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ABSTRACT OF THE THESIS

Augmented Translation Models for Sequential Recommendation

by

Rajiv Pasricha

Master of Science in Computer Science

University of California San Diego, 2018

Professor Julian McAuley, Chair

Sequential recommendation algorithms aim to predict users’ future behavior given

their historical interactions. In particular, a recent line of work has achieved state-of-the-art

performance on sequential recommendation tasks by adapting ideas from metric learning and

knowledge-graph completion. These algorithms replace inner products with low-dimensional

embeddings and distance functions, employing a simple translation dynamic to model user

behavior over time.

In this thesis, we analyze the task of sequential recommendation and discuss TransRec,

a recent algorithm that models users with linear translation vectors over low-dimensional item

ix



embeddings. We present a variety of extensions to this model, increasing complexity via

additional features, neural networks, and session-based approaches. We evaluate these extensions

on a variety of datasets and also present relevant qualitative analyses. These extensions provide

insights into the translation framework and effectively inform future research directions.

We also propose TransFM, a model that combines translation and metric-based ap-

proaches for sequential recommendation with Factorization Machines (FMs). Doing so allows

us to reap the benefits of FMs (in particular, the ability to straightforwardly incorporate content-

based features) while enhancing the state-of-the-art performance of translation-based models.

We learn an embedding and translation space for each feature, replacing the inner product with

the squared Euclidean distance to measure interaction strength. Like FMs, the model equation

can be computed in linear time and optimized using classical techniques. As TransFM operates

on arbitrary feature vectors, content features can be easily incorporated without significant

changes to the model itself. Empirically, the performance of TransFM significantly increases

when taking content features into account, outperforming state-of-the-art models on sequential

recommendation tasks.
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Chapter 1

Introduction

Recommender systems play a key role in helping individuals manage the proliferation of

available choices in a variety of domains, while facilitating a more targeted and personalized

experience. They have seen significant success in the domains of media consumption and

e-commerce systems, where efficient and effective recommender systems help optimize user

experience. With a recommender system, Netflix is able to select the movies or shows that

most closely align with each user’s personalized interests and tailor their offerings to viewers’

evolving viewing habits over time [6]. Similarly, Amazon employs recommender systems to

develop accurate profiles of user interests and match them with the most relevant products [31].

Additional applications of recommender systems include point-of-interest recommenda-

tions involving systems that suggest activities and destinations for tourists visiting a new area

[55, 15]. Under the umbrella of media recommendation, music services such as Spotify and

Pandora select the songs most likely to be enjoyed by each user from their massive catalog.

Spotify even creates personalized weekly playlists for their users, providing them with a con-

stantly evolving selection of new songs they are likely to enjoy. In the realm of advertising, the

ability to effectively match users with relevant advertisements is critical to the success of online

advertising companies such as Google and Facebook. Finally, recommender systems have also

1



been successfully applied to news, social networks, healthcare, and many other domains.

1.1 Recommender System Approaches

Formally, a recommender system is an algorithm that seeks to predict the rating or

preference between a user and corresponding item. Recommender systems take a variety of forms,

from content-based systems that rely on manually specified features, to collaborative filtering

algorithms that rely on observed purchases of similar users and items to make recommendations.

Lastly are model-based approaches, which have seen significant success in recent years. Model-

based systems use a large corpus of training data to learn low-dimensional representations

of each user and item. These user and item representations are then used to make future

recommendations.

Within the overall category of model-based recommender systems, there have been

several successful approaches. Matrix Factorization or latent factor models learn a low-rank

approximation to the user-item rating or purchase matrix, learning useful dimensions along which

to categorize users and items in the process [29]. Many improvements to matrix factorization

models make use of additional sources of information, such as temporal, geographical, and social

data to improve recommendation quality.

While matrix factorization models aim to directly model the predicted rating between

a given user and item, sequential recommender systems add an additional dynamic: taking

the order of previous interactions into account. Intuitively, this means that the likelihood of

purchasing an item depends on a user’s previous interactions. Successfully modeling these

third order interactions (between a user, an item under consideration, and the previous item

consumed) facilitates a more engaging user experience, resulting in recommendations that are

2



more responsive to recent user and item dynamics.

1.1.1 TransRec

In 2017, He et al., introduced TransRec, which is a novel framework for performing

translation-based recommendation [19]. In traditional recommender systems, algorithms model

user preferences and sequential dynamics separately, impacting performance and generalizability.

As these two dynamics are inherently interconnected, they should be learned jointly to enable

the insights of one part of the model to benefit the other. TransRec addresses this problem by

defining a joint “translation space” that enables both preference and sequential dynamics to be

jointly learned. Within this space, the model learns item embeddings as points in the space,

similar to most traditional recommender systems. The key insight comes from representing

users as translation vectors, explicitly modeling translations between their observed purchases.

This follows a line of work that adapts ideas from metric learning [34] and knowledge-graph

completion [48, 57] into recommender systems, which has led to state-of-the-art performance on

a variety of tasks.

The intuition behind TransRec is as follows: items are embedded in different locations

throughout the translation space, and each user follows an independent trajectory through the

space. Representing each user as an independent translation vector allows the model to learn

the dynamic nature behind a user’s viewing or purchase habits, extending these patterns to new

locations in the item space.

TransRec was successful as it modeled this complex translation dynamic with a simple

formulation, enabling the model to perform well on very sparse datasets and scale to very

large datasets. In addition, by using metric distances in the translation space rather than the

standard inner products, TransRec is able to better generalize to new item sequences. In many

3



recent models [15, 11], employing metric distances has led to significant improvements in

recommendation performance by taking advantage of the transitive property of the triangle

inequality. For example, if items i and j and j and k are related, then the triangle inequality

encourages i and k to be brought closer together in the space, assisting generalization behavior.

1.2 Proposed Extensions to TransRec

In this thesis, we discuss a variety of proposed extensions to the TransRec model. While

TransRec was able to outperform many existing recommender system models on a variety of

datasets, its simple form could hurt its performance.

Some examples of our proposed extensions are as follows. We learn more complex

translations by adding an item translation component to the model. We also incorporate temporal

features, specifically the time delta between previous and next item purchases. This allows us to

model translations through the embedding space as a function of time.

Additionally, we test a variety of models that use neural networks in order to introduce

a nonlinear component into the TransRec model. The last few years have seen a rapid rise in

neural networks and deep learning, and these models are now the state-of-the-art for a variety of

tasks including image, speech, and video processing. Neural networks have also been applied to

the field of recommender systems, and a variety of models in recent years have taken advantage

of deep learning capabilities to improve recommendation performance [9, 21, 56]. We employ

neural network models to learn nonlinear translation vectors, allowing us to model more complex

translation dynamics for each user through the item embedding space. Neural networks also

excel at incorporating multiple sources of information into a single model in the form of extended

feature vectors. Finally, we develop explicit session-based models that employ the generality

4



of neural networks to automatically partition a user’s consumption sequence into “sessions” of

related items purchased in a short time period.

1.2.1 Content Features

Another natural avenue to extending TransRec is to adapt its metric and translation

intuition to incorporate content features. A few approaches have been attempted to integrate

content features into metric learning and knowledge graph algorithms, such as using a specialized

convolutional neural network to incorporate audio features [51] or using a variational Bayes

technique for playlist generation with both collaborative and content features [5]. However, offer-

ing a general-purpose technique that incorporates content features into metric-based algorithms

remains open.

Factorization Machines (FMs) achieve this goal in inner-product spaces, incorporating ad-

ditional features without sacrificing model simplicity [41]. FMs operate on arbitrary real-valued

feature vectors, and model higher-order interactions between pairs of features via factorized

parameters. They can be applied to general prediction tasks and are able to replicate a variety

of common recommender system models, such as matrix factorization and FPMC, simply by

selecting appropriate feature representations.

We propose TransFM, which adopts ideas from FMs into translation-based sequential

recommenders. Doing so allows us to straightforwardly model complex interactions between

features (as in FMs) while extending the state-of-the-art performance of metric / translation-based

approaches.

Specifically, we replace the inner product in the FM translation term with a translation

component between feature embeddings, employing the squared Euclidean distance to compare

compatibility between pairs of feature dimensions (see Figure 1.1). As with Factorization

5



Figure 1.1. The general-purpose TransFM model. Unlike standard sequential and metric-based
algorithms, TransFM models interactions between all observed features. For each feature i, the
model learns two entities: a low-dimensional embedding ~vi and a translation vector ~v′i. The
interaction strength between pairs of features is then measured using the squared Euclidean
distance d2(·, ·). In the example above, we plot the embeddings and translation vectors for a
user (feature 1), an item e.g. a movie or book (feature 2), and a temporal feature (feature 3).
Interaction weights are given by the distance between the ending and starting points of the
respective features.

Machines, we show that the TransFM model equation can be computed in linear time in both the

feature and parameter dimensions, making it efficient to implement for large-scale sequential

recommendation datasets.

The translation component of TransFM effectively learns relationships among collab-

orative and content-based features with minimal preprocessing and feature engineering. We

empirically evaluate TransFM on a variety of datasets and find that TransFM with content

features provides significant improvements over state-of-the-art baselines with and without

additional features included.

We present a generalization of this approach and derive related models by merging

FMs with similar baseline models. This leads to general-purpose recommendation approaches

that incorporate the intuitions of other baseline algorithms, consistently outperforming vanilla
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Factorization Machines.

1.3 Structure and Scope of the Thesis

In this thesis, we first provide an overview of the field of recommender systems followed

by a discussion of the essential algorithms and advancements in Chapter 2. In particular, we trace

the history of recommender systems, highlighting the major categories of algorithms, including

content-based, collaborative filtering, and model-based approaches. We also discuss the main

types of recommender systems, including implicit feedback, sequential, and ranking models.

In Chapter 3, we review related literature to highlight recent advances in the field. This

includes algorithms that incorporate additional sources of information to improve recommen-

dation performance (e.g. temporal, social, and geographical dynamics), as well as the rise of

models that apply the advantages of neural networks and deep learning.

Chapter 4 expands the discussion on TransRec, presenting the formal model and high-

lighting potential areas for improvement. We introduce our proposed extensions in Chapter 5,

presenting the intuition behind each model and its relationship to TransRec.

Quantitative and qualitative results are presented in Chapter 6, where we discuss each

model’s performance and analyze the learned item embeddings and translation vectors. In Chap-

ter 7, we apply the intuition behind TransFM to related baselines, applying the FM framework to

derive similar general-purpose recommendation models. Finally, we discuss conclusions and

potential future work in Chapter 8.

Various chapters in this thesis include material that has been submitted for publication as

it may appear in RecSys 2018, Pasricha, Rajiv; McAuley, Julian, ACM, 2018. The thesis author

was the primary investigator and author of this paper.
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Chapter 2

Background

In this chapter, we discuss relevant background for the field of recommender systems.

Considering the variety of algorithms that have been successfully applied, we also provide a

description of some of the most influential ones, that have inspired the development of many

recent approaches.

The main purpose of a recommender system is to analyze observed interactions between

users and items in a system, and to use this data to predict items that a user will rate highly or

purchase in the future. Recommender systems can be applied to settings that involve explicit

or implicit feedback. In an explicit feedback system, a user provides a positive or negative

assessment of the items they have interacted with, traditionally on a 1-5 or thumbs-up thumbs-

down scale. The goal of the recommendation algorithm then becomes to predict future ratings

that users will give to unseen items. In the case of a ranking task, where the algorithm must

return e.g. the top k items to display as recommendations, the system can simply return the k

items with the highest predicted ratings.

This is in contrast to the implicit feedback setting, where users do not directly specify

their level of interest or engagement with the platform. Instead, in an implicit feedback system,

a user’s level of interest with individual items must be inferred from their general interactions.
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Purchases on Amazon or views on YouTube are examples of implicit feedback scenarios. As

users are not directly specifying their likes and dislikes, each interaction carries a weaker positive

or negative signal than in the case of explicit feedback. A user may watch a video because of

genuine interest, or because of a recommendation from an acquaintance, or for a class assignment;

the system cannot tell the difference. It is also more difficult to identify which items a user

explicitly dislikes. In most cases, all interactions in an implicit feedback system are treated

as positive signals, and the system is designed to predict the items that the user will purchase

or interact with in the future. The benefit of implicit feedback scenarios is that they typically

contain much more data, as users generate data simply by interacting with the system, rather than

submitting a rating or review. Having this surplus of data enables personalized recommendations

to be made to all users in the system, even those who have not provided explicit feedback.

A specific area of concern when designing and implementing recommender system algo-

rithms is the cold-start problem [44]. Recommender system settings are commonly associated

with extremely high sparsity; “cold-start users” are those with little or no associated data in a

given training set. Given the large number of items available in a system, a typical user only

purchases or rates a tiny fraction of possible items. Similarly, given the large number of users

in the system, any particular item is likely to be rated or purchased by only a small fraction of

users. As a result, recommender systems must be designed to accurately handle cases where new

users or items enter the system with little or no associated data. There are multiple approaches to

handling this problem, including only recommending the most popular items as a baseline or

reverting to content-based approaches where no rating or purchase data is available. Algorithms

and practical implementations must be able to appropriately handle sparsity, as users should

be able to expect to receive quality recommendations from a system regardless of their level of
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involvement.

There are two primary categories of recommender systems, specifically content-based

and collaborative filtering approaches. Content-based recommender systems rely on features

associated with individual users and items. Pandora is one of the most famous examples of a

content-based recommender system. It is based on the Music Genome Project, which endeavors

to assign scores to songs based on hundreds of individual characteristics [39]. Some of these

characteristics include song genre, instrumental vs. vocal, and artist gender. Given a user’s

listening history, Pandora creates a profile of preferred musical characteristics and creates a

personalized radio station centered around songs with similar attributes. While comprehensive

content-based approaches can perform well, they tend to suffer from scalability issues and are

limited by the creativity of feature designers and accuracy of the assigned scores.

In contrast, collaborative filtering recommender systems do not rely on features of the

users and items themselves. Instead, they automatically analyze dependencies in the provided

dataset and use these similarities to make recommendations. Neighborhood-based collabora-

tive filtering approaches aggregate observed rating and purchase data and explicitly compute

similarities between users and items. This enables a collaborative filtering algorithm to, for

example, automatically “learn” that an individual is a fan of action movies, and provide movies

watched by other action fans as recommendations. The two predominant types of neighborhood-

based collaborative filtering algorithms are user-based and item-based collaborative filtering.

In a user-based collaborative filtering algorithm, recommendations are made based on items

purchased by similar users [8]. This is in contrast to item-based collaborative filtering, where

recommendations are based on similar items in a user’s purchase history. [31].

A model-based collaborative filtering approach uses a machine learning algorithm to
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develop an internal representation of users and items in the system. This model is trained with

observed ratings or purchases and predicts the best items to recommend. A variety of machine

learning algorithms have been successfully applied to the recommender systems task, including

Markov chains [43], neural networks [9], and dimensionality reduction techniques such as matrix

factorization [29].

A significant advantage of neighborhood and model-based collaborative filtering over

content-based approaches is that the system can automatically extract the most important char-

acteristics of users and items from a recommendation perspective, evolving to changing char-

acteristics of the dataset over time. As they do not rely on manually assigned feature values,

collaborative filtering algorithms are also considerably more scalable, as long as a sufficient

number of interactions are present in the training dataset.

2.1 The Netflix Prize

Announced in 2006, the Netflix Prize was a challenge posed by video streaming and

rental service Netflix, to improve the performance of its commercial recommender system by

10% [6]. The prize generated significant publicity and also spurred considerable interest in the

field with a $1 million grand prize and the release of the largest training dataset to date, consisting

of over 100 million Netflix ratings, with associated users, items, and timestamps. As the first

recommendation dataset of this magnitude to be released, the Netflix Prize dataset became a

popular test bed for novel recommendation algorithms and highlighted the mutual importance of

algorithms and data in designing successful recommender systems.

However, the dataset also highlighted the importance of privacy, especially in commercial

settings. Although users and items were anonymized, it was shown to be possible to deanonymize
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the dataset and identify individual users and movies by their corresponding reviews on related

sites, such as the Internet Movie Database [36]. Unfortunately, by discovering individual records

in the anonymized dataset, researchers were also able to identify other potentially sensitive

information about Netflix users, such as their interests and political beliefs. As a result, the

Netflix Prize dataset is no longer publicly available.

The winning submission to the Netflix Prize Competition, “BellKor’s Pragmatic Chaos,”

developed a complex ensemble model consisting of hundreds of constituent models developed

by three of the leading teams [27, 47, 38]. These component models included a variety of

neighborhood and model-based collaborative filtering algorithms, as well as additional models

such as Restricted Boltzmann Machines. One of the most effective approaches in the ensemble

was matrix factorization, which learned low-dimensional user and item representations via

stochastic gradient descent over the training set. The effectiveness of matrix factorization is

based on its scalability and extensibility, and many of the component models in the winning

solution used an updated form of this basic algorithm, augmented with neighborhood or temporal

components. In addition, similar extensions to matrix factorization have since been proposed

that incorporate social, geographical, or text-based data to improve performance. Along with

the tremendous increase in available data and processing power in recent years, these improved

models have led to successful recommender systems being applied in almost every conceivable

domain, and they are now critical to the success of any commercial system.

