow vertical ellipse indicates comparative greater variability in total JAS precipitation than 

in the number of wet days during JAS. By comparison, the basins in the center of the greater 

Lake Mead watershed have more proportional variability in each variable. The easternmost 

Little Colorado basin, as well as the entire Lake Mead watershed, is characterized by more 

consistent total JAS precipitation despite larger variability in the number of wet days. In 

general, basins increase in both total JAS precipitation and number of wet days moving from 

west-to-east. 



 15 

2.3.3 Relationship Between Extreme Events and JAS Total 

Precipitation  

For the entire Lake Mead watershed, the variance in total JAS precipitation explained 

by the top 5% (bottom 95%) of wet days is 46% (80%). Total variance explained exceeds 100% 

due to the correlation between precipitation regimes, i.e., years with extreme precipitation often 

have larger non-extreme totals. The average percentage of JAS precipitation falling as extremes 

ranges from 12-17%, with slightly higher values in the eastern sub-basins. When the percentage 

of total JAS precipitation from 1981-2016 falling as extremes is examined, western and central 

basins are more strongly influenced, with 24.6% of all precipitation due to extremes in the Las 

Vegas Wash and the combined watershed receiving 17.6% (Table 2.2). 

2.3.4 Seasonality of Extreme Events and Tropical Cyclones  

The monthly distribution of independent extreme precipitation events in the Lake Mead 

basin exhibits a skewness towards the end of the monsoon season (Fig. 2.4). In fact, the Little 

Colorado is the only sub-basin for which July is not the month with the lowest frequency of 

extreme events, irrespective of TC inclusion. Concerning TCs, which occur preferentially 

towards the end of the JAS period, extreme (non-extreme) precipitation events are associated 

with 29% (67%) of systems that tracked into the region of influence (described in Section 2.2.4). 

While it is noteworthy that TCs are associated with a greater fraction of both extreme and non-

extreme events in the eastern Lake Mead basin than the west, a thorough analysis of their 

meteorology and hydrologic impacts on the Tier II region is beyond the scope of this paper. 

2.3.5 Dynamical Drivers of Extreme Events  

The meteorological conditions leading to extreme precipitation events, excluding TC 
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events, for each sub-basin as well as the combined Lake Mead basin were investigated using 

lagged composite and individual event analyses. Lagged composites show a weak westerly 

disturbance signal (not shown), though considerable variance necessitated a review of each 

individual event’s meteorology. Further qualitative inspection of daily mean fields for each case 

revealed 4 distinct synoptic regimes: inverted trough, Rossby wave breaking in the midlatitude 

westerlies, tropical storm influence for non-TC flagged date, and uncharacterized. 

Criteria for the above categories are as follows: Inverted Trough (IV): westward moving 

200-hPa positive potential vorticity (PV) standard anomaly > 0.25  on the southern side of the 

NAM ridge (Lahmers et al., 2016) poleward of 15 oN. Rossby Wave Breaking (RWB): eastward 

moving 200-hPa positive PV standard anomaly > 0.25 in midlatitudes with mandatory 

overturning of 2 PV Unit (PVU) contour (Abatzoglou & Magnusdottir, 2006; Postel & 

Hitchman, 1999; Thorncroft et al., 1993). Tropical Storm (TS): moisture surge coinciding with 

northward moving cyclonic feature off Baja coast, likely a tropical disturbance no longer 

tracked by iBTrACS and not associated with RWB or IV synoptics. Uncharacterized: no clear 

synoptic upper level forcing mechanism, excessive moisture and low-mid level disturbances 

are possible. 

RWB events were split into three groups: ‘canonical’, ‘TC tapping’, and ‘irregular’ 

events. Canonical and TC tapping events feature clean Rossby wave breaking (e.g. Abatzoglou 

and Magnusdottir, 2006 (note their Fig. 3); Barnes and Hartmann, 2012 (note their Fig. 2)), 

with the latter potentially advecting moisture from a distinct cyclonic feature outside of the 

control box described in Section 2.2.4. Irregular RWB events feature an overturning of the 2 

PVU contour, but with a less organized large-scale background flow. It is important to note that 

events were categorized using daily mean fields and analysis performed on higher temporal 
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resolution data, ex. 3-hourly fields, may yield slightly different results. For example, an 

‘irregular’ RWB here may look ‘canonical’ at higher resolution. However, changes to the large-

scale synoptic categorization of events are unlikely. 

Out of 40 independent extreme events for the combined Lake Mead watershed, 70% are 

classified as RWB events (canonical-22.5%, TC tapping-17.5%, irregular-30%). Conversely, 

IVs are associated with 20% of all extreme events while TS and Uncharacterized events each 

comprise 5% of cases. Results for sub-basins elucidate a similar trend with RWB playing a 

more dominant role than IVs in extreme events. The subjective analysis here suggests a 

preference for IV extreme events to occur early in the summer, peaking in July, waning in 

August, and absent for September. In contrast, RWB events play an increasing role as the 

summer progresses, associated with ~40-50% of July events compared to ~90% of events in 

September. Independent extreme precipitation event dates for the combined Lake Mead 

watershed are listed by synoptic category in Table 2.1A in Appendix A. On occasions where 

both a RWB and IV were identified (n=2), preference was given to the most salient feature; one 

case was a RWB, the other an IV. 

The extreme event on September 23, 2007 is an example of a canonical Rossby wave 

break event (Fig. 2.5). Here, the anticyclonic wave break 3 days prior to the event (Fig. 2.5 a) 

produced a quasi-stationary cutoff low centered over the California Bight while simultaneously 

transporting significant amounts of water vapor poleward on the western flank. Although not 

all RWB events produce a cutoff low, the feature is common and the location of the positive 

(negative) 200-hPa PV (500-hPa height) anomaly is located to the west of the Lake Mead 

watershed. As the westerly trough dropped into the coastal region, the 500-hPa NAM ridge 

receded to the east. The resulting south/southwesterly synoptic-scale flow advected warm, 
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moist air into the Lake Mead watershed providing necessary moisture for extreme precipitation. 

The progression of the northern edge of the 33-mm integrated water vapor (IWV) contour 

demonstrates the surge of moist air into the region (Fig. 2.5 b,c) as a direct result of the 

anomalous cyclonic circulation. Lastly, quasigeostrophic dynamics associated with the cutoff 

low and leading edge of the positive PV anomaly can act as a trigger for intense convective 

storms (Hoskins et al., 1985; Martius & Rivière, 2016). The 24 and 72-hour precipitation fields 

from this event can be viewed in the supplemental as in Appendix B as Figures 2.1B and 2.2B 

respectively. This example serves to illustrate the general mechanisms by which an anticyclonic 

RWB generates extreme precipitation in the summertime southwestern US, though the specific 

meteorology of any given RWB event is variable. 

Lead-lag composite analysis was performed on the combined ‘canonical’ and ‘TC 

tapping’ RWB subset of extreme events for the combined Lake Mead watershed (Fig. 2.6). The 

composited atmospheric features are not sensitive to the choice of sub-basin as the large-scale 

patterns for extreme precipitation are similar across the watershed. The composites do not 

depict a robust overturning of PV contours seen in Figure 2.5 on account of variability in the 

location, timing, and axis of the wave break between events. Despite the weakened composite 

signal at long lead times, the synoptic features of a RWB are apparent with decreasing lead time 

and at the time of the precipitation event: co-located 200-hPa PV and 500-hPa geopotential 

anomalies over the Southern California Bight, moist SSW flow into the American southwest, 

and a distinct Rossby wave pattern spanning the eastern Pacific and US. It is worth noting that 

although the moist SSW flow is driven by the cyclonic circulation associated with the RWB, 

anticyclonic circulation (SSE flow) around an eastward displaced NAM ridge amplifies it. 

Further, the west-east dipole of cyclonic and anticyclonic circulation favors upper level 
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divergence that is conducive for ascent over the Lake Mead watershed (Holton, 2004). The 

composited days comprise 40% of JAS extreme events over the combined Lake Mead 

watershed, demonstrating the importance of midlatitude westerly disturbances to extreme 

precipitation in the NAME Tier II region. 

To contrast RWB precipitation generation to inverted trough (IV) events, which are 

known to impact southern Arizona (Douglas & Englehart, 2007; Finch & Johnson, 2010; Pytlak 

& Goering, 2005), lead-lag composite analysis was applied to the IV subset of events for the 

combined Lake Mead watershed (Fig. 2.7). As in the RWB analysis, the composited large-scale 

atmospheric features are not sensitive to the choice of sub-basin as the general synoptic patterns 

for extreme precipitation are similar across the watershed. However, the composited IV signal 

is less robust than the RWB as there is greater variability in the strength and location of the 

upper-level disturbance across the 8 individual IV events. At 2-3 days lead, the composites 

depict an easterly PV anomaly at 200-hPa with a weak 500-hPa geopotential height trough 

moving across northern Mexico on the equatorward side of a strengthened northward-displaced 

NAM ridge (not shown). From here, the monsoon ridge retreats eastward as the upper-level 

disturbance turns northward near the Baja Peninsula. The day of event composite features 

significant moisture transport into the Lake Mead watershed from the south-southeast as the 

co-located 200-hPa PV and 500-hPa anomalies move northward across the US-Mexico border. 

In addition to the northward moving upper-level disturbance, the day of event composite depicts 

a second 200-hPa positive PV anomaly off of the California coast whose ensuing circulation 

can help steer the primary disturbance towards the Lake Mead watershed (seen in several 

individual events). The composite 24-hour precipitation field for RWB and IV cases can be 

seen in the supplemental as Figures 2.3B and 2.4B respectively. 
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To contrast the temporal evolution of RWB and IV events, composite Hovmöller plots 

of 200-hPa PV, 700-hPa meridional wind (V700hPa), and IWV are shown for each event type 

(Fig. 2.8). The composites include 16 RWB and 8 IV events that produced extreme precipitation 

in the combined Lake Mead watershed. Because driving RWB and IV dynamics tend to occur 

in distinct latitudinal bands, each regime’s PV field is averaged over its characteristic domain 

(detailed in Fig. 2.8). The latitudinal averaging band for the RWB composite (32oN-45oN) is 

consistent with the region of >0.5 standard anomaly in Figure 2.6 and that of the IVs (25oN -

35oN) is consistent with previous IV tracking work and highlights the northern portion of the 

domain used in Lahmers et al. (2016). 

The RWB PV composite Hovmöller shows a distinct westerly wave with a couplet of 

maximum amplitude centered over the watershed on the day of extreme precipitation with an 

eastward propagation speed of roughly 350 km day-1 (Fig. 2.8a). Dynamical forcing associated 

with the advection of positive PV at the feature’s leading edge is conducive to ascent and likely 

plays a role in driving these extreme precipitation events (Hoskins et al., 1985; Martin, 2006; 

Martius & Rivière, 2016). The evolution of V700hPa depicts significant circulation anomalies 

corresponding to the breakdown and eastward retreat of the NAM ridge due to an approaching 

midlatitude westerly disturbance (Fig. 2.8b). The evolution of IWV features a plume of 

moisture developing over the watershed several days prior to the event before reaching a 

maximum on the day of the event and then moving eastward (Fig. 2.8c). 

In contrast, the PV composite for IV events features an easterly trough whose signal is 

evident several days prior to the extreme event. Both the primary easterly disturbance and the 

emergence of a secondary offshore PV anomaly can be seen (Fig. 2.8a). Anomalous southerly 

winds approaching the basin from the east are representative of an easterly disturbance in 
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synchrony with an eastward or northward displaced NAM ridge (Fig. 2.8b). The IWV signal 

for the IVs emerges from the east ~3 days prior near 110oW and continues westward through 

the day of extreme precipitation (Fig. 2.8c). 

2.4 Discussion  

Deconstructing the Lake Mead watershed into sub-basins reveals dramatic gradients in 

summertime (July, August, and September (JAS)) precipitation characteristics. Not only are the 

southeastern sub-basins wetter than the northwestern, on average, they experience a greater 

fraction of water year precipitation during the summer months and less interannual variability 

of summer precipitation. Using a threshold of 1 mm, the influence of the number of wet days 

on JAS accumulated precipitation exhibits no spatial trend with rank correlated r-squared values 

falling between 0.65 and 0.77. 

However, the role of extreme precipitation events in driving JAS total accumulation 

varies geographically in the Lake Mead basin with heightened importance in the central and 

western sub-basins with 17.6% of 1981-2016 JAS precipitation falling during extreme events 

for the combined Lake Mead watershed. Concerning the seasonality of extreme events, a 

skewness exists with distributions peaking in August or September across all sub-basins. While 

this timing corresponds to increased tropical storm activity in the late summer, we find the 

relationship to hold when excluding tropical storms tracking within 28.5oN ± 2oN, 113.5oW ± 

3oW from our analyses, suggesting landfalling tropical storms and their remnants are not the 

most frequent drivers of extreme precipitation in the late summer. 

Case-by-case analyses of synoptic fields for each extreme event reveal anticyclonic 

Rossby wave breaking (RWB) in the midlatitude westerlies to be the dominant source of JAS 
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extreme precipitation events in the entire Lake Mead watershed (70% of events from 1981-

2016). Interestingly, when the precipitation threshold for an extreme event is raised from the 

95th percentile (7.4 mm) to 10 mm (98th percentile), the fraction of RWB events increases from 

70% to 89% indicating that RWB are associated with the most extreme summertime 

precipitation in the Lake Mead basin. The RWB results in a trough over the US west coast 

whose equatorward extent can reach as far south as 30oN (e.g., Fig. 2.5). The ensuing circulation 

is able to advect moisture into the southwest, priming the region for instability and precipitation. 

Further, eastward displacement of the 500-hPa NAM ridge results in a circulation dipole 

centered over the southwest, enhancing moisture transport from the south and favoring upper 

level divergence. Finally, strong quasi-geostrophic dynamics on the leading flank of the positive 

potential vorticity (PV) anomaly can force ascent and trigger convection (Hoskins et al., 1985; 

Martin, 2006; Martius & Rivière, 2016). 

Previous work has noted the role of midlatitude westerly disturbances in both aiding 

(Carleton, 1986; Corbosiero et al., 2009; Favors & Abatzoglou, 2013; Johnson et al., 2007) and 

suppressing (Douglas & Englehart, 2007; Fuller & Stensrud, 2000) moisture influx and 

precipitation in the NAM region. This manuscript builds upon the former body of work arguing 

that an upstream midlatitude trough is not only able to facilitate the advection of moist air into 

the NAM region, but also contribute favorable dynamics for extreme precipitation. New to the 

understanding of extreme events in the NAM region is the importance of anticyclonic Rossby 

wave breaking on the genesis of cutoff and closed lows. While earlier work has demonstrated 

the link between RWB and cutoff lows (Baray et al., 2003; Ndarana & Waugh, 2010; Nieto et 

al., 2008; Scott et al., 2001) and the ability of RWB (Hoskins et al., 1985; Martius & Rivière, 

2016) and cutoff lows (Abatzoglou, 2016; R. Nieto et al., 2008; Oakley & Redmond, 2014) to 
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affect extreme precipitation, these works have not demonstrated the importance of these 

mechanisms during the NAM season, especially as they relate to Tier II. 

In southern Arizona and the NAME Tier I region, tropical easterly waves (TEWs) and 

inverted troughs (IVs) are important to extreme precipitation and convective outbreaks (Mazon 

et al., 2016; Pytlak & Goering, 2005). Although these transient disturbances are associated with 

extreme precipitation north of the Mogollon Rim, this flow regime is only associated with 20% 

of extreme events for the combined Lake Mead watershed. As seen in Bieda et al. (2009) and 

Pytlak & Goering (2005), Lake Mead was impacted by IVs both originating south of 30oN in 

the Gulf of Mexico region as well as those generated in the midlatitude westerlies which became 

entrained in the tropical easterlies upon RWB on the east side of the NAM ridge. 

When placing the Lake Mead watershed in the geographical context of previous 

literature highlighting extreme summertime precipitation, it appears to be located at a hinge 

point of synoptic forcing. IV track density peaks over central Mexico and the southern tip of 

Baja California which results in greater impacts (cloud-to-ground lightning, precipitation) south 

of the Mogollon Rim in northern Mexico and southern Arizona (Bieda et al., 2009; Lahmers et 

al., 2016). In contrast, the seasonal fraction of summertime precipitation from closed and cutoff 

lows in the interior western US increases from south to north, with distinctly higher values seen 

north of the Arizona-Utah border (Abatzoglou, 2016; Oakley & Redmond, 2014). The Lake 

Mead watershed, and the broader region straddling the northern NAME Tier I-II boundary, is 

uniquely positioned to experience the dominant synoptic drivers of extreme summertime 

precipitation of both the intermountain west and the core of the NAM region. 

Idealized schematics of both RWB and IV events driving extreme precipitation in the 

Lake Mead basin are depicted in Figure 2.9, though the specific meteorology of any given event 
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is variable. In accordance with a strengthening of the monsoon ridge, due to thermal expansion 

of the lower atmosphere with increasing global temperatures (Christidis & Stott, 2015; Pascale 

et al., 2016), it is worth investigating whether there will be a future change in the prevalence of 

IVs impacting the Lake Mead region as these features may be displaced southward and 

westward away from the locus of high pressure (Lahmers et al. 2016; their Fig. 18). The 

subjective analysis here suggests a preference for IV extreme events to occur early in the 

summer, peaking in July, waning in August, and absent for September for the combined Lake 

Mead watershed, which resembles the seasonality of IV days presented in Lahmers et al. (2016) 

and Bieda et al. (2009). In contrast, RWB events make up roughly 90% of September events 

but play a lesser role in July (~40-50%). The transition from boreal summer to fall is associated 

with a strengthening of the Pacific westerly jet and the propensity for later season RWBs 

coincides with an easterly shift in the jet exit region and corresponding eastward shift in the 

location of RWB (Abatzoglou & Magnusdottir, 2006). Noting that RWB events tend to occur 

later in the summer season, it may be useful to look beyond JAS into the fall and early winter 

to better understand the impact of RWB on precipitation throughout the southwest. In addition 

to facilitating extreme weather on the eastern flank, dynamics on the western side of 

anticyclonic RWB events can result in significant poleward transport of water vapor, as seen in 

Fig. 2.5a, with potential impacts on precipitation and radiative forcing in the Arctic (Liu & 

Barnes, 2015; Stramler et al., 2011). 

Further, the timing of peak RWB frequency (Abatzoglou & Magnusdottir, 2006) 

coincides with increased tropical storm activity in the tropical eastern Pacific (Corbosiero et al., 

2009). Although extreme events corresponding to TCs tracking close to the head of the Gulf of 

California were removed, cyclonic circulation associated with RWB can tap into tropical 
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moisture from already-decayed systems or those whose tracks are south or southwest of our 

control box. A sensitivity test indicated a southwestward expansion of our control box has little 

impact on the number of extreme events removed or their seasonality. However, as noted in 

previous work (Corbosiero et al., 2009; Garza, 1999; K. M. Wood & Ritchie, 2014), tropical 

systems that do impact western Mexico and the southwestern US typically gain their northward 

motion from a deep equatorward penetration of a midlatitude trough, making the study of RWB 

tropical-extratropical interactions in the region relevant to the broader scientific community. 

The results from this study are applicable beyond the Lake Mead watershed. Depending 

on the orientation of the RWB axis and whether the resulting PV anomaly is advected to the 

northeast by the steering flow, intense precipitation can reach into the interior west. In fact, 

several events in the Virgin sub-basin corresponded to heavy precipitation in the Salt Lake City, 

UT area and one canonical RWB that tapped into a weakening tropical depression resulted in 

near-record floods on the Rillito River outside of Tucson, AZ (Saarinen et al., 1984). The RWB 

event from Figure 2.5 produced widespread heavy precipitation (over 50 mm falling in 

California, Nevada, Arizona, and Utah) resulting in 43% of the JAS mean in the Virgin sub-

basin and 19% for the entire Lake Mead watershed. Along with hail, flash flooding, and even a 

tornado report in Orange County, CA., (National Oceanic and Atmospheric Administration 

Storm Events Database; see online at https://www.ncdc.noaa.gov/stormevents) 

the intense precipitation associated with this system also drove a post-fire debris flow in Los 

Angeles, CA (Cannon et al., 2011). This example clearly shows the ability of RWB to drive 

extreme precipitation, meaningful streamflow generation, and high impact weather in the Lake 

Mead basin and beyond. 



 26 

2.5 Concluding Remarks  

This work presents a climatological characterization of summertime precipitation in the 

Lake Mead watershed, located in the NAME Tier II region, spanning from 1981-2016. The 

importance of the number of wet days (24-hr rainfall ≥1 mm) and extreme rainfall events (95th 

percentile of wet days) to the total JAS precipitation is examined and shows a strong west-to-

east gradient of JAS precipitation with extreme events playing a larger role in the central and 

west basin. Anticyclonic Rossby wave breaking (RWB) over the US west coast is found to be 

the dominant synoptic driver of extreme summertime precipitation in the Lake Mead watershed. 

As the Lake Mead basin sits on the northern periphery of the more-studied North American 

Monsoon Experiment (NAME) Tier I region, this result highlights the different mechanisms 

associated with extreme precipitation to the north and south of the Mogollon Rim and may 

prove relevant for the greater NAME Tier II region. 

