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Simultaneous Coupling of Fluids and Deformable Bodies

Nuttapong Chentanez Tolga G. Goktekin Bryan E. Feldman James F. O’Brien

University of California, Berkeley

Abstract
This paper presents a method for simulating the two-way interaction between fluids and deformable solids. The
fluids are simulated using an incompressible Eulerian formulation where a linear pressure projection on the fluid
velocities enforces mass conservation. Similarly, elastic solids are simulated using a semi-implicit integrator
implemented as a linear operator applied to the forces acting on the nodes in Lagrangian formulation. The
proposed method enforces coupling constraints between the fluid and the elastic systems by combining both the
pressure projection and implicit integration steps into one set of simultaneous equations. Because these equations
are solved simultaneously the resulting combined system treats closed regions in a physically correct fashion, and
has good stability characteristics allowing for relatively large time steps. This general approach is not tied to any
particular volume discretization of fluid or solid, and we present results implemented using both regular-grid and
tetrahedral simulations.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling, Physically Based Modeling; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism, Animation; I.6.8 [Simulation and Modeling]: Types of Simulation, Animation

Keywords: Natural phenomena, physically based animation, computational fluid dynamics, two-way coupling,
deformable bodies.

1. Introduction

The interaction between a fluid and deformable body can
create complex and interesting motion that would be difficult
to convincingly animate by hand. In this work we present a
method to solve for the interaction by simultaneously con-
serving the momentum of the fluid and deformable body
while enforcing the conservation of fluid mass.

Previous approaches for coupling fluid and deformable
bodies use a time splitting procedure. They alternately fix
the fluid pressure when simulating the solid, then fix the
solid’s velocity when simulating the fluid. While this ap-
proach works reasonably well for physical systems with
non-stiff coupling, it can lead to instability and visual arti-
facts for other systems. These problems occur because while
solid velocities are fixed they will ignore arbitrarily large
fluid pressures, and the converse when the fluid velocities
are fixed. For a tightly coupled system like a water balloon
where small changes in the state of the solid cause nearly
instantaneous changes in the fluid and vice versa, time split-
ting becomes untenable and difficulties can still arise even
for less tightly coupled systems. Time splitting also creates
problems for systems that include fluid regions completely

Figure 1: A sequence of images showing a jet of smoke
interacting with multiple thin rubber sheets

surrounded by a deformable body. The volume of these re-
gions can change during the solid simulation. In this case ap-
plying Neumann boundary conditions to the fluid simulation
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is incompatible with the requirement that the fluid be diver-
gence free. To remedy this problem, time-splitting methods
typically use non-physical fixes. For example, [GSLF05]
proposes detecting these closed regions using a flood fill al-
gorithm and then performing an area-weighted adjustment
of the velocities on the boundary such that there is no net
flux across the boundary of the closed region. It is not clear
however, how to generalize the fix to correctly account for a
deformable object with varying thickness or material prop-
erties. By enforcing coupling simultaneously our method
avoids these problems and allows for substantially larger
time steps.

The method we describe is largely independent of the dis-
cretization scheme used. We have implemented the coupling
with fluid simulators discretized using dynamic tetrahedral
meshes [KFCO06] as well as on a fixed regular Eulerian grid
similar to that of [EMF02]. We include several examples,
such as the one in Figure 1, that demonstrate the effective-
ness of the method.

2. Background
Physically-based methods have proven to be popular and ef-
fective for generating animations of fluids and deformable
bodies. The use of the 3D Navier-Stokes equations for
animating fluids was introduced to the graphics commu-
nity by [FM96]. A number of papers have since appeared
which improve the stability [Sta99], enhance the resolution
of small features [FSJ01], and extend the capabilities to in-
clude fire [NFJ02], explosions [FOA03], and visco-elastic
fluids [GBO04]. Simulating liquids requires surface track-
ing methods. The use of level set methods for surface track-
ing was introduced in [FF01] which was improved by the
particle level set method in [EMF02]. More recently, a ro-
bust technique based on semi-Lagrangian contouring was
demonstrated in [BGOS06].

Deformable objects were first simulated for use in com-
puter graphics in [TPBF87]. A full description of the meth-
ods for simulating deformable solids is beyond the scope of
this paper. We recommend the following extensive survey
on this topic [NMK∗05].

An early example of coupling fracturing solids and com-
pressible explosions appears in [YOH00]. They use a pres-
sure accumulation approach that is potentially very accurate,
however modeling stiff pressure waves which arise in a com-
pressible simulation necessitates very small time steps for
stability. A standard method to avoid the stability problems
is to model the fluid as incompressible. Two-way interac-
tion between incompressible fluid and rigid bodies is accom-
plished in [CMT04] by projecting the fluid velocities within
the solids to behave rigidly at the end of the time step. Un-
fortunately, this method uses a two-step projection approach
that can lead to visual artifacts and fluid loss. The problems
caused by two-step projection are avoided in [KFCO06] by
enforcing the coupling constraints and incompressibility si-

multaneously. Our method extends their approach to include
deformable bodies as well as rigid ones.