2.2 Neighborhood-based Collaborative Filtering

We first discuss neighborhood-based algorithms for collaborative filtering, which do not

learn a prespecified model to make predictions of future ratings. Instead, neighborhood-based
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approaches calculate the similarity between related users and items and make recommendations

based on corresponding similarity values. The two predominant types of neighborhood-based

algorithms are user-based and item-based collaborative filtering. Both approaches are compatible

with explicit and implicit feedback settings, where implicit feedback can be represented as a

binary rating value.

We first discuss user-based collaborative filtering. Let u be the target user for whom

we are trying to provide recommendations. The user-based algorithm starts by computing the

similarity between u and all other users in the dataset. The similarity is defined over the observed

rating history, so two items u and v who have provided similar ratings to overlapping items

should have a high similarity value. One commonly used measure of similarity is the Pearson

Correlation Coefficient, defined below [2]. Iu represents the set of items which have received

ratings by user u, and µu is the average of user u’s provided ratings. Finally, ruk is the rating

given by user u to item k.

S(u,v) =
∑k∈Iu∩Iv(ruk−µu) · (rvk−µv)√

∑k∈Iu∩Iv(ruk−µu)2 ·
√

∑k∈Iu∩Iv(rvk−µv)2
(2.1)

The similarity computed by the Pearson Correlation Coefficient is normalized between

−1 and 1 and has the advantage that it takes each user’s average rating into account. This is

important in practical systems, especially when one user provides much higher ratings than

another on average. Another common similarity function between users is the Cosine Similarity,

which is the cosine of the angle between two users’ rating vectors [2]:

S(u,v) =
∑k∈Iu∩Iv rukrvk√

∑k∈Iu∩Iv r2
uk ·
√

∑k∈Iu∩Iv r2
vk

(2.2)
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Once these similarity values have been computed for all pairs of users, we can then

predict the rating that user u will give a new item j as follows:

r̂u j = µu +
∑v∈Nk(u, j) S(u,v)(rv j−µv)

∑v∈Nk(u, j) |S(u,v)|
(2.3)

Where Nk(u, j) is the neighborhood of the k most similar users to u, who have provided ratings

for item j.

While the user-based collaborative filtering approach recommends products purchased

by similar users, item-based collaborative filtering simply recommends products that are similar

to those that the user has already rated or purchased [31]. The computation proceeds similarly to

the user-based model. We first compute the similarity between all pairs of items i and j, using

the ratings observed in the dataset. Let Ui be the set of users who have given ratings for item

i. As in the user-based case, we can use the Pearson Correlation Coefficient to compute the

similarity between items i and j [2].

S(i, j) =
∑u∈Ui∩U j(rui−µi) · (ru j−µ j)√

∑u∈Ui∩U j(rui−µi)2 ·
√

∑u∈Ui∩U j(ru j−µ j)2
(2.4)

If we are simply generating a ranked list of recommendations, we can find the top k most

similar items to a user’s historical interactions and return these as recommendations. This is

similar to the method used by Amazon in the “Customers who bought this item also bought”

section of each item page. It is also possible to retrieve explicit rating predictions using the

item-based approach. This can be done by taking a weighted average of the target user’s ratings

for similar items. Specifically, let Nk(u, i) be the neighborhood of the k most similar items to the
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target item i which have been reviewed by user u. Then, the predicted rating for i is then:

r̂ui =
∑t∈Nk(u,i) S(i, t) · rut

∑t∈Nk(u,i) |S(i, t)|
(2.5)

While the item-based approach is less personalized than the user-based neighborhood

model, it is significantly faster and more scalable. It was one of the preferred methods of

choice for Amazon to provide recommendations on its item pages, as detailed in [31]. Once

item-similarities have been computed offline, it is possible to compute a ranked list of recom-

mendations very quickly. The computation scales only with the number of items rated by a user,

rather than the total number of users and items in the dataset, which would be prohibitive for a

website of Amazons scale.

2.3 Matrix Factorization

While neighborhood-based collaborative filtering approaches are simple to understand

and implement, they are less competitive when it comes to recommendation performance. Model-

based techniques consistently outperform neighborhood approaches, with matrix factorization

methods being one of the most common techniques.

Popularized by Koren et al. in their winning Netflix prize submission [29], the standard

matrix factorization approach learns a vector of latent factors for each user and item in the dataset.

A high value of the inner product between corresponding user and item latent factors leads to a

high rating prediction, and vice versa. This is equivalent to embedding users and items into a

shared low-dimensional space, where similar users and items are located closer together if they

share similar characteristics in the observed training dataset.

The matrix factorization model essentially aims to factorize the large but extremely sparse
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user-item ratings matrix, and reconstruct it using a low-rank approximation. This is similar to the

Singular Value Decomposition (SVD), a matrix decomposition technique with a wide variety of

applications. However, the SVD operates on dense matrices and is prone to overfitting, so matrix

factorization uses a gradient descent-based approach with regularization to learn an effective and

generalizable model.

The model equation for matrix factorization is as follows:

r̂ui = µ +bi +bu +qT
i pu (2.6)

µ denotes the average rating over all observed ratings in the dataset. For each item i

or user u, bi and bu denote the average deviations for i and u from µ . These three parameters

encapsulate the linear effects for the overall dataset, as well as the independent effects of

individual users and items. For example, if µ = 2.9 and bi = 0.6, this means that the particular

item i tends to receive ratings that are 0.6 stars higher than average, or 3.5 stars. If bu =−0.2, this

means that user u tends to rate movies on average 0.2 stars lower than average, or 2.7 stars. These

bias terms help separate the effects of each predicted rating into independent parameters, so that

the more complex interaction parameters qi and pu do not need to account for easily-modeled

effects.

Finally, the interaction parameters qi ∈R f and pu ∈R f model the latent factors associated

with user u and item i. f is the dimensionality of the latent factors and is a hyperparameter. Each

of the f dimensions in each latent factor can be interpreted as representing a specific dimension

associated with the dataset, and the value in that dimension corresponds to the extent to which

the item exhibits the factor, or the user enjoys items that possess the factor. For example, one
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possible dimension could encapsulate the extent to which a movie displays characteristics of

romance vs. action, or whether it is geared towards male or female audiences. The strength of

the matrix factorization model is that it learns these dimensions from the data itself, rather than

requiring predetermined content features for each user and item. However, this comes at a cost

of model interpretability. In most cases, it is possible to analyze the learned factor values for

individual users and items to determine an interpretation of the factor dimensions, but this is not

always feasible.

This model is trained using a squared error loss function along with an L2 regularization

term, and the parameter values are optimized using stochastic gradient descent. The matrix

factorization model is scalable and easily extensible, and thus forms the basis for many later

state-of-the-art recommender system approaches. Even in the winning Netflix prize submission,

Koren et al. do not rely solely on the basic matrix factorization model described above. Instead,

they extend the model by adding implicit feedback data, varying confidence levels of observed

ratings, and incorporating temporal dynamics [27]. For temporal dynamics, some of the bias and

factor parameters are updated to evolve as a function of time, either by learning a parameterized

form or by bucketizing the input data and learning multiple independent values. The resulting

model equation thus becomes:

r̂ui = µ +bi(t)+bu(t)+qT
i pu(t) (2.7)

In most cases, adding additional data to matrix factorization helps to improve perfor-

mance, as the model is able to rely on the additional signals provided by this new data to learn a

more generalizable function. In [29], the best performing models were those that incorporated
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temporal dynamics, demonstrating the importance of appropriately modeling time when creating

a successful recommender system model.

2.4 Markov Chains

The next overall category of recommender systems is Markov chain models. Markov

chains are stochastic models in mathematics that describe probabilistic sequences of events. They

consist of a series of states with a matrix describing the probability of transitioning between any

pair of states. The “Markov” of Markov chains comes from the Markov property, which states

that the probability of transitioning to the next state only depends on the current state, and not

any previous historical state sequence. This is why we can describe transition probabilities as a

matrix from previous to next states, rather than as a higher order tensor starting from a longer

sequence of previous states.

With regards to recommender systems, Markov chain models operate on the intuition

that sequential dynamics are important for making recommendations. In the matrix factorization

model discussed above, the predicted rating between a user and item depends only on the

identities of the user and item, and not on which items a user has recently interacted with. This

is inconsistent with most intuition, as we should expect the item that will be purchased or rated

next by a particular user to be related to their previous interaction sequence. Markov chain and

related models are often applied in implicit feedback settings, where the goal of the recommender

system is to determine which items a user will view or purchase next, rather than the rating that

will be given to that item. For example, in the Netflix case, if the five most recent movies that a

user watched are in the “Action” genre, then we should expect an increase in the probability that

the next movie will be an action movie.
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The Markov property comes into play with recommender systems as well, representing

the simplifying assumption that the next interaction only depends on the most recent interaction,

rather than a longer sequence of previous events. This assumption considerably simplifies Markov

chain-based recommendation models and also improves their scalability and generalizability. In

particular, a model that relies on a longer sequence of previous items has a considerably higher

risk of overfitting to the sequences in the provided training set, and appropriate precautions must

be observed to maintain adequate generalization performance.

In 2010, Rendle et al. proposed the Factorized Personalized Markov Chain (FPMC)

model for recommendation [43]. This model combines aspects of Markov chain and matrix

factorization models, learning latent user and item factors of low dimensionality while also

considering sequential behavior by taking the previous item into account. Empirically, combining

these models enables FPMC to outperform both raw matrix factorization and Markov chain

approaches.

In [43], Rendle et al. apply FPMC to the task of next-basket recommendation, e.g. recom-

mending a set of items that a user will purchase next, such as a shopping cart on an e-commerce

site. Formally, given a sequence of user baskets Bu = (Bu
1, . . . ,B

u
tu−1), the task is to recommend

Bu
tu , the entire basket of items that will be purchased at the next time step. The model aims

to learn a probability that each item will appear in the next basket, given the user and the set

of previous items. This leads to a three-dimensional probability tensor A, with independent

dimensions for users, previous items, and next items. In particular, the entry au,l,i represents the

probability that item i will be in the next basket for user u, given that item l was in the previous

basket.

au,l,i = P(i ∈ Bu
tu|l ∈ Bu

tu−1) (2.8)
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It is infeasible to learn a cubic number of transition probabilities, so FPMC uses the

Tucker Decomposition to convert the overall tensor into a combination of factorized matrices.

In particular, FPMC defines six parameter matrices: VU,I and V I,U to model the interactions

between the user and the next item i; VU,L and V L,U to model the interactions between the

user and the previous item l; and V I,L and V L,I to model the interactions between the previous

item l and the next item i. For the item recommendation task, the user-previous item (U,L)

decomposition is redundant, and can be removed from the prediction equation. Using these

factorized matrices, FPMC computes predictions as follows:

P(i ∈ Bu
t |Bu

t−1) = 〈vU,I
u ,vI,U

i 〉+
1
|Bu

t−1|
∑

l∈Bu
t−1

〈vI,L
i ,vL,I

l 〉 (2.9)

In order to recommend a specific basket, these values are calculated for each proposed

item i, and the items with the highest predicted probabilities are returned. These probabilities

are calculated by summing over the respective transition probabilities for all previous items l in

the most recent basket. The model is learned using stochastic gradient descent with the S-BPR

optimization criterion. S-BPR, or Sequential Bayesian Personalized Ranking, is a comparison-

based optimization approach which maximizes the difference between correct and incorrect

predictions and is widely used for ranking tasks [43]. S-BPR will be discussed in detail in the

next section.

We next discuss Personalized Ranking Metric Embedding (PRME), proposed by Feng

et al. in 2015 [15]. The main insight of this model is that it moves beyond the inner product to

model interactions between users and item factors, instead relying on the Euclidean distances

between locations in a shared embedding space. The model was proposed to address the next
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point of interest (POI) recommendation task, where a sequence of user visits to various points

of interest is observed and the recommender system provides a new POI to visit next. In order

to determine which POI to recommend, all POIs are embedded in a shared latent space and the

probability of a sequential transition between two objects is given by the Euclidean distance

between them. Items located closer together in the space are more closely related, so a higher

translation likelihood is expected.

Formally, PRME is defined as follows. The model defines a user preference space XP

which represents the personalized recommendation component. A user and item located close

together in this space represents a higher user preference for the item. A sequential transition

space XS is also defined, in which the Euclidean distance between two items represents the

likelihood of a sequential transition between them. The model computes the “distance” between

the previous POI lc and the next POI l for user u as follows:

Du,lc,l = α||XP(u)−XP(l)||2 +(1−α)||XS(lc)−XS(l)||2 (2.10)

Where α is a hyperparameter determined using a validation set. As with FPMC, PRME is trained

using the BPR optimization technique using the maximum likelihood approach.

Intuitively, the metric embedding approach outperforms traditional inner products due to

the additional generalization performance gained from the triangle inequality. By representing

users and items as points in metric spaces, the model is able to cluster related users and items

together in the preference space, and related sequential transitions in the sequence space. The

triangle inequality, a property of the Euclidean distance metric used by the model, states that if

two pairs of items a,b and b,c are located close together, then the pair a,c should be located close
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together as well. This facilitates generalization, as if the original two translations are observed,

then it is highly likely that items a and c are closely related, even if the specific transition a,c is

not observed in the training set. Therefore, by enforcing the triangle inequality, the model ensures

that these transitive relationships are maintained, which leads to more accurate predictions if

these unobserved transitions appear in future test examples.

2.5 Bayesian Personalized Ranking

Next, we discuss the BPR optimization technique for learning recommender system

models that rely on implicit feedback [42]. In most rating prediction recommender systems, such

as the standard matrix factorization model discussed above, the squared error loss function is

employed. This loss function aims to minimize the squared difference between predicted and

observed ratings and is one of the most commonly used loss functions in all of machine learning.

It works well when a real number is to be predicted, as is the case when the recommender system

is trained to output a predicted rating value as a real number. In the implicit feedback case, such

as where the input data to the algorithm consists of binary interactions or purchases, the model

can be trained to output a probability of a future interaction between user u and item i, using the

Sigmoid function σ(x) = 1
1+e−x . In such cases the logistic loss is commonly used, as defined

below:

L = ∑
yi=1

logPr(yi|Xi)+ ∑
yi=0

log(1−Pr(yi|xi)) (2.11)

The above two loss functions, and many commonly used alternatives, are intended to

optimize the model’s predicted values directly. In the squared error case, the loss function

attempts to tune the model such that the output rating most closely matches the observed rating,

and in the logistic case, predictions for observed examples are tuned to have high probability,
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while unobserved examples are trained to have predicted probabilities close to zero.

However, these loss functions do not adequately model most recommendation scenarios.

In the majority of practical cases, a recommender system is not intended to directly predict an

output rating or probability of purchase, but rather is applied to a ranking task. Specifically, in

most cases where recommendations are visible, the system is expected to provide a list of the top

n items that the user will be most likely to purchase. The exact order of the items within this list

is less relevant, as long as the items contained within the list are more relevant to those which are

excluded.

Bayesian Personalized Ranking (BPR), introduced by Rendle et al. [42], is intended to

address this problem. BPR specifies an optimization function tailored to the ranking task, so that

recommender systems can be appropriately tailored to the task that they are intended to solve.

BPR is also model agnostic. It is defined as an optimization step that takes as input the output of

a rating or purchase prediction model, and so excels as a general-purpose optimization criterion.

Intuitively, rather than learning the output values of the constituent model directly, BPR aims

to learn a ranking over all items. This means that for any given positive example, the model

output should be greater than the corresponding output for a negative example. By using such an

optimization criterion, the model learns to rank relevant items ahead of irrelevant items, a much

more natural technique for ranking-oriented recommender systems.

Formally, the BPR model aims to learn a personalized total ranking >u⊂ I2 over all pairs

of items. The model defines the probability that user u prefers item i over item j as follows:

p(i >u j|Θ) = σ(x̂ui j(Θ)) (2.12)
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Where x̂ui j(Θ) is a real-valued scalar that captures the relationship between u, i, and

j. The computation of x̂ui j is delegated to the underlying model class. Using a maximum

a-posteriori estimator, the BPR optimization criterion can be defined:

BPR−Opt = ∑
(u,i, j)∈Ds

lnσ(x̂ui j)−λΘ||Θ||2 (2.13)

In most cases, BPR is used with algorithms that model the interaction between a user

and a single item. In such cases, the relationship term x̂ui j can be represented as the difference

between the raw predicted values: x̂ui j = x̂ui− x̂u j.