Although some impacts of RWB on extreme precipitation in the Colorado River basin 

from a hydroclimate and flood risk standpoint are demonstrated here, there remains much to be 

learned. Earlier work has demonstrated that the lack of snowmelt and flashy nature of lower 

Colorado basin tributaries makes streamflow forecasting difficult (Shafer & Huddleston, 1984), 

however improving hydrologic model forcing (i.e. precipitation forecasting) may yield more 

accurate streamflow predictions (Franz et al., 2003). Noting the frequent collocation with cutoff 

lows, which have been associated with substantial forecast difficulty (Nieto et al., 2005; Smith 

et al., 2002), understanding the atmospheric regimes conducive to RWB over the US west coast 

may help improve accompanying precipitation and streamflow forecasts in the greater NAM 

region. Moving forward, it will be important employ a climatological framework to understand 
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the necessary conditions (location/strength of upper level low, land surface moisture, local sea 

surface temperatures, etc.) for a RWB event to facilitate extreme precipitation in the 

southwestern United States. 

Looking towards the future, Oakley & Redmond (2014) note that since short to medium-

range numerical weather prediction models have difficulty regarding closed lows associated 

with RWB, long-term climate models likely face serious issues in representing these features 

as well. Further, uncertainties in the latitudinal position of the eddy driven jet and subsequent 

impacts on anticyclonic RWB  (Barnes & Hartmann, 2012) make the study of future RWB 

impacts on summertime precipitation in the NAM region challenging. Despite this, it is 

important to determine if and how RWB frequency over this region will be affected by a 

changing climate. Shifts in the longitudinal location, equatorward extent, and intensity of RWB 

will impact their ability to act as moisture conduits from the tropics to the NAM region and 

drive extreme precipitation, with potential implications for the future state of regional water 

resources. 
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Table 2.1. USGS gage ID and geographical characteristics of the delineated sub-basins and the 
entire Lake Mead watershed 

Watershed Abbreviated 
Name 

USGS Gage 
ID 

Area (km2) Mean/Maximum 
Elevation (m) 

1) Las Vegas Wash LVW 09419700 4,900 1,222/3,601 

2) Muddy River MUD 09419000 18,200 1,624/3,479 

3) Lower Lake Mead LLM 09404200 19,500 1,047/2,463 

4) Virgin River VIR 09415000 12,700 1,575/3,225 

5) Paria River PAR 09382000 3,700 1,874/3,135 

6) Grand Canyon GCN 09404200 25,300 1,761/3,156 

7) Little Colorado River LCO 09402000 68,000 1,922/3,836 

Combined Watershed -- -- 152,300 1,676/3,836 
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Table 2.2: Precipitation characteristics of the delineated sub-basins and the entire Lake Mead 
watershed. 

Watershed Average 
JAS 
Precipitat
ion (mm) 

WY 
Fractio
n 
during 
JAS 

Coeffi
cient 
of 
Variati
on 

1981-
2016 JAS 
Minimu
m (Year) 

1981-
2016 JAS 
Maximu
m (Year) 

Average 
Percent 
of JAS 
Precipitat
ion 
Falling as 
Extremes  

Percentag
e of Total 
JAS 
Precipitat
ion 
Falling as 
Extremes 
(1981-
2016) 

8) LVW 57 ± 47 0.29 0.82 9.7 
(2010) 

230.7 
(1984) 

12 ± 22 24.6 

9) MUD 68 ± 38 0.25 0.56 17.1 
(1995) 

167.2 
(1984) 

14 ± 18 20.4 

10) LLM 69 ± 22 0.30 0.48 21.8 
(1993) 

142.4 
(1984) 

14 ± 19 19.6 

11) VIR 99 ± 43 0.30 0.44 36.1 
(2009) 

187.1 
(2004) 

16 ± 18 20.9 

12) PAR 101 ± 40 0.34 0.40 41.0 
(2009) 

190.6 
(2003) 

17 ± 17 21.0 

13) GCN 126 ± 43 0.35 0.34 51.5 
(2009) 

215.2 
(2013) 

17 ± 14 19.9 

14) LCO 128 ± 33 0.44 0.26 54.1 
(2009) 

203.0 
(1999) 

17 ± 13 17.8 

Combined 
Watershed 

103 ± 33 0.36 0.32 42.5 
(2009) 

181.2 
(1984) 

15 ± 12 17.6 
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Figure 2.1. Topography of the Lake Mead watershed including major tributaries and their sub-
basins. Northern extent of NAME Tier I and II regions and extent of entire Lake Mead 
watershed below Lake Powell shown in inlay for reference. 
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Figure 2.2. Average characteristics for sub-basins for (a) JAS precipitation, (b) fraction of water 
year precipitation during JAS, and (c) coefficient of variation of JAS precipitation derived from 
daily PRISM precipitation from 1981-2016.  
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Figure 2.3. Relationship between total seasonal JAS precipitation and number of wet days per JAS 
for each basin. 36-year mean values are denoted by “+” and individual years by translucent 
markers. The distance from the center of an ellipse to its edge in either axis dimension represents 
one standard deviation of that variable. Basins are ordered west-to-east corresponding to warm-to-
cool colors.  
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Figure 2.4. Seasonal distribution of extreme events color-coded by month for each sub-basin with 
95th percentile precipitation values (mm) shown in parentheses.  Extreme events within 7 days of 
tropical systems tracking within 28.5oN ± 2oN and -113oE ± 3oE are denoted with corresponding 
event date in grey. Extreme precipitation events affecting multiple sub-basins are counted once for 
each sub-basin.  
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Figure 2.5. Example of a ‘canonical’ Rossby wave break extreme precipitation event. 200-hPa 
potential vorticity standardized anomaly (shaded), 200-hPa potential vorticity (black contours, 
shaded every 2 PVU starting at 2 PVU), and IWV (blue contour denoting 33-mm isoline) for (a) 
20 Sep 2007, (b) 21 Sep 2007, (c) 22 Sep 2007, and (d) 23 Sep 2007. The extreme precipitation 
event occurred on 23 Sep 2007. IVT vectors significant at the 95th percentile are shown. Stippling 
indicates statistical significance of 200-hPa PV standard anomaly at the 95th percentile. The Lake 
Mead watershed is outlined in a thin black line.  
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Figure 2.6. Composite fields for combined ‘canonical’ and ‘TC tapping’ RWB cases (n=16) in 

the combined Lake Mead watershed on day of extreme precipitation for (a) 200-hPa potential 

vorticity standardized anomaly (shaded), 200-hPa potential vorticity (black contours, shaded 

every 2 PVU starting at 2 PVU), and (b) 500-hPa geopotential height standardized anomaly 

(shaded), 500-hPa geopotential height (black contours, shaded every 50 m starting at 5850 m). 

IVT vectors significant at the 95th percentile are shown. Stippling indicates statistical 

significance of standard anomaly field at the 95th percentile. The Lake Mead watershed is 

outlined in a thin black line.  
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Figure 2.7.  Composite fields for IV cases (n=8) in the combined Lake Mead watershed on day 

of extreme precipitation for (a) 200-hPa potential vorticity standardized anomaly (shaded), 200-

hPa potential vorticity (black contours, shaded every 2 PVU starting at 2 PVU), and (b) 500-hPa 

geopotential height standardized anomaly (shaded), 500-hPa geopotential height (black contours, 

shaded every 50 m starting at 5850 m). IVT vectors significant at the 95th percentile are shown. 

Stippling indicates statistical significance of standard anomaly field at 95th percentile. The Lake 

Mead watershed is outlined in a thin black line.  
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Figure 2.8. Hovmöller plots of standardized anomalies for (a) 200-hPa potential vorticity, (b) 

700-hPa meridional wind, (c) integrated water vapor. RWB events (n=16) are composited in the 

left column and IV events (n=8) on the right for extreme precipitation events for the combined 

Lake Mead watershed. Stippling indicates statistical significance of the standardized anomaly 

field at the 95th percentile.  

 



 40 

  



 41 

 

Figure 2.9. Idealized synoptic set-ups for primary drivers of extreme precipitation in the Lake 

Mead watershed, (a) RWB (b) IV (adapted from Pytlak et al., 2005), and their corresponding 

characteristic meteorology. The fraction of extreme events for the entire Lake Mead watershed 

associated with each regime is denoted above each panel. The Lake Mead watershed is outlined 

in a thin black line.  
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2.7 Appendix A: Extreme Precipitation Events by Synoptic 

Categorization 

Following the criteria described in Section 2.3.5, the date and synoptic categorization of 

individual extreme precipitation events impacting the entire Lake Mead watershed are given 

below. Note that tropical cyclones have been removed prior to analysis as noted in Section 2.2.4.  
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Table 2.1A: Independent extreme precipitation event dates for the combined Lake Mead watershed 
as categorized by synoptic processes defined in Section 2.3.5.  
RWB 

‘canonical’ 

RWB ‘TC 

Tapping’ 

RWB 

‘irregular’ 

Inverted 

Trough 

Tropical 

Storm 

Uncharacterized 

19810810 19830817 19810906 19820824 19900816 19820813 

19840723 19830930 19820911 19830725 19980905 20160804 

19850919 19860924 19830924 19860722   

19900923 20020908 19870717 19980723   

19970811 20020911 19870721 19990709   

19980912 20070923 19870818 20000830   

20120822 20140909 19910906 20130727   

20130910  19940903 20140804   

20140928  19970904    

  20120912    

  20140820    

  20150808    
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2.8 Appendix B: Precipitation Distributions for Extreme Events 

in the Lake Mead Watershed 

The 24-hour precipitation distribution (Fig. 2.1B) for the event in Figure 2.5 depicts a 

south-north swath of rainfall in accordance with the longitudinal circulation dipole seen in Fig. 

2.5d. However, as the cutoff low moved from west to east during the 72hrs centered about the 

extreme event day, the corresponding 72-hour precipitation field appears as a zonal band of 

heavy precipitation (Fig. 2.2B). 

The composited 24-hour precipitation distribution for the ‘canonical’ and ‘TC tapping’ 

RWB events from Figure 2.6 depicts a meridional swath of rainfall spanning southern Arizona to 

Utah (Fig. 2.3B). Although individual events differ in orientation, location, and precipitation 

amount, the composited distribution indicates the ability of RWB events to impact the greater 

NAM region.  

Compared to Fig. 2.3B, the composite precipitation values for IV events are noticeably 

smaller supporting the argument that RWB events are the main drivers of the most extreme 

precipitation events in the Lake Mead watershed (Fig. 2.4B). 
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Figure 2.1B.  24-hour PRISM precipitation field for an extreme precipitation event occurring on 
23 Sep 2007, shown in Figure 2.5 of the main text.  
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Figure 2.2B.  72-hour PRISM precipitation field for an extreme precipitation event occurring on 
23 Sep 2007, shown in Figure 2.5 of the main text. Precipitation data covers 22 Sep 2007, 23 Sep 
2007, and 24 Sep 2007.  
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Figure 2.3B.  24-hour PRISM precipitation composite for ‘canonical’ and ‘TC Tapping’ RWB 
extreme precipitation events for the combined Lake Mead watershed (n=16) used to create Figure 
2.6 of the main text.  
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Figure 2.4B.  24-hour PRISM precipitation composite centered around the day of extreme 
precipitation for IV events for the combined Lake Mead watershed (n=8) used to create Figure 2.7 
of the main text.  
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Chapter 3 
 
Seasonally Anchored Bias Correction of CMIP5 
Hydrological Simulations 
 
Abstract  

Robust and reliable projections of future streamflow are essential if we are to create more 

resilient water resources, and such projections must first be bias corrected. Standard bias correction 

techniques are applied over calendar-based time windows, often 1-month long, and leverage 

statistical relations between observed and simulated data to adjust a given simulated datapoint. 

Motivated by a desire to connect the statistical process of bias correction to the underlying 

dynamics in hydrologic models, we introduce a novel windowing technique for projected 

streamflow wherein data are windowed based on hydrograph-relative time, rather than Julian day. 

We refer to this method as ‘seasonally anchored’. Four existing bias correction methods, each 

using both the standard day-of-year and the novel windowing technique, are applied to daily 

streamflow simulations driven by climates from 10 global climate models across a diverse subset 

of six watersheds in California to investigate how these methods alter the model climate change 

signals. Among the methods, only PresRat (short for ‘preserves ratio’) preserves projected annual 

streamflow changes, and does so for both windowing techniques. The seasonally anchored window 

PresRat reduces the ensemble bias by a factor of two compared to quantile mapping (Qmap), 

cumulative distribution function transform (CDFt), and equidistant quantile matching (EDCDFm) 

methods. For wet season flows, PresRat with seasonally anchored windowing best preserves the 

original model change over the entire distribution, particularly at the most extreme quantiles, and 

the other three methods show improved performance using the novel windowing method as well. 
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Lastly, when examining temporal shifts in seasonality, PresRat and CDFt preserve the original 

model signals with both the novel and standard windowing methods.  

3.1 Introduction   

3.1.1 Climate Change Impacts 

Fueled by climate change, rising temperatures and declining snowpacks have revealed that 

the ways in which the American West has managed water for the past 75 years is insufficient to 

sustainably meet projected demands (Barnett & Pierce, 2009; Rajagopalan et al., 2009; Udall & 

Overpeck, 2017). It is equally apparent that river basins, watersheds, and reservoir drainage areas 

will not be impacted uniformly (Das et al., 2011; Kalra et al., 2008; Mote et al., 2005, 2018). The 

response of water supply-relevant variables to climate change, such as annual streamflow, total 

precipitation, or the extent of April 1st snowpack, will be functions of factors like shifting large-

scale weather patterns, elevation, topographic aspects, vegetation, and the amplitude of season 

temperature cycles (Gonzalez et al., 2018; M. He et al., 2019; Huning & AghaKouchak, 2018; 

Pierce & Cayan, 2013). As a result, the potential impacts of climate change on water management, 

riparian health, and associated mitigation or adaptation strategies need to be examined on local 

scales and on a case-by-case basis.  

3.1.2 Downscaling and Bias Correction 

Future climate projections from global climate models (GCMs) are a key tool for 

estimating likely impacts of climate change on future water availability, but due to limited spatial 

resolution (typically no finer than 100 km) are insufficient for studying changes at the local-scale 

of river basins and heterogeneous hydrologic processes (Fowler et al., 2007; Hewitson et al., 2014; 

Salathé, 2003). Further, biases in the GCMs, arising from model limitations like subgrid 
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parameterizations of cloud microphysics and poorly resolved topography at the native GCM grid 

scale, can result in distorted projected climate impacts (see discussion in Maraun et al., 2017). 

Prior to being used in most applications, therefore, climate projections must be downscaled and 

bias corrected. Implemented through either a ‘statistical’ or ‘dynamical’ approach, downscaling 

techniques interpolate smaller-spatial scale features by combining coarser GCM output with 

higher-resolution observations, topography, and dynamics to produce projections with resolutions 

on the order of 10s km. Either as part of the downscaling process or done subsequently, bias 

correction removes systematic errors in the GCM with the goal of retaining the raw GCM climate 

change signal. 

While some climate change planning projects may be satisfied simply by downscaled and 

bias corrected GCM output (e.g., temperature, precipitation), many require the use of a land-

surface model to produce quantities such as streamflow or soil moisture. Even if downscaled and 

bias corrected GCM output is used to drive the land surface model, streamflow projections often 

need ‘secondary’ bias corrections before they are used for planning due to biases introduced within 

the land-surface model. Though useful, it should be understood that bias correction is a statistical 

technique and thus is not able to discern between physical processes responsible for a given data-

point or a broader climate change-imposed trend (Maraun et al., 2017). 

3.1.2.1 Windowing and Bias Correction Goals 

Although the goal of the windowing and bias correction process is to remove systematic 

biases while retaining the signal of change from the driving climate model, many bias correction 

methods alter the model-predicted change for unphysical reasons (Hagemann et al., 2011; Maraun, 

2013; Maurer & Pierce, 2014; Pierce et al., 2013). As a result, the application of different bias 

correction methods to identical datasets will yield varied future projections (Maurer & Pierce, 
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2014; Teutschbein & Seibert, 2012). Simplified, many bias correction methods establish a 

correction function that maps a model variable’s empirical distribution over a historical period to 

that of an observed variable’s distribution over a historical period. Upon applying this correction 

function to the model historical data, the bias corrected data is mapped onto the observed variable’s 

distribution thus removing any systematic biases over the historical period. Though the definition 

of the transfer function varies among methods (Pierce et al. 2015), nearly all methods make 

assumptions of stationarity, i.e., that model biases occurring in the model’s historical period also 

apply to future model periods. Though commonly adopted, stationarity is not guaranteed, and it is 

therefore crucial to understand under what conditions it breaks down (e.g., with changes in large-

scale circulation).   

Because model biases typically vary by season, correction functions are usually developed 

for specific calendar-based “seasons” (e.g., Thrasher et al. 2012). Specifically, distributions of the 

observed, historical- and future- model datasets are developed by subsetting in time, either by 

individual months or by taking some rolling window of fixed width (see Pierce et al., 2015 for a 

deeper discussion). Although cumulative distribution functions (CDFs) can be generated either 

empirically (as in the methods examined here) or parametrically, nonparametric methods have 

yielded higher skill in reducing systemic errors for precipitation (Gudmundsson et al., 2012).  

In the context of climate change, for variables whose seasonal cycles are predominately 

affected by changing amplitudes rather than shifts in seasonality (such as temperature or even 

precipitation) it may be fair to assume that historical biases for January data can be removed 

directly from future January data. Consider, though, a variable whose climate change signal is 

characterized in large part by a temporal shift in its climatology, such as snowfed streamflow. 

Historically in the western U.S., mountainous rivers experience peak streamflow during the spring 



 53 

(later for higher elevation sites) as the snowpack begins to melt (Serreze et al., 1999). Towards the 

end of the 21st century, reduced in volume and melting earlier, projected snowpack declines result 

in peak streamflow shifting significantly earlier into the season (Noah Knowles & Cronkite‐

Ratcliff, 2018; Udall & Overpeck, 2017). If we were to apply a calendar-fixed window to bias 

correct streamflow (e.g., comparing data from the month of April, historical to future), it is possible 

that historical bias corrections of peak or rising-limb streamflow data will be applied to future 

streamflow data occurring well into the receding limb, thus applying corrections to and from 

different streamflow regimes and controlled by different physical processes. 

3.1.3 Purpose of Paper 

Motivated by the desire to move towards a ‘process-aware’ method of statistical bias 

correction and the inability of fixed calendar- windowing to account for processes that shift 

seasonality under future climate scenarios, this paper introduces a new ‘seasonally anchored’ 

windowing approach that, when applied to existing statistical methods, improves the preservation 

of original model – used henceforth to refer to hydrologic model output driven by downscaled and 

bias corrected GCM data  – climate change signals in projections of streamflow. We evaluate the 

performance of several published bias correction methods, using the standard Julian day anchored 

framework and our seasonally anchored windowing techniques, with respect to their ability to 

reduce bias while preserving key metrics of climate change from the original model. Specifically, 

we investigate the preservation of: 1) original model projected changes in water year mean 

streamflow, 2) original model projected change across all deciles of wet season streamflow, and 

3) original model change in seasonality as measured by change in date of peak streamflow.  

The paper is structured in the following manner. In Sections 3.2 and 3.3, we describe the 

study domain and the rivers included in this work, and detail the observed and model data sources 



 54 

used to evaluate the various bias correction methods. In Section 3.4, we detail the seasonally 

anchored windowing technique and describe the four bias correction methods compared. Section 

3.5 describes the performance of the various methods over both the historical and future climate 

periods. Lastly, Section 3.6 summarizes and discusses these results.  

3.2 Study Domain  

The hydroclimate of California is characterized by distinct wet and dry seasons and is 

punctuated by high interannual variability (Dettinger et al., 2011). In fact, the presence or absence 

of just a few storms each year can determine the difference between drought conditions and 

sufficient water supply (Dettinger & Cayan, 2014). Moreover, interannual variability and 

dependence on just a few storms per year is expected to increase in the future, with model 

projections showing fewer wet days but more precipitation on the wet days that occur (Pierce et 

al., 2013). Because 1) there is a strong latitudinal gradient in the frequency of landfalling winter 

storms (Payne & Magnusdottir, 2014), and 2) interactions between low-level moisture flux and 

local orographic forcing is driving mechanism of California precipitation (Neiman et al., 2002), 

the complex terrain of coastal and inland ranges results in marked spatial heterogeneity in the 

hydroclimate. California’s rivers and streams are as diverse as the landscapes that feed them, with 

flashy, ephemeral streams in low deserts and snow-fed perennial rivers in the high mountains, the 

latter of which are responsible for filling some of the nation’s largest reservoirs. As projected 

climate change impacts for riparian environments differ dramatically across watersheds and stream 

types (Perry et al., 2015 and references therein), the diversity of California’s waterways and 

robustness of its observational network make it an excellent testbed for our bias correction 

methods. 

3.3 Data  
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Bias correction requires both historical (observed or reanalysis) and model data. Thus, the 

number of rivers eligible for examination are limited to those with both of the above datasets. 