Another common method for simulating the interaction
between fluid and deformable solids is the time splitting pro-
cedure where the fluid and solid are solved for alternately.
During the simulation of each process, the constraints im-
posed by the other system are held fixed. An application
of this scheme for simulating fluids interacting with fila-
ments or thin flexible sheets is presented in [Pes02] which
has been improved by [LL01] and [GSLF05] to account for
discontinuities across thin interfaces. [GAD03] proposes a
technique for coupling a liquid and a mass spring solid by
modeling repulsion forces between solid’s nodal masses and
fluid’s marker particles. Coupling of a deformable body
via time splitting with an SPH-based fluid solver appears
in [MST∗04].

3. Methods
The interaction between a fluid and a deformable solid oc-
curs at the interface where the fluid applies pressure forces to
the solid’s boundary while the solid imposes boundary fluxes
on the fluid. For real physical systems these forces lead to
the formation of pressure and elastic waves. These waves
typically propagate very rapidly such that direct simulation
would require very small time steps. A common method to
relieve the small time step requirement is to model the prop-
agation as occurring instantaneously via a projection step. In
the case of the fluid, this projection is the Poisson pressure
projection. For elastic solids the implicit integration can be
viewed as a projection on the nodal accelerations. In order
to properly account for both the fluid and solid systems, the
projections should occur simultaneously. Therefore, in order
to simulate the complex interactions between a solid and a
fluid we need to augment both simulations to account for the
other system and create a combined coupled system. Specif-
ically, when performing pressure correction on the fluid and
implicitly solving for the solid’s node velocities, we need to
simultaneously account for how fluid pressure changes will
effect the deformable solid and how the solid’s motion will
effect the fluid.

3.1. Fluid Simulation
The behavior of an inviscid incompressible fluid is governed
by conservation of momentum:

∂v
∂t

=−(v ·∇)v− ∇p
ρ

+
fe
ρ

(1)

subject to the mass conservation constraint:

∇· v = 0 (2)

where v is velocity, p is pressure, ρ is density, and fe repre-
sents external forces. The standard Eulerian method for sim-
ulating incompressible fluids is to first accelerate the fluid by
all terms in Equation (1) excluding the pressure term to ob-
tain an intermediate velocity, v∗. Then, to conserve mass, a
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linear system is solved to find the pressure that accelerates
v∗ to be divergence free. For more detail on fluid simulation,
see [FM96], [FF01], [EMF02] for regular grid fluid simula-
tor, [LGF04] for an octree based simulator, and [FOK05],
[FOKG05], [KFCO06] for tetrahedral fluid simulator.

In the interior of the fluid, fluid is accelerated by the gra-
dient of the pressure as seen in Equation (1). The fluid at the
interface with a solid must have the same normal component
of velocity as that of the solid. This constraint prevents fluid
from leaking into or coming from the solid. We enforce this
condition by constraining the normal component of fluid ve-
locity to be that of the solid (see Section 3.3).

3.2. Solid Simulation

Using a finite element or finite difference method, the dy-
namics of an elastic solid body deforming under pressure
forces can be discretized in the following general form:

Ma+C(u,d)+K(d)− fp− fe = 0 (3)

where the solid’s node acceleration, velocity and displace-
ment are respectively denoted by a, u and d, M is the mass
matrix, C and K are the non-linear damping and stiffness
functions respectively. Forces due to fluid’s pressure are
denoted by fp while fe accounts for any additional exter-
nal forces. For general finite element method, we recom-
mend [CMP89] to the readers. By applying a trapezoidal
rule implicit Newmark scheme for time integration and lin-
earizing the stiffness function around the current displace-
ment, Equation (3) can be put into the following form (see
Appendix):

Aun+1−Jpn+1 = b (4)

where

A=
1
h

M+C+
h
2

K′ b=
1
h

Mun− h
2

K′un−K(dn)+fe

also,

dn+1 = dn +
1
2

h(un +un+1) (5)

K′ is the Jacobian of the elastic force function evaluated at
dn. Forces due to the pressure of the fluid are computed and
mapped by the J matrix. Finally, h and n denote the time
step and time index respectively.

For the simplicity we assume Rayleigh damping, so that
C is a linear combination K′ and M, and that the damping
is a linear function of only velocity. We use a finite ele-
ment method with constant element Green strain and lin-
ear isotropic stress-strain relationship as in [OH99] to obtain
M, K, and K′, however alternative solid constitutive models
could be used. Other semi-implicit integration schemes that
can be formulated as a linear equations of u,d and p can be
used as well.

3.3. Fluid and Solid Coupling
The interaction between a fluid and deformable solid occurs
as a result of the following conditions:

• The velocities in the normal direction at the interface are
the same for both solid and fluid,

• The fluid velocity is divergence free and the deformable
solid velocity behaves according to its constitutive equa-
tion,

• The fluid’s pressure exerts a force on the solid and the
solid’s elastic force affects the fluid.