In order to optimize a model according to BPR, [42] presents the LearnBPR algorithm,

which is a combination of random sampling and stochastic gradient descent. In order to perform

an optimization step, the algorithm requires a user u, a positive item i, and a negative item j. The

users and positive items are typically included along with standard training sets. However, as the

vast majority of possible interactions are unobserved, it is infeasible to calculate the gradient

over all user-positive item-negative item triplets. So, LearnBPR uniformly samples a (u, i, j)

triplet at each training step, followed by an SGD optimization step.

Finally, we note that BPR is analogous to optimizing the AUC, or area under the ROC

curve. The AUC is a commonly used ranking metric that aggregates the relationship between the

true positive and false positive rate of a classifier. It can also be interpreted as measuring the

fraction of triplets in the dataset for which the positive item is ranked ahead of the negative item.

Formally:

AUC =
1
C ∑

(u,i, j)∈Ds

δ (x̂ui j > 0) (2.14)

Where C is a normalization constant enforcing the AUC value to be between 0 and
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1. This is analogous to BPR, except the AUC uses the step function δ (x) whereas BPR uses

the differentiable Sigmoid function. This means that models trained using BPR are trained to

maximize the AUC, making the BPR method particularly well suited to the ranking task.

2.5.1 Sequential BPR

The above BPR approach optimizes a personalized item ranking independently of the

sequence of user interactions. For sequential data, a related approach can be derived called

Sequential Bayesian Personalized Ranking (S-BPR) [43]. This approach is analogous to BPR

but rather than optimizing a global total ordering >u for each user, a total order >u,t is optimized

for user u at time t, taking the sequential nature of their consumptions into account.

In the S-BPR case, the probability that user u prefers item i over item j at time t is given

by:

P(i >u,t j|Θ) = σ(x̂u,t,i− x̂u,t, j) (2.15)

The derivation proceeds similarly, but rather than summing over all triplets (u, i, j), S-

BPR also incorporates a temporal component. For FPMC in particular, each user u is associated

with a set of item baskets Bu, giving the following optimization criterion:

argmaxΘ ∑
u∈U

∑
Bt∈Bu

∑
i∈Bt

∑
j/∈Bt

lnσ
(
x̂u,t,i− x̂u,t, j

)
−λΘ ||Θ||22 (2.16)

We apply the S-BPR approach to optimize TransRec and our proposed extensions.

2.6 Factorization Machines

Most recommender system algorithms, including those discussed above, operate on user

and item interactions, which are then associated with corresponding latent feature vectors. For
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example, in matrix factorization, each user is associated with a latent vector qu and each item is

associated with a latent vector pi. These models are designed for a training dataset that simply

consists of a history of user-item interactions, without any additional data.

Additional sources of data can be incorporated into matrix factorization and other rec-

ommender system models, such as temporal data, social network connections, sequential data,

and geographical information. However, the format of the model must be updated to take these

data sources into account, e.g. by adding new bias, interaction, or regularization terms. This

contrasts with most machine learning algorithms in other domains, which operate on arbitrary

feature vectors and output values. When training a neural network or support vector machine, for

example, the model is agnostic to the specific application, and instead aims to learn the function

that transforms input feature vectors into desired output values.

Factorization Machines (FMs) [41], aim to bridge the gap between factorization methods

for recommender systems and models that work with arbitrary feature vectors; a Factorization

Machine is a general predictive model that operates on arbitrary feature vectors and outputs.

FMs are designed to work well in problems with high sparsity, such as recommender systems,

by modelling higher order interactions between features with factorized parameter vectors. They

are also efficient, with the model equation requiring only linear time computation and storage

requirements. This allows them to scale to massive datasets similar to those commonly seen in

recommendation tasks. Finally, Factorization Machines are a general-purpose model that can

subsume many commonly used recommender system algorithms by selecting appropriate feature

vectors, including Matrix Factorization [29], SVD++ [26], and FPMC [43].

Formally, the model equation for a Factorization Machine is specified as follows. Given

26



an input feature vector~x, the predicted output value ŷ is:

ŷ(~x) = w0 +
n

∑
i=1

wixi +
n

∑
i=1

n

∑
j=i+1
〈~vi~v j〉xix j (2.17)

Where the learned model parameters are the global bias w0 ∈ R, linear factors ~w ∈ Rn,

and factorization terms V ∈ Rn×k. n is the feature dimension of the xi, and k is a prespecified

latent dimension.

As compared to SVMs with a quadratic polynomial kernel, FMs do not learn a single

parameter for every pair of input features. Instead, they learn a set of factors for each feature

and use the inner product to weight higher order interactions between respective features. With

a properly chosen feature dimension k, this facilitates improved generalization performance

by reusing parameters across the model and reducing the number of parameters that must be

learned.

As they simply specify a model prediction function, FMs can be trained using any loss

function or training method, but stochastic gradient descent using the square or logistic loss is

commonly used. BPR is also used to optimize factorization machines when applied to ranking

problems in recommender systems. Their flexibility and ability to work with arbitrary feature

vectors make Factorization Machines a method of choice for a wide variety of applications, in

recommender systems and related domains.

Various chapters in this thesis include material that has been submitted for publication as

it may appear in RecSys 2018, Pasricha, Rajiv; McAuley, Julian, ACM, 2018. The thesis author

was the primary investigator and author of this paper.
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Chapter 3

Literature Review

In this chapter, we summarize and review relevant literature in a variety of subfields of

recommender systems. In particular, we describe many extensions to the basic models previously

discussed that draw upon additional sources of data commonly found in recommendation

settings, as well as additional methods in the field of machine learning as a whole that have been

successfully applied to improve recommendation performance.

3.1 Matrix Factorization

We first discuss some extensions to and applications of the standard matrix factorization

recommender system model. As previously discussed, matrix factorization models exploded

in popularity due to their success in the Netflix Prize competition and have remained among

the best performing recommender system models ever since. However, the strength of the

matrix factorization framework is not in the performance of the original model. Instead, matrix

factorization is one of the most extensible recommendation frameworks, and significant per-

formance gains have been achieved by adding additional features or complexity to the model.

For reference, the standard matrix factorization model includes user and item biases, and an

interaction component between low-dimensional factors associated with each user and item and
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derived from the provided rating or purchase history.

r̂ui = µ +bu +bi +qT
i pu (3.1)

In [45], Sembium et al. apply the matrix factorization framework to recommending

products of appropriate sizes to customers on Amazon.com. This model is applied to shoe sizes in

particular, a challenging problem as shoe sizes tend to differ significantly between manufacturers,

forcing users to compensate for manufacturer bias when making online purchases. In particular,

[45] defines latent factors that encode the predicted true size of each user, irrespective of a

particular shoe manufacturer. This enables size recommendations to be made by comparing

a user’s true size with the direct measurements of each provided manufacturer size option.

Formally, this is done by defining a loss function that imposes different penalty on the true size

value, based on whether the user reported a small, large, or precise fit.

Probabilistic Matrix Factorization (PMF) is a probabilistic version of the matrix factor-

ization technique [35]. PMF aims to solve the same problem as matrix factorization but takes a

probabilistic approach. A probabilistic model with Gaussian noise is adopted, placing Gaussian

priors on user and item feature vectors. Given these distributions and the desired outputs, the

model maximizes the log-posterior distribution over movie and user features, which is equivalent

to minimizing the mean squared error with L2 regularization. Thus, PMF becomes nearly

equivalent to matrix factorization, but the probabilistic derivation allows the model to be more

straightforwardly extended probabilistically. Some examples are as follows: (1) introducing prior

distributions on the regularization hyperparameters allows model complexity to be automatically

derived from the training data, and (2) enforcing similar prior means for similar users facilitates
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improved recommendation performance on infrequently observed users.

An additional example that shows the impressive extensibility of matrix factorization is

[26], where matrix factorization models are combined with neighborhood-based collaborative

filtering approaches. This allows the combined model to draw upon the advantages of each

constituent approach, improving performance beyond each model independently.

By extending user factors with neighborhood terms, the model is able to explicitly

incorporate the relationships between each user and the explicit and implicit signals in his or her

neighborhood of items. These relationships might not be extracted as clearly if only the matrix

factorization component were used, and the performance gains afforded by learning implicit user

and item factors are not incorporated into a purely neighborhood-based model.

Finally, we discuss CoFactor, proposed by Liang et al. [30]. Starting with the original

matrix factorization model, CoFactor adds an additional optimization term that takes into account

the item co-occurrence matrix. In particular, the item co-occurrence matrix encodes the frequency

with which every pair of items i and j is purchased or rated together by the same user, forming

another measure of the similarity between two items. This information is incorporated into

matrix factorization by factorizing the shifted positive pointwise mutual information (SPPMI)

matrix M.

The item factors βi are shared between the matrix factorization and co-occurrence

components of the objective function, leading to the desired regularization behavior where βi must

account for both user-item and item-item interactions. This helps regularize similar items, which

tend to be purchased together, to have similar embeddings, improving the model’s generalization

behavior. One distinct advantage of CoFactor is that item co-occurrence information is present

in all recommender systems datasets, making the model applicable in any situation.
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While we have only provided a short list of matrix factorization extensions above, a

large number of models that will be discussed in future sections incorporate elements of this

framework.

3.2 Markov Chains and Sequential Recommendation

Next, we discuss recommender system approaches that adopt the Markov chain approach

to making recommendations. Markov chain recommendation models are especially well suited

to making sequential recommendations, where the next item to be rated or purchased by a given

user depends on the previous items in the user’s consumption sequence. Non-sequential models

such as matrix factorization only take a single user and item into account and predict a rating

or probability of consumption regardless of the order in which the items were consumed. Two

influential sequential recommender systems are FPMC and PRME, previously discussed in

Chapter 2. In this section, we present a selection of extensions to these models as well as some

additional sequential recommender systems.

In [7], Benson et al. analyze user consumption sequences in the context of recommender

systems. In particular, they discuss two common phenomena observed in consumption sequences,

namely boredom and abandonment. Specifically, they observe that the majority of repeated

consumptions do not occur frequently throughout the entire sequence. Instead, they occur spo-

radically from the start of their observed occurrences, decreasing in frequency over the course of

their lifetime as the user becomes bored of consuming the same item. The boredom phenomenon

is characterized by steadily increasing temporal gaps between the user’s repeated consumptions

of the item. Eventually, the user purchases the item for the final time, a phenomenon termed

abandonment. [7] analyzes these phenomena in a variety of real-world datasets, observing
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that the phenomena of boredom and abandonment occur consistently and predictably across

sequences in all datasets.

A combination of three models is proposed to take the above effects into account, first, a

“temporal model” predicts the inter-arrival times in a user’s sequence ∆i+1 = ti+1− ti. Next, a

“novelty model” determines whether the user will purchase a novel item in the next time step, or

repeat a purchase previously made earlier in the sequence. Finally, the “choice” model determines

the identity of the item to predict, chosen from either the set of non-purchased items for a novel

consumption, or the set of previously purchased items for a repeat consumption. Although

boredom and abandonment are not explicitly encoded into the three models, the authors find

that the parameters of the trained models cause these trends to be observed in item predictions,

highlighting their significance in user consumption sequences.

In [11], Chen et al. propose the Latent Markov Embedding (LME) model to generate

music playlists. This model combines aspects of Markov chain models for sequential recommen-

dation with metric embeddings. The first variant of LME represents each song by a single point

in a latent embedding space and models the transition probabilities between adjacent songs in a

playlist by the distance between their respective embedding locations.

A dual-point model is also proposed, where each song is represented by two points U(s)

and V (s) in the embedding space, representing the “entry” point and “exit” points of the song

respectively. This is to model unique characteristics associated with songs that come before and

after a particular song in a playlist. Songs that come before a given song might have significantly

different characteristics from songs that come after and allowing for two points per song takes

this effect into account.

The LME model does not require content features for each song in a playlist, and also
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facilitates playlist generation and discovery. The authors also highlight the extensibility of their

proposed model framework, demonstrating the ability to add additional features such as song

popularity, user personalization, and semantic tags.

Wang et al., in [53], propose a Hierarchical Representation Model (HRM) for next-basket

recommendation. As was the case with FPMC, the model aims to predict the next basket of items

that will be purchased, such as a shopping cart or a playlist with multiple items. HRM combines

both sequential and personalized dynamics to improve predictive performance. The model relies

on aggregating multiple factors to form a concise hybrid representation encapsulating both the

user and previous items. Formally, the HRM model learns an embedding of users and items in a

low-dimensional latent space and aggregates these latent representations to construct a hybrid

representation of a user’s last transaction.

To construct the hybrid representation, HRM applies aggregation operations on the user

and previous item representations. The two aggregation operations discussed are average and

max pooling over the constituent vectors. The max pooling operation introduces a nonlinear

component into the model, and thus achieves better performance on the datasets considered.

Given aggregation functions f1 and f2, and the previous basket T u
t−1, the hybrid representation is

constructed as follows:

~vHybrid
u,t−1 = f2

(
~vu, f1

(
~vl ∈ T u

t−1
))

(3.2)

The model computes the probability of a proposed item being contained within the

next basket according to the inner product between the proposed item and the hybrid repre-

sentation. The model can be trained by applying stochastic gradient descent to maximize the

log-likelihood over the observed baskets in the training set. The authors of [53] also show that

by selecting specific aggregation functions, the HRM model can reduce to the Markov Chain,
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Matrix Factorization, or FPMC algorithms for recommendation, highlighting its generality and

extensibility.

Finally, we discuss Fossil, a model proposed by He and McAuley that combines Markov

chain and similarity-based recommendation models [20]. While Markov chains excel at sequen-

tial recommendation tasks, similarity-based models facilitate improved prediction performance

on datasets exhibiting high sparsity, by enforcing the constraint that recommendations for a

given user u should be similar to those items previously consumed by u. Similarity-based models

are related to the neighborhood-based collaborative filtering models previously discussed and

improve generalization performance by reducing the number of parameters that must be learned

and by taking transitive item-to-item relationships into account.

Fossil builds on FPMC and a state-of-the-art similarity recommendation model, called

Factored Item Similarity Models (FISM). FISM applies the matrix factorization approach to the

item-to-item similarity matrix W , factorizing it into two low-rank matrices W = PQT , which

significantly improves performance. To reduce the number of parameters that must be learned,

Fossil enforces equality among the low-rank item matrices, encoding the intuition that similar

items should also be sequentially related.

This model can be trained using sequential Bayesian Personalized Ranking (S-BPR),

optimizing the maximum a posteriori (MAP) estimation. Evaluating the results, the authors

observed that the Fossil model outperformed existing baselines and was able to successfully

capture both sequential and personalized dynamics, relying more on sequential dynamics for

users with few observed actions and vice versa.
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3.3 Temporal Dynamics

Next, we discuss two recommender system models that extend basic algorithms by

incorporating temporal dynamics. From a practical perspective, In addition, temporal information

is included in the majority of recommender system datasets, as every rating, purchase, or

interaction in a commercial system happens at an associated timestamp. As a result, most

commercial recommender systems rely on temporal dynamics to improve recommendation

performance, and temporal data is incorporated into a large number of proposed academic

models as well.

We first discuss Time Weight Collaborative Filtering, proposed by Ding et al. [14].

This model extends basic item-to-item collaborative filtering, a simple neighborhood-based

collaborative filtering model which makes recommendations by selecting items similar to those

a user has already purchased. While the item-to-item model sacrifices elements of complexity

found in matrix factorization and other state-of-the-art models, it is extremely scalable [31]. In

particular, the expensive item-to-item similarity table is computed offline and requires quadratic

complexity. The online recommendation algorithm scales linearly with the number of items

rated or purchased by a customer, rather than the total number of users or items in the dataset. As

shown on Amazon.com, given a massive dataset, this algorithm scales effectively and provides

quality recommendations.

Time Weight Collaborative Filtering introduces a temporal scaling parameter to the

prediction equation. The temporal function proposed in the paper is the simple exponential

function f (t) = e−λ t . This means that items rated long ago have an exponentially decaying

effect on the predicted rating for future items. This additional temporal component significantly
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improves the performance of the item-based collaborative filtering algorithm, measured in Mean

Absolute Error, while maintaining the desired scalability properties of the original algorithm.

For temporal extensions to the matrix factorization model, we turn to Bell et al.’s 2008

progress report for the Netflix Prize competition [4]. During this year, Bell, Koren, and Volinsky

had the best performing ensemble model of the competition, and so published a report detailing

the algorithms used to achieve that benchmark. Their model was a combination of over one

hundred individual recommendation algorithms, each contributing to the final prediction. While

not all of these algorithms make use of temporal data, the most significant improvement in

performance resulted from the incorporation of temporal dynamics into the matrix factorization

framework. There are a variety of temporal models discussed in [4], and we discuss one example

formulation here.