Streams were selected based on the following criteria: 1) availability of routed streamflow 

projections from land-surface models driven by downscaled and bias corrected GCM data, 2) 

availability of at least 20 years of observational data, and 3) their inclusion enhance the 

representation of selected streams from along the continuum of rain- versus snow- dominated 

basins. Upon applying the above criteria, we choose 6 rivers for our case study (Figure 3.1, Table 

3.1). The selected rivers span hydrologic characteristics of rain-, snow-, and mixed rain-and- snow 

dominated watersheds, allowing us to test the performance of our seasonally anchored windowing 

technique for bias correction on streams with and without large projected flow-seasonality 

changes. We emphasize here that our goal is not to produce an expansive dataset of bias-corrected 

streamflow, which requires a larger network of streams, though such an exercise will undoubtedly 

be useful. 

Streamflow projections used in this study were obtained from Knowles & Cronkite‐

Ratcliff, 2018  (see Section 2.2 of Knowles and Cronkite-Ratcliff, 2018 for details).  They use 

Localized Constructed Analogs (LOCA, Pierce et al., 2014) statistically downscaled GCM data to 

force the Variable Infiltration Capacity (VIC) hydrological model (Liang et al., 1994). Rather than 

use each of the 31 members in the Coupled Model Intercomparison Project (CMIP5; Taylor et al., 

2012) ensemble, we focus our analysis on a subset of 10 GCMs chosen by the California DWR 

Climate Change Technical Advisory Group as providing passable simulations of the historical 

California hydroclimate (California Department of Water Resources Climate Change Technical 

Advisory Group, 2015, models listed in Table 3.2). Here, we restrict our analysis to the future 

climate relative concentration pathway (RCP) 8.5 since the climate change signal of shifting 
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seasonality is more easily discerned in higher warming scenarios. However the results found here 

will apply to other emissions scenarios. Observational data for the six streams span water years 

(WYs) 1997-2019 and were obtained from the United States Geological Survey (USGS) and 

California Department of Water Resources (DWR) Data Exchange Center.  

3.4 Methodology  

While the following subsections describe the methodology in complete detail, we preface 

by briefly summarizing the algorithmic approach. First, for a given value that is to be bias 

corrected, we convert from Julian day to a hydrograph-relative time unit. This is done by locating 

its position (in time) relative to important climatological features (e.g., day of peak streamflow). 

Then, we map this point in ‘hydrograph-relative’ time onto all datasets (observed, historical GCM, 

future GCM) to identify hydrologically similar periods.  

3.4.1 Climatological Hydrograph 

The first step in the new seasonally-anchored approach is to calculate climatological mean 

hydrographs for the (1) observed, (2) simulated-historical and (3) simulated-future flows. In the 

present study, the length of climatological periods varies from the observed (n=23 years, 1997-

2019), simulated-historical (n=36 years, 1970-2005), and simulated-future flow series (n=31 years, 

e.g., 2069-2099). The observed period is limited by the period of available record of gaged 

streamflow. Climatological-average hydrographs are computed at several quantiles (discussed 

below), but to ease explanation of the process, we explain it for the 70th percentile (P70) first.  

For a given Julian day, the 70th percentile streamflow value is estimated from a distribution 

containing all data from the climatological period within a 31-day centered window (e.g. at Julian 

day 185, use data from Julian days 170-200) similar to Thrasher et al., 2012. Once done for all 

days of the year, this array of length 365 is then smoothed by taking the mean of all points within 
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the centered 31-day windows. The resulting smoothed array is the climatological hydrograph at 

the 70th percentile (Figure 3.2, top). 

3.4.2 Locating Milestones 

Once the climatological hydrograph is calculated for a given percentile, milestones along 

the curve that correspond to key characteristic features of the stream are identified. Similar to 

previous work by Yarnell et al. (2015) we define our milestones as the Julian days when four 

climatological-hydrograph transitions occur (detailed below, and shown in Fig. 3.2): (1) minimum 

flow, (2) transition from a low-flow period to the rising limb, (3) maximum flow, and (4) transition 

from the receding limb to a low-flow period.  

3.4.2.1 Maximum and Minimum Streamflow 

The milestone of peak flow occurs on the Julian day with the largest climatological 

streamflow and delineates the change from the rising to the falling limbs of the hydrograph (Fig. 

3.2, triangle). Similarly, the milestone marking the minimum streamflow occurs on the Julian day 

with the lowest value of climatological streamflow (Fig. 3.2, circle). This is done for each of the 

three flow series. Although the vast majority of climatological hydrographs in this study are 

described by having a single peak, Appendix A describes how the identification of the peak 

streamflow milestone is handled for ‘bimodal’ hydrographs.  

3.4.2.2 Start of Dry Season 

Qualitatively, transitions between distinct streamflow regimes occur when the shape of the 

hydrograph changes rapidly. We can quantify the shape of the hydrograph by its 1st and 2nd 

derivatives with respect to time. The first derivative of streamflow (!"
!#

, Figure 3.2 middle) indicates 

where the stream is rising and falling. If we wish to pinpoint the end of the falling limb, we must 
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only examine days when !"
!#
	< 0.  The second derivative with respect to time (!

!"
!#!

, Figure 3.2 

bottom) is used to identify when the hydrograph has maximum points of curvature, or in the 

language used above, when the shape of the hydrograph indicates an inflection point. To identify 

the milestone associated with the end of the falling limb (start of the dry season), we find the Julian 

day coinciding with the local maximum of !
!"
!#!

  given that !"
!#
	< 0. This is shown schematically in 

bottom subplot of Figure 3.2 by the ‘x’. This is done for the observed and simulated-historical 

datasets. The process for the simulated-future dataset is describes in the following section.  

3.4.2.3 Start of Wet Season 

For mixed rain- and snow dominated rivers, there is larger variability in the onset of the 

wet season than the onset of the dry season (Patterson et al., 2020) as the former is governed by 

precipitation, which has a high degree of interannual variability (Dettinger et al., 2011), whereas 

the latter is corresponds to the end of the snowmelt pulse (Stewart et al., 2005), which is driven by 

lower variability fields such as synoptic temperature advection and solar insolation (Cayan et al., 

2001; Mioduszewski et al., 2015; Pederson et al., 2011). Therefore, we don’t apply the same 

method as in the previous section. Rather, we assume the streamflow value associated with the 

‘start of the dry season’ milestone delineates between baseflow and non-baseflow periods. Since 

the ‘start of the wet season’ marks the stream’s departure from baseflow, the corresponding 

milestone is set at the Julian day when the climatological hydrograph increases above the 

streamflow value associated with the ‘start of the dry season’ milestone. This is shown 

schematically in top panel of Figure 3.2 by the diamond marker and is calculated for the observed 

and simulated-historical datasets.  

Motivated by the importance of the low-flow period to ecosystem health (Hill et al., 1991; 

Petts, 1996; Poff et al., 1997; Richter et al., 1996), we deem this ‘threshold value’ (evaluated as 



 59 

flow above baseflow) to be characteristic of the stream and assume that the streamflow above 

baseflow value associated with the low-flow period does not change with time. That is, while 

baseflow levels may change from historical to future periods, if the historical low-flow period was 

delineated at 500 cfs above baseflow, then the future climate milestone for the ‘start (‘end’) of the 

west season’ will be located when the stream rises (falls) to 500 cfs above the future climate 

baseflow. This will yield a consistent comparison of how both the duration of the low-flow period 

and corresponding streamflow magnitudes change in future climate projections.  

3.4.3 Calculating Mean Milestones Across Quantiles  

The milestone identification process is performed with hydrographs computed at every 5 

percentage points between the 40th and 80th percentiles (P40-80). The final milestone locations for 

the climatological period are computed by taking the mean value of the milestone dates across all 

individual quantiles. The rationale for choosing to evaluate data between the 40th and 80th 

percentiles is two-fold. First, the final milestones should represent a broad range of climatological 

stream conditions, but extreme values—while only a small fraction of total data--can yield outlier 

milestones that are not representative of the entire distribution. Because of this, quantiles near the 

distribution tails are excluded from this final step of the milestone process – though they are 

accounted for during the windowing procedure described in Section 3.4.4. Second, the asymmetry, 

relative to the median, of the P40-80 range reflects the differing dynamics of high and low flow 

climatologies. High quantile flows in the early water year only occur when the synoptic 

environment is favorable for large precipitation events (typically October at the earliest). As a 

result, for higher quantile climatological hydrographs, the timing of the start of the wet season is 

more-or-less constrained to a narrow window of 1-3 months at the beginning of the water year. 

However, low quantile flows correspond to the absence of large storms and are not constrained in 
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time. For drier years with few storms during the early WY, the start of the wet season can be 

pushed far into the water year and, if included, skew the mean value taken over all quantiles in 

P40-80 (see Fig. 3.2A and 3.3A).   

3.4.4 Seasonally Anchored Windowing  

Using the milestones as reference points, we are able to bias correct a day's simulated flow 

in a way that acknowledges its position in the hydrograph, which ensures that the hydrologic 

processes at work on that day are accommodated. For example, a flow that occurs on the 

descending limb of the hydrograph will be bias corrected using the same parameters no matter 

whether that flow is in, e.g., June in the historical period or in, e.g., April in a future projection 

(Fig. 3.3, bottom). This differs from traditional bias correction techniques that are anchored by 

day-of-year, which means (in cases where the peak flow shifts earlier in the year) the bias 

correction parameters from the rising limb of the hydrograph in the historical period might be 

applied to values from the descending limb of the hydrograph in the future period (Fig. 3.3, top). 

Because window widths are based on the length of streamflow regime segments (e.g., rising limb), 

and those segments vary across the observed, historical-, and future GCM climatologies, we do 

not require the different datasets to have the same window widths. Before the actual bias correction 

step is done, the empirical distributions of daily streamflow data are cubic hermite spline 

interpolated to obtain the same length, following Pierce et al., 2015. 

3.4.5 Bias Correction Methods to be Compared  

To illustrate the effect of the windowing technique on bias corrected streamflow data, we 

examine the performance of 4 different bias correction methods using first the standard DOY 

windowing, and then seasonally anchored windowing. Similar to (Pierce et al., 2015), we apply 

the following techniques: PresRat (Pierce et al., 2015), CDF-transform (CDFt, Michelangeli et al., 
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2009), equidistant CDF matching (EDCDFm, Li et al., 2010), and quantile mapping (Qmap, 

Panofsky & Brier, 1968; Wood et al., 2002). For the sake of brevity, we do not discuss the details 

of each bias correction method and instead refer the reader to Section 3 of Pierce et al., 2015.  

For the CDFt, EDCDFm, and Qmap methods, we adopt the standard practice of bias 

correcting data using a 30-day window centered around a given datapoint. The 30-day window 

enables the methods to represent the seasonal cycle, but such a narrow window is not suitable to 

correct extreme events. Because extreme values of precipitation can occur at any time during the 

wet season, the PresRat method from Pierce et al., 2015 does not use a fixed 30-day window like 

the other 3 methods and instead iteratively bias corrects data using windows of increasing width, 

providing better correction of extreme values. Rather than applying iterative bias correction in the 

version of PresRat used in this study, we develop an alternative method to balance the correction 

of extreme values (requiring a wide window) and the seasonal cycle (requiring a narrow window). 

Here, we vary the window width based on the ‘extremity’ of a value. Beginning with a 30-day 

window, we find the quantile location of the data point being corrected in its climatological 

distribution. If it falls between the 20th and 80th percentile, a 30-day window is used. Otherwise 

the window is expanded by 15-days on either side and the quantile location of the data is found 

again. If the data falls between the 10th and 90th percentile, the 60-day window is applied. If not, a 

120-day window is used to bias correct the most extreme values. This reflects the fact that extreme 

events are by nature rare.  

Because some methods of bias correction operate on fractional changes between a future 

and historical model period, they can be sensitive to small errors occurring at low values (Pierce 

et al., 2015). For this reason, prior to bias correction, we correct for any biases in the model 

baseflow by adding the difference between the observed and simulated baseflow values to all 
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model data. This greatly improves the efficacy of the bias correction methods at lower flows while 

having very little impact at higher flows.  

 

3.5 Results and Discussion  

The efficacy of a bias correction method can be evaluated by its ability to remove 

systematic model biases while preserving desired climate change signals from the original model. 

In this case we choose to consider: 1) mean changes in streamflow magnitude over the entire water 

year, 2) changes in magnitude evaluated at high, medium, and low quantiles of the distribution, 

and 3) temporal shifts of seasonality (which may be small in some streams). The combination of 

bias correction method (QM, CDFt, EDCDFm, PresRat) and windowing technique (standard day-

of-year or seasonally anchored) is evaluated by its ability to preserve the 3 quantities listed above. 

As the magnitude of streamflow varies substantially between California watersheds, working with 

normalized data allows for a more straightforward comparison of climate change signals. For this 

reason, we normalize any change between a simulation’s future and historical values by a historical 

baseline (Equation 3.1) to give a percent change relative to the pre-climate change period.  

∆	= 	𝟏𝟎𝟎	 ∗ 	𝑭𝒖𝒕𝒖𝒓𝒆	*	𝑯𝒊𝒔𝒕𝒐𝒓𝒊𝒄𝒂𝒍	
𝑯𝒊𝒔𝒕𝒐𝒓𝒊𝒄𝒂𝒍

    (3.1) 

Using a standardized metric (D) helps us compare both the magnitude of change across a 

diverse subset of streams and the performance of bias correction methods in preserving this metric. 

In the following sections, we evaluate change between the future (also referred to as ‘end-of-

century’) and historical periods defined as water years 2069-2099 and 1970-2005 respectively. 

Subsequent sections evaluate this change over both the entire water year and over the ‘wet season’, 

which we define as the timeframe spanning 1-month prior to the start of the wet milestone to 1-
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month after the end of the wet season milestone. This covers the period roughly from November 

to June (although it is subject to both watershed elevation and climatological era). 

3.5.1 Validation Over the Historical Period 

Applied over the historical period, the PresRat, CDFt, and EDCDFm methods simplify to 

the quantile mapping method, with the exception of data off the endpoints of the historical 

distribution (see Section 3 of Pierce et al., 2015 for discussion). Therefore, when using a relatively 

narrow 30-day window, all methods are effective in correcting the historical GCM data so that it 

recreates the observed data’s seasonal cycle. This is true for both the standard day-of-year 

windowing technique and the seasonally anchored windowing technique (not shown). Concerning 

the historical period, the only meaningful difference between the four bias correction methods 

results from the variable window width used in our PresRat method (Figure 3.4). Because the 

window width expands when correcting high-quantile data, large streamflow events occurring 

early in the wet season can be mapped onto observed streamflow values occurring up to 60 days 

later (as opposed to 15 days later in the standard method). This can result in slightly elevated mean 

flows during the transition from dry-to-wet season, driven by streamflow at high quantiles. 

However, as extreme precipitation and streamflow events can occur at any point between October-

April, a variable window based on the quantile of the datum being corrected is more easily 

justifiable than the common fixed narrow (31-day) window when correcting hydrometeorological 

variables in the western US.  

3.5.2 Water Year Mean Streamflow 

Before evaluating the ability of each bias correction method to preserve the projected future 

change in mean water year streamflow, we first examine the original model signal (Figure 3.5). 

Across the simulations of 6 streams that were driven by projections from 10 GCMs, the changes 
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in water year mean streamflow differ considerably. Evaluating change in units of percent of 

historical mean, which removes the influence of differing streamflow magnitudes, we see that 

CESM1-BGC, CNRM-CM5, and CanESM2 have the largest projected increases in water year 

mean streamflow with values upwards of 40% for some streams. Although the largest percent 

increases occur for the streams with the lowest flows, these models suggest higher-flow streams 

will still see increases beyond 30%. Among the projections based on the 10 GCMs, there is little 

agreement on the sign or magnitude of the projected change and the projections with very large 

increases heavily influence the multi-model ensemble mean change.  

We use the term ‘error’ here to refer to the difference between original model projected 

change and post-bias correction projected change. This quantity is an error in the sense that we 

expect our bias correction approach to preserve certain key aspects of the model-predicted climate 

change signal (as listed explicitly above), and is defined in Equation 3.2 below,  

𝐸𝑟𝑟𝑜𝑟	 = 	∆2345	67889:#9! − ∆;4<	=6>    (3.2) 

wherein D is defined by Equation 3.1. Using the above definition, we now compare the ability of 

the 4 bias correction methods and 2 windowing techniques in preserving the signal of water year 

mean change averaged across the 10 GCMs and 6 streams. 

The CDFt, EDCDFm, and Qmap bias correction techniques do not intrinsically preserve 

the water year mean flow change signal from the un-bias corrected projections (Table 3.3). The 

PresRat method is the one method that preserves the water year mean flow change, for both 

windowing methods, with mean and root-mean-square (RMS) errors <1%, and does so by design 

(see Pierce et al., 2015). The other three methods alter the original model signal to varying degrees. 

In all cases, applying a seasonally anchored window improves the preservation of the water year 

mean flow change signal by nearly a factor of 2 compared to the standard day-of-year windowing 
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technique. In addition to improving the mean flow change, the new windowing technique also 

results in a narrower spread of errors among the models in the PresRat, CDFt, and Qmap methods.  

3.5.3 Wet Season Streamflow by Decile  

The hydroclimate of the western US is dominated by the occurrence (and absence of) 

extreme precipitation and streamflow events. Therefore, statistical bias correction techniques need 

to preserve the original-model projected changes at high-flow quantiles, rather than altering the 

projected change for no physical reason. When viewed at the granularity of a single percentile of 

flow, the signal of projected changes can be noisy. Therefore, we evaluate here changes at decile 

levels over the wet season. Again, before evaluating the ability of each bias correction method to 

preserve this quantity, we first examine the un-bias corrected model signals. Change is calculated 

with Equation 3.1 using the mean of all streamflow values within a given decile range for each of 

the historical and future climate periods. Figure 3.6 gives a visual depiction of the original model 

climate change signal at the Shasta gage and the remaining 5 streams can be seen in Appendix B. 

Although some minor differences exist among the 6 streams and 10 GCM-based histories, there is 

a near unanimous agreement that the top 10-20% of streamflow values will increase while the 

middle ~30% of the distribution will decrease. This follows the projected climate change signal in 

precipitation wherein high-tail events occur with greater frequency (Gershunov et al., 2019). 

Notably, in the historically most snow dominated watershed, Millerton, larger differences exist 

between the 10-member ensemble, with 4 models projecting large increases at the high end and 2 

projecting decreases. Again, this work does not focus on the impacts or certainty of projected 

streamflow changes, but rather on the extent to which they are altered by bias correction 

techniques. 
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Using Equation 3.2, we evaluate how well each correction method and windowing 

technique preserves the original projected change at each decile over the wet season. Figure 3.7 

provides a visual representation of these errors for the PresRat method using seasonally anchored 

windowing. Equivalent plots for the remaining combination of bias correction and windowing 

methods can be found in Appendix C. Each subplot contains a box-and-whisker plot for a given 

stream wherein errors for individual GCM projections are shown by grey circles and the mean 

error across the 10-member ensemble is depicted by an orange line. In Figure 3.7, with few 

exceptions, errors in the depiction of future changes in wet season streamflow, by quantile, falls 

within ± 10% of the original model signal for all the combinations of GCMs and streams. As 

mentioned earlier, a large fraction of the total streamflow is contained in the top 10-20% of the 

distribution. To highlight where, in terms of decile, large errors in the bias correction method 

begets large errors in streamflow, the fraction of total wet season streamflow represented by each 

decile is plotted on the right y-axis. Though not explicitly shown here, the PresRat method with 

seasonally anchored windowing has notably smaller biases than other techniques at the top decile 

of flows. 

To quantitatively assess how well the original signal is preserved, we calculate the root-

mean-square error (RMSE) at each decile for each of the 4 correction methods and 2 windowing 

techniques, using the following equation, 

𝑅𝑀𝑆𝐸	 = 	0
∑ (∆"#$%	'())*+,*-#*∆.$/	0'1#)

!2
#34

C
    (3.3) 

where i represents a given driving-GCM. Then, motivated by the importance of large streamflow 

events to the hydroclimate of the western US, we weight the RMSE at each decile by the 

percentage of total historical wet season streamflow in the decile, thus emphasizing errors at higher 

deciles. We refer to this quantity as the flow-weighted RMSE. To equally weight the performance 
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of the bias correction technique on each river, and thus equally sampling the range of snow vs. rain 

dominated regimes, the flow weighted RMSE at each decile is averaged across the 6 streams.  

Figure 3.8 and Table 3.4 summarize the above process and depicts the flow weighted 

RMSE averaged across the 6 streams for all combinations of correction method and windowing 

technique. At lower deciles, the flow weighted RMSE values are similar across the 4 correction 

methods. The lines begin to diverge near the 50th percentile with the seasonally anchored PresRat 

and CDFt methods achieving the best performance between the 50th-90th percentiles. For the top 

10% of streamflow, where the most impactful of streamflow events exist, PresRat with seasonally 

anchored windowing best preserves the original model signal of change. If we take the average 

across all deciles for each line individually, we see that the PresRat method using seasonally 

anchored windowing not only yields the lowest flow weighted RMSE, but that for each correction 

method, the seasonally anchored windowing method outperforms the standard day-of-year method 

(triangle markers).  

3.5.4 Temporal Shift in Peak Streamflow  

The previous sections focus on the ability of bias correction techniques to preserve original 

model projected changes in the magnitude of annual and wet season flow. Because the fingerprint 

of climate change for mountain rivers is characterized by changes in both magnitude and timing 

of peak streamflow, we will now evaluate the ability of each correction method and windowing 

technique to preserve projected shifts in seasonality. Using the climatological milestone associated 

with the peak streamflow (defined in Section 3.4), we compare the original model change 

(measured in days) in peak streamflow timing with the bias corrected changes.  