The proposed technique augments a standard method of
simulating incompressible fluids to handle interaction with
deformable bodies by including the effect of pressure at the
interface in addition to the effect of the pressure within the
fluid interior. The fluid pressure at the interface exerts force
on the solid, thus changing its velocity. This change in solid
velocity in turn alters the boundary condition imposed on
the fluid. By simultaneously solving for both the solid’s ve-
locities that satisfies Equation (3) and fluid pressure that en-
forces Equation (2), we obtain a velocity field for the fluid
and node velocities for the solid that satisfy all the coupling
requirements.

To achieve this effect, we modify the pressure projection
step to include the divergence due to boundary flux in addi-
tion to the divergence of the intermediate internal fluid ve-
locity field, v∗. This concept is similar in spirit to the rigid
body and fluid coupling technique presented in [KFCO06].

The Pressure-Poisson equation can be formulated as:

−D1Hun+1 +
h
ρ

D2Gpn+1 = D2v∗ (6)

where D1 and D2 are matrices for computing the divergence
due to the boundary and internal fluid fluxes respectively, G
is the gradient matrix for internal fluxes and H is a matrix
that maps the solid’s boundary node velocities to fluxes on
the fluid’s boundary. Finally, v∗ is the intermediate fluid ve-
locity computed from the fluid simulation that needs to be
projected onto its divergence free component, vn+1.

In order to simulate full coupling between the fluid and
the solid, we combine Equation (4) and Equation (6) and
solve for un+1 and pn+1 simultaneously:[

A −J
−D1H h

ρ
D2G

][
un+1

pn+1

]
=

[
b

D2v∗

]
(7)

Although the system of equations is not symmetric, it is very
sparse and can be solved efficiently using an iterative method
with a preconditioner. In our implementation, we used a
bi-conjugate gradient stabilized method with an incomplete
Cholesky preconditioner.

Finally, we can compute the divergence free fluid veloci-
ties vn+1 as follows:

vn+1
i =

{
(v∗− h

ρ
(Gp))i if i is not a boundary face

(Hun+1)i if i is a boundary face
(8)
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Figure 2: A closed system where a liquid-filled deformable toy bounces of the floor and sets the fluid inside in motion.

Figure 3: A deformable paddle blown by a jet of smoke rotates and bounces against the floor.

3.4. Conversion Matrices
The above described procedure requires the J and H matri-
ces which respectively map solid node velocities to fluid face
velocities and fluid pressure to solid node forces.

For the unstructured tetrahedral dynamic mesh discretiza-
tion described in [KFCO06], the matrix J encodes a com-
putation of looping through all the fluid’s boundary tetrahe-
drons and adding up the contribution of force on the solid’s
boundary faces due to the pressure. Matrix H represents
a computation of looping through all the solid’s boundary
faces, computing the flux, and adding the contribution to
the corresponding fluid boundary faces. Other interpolation
techniques that can be represented as a linear map can also
be used.

For the regular grid case, we compute the forces due
to pressure by integrating interpolated pressure values over
each face of the solid. Therefore, J is constructed by looping
through all solid faces and storing the interpolation stencils
needed for sample points on the face used for integration.
In order to construct H we employ a method similar to that
used in [GSLF05] where we first check if the ray between
two cell centers intersects a solid face, and if so, we con-
strain the flux of the corresponding cell face to the flux at
the point of intersection of the solid triangle.

4. Results and Discussion
We have implemented this method for simultaneous cou-
pling of fluids and deformable solids for both grid based and

Figure Avg time Time step
per step

Bar simultaneous 6 45.2 sec 1
30 sec

Bar time splitting (unstable) 6 33.0 sec 1
30 sec

Bar time splitting 6 32.8 sec 1
120 sec

Paddle 3 72.6 sec 1
30 sec

Toy 2 54.3 sec 1
60 sec

Sheet 1 172.3 sec 1
60 sec

Bunny 4 150 sec 1
300 sec

Bowl 5 120 sec 1
300 sec

Table 1: Timing results of the examples used in this pa-
per. Per step running time of the bunny and bowl examples
include surface tracking as well.

tetrahedral simulations, and used it to generate several exam-
ple animations. All of the examples shown in this paper also
appear on the accompanying video. The implementations
are done in MATLAB† and C++. We rendered all examples
with an open source renderer PIXIE‡.

Figure 1 shows frames from an animation of a fluid inter-
acting with multiple deformable solids where a jet of smoke

† http://www.mathworks.com
‡ http://sourceforge.net/projects/pixie
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Figure 4: Paint is poured over a deformable bunny.

Figure 5: A deformable bowl filled with liquid falls on shallow water contained in an invisible water tank, hits the bottom of
the tank and squirts the liquid out.

Figure 6: Comparisons of our simultaneous coupling method with time step of 1
30 sec (left), a time-splitting method with time

steps of 1
30 sec (middle) and a time-splitting method with time steps of 1

120 sec (right). Our method is stable at time step 1
30 sec

while the time splitting method requires time step of 1
120 sec to be stable.

is blown into a rubber sheet which deflects the smoke to-
wards another sheet. The rubber sheets are simulated with
tetrahedral elements and have thickness as opposed to the
infinitesimally thin cloth sheets used in [GSLF05].

An example of a fluid fully surrounded by a deformable
solid creating a closed system is shown in Figure 