The goal of a temporal matrix factorization algorithm is to define a framework for

learning parameters as a function of time, resulting in a model form of:

r̂ui = µ +bu (t)+bi (t)+qT
i pu(t) (3.3)

In particular, user biases, item biases, and user factors are learned to be temporally-

dependent. These have the following intuitive interpretations. Temporal user biases account

for users changing their baseline biases over time, for example users becoming more generous

in their rating behavior. A time-dependent movie bias accounts for the changing popularity of

movies over time. For example, a movie may be very highly regarded soon after it is released

but decreases in the ratings it receives over time. Finally, time-dependent user factors account

for changing user preferences, such as a user gradually developing a taste for action movies and
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losing interest in horror films.

The following temporal parameters are proposed for the above time-dependent parameters.

For item biases, the dataset is split into 30 bins, and an individual item bias parameter is learned

for each bin. This is feasible given the large size of the Netflix data, and the repetition observed

in the majority of item ratings.

User biases are parameterized using two approaches. The first introduces very few

additional parameters but is also less flexible, scaling the parameter value by the distance from

the mean time of all user interactions. Given the mean rating date tu, the temporal bias term

becomes:

b(1)u (t) = bu +αu · sign(t− tu) · |t− tu|0.4 (3.4)

An alternative approach is to bin the training set in a similar manner to the item biases,

learning an independent bias term for every user and using a bin size of one day, giving:

b(2)u (t) = bu,t (3.5)

In the overall model, these two parameterizations are combined together, giving:

b(3)u (t) = b(1)u (t)+b(2)u (t) (3.6)

An equivalent parameterization is applied to each component of the user factors, giving a

parameterized form for index k of user vector pu as:

p(3)uk (t) = puk +αuk · sign(t− tu) · |t− tu|0.4 + puk,t (3.7)
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These temporal parameters can be substituted into the matrix factorization prediction

equation, but in [4] are substituted into the combined matrix factorization-neighborhood model

SVD++. The above temporal formulations introduce a significant number of additional param-

eters to be trained from the data. However, given the large size of the Netflix prize dataset,

the temporal model was able to be successfully trained using stochastic gradient descent and

achieved significantly improved RMSE performance than comparable models that did not take

temporal information into account.

3.4 Neural Networks

Given the rapid rise in popularity of neural networks and deep learning algorithms in

recent years, many algorithms have been proposed which apply neural network techniques to

the recommendation task. Well-designed neural network models excel at learning to encode

relevant features that assist in improving prediction performance. They also encode a level of

nonlinearity typically not present in the standard matrix factorization model. As a result, this

facilitates more complex models but also increases the risk of overfitting due to the high sparsity

in most recommender system datasets. We will cover two recommender system models that

incorporate neural networks to improve their prediction performance.

First, in [21], He et al. propose a model called Neural Collaborative Filtering (NCF),

which extends the matrix factorization model by replacing the inner product term with an

arbitrary feedforward neural network, also known as a multilayer perceptron (MLP). This

adds nonlinearities to the matrix factorization framework and leads to significant performance

improvements on a variety of datasets.

The model starts by learning a latent factor matrix P for users and Q for items, as is the
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case in the standard matrix factorization model. However, rather than simply taking the inner

product of these two latent vectors, in the NCF models they are used as inputs to an MLP. Each

layer in the MLP is able to learn a higher level feature representation building upon the weights

in lower layers, with the most complex features used to calculate the output ŷui. To train the NCF

model, [21] employs the Adam [25] optimization algorithm to optimize the binary cross-entropy

loss.

NCF provides significant improvements in recommendation performance over matrix

factorization models without a neural network component. Interestingly, adding additional

hidden layers to the MLP leads to increased recommendation performance, and the authors leave

additional room for investigation on deeper or more sophisticated neural network components.

Another advantage of the model is that it takes as input arbitrary feature vectors for users and

items, facilitating the easy inclusion of content or related features.

We next discuss [22], which proposes a sequential recommendation algorithm based on

recurrent neural networks. Similar to Markov chains as recommendation algorithms, recurrent

neural networks (RNNs) are the sequential equivalent of neural networks. However, unlike

Markov chains, RNNs can encode much longer-term dependencies via internal states.

Rather than a standard RNN, a Gated Recurrent Unit (GRU)-based network is used as a

more elaborate model that attempts to mitigate the vanishing gradient phenomenon commonly

observed with vanilla RNNs [13]. A GRU consists of a linear update equation for the hidden state

of each recurrent unit, which depends on the values of an “update” and “reset” gate computed as

functions of the input features and hidden state at the previous time step.

Within the context of recommendation, the GRU RNN model is applied to session-based

recommendations, where a sequence of closely-occurring recommendations for each user is
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grouped together to form a session. Intuitively, a session typically corresponds to a single

browsing or shopping session on an e-commerce website, and the interactions within a single

session are typically assumed to be closely related. In particular, the input feature for each item

in the session is passed through an embedding layer to a sequence of GRU layers, which update

their hidden states and alter the output values for the layer based on previously observed items in

the session. Finally, the output of the final GRU layer is passed through standard feedforward

layers to compute output probabilities over all items in the corpus.

The authors of [22] apply ranking-based loss functions to train the model, including the

standard BPR loss and a new proposed loss function TOP1, which directly optimizes the rank

of relevant items. A variety of experiments are performed, testing a variety of architectures,

loss functions, recurrent units, hidden layer sizes, etc. The best performing models are able

to achieve accuracy gains over the best performing baseline models of around 20-30%. This

result was further improved upon by [40], which added a second recurrent network to handle

inter-session dynamics. The significant performance gains by these neural network models,

along with a variety of additional recently proposed models that incorporate neural networks

with recommendation algorithms, are promising for the development of future algorithms that

combine state-of-the-art approaches in the fields of both recommender systems and deep learning.

3.5 Factorization Machines

Given their simplicity and applicability to a variety of machine learning tasks, FMs have

been extended in a variety of ways since their introduction. While traditionally applied in the

recommender systems domain, FMs are an arbitrary predictive model that operate on arbitrary

feature vectors. This facilitates the easy incorporation of content features, without requiring
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significant changes to the form of the model itself. [54] incorporates features of skip-gram

and other text mining algorithms to apply FMs to sentiment classification, and [46] includes

FMs in a multi-stage predictive model to extract relevant reviews for recommendation. Finally,

[23, 24] propose domain-specific models applying FMs to content modeling on Twitter and CTR

prediction in advertising.

FMs and related hybrid algorithms aim to improve performance and make useful recom-

mendations to “cold-start” users and items (with few observed interactions) by incorporating

additional sources of information. These include temporal [28, 16], social [10, 17], and ge-

ographical [37, 52] features. Recent hybrid approaches have incorporated image features to

improve content-based or next POI recommendation [55], and applied deep learning techniques

to automatically generate useful content features [49] or introduce additional modeling flexibility

[21]. However, while these hybrid models achieve state-of-the-art performance compared to

baseline approaches, they all rely on specialized models and techniques to incorporate additional

features.

Various chapters in this thesis include material that has been submitted for publication as

it may appear in RecSys 2018, Pasricha, Rajiv; McAuley, Julian, ACM, 2018. The thesis author

was the primary investigator and author of this paper.
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Chapter 4

Translation-based Recommendation

In this chapter, we will discuss TransRec, proposed in 2017 by He et al., and extended

in this thesis [19]. Compared to the various approaches to recommender system algorithms

previously discussed, TransRec is a sequential recommendation algorithm that models interac-

tions between a user and a sequence of interactions, e.g. purchases. Given a user and their most

recently purchased item, the model predicts which item is most likely to be purchased next.

This contrasts with many commonly used algorithms, such as matrix factorization, that do

not take sequential data into account. These algorithms learn separate latent user and item factors

to develop a “profile” about each entity in the dataset. However, these models only take short

term information into account, specifically the current user and item, building a global profile

that does not account for the user’s recent behavior. On the other hand, sequential recommender

algorithms model third-order interactions, taking into account the user, previous item, and next

item when making recommendations.

The TransRec algorithm models these third-order interactions through a translation

approach. As with latent factor models, in the TransRec setting, users and items are embedded

into a common “translation space,” a unique interpretation of the recommendation task. Rather

than simply measuring interactions between individual users and items, the translation space
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facilitates modeling the entire sequence of items consumed by each user, interpreting user factors

as translation vectors moving through this shared space. By combining the sequential nature of

Markov chain algorithms with the latent factors common in matrix factorization approaches, the

proposed algorithm is able to achieve improved performance,

Translation-based recommendation is a novel framework that addresses the sequential

recommendation task by interpreting recommendations as “translations” through a latent space.

Intuitively, we have~γi +~tu ≈~γ j, where~γi and~γ j are item embeddings for the previous and next

item respectively, and~tu is user u’s personalized translation vector. This enables the authors

to create a model that successfully learns third-order interactions while remaining easily inter-

pretable. A distance function, such as Euclidean distance, is employed to determine compatibility

between the translation destination and the next item, i.e. d(~γi +~tu, ~γ j), maintaining the ad-

vantages provided by recommender system algorithms that employ metric distance functions,

specifically improved generalization characteristics provided by the triangle inequality. Finally,

in order to make predictions at testing time, e.g. for a deployed model, a nearest neighbor search

is employed, centered at the translation destination~γi +~tu.

One significant strength of this model is that it is easy to visualize a sequence of items

embedded in the latent space, with one user represented as a vector traveling along his or her

own personalized sequence through this space. Although this does not seem to be the case

when analyzing the learned embeddings, as will be discussed in future chapters, this is a useful

interpretation and devising a model along these lines leads to successful results.

Adopting a translation approach for sequential recommendation provides the follow-

ing advantages: TransRec can model complex third-order interactions with fewer parameters

compared to other techniques, and it employs a metric distance function to achieve improved
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Table 4.1. Notation for TransRec and proposed extensions

Notation Explanation

U , I user set, item set
u, i, j user u ∈ U , items i, j ∈ I
Su historical sequence of user u: (Su

1 ,Su
2 , . . . ,Su

|Su|)

Φ transition space; Φ = Rk

Ψ a subspace in Φ; Ψ⊆Φ

~γi embedding vector associated with item i;~γi ∈Ψ

~t (global) translation vector~t ∈Φ

~tu translation vector associated with user u;~tu ∈Φ

~ti translation vector associated with item i;~ti ∈Φ

~Tu ~Tu =~t +~tu; ~Tu ∈Φ

~Tui ~Tui =~t +~tu +~ti; ~Tui ∈Φ

βi bias term associated with item i; βi ∈ R
d(x,y) distance between x and y
δui j processed time delta between user u’s purchase of item i and item j
τui time associated with user u’s purchase of item i
θu translation vector scaling factor for user u
f ,g arbitrary multilayer perceptrons (MLPs) used in model predictions

generalization. Finally, its simple form enables it to be quite scalable, and it is easily able to

handle large datasets with millions of instances.

4.1 The Formal TransRec Model

The TransRec model introduced in [19] learns embeddings for each user and item in the

training dataset. Each user is associated with a personalized translation vector ~Tu, and each item

with latent factors~γi. The intuitive equation is~γi +~Tu ≈~γ j, encoding the desired personalized

translation relationship in the embedding space.

Table 4.1 provides the mathematical notation used in the original paper, as well as in our

extensions described in future chapters. In the original model, each user u ∈ U has a sequence of

items S =
(
Su

1 , Su
2 , . . . ,Su

|Su|

)
that the user has interacted with (e.g. rated or purchased). Given

this sequence of items, the algorithm attempts to predict the item most likely to be consumed
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next by the user.

Formally, given the latent space Φ = RK , TransRec learns a representation for each item

i, specifically ~γi ∈ Φ. The user offsets~tu are also learned. Due to the sparsity inherent in the

majority of recommender systems datasets, a global translation vector~t is learned along with

user-specific offsets~tu. This allows~t to capture global transition dynamics across users, allowing

“cold-start” users without many ratings to be regularized towards this average translation behavior.

On the other hand,~tu represents specific offsets from this average behavior for each user in the

dataset.

The probability that a user u transitions from previous item i to next item j is given by

the following expression:

P( j|u, i) ∝ β j−d
(
~γi +~Tu,~γ j

)
subject to~γ ∈Ψ⊆Φ, for i ∈ I

(4.1)

The subspace Ψ ∈Φ is also a form of regularization for the model. By restricting the~γi

terms to this subspace, this ensures that the item representations stay within a maximum level of

complexity, which is especially useful for items with less data present.

The loss function for the model is given by Sequential Bayesian Personalized Ranking

[43]. This means that the model is optimized according to the pairwise ranking with regards to a

positive item j and a negative item j′. As previously discussed, the goal of S-BPR is to learn a

model that ranks all examples with positive feedback over all examples with negative or missing

feedback. As the model relies on implicit feedback (purchases) rather than explicit feedback

(e.g. ratings out of five stars), the negative items j′ are items that the user has not interacted with

in the dataset.
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The S-BPR loss function is as follows. Given a user and previous item i, we would like

the positive item that follows i in the training set to be ranked ahead of all other items. Ω(Θ) is a

general L2 regularization term for the model’s parameters. In addition, p̂u,i, j is a shorthand for

P( j|u, i) described above.

Θ̂ = argmaxΘln ∏
u∈U

∏
j∈Su

∏
j′ /∈Su

P
(

j >u,i j′
∣∣Θ)P(Θ) (4.2)

= argmaxΘ ∑
u∈U

∑
j∈Su

∑
j′ /∈Su

lnσ
(

p̂u,i, j− p̂u,i, j′
)
−Ω(Θ) (4.3)

In order to learn the parameters of this model, the authors use stochastic gradient descent

with random sampling. First, a user u ∈ U is randomly sampled. Next, a positive item j and

negative item j′ are sampled from Su\Su
1 and I\Su respectively. Let i be the item that comes

immediately before j in user u’s sequence. Given u, i, j, and j′, the parameters of the model are

updated according to stochastic gradient descent.
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Chapter 5

Proposed Models and Extensions

In this chapter, we present a variety of extensions to the original TransRec model. The

overall idea behind these extensions is to introduce additional sources of information into the

model, in order to evaluate whether the model is able to incorporate this additional information to

improve prediction quality. We also present a variety of models that add increased complexity and

nonlinear dynamics, in order to facilitate the learning of more complex sequential relationships.

Finally, we present a joint model that combines aspects of both TransRec and Factorization

Machines. This model combines the advantages of both prediction frameworks, specifically the

generality and extensibility of FMs along with the translation intuition and metricity assumption

of TransRec. Notation for our extensions is presented in Table 4.1, with TransFM-specific

notation in Table 5.1.

5.1 Item Offset Model

Our first proposed model incorporates item offsets into the learned translation vectors of

TransRec. Currently, TransRec learns a global translation term~t and a user-specific translation

offset ~Tu =~t +~tu. Intuitively, this means that each user is assigned a characteristic “translation”

in the derived item space, and that user will always move in that single direction through their
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sequence of interactions. This model works well when users tend to have similar translations

between adjacent items in their consumption sequences, regardless of the identities of those

items.

However, this user-specific translation model does not encapsulate the intuition of item-

to-item translation items. For example, if a given user watches the first item in a television series,

then they are move likely to watch the next item in the series as their next interaction. This effect

is independent of the user and is instead a characteristic of the item itself. Certain items will have

certain “next items” which tend to follow them in sequence regardless of the user performing the

interactions, and the TransRec model does not capture that notion.

To incorporate these item-specific effects, we define a translation term for each item,~ti.

We then update the translation vector to include the item-specific term, along with the global and

user translation terms: ~Tui =~t +~tu +~ti. This leads to the following model formulation:

P( j|u, i) ∝ β j−d
(
~γi +~Tui, ~γ j

)
(5.1)

5.2 Temporal Models

The next set of proposed translation models incorporate temporal dynamics into TransRec.

As previously discussed, recommender systems that incorporate temporal dynamics often exhibit

significantly improved performance over their simpler counterparts, and temporal information

is included in the majority of all recommendation datasets. This was the case even in the

Netflix Prize competition, which spurred significant interest in the field. Although latent factor

models performed well on the Netflix dataset, the most significant improvements to the models’
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performance came from incorporating temporal dynamics and implicit feedback into the matrix

factorization framework. We incorporated temporal dynamics into TransRec in a variety of ways,

some of which will be discussed later along with more complex model formulations.

5.2.1 Time Delta Model

The first proposed temporal model adds a scaling factor to the user-specific translation

vector. Intuitively, this corresponds to scaling the translation vector by the time delay between

the previous and next item in a user’s consumption sequence. If we imagine a user as moving

through the latent item space through a sequence of translations, then having a larger time delay

between two items in the sequence gives them additional time to perform a larger translation,

and so their translation vector can be larger. On the other hand, if the next interaction happens

immediately following the previous one, then their position in the space should not change very

much from the previous to the next item.

This also allows the model to learn the concept of “user sessions,” a sequence of user

interactions that occur in short succession, such as purchasing the items in a single shopping cart

or listening to a playlist of songs in one sitting. Items that tend to occur within single sessions

will have shorter time deltas between them, and thus should be located closer together in the

item space. Similarly, items that do not frequently occur simultaneously in observed sessions

will have a larger time delta, and thus a larger translation vector separating them, allowing them

to be located further apart.