Evaluating the difference in Julian day of peak streamflow between the end-of-century and 

historical periods, Figure 3.9 shows the original model change in days on the x-axis and the change 
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from the PresRat with seasonally anchored windowing method on the y-axis for each of the 10 

GCM-projected climates and 6 rivers. If the bias correction methods preserve the original model 

signal exactly, all markers would fall on the dotted black 1-to-1 line. For the overwhelming 

majority of stream and GCM combinations, we see that the temporal shift is well-preserved. 

Though the amount of change varies with GCM, it is most strongly related to the how snow-

dominated a watershed is over the historical period. The largest signal of change is seen at New 

Melones (red markers), which loses its historical snowmelt peak entirely. The snowiest basin, 

Millerton (green markers), doesn’t exhibit as large a signal because unlike New Melones, it retains 

a snowmelt peak in some projections. 

Table 3.5 summarizes the preservation of the projected temporal shifts for the various bias 

correction methods and windowing techniques. For the PresRat and CDFt methods, which best 

preserve changes in streamflow magnitude, the seasonally anchored windowing method yields 

similar error metrics as the standard day-of-year technique. By virtue of locking windows to Julian 

days, the day-of-year method does a good job at preserving the raw model signal of temporal 

change. Notably, the seasonally anchored method achieves the same efficacy (for PresRat and 

CDFt) as the day-of-year method without requiring identical windows for the historical and future 

datasets.   

3.6 Summary and Conclusion  

Robust and reliable projections of changes in future streamflow are essential if we are to 

improve (or maintain) resilient water resources and mitigate damage to riparian ecosystems in the 

face of climate change. But raw simulations of streamflow are used in applications or impact 

models only at one’s peril, unless first bias corrected. Traditional methods for bias correction 

operate by comparing future and historical model data from shared ranges of Julian days. However, 
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the physical and environmental process that govern streamflow (or any hydrometeorological 

variable) are not necessarily fixed to calendar periods, especially in the context of climate change, 

which will advance melting season earlier in the year and can alter the seasonality of precipitation. 

In order to better connect the statistical process of bias correction to the underlying processes in 

hydrologic models, we introduce a novel windowing technique for bias correction of projected 

streamflows. Data are windowed based on hydrograph-relative time, not calendar day. By locating 

the temporal position of a given data point undergoing correction in relation to characteristic 

features of its average hydrograph (e.g., start of rising limb, peak flow, end of falling limb, 

minimum flow) we window data based on hydrographically-equivalent days across the observed, 

simulated-historical, and simulated-future periods.   

We evaluate the efficacy of several bias correction methods, using both the standard day-

of-year and our new seasonally anchored windowing technique, applied to streamflow projections 

for six California streams that range from rain- to snow dominated watersheds and that are 

responses to climate projections from a suite of 10 CMIP5 global climate models (GCMs) selected 

by the California Department of Water Resources as having good representation of the historical 

California hydroclimate. Based on the importance of individual high-magnitude streamflow 

events, total water year streamflow, and timing of peak flow on the natural and built environment, 

we argue that successful bias correction should accomplish three tasks: 1) preserve the water year 

mean climate change signal of the un-bias corrected flow projections, 2) preserve un-bias corrected 

changes at all quantiles, and 3) preserve any temporal signal of shifting seasonality in the un-bias 

corrected flow projections, all while correcting the simulated historical statistics to that of the 

observed dataset. Evaluated as the percent difference relative to the historical period, we 
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investigate the degree to which the four bias methods and two windowing techniques preserve the 

un-bias corrected signal of climate change across the study domain.  

PresRat is the only bias correction method examined in this work that preserves the original 

model, shorthand for hydrologic model output driven by downscaled and bias corrected GCM data,  

signal of water year mean change and does so for both seasonally anchored and standard day-of-

year windowing techniques. Although the other 3 methods, CDF transform (CDFt; Michelangeli 

et al., 2009), Equidistant CDF matching (EDCDFm; Li et al., 2010), and Quantile Mapping 

(Qmap; Panofsky & Brier, 1968; Wood et al., 2002) do not preserve the original model water year 

mean changes, even for these methods, seasonally anchored windowing reduces the ensemble 

mean error by roughly a factor of two while reducing the spread when compared to standard day-

of-year windowing.  

For an extreme and highly variable hydroclimate, like California, where a large fraction of 

total water (both streamflow and precipitation) is contained in the top decile of the distribution, it 

is vital that bias correction does not skew the original model projection signals of change at the 

highest quantiles. Using the root-mean-square error evaluated at each decile of wet season 

streamflow to gauge success, we find that 1) PresRat with seasonally anchored windowing best 

preserves the raw signal at the top decile of flows, 2) PresRat with seasonally anchored windowing 

best preserves the raw signal averaged over all deciles, and 3) using seasonally anchored 

windowing improved the performance of each of the four bias correction methods. These findings 

are true not only for the 10-member ensemble averaged over the six streams, but true for all streams 

individually. With respect to streamflow magnitude, regardless of their hydrological 

characteristics (e.g., rain- vs. snow dominated), the seasonally anchored windowing technique was 

more effective in preserving the original model signals of climate change.  



 71 

Finally, because any shift in seasonality of snow-fed rivers will have strong impacts on 

both the natural and built environments, we examine the extent to which bias correction methods 

alter the original model signals of shifting seasons. We measure the change in seasonality by 

finding the difference between the Julian dates coinciding with peak streamflow in the simulated-

future and simulated-historical periods. While the seasonally anchored windowing technique 

improved the preservation of original model signals in magnitude, we find that both windowing 

methods preserve the shift in seasonality equally well (for PresRat and CDFt) with mean bias 

values < 1 day and root-mean-square error of ~7 days.  

In summary, seasonally anchored windowing, as opposed to the standard day-of-year 

technique, yields better bias corrected projections of future streamflow across a subset of six 

streams ranging from rain- to snow- dominated ecosystems in California. Without sacrificing any 

capacity to preserve projected changes in timing of peak streamflow, the seasonally anchored 

method improves the preservation of magnitude changes in the un-bias corrected flow projections. 

This is true not only for the water year mean signal, which is important as it relates to the total 

volume of water flowing through the river over the course of the year, but is also true for both low 

and high streamflow events which have an outsized imprint on California’s hydroclimate, water 

resources, and ecosystems.  

While this work focused largely on wet season streamflow, Figure 3.10 highlights an 

important vulnerability of the standard day-of-year windowing concerning late season flows. Since 

biases from the early receding limb of the historical period hydrograph are applied to near-

baseflow streamflow during the end-of-century period (because both occur over the same calendar-

based period), the resulting bias corrected projections can represent something very unphysical: 

streamflow decreases past baseflow during the receding limb before rebounding and then receding 
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once more until it reaches baseflow (dashed lines). In contrast, the future period hydrographs for 

seasonally anchored methods (solid lines) do not exhibit this unphysical behavior because they 

apply biases from equivalent stretches of the climatologies. Because this seasonal shift is driven 

by warming temperatures resulting in diminished snowpack whose peak volume is pushed earlier 

into the water year, this non-physical feature is most prevalent for historically snow-dominated 

watersheds. 

This work 1) demonstrates the inability of bias correction with day-of-year windowing to 

provide reliable projections of variables whose climate change signal is characterized by changes 

in both magnitude and seasonality, and 2) introduces a novel windowing method which moves 

towards ‘process informed’ bias correction wherein environmental and physical processes, rather 

than calendar dates, are shared by windowed data. Given the importance of streamflow projections 

in creating more resilient water resources, it may be pertinent to evaluate the difference in future 

streamflow projections across a wider range of California rivers using both seasonally anchored 

and day-of-year windowing methods.  Although we conceptualized and applied the method for the 

purpose of bias correcting streamflow in California, the fundamental technique of windowing 

based on the position (in time) of a given data point in reference to some climatological milestones 

could be applied to variables other than streamflow (e.g., snow water equivalent, which is also 

expected to have a significant seasonal shift in the future). For variables that will have seasonal 

shifts in the future, it is important to move towards ‘process informed’ bias correction and away 

from calendar-based methods that are completely detached from the physical processes governing 

the systems. Although the method introduced here does not directly tether the statistical process 

of bias correction to the underlying physics of GCMs or land surface models, it is a step in the 

appropriate direction.   
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Table 3.1. Name, gage identification and summary characteristics of each watershed. Streams are 
listed by their fraction of total water year streamflow occurring before April 1 (proxy used to 
indicate importance of snowmelt) in descending order with the snowiest watersheds listed in the 
final rows.  
 

Stream Gage ID  Drainage Area 
(km2) 

Min, Max 
Elevation (m) 

Mean 
Elevation (m) 

% Streamflow 
Before April 1 
(Observed) 

Napa River USGS, 
1145800 

550 7, 1161 247 87.7 

Elder Creek USGS, 
11379500 

250 255, 1959 978 73.2 

Shasta Dam CDEC, SHA 18350 306, 4113 1435 62.0 

Oroville Dam CDEC, ORO 9350 240, 2635 1545 58.0 

New Melones 
Reservoir 

CDEC, 
NML 

2550 160, 3381 1632 43.6 

Friant Dam (Millerton) CDEC, MIL 4250 157, 3954 2161 30.6 
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Table. 3.2. Selection of 10 GCMs from CMIP5 used in this work along with their originating 
institutions.  

Model Acronym Model Source/Institution 

ACCESS1.0 Commonwealth Scientific and Industrial Research Organisation 
(CSIRO) and Bureau of Meteorology, Australia 

CCSM4 National Center for Atmospheric Research (NCAR), United States 
NCAR, United States 

CESM1-BGC National Center for Atmospheric Research (NCAR), United States 
NCAR, United States 

CMCC-CMS Centro Euro-Mediterraneo per I Cambiamenti Climatici 

CNRM-CM5 Centre National de Recherches Météorologiques, France 

CanESM2 Canadian Centre for Climate Modelling and Analysis, Canada 

GFDL-CM3 Geophysical Fluid Dynamics Laboratory (GFDL), Princeton, New 
Jersey, United States 

HadGEM2-CC Met Office Hadley Center, UK 

HadGEM2-ES Met Office Hadley Center, UK 

MIROC5 Atmosphere and Ocean Research Institute and NIES, Japan 
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Table 3.3. Summary statistics for each bias correction method (rows) and windowing technique 
(Standard day-of-year show in parentheses, seasonally anchored shown without) on their success 
in preserving the projected mean change in water year mean streamflow across the 6 streams and 
10 GCMs.  

BC Method  Ens. Mean Error [%] RMS Error [%] 

PresRat 0.20 (0.37) 0.86 (0.91) 

CDFt 1.72 (6.18) 5.57 (8.64) 

EDCDFm 4.49 (7.69) 13.04 (12.96) 

Qmap 3.33 (6.14) 7.64 (10.59) 
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Table 3.4. Flow weighted root-mean-square error (RMSE) averaged over all deciles and across 
all streams. Methods using standard day-of-year windowing are shown in parentheses, and those 
using seasonally anchored are shown without parentheses.  

BC Method  Ensemble Mean RMSE Across 

Deciles [Flow Weighted %] 

PresRat 0.51 (0.81) 

CDFt 0.75 (1.37) 

EDCDFm 1.81 (3.47) 

Qmap 1.21 (1.93) 
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Table 3.5. Summary of the ability of each bias correction method and windowing technique to 
preserve the original model signal in the temporal shift in climatological peak streamflow. 
Methods using standard day-of-year windowing are shown in parentheses, and those using 
seasonally anchored are shown without parentheses.  

BC Method  R2 Ens. Mean Error [days] RMSE [days] 

PresRat 0.9 (0.9) 0.4 (0.1) 6.8 (6.9) 

CDFt 0.9 (0.9) 0.1 (0.1) 7.1 (7.0) 

EDCDFm 0.6 (0.9) 3.1 (-0.5) 15.3 (6.7) 

Qmap 0.8 (0.9) 0.1 (0.4) 11.1 (7.6) 
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Figure 3.1. Map of the study domain with watershed boundaries (black contour), gage locations 
(purple circle), and three-letter abbreviations for the 6 streams alongside elevation (color shade). 
Characteristics of each watershed are listed in the accompanying table (Table 3.1).  
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Figure 3.2. Visual depiction of the algorithm used to identify climatological milestones for the 
seasonally anchored windowing method. Climatological data from the New Melones stream and 
ACCESS1.0 GCM is shown at the 70th percentile to illustrate the method. Daily mean 
climatological streamflow (top), and the first and second derivatives of streamflow with respect 
to time (middle and bottom respectively) are plotted on against water year Julian day. Numerical 
annotation is used to indicate the workflow by which the four seasonal milestones are assigned: 
(1) Peak streamflow (triangle), (2) Minimum streamflow (circle), (3) Start of the dry season/end 
of receding limb (x), and (4) Start of the wet season/beginning of the rising limb (diamond).  

  



 81 

 

Figure 3.3. Schematic highlighting the effect of windowing technique on which segments of the 
climatological hydrograph are used to bias correct a given model datapoint on the 180th day of 
the water year (yellow star). Each panel shows the climatological hydrographs in thin lines for 
the observed (black), historical original model (red), and end-of-century original model (blue) 
data. The segments of each hydrograph used in bias correction are plotted as bolded lines. 
Standard day-of-year windowing (top) uses data from each curve that falls within the centered 
30-day period (grey shaded region). Seasonally anchored windowing (bottom) uses a centered 
30-day window over the climatological period being corrected and then finds equivalent 
segments of the observed and historical hydrographs to use for bias correction.  
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Figure 3.4. Daily mean streamflow for the observed (black), and bias corrected data over the 
historical period for PresRat with seasonally anchored windowing (red) and quantile mapping 
with day-of-year windowing (blue) for each of the 6 rivers. For the GCM data, the ensemble 
mean across the 10-GCMs is shown in a bolded line with individual members depicted by thin 
lines. Subplots are arranged such that from top-to-bottom, streams transition from rain- to snow 
dominated watersheds.  
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Figure 3.5. Original model projected change in water year mean streamflow across the 6 streams 
(rows) and 10 GCMs (columns) with the 10-member ensemble mean and standard deviation 
(farthest right columns). Using units of ‘percent change from the historical mean’, increasing 
streamflow is indicated by green color-shading, and decreasing streamflow by brown. Values 
under 5% change appear as white. 
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Figure 3.6. Original model projected change in Shasta streamflow by decile (rows) and GCM 
(columns) with the 10-member ensemble mean and standard deviation (farthest right columns). 
Using units of ‘percent change from the historical mean’, increasing streamflow is indicated by 
green color-shading, and decreasing streamflow by brown. Values under 5% change appear as 
white. 
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Figure 3.7. Error by decile for change in wet season streamflow for PresRat with seasonally 
anchored windowing. Errors (x-axis) for individual GCMs are depicted by grey circles, the mean 
error across the 10-member ensemble is depicted by an orange line. The box edges and whiskers 
represent the middle 5 and 8 GCMs respectively. The error for a single GCM averaged over all 
deciles is depicted as a small grey triangle on the x-axis and the value for the 10-member 
ensemble mean is denoted by a large triangle.  For reference, the grey shading and dashed black 
line correspond to ± 10% error and 0% error respectively. For each stream, the right y-axis 
depicts the historical percentage of total wet season streamflow contained in each decile 
averaged across the 10-member ensemble. Subplots are organized so that as you move down the 
rows, streams transition from rain- to snow dominated over the historical period.  
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Figure 3.8. Flow weighted root-mean-square error (RMSE) in the representation of model-
predicted future change in mean flow at each decile averaged across the 6 streams. Solid (dotted) 
lines represent correction methods using seasonally anchored (standard day-of-year) windowing 
techniques. For solid (dotted) lines, the value of the flow weighted RMSE averaged across all 
deciles is indicated by a hatched (unfilled) triangle on the lower x-axis.  
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Figure 3.9. Change in timing of peak climatological streamflow for the original model change (x-
axis) and PresRat with seasonally anchored windowing (y-axis) between the end-of-century and 
historical periods. Markers represent the change for each GCM and are color-coded by stream. A 
dotted black 1-to-1 line is shown for reference.  
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Figure 3.10. Ensemble mean climatological hydrographs for raw and bias corrected data at each 
of the 6 streams. The upper inlay depicts observed (black) and original model hydrographs of the 
historical (red) and end-of-century (blue) periods for each river. The main subplots show the bias 
corrected historical hydrograph (black) alongside end-of-century bias corrected hydrographs for 
PresRat (purple) and CDFt (green) using seasonally anchored (solid) and day-of-year (dashed) 
windowing methods.  
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3.8 Appendix A: Identification of Peak Streamflow Milestone 

for Bimodal Climatological Hydrographs  

Section 3.4.1.2 describes the process of selecting peak streamflow milestones. While the 

vast majority of climatological hydrographs assessed in this study are not bimodal, for some 

future projections of historically snow-dominated rivers, the climatological hydrograph contains 

two local maxima (Figure 3.1A). Recall that the purpose of the seasonally anchored windowing 

technique is to conduct bias correction across data with similar background physical and 

environmental processes. The peak milestone in the historical period corresponds to streamflow 

generated from snowmelt. The future period bimodal hydrograph is characterized by what is 

likely an earlier rain-dominated peak and a later-season snowmelt-dominated peak. Although the 

rain-dominated peak may be higher in magnitude, we select the later, snowmelt peak for the 

location of the milestone to better ensure that the data used in the bias correction shares similar 

physical and environmental processes. 
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Figure 3.1A. Visual depiction of the algorithm used to identify climatological milestones for the 
seasonally anchored windowing method for the special case of bimodal hydrographs. End-of-
century climatological data from the Millerton/Friant Dam stream and CanESM2 GCM is shown 
at the 70th percentile to illustrate the method. Daily mean climatological streamflow (top), and 
the first and second derivatives of streamflow with respect to time (middle and bottom 
respectively) are plotted on against water year Julian day. Numerical annotation is used to 
indicate the workflow by which the four seasonal milestones are assigned: (1) Peak streamflow 
(triangle), (2) Minimum streamflow (circle), (3) Start of the dry season/end of receding limb (x), 
and (4) Start of the wet season/beginning of the rising limb (diamond). Note that the peak 
milestone (triangle), is not associated with the true maximum value of streamflow, but rather 
with the local maximum during the snowmelt period.    
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Figure 3.2A. Climatological hydrographs (lines) for flows ranging from the 5th to 95th percentile 
by intervals of 5 percentage points. Here, we see how the location of the ‘start of wet season’ 
milestone (circle) varies as a function of quantile.    
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Figure 3.3A. Day of water year associated with the ‘start of wet season’ milestone (from Fig. 
3.2A) for flows below 40th percentile (red), 40th-80th percentile (black), and above 80th percentile 
(blue). The mean value over each respective range is indicated by a circle.    
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3.9 Appendix B: Original Model Change in Wet Season 

Streamflow by Decile  

In accompaniment of Figure 3.6 in Section 3.5.3, Appendix B provides the original 

model signal in wet season streamflow change by decile for the remaining 5 rivers.   

 
Figure 3.1B. Original model projected change in Napa River streamflow by decile (rows) and 
GCM (columns) with the 10-member ensemble mean and standard deviation (farthest right 
columns). Using units of ‘percent change from the historical mean’, increasing streamflow is 
indicated by green color-shading, and decreasing streamflow by brown. Values under 5% change 
appear as white.    
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Figure 3.2B. Original model projected change in Elder Creek streamflow by decile (rows) and 
GCM (columns) with the 10-member ensemble mean and standard deviation (farthest right 
columns). Using units of ‘percent change from the historical mean’, increasing streamflow is 
indicated by green color-shading, and decreasing streamflow by brown. Values under 5% change 
appear as white.    
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Figure 3.3B. Original model projected change in Oroville Dam streamflow by decile (rows) and 
GCM (columns) with the 10-member ensemble mean and standard deviation (farthest right 
columns). Using units of ‘percent change from the historical mean’, increasing streamflow is 
indicated by green color-shading, and decreasing streamflow by brown. Values under 5% change 
appear as white.    
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Figure 3.4B. Original model projected change in New Melones Reservoir streamflow by decile 
(rows) and GCM (columns) with the 10-member ensemble mean and standard deviation (farthest 
right columns). Using units of ‘percent change from the historical mean’, increasing streamflow 
is indicated by green color-shading, and decreasing streamflow by brown. Values under 5% 
change appear as white.    
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Figure 3.5B. Original model projected change in Millerton/Friant Dam streamflow by decile 
(rows) and GCM (columns) with the 10-member ensemble mean and standard deviation (farthest 
right columns). Using units of ‘percent change from the historical mean’, increasing streamflow 
is indicated by green color-shading, and decreasing streamflow by brown. Values under 5% 
change appear as white.    
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3.10 Appendix C: Error in Wet Season Streamflow by Decile  

In accompaniment of Figure 3.7 in Section 3.5.3, Appendix C provides the error in wet 

season streamflow change by decile for the remaining combinations of bias correction and 

windowing techniques.   
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Figure 3.1C. Error by decile for change in wet season streamflow for PresRat with standard day-
of-year windowing. Errors (x-axis) for individual GCMs are depicted by grey circles, the mean 
error across the 10-member ensemble is depicted by an orange line. The box edges and whiskers 
represent the middle 5 and 8 GCMs respectively. The error for a single GCM averaged over all 
deciles is depicted as a small grey triangle on the x-axis and the value for the 10-member 
ensemble mean is denoted by a large triangle.  For reference, the grey shading and dashed black 
line correspond to ± 10% error and 0% error respectively. For each stream, the right y-axis 
depicts the historical percentage of total wet season streamflow contained in each decile 
averaged across the 10-member ensemble. Subplots are organized so that as you move down the 
rows, streams transition from rain- to snow dominated over the historical period.    
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Figure 3.2C. Error by decile for change in wet season streamflow for CDFt with seasonally 
anchored windowing. Errors (x-axis) for individual GCMs are depicted by grey circles, the mean 
error across the 10-member ensemble is depicted by an orange line. The box edges and whiskers 
represent the middle 5 and 8 GCMs respectively. The error for a single GCM averaged over all 
deciles is depicted as a small grey triangle on the x-axis and the value for the 10-member 
ensemble mean is denoted by a large triangle.  For reference, the grey shading and dashed black 
line correspond to ± 10% error and 0% error respectively. For each stream, the right y-axis 
depicts the historical percentage of total wet season streamflow contained in each decile 
averaged across the 10-member ensemble. Subplots are organized so that as you move down the 
rows, streams transition from rain- to snow dominated over the historical period.    
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Figure 3.3C. Error by decile for change in wet season streamflow for CDFt with standard day-of-
year windowing. Errors (x-axis) for individual GCMs are depicted by grey circles, the mean 
error across the 10-member ensemble is depicted by an orange line. The box edges and whiskers 
represent the middle 5 and 8 GCMs respectively. The error for a single GCM averaged over all 
deciles is depicted as a small grey triangle on the x-axis and the value for the 10-member 
ensemble mean is denoted by a large triangle.  For reference, the grey shading and dashed black 
line correspond to ± 10% error and 0% error respectively. For each stream, the right y-axis 
depicts the historical percentage of total wet season streamflow contained in each decile 
averaged across the 10-member ensemble. Subplots are organized so that as you move down the 
rows, streams transition from rain- to snow dominated over the historical period.    
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Figure 3.4C. Error by decile for change in wet season streamflow for EDCDFm with seasonally 
anchored windowing. Errors (x-axis) for individual GCMs are depicted by grey circles, the mean 
error across the 10-member ensemble is depicted by an orange line. The box edges and whiskers 
represent the middle 5 and 8 GCMs respectively. The error for a single GCM averaged over all 
deciles is depicted as a small grey triangle on the x-axis and the value for the 10-member 
ensemble mean is denoted by a large triangle.  For reference, the grey shading and dashed black 
line correspond to ± 10% error and 0% error respectively. For each stream, the right y-axis 
depicts the historical percentage of total wet season streamflow contained in each decile 
averaged across the 10-member ensemble. Subplots are organized so that as you move down the 
rows, streams transition from rain- to snow dominated over the historical period.    
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Figure 3.5C. Error by decile for change in wet season streamflow for EDCDFm with standard 
day-of-year windowing. Errors (x-axis) for individual GCMs are depicted by grey circles, the 
mean error across the 10-member ensemble is depicted by an orange line. The box edges and 
whiskers represent the middle 5 and 8 GCMs respectively. The error for a single GCM averaged 
over all deciles is depicted as a small grey triangle on the x-axis and the value for the 10-member 
ensemble mean is denoted by a large triangle.  For reference, the grey shading and dashed black 
line correspond to ± 10% error and 0% error respectively. For each stream, the right y-axis 
depicts the historical percentage of total wet season streamflow contained in each decile 
averaged across the 10-member ensemble. Subplots are organized so that as you move down the 
rows, streams transition from rain- to snow dominated over the historical period.    
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Figure 3.6C. Error by decile for change in wet season streamflow for Qmap with seasonally 
anchored windowing. Errors (x-axis) for individual GCMs are depicted by grey circles, the mean 
error across the 10-member ensemble is depicted by an orange line. The box edges and whiskers 
represent the middle 5 and 8 GCMs respectively. The error for a single GCM averaged over all 
deciles is depicted as a small grey triangle on the x-axis and the value for the 10-member 
ensemble mean is denoted by a large triangle.  For reference, the grey shading and dashed black 
line correspond to ± 10% error and 0% error respectively. For each stream, the right y-axis 
depicts the historical percentage of total wet season streamflow contained in each decile 
averaged across the 10-member ensemble. Subplots are organized so that as you move down the 
rows, streams transition from rain- to snow dominated over the historical period.    
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Figure 3.7C. Error by decile for change in wet season streamflow for Qmap with standard day-
of-year windowing. Errors (x-axis) for individual GCMs are depicted by grey circles, the mean 
error across the 10-member ensemble is depicted by an orange line. The box edges and whiskers 
represent the middle 5 and 8 GCMs respectively. The error for a single GCM averaged over all 
deciles is depicted as a small grey triangle on the x-axis and the value for the 10-member 
ensemble mean is denoted by a large triangle.  For reference, the grey shading and dashed black 
line correspond to ± 10% error and 0% error respectively. For each stream, the right y-axis 
depicts the historical percentage of total wet season streamflow contained in each decile 
averaged across the 10-member ensemble. Subplots are organized so that as you move down the 
rows, streams transition from rain- to snow dominated over the historical period.  
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Chapter 4 
 
Climate Change Impacts on Lake Shasta: Assessing 
Adaptation Measures for California’s Largest 
Reservoir 
 
Abstract  
 

Climate change is exacerbating the long-standing tensions between water supply and flood-

risk mitigation across the Western US and beyond. As springtime snowmelt declines in the face 

of warming trends, reducing opportunities to refill reservoirs after wintertime flood risks subside, 

water managers face the decision whether to continue operations designed for a bygone era or to 

pursue adaptation measures. Differences in factors such as climate, hydrology, and reservoir 

operations between basins require that impacts of climate change and proposed adaptation 

strategies be examined on a case-by-case basis. This study investigates projected climate change 

impacts on California’s Lake Shasta and identifies specific variables that govern its vulnerability. 

Using a newly developed, highly flexible model, we analyze coming threats to water supply and 

flood risk under existing operations and several forms of adaptive responses to climate change. 

Compared to the historical period, we simulate 27% declines in carryover storage at the end of the 

21st century, under the more severe of two warming scenarios, if operations are left unchanged. 

Compounding the direct impacts due to decreased snowpack, we find existing reservoir operating 

procedures are responsible for one-third of average losses. Both operational and infrastructural 

adaptive measures were explored by altering rule curve and increasing reservoir storage capacity. 

Despite many interventions favoring water supply over flood risk, historical levels of carryover 
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storage were irretrievable at the end of the century under the warmer of the two warming scenarios 

examined in this study. 

4.1 Introduction   

The water-supply and flood-management systems of the western US were built for 

hydroclimates that no longer exist. Mountain snowpack, once robust and dependable, has 

previously been the backbone of the water resources used to fuel economic and agricultural 

expansion-- at the expense of Indigenous people and native ecosystems (Middleton-Manning et 

al., 2018). Carefully designed to exploit the past’s asynchronous arrivals of rain-driven and 

snowmelt-fed streamflows, many reservoirs are managed to maintain a measure of empty space 

behind the dam during boreal winter (called the flood-pool) as a trap for possible flood inflow in 

order to reduce downstream flooding, while also relying on springtime snowmelt to refill storage 

capacity after major flood risks have completed most of their “normal” seasonal declines (US. 

Army Corps of Engineers, 1977). Since the mid 20th century, snowmelt and snow-fed streamflows 

have been arriving earlier in the year (Mote et al. 2005; Stewart et al. 2005), and projections of 

21st Century climates confidently indicate that snowpack will continue to decline and seasonal 

inflow peaks come earlier as freezing levels rise and a greater fraction of precipitation falls as rain 

as opposed to snow (Barnett et al., 2008; Leung et al., 2004; Nijssen et al., 2001) . As a result of 

these earlier inflows, the long-standing seasonal separation between most flood risks and 

substantial snow-fed inflows is breaking down, in ways that will necessarily stress water resource 

management (Barnett et al., 2008; Brekke et al., 2009; Cayan et al., 2001; Cohen et al., 2020; N. 

Knowles et al., 2018; Pierce et al., 2008). 

An inflow season that is condensed to the winter and early spring, paired with additional 

climate change impacts such as increased likelihood of rain-on-snow events and more intense 
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storms, pose greater flood risk for mountain reservoirs (Barnett et al., 2008; Cohen et al., 2020). 

Additionally, because a large fraction of reservoir inflows during the wet season are not converted 

to storage gains (being sapped instead by flood-management releases), in the absence of snowmelt 

inflows, reservoirs will not be able to refill as designed (Cohen et al., 2020; Knowles et al., 2018; 

Sterle et al., 2020). Without the vast natural reservoir of mountain snowpack that has historically 

characterized many of the West’s river basins, the longstanding competition between flood-risk 

mitigation and water supply reliability will intensify as water managers are forced to respond to 

increasingly difficult scenarios with infrastructure designed for a bygone hydroclimate 

(Christensen et al., 2004; Knowles et al., 2018; Knowles et al., 2006; Lee et al., 2006). 

In response, there is a large body of work focused on operational or structural adaptation 

strategies to combat projected climate change impacts (Brown et al., 2012; Christensen & 

Lettenmaier, 2007; Cohen et al., 2020; Georgakakos et al., 2012; He et al., 2020; Moody & Brown, 

2013; Steinschneider & Brown, 2012; Sterle et al., 2020; Wilby & Keenan, 2012, and many 

others). Future conditions are imposed using either global climate model (GCM) simulations (e.g. 

He et al., 2020; Payne et al., 2004) or synthetic scenarios corresponding to a particular risk 

exposure (e.g. Herman et al., 2016; Weaver et al., 2013) and these vulnerability and adaptation 

studies can vary widely in scope. Some apply a systems-level approach and investigate multiple 

reservoirs within the context of larger interconnected and highly dynamic water resources 

portfolios (e.g. Knowles et al., 2018; Tanaka et al., 2006). Others offer insight on local scales and 

individual reservoirs (e.g. Sterle et al., 2020; Willis et al., 2011). Often, experiments are designed 

to focus either specifically on flood risk, often analyzing a small number of selected storms at a 

daily timestep, or water supply issues, typically resolved at a monthly timestep over long periods. 
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The present study explores impacts at Shasta from a multi-objective (water supply and flood-risk 

mitigation) perspective on timescales ranging from days to decades.   

To accomplish this, we developed a simplified model of California’s largest reservoir, Lake 

Shasta, which is capable of responding to downscaled and bias corrected global climate model 

(GCM) data to simulate reservoir operations and releases on a daily timestep over many decades. 

We begin by projecting climate-change-driven inflows and then respond to those inflows using 

the reservoir’s operating protocol. We then evaluate climate-change impacts on projected reservoir 

performance under existing protocols. With baseline performance established, we investigate the 

capacity of both operational and infrastructural adaptation measures to mitigate increasing tensions 

between water supply and flood-risk mitigation. 

The paper is structured in the following manner. Section 4.2 details pertinent hydrological 

and operational details of Lake Shasta. Section 4.3 discusses both the data used in model 

development and that used for the future simulations. The model development and validation is 

detailed in Section 4.4 with further information in the Supplemental. Section 4.5 presents results 

from future climate runs under existing operations and selected adaptations. Lastly, Section 4.6 

summarizes and connects this work to the broader literature.  

4.2 Background   

4.2.1 Lake Shasta Watershed 

Lake Shasta, contained by Shasta dam, is located in the Trinity Alps of California roughly 

260 km north of Sacramento, CA (Figure 4.1). Completed by the U.S. Bureau of Reclamation in 

1949 as a major part of the Central Valley Project, Shasta Lake is the largest reservoir in California 

with over 4.5 million acre feet (MAF) of storage capacity and represents roughly 10% of the state’s 

storage capacity (US. Army Corps of Engineers, 1977). Historically, the cumulative water year 
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inflow to the reservoir is 5.9 MAF, or enough to fill the entire reservoir 1.3 times (US Department 

of Interior, 2011). The reservoir operates with joint water supply and flood control objectives and 

is managed by the U.S. Bureau of Reclamation. 

Shasta Dam drains 16,500 km2 of mountains and plateaus including parts of the Trinity and 

Cascade Ranges at the head of Sacramento Valley. The two principal tributaries to the Sacramento 

River above the dam are the Pit and McCloud Rivers. Although there is a network of small 

hydroelectric dams along the Pit River, they develop very little storage and do not significantly 

modify flood flows (US. Army Corps of Engineers, 1977). Elevations within the basin range from 

180 m at the dam to 4,250 m at Mt. Shasta with 65% of the basin lying below the climatological 

snowline (1,200 m) and 97% below 2,100 m (US. Army Corps of Engineers, 1977). Above the 

dam, the Sacramento River, which flows into Lake Shasta and which Shasta manages downstream 

flows to Sacramento Valley, has two distinct seasonal peaks--one during winter fed by rainfall and 

early snowmelt runoff and one spring in springtime fed by snowmelt. This bimodal hydrograph 

distinguishes it from most other major northern California rivers, such as the Feather and Yuba, 

which are principally snow-dominated and have their only major seasonal peaks in springtime 

(e.g., Dettinger & Cayan, 2003). 

4.2.2 Reservoir Operations 

Like so many reservoirs engineered to provide flood-risk mitigation and water supply 

benefits, Lake Shasta is operated using a ‘rule curve’ that dictates the maximum allowed storage 

level on an individual day of the year. During the flood-risk season, this level is kept low to ensure 

sufficient vacant space is available to capture high inflow events and then rises through the spring 

as flood risk wanes. Unlike many reservoirs, maximum storage values at Shasta are not dictated 

by a single rule curve but by 6 separate curves, referred to here as sub-rule curves. The decision of 
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which sub-rule curve to enforce on a given day is determined by the current Inflow Parameter 

(Equation 4.1) based on the magnitude of recent reservoir inflows, according to  

𝑰𝒏𝒇𝒍𝒐𝒘	𝑷𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒊 	= 	 (𝟎. 𝟗𝟓	 ∗ 	𝑰𝒏𝒇𝒍𝒐𝒘	𝑷𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒊*𝟏) + 𝑰𝒏𝒇𝒍𝒐𝒘	𝒊		           (4.1) 

where	𝑖	indicates the date. When the inflow parameter value increases, the mandated sub-rule 

curve (dictated by the day’s inflow parameter) favors flood-risk mitigation by lowering the 

mandated maximum storage level (darker blue curves in Fig. 4.2); when the parameter decreases, 

the mandated sub-rule curve allows maximum storage levels to rise reflecting a growing 

prioritization of water supply (paler blue curves). Each of the 6 sub-rule curves has a corresponding 

range of inflow parameter values (Supplemental section 4.8.1). Over the course of a given water 

year, the operative rule curve (red) can jump between each of the 6 individual curves (blue shading) 

based on recent inflows. The vertical black dashed line (Fig. 4.2) corresponds to what we will refer 

to as the reservoir’s refill date when the sub-rule curves transition overall from favoring flood-risk 

mitigation to favoring refilling of the water supply. Coinciding with the historical peak in mean 

daily inflow, the refill date at Lake Shasta occurs on March 20th. 

4.3 Data   

4.3.1 Historical Period 

Historically measured data for a variety of Shasta-specific variables (reservoir inflows and 

outflows, air temperature, evaporation) and weather and snow stations around its watershed 

(precipitation and snow water equivalent) were obtained from the California Department of Water 

Resources Data Exchange Center (CDEC) for water years 1996-2017 (See list of stations in 

Supplemental section 4.8.6). Gridded reanalysis snow-water equivalents (SWE) data from Broxton 

et al. (2019) and Livneh et al. (2013), together with precipitation data from PRISM (Daly et al., 

1994) and Livneh et al. (2013) were also used (with the station data) in development of the 
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statistical model of Lake Shasta described in Section 4.4. We use multiple gridded datasets for a 

given variable to extend temporal coverage over the entire period of record (discussed further in 

Supplemental section 4.8.5).  

4.3.2 Future Climate Projections 

For climate-change experiments, daily temperatures, precipitation, and SWE values 

statistically downscaled using the Localized Constructed Analogs (LOCA) method (Pierce et al., 

2014) applied to Coupled Model Intercomparison Project Phase 5 (CMIP5; Taylor et al., 2012) 

climate change scenarios were obtained. LOCA is designed especially to be advantageous for 

investigations of extreme precipitation (Pierce et al., 2014), which are critical to reservoir 

operation. Streamflow projections used in this study come from Sierks et al. (2022), which 

provides secondary bias-corrections of data from Knowles and Cronkite (2018) and Ratcliff (2018) 

that was derived from the variable infiltration capacity (VIC) hydrologic model (Liang et al., 1994) 

simulations of responses to the same downscaled CMIP5 projections (see Sierks et al. 2022 for 

details). In the present study, we investigate projections from 10 GCMs chosen by the California 

DWR Climate Change Technical Advisory Group as providing good simulations of the California 

hydroclimate (California Department of Water Resources Climate Change Technical Advisory 

Group, 2015,  listed here in Table 4.1) and examine climates projected under radiative 

concentration pathways (RCP) 4.5 and 8.5.  

 

 

4.4 Model Development and Validation   

The daily simulation of Lake Shasta storage is governed by a simple water balance 

equation,  
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𝑆𝑡𝑜𝑟𝑎𝑔𝑒3 = 𝑆𝑡𝑜𝑟𝑎𝑔𝑒3*E 	+ 𝐼𝑛𝑓𝑙𝑜𝑤3 	– 	𝑂𝑢𝑡𝑓𝑙𝑜𝑤3 		–	𝐸𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛3      (4.2) 

at each day, 𝑖. Inflow is available at each timestep, initial storage is known, and evaporation can 

be estimated through linear regression based on storage and temperature data (see Supplemental). 

Simulation and testing of the evolution of storage, historically and in future-climate experiments, 

is thus contingent on estimation of daily outflows, which are the managed controls on the right 

side of Equation 4.2. The reservoir outflows (also referred to as releases) vary greatly by season 

and are decided based on a wide range of local and remote conditions, for a variety of flood-risk, 

instream-flow requirements, agricultural demands, and Bay-Delta salinity management purposes 

(U.S. Bureau of Reclamation, 2019b). Reflecting the differences between wet- and dry-season 

operations, the model of Lake Shasta has separate modules for the flood-risk management and 

water-supply seasons, which are outlined briefly below and covered in detail in Supplemental 

sections 4.8.2 and 4.8.3.  

4.4.1 Wet-Season Operations 

Because flood risk can change rapidly from day-to-day, faithful simulation of daily releases 

during the winter is required to properly reproduce historical and future wintertime storages and 

flood risks. If the 24-hr inflow volume, when added to the previous day’s storage, causes the 

reservoir stage to increase above the rule curve, releases are dictated by the US Army Corps of 

Engineers Flood Control diagram (Chart A-8; US. Army Corps of Engineers, 1977), shown in Fig. 

4.2. We refer to this as a flood-risk release. From October 1st through April 30th, if reservoir storage 

is below the rule curve, simulated outflow is based on climatological mean values. Complete 

details about rule curve and climatological releases can be found in Supplemental section 4.8.2.  

4.4.2 Dry-Season Operations 
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Unlike winter releases that are based on daily reservoir inflow and storage values, May 1st 

through September 30th outflows are based on a predicted total seasonal release volume (unless a 

flood-risk release is required on a given day). This seasonal release volume is derived from the 

California Department of Water Resources (DWR) Bulletin-120 (B120), which forecasts dry-

season runoff across major watersheds in the state. In the process, DWR calculates a Water Year 

Index (WYI), a nondimensional value related to ‘how wet’ a water year is in relation to a baseline 

(See Supplemental section 4.8.3). Although complex external variables such as Bay-Delta salinity, 

stream temperatures, total California reservoir storage, and agricultural demand impact daily 

summertime deliveries, our aim is to analyze water-supply risk on timescales of seasons to 

decades, not days. Thus, we focus on total dry season release volumes for our water supply 

analysis. In practice, the U.S. Bureau of Reclamation relies on seasonal inflow forecasting in part 

to allocate releases (U.S. Bureau of Reclamation, 2019a). So, we find that the B120 information 

is both sufficient for our purpose and in-line with official reservoir operations. For complete details 

on dry-season operations, including how the WYI is estimated and then translated into a seasonal 

release volume, see Supplemental section 4.8.3. 

4.4.3 Model Calibration and Validation 

Using, leave 1-year out, cross-validation over the historical period (WYs 1996-2017), we 

calibrate and evaluate the model’s performance over the period of record. Each of the 22 WYs is 

simulated independently while estimating model parameters (namely, WYI and associated 

principal components, see Supplemental section 4.8.3 for full details) from the remaining 21 years 

of data. Figure 4.3 shows the daily storage in Lake Shasta over the historical period for the 

observed and simulated data with lower subplots depicting mean outflow and storage performance. 

We validate our model in this manner to ensure that our system generalizes for each year well and 
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does not over-fit the training data. Relevant summary statistics are provided in Table 4.2 as well. 