Formally, we add a time delay term δui j to the translation model, representing the

difference between the observed timestamps for user u’s purchases of item i and item j. This

means that we now represent the probability of a user u interacting with item j after item i as

49



follows:

P( j|u, i) ∝ β j−d
(
~γi +δui j~Tu,~γ j

)
(5.2)

The δui j terms are not learned from the model but are instead computed as follows. Let

τui and τu j be the timestamps associated with the previous and next item interactions, respectively.

Based on the observed timestamps in our datasets, many pairs of items have very large time

deltas between them, on the order of years. So, we compute the difference between the two times,

after normalizing all timestamps in the dataset to have zero mean and unit standard deviation.

Next, we add a constant one-day offset so the translation vectors will never vanish. This gives:

δui j = τu j− τui +1 day (5.3)

5.2.2 Personalized Time Delta Model

The above time delta model assumes that all user translation vectors are affected equally

by the observed time deltas in their corresponding consumption sequences. However, it may

be the case that some users are affected differently by these temporal effects than others. For

example, one user’s translation vector may show significant scaling properties as they traverse

their sequence of items, while another may follow a sequence relatively unaffected by temporal

considerations.

In order to handle these potential differences, we introduce a time delta scaling factor θu

for each user u. This parameter is learned from the data during the model training process and

determines the effect that the time delta factor has on scaling the translation vector. Given this
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additional term, we update the probability of user u interacting with item j after item i as:

P( j|u, i) ∝ β j−d
(
~γi +θuδui j~Tu,~γ j

)
(5.4)

5.3 Neural Network Models

The next set of proposed models make use of neural networks to add nonlinear compo-

nents to the TransRec framework. Specifically, we use multilayer perceptrons (MLPs) to learn

arbitrary relationships between users and consecutive items in their consumption sequences.

One of the most significant limitations of TransRec is that each user is associated with a linear

translation vector which remains the same regardless of the user’s location in space or where they

are in their consumption sequence. This is likely an oversimplification of the true relationships

between the items in the dataset, especially when the positions of items in the latent space are

determined by all users that interact with them. The linear translation approach leads to enforcing

a rigid structure in the resulting item embeddings, encouraging item embeddings for items that

occur in a consumption sequence to be an equal distance away, even though it might be more

reasonable for certain related items to be located close together.

Another limitation of the linear translation structure is that it does not support repeated

transactions. For example, say a user u purchases item i, followed by item j, and then purchases

item i again. This is a common occurrence in many practical settings, and many datasets consist

of items that are purchased many times by a single user. However, in the TransRec framework,

once a user has purchased an item and followed his translation vector to the next item in the

sequence, it becomes impossible for his location in the embedding space to return back to the
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previous item. Adding nonlinear components facilitates more complex translation dynamics,

such as repeated transactions, translations of different magnitudes, or translations traveling in

different directions through the embedding space.

While it is possible to introduce nonlinearities through custom nonlinear model formula-

tions, this often involves a significant amount of trial and error to derive the model that is best

able to account for the nonlinearities present in the data. An alternative approach is to introduce

nonlinear dynamics via a more general model that is able to learn the relationships between the

input parameters from the data itself, without having to rely on a predetermined formulation.

Neural networks are ideal for this task, and there is currently significant activity related to adding

neural network and deep learning dynamics to recommender systems models.

5.3.1 Neural Network Translation Model

The first nonlinear model replaces the translation calculation with the output of a multi-

layer perceptron (MLP). In the original TransRec model, translations through the item space are

calculated according to~γi +~Tu, and the model attempts to bring this value as close as possible to

the latent representation of the next item~γ j.

Let the function f (·) be a shorthand for the MLP added to our model. The input

parameters to f are the input features provided to the MLP, and the output value is the output of

the network’s final layer. The Neural Network Translation model calculates the output position

in the latent space as f
(
~γi,~Tu

)
. This means that the probability that user u transitions from item

i to item j is given by:

P( j|u, i) ∝ β j−d
(

f
(
~γi,~Tu

)
, ~γ j

)
(5.5)

Even though we are adding an MLP to TransRec to represent complex nonlinear calcu-
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lations, the total number of parameters added to the model does not increase by a significant

amount. This is because the MLP is a global component of the model, and the same parameters

are used to compute the translations for all users and items in the dataset. Because of the global

nature of this component, we do not regularize the MLP parameters as the amount of data used

to learn the weights in the network vastly exceeds the number of weights in the network itself.

5.3.2 Neural Network Distance Model

An additional method of incorporating nonlinear characteristics is to directly estimate the

probability of transitioning from one item to the next in a user’s consumption sequence. Rather

than returning a point in the latent space which is then compared to the next item in the sequence

via Euclidean distance, as is done in the Neural Network Translation model, we can instead

estimate the probability of transitioning to the next item in the user’s sequence directly using the

MLP.

By replacing the Euclidean distance calculation with the output of the MLP, we are

essentially learning a custom distance function on the latent item space which is optimized for

the recommendation task. One downside of the model is that the output of the MLP does not

necessarily obey the triangle inequality, so it is not a true distance metric. While obeying the

triangle inequality allows information to propagate effectively to unseen user-item pairs, the

additional complexity of the MLP model might offset the performance penalty from not obeying

it.

Under the Neural Network Distance model, the probability of user u transitioning from

item i to item j is given by:

P( j|u, i) ∝ β j− f
(
~γi,~Tu,~γ j

)
(5.6)
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5.3.3 Neural Network Time Delta Models

The above two models train a neural network to either predict translations in the item

space, or directly predict the transition probabilities. We next experiment with adding temporal

information to the neural network models. As opposed to the explicit temporal models above, the

presence of an MLP will allow the model to learn how to most effectively utilize the provided

temporal information. For example, depending on the weights of the MLP, the model can learn

a positive, negative, or thresholding relationship from the interaction times, or it can learn a

relationship that is not immediately interpretable.

First, we propose adding the time delta from previous to next item to the MLP models.

These time deltas are timed using the same formulation as above, specifically δui j = τu j− τui +

1 day. Adding these time deltas, the Neural Network Translation model becomes:

P( j|u, i) ∝ β j−d
(

f
(
~γi,~Tu,δui j

)
, ~γ j

)
(5.7)

Similarly, the Neural Network Distance model becomes:

P( j|u, i) ∝ β j− f
(
~γi,~Tu,~γ jδui j

)
(5.8)

5.3.4 Neural Network Timestamp Models

In the models above, we added temporal information to the neural network models in

the form of deltas between the previous and next items in a user’s sequence. However, given

an MLP, we can instead add the raw timestamps and allow the network itself to learn the most

useful relationships between the temporal data and provided consumption sequences.
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Given that tanh is used as the MLP activation function for each layer, we see that adding

the raw timestamps is a strict generalization of the above models, which used the time deltas

between the previous and next item. In particular, setting the network’s weights and biases

appropriately can recover the exact time delta given input timestamps. This means that if the

time deltas are the more useful feature for making recommendations, this feature should be

derived from the raw input timestamps.

With raw timestamps, the Neural Network Translation model becomes:

P( j|u, i) ∝ β j−d
(

f
(
~γi, ~Tu,τui,τu j

)
, ~γ j

)
(5.9)

Similarly, the Neural Network Distance model becomes:

P( j|u, i) ∝ β j− f
(
~γi,~Tu,~γ j,τui,τu j

)
(5.10)

5.4 Session-based Models

The neural network models discussed above are effective at deriving the appropriate

translation dynamics by optimizing weights of the network from the data itself. This contrasts

with more explicit model formulations, which take additional sources of data or more complex

dynamics into account by adding them directly into the prediction equation. While not as flexible

as general models that employ MLPs to model arbitrary translations, these explicit models can

be effective in scenarios where the model’s assumptions are present in the observed datasets.

They also tend to perform well with sparse datasets, where there might not be enough data to

learn the complex dynamics afforded by a neural network model, hindering generalizability and
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performance.

In a previous section, we proposed extensions to the TransRec model that explicitly

modeled temporal dynamics. In this section, we extend TransRec to more explicitly model

session dynamics, while still maintaining some aspects of the flexibility afforded by the complex

neural network models.

5.4.1 Default-Origin Session Model

Our approach to modeling session dynamics in the TransRec framework is similar to the

MLP models discussed above, in that we would like to provide a high level of flexibility to the

model, allowing it to learn the most appropriate dynamics from the data itself. The “session”

dynamic enforced by this model is that each user has a customized trajectory that starts from the

origin, and travels along their linear trajectories for the duration of the session. At the end of the

session, the user’s location in the embedding space jumps back to the origin, allowing the user to

begin their translation process again, perhaps through a consumption sequence of items related

to those consumed in the first session.

Contrary to traditional session-based models, this model does not rely on explicit sessions

computed by thresholding the elapsed time between successive item transitions. It instead learns

the concept of sessions from the data itself, essentially splitting the observed consumption

sequences into a series of reduced sequences based on the user and identities of the items

themselves. We use a neural network g to predict the probability of continuing along the current

session, with 1−g being the probability of transitioning back to the origin to begin a new session.

Contrary to the neural networks proposed in the previous models, we only add one output unit

to this network, which uses the Sigmoid activation function σ (x) = 1
1+e−x to enforce that the

network output is a probability between 0 and 1. The probability of user u transitioning from
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item i to item j is thus as follows:

P( j|u, i) ∝ β j−d
(

g
(
~γi, ~Tu

)(
~γi +~Tu

)
, ~γ j

)
(5.11)

The probability of transitioning back to the origin is associated with a translation location

of~0, so it is not included in the model expression above. We see that this session-based model is

equivalent to simply scaling the translation vector by the output of the neural network g, which

takes the previous item embedding and user translation vector as input parameters.

5.4.2 Personalized-Origin Session Model

The next iteration of the explicit session based TransRec model updates the location to

where the user will transition upon the commencement of a new session. In the previous session

model, the user would transition back to the origin if the output of the neural network was small

and continue along their trajectory if the neural network output was large. The actual translation

destination was computed as a weighted average of these two locations.

However, simply transitioning back to the origin of the embedding space to begin a new

session may not be the most appropriate action for each user in the dataset. On the contrary, each

user may have a separate location where they transition to in order to commence their future

sessions. These personalized “home” locations for each user could be located near items that the

user tends to purchase frequently or aligned with frequently observed trajectories through the

space. Simply having all users transition back to the origin when starting a new session does not

take these additional dynamics into account, instead assuming that all users behave identically to

one another when they start a new session.

In the personalized-origin session model, we define a “home” location~hu for each user
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u. This is the translation destination for user u when the neural network output determines that

the user should begin a new session. As before, the probability of beginning a new session or

continuing along the current session is determined by an MLP g, with a single output unit that

employs a sigmoid activation function. We also take the weighted average of both possible

translation destinations using the network’s output as the weight, in order to maintain the

smoothness and differentiability of our model. Formally, this gives:

P( j|u, i) ∝ β j−d
(

g
(
~γi, ~Tu

)(
~γi +~Tu

)
+
(

1−g
(
~γi,~Tu

))
~hu, ~γ j

)
(5.12)

5.4.3 Nonlinear Personalized-Origin Session Model

Our final explicit session-based model is a combination of the intuition behind our two

previous models. As discussed in the previous section, we use a neural network to determine

whether the user should begin a new session or continue along their current trajectory. We also

define explicit home locations for each user to account for differences in sequential characteristics,

leading to different starting locations for user sessions.

In this nonlinear model, we also add the nonlinear component proposed in our neural

network translation model, discussed above. The neural network takes as input the user’s vector

~Tu and the embedding of the previous item in the sequence~γi, and outputs the translation vector

to be followed by the user to their next item. This is the most flexible session-based model,

introducing the highest level of nonlinearities into the original TransRec framework. In particular,

the translation vectors for each user are a nonlinear function of the user’s identity and previous

item, as is the probability of transitioning back to a personalized home location.

This means that for the nonlinear personalized-origin model, there are two neural net-
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works determining different aspects of the translation dynamics for each user. In order to prevent

overfitting, we share the input and hidden layers of the two networks. This means that we define

a single network that takes as input the user vector ~Tu and the previous item embedding~γi, and

has a single hidden layer. This hidden layer is connected to two output layers, one computing a

vector in Rk to be the translation vector to the next item j, and the other computing the probability

of continuing along the current trajectory or transitioning back to the user’s home location. In

order to differentiate between these two output layers, we refer to the translation and session

networks as g(1) and g(2), respectively.

So, we can define the probability of user u transitioning from item i to item j as follows:

P( j|u, i) ∝ β j−d
(

g(2)
(
~γi,~Tu

)
g(1)

(
~γi, ~Tu

)
+
(

1−g(2)
(
~γi,~Tu

))
~hu, ~γ j

)
(5.13)

5.5 Category Cosine

Our next model follows the theme discussed at the beginning of this chapter, specifically

making use of additional sources of data to improve recommendation performance. This model

was derived specifically for the Amazon datasets but is easily extended to other datasets which

contain similar additional sources of information.

In addition to the item purchase history of individual users, the Amazon datasets also con-

tain additional metadata associated with each item. This rich metadata includes the description,

price history, sales ranking, brand information, and co-purchase links for each item in the entire

datasets. It also includes the list of categories assigned to each item on its Amazon webpage.

This model makes use of this category information as a form of regularization, to improve the
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embeddings learned by TransRec and thus lead to improved performance.

The categories included in the Amazon datasets form a hierarchical list, from the highest-

level representing the overarching genre the item belongs to, down to the most specific describing

its particular use case. As an example, a window motor in the Amazon Automotive dataset has

the following list of categories: “Automotive,” “Replacement Parts,” “Window Regulators &

Motors,” “Power Window Motors.”

An additional characteristic of the Amazon datasets is that the number of possible items

to select is quite large, but most items have relatively few purchases. So, this means that the item

categories become a potentially useful source of data to improve recommendation performance.

In particular, given the granularity observed in the recorded item categories, we would expect

that items with similar category vectors should have similar observed purchase sequences in the

dataset, and should have similar embeddings in the learned embedding space. However, this

may not actually be observed in the TransRec model due to a lack of data associated with each

particular item.

We define a model that takes into account this intuition, that items with similar categories

should have similar locations in the resulting embedding space. In order to enforce this, we

define feature vectors for each item ~ci, where for feature k, ~cik = 1 if item i has category k,

and~cik = 0 otherwise. In order to compare category feature vectors of different items, we use

the cosine similarity metric. This metric has been commonly used as a similarity measure in

neighborhood-based recommender system models and has the convenient property of being 1

when two items have all categories in common, and 0 when two items have no categories in
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common. Formally, the cosine similarity between vectors~v and ~w is:

s(~v,~w) =
~v ·~w

||~v||× ||~w||
(5.14)

This allows us to define a regularization term for the TransRec model to enforce the

aforementioned intuition. In order to enforce that similar items should have similar embeddings,

we add a weighted sum of the magnitude of consecutive pairs of item embeddings, weighted

by the cosine similarity of their category vectors. This means that if two items do not share

any categories in common, the difference in their item embeddings will not be penalized, and

the model will not encourage their embeddings to lie close together in the embedding space.

However, if two items have identical categories, then there will be a high weighting term added

to their embedding difference, resulting in the model encouraging similar embeddings for these

items.

Formally, we define the additional regularization term as follows:

L(Θ) =R= ∑
u∈U

∑
j∈Su

s(~cu,i,~cu, j)(~γi−~γ j)
2 (5.15)

This term is added to the TransRec loss function, along with the standardL2 regularization

term. The prediction function remains the same as the TransRec model.

5.6 Translation-based Factorization Machines

We propose a joint model, TransFM, which combines aspects of both TransRec and

Factorization Machines. As previously discussed, FMs are a general-purpose prediction model

that take as input arbitrary feature vectors, and model the output variable via linear and second-

61



Table 5.1. Notation for TransFM

Notation Explanation

U , I user set, item set
Su historical interaction sequence for user u
~xu,i, j feature vector for user u, previous item i, and next item j
k dimensionality of embedding and translation spaces
n dimensionality of~xu,i, j
w0 global bias term
~w linear terms; ~w ∈ Rn

V feature embedding space; V ∈ Rn×k

V′ feature translation space; V′ ∈ Rn×k

d2(~a,~b) squared Euclidean distance between~a and~b

order feature interactions using factorized parameters. TransRec also excels at making high-

quality recommendations from sparse data, employing a metricity assumption to improve its

generalization performance. However, one drawback of TransRec is that it does not accept

arbitrary feature vectors as inputs, instead only accepting user and item indices in the form of

user consumption sequences.

5.6.1 The TransFM Model

Table 5.1 presents relevant notation for TransFM. As with Factorization Machines,

TransFM operates on real-valued feature vectors~x. In the sequential recommendation setting,~x

includes feature representations for the user u, the previous item i, and next item j, along with

any additional content features.