As anticipated due to the complexity of water supply operations, the model has better daily 

performance during the wet season. However, residuals in both daily storage and carryover 

storage, a good indicator of system performance (Draper & Lund, 2004) defined as storage on 

September 30th, are small (in R2 sense), randomly distributed, do not manifest a significant 

systematic bias, and importantly lead to no long-term model drift.  

4.5 Results and Discussion   

4.5.1 Streamflow Changes 

Before examining whether and how simulated reservoir performance is impacted by global 

warming, we must understand how the underlying hydrological conditions change. We do so by 

first evaluating how Shasta inflows are impacted by climate change, and second, how such changes 

relate to operations. Concerning both total WY precipitation and total WY inflows, there is a large 

spread among the 10 GCMs about the sign and magnitude (in units of percent of historical value) 

of change. The range of 30-yr means from the various GCMs is roughly between -15 % change 

and +25% change for both precipitation and streamflow variables. Focusing now on streamflow, 

the ensemble mean increases by 3.5% in both RCPs when comparing inflows during the historical 

period (1970-2005) to the end-of-century (2069-2099). Unlike the mean signal, however, there is 

unanimous agreement that the top decile of streamflow values will increase in magnitude. 

Additionally, daily peak streamflow shifts earlier by nearly 1 month, causing the average inflow 

volumes to increase during the October-April season and decrease in the May-September season 

(Fig. 4.4). This seasonal shift occurs under both RCP scenarios, though winter (spring/early 

summer) streamflow increases (decreases) more under RCP8.5 than it does under the RCP4.5 

scenario.   
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4.5.1.1 Seasonal Inflow Timing and Magnitude Changes  

In the context of Shasta’s specific operations, we find that inflows increase during the 

flood-risk season (prior to the refill date of March 20th) throughout the 21st century whereas those 

occurring after the refill date decline (Fig. 4.5). Compared to the 1970-2020 historical mean, there 

is an average 23% (15%) decrease in cumulative streamflow after the refill date under RCP8.5 

(RCP4.5). These decreases prevent the reservoir from refilling as much of the flood pool as during 

the historical period. Concerning projected winter inflows, ensemble mean changes reflect a 21% 

(17%) increase in pre-March 20th reservoir inflows under RCP8.5 (RCP4.5). Whereas the 

historical partition between pre- and post-refill inflows was fairly balanced at 56% to 44% of total 

WY flows respectively, the gap widens to 67% to 33% (64% to 36%) under RCP8.5 (RCP4.5) as 

inflows consolidate into the flood-risk season.  

4.5.1.2 Inflow Parameter 

Because the daily rule-curve storage limit at Lake Shasta is based on the magnitude of 

recent reservoir inflows (Section 4.2.2), both the increase in high decile flows and the condensed 

(see Fig. 4.5), earlier inflow season have direct impacts on reservoir operations. Recall that, when 

inflows are large, the mandated operations favor flood-risk mitigation by enforcing a more 

restrictive sub-rule curve. Figure 4.6 shows the average percentage of days between December 

23rd and March 20th, the period before refill, that each of the 6 sub-rule curves is mandated during 

a given winter. As October-April inflow increases throughout the century, so too does the 

frequency of inflow-parameter values that require enforcement of more restrictive storage limits. 

In fact, the frequency of the most conservative sub-rule curve (Fig. 4.6, dark blue), quadruples 

(doubles) by the end of the century climbing from 5% to 20% (10%) of days for RCP8.5 (RCP4.5). 



 117 

Here we see how the increase in streamflow magnitude during the flood-risk season results in 

lower annual-mean levels of maximum-allowable storage. 

4.5.2 Operations Under Existing Rules 

Before potential adaptation measures are addressed, we quantify the impacts of climate 

change on reservoir performance under existing operations. To do so, we compare water supply 

and flood-risk mitigation objectives over 50-year periods (historical: WYs 1970-2020, end-of-

century: WYs 2050-2099). Figure 4.7 highlights the ensemble-mean 50-yr mean values of 

cumulative inflow, storage, and the mandated rule curve (RC) for each day of the water year. 

Additionally, the right y-axis shows the frequency distributions of daily storage from each year in 

the 50-yr period for each individual GCM as for comparison to the ensemble mean.  Under the 

RCP8.5 (RCP4.5) scenario, we find a 17% (10%) decrease in WY mean storage, 11% (5%) 

decrease in WY maximum (referred to as ‘peak’) storage, and a 27% or 710 TAF (16% or 420 

TAF) decrease in carryover storage, measured on September 30th of each water year, compared to 

the historical period. 

As described in Section 4.5.1, a transient climate state will alter water supply attributable 

to both hydrological (decreased snowmelt) and operational (dynamic rule curve) drivers. With 

cumulative storage losses detailed, we now seek to isolate the individual contribution of each of 

the above components. To understand the impact of the dynamic rule curve on carryover storage 

loss, we identify the date and value of the rule curve on each instance when a flood-risk release 

occurs (i.e., if Storagei-1 + Inflowi > RCi). This is illustrated in Figure 4.7 which shows the 

evolution of simulated reservoir storage for WYs 1989 (solid black) and 2095 (solid red) with 

corresponding rule curve values as dashed lines. The date and storage level associated with the 

final flood-risk release of each WY is depicted by a circle. Broadly, the rule curve has the largest 
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impact on storage when a flood-release is required late in the wet season (ex. April) and the rule 

curve is more restrictive (WY2095 vs. WY1989). The value of the rule curve matters because it 

dictates the extent to which storage levels are suppressed (i.e., a more restrictive sub-rule curve 

leads to greater impact on peak/carryover storage). The timing of the flood-risk encounter matters 

because only reservoir inflows occurring after the final flood-risk release can build storage above 

the encountered rule curve value. Therefore, we track the date and storage value of the rule curve 

on the final flood-risk release of a given water to estimate the impact of the dynamic rule curve on 

reservoir storage. 

Figure 4.8 highlights the 50-yr average date and storage value associated with the final 

flood-risk release in a given water year (large circle – ensemble mean, small circle – individual 

GCM). We find very little change in the timing of the ensemble mean final flood-risk release from 

the historical era (which occurs on March 12th) with RCP8.5 (RCP4.5) moving earlier 3 days (1 

day) on average. Note that the date of the final flood-risk release is similar to the reservoir refill 

date of March 20th. We find a small decrease in the variability (measured by the ensemble standard 

deviation) concerning the timing of the final flood-risk release from the historical value of 7 days 

to 6.5 days under both RCP scenarios. When comparing the ensemble mean storage value of the 

rule curve associated with the final flood-risk release, we find increasingly restrictive values 

compared to the historical (3.68 MAF). Under RCP8.5 (RCP4.5), the end-of-century mean value 

is 3.48 MAF (3.53 MAF), which corresponds to a 200 TAF (160 TAF) reduction in storage 

compared to the historical average.  

Although we simulate little change in the timing of the final flood-risk release, we see 

markedly decreased amounts of reservoir inflow after the final flood-risk release compared to the 

historical era (2.64 MAF) due to the hydrological changes (decreased snowmelt). Under RCP8.5 
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(RCP4.5), we simulate reservoir inflows occurring after the final flood-risk release of a given WY 

to be 2.20 MAF (2.40 MAF) yielding a decrease of 440 TAF or 17% (250 TAF or 9%) relative to 

historical values. 

As detailed in Section 4.5.1, increased flood-risk under projected future climate is 

manifested into operations through the dynamic rule curve and directly impacts the reservoir’s 

ability to build storage by enforcing more restrictive sub-rule curves on average. Further, we 

simulate decreased (relative to the historical baseline) reservoir inflows occurring after the final 

flood-risk release of a given water year coinciding with decreasing snowmelt. When we examine 

these two components against the total carryover storage loss, we find that diminished snowmelt 

inflow and increased flood-risk are responsible for 66% and 33% of the total carryover storage 

loss respectively under both of the RCP scenarios.  

To quantify flood-risk, we evaluate the frequency with which emergency spillway releases 

are required (see Supplemental for further details). In short, this occurs when the reservoir is 

experiencing large inflows and storage levels are relatively high and increasing, signaling potential 

for serious flood risk. Over the historical period under simulated existing operations, at least one 

of the 10 ensemble members requires the use of the emergency spillway in 0.6% of the water years. 

In our simulation, the frequency of emergency spillway years increases to 2.8% (1.4%) under 

RCP8.5 (RCP4.5) over the 2050-2099 period. Despite more frequently operating under a rule 

curve that favors flood-risk mitigation (at the expense of water supply), we find flood risk still 

increases by a factor of 4.5 (2.3) for RCP8.5 (RCP4.5) during the end-of-century period. Though 

not shown here, we will illustrate how flood-risk evolves in time in the following sections. 

Given these significant declines in reservoir storage under climate change, we next explore 

the efficacy of several much-simplified options for changing reservoir operations and capacity as 
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possible directions for climate-change adaptation. For each option, the sensitivity of (and ability 

to recoup losses from) these climate-change impacts under current operating rules is simulated and 

summarized below. 

4.5.3 Sensitivity to Changing the Refill Date 

Similar to Cohen et al. (2020) and Sterle et al. (2020), we assess whether moving the refill 

date earlier in the water year is an effective operational adaptation strategy in the face of waning 

snowmelt. For Shasta, the refill date (as defined here) occurs on March 20th in anticipation of the 

historical transition from flood-risk to snowmelt seasons. Conceptually, allowing the reservoir to 

refill earlier in the water year in response to a future with earlier inflows might recoup otherwise 

lost storage. To examine the sensitivity of storage losses to the reservoir refill date, we run the 

model with refill dates ranging from 10-to-40 days before and after March 20th and compare 

resulting reservoir operations by the end-of-century period under these modified rule curves to the 

historical baseline under existing operations. Figure 4.9a shows that peak and carryover storage 

increase almost linearly as the refill date is moved to earlier in the water year. As detailed in Section 

4.5.2, under historical operations (0-days of refill date shift in Fig. 4.9a), peak storage levels (pink 

markers) drop by roughly 0.4 MAF (0.2 MAF) under RCP8.5 (RCP4.5). By moving the refill date 

20 days earlier in the year, the historical levels of peak storage could be recovered under RCP4.5, 

but carryover storage (teal markers) losses would still be well below historical levels (by roughly 

0.2 MAF). Indeed, even at 40 days earlier, under RCP8.5, peak storage levels only just meet the 

historical baseline while carryover storage loss totals 0.34 MAF (a -13% historical decrease). For 

context, although this is a marked decrease under RCP8.5, the 40-day-earlier shift does recoup 

roughly ½ the carryover storage that would have been lost under existing operations. Under 
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RCP4.5, nearly all the lost carryover storage is recovered simply by shifting the refill date back by 

40 days.  

While carryover storage is a useful metric to track long-term water-supply reliability 

(Draper & Lund, 2004), we also examine the impact of shifted refill dates on the occurrence of 

critically low reservoir levels (Fig. 4.9b), defined here as carryover storage values below the 10th 

percentile of historical carryover storage volumes.  By the end of the century, the average water 

year sees 4 (2) out of 10 GCMs yielding carryover storage values that are below this critically low 

level under RCP8.5 (RCP4.5). Shifting the refill date 40 days earlier reduces the frequency of 

reaching the critical value to 23% (12%) of ensemble members for RCP8.5 (RCP4.5) respectively. 

Meanwhile, the water-supply storage benefits owing to setting earlier reservoir refill dates 

(Fig. 4.9) come at the cost of increased flood risk. Over the historical period under simulated 

existing operations, at least one of the 10 ensemble members requires the use of the emergency 

spillway in a 0.6% of the water years. If the refill date and rule curves are not modified, the 

frequency of emergency spillway use increases by 4-fold (2-fold) under RCP8.5 (RCP4.5) over 

the 2050-2099 period. Here, in the earliest refill experiment (40 days prior to March 20th), future 

spillway frequency is 8x (6x) higher than the historical period under existing operations (Fig. 4.10). 

While recouping some storage losses when compared to existing operations, this adaptation 

mechanism roughly doubles the simulated end-of-century flood-risk. 

4.5.4 Sensitivity to Use of a Single Rule Curve 

In response to the role of the dynamic rule curve in storage decline, we also perform an 

experiment in which the existing sub-rule curves are replaced with a single curve. Unlike existing 

operations, the daily value of maximum storage in this experiment is independent of recent 

inflows. Here, we simulate reservoir performance using each of the 6 current sub-rule curves 
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shown in Figure 4.2. As before, we compare the end-of-century performance of the adaptation 

simulations to simulated performance during the historical period with existing operations. Fig 

4.11a shows ensemble-mean changes in peak and carryover storage when each of the sub-rule 

curves is applied separately under RCP4.5 (hollow circles) and RCP8.5 (filled circles) climates. 

On average, operating Shasta with the least restrictive sub-rule curve (RC 1 in Fig. 4.2) yields 

carryover storage levels about equal to the historical norms under RCP4.5 and losses are limited 

to about 0.2 MAF or -7% under RCP8.5 (compared to 27% by century’s end under RCP8.5 and 

existing operations). Interestingly, when compared to the single rule curve operations, we find that 

the existing dynamic rule curve (diamond markers) yields similar end-of-century carryover and 

peak storage to the single-RC4 simulation. When examining critically low carryover storage, 

enforcing only the least restrictive sub-rule curve (RC1) reduces the frequency of reaching critical 

values from 45% (23%) under existing operations to 16% (9%) for RCP8.5 (RCP4.5) respectively. 

Analogous to the previous section, the water-supply storage benefits resulting from 

enforcing less restrictive sub-rule curves (Fig. 4.11) come at the expense of increased flood risk. 

Compared to existing operations, which resulted in a 4-fold (2-fold) increase in flood-risk, we 

simulate a 13-fold (12-fold) increase in the frequency of spillway releases under the least restrictive 

sub-rule curve for RCP8.5 (RCP4.5) highlighting the steep cost of limiting water supply losses in 

this adaptation scheme (Fig. 4.12). For the sub-rule curve RC4 experiment, which had similar 

storage metrics to existing operations, we find that flood-risk increased by a factor of 5 (2) under 

RCP8.5 (RCP4.5) yielding similar results to the existing operations which had a 4-fold (2-fold) 

increase.  

4.5.5 Sensitivity to Raising the Dam 
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Infrastructure changes at Shasta Dam have been proposed and studied at length as an 

improvement or adaptation option (United States Bureau of Reclamation, 2015). Specifically, a 

proposal exists to raise the height of the dam by 18.5 feet (5.6 m), which would increase storage 

capacity by 634,000 TAF or 14% of existing capacity. To examine the impact of additional storage 

on the system’s climate-change vulnerability, we conduct several experiments. First, we increase 

the storage capacity in the model, including raising all sub-rule curves along with the dam by 

increasing all rule curve values to include the new 634,000 TAF of storage. This approach retains 

the current pool volume and effectively just adds the new capacity to the non-flood-pool storage. 

In a second simulation, we raise the top of the rule curve (the warm-season storage limit) while 

leaving the bottom of the winter flood pool at the current value of 3.25 MAF. Conceptually, this 

second scenario increases the volume of the flood pool available to capture larger inflows while 

also increasing the capacity for long-term carryover storage.  

As the difference between the two experiments centers on how the rule curve is adapted, 

we follow the analysis presented in Section 4.5.2, which focuses on the impact of the dynamic rule 

curve in restricting storage. Similar to existing operations, there is little change in the timing of the 

final flood-risk release of a given water year (Fig. 4.13 circle marker, x-axis value) in either 

experiment. However, the storage value associated with the final flood-risk release (Fig. 4.10 circle 

marker, y-axis value) is roughly 0.6 MAF higher (meaning less restrictive) for the experiment that 

raises all rule curve values (brown shading) than the experiment that leaves the bottom of the 

winter flood pool at the current value of 3.25 MAF while raising the warm season storage limit 

(blue shading).  

In comparison to baseline historical operations (Fig. 4.13, black lines), raising the dam and 

sub-rule curves (first approach; Fig. 4.13, brown lines) is simulated to yield a 105 TAF decrease 
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(160 TAF increase) in carryover storage under RCP8.5 (RCP4.5). As context, adding 14% 

additional storage capacity results in a 4% decrease (6% increase) in carryover storage at the end 

of the century under RCP8.5 (RCP4.5) compared to the historical norm. If we raise the dam and 

only the top of the rule curve (second approach; Fig. 4.13, blue lines), so that the bottom of the 

rule curve stays at historical values, only marginal end-of-century improvements from existing 

operations (710 TAF and 420 TAF losses for RCP8.5 and RCP4.5 respectively) are simulated. In 

this scenario, carryover storage losses total 630 TAF or 24% (330 TAF or 13%) under RCP8.5 

(RCP4.5) compared to the historical average. Clearly stated, if the storage value associated with 

the bottom of the flood-pool (3.2 MAF) is left unchanged (Fig. 4.13, blue lines), the rule curve 

restricts storage in a way that negates any potential carryover storage benefits from increased 

capacity. 

Directly comparing the two experiments, measured against existing operations, raising 

everything (increase all rule curve values by new capacity) buys 0.6 MAF of additional carryover 

storage under both RCP scenarios while raising the warm-season storage limit and leaving the 

bottom of the winter flood pool at the current value of 3.25 MAF yields roughly 0.08 MAF of 

additional storage under both RCP scenarios. Of the two experiments, from a water-supply 

perspective, raising all rule curve values alongside the additional storage would be the only useful 

approach as a climate-change adaptation. 

Due to its larger flood-pool, the second experiment, in which only the top of the rule curve 

is raised with the dam, decreases flood risk relative to existing operations under simulated future 

climate. Under both RCPs, flood-risk at the end of the century matches that of the existing 

operations for the historical period thus highlighting the efficacy of this adaptation strategy at 

mitigating projected increases in flood-risk. When both the rule curve and top of the dam are 
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increased together (first experiment), the rule curve operations and flood-pool volume are 

unchanged from existing operations. Therefore, the resulting flood-risk, as measured by the 

frequency of years requiring emergency spillway releases, is identical to existing operations under 

projected future climate and results in a 4-fold (2-fold) increase compared to the historical period 

under RCP8.5 (RCP4.5). 

4.5.5 Sensitivity to Perfect Forecast Operations 

Having examined both rule curve- and infrastructure-based adaptation mechanisms at Lake 

Shasta, we perform a final experiment that is a much-idealized version of forecast-informed 

reservoir operations. To try to determine theoretical maximum storages possible under the stresses 

of climate change, we set aside rule curve-based reservoir operations and instead simulate 

operations that manage flood releases based entirely on perfect forecasts. Under this scheme, there 

is no mandated flood pool during the winter so that the maximum-allowable storage is the highest 

rule curve value (4.55 MAF) every day of the water year. Using a version of the forecast-operations 

strategy developed by Delaney et al. (2020) we simulate reservoir operations assuming perfect 

forecast skill at a range of lead times. Rather than respond to ‘water on the ground’, the reservoir 

operator makes pre-releases, if necessary, to vacate space for imminent inflows. When forecasted 

inflows would raise storage above the maximum-allowable level, the releases that are just enough 

water so that the reservoir storage is returned to the maximum allowable value at the end of the 

forecast window are determined each day. This release rate is then capped to restrict release rates 

to the reservoir’s maximum non-spillway release of 79 TCFS. If the cumulative inflow volume 

exceeds the cumulative maximum release integrated over the forecast window, rather than trigger 

a spillway release, storage may increase beyond the maximum allowable value. We evaluate 

reservoir operations under assumptions of perfect forecasts with forecast horizons of 1-, 3-, 5-, 7-
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,10-, and 14 days, which sits at and beyond the theoretical limit of weather predictability (Lorenz, 

1963). In the event that pre-releases are not required to prevent storage from increasing above the 

4.55 MAF level, existing protocols (Section 4.4.1 and 4.4.2, Supplemental section 4.8.2 and 4.8.3) 

of non-flood-risk release are followed. 

We note that different forecast horizons will yield different flood-risk metrics (due to 

varied ability to vacate empty storage volume behind the dam). Because 1) all forecast horizons 

allow storage to increase up to its maximum-allowable level, and 2) forecast horizons are only 

important for operations when flood-risk releases are necessary, as storage begins its seasonal 

decline (when reservoir releases exceed inflows during the spring/summer) forecast horizons 

become irrelevant to operations. Owing to this fact, both peak and carryover storage metrics are 

independent of perfect forecast window in this experiment.  

Under these idealized operations, for years in which the wet-season inflow volume is 

enough to fill the reservoir, Lake Shasta is kept full for as long as inflows meet or exceed releases. 

In years with insufficient inflow to fill the reservoir, which is projected to occur with increasing 

frequency under both warming scenarios (though more under RCP8.5), storage will remain below 

capacity. Using the approach shown in Figure 4.7, we track the daily values of the ensemble mean 

storage averaged across the 50-yr climatological period (Fig. 4.14). With existing operations over 

the historical era shown for context (black curves), we illustrate the annual cycle of storage under 

perfect forecast operations using a 7-day forecast horizon (although this result is not sensitive to 

forecast horizon) under RCP8.5 (purple) and RCP4.5 (orange) scenarios. Whereas the historical 

storage curve (solid black) climbs slowly from December to May (while being subjected to the 

rule curve), the perfect forecast simulations (purple and orange lines) rise more rapidly 

(uninhibited by any flood-pool) as a larger volume of water fills the reservoir during the winter 
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months on average. In response, ensemble mean peak storage over the 50-yr period increases by 

0.18 MAF (0.26 MAF) from the historical baseline of 3.97 MAF to reach values of 4.15 MAF 

(4.23 MAF) under RCP8.5 (RCP4.5). As spring inflows wane and demand-driven releases begin, 

the perfect forecast storage begins its decline up to 20-30 days earlier than the pre-warming era. 