Each dimension in ~x is associated with both an embedding and a translation vector.

Formally, for feature xi, we learn two vectors: an embedding vector~vi ∈ Rk and a translation

vector~v′i ∈ Rk. We apply the translation operation to the previous item embedding and measure

the distance to the next item embedding ~v j by the squared Euclidean distance. The resulting

distance gives the weight assigned to the corresponding feature interaction.
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(a) PRME
(b) Factorization Ma-
chines

(c) TransRec (d) TransFM

Figure 5.1. A visual comparison of translation, metric, and factorization-based recommender
system models.

The model equation of TransFM is given by:

ŷ(~x) = w0 +
n

∑
i=1

wixi +
n

∑
i=1

n

∑
j=i+1

d2(~vi +~v′i,~v j)xix j (5.16)

where w0 is a global bias term and wi is the linear term for feature xi. ~vi and~v′i are the

embedding and translation vectors (resp.) for feature xi, and d2(~a,~b) represents the squared

Euclidean distance between the vectors~a and~b:

d2(~a,~b) = (~a−~b) · (~a−~b) =
k

∑
f=1

(a f −b f )
2 (5.17)

Like other metric-based models, TransFM replaces the inner product term with the

(squared) Euclidean distance. This leads to improved generalization performance, and more

effectively captures the transitive property between feature embeddings.

Figure 5.1 provides a comparison of the prediction methods used by TransFM and various

baseline models. PRME (5.1a) learns a personalized metric space in which the distance between

embeddings measures user-item compatibility (the corresponding item-item sequential space

is not shown); Factorization Machines (5.1b) measure interactions between arbitrary features

by computing the inner product of their corresponding factorized parameters; TransRec (5.1c)
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learns embeddings~γi for each item, and a translation vector~tu for each user that traverses their

interaction sequence. Finally TransFM (5.1d) learns an embedding~vi and translation vector~v′i

for each feature, using the squared Euclidean distance to measure feature interactions.

5.6.2 Computation

The model equation for Factorization Machines can be computed in linear time O(kn),

where k is the dimensionality of the model parameter vectors and n is the dimensionality of the

input feature vectors [41]. In this section, we show that the same result applies to the TransFM

model.

In order to simplify the squared Euclidean distance d2, we take advantage of the ability

to write d2 in terms of inner products:

d2(~vi +~v′i,~v j) = (~vi +~v′i−~v j) · (~vi +~v′i−~v j). (5.18)

This allows us to rewrite the interaction term as follows:

n

∑
i=1

n

∑
j=i+1

d2(~vi +~v′i,~v j)xix j

=
1
2

n

∑
i=1

n

∑
j=1

d2(~vi +~v′i,~v j)xix j−
1
2

n

∑
i=1

d2(~vi +~v′i,~vi)xixi

=
1
2

n

∑
i=1

n

∑
j=1

(
(~vi +~v′i−~v j) · (~vi +~v′i−~v j)xix j

)
− 1

2

n

∑
i=1

(~v′i ·~v′i)xixi

=
1
2

n

∑
i=1

n

∑
j=1

(xix j)(~vi·~vi +~v′i·~v′i +~v j ·~v j +2~vi·~v′i−2~vi·~v j−2~v′i·~v j)

− 1
2

n

∑
i=1

(~v′i ·~v′i)xixi

The first sum above can be split into six individual sums, each of which multiplies the
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feature product xix j with one of the corresponding inner products. We present a simplified

version of one of the six sums below:

1
2

n

∑
i=1

n

∑
j=1

(~vi ·~vi)xix j =
1
2

(
n

∑
i=1

(~vi ·~vi)xi

)(
n

∑
j=1

x j

)
(5.19)

(others are similar and omitted for brevity).

Thus we see that all terms in Equation 5.16 can be computed with at most two sums

over the input features, and at most one inner product between corresponding parameter vectors.

Given input features of dimensionality n and parameters of dimensionality k, this shows that the

TransFM model can be computed in linear complexity in both k and n, or O(kn).

As with FMs, the above feature vectors are sparse (e.g. one-hot user/item encodings), so

the above sums need to be computed only over the nonzero elements of the input feature vectors,

further improving performance.

Various chapters in this thesis include material that has been submitted for publication as

it may appear in RecSys 2018, Pasricha, Rajiv; McAuley, Julian, ACM, 2018. The thesis author

was the primary investigator and author of this paper.
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Chapter 6

Results

6.1 Datasets and Statistics

In order to evaluate the quantitative performance of our proposed models, we perform

experiments using a variety of publicly available datasets that vary significantly in terms of size

and sparsity. As we are concerned with learning models from implicit feedback, we first convert

all observed ratings to be positive feedback, discarding observed ratings if present. We then

remove all users and items with fewer than five observed interactions. Statistics of the datasets

under consideration are included in Table 6.1.

Amazon1: This dataset, originally introduced by [33], contains a large corpus of product

ratings, reviews, and metadata, collected from Amazon.com from May 1996 to July 2014. The

full dataset consists of 83 million ratings and reviews collected during this period, along with

additional features including item metadata and visual features. Notable for its high sparsity, the

Amazon dataset provides a useful benchmark to evaluate recommender system algorithms on

sparse input data. The additional available metadata also makes it an appealing choice to evaluate

algorithms combining collaborative filtering techniques with additional sources of information.

We use purchases from five top-level categories covering a variety of distinct purchase domains.

1http://jmcauley.ucsd.edu/data/amazon/
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Table 6.1. Dataset Statistics (after preprocessing)

Dataset # Users
(|U|)

# Items
(|I|) # Actions

Avg.
# actions

/ user

Avg.
# actions

/ item

Office 16,716 22,357 128,070 7.66 5.73
Automotive 34,316 40,287 138,573 5.35 4.56
Video Games 31,013 23,715 287,107 9.26 12.11
Toys and Games 57,617 69,147 410,920 7.13 5.94
Cell Phones 68,330 60,083 429,231 6.28 7.14
North Carolina 4,573 7,846 31,167 6.82 3.97
Colorado 4,586 7,989 34,880 7.61 4.37
Washington 4,453 7,196 39,316 8.83 5.46
Florida 12,096 21,388 77,145 6.38 3.61
Texas 16,066 24,729 136,930 8.52 5.54
California 23,644 35,252 237,051 10.03 6.72
MovieLens 943 1,349 99,287 105.29 73.60

Total 274k 321k 2.05M - -

Google Local2: This dataset contains a large collection of business reviews and ratings

and was originally introduced by [19]. The dataset also includes many associated content

features, including user demographics and business locations. The availability of GPS coordinates

facilitates evaluating TransFM in a geographical recommendation setting. In this work, we

evaluate datasets containing businesses and reviews from six U.S. states of varying sizes and

populations.

MovieLens3: The MovieLens dataset has been used for many years to evaluate a large

variety of recommendation algorithms [18]. Created by the GroupLens research group at

the University of Minnesota, MovieLens allows its users to submit ratings and reviews for

movies they have watched and recommends movies that those users may enjoy. From its

inception, MovieLens and its associated datasets have been vital to the development of improved

2http://jmcauley.ucsd.edu/data/googlelocal/
3https://grouplens.org/datasets/movielens/
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recommendation algorithms as well as related studies in psychology and other domains [3, 12,

58, 32]. In this work, we use the MovieLens-100k benchmark dataset. Compared to the Amazon

datasets, this dataset exhibits a much higher degree of user and item density.

6.2 Features

We have discussed a variety of extensions to TransRec that incorporate temporal in-

formation as well as additional content features. TransFM in particular is intended to be a

‘feature-agnostic’ general-purpose model that can yield significant performance improvements

when incorporating additional features, with no other changes to the model format. Thus, our

focus is not on complex feature design techniques, but rather to show that significant performance

improvements can be achieved with minimal feature preprocessing. To that end, we extract the

following content-based features from each dataset to evaluate our models:

Temporal Features: Temporal data has been widely used to improve recommendation

performance [28, 14, 50]. Each of our datasets contain temporal information, specifically the

time τui for each rating between user u and item i.

For the implicit feedback recommendation task with a ranking loss, each training example

consists of a triplet (u, i, j) of a user, previous item, and next item. As a result, we add two

additional features to~xu,i, j: the time τui of user u’s rating of previous item i, and the time τu j of

u’s rating of next item j. All temporal values for each dataset are first normalized to have zero

mean and unit variance.

During training, corresponding positive and negative instances are both associated with

the same timestamp, so that we are optimizing a time-specific ranking loss.

Item Category Features: The Amazon datasets also provide a list of categories for each
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item. These categories form a hierarchical list of labels, which are useful as item features to

improve recommendation performance and generalizability, especially in the sparse setting. We

convert the observed category labels into binary indicator vectors for previous and next items

and add them to their respective feature vectors.

User and Item Content Features: MovieLens provides a variety of content features for

both users and items. We use the following features in our models: User age, User gender, User

occupation, User zip code, and Movie genre. Movie genre, user occupation, and user zip code

features are encoded into binary features. We convert the user gender to a single binary feature

and apply no processing steps to the user age.

Geographical Features: As the Google Local datasets capture ratings and reviews for

various businesses, each “item” is associated with its corresponding latitude and longitude

coordinates. We add these GPS coordinates to TransFM to evaluate the model in a geographical

setting. For each state, we first round the latitude and longitude coordinates to a single decimal

place, and then create binary feature vectors~xc with one feature for each observed bin. For the

Google Washington dataset, we observe 38 and 78 latitude and longitude features respectively.

6.3 Optimization

We consider the sequential recommendation setting with implicit feedback. i.e., rather

than optimizing the precise output value of our model equation, we instead aim to rank the

observed next item j ahead of all other items j′ ∈ I\ j in the dataset. To this end, we adopt the

Sequential Bayesian Personalized Ranking (S-BPR) optimization criterion [43].
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Applying S-BPR, we optimize the total order >u,i given a user u and previous item i:

Θ̂ = argmax
Θ

ln ∏
u∈U

∏
j∈Su

∏
j′ /∈Su

Pr( j >u,i j′|Θ)Pr(Θ)

= argmax
Θ

∑
u∈U

∑
j∈Su

∑
j′ /∈Su

lnσ(ŷ(~xu,i, j)− ŷ(~xu,i, j′))−Ω(Θ)

(6.1)

where i is the item immediately preceding j in the consumption sequence. Accordingly, we also

restrict j from being the first item in the sequence as it has no associated previous item. ŷ(~x) is

the TransFM model described in Equation 5.16, Θ is the set of parameters {w0,~w,V,V′} to be

learned by the model and Ω(Θ) is a standard L2 regularization term. Finally, we denote by~xu,i, j

the feature vector for the (u, i, j) user, previous item, next item triplet.

6.4 Implementation Details

We implement our models in TensorFlow [1] and use mini-batch gradient descent with

Adam Optimization to train each model [25]. Adam is effective for learning models with

many parameters on sparse datasets and was the most effective optimization algorithm in our

experiments.

We apply the standard BPR optimization process, based on stochastic gradient descent

with bootstrap sampling [42]. For every positive training triple (u, i, j), we randomly sample

a negative item j′ ∈ I on every iteration to add to our mini batch. This set of positive and

negative triples is then used to update the parameters of the model. In our implementation, we

do not enforce that j′ is an item that has not been previously observed, which differs from the

standard BPR optimization algorithm and related implementations. However, in our experiments,

we observed that removing this additional check greatly reduced the execution time of our
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algorithms, allowing us to vectorize the sampling process with sparse matrices when generating

each training, validation, and test batch. As the length of each user’s sequence is small compared

to the total number of observed items, sampling negative items uniformly at random did not have

a significant impact on the models’ performance compared to enforcing that j′ is an unobserved

item.

All model parameters are randomly initialized within the interval [−0.1,0.1], and regu-

larization parameter values are optimized using a grid search over the values

{0.0,0.001,0.01,0.1,1.0,10.0,100.0}. We iterate until convergence, as measured by perfor-

mance on a held-out validation set.

The provided implementation of TransRec enforces that all item embeddings ~γi lie

within a restricted subspace Ψ, for example a unit ball. This prevents the item embeddings from

reaching extreme values, acting as a secondary form of regularization on the model. However, this

constraint is implemented as a conditional parameter update after every training step, specifically

~γ←~γ/max(1, ||~γ||). This prevents the loss function from being continuously differentiable at all

points and also increases the complexity of the model’s implementation. In our implementation,

we update the normalization step to have the following continuous form:

~γ ←
~γ

1+ ||~γ||
(6.2)

This has the same effect as the original normalization approach of preventing the magni-

tude of~γ from exceeding 1 but is a continuous and differentiable update that can be uncondition-

ally applied. We replace the conditional update rule with this continuous approach for all models

except TransFM, as we empirically find that it leads to improved performance. The TransFM
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model does not apply any normalization on its parameters, relying solely on an L2 regularization

term to reduce their magnitudes.

6.5 Evaluation Methodology

In the sequential recommendation setting, the prediction for each item depends on the

previous items in the user’s consumption sequence. As a result, we first partition the consumption

sequence for user u into three sub-sequences. The most recent item Su
|Su| is added to the test set,

the previous item Su
|Su|−1 to the validation set, and the remaining |Su|−2 items are kept in the

training set.

We report the performance of each model according to the Area Under the ROC Curve,

or AUC, defined below.

AUC =
1
|U| ∑u∈U

1
|I\Su| ∑

j′∈I\Su

1(Ru,gu < Ru, j′) (6.3)

Where gu is the ground truth item for user u in the test set, and Ru,i is the rank of item

i for user u in the output list of recommendations. Finally, 1(·) is the indicator function that

returns 1 if the ground truth item is ranked ahead of the unobserved item j′.

6.6 Baselines

We compare our proposed models against the following baselines:

PopRec: This is a naive popularity baseline that ranks items in order of their overall

popularity in the dataset. It is not personalized, so it provides the same list of recommendations

to all users.

BPR-MF: This model uses the Bayesian Personalized Ranking (BPR) framework with
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Matrix Factorization (MF) as the underlying model [42]. It learns global personalized user-item

dynamics but does not take sequential signals into account.

Factorized Markov Chain (FMC): This is a non-personalized sequential model that

factorizes the global item-to-item transition matrix. It does not take personalized user interactions

into account.

Factorized Personalized Markov Chain (FPMC): A combination of the MF and FMC

models, FPMC factorizes the three dimensional sequential interaction tensor [43]. Predictions

are computed by taking inner products between factorized parameter vectors:

P( j|u, i) ∝ 〈~vU,J
u ,~vJ,U

j 〉+ 〈~v
I,J
i ,~vJ,I

j 〉, (6.4)

where VU,J , V J,U , V I,J , and V J,I are the four embedding spaces learned by the model.

Personalized Ranking Metric Embedding (PRME): This model replaces the inner

products in FPMC with Euclidean distances, embedding users and items into two latent spaces to

model personalized and sequential dynamics respectively [15]. The hyperparameter α modulates

the relative importance between these two spaces:

P( j|u, i) ∝−(α ·d(~vu,~v j)+(1−α) ·d(~wi,~w j)). (6.5)

Hierarchical Representation Model (HRM): This model introduces an aggregation

component to FPMC to allow more flexibility in modeling interactions between users and items

[53]:

P( j|u, i) ∝ 〈 f (~vu,~vi),~v j〉 (6.6)
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We test average and max pooling for the aggregation function f .

TransRec: This is the model proposed in [19], which embeds each item in a shared

embedding space and learns personalized translation vectors through this space for each user.

This allows the TransRec model to achieve state-of-the-art performance, excelling on datasets

with the highest levels of sparsity. TransRec has the following prediction equation:

P( j|u, i) ∝ β j−d
(
~γi +~Tu,~γ j

)
(6.7)

FM: This is the standard Factorization Machine model, which models interactions

between all pairs of features by using an inner product between corresponding parameter vectors:

ŷ(~x) = w0 +
n

∑
i=1

wixi +
n

∑
i=1

n

∑
j=i+1
〈~vi,~v j〉xix j. (6.8)

We evaluate the FM model in three cases: (1) without additional features, (2) with

temporal features, and (3) with category / content features. These are represented in the results

as “FM”, “FMtime”, and “FMcontent” respectively.

The goal of our baselines is to compare (1) standard recommendation baselines, (2) spe-

cialized models for sequential recommendation (TransRec), and (3) general-purpose models with

inner-product interaction terms. These models are evaluated against the models proposed in this

thesis, which add additional complexity to the TransRec framework, incorporate content features

by adding additional constraints, or model arbitrary feature vectors using metric/translation based

interactions.

74



6.7 Models

We evaluate the following proposed models.

Item Offset Model: This model extends the translation vectors of TransRec to incorpo-

rate an item offset term, giving the following translation vector: ~Tui =~t +~tu +~ti

Time Delta Model: This model adds a time-dependent scaling factor to the model’s

translation vector. The translation vector ~Tu is multiplied by the time delta between the previous

and next item consumption δui j.

Personalized Time Delta Model: This model extends the time delta approach, adding

an additional coefficient θu that is personalized for each user. This results in the translation

vector ~Tu being multiplied by the scaled time delta θuδui j.

Neural Network Translation Model: This model introduces an MLP to model the

translation operation of the TransRec model, replacing the translation~γi +~Tu by the output of a

neural network: f
(
~γi, ~Tu

)
.

Neural Network Translation Model (with Time Deltas): We add the time delta term

as an input to the above MLP, computing the translation operation as f
(
~γi, ~Tu, δui j

)
.

Neural Network Translation Model (with Timestamps): Rather than using the pre-

processed time delta to introduce temporal dynamics, we use the raw timestamps of the pre-

vious and next consumptions as input features. This gives the following translation operation:

f
(
~γi,~Tu,τui,τu j

)
.

Neural Network Distance Model: This model replaces the entire Euclidean distance

calculation with an MLP, incorporating parameters from the user, previous item, and next item.

It proposes the following interaction term f
(
~γi,~Tu,~γ j

)
.
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Neural Network Distance Model (with Time Deltas): Similar to the translation model

above, we add the time delta between the previous and next consumption for each user into the

MLP prediction equation, giving the following interaction term: f
(
~γi, ~Tu,~γ j,δui j

)
.

Neural Network Distance Model (with Timestamps): In this model, we update the

interaction component of the Neural Network Distance model to also incorporate the raw

timestamps of the previous and next interactions for the respective user. This gives the following

interaction term: f
(
~γi, ~Tu, ~γ j, τui, τu j

)
.

Default-Origin Session Model: For this model, we define a neural network that ap-

proximates the probability that the user begins a new session with their next interaction. If

a new session is started, the user transitions back to the origin instead of continuing on their

personalized trajectory. With a soft threshold, this leads to the following expression for the

translation vector: g
(
~γi, ~Tu

)(
~γi +~Tu

)
.

Personalized-Origin Session Model: This extends the default origin session model

above to learn a personalized ‘home’ location for each user. When the user begins a new

session, rather than translating back to the origin, they transition back to their personalized home

location. This gives the following expression for the translation vector: g
(
~γi, ~Tu

)(
~γi +~Tu

)
+(

1−g
(
~γi,~Tu

))(
~hu

)
.

Nonlinear Personalized-Origin Session Model: We replace the linear translation term

in the personalized-origin session model with the output of a neural network. This combines

two of the models discussed above: the neural network translation model and the personal-

ized origin session model. Each user follows a nonlinear trajectory and transitions back to

a personalized home location on a new session, giving the following translation expression:

g(2)
(
~γi,~Tu

)
g(1)

(
~γi,~Tu

)
+
(

1−g(2)
(
~γi,~Tu

))
~hu.
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Category Cosine: This is a nave extension to TransRec that incorporates content features.

We follow the intuition that items with similar content features should have similar embeddings.

This is enforced by adding a regularization term that computes the distance between consecutive

pairs of item embeddings ~γi and ~γ j, weighted by the cosine similarity of their corresponding

content vectors:

R= ∑
u∈U

∑
j∈Su

s
(
~xc

u,i,~x
c
u, j
)(
~γi−~γ j

)2 (6.9)

TransFM: This model replaces the inner product of Factorization Machines with a

translation operation followed by the computation of the squared Euclidean distance:

ŷ(~x) = w0 +
n

∑
i=1

wixi +
n

∑
i=1

n

∑
j=i+1

d2 (~vi +~v′i, ~v j
)

xix j (6.10)

As with FMs, we evaluate TransFM in three cases: (1) without additional features, (2)

with temporal features, and (3) with content features. These are represented in the results as

“TransFM,” “TransFMtime,” and “TransFMcontent” respectively.

6.8 Performance and Quantitative Analysis

Results from our experiments are collected below. The number of factor dimensions k for

all models is set to 10; we analyze the impact of changing the dimensionality in a future section.

6.8.1 Baseline Models

Results for our baseline models are summarized in Table 6.2. As expected, all models

outperform the simple popularity-based baseline. BPR-MF and FMC respectively model per-

sonalized and sequential components, and their performance compared to the simple popularity

baseline shows that both components play a significant role in making successful recommenda-
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Table 6.2. Results of our baseline models with respect to the AUC (higher is better). The best
performing model for each dataset is bolded.

Dataset PopRec BPR-MF FMC FPMC PRME HRMavg HRMmax TransRec

Office Products 0.6427 0.6979 0.6865 0.6859 0.7006 0.6985 0.6983 0.7383
Automotive 0.5870 0.6307 0.6442 0.6415 0.6473 0.6703 0.6560 0.6953
Video Games 0.7497 0.8551 0.8423 0.8523 0.8601 0.8779 0.8566 0.8885
Toys and Games 0.6240 0.7289 0.6948 0.7198 0.7264 0.7581 0.7263 0.7643
Cell Phones 0.6959 0.7611 0.7548 0.7376 0.7887 0.7891 0.7656 0.8080
Amazon Average 0.6599 0.7347 0.7245 0.7274 0.7446 0.7588 0.7406 0.7789

North Carolina 0.4888 0.7096 0.6542 0.6698 0.7064 0.7691 0.7067 0.7507
Colorado 0.5085 0.6826 0.6164 0.6463 0.6602 0.7219 0.6666 0.7161
Washington 0.5123 0.6994 0.6491 0.6662 0.6837 0.7440 0.6941 0.7313
Florida 0.4722 0.7275 0.6432 0.6619 0.7107 0.7812 0.7109 0.7685
Texas 0.5612 0.7657 0.7153 0.7239 0.7532 0.8207 0.7506 0.8030
California 0.5785 0.7969 0.7284 0.7462 0.7750 0.8346 0.7692 0.8215
Google Average 0.5203 0.7303 0.6673 0.6857 0.7149 0.7786 0.7164 0.7652

MovieLens 0.7413 0.8602 0.8515 0.8858 0.8851 0.8856 0.8844 0.8873

tions. By adding a personalization component, FPMC outperforms FMC for all datasets and is

among the best baselines for the (dense) MovieLens dataset. However, it loses to BPR-MF for

most datasets, suggesting that learning multiple independent embeddings is not well-suited to

sparse domains.

By replacing inner products with metric distances, PRME outperforms FPMC for all

Amazon and Google datasets. HRMavg outperforms PRME in most cases, demonstrating the

effectiveness of an appropriate aggregation term. This contrasts with [53], in which the nonlinear

max pooling operation performed best. We expect that the increased sparsity of our data inhibits

the ability of HRMmax to uncover appropriate nonlinear dynamics.

TransRec is the best performing content-agnostic method for Amazon and MovieLens

but loses to HRMavg for all Google Local datasets. This suggests that the translation vector

intuition of TransRec does not effectively model interactions in Google Local as well as the

simpler HRM model.
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Table 6.3. Results of our proposed item offset and temporal extensions with respect to the AUC
(higher is better). The first column contains the best performing baseline model (from Table 6.2).
The best performing model for each dataset is bolded.

Dataset Best Baseline Item Offset Time Delta Personalized
Time Delta

Office Products 0.7383 0.7369 0.7286 0.7233
Automotive 0.6953 0.6954 0.6900 0.6780
Video Games 0.8885 0.8839 0.8823 0.8573
Toys and Games 0.7643 0.7732 0.7713 0.7547
Cell Phones 0.8080 0.8137 0.8083 0.7927
Amazon Average 0.7789 0.7806 0.7761 0.7612

North Carolina 0.7691 0.7380 0.7467 0.7228
Colorado 0.7219 0.7103 0.6887 0.6882
Washington 0.7440 0.7125 0.7242 0.7247
Florida 0.7812 0.7557 0.7389 0.7192
Texas 0.8207 0.7902 0.7963 0.7820
California 0.8346 0.8112 0.8197 0.8041
Google Average 0.7786 0.7530 0.7525 0.7402

MovieLens 0.8873 0.8707 0.8539 0.8624

6.8.2 Proposed TransRec Extensions

Item Offset Model: Results for the item offset and time delta models are summarized in

Table 6.3. Adding an item offset term to the translation vector improved the performance for a

few datasets. However, most improvements were minor and for most datasets, the performance

decreased compared to the original TransRec model. This could be due to the characteristics of

the datasets themselves, in which items are less conducive than users to being modeled with a

translation-based approach. In addition, simply adding linear translation component for both

users and items could lead to interference between vectors that point in varying directions.

Time Delta Models: Both the time delta and personalized time delta models result in

a decrease in performance for most datasets. We also observe that the personalized time delta

model tends to perform worse compared to the non-personalized version. Overall, scaling the

translation vector by the time delta between the previous and next interactions does not lead to
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Table 6.4. Results of our proposed neural network models with respect to the AUC (higher is
better). The first column contains the best performing baseline model (from Table 6.2). The best
performing model for each dataset is bolded.

Dataset Best Baseline NN Translation NN Distance

Office Products 0.7383 0.7015 0.7033
Automotive 0.6953 0.6466 0.6522
Video Games 0.8885 0.8560 0.8601
Toys and Games 0.7643 0.7245 0.7216
Cell Phones 0.8080 0.7707 0.7772
Amazon Average 0.7789 0.7399 0.7429

North Carolina 0.7691 0.6991 0.6949
Colorado 0.7219 0.6552 0.6745
Washington 0.7440 0.6882 0.6966
Florida 0.7812 0.6981 0.7053
Texas 0.8207 0.7548 0.7628
California 0.8346 0.7727 0.7892
Google Average 0.7786 0.7114 0.7206

MovieLens 0.8873 0.8645 0.8523

better predictions, even when this scaling is determined for each user.

There are a variety of reasons for this decline in performance. This is likely due to the

fact that this particular temporal model does not match the true temporal effects observed in the

data. A slightly different or more complex temporal model could more closely approximate the

true interactions. The performance drop could also be due to the wide range of possible time

delta values. We observe time deltas varying on a scale of minutes to years. As we normalize

all time deltas to have zero mean and unit standard deviation, this leads to many deltas having

approximately the same processed value, reducing the effective degrees of freedom of the model.

This result supports the notion that in order to appropriately model arbitrary temporal

effects, a more complex model formulation is required. Models that learn the temporal effects

from the data or model arbitrary interactions between features (e.g. Factorization Machines)

could provide improved performance over enforcing a custom form for temporal dynamics

through data inspection or trial and error.
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Neural Network Models: Results for our proposed neural network models are summa-

rized in Table 6.4. Both the neural network translation and neural network distance models

perform worse than TransRec on all datasets. This suggests that the additional degrees of freedom

afforded by incorporating neural networks into the TransRec framework do not lead to improved

prediction performance. Due to the significant sparsity of our datasets, the linear structure of

TransRec more closely approximates the true interactions between users and items, despite

its simple form. Attempting to learn a personalized nonlinear translation vector that depends

on a user, previous item, and next item is not feasible when for most datasets, fewer than 10

interactions are observed for each user and item.

The neural network distance model relaxes the metricity assumption of TransRec, replac-

ing the Euclidean distance with an MLP that directly computes the probability of interacting

with the next item in a user’s sequence. The reduced performance of this model supports the

notion that the constraints enforced by the Euclidean distance metric facilitate improved general-

ization behavior. By replacing the distance metric with an arbitrary neural network, the triangle

inequality guarantee is lost, and performance suffers as a result, especially for sparse datasets.

Neural Network Temporal Models: Results for our proposed neural network temporal

models are summarized in Table 6.5. Adding temporal dynamics to the neural network models

discussed above leads to improved AUC performance for some datasets, but these improvements

are not consistent. For MovieLens and most of the Google datasets, the neural network temporal

models achieve similar performance to their non-temporal counterparts. In contrast, for the Ama-

zon datasets, adding timestamps to the neural networks lead to more significant improvements

over the standard and time delta-based approaches. However, even the best MLP approaches do

not exceed the original TransRec model in terms of performance.
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Table 6.5. Results of our proposed neural network temporal models with respect to the AUC
(higher is better). The first column contains the best performing baseline model (from Table 6.2).
The best performing model for each dataset is bolded.

Dataset Best
Baseline

NN Translation
Time Deltas

NN Translation
Timestamps

NN Distance
Time Deltas

NN Distance
Timestamps

Office Products 0.7383 0.6986 0.7368 0.7034 0.7276
Automotive 0.6953 0.6532 0.6639 0.6519 0.6562
Video Games 0.8885 0.8521 0.8573 0.8678 0.8854
Toys and Games 0.7643 0.6923 0.7460 0.7228 0.7609
Cell Phones 0.8080 0.7450 0.8066 0.7794 0.8035
Amazon Average 0.7789 0.7282 0.7621 0.7451 0.7667

North Carolina 0.7691 0.6794 0.6987 0.6989 0.6929
Colorado 0.7219 0.6527 0.6449 0.6679 0.6598
Washington 0.7440 0.6915 0.6914 0.6932 0.6965
Florida 0.7812 0.6920 0.6873 0.7058 0.7087
Texas 0.8207 0.7580 0.7592 0.7569 0.7590
California 0.8346 0.7754 0.7718 0.7862 0.7833
Google Average 0.7786 0.7082 0.7089 0.7182 0.7167

MovieLens 0.8873 0.8695 0.8617 0.8685 0.8622

Although the MLP approach allows the model to automatically uncover the appropriate

temporal dynamics from the data itself, the temporal models suffer from the same problems as

the MLP approaches described above. In particular, the sparsity of the data makes it difficult

for the model to extract appropriate nonlinear translation dynamics and incorporating temporal

dynamics does not overcome this lack of appropriate interaction data.

In addition, we only evaluate one architecture for our MLP, with a single hidden layer

with 10 units and a tanh activation function. Additional performance improvements could be

achieved by incorporating more complex network structures (e.g. more hidden units or additional

hidden layers), different activation functions (e.g. sigmoid or ReLU), or more sophisticated

regularization techniques (e.g. dropout). There are also a variety of additional neural network

architectures that have been successfully been applied to recommendation and related settings,

such as convolutional and recurrent networks. As previously discussed, many recent state-of-
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Table 6.6. Results of our proposed session-based models with respect to the AUC (higher is
better). The first column contains the best performing baseline model (from Table 6.2). The best
performing model for each dataset is bolded.

Dataset Best Baseline Default Origin Personalized
Origin

Nonlinear
Personalized

Office Products 0.7383 0.7396 0.7183 0.6961
Automotive 0.6953 0.7012 0.6776 0.6449
Video Games 0.8885 0.8851 0.8642 0.8560
Toys and Games 0.7643 0.7725 0.7402 0.7089
Cell Phones 0.8080 0.8125 0.7801 0.7492
Amazon Average 0.7789 0.7822 0.7561 0.7310

North Carolina 0.7691 0.7365 0.7280 0.6949
Colorado 0.7219 0.7030 0.7030 0.6619
Washington 0.7440 0.7221 0.7053 0.6826
Florida 0.7812 0.7509 0.7305 0.6979
Texas 0.8207 0.7875 0.7652 0.7558
California 0.8346 0.8075 0.7860 0.7779
Google Average 0.7786 0.7513 0.7363 0.7118

MovieLens 0.8873 0.8694 0.8596 0.8663

the-art recommendation approaches incorporate various types of neural networks, so a more

sophisticated neural network approach could lead to more significant performance improvements.

Session-based Models: Results from our proposed session-based models are collected in

Table 6.6. The default-origin session-based model outperforms the original TransRec baseline for

most Amazon datasets. These improvements are very minor but suggest that session dynamics in

user transaction sequences are a useful signal to include. The simple nature of the default-origin

approach also leads to improved performance in the sparse setting, with the complex neural

network only used to determine the probability of a new session, and the translation vector being

updated accordingly.

We observe that the more complex personalized and nonlinear session-based models both

display worse performance than the default-origin approach. Both models aim to learn more

complex session or translation dynamics, including a personalized home location per user along
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Table 6.7. Results of baselines and proposed models that incorporate content features. Results
are presented with respect to the AUC (higher is better). The first column contains the best
performing model (from Table 6.2). The best performing model for each dataset is bolded. The
final column shows the percent improvement of TransFMcontent over the best baseline.