Despite the increase in peak storage, under RCP8.5 (RCP4.5), end-of-century carryover storage 

decreases (increases) by roughly 0.07 MAF, or 3% of the historical level. Here, we see that even 

if we abandon enforcement of a flood-pool, allow the reservoir to reach full capacity as early in 

the water year as possible, and allow it to stay at full volume for as long as possible, earlier peak 

streamflow and reduced snowmelt during the spring/early summer result in a perfect forecast 

simulation that only just maintains historical values of carryover storage on average. Put another 

way, if it is barely possible to achieve historical levels of carryover storage (on average) by the 

end of the century under RCP8.5 using this idealized scheme built to explore the upper limit of 

theoretical storage, then it is unlikely that any operational adaptation measure (apart from one that 

reduces spring release volumes or increases capacity) will be able to achieve historical carryover 

storage. 

Concerning flood risk, for existing operations, we simulated the frequency with which the 

reservoir requires a spillway release. As mentioned at the start of Section 4.5.6, the perfect forecast 

simulation doesn’t use a spillway (by design). If cumulative reservoir inflow over the forecast 

horizon exceeds the cumulative allowable releases, storage is permitted to rise above the maximum 

allowable value. For perfect forecast simulations, we assess flood risk by identifying all years 

when the storage increases above the maximum allowable value (orange dashed line, Fig 4.14). 

This metric is analogous to tracking emergency spillway use in existing operations and both 

represent situations of imminent and extreme risk. Figure 4.15 shows how the frequency of 
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pseudo-spillway release changes with time under both existing operations (dashed black line) and 

various perfect forecast horizons (blue lines). Recall that under existing operations, the simulated 

future climate of RCP8.5 (RCP4.5) yielded a 4-fold (2-fold) increase above historical levels. 

Placing flood risk under existing operations in the context of perfect forecast simulations, we find 

that it falls between a 7- and 10-day perfect forecast for both warming scenarios, reflecting the low 

appetite for flood risk in current reservoir operations. In contrast to this factor of 4 (2) increase, 

the 3-day perfect forecast simulation yields a 17-fold (12-fold) increase in flood-risk compared to 

the historical level under existing operations highlighting the sharp increase in flood risk as the 

forecast horizon is shortened in the absence of any wintertime flood-pool.  

 

4.6 Summary and Conclusion   

Climate change will continue to amplify the ever-present tension facing water managers 

(Christensen et al., 2004; Knowles et al., 2018; Knowles et al., 2006; Lee et al., 2006). Reservoirs 

that depend on snowmelt to refill after flood-risk subsides, like so many in California, will be 

confronted with an inflow season that is condensed in time, peaks earlier, is punctuated with higher 

magnitude runoff events, and finishes with greatly reduced snowmelt contribution. In the face of 

this growing threat, water managers will be left with the daunting challenge of either continuing 

to operate a reservoir designed for a bygone era or determining how to adapt operations (or 

infrastructure) without exacerbating growing risk.  

This study develops a simplified model of operations at California’s largest reservoir, Lake 

Shasta, driven by downscaled and bias corrected global climate model (GCM)-driven simulated 

inflows for the purposes of identifying 1) how climate change impacts reservoir performance, 2) 
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which variables drive its sensitivity to those changes, and 3) the efficacy of various adaptation 

mechanisms to mitigate adverse effects of anthropogenic warming on reservoir performance. 

Capable of faithfully simulating the most pressing operations at daily resolution, we are able to 

explore impacts on both water supply and flood-risk at timescales ranging from days to decades.  

Interestingly, we find that climate change signals are manifested into reservoir performance 

through both hydrological and operational mechanisms. Compared to the historical average, 

despite little change in total water year (WY) reservoir inflow, we find a 15% decrease in 

cumulative inflow during Shasta’s refill season (beginning on March 20th) as reduced snowpack 

limits the ability to rebuild storage after flood-risk wanes. Conversely, we find a 17% increase in 

inflow volume arriving during the period when the flood risk is largest (pre-March 20th). Because 

Shasta’s rule curve enforces lower maximum-values of storage when recent inflow volumes have 

been large, the concentration of inflow volume into the winter, coupled with an increase in high 

magnitude streamflow events, results in more time spent under more restrictive rule curves (from 

a water supply perspective) thus inhibiting the reservoir’s ability to build storage (Figs. 4.5 and 

4.6).  

Under the stresses of climate change, end-of-century (WYs 2050-2099) carryover storage, 

measured as storage on September 30th, declines by 27% or 710 TAF (16% or 420 TAF) on average 

compared to the 1970-2020 baseline under RCP8.5 (RCP4.5). Like Cohen et al. (2020), we find 

lost snowmelt-driven inflow to be the primary driver of carryover storage loss (responsible for 

66% of total decline). However, we also find the impact of Shasta’s inflow-dependent dynamic 

rule curve to be a meaningful contributor, accounting for the other 1/3 of carryover storage loss 

(Fig. 4.8). Framing the lost storage volume in the context of water demand, to maintain historical 

carryover storage levels at the end of the century, total May-September reservoir releases would 
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have to be cut by 20% (10%) on average under RCP 8.5 (RCP4.5) in our simulation. In addition 

to impacts on reservoir storage, we evaluate the evolution of flood risk in the changing climate by 

examining how often reservoir emergency spillway releases are required. Despite more frequently 

operating under a rule curve that increasingly favors flood-risk mitigation (at the expense of 

storage), we find flood risk increases by a factor of 4 (2) for RCP8.5 (RCP4.5) during the end-of-

century period. 

Having established a baseline of projected performance under existing operations, we 

examine the efficacy of several much-simplified options for changing reservoir operations and 

capacity as possible directions for climate-change adaptation. We begin by simulating two 

operational strategies that alter the implementation of the existing rule curve. For a first set of 

experiments, like Cohen et al. (2020) and Sterle et al. (2020), in response to the projected shift of 

snowmelt-driven inflows earlier in the year, we change the reservoir refill date such that the 

reservoir is allowed to refill up to 40 days earlier (Fig. 4.9 and 4.10). In the second experiment, 

motivated by the demonstrated storage-impact of the dynamic rule curve, we remove the inflow-

dependency dictating the maximum-allowable storage and simulate operations using each of the 6 

individual sub-rule curves (Fig. 4.11 and 4.12). Both schemes recover some lost storage (compared 

to existing operations) though the amount depends on the degree to which the adaptation measure 

was taken (refilling 40-days vs. 10-days earlier, using the least restrictive sub-rule curve vs. 

medium restrictive sub-rule curve). Under RCP8.5, even the most extreme measures are unable 

achieve historical levels of carryover storage (on average) by the end of the century. In both 

experiments, altering the rule curve such that it favors water supply results in substantial increases 

in flood risk, highlighting the tension of the reservoir’s competing objectives (Figs. 4.10, 4.12). 
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Motivated by long-term discussions regarding the raising of Shasta’s dam (adding 0.63 

MAF, 14% of current capacity), we simulate two scenarios in which the storage capacity is 

physically expanded. One approach raises all sub-rule curves along with the dam by increasing all 

rule curve values to include the new 0.63 MAF of storage. This approach maintains the volume of 

the existing flood-pool, effectively just adding the new capacity to the non-flood-pool storage (Fig. 

4.13, brown lines). In the second experiment, we raise the top of the rule curve (the warm-season 

storage limit) while leaving the bottom of the winter flood pool at its current level of 3.25 MAF 

(Fig. 4.13, blue lines). Conceptually, this second scheme increases the size of the flood pool 

available to capture larger inflows while also increasing the capacity for long-term carryover 

storage. Under the first experiment, nearly all the additional capacity is converted to carryover 

storage, meaning that instead of the simulated 710 TAF (420 TAF) decreases with existing 

operations under RCP8.5 (RCP4.5), carryover storage only slightly decreases (4%) from the 

historical mean under RCP8.5, and actually increases by 6% under RCP4.5. In stark contrast, if 

the bottom of the flood-pool is left unaltered (experiment 2 here), carryover storage losses nearly 

match those of existing operations under future climate, although improvements in flood-risk 

management are realized. Of the two experiments, from a water-supply perspective, raising all rule 

curve values along with the additional storage would be the more useful approach as a climate-

change adaptation. 

Finally, we interrogate the theoretical maximum carryover storage under future climate 

projections. By removing the flood-pool, thus setting the maximum allowable storage to equal the 

full reservoir capacity on all days of the WY, we operate the reservoir under the assumptions of 

perfect forecast skill. Conceptually, we permit the reservoir to reach full capacity as early in the 

water year as possible and allow it to stay at full volume for as long as possible.  Despite this highly 
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idealized operation, reflecting the growing offset between the inflow season and the demand 

season, earlier peak streamflow and reduced snowmelt during the spring/early summer result in 

perfect-forecast operations only just maintaining historical values of carryover storage on average 

(Fig. 4.14). From a flood-risk perspective, we find that existing reservoir operations have the 

equivalent flood-risk exposure of perfect forecast operations using between a 7- and 10-day 

horizon while also noting an increase in flood-risk both with respect to decreasing forecast 

horizons as well as increasing global mean temperatures (Fig. 4.15).   

Figure 4.16 presents a comparison of reservoir performance across all operational schemes 

simulated throughout the study (marker style) under both warming scenarios (color). Flood-risk, 

evaluated as the mean percentage of ensemble members requiring a spillway release during a given 

water year averaged over the climatological era, is plotted on the y-axis. Water supply risk, 

evaluated as the mean percentage of ensemble members whose carryover storage falls below the 

10th percentile of historical operations averaged over the climatological era, is plotted on the x-

axis. The baseline performance of existing operations over the historical period is indicated by a 

black-spotted diamond marker with black dashed lines representing its x- and y-values. 

Simulations with comparable performance to the historical baseline have markers that fall close to 

the black diamond. Reflecting the tension between the water supply and flood risk, many 

adaptation measures sacrificed performance in one objective for the other. However, because they 

make a conscious effort to address (or at least not exacerbate) both flood risk and water supply 

objectives, the 7-day perfect forecast and increasing both the rule curve and storage capacity (circle 

and star markers respectively) schemes have the best results.  

While the simulated adaptation strategies all mitigated carryover storage losses, to varying 

extents, compared to existing operations (i.e., adaptation schemes appear to the left of spotted 
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diamond markers), under RCP8.5, none were able to achieve historical carryover storage levels at 

the end of the century. Under RCP4.5, the only approaches that matched historical carryover 

storage without greatly elevating flood risk were the 7-day perfect forecast or increasing both the 

rule curve and the storage capacity by 0.63 MAF (yellow circle and star respectively).  

Setting infrastructure improvements aside, although the 7-day perfect forecast is clearly 

idealized, forecasts do not need to be perfect to be useful. If we think about the current flood-pool 

volume (1.3 MAF) in terms of an equivalent number of days at maximum allowable release, we 

find the flood-pool is equal to 8.3 days at 79 TCFS, the maximum ‘non-spillway’ release. Using 

this framework, if forecasts were skillful at 3-day lead time, for example, the flood-pool could be 

reduced by the volume equivalent of 3 days at maximum allowable release, or 470 TAF here, 

without increasing the flood risk.  

As Lake Shasta is comparatively low in elevation, it has a much more mixed hydrograph 

(with comparable components of rainfall-runoff and snow-fed runoff) than other basins farther 

south in the high Sierra Nevada range (Dettinger and Cayan, 2003). Because of that, the amplitudes 

of climate change signals are smaller than in snow dominated basins, yet we see significant levels 

of increasing risk to reservoir operations nonetheless. Apart from the $1 billion infrastructure 

improvement and idealized 7-day perfect forecast, no single adaptation method was able to 

preserve historical levels of water supply and flood-risk mitigation. However, individual methods 

assessed in this study adapt to different aspects of the changing climate. Therefore, it is conceivable 

to combine tactics such as eliminating the inflow-dependent rule curve (impacted by increasing 

flood-flows) and allowing the reservoir to refill earlier (impacted by decreasing snowmelt). 

Further, at the time when many of these reservoirs were constructed, existing forecast skill was 

poor-to-nonexistent (Magnusson & Källén, 2013). Thanks to improvements in both observational 
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networks and technology, it is possible to leverage existing (or potential) forecast skill to improve 

operations (Delaney et al., 2020; Nayak et al., 2018). Whether employed individually or in concert, 

operational adaptation commits to responding to specific climatic changes using a dynamic 

approach. Because these tactics are operational in implementation and not physical, they require a 

significantly lower amount of capital than physical improvements. Like United States Bureau of 

Reclamation (2015), this study showed increasing the storage capacity of Lake Shasta to be an 

effective adaptation strategy strictly from a water balance perspective. With a price tag exceeding 

$1 billion, in addition to the cultural and environmental costs, it is unclear how transferrable this 

approach might be across the West given it does not address the growing incompatibilities of 

reservoir operations with future climate.  

These simplified experiments assume that historical levels of water demand, by proxy of 

dry season reservoir releases, don’t change in time. Although not explicitly included in this 

analysis, whether or how the amount of water demanded, and the time of year it is needed, for 

agricultural, metropolitan, or environmental flows changes will have a large impact on future 

reservoir performance. Additionally, our model follows closely to the historical operations with 

respect to reservoir releases. In the future, it is certainly possible that Lake Shasta, a single piece 

of a much larger portfolio of storage and conveyance, may be operated in an ahistorical manner 

due to new system constraints and demands (i.e., combat sea level rise and bay-delta salinity rather 

than water supply). Altogether, this work contributes to the growing body of literature highlighting 

the increasing risks to water supply- and flood-risk mitigation under a warming planet while 

investigating the sensitivity of adaptation measures in combatting projected changes. Several 

avenues of future work, such as testing the implementation of several adaptive measures in tandem 

and examining the existing inflow-forecast skill at Lake Shasta, have the potential to provide 
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additional insight to those in the water resources community interested in adapting operational 

strategies to a changing climate. Further, the model developed in this study has the potential to be 

augmented to investigate reservoir dependent processes such as the projected impacts of climate 

change on hydropower generation at Lake Shasta or important environmental/ecosystem variables 

such as stream temperature in the Sacramento River.  

Finally, we note that the choice of a specific adaptation scheme is only one part of the 

decision facing water managers. Next, they must decide how and when operations/infrastructure 

should be transitioned. One approach could be to choose a given calendar year (ex. 2050) based 

on GCM projections of simulated hydroclimate; however, such an approach is subject to 

uncertainties in both GCMs and future human emissions. Another approach could rely on observed 

climatological shifts (like those seen in Fig. 4.4) to trigger action, focusing on specific signals of 

warming rather than trusting a given ensemble of GCMs. Given the latter option, our model, or 

others with a similar approach, could be a useful and important tool in exploring the risks and 

benefits of transitioning operations at various points of a watershed’s response to climate change.  
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Table. 4.1. The10 CMIP5 GCMs from which downscaled and bias-corrected projections were used 
in this study, and their originating institutions.  

Model Acronym Model Source/Institution 

ACCESS1.0 Commonwealth Scientific and Industrial Research Organisation 
(CSIRO) and Bureau of Meteorology, Australia 

CCSM4 National Center for Atmospheric Research (NCAR), United States 
NCAR, United States 

CESM1-BGC National Center for Atmospheric Research (NCAR), United States 
NCAR, United States 

CMCC-CMS Centro Euro-Mediterraneo per I Cambiamenti Climatici 

CNRM-CM5 Centre National de Recherches Météorologiques, France 

CanESM2 Canadian Centre for Climate Modelling and Analysis, Canada 

GFDL-CM3 Geophysical Fluid Dynamics Laboratory (GFDL), Princeton, New 
Jersey, United States 

HadGEM2-CC Met Office Hadley Center, UK 

HadGEM2-ES Met Office Hadley Center, UK 

MIROC5 Atmosphere and Ocean Research Institute and NIES, Japan 

  



 137 

Table 4.2. Summary of Nash-Sutcliffe efficiency (NSE) and additional relevant statistics detailing 
model performance over the validation period (WYs 1996-2017) for both storage and outflow 
metrics. NSE values are denoted with an asterisk where the associated p-value is significant at the 
1% level.  

 Nash-Sutcliffe 
Efficiency (NSE) 

Bias [TAF] RMSE [TAF] 

Daily Storage 0.90* -19.1 269.9 

Monthly Mean Storage 0.90* -19.1 266.3 

Water Year Mean Storage 0.84* -19.1 230.1 

Carryover Storage 0.78* -8.3 326.3 

Water Year Maximum Storage 0.87* -57.3 225.2 

Water Year Minimum Storage 0.80* 35.8 296.1 

Daily Outflow 0.64* 0.1 8.3 

Monthly Mean Outflow 0.89* 0.1 3.8 

Water Year Mean Outflow 0.98* 0.1 0.7 

October-April Mean Outflow 0.97* 0.2 1.5 

May-September Mean Outflow 0.47* -0.1 1.9 

  



 138 

 

Figure 4.1. Map of study area showing the Lake Shasta watershed (black contour), elevation (color 
shade), and station location for observational data.  
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Figure 4.2. a) The maximum allowable storage behind the dam is governed by Shasta’s rule curve, 
which mandate 1 of 6 possible sub-curves (blue shading) on each day of the water year depending 
on the inflow parameter that day. The enforced values (red) over the course of a hypothetical year 
are dictated by changes in the inflow parameter. The refill date (black dashed) is shown to highlight 
the shift in priorities from flood-risk mitigation to water supply. b) The corresponding timeseries 
of reservoir inflow (green) and inflow parameter (purple) are shown. Responding to changing 
reservoir inflow, if the inflow parameter rises above the threshold value associated with a sub-rule 
curve (dotted black lines), it triggers the ‘activation’ of said sub-rule curve (ex. RC6 becomes 
enforced during late February). When the inflow parameter falls below a threshold (ex. RC3 in 
early April), the subsequent sub-curve (in this case, RC2) becomes activated. 

  

a)

b)
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Figure 4.3. Model performance over the validation period (WYs 1996-2017); a) timeseries of 
observed (black) and simulated (red) daily reservoir storage, b) WY storage metrics, and c) daily 
outflow metrics. Performance is measured by Nash-Sutcliffe efficiency (NSE) and is denoted with 
an asterisk where the associated p-value is significant at the 1% level. 
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Figure 4.4. Lake Shasta inflow for the historical (grey, 1970-2020) and end of century (2050-2099) 
GCM periods for RCP4.5 (orange) and RCP8.5 (purple). Ensemble mean daily mean values 
averaged over the climatological era (solid lines) and 50th-95th percentile range (shading) are 
shown. Lake Shasta’s refill date (March 20th) appears as a dashed vertical line. 
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Figure 4.5. Centered 30-year averages of cumulative inflow over entire WY (top) and the percent 
of total WY inflow occurring before and after the reservoir refill date (March 20th, bottom). 
Ensemble mean (bolded lines) and individual GCMs (traces) are shown for RCP4.5 (orange) and 
RCP8.5 (purple) projections.  

  



 143 

 

Figure 4.6. Ensemble mean centered 30-year averages of the percentage of days between 
December 23rd and March 20th that each of the 6 possible sub-rule curves is enforced. Sub-rule 
curves move from least-to-most restrictive with increasing color shade.  
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Figure 4.7. Timeseries of daily storage (solid) and operative rule curve (dashed) values for 2 
individual water years in CCSM4. The date and associated storage value of the final flood-risk 
release of the year is marked with a circle.  

  



 145 

 

Figure 4.8. Averaged over each climatological era, ensemble mean values of daily mean 
cumulative inflow (top, dot-dashed), storage (center, solid), and the operative rule curve (center, 
dashed) are show. Shading represents the spread of daily mean values for the middle 6 GCMs for 
historical (black), RCP4.5 (orange) and RCP8.5 (purple) simulations. The average storage value 
and date associated with the final flood-risk release of a given water year (circles) is shown for the 
individual GCMs (small markers) and ensemble mean (large markers).  
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Figure 4.9. Ensemble mean water supply metrics of a) carryover and peak storage, and b) critically 
low storage levels, under adaptive operations in which the reservoir is allowed to begin refilling 
earlier or later. (a) 50-yr average difference in carryover (teal) and peak (pink) storage from 
historical levels (horizontal dashed line) under existing operations for RCP4.5 (hollow markers) 
and RCP8.5 (filled markers) scenarios. (b) Centered 30-year mean percent of ensemble members 
for which carryover storage falls below the 10th percentile of historical operations for RCP4.5 (grey 
solid lines) and RCP8.5 (red dashed lines) for experiments with earlier (only) refill dates. The 
lighter the curve the earlier the refill date with existing operations in black.  