Dataset Best
Baseline CatCos FM FMtime FMcontent TransFM TransFMtime TransFMcontent

Improv.
vs. Best
Baseline

Office Products 0.7383 0.7402 0.7075 0.7426 0.7586 0.7169 0.7430 0.8463 11.6%
Automotive 0.6953 0.7048 0.6572 0.6671 0.7328 0.6675 0.6776 0.8319 13.5%
Video Games 0.8885 0.8878 0.8523 0.8866 0.8912 0.8584 0.8778 0.9587 7.6%
Toys and Games 0.7643 0.7762 0.6994 0.7488 0.7761 0.7203 0.7583 0.8673 11.7%
Cell Phones 0.8080 0.8099 0.7558 0.8153 0.7611 0.7767 0.8209 0.8406 3.1%
Amazon Average 0.7789 0.7838 0.7344 0.7721 0.7840 0.7480 0.7755 0.8690 10.8%

North Carolina 0.7691 0.7524 0.6787 0.6554 0.7673 0.7454 0.6257 0.7947 3.3%
Colorado 0.7219 0.7177 0.6504 0.6392 0.7345 0.6327 0.6203 0.7535 2.6%
Washington 0.7440 0.7352 0.6812 0.6761 0.7352 0.6498 0.6289 0.7586 2.0%
Florida 0.7812 0.7639 0.7057 0.6757 0.7821 0.6507 0.6233 0.8095 3.5%
Texas 0.8207 0.8021 0.7435 0.7251 0.8025 0.7072 0.6857 0.8371 2.0%
California 0.8346 0.8221 0.7732 0.7608 0.8107 0.7341 0.7157 0.8379 0.4%
Google Average 0.7786 0.7656 0.7055 0.6887 0.7721 0.6700 0.6499 0.7986 2.6%

MovieLens 0.8873 0.8678 0.8575 0.8617 0.8660 0.8611 0.8722 0.9381 5.7%

with potential nonlinear translation dynamics. The reduced performance of these models matches

what we have previously observed, with the more complex model extensions often resulting in

reduced performance. Given so few observed actions per user and item, it is infeasible for a

model to accurately learn multiple quantities per user and item. The personalized origin approach

learns a translation vector and home location for every user, with the nonlinear model adding

custom translation vectors that are dependent on the user, previous item, and next item. These

models might provide improved performance in more dense settings, where there is sufficient

data to learn more complex dynamics.

6.8.3 Extensions with Content Features

We next discuss models that incorporate content-based features into the prediction

equation. This also includes general-purpose models that operate on arbitrary feature vectors.
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Results for content-based models are summarized in Table 6.7.

CatCos: The CatCos baseline model outperforms the non-content aware baselines for

Amazon but loses to solely collaborative approaches for the other datasets, despite the addition

of useful content features. This indicates that more specialized models or feature representations

would be necessary to fully incorporate content information into the TransRec framework.

FMs: The standard FM model performs worse than more specialized sequential baseline

models for all datasets. As opposed to many other baseline approaches, FMs do not explicitly

model personalized sequential dynamics, and use inner products to model arbitrary feature

interactions. Compared to metric-based approaches, these inner products are less effectively able

to extract useful dynamics from extremely sparse datasets.

FMs with Features: Factorization Machines are effectively able to incorporate content

features and achieve significant performance benefits, without requiring any changes to the model

format itself. Adding temporal data to FMs leads to significant performance improvements for

Amazon and MovieLens, despite only adding two additional features to~xu,i, j.

This highlights the importance of effectively modeling temporal data to improve rec-

ommendation performance and shows that strong temporal effects are present in these datasets.

However, adding temporal features causes performance for Google Local to decline, as temporal

dynamics do not play as significant a role in modeling review sequences for local businesses.

Adding content features also results in substantial improvements, especially for datasets

with the highest sparsity. FMcontent outperformed FMtime in most cases, demonstrating the

importance of content features to compensate for insufficient interaction data.

TransFM: Although TransFM (without features) does not outperform all baseline mod-

els, it does exceed standard FMs for the Amazon and MovieLens datasets. However, FMs
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perform better for the Google Local datasets, suggesting that without any additional features,

inner products more effectively model interactions in this setting. This matches our observations

of TransRec, which is outperformed by the inner product-based HRMavg baseline.

TransFM with Features: Adding temporal data to TransFM has a similar effect as the

corresponding FMtime baseline. When temporal features play a significant role in the datasets

(e.g. for Amazon and MovieLens), TransFM is able to extract these dynamics.

The TransFMcontent approach achieves the highest AUC for all datasets. The translation

technique is effective at modeling both content and collaborative feature interactions, resulting in

more significant improvements over vanilla TransFM than the corresponding FMcontent approach.

These improvements hold for all datasets: Amazon (with category features), Google Local (with

geographical features), and MovieLens (with user/item content features). Despite the increased

density of MovieLens, TransFM is still able to extract additional value from user and item

content features to improve recommendation performance.

For the Google Local dataset, geographical features play a more significant role in user-

item interactions than temporal data. The performance of TransFMcontent on this dataset indicates

the translation component is effectively able to model interactions between arbitrary user, item,

and geographical features.

6.8.4 Sign of the TransFM Interaction Term

Like FMs, TransFM adds the interaction term in the prediction equation (see Equa-

tion 5.16). This assigns features that are farther apart a higher interaction strength. In order

to more closely match the intuition of standard metric-based models, where smaller distances

correspond to higher interaction weights, we also tested a variant of TransFM with a negative

interaction term. The resulting model displayed similar performance with no additional fea-
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Figure 6.1. Plot of the item embeddings learned by TransRec. The model is trained with item
factor dimensionality k = 2, e.g.~γi ∈ R2.

tures or with temporal data but had significantly reduced performance with content features.

This suggests that an additive distance term increases the model’s flexibility to appropriately

model interactions between users, items, and content features, with the L2 regularization term

constraining the feasible set of embedding locations.
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6.9 Qualitative Analysis

6.9.1 TransRec Embeddings and Trajectories

In this section, we present some qualitative results of the original TransRec model. We

first train TransRec using two latent factors, learning a latent representation~γi ∈R2 for each item.

These latent representations are plotted in Figure 6.1. We see that the normalization constraint is

evident in the plot of item factors, constraining the item embeddings to be in a ball around the

origin. The normalization step of TransRec acts as a regularization constraint for the model, and

we observed that including this step led to significantly improved performance compared to not

normalizing the item representations at all.

For the most part, the item embeddings look fairly evenly distributed throughout the

embedding space. Interestingly, this highlights the lack of any straightforward sequential

dynamics in the derived model embeddings. However, we do see a tight cluster of embeddings

in the north east section of the diagram. The most likely explanation for this cluster is that there

are a large number of item embeddings with few observed interactions that all share similar

gradients through the training process. We also observe a cluster of embeddings located around

the edge of the circle. This demonstrates the impact of the normalization approach applied to the

item embeddings of the model. Given the smooth normalization technique previously discussed,

where we divide each embedding by 1 plus the embedding norm on each iteration, this leads

to a smooth boundary around the observed item embeddings. When applying the embedding

approach of the original TransRec model, we observed a rigid boundary at the boundary of the

unit circle, where item embeddings beyond the boundary would be normalized to be exactly on

the boundary, and items within the unit ball would be unaffected.
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Figure 6.2. Item embedding locations and sequential transitions for an example user in the
Amazon Automotive dataset. Item embeddings are learned by TransRec with item embedding
dimensionality k = 2.

We also plot the sequence of item factors for a single user in the Amazon Automotive

dataset, in Figure 6.2. Unlike the model assumption of TransRec, we do not observe a direct

relationship among adjacent items in the user’s consumption sequence. This matches what we

observed in the global item factor plot above. Given the precise sequential format of the model,

we would have expected many items to be arranged in visible sequences in the global embedding

plot. We would also have expected the items for a single user to lie approximately linearly within

the space, to allow the user to effectively transition from one item to the next. However, this is

not the case, and the overall items and sequences for each user seem to be relatively arbitrarily

distributed.

These visualizations of TransRec suggest that despite the model’s simple form and

translation structure, the embeddings learned by the model do not necessarily have an explicit

“translation” structure as might be expected. Perhaps the translation structure becomes more

evident in higher dimensions, and these visualizations do not take into account item biases or

rankings of predicted items. However, the lack of explicit structure among the embeddings and
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Figure 6.3. Vector field of the translation vectors learned by TransRec. The model was trained
with embedding dimensionality k = 2, and each arrow represents the average translation vector
for the given previous item embedding, averaged across all users.

trajectories suggests that extended models that learn more appropriate embeddings and sequences

could provide improved recommendation performance.

6.9.2 Vector Fields

We plot vector field diagrams to explicitly visualize the translation vectors that are learned

by TransRec and extended models. Figure 6.3 shows the average translation vector learned by

TransRec on the Amazon Automotive dataset. This is the average translation vector ~Tu =~t +~tu

for every user u. As the model learns a linear translation vector that does not depend on the

location in the item embedding space, plotting a vector field of the average translation vectors in

the item embedding space results in all translation vectors pointing in the same direction.

By contrast, Figure 6.4 shows the translation vectors learned by the neural network

translation model. The vectors are plotted in a two-dimensional item embedding space, where

the location of each arrow corresponds to the location of the previous item embedding ~γi. We

compute the average translation vectors at various locations in the embedding space for the first
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Figure 6.4. Vector field of the translation vectors learned by the NN translation model. The
model was trained with an embedding dimensionality k = 2, and each arrow represents the
average translation vector for the given previous item embedding, averaged across the first 100
users in the dataset.
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Figure 6.5. AUC vs. Dimensionality

100 users in the Amazon Automotive dataset. We observe that the neural network translation

model, which uses an MLP to compute translation vectors, displays a much more complex vector

field diagram, with the direction of the translation vector varying significantly depending on

the location in the item embedding space. This demonstrates that the MLP is learning complex

nonlinear translation dynamics from observed interaction sequences.

However, the resulting complexity of the translation vectors, compared to the significant

sparsity in the dataset, suggests that the neural network is significantly overfitting to the observed

interactions. This matches the reduced performance of the neural network models observed in

our results and suggests that the arbitrary modeling capability provided by the MLP is not well

suited to the sparse sequential recommendation task. A simpler model more finely optimized to

the specific recommendation task could provide improved performance by more closely aligning

with the observed sequential dynamics in the data itself.

6.9.3 Sensitivity to Dimensionality

We analyze the sensitivity of TransFM and various baseline models to the dimensionality

of the learned parameter vectors. Specifically, we analyze TransRec as well as FMs and TransFM

(without additional features and with content features). We adjust k in the set k ∈ 5,10,20,40

and plot the resulting AUC values for five datasets in Figure 6.5 (other datasets exhibited similar

performance). We observe that in most cases, performance does not increase significantly with
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dimensionality. However, TransFMcontent significantly outperforms all other models for all values

of k.

Various chapters in this thesis include material that has been submitted for publication as

it may appear in RecSys 2018, Pasricha, Rajiv; McAuley, Julian, ACM, 2018. The thesis author

was the primary investigator and author of this paper.
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Chapter 7

FMs Applied to Related Recommendation
Approaches

TransFM is a general-purpose model which adds elements from translation and metric-

based sequential algorithms to the FM framework. TransRec, a similar translation-based model,

was applied in [19] to the sequential recommendation task but lacked the ability to be natively

extended with content features. In this section, we present related extensions of FMs that draw

inspiration from similar baseline algorithms to achieve improved performance while retaining

compatibility with arbitrary feature vectors.

We apply a similar approach to two baseline models: PRME and HRM, specialized

sequential recommendation models similar to TransRec. PRME models sequential recommenda-

tions with embeddings in a metric space, using single embedding locations rather than translation

vectors. HRM, specifically HRMavg, models a similar vector addition operation but relies on

inner products rather than metric spaces. By incorporating both translation and metric-space

intuitions, TransRec is able to outperform PRME for all datasets and HRMavg for Amazon and

MovieLens. We observe similar results for their FM-inspired counterparts, with the translation

and distance components of TransFM providing improved performance over related models.
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7.1 Personalized Ranking Metric Embedding (PRME)

PRME [15] extends FPMC by learning personalized and sequential embeddings and

replacing inner products with Euclidean distances (see Equation 6.5). To apply the PRME

approach to FMs, we replace the inner product with the squared Euclidean distance between

corresponding features. This gives the following PRME-FM model:

ŷ(~x) = w0 +
n

∑
i=1

wixi +
n

∑
i=1

n

∑
j=i+1

d2(~vi,~v j)xix j. (7.1)

Note that PRME-FM is simply TransFM without the translation space. The model learns

a single embedding space and computes interaction weights according to the (squared) distance

between embeddings. This model also retains the general-purpose nature of FMs and TransFM

and can be simplified (similar to Section 5.6.2) to be computed in linear time.

7.2 Hierarchical Representation Model (HRM)

We next present a combined model between FMs and HRM [53]. HRM aggregates user

and item representations (see Equation 6.6) prior to taking the inner product. We found above

that average pooling is more effective, and HRMavg is the best performing baseline for most

Google Local datasets. We apply a similar intuition to the FM framework. Specifically, we adapt

the first term of the inner product to take the sum of both embeddings, giving the following

HRM-FM model:

ŷ(~x) = w0 +
n

∑
i=1

wixi +
n

∑
i=1

n

∑
j=i+1
〈~vi +~v j,~vi〉xix j. (7.2)

The sum ~vi +~v j is the aggregation term that combines the learned representations for

features i and j prior to taking the inner product. This model is also a general-purpose algorithm
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Table 7.1. Results for alternative FM-derived approaches. Models are evaluated according to the
AUC (higher is better).

Model Amazon Automotive Google Florida MovieLens

FM 0.6572 0.7057 0.8575
FMtime 0.6671 0.6757 0.8617
FMcontent 0.7328 0.7821 0.8660
TransFM 0.6675 0.6507 0.8611
TransFMtime 0.6776 0.6233 0.8722
TransFMcontent 0.8319 0.8095 0.9381

PRME-FM 0.6674 0.6501 0.8639
PRME-FMtime 0.6749 0.6240 0.8701
PRME-FMcontent 0.7422 0.8115 0.8557
HRM-FM 0.6662 0.6521 0.8581
HRM-FMtime 0.6720 0.6281 0.8744
HRM-FMcontent 0.7411 0.8160 0.8606

and can be computed in linear time with a similar simplification as in Section 5.6.2.

7.3 Experiments

We compare PRME-FM and HRM-FM against standard FMs and TransFM. We evaluate

these models against three datasets: “Amazon Automotive,” “Google Florida,” and “MovieLens”.

As in our previous experiments, models are evaluated according to the AUC in the following

settings: (1) without features, (2) with temporal features, and (3) with content features. Results

are presented in Table 7.1.

The overall trends for PRME-FM and HRM-FM are similar to FMs and TransFM.

TransFM outperforms both PRME-FM and HRM-FM on Automotive and MovieLens, indicating

that the increased expressiveness of the translation space more effectively models feature inter-

actions. The models are similar in performance on the Florida dataset, potentially indicating a

simpler relationship between features that is captured by all three approaches.

We do not observe a significant difference between PRME-FM and HRM-FM in terms of

AUC. The sum and distance operations both improve on the inner product operation of standard
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FMs, and both capture a similar amount of signal in all evaluated datasets.

Compared to standard Factorization Machines, HRM-FM, PRME-FM, and TransFM

all provide significantly improved AUC performance with content features. This demonstrates

that merging FMs with specialized sequential algorithms can consistently lead to effective

general-purpose recommendation models.

Various chapters in this thesis include material that has been submitted for publication as

it may appear in RecSys 2018, Pasricha, Rajiv; McAuley, Julian, ACM, 2018. The thesis author

was the primary investigator and author of this paper.
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Chapter 8

Conclusions and Future Work

In this thesis, we have presented a variety of extensions to the TransRec model for sequen-

tial recommendation. Many of these extensions augment the TransRec model formulation by

adding increased complexity, e.g. by employing neural networks to model nonlinear translations,

incorporating temporal or content information, modeling “sessions” in user interaction sequences,

or relaxing the metricity assumption present in the original model. We evaluate our proposed

extensions on a variety of real-world datasets and find that in most cases, performance decreases

compared to the original TransRec model. Despite the reduced effectiveness of most of our

proposed models, they provide a useful framework to which additional extensions of TransRec

and related translation-based approaches can be compared. Additionally, we provide qualitative

analysis of the learned item embeddings, user consumption sequences, and translation vectors

of TransRec and our nonlinear approaches. These qualitative discussions provide an intuitive

analysis of the linear and nonlinear dynamics learned by these models.

Finally, we introduced TransFM, which combines translation and metric-based ap-

proaches for sequential recommendation with Factorization Machines. This model learns an

embedding and translation space for each feature and replaces the inner product of FMs with a

translation term and distance metric. This general-purpose model natively supports the addition
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of content features without requiring specialized constraints or adjustments. We evaluated

TransFM on a variety of datasets and found that it achieves state-of-the-art performance when

incorporating content features. We also found that applying a similar intuition, combining FMs

with other baselines, consistently leads to improved general-purpose models.

Future research directions include (1) further extending TransRec by applying additional

concepts from recommender systems and machine learning as a whole, (2) applying TransFM to

arbitrary machine learning tasks besides sequential recommendation, and (3) determining the

impact of additional features or feature representations on the models’ performance.

Various chapters in this thesis include material that has been submitted for publication as

it may appear in RecSys 2018, Pasricha, Rajiv; McAuley, Julian, ACM, 2018. The thesis author

was the primary investigator and author of this paper.
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