  

a) b)
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Figure 4.10. Centered 30-year mean values of flood risk as measured by the average percentage of 
ensemble members requiring a spillway release during a given water year for RCP4.5 (left panel) 
and RCP8.5 (right panel). The lighter the curve the earlier the refill date with existing operations 
(0-day earlier) in black.  
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Figure 4.11. Water supply metrics of mean (a) and critically low (b) storage levels under adaptive 
operations in which the reservoir uses a fixed, rather than dynamic rule curve. (a) Difference in 
carryover (teal) and peak (pink) storage from historical levels under existing operations for RCP4.5 
(hollow markers) and RCP8.5 (filled markers) scenarios. Adaptive simulations (circles) and 
existing operations (diamonds) are both shown. (b) Centered 30-year mean values of the fraction 
of ensemble members whose carryover storage falls below the 10th percentile of historical 
operations for RCP4.5 (green solid lines) and RCP8.5 (red dashed lines). Lighter shading 
corresponds to less restrictive rule curves with existing operations shown in black.  

  

a) b)
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Figure 4.12. Centered 30-year mean values of flood risk as measured by the average percentage of 
ensemble members requiring a spillway release during a given water year for RCP4.5 (left panel) 
and RCP8.5 (right panel). Lighter line color corresponds to more restrictive sub-rule curves with 
existing operations (dynamic rule curve) in black.  
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Figure 4.13. Averaged over each climatological era, ensemble mean values of daily mean 
cumulative inflow (top, dot-dashed), storage (center, solid), and the average operative rule curve 
(center, dashed) are show for historical (black), raised dam and rule curve (brown), and raised dam 
with increased flood-pool (blue) simulations under RCP4.5 (left panel) and RCP8.5 (right panel). 
Shading represents the spread of daily mean values for the middle 6 GCMs for each simulation. 
The average storage value and date associated with the final flood-risk release of a given water 
year (see Section 4.5.2 for context) is shown for the individual GCMs (small circles) and ensemble 
mean (large circles). 
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Figure 4.14. Averaged over each climatological era, ensemble mean values of daily mean 
cumulative inflow (top, dot-dashed), storage (center, solid), and the average operative rule curve 
(center, dashed) are show for existing operations over the historical period (black) and 7-day 
perfect forecast simulation under RCP4.5 (orange) and RCP8.5 (purple). Shading represents the 
spread of daily mean values for the middle 6 GCMs for each simulation. 
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Figure 4.15. Centered 30-year mean values of flood risk as measured by the average percentage of 
ensemble members requiring a spillway release during a given water year for RCP4.5 (left panel) 
and RCP8.5 (right panel). Increasing perfect forecast horizons correspond to lighter blue curves 
with existing operations (black dashed) shown for context.  
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Figure 4.16. Scatterplot summarizing the risks to water supply and flood mitigation for historical 
(1970-2020, black marker), RCP4.5 (2050-2099, orange markers), and RCP8.5 (2050-2099, red 
markers) simulations. Flood-risk, evaluated as the mean percentage of ensemble members 
requiring a spillway release during a given water year averaged over the climatological era, is 
plotted on the y-axis. Water supply risk, evaluated as the mean percentage of ensemble members 
whose carryover storage falls below the 10th percentile of historical operations averaged over the 
climatological era, plotted on the x-axis.  Marker type signifies a particular adaptation experiment 
with existing operations (diamond marker) shown for context.   
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4.8 Supplementary Materials  

4.8.1 Variable Rule Curve 

The operational rule curve (RC) for Lake Shasta does not have a fixed value for each day 

of the water year. Instead, from December 23rd through June 15th, the maximum allowable storage 

volume is selected from one of six possible sub-rule curves (US. Army Corps of Engineers, 1977). 

A nondimensional quantity, the Inflow Parameter, also referred to as the ground-wetness 

parameter, is calculated daily to decide which of the six possible sub-RCs is enforced. On October 

1st, at the start of each water year, the Inflow Parameter is set to a value of 100,000. Restated here 

from Eq. 4.1 in the main text,  

𝑰𝒏𝒇𝒍𝒐𝒘	𝑷𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒊 	= 	 (𝟎. 𝟗𝟓	 ∗ 	𝑰𝒏𝒇𝒍𝒐𝒘	𝑷𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒊*𝟏) + 𝑰𝒏𝒇𝒍𝒐𝒘𝒊		 

where 𝑖 represents a given day. The parameter is not based entirely on given day’s inflow. The 

first term on the left-hand side acts as a memory term, carrying information from recent days. In 

practice, the reservoir maintains a larger flood pool when the inflow parameter is large, and favors 

building water supply when the value is small. Table 4.1S outlines the parameter values associated 

with each rule curve and is adapted from US ACE Chart A-8  (US. Army Corps of Engineers, 

1977). 
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Table 4.1S. Associated Inflow Parameter value for each of the 6 sub-rule curves governing Lake 
Shasta’s operational rule curve. Table recreated from data appearing in US ACE Chart A-8 (US. 
Army Corps of Engineers, 1977).  

Sub-Rule Curve Parameter Value Range 
1 0-200,000 
2 200,000-300,000 
3 300,000-400,000 
4 400,000-500,000 
5 500,000-530,000 
6 530,000+ 

 

4.8.2 Simulated Wet-Season Operations 

From October through April, simulated releases are calculated in one of two scenarios: 1) 

storage value exceeds the RC, 2) storage value is below the RC.  

4.8.2.1 Storage Exceeds the Rule Curve 

To determine if storage will increase above the RC, the 24-hour inflow volume is added 

to the storage from the previous day, assuming no releases or evaporative losses on the current 

day. If this volume exceeds the RC for that day (i.e. if Storagei-1 + Inflowi > RCi), US ACE Chart 

A-8 is used to determine the appropriate release given the flood risk (US. Army Corps of 

Engineers, 1977). The release is based on the magnitude of the inflow and the percentage of the 

flood-pool currently available. The release schedule from the US ACE Chart A-8 is used except 

when releases are governed by the emergency spillway diagram, discussed below.  

In rare cases when the reservoir stage is rising and there is risk of uncontrolled releases, 

US ACE Chart A-9 is enforced (US. Army Corps of Engineers, 1977). Under normal conditions, 

the maximum release from Shasta is 79,000 CFS, however, the spillway diagram can dictate a 

maximum release of 320,000 CFS, which carries great risk, though less than uncontrolled spill 



 156 

over the top of the dam. Our model abides by the rules directly and will use the spillway diagram 

as detailed in US ACE Chart A-9 (US. Army Corps of Engineers, 1977).  

4.8.2.2 Storage Below the Rule Curve 

Absent flood risk, the model makes a climatological release during the wet season. 

Climatological releases are computed in the following manner. First, to smooth any RC releases, 

a centered 30-day rolling mean is applied to the daily outflow timeseries. Next, the data is subset 

by taking the 30 days on either side of the given model day across all available data (n=21 years). 

Using a bin size of 100 CFS, we sort the subset data and take the first ‘m’ bin values that compose 

50% of the cumulative distribution. Next, we create a new synthetic distribution composed of 100 

random draws with replacements from these ‘m’ values and randomly select a single value as the 

outflow for the given model day.  

4.8.3 Simulated Dry-Season Operations 

From May 1st though the end of the water year, absent any RC required releases, we base 

the daily outflow on the predicted total volume of water to be released during May-September. 

Because this period coincides with high demand, low inflows, and environmental requirements, 

this process is more complex than the climatological release described above. Motivated by the 

fact that outflows are related to the Sacramento Valley water year index (WYI), a nondimensional 

variable used by the California DWR as a proxy for how much runoff occurs in the Sacramento 

basin during a given year, our warm season outflow prediction relies on the WYI.  

The CA DWR calculates the WYI in their Bulletin-120 (B120) through the following 

equation, 
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𝑾𝒀𝑰𝒊 = 	𝟎. 𝟒	 ∗ 	𝑸𝑨𝒑𝒓*𝑱𝒖𝒍	𝒇𝒄𝒔𝒕 + 	𝟎. 𝟑	 ∗ 	𝑸𝑶𝒄𝒕*𝑴𝒂𝒓 	+ 	𝟎. 𝟑	 ∗ 	𝑾𝒀𝑰𝒊*𝟏	 

where 𝒊 represents a given year and 𝑸 is streamflow. The first term represents the forecasted total 

streamflow volume for April-July and, the second term is the observed streamflow volume from 

October-March, and the final term is the value of the previous water year index. Here, we describe 

how we predict the WYI value each year using water year-to-date (WYTD) precipitation, snow 

water equivalent (SWE), and Shasta inflow on April 1st. Since the Sacramento Valley, for which 

the WYI is calculated, encompasses a greater area than just the Lake Shasta watershed, we 

compute basin-wide averages of precipitation and SWE for the Shasta, Feather, and Yuba-

American watersheds. The area-average is composed of data from individual stations represented 

on Figure 4.1 of the main text. The names and locations of these stations are given below in Section 

4.8.6. 

To compute the WYI, first, the raw values of April 1st data of basin-average SWE for the 

Shasta, Feather, and Yuba American watersheds, April 1st data of basin-average precipitation for 

the Shasta, Feather, and Yuba American watersheds, rolling 3-yr averages of April 1st data of 

basin-average precipitation for the Shasta, Feather, and Yuba American watersheds, and October-

April cumulative inflow are converted to Z-scores. We then conduct principal component analysis 

(PCA) on the normalized data. All 10 principal components are used to learn coefficients in our 

multi-linear regression model which predicts the final WYI value (see the concluding paragraph 

in section 4.8.3 for commentary on how the approach differs for the calibration/validation era and 

the simulated climate runs). 

To predict the total May-September reservoir outflow, we first conduct PCA using 

normalized values of WYI, cumulative April 1st precipitation in the Shasta basin, and cumulative 
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April 1st reservoir inflows. All 3 principal components are used as training data to learn coefficients 

in our multi-linear regression model which calculates the total dry-season reservoir outflow 

volume. Under the special scenario called a “Shasta Critical” year, wherein inflow deficits over a 

given water year or successive water years exceeds a threshold set by the Bureau of Reclamation, 

deliveries can be reduced by 25% (Section 4.4, U.S. Bureau of Reclamation, 2019). If these 

conditions are met for a given WY, we reduce the projected total May-September outflow volume 

by 25%. To determine the daily release, we multiply the total seasonal outflow by the 

climatological percentage (calculated over the historical record) of total May-September releases 

made on a given day.  

As described in the main text, for a given WY during the validation period, we predict a 

given WYI and summer release volume excluding data from the water year being simulated (a N-

year cross-validation procedure). This is done to ensure that the model is not overfit on the current 

data and generalizes well to data that it is not trained on. Prior to running the GCM simulations, 

we use all data from the validation period to compute the linear regression coefficients (generated 

through the PCA) which are then used to simulate the reservoir operations driven by GCM inflows.  

4.8.4 Estimation of Daily Evaporation 

At each timestep in the model simulation, we estimate the value of evaporative loss through 

multi-linear regression using temperature and storage data. For a given WY during the 

calibration/validation period, we again predict daily evaporation using only data from the other 

WYs. In practice, normalized daily temperature and storage data are used to learn coefficients in 

our multi-linear regression model which predicts daily evaporative loss. Prior to running the GCM 

simulations, we use all data from the validation period to compute the linear regression coefficients 

which are then used to simulate daily evaporative losses driven by GCM temperature.  
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4.8.5 Downscaling GCM Data Using Station Data 

4.8.5.1 Station-to-Gridded Data 

When model coefficients learned over the calibration/validation period are applied to 

projected climate runs, the result simulations are be sensitive to differences in the distributions of 

relevant hydroclimate variables (precipitation, SWE) between the historical model period (1970-

2005) and the model calibration/validation period (1996-2017). As a result, we incorporate a step 

called secondary bias correction in which data (already having undergone bias correction) are 

bias corrected again to remove systematic biases between some historical dataset (observed or 

reanalysis) and the pre-warming model data. Ideally, CDEC station data would be used for this 

purpose. However, bias correction is more robust with at least 30-years of data and the 

calibration/validation period only covers 1996-2017. To ensure that we have a consistent dataset 

used in both the calibration/validation and projected climate simulations, we leverage a 

combination of reanalysis and observational data to create a final dataset that both 1) has a period 

of record long enough to be used for bias correcting the model data (30 yrs), and 2) covers the 

period of record used in the calibration/validation step. This process is described below and is 

done for April 1st values of precipitation and SWE at the stations listed in Section 4.8.6. 

We choose to build this dataset from Livneh reanalysis (Livneh et al., 2013) because it 

has a long record (1950-2005) and is widely used in the community. Because it does not cover 

the calibration/validation period, we extend it by building statistical relationships, through linear 

regression, between overlapping years of data between the Livneh and PRISM (Daly et al., 1994) 

(for precipitation) and Broxton et al (2019) (for SWE). Then, to better account for biases 

between the gridded reanalysis (6-km resolution) and station data, we again use linear regression 

to transform the station data to better fit the Livneh distribution at each station. The resulting 
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dataset is one that covers both the calibration/validation period and has a sufficient historical 

record to be used to bias correct the projected climate data.  

4.8.5.2 Secondary Bias Correction 

As described above, secondary bias correction is used to ensure the distributions of pre-

warming data used in model parameters are identical to the calibration/validation data. To ensure 

that any changes in simulated reservoir performance under future climate are due to relative 

changes between the historical and future model runs, and not differences between the mean 

statistics of the calibration/validation and GCM data, we employ the PresRat method (Pierce et 

al., 2015). PresRat is an extension of quantile mapping proven to better ensure that the signal the 

model data is altered to a lesser extent by the bias correction process than other commonly 

employed practices (Pierce et al., 2015) such as quantile mapping (Panofsky & Brier, 1968; 

Wood et al., 2002) or CDF-transform (Michelangeli et al., 2009).  

4.8.6 Station Data Information 

4.8.6.1 CDEC Rainfall Stations 
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Table 4.2S. Station information for all CDEC rainfall data used to calculate watershed average 
values.  

Station Abbreviation Longitude Longitude 
SHA 40.71 -122.42 
SDF 41.35 -122.24 
MED 41.59 -121.61 
SNM 40.77 -121.78 
SLT 41.04 -122.48 
STM 41.16 -121.93 
BKL 39.85 -121.25 
FOR 39.81 -121.32 
GRZ 39.91 -120.64 
HMB 40.11 -121.36 
PLP 39.78 -120.87 
RTL 40.12 -121.04 
KTL 40.14 -120.71 
CAP 38.71 -120.04 
FRN 38.80 -120.21 
GKS 39.07 -120.56 
HYS 39.28 -120.52 
SIL 38.67 -120.11 
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4.8.6.2 CDEC SWE Stations 

Table 4.3S. Station information for all CDEC SWE data used to calculate watershed average 
values.  
Station Abbreviation Latitude Longitude 
ADM 41.23 -120.79 
BLA 40.76 -121.19 
CDP 41.58 -120.30 
SDF 41.35 -122.24 
MED 41.59 -121.61 
SNM 40.77 -121.78 
SLT 41.04 -122.48 
STM 41.16 -121.93 
BKL 39.85 -121.25 
GOL 39.67 -120.61 
FOR 39.81 -121.32 
GRZ 39.91 -120.64 
HMB 40.11 -121.36 
PLP 39.78 -120.87 
RTL 40.12 -121.04 
KTL 40.14 -120.71 
ALP 38.80 -120.21 
CAP 38.71 -120.04 
CSL 39.32 -120.36 
FRN 38.80 -120.21 
GKS 39.07 -120.56 
HYS 39.28 -120.52 
RBB 38.91 -120.37 
RBP 38.90 -120.37 
SIL 38.67 -120.11 
VVL 38.94 -120.30 
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4.8.6.3 CDEC Temperature Stations 

Table 4.4S. Station information for all CDEC temperature data used to estimate evaporation 
values.  

Station Abbreviation Latitude Longitude 
SHS 40.71 -122.41 
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4.8.6.4 CDEC Reservoir Inflow Stations 

Table 4.5S. Station information for all CDEC reservoir inflow data.  
Station Abbreviation Longitude Longitude 
SHA 40.71 -122.42 
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Chapter 5 
 

Conclusion 
 
5.1 Summary of Major Contributions  
 

Through the development of novel statistical methods and modeling, this dissertation 

leverages a combination of historical weather station observations, atmospheric reanalysis 

products, and future climate simulations to evaluate the impacts of extreme precipitation and 

potential impacts of climate change on the vulnerable water resources of the southwestern United 

States. The second chapter focuses on the North American Monsoon (NAM) region over the 

historical record to examine the atmospheric forcing of large storm events. The subsequent two 

chapters shift their attention to examining future climate projections from global climate models 

(GCMs) for the northern California region and how such changes in precipitation, snowpack, and 

streamflow may impact reservoir operations.  

In Chapter 2, we present a climatological characterization of summertime precipitation, 

defined as July, August, and September (JAS), in the Lake Mead watershed, located on the 

periphery of the NAM region, and detail the importance of extreme events through both composite 

and individual event analysis of the synoptic environment. In contrast to the core NAM region to 

the south, where easterly upper-level disturbances such as inverted troughs are the dominant driver 

of extreme precipitation, Chapter 2 finds anticyclonic Rossby wave breaking (RWB) in the 

midlatitude westerlies over the US west coast are associated with 89% of precipitation events >10 

mm (98th percentile of wet days) over the Lake Mead basin. Due to the synoptic nature of RWB 

events, corresponding impacts and hazards extend beyond the Lake Mead watershed and are 

relevant for the greater U.S. southwest. 
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Motivated by a desire to connect bias correction techniques to the underlying dynamics 

within earth systems models, in Chapter 3, a novel statistical method is developed for projected 

streamflow wherein data are windowed based on hydrograph-relative time, rather than Julian day. 

Four existing bias correction methods, each using both the standard day-of-year and novel 

‘seasonally aware’ windowing approaches, are applied to daily streamflow projections driven by 

climate simulations from 10 GCMs across a characteristically-diverse subset of six watersheds in 

California. The resulting bias corrected time series are evaluated to determine how the methods 

alter the original model climate change signal. We find the novel method, when compared with 

the others, better preserves the original simulated climate change signal. These improvements are 

realized in the water year mean signal, which is important as it relates to the total volume of water 

flowing through the river over the course of the year. Crucially, though, improvements are also 

realized for both low and high streamflow events which have an outsized imprint on California’s 

hydroclimate, water resources, and ecosystems. 

In Chapter 4, we develop a highly flexible model of California’s largest reservoir, Lake 

Shasta, to analyze simulated future threats to water supply. The model simulates reservoir 

operations on a daily timestep and accounts for both flood-risk mitigation and water supply 

objectives. During the wet season, the model operates under a complex set of rules, as laid out by 

real-life dam operators, to prioritize the mitigation of flood risk. During the dry (demand) season, 

the model estimates water deliveries based on forecasted warm-season streamflow volume, 

informed by springtime snowpack data. Calibrated and validated over the historical record, the 

model simulates daily storage accurately enough for the purposes of exploring climate change 

impacts and adaptations. Using the bias corrected streamflow data from Chapter 3, we investigate 

projected climate change impacts on Lake Shasta operations under both existing and simplified 
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adaptation strategies. Compared to the historical period, we simulate 27% declines in carryover 

storage at the end of the 21st century under more extreme climate-changed scenarios and if 

operations are left unchanged. While a majority of storage loss is attributed to decreased snowpack, 

we find that existing reservoir operating procedures under the changed climates is responsible for 

one-third of the losses. Next, we explore the efficacy of both operational and infrastructural 

adaptation measures including altering the flood-control rule curves and increasing reservoir 

storage capacity. Despite application of many different interventions designed to recover historical 

levels of water supply over management of the enhanced future flood risks, historical levels of 

carryover storage were irretrievable at the end of the century under the more extreme levels of 

climate change. 

5.2 Directions for Future and Related Research  
 

While this dissertation strives to answer fundamental questions about the drivers of warm 

season extreme precipitation and projected future changes in California’s water resources, there 

are several unanswered questions that can be the focus of future research. Within the scope of 

Chapter 2, after identifying the importance of Rossby wave breaking (RWB )in driving extreme 

warm season precipitation in the Lake Mead area, additional research should explore how 

frequently this RWB occurs over the US west coast and whether all RWB events cause 

precipitation. Further, due to their impact on the region, it would be interesting to examine whether 

and how the number of summertime RWB events changes under global warming scenarios. 

After demonstrating, in Chapter 3, the improved ability of the ‘seasonally aware’ bias 

correction technique to preserve climate model signals, it would be useful to expand the dataset to 

a wider range of streams across California and to rivers across the west more broadly. Bias 

corrected simulations of future climate streamflow at important rivers could be useful for many 
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applications in this water-supply challenged region. Additionally, an important next step would be 

to evaluate the method for snow water equivalent (SWE) data as projections of snow are also 

characterized by changes in magnitude and seasonality.   

Several directions for future work could build upon the results of Chapter 4 to increase 

their utility. Given that no one of the adaptation measures managed to undo the loss of historical 

storage levels, combinations of the several adaptation approaches need to be explored. Further, an 

assessment of existing inflow-forecast skill at Lake Shasta will be needed to determine the actual 

potential of adaptations based on forecast-informed operations, whereas here only a very idealized 

version of forecast-informed operations was explored. Both areas of research should be of interest 

to the water resources community that is going to be tasked with adapting operational strategies to 

a changing climate in the real world. Lastly, the model developed in this study has the potential to 

be augmented to investigate reservoir dependent processes such as the projected impacts of climate 

change on hydropower generation at Lake Shasta or important environmental/ecosystem variables 

such as stream temperature in the Sacramento River. 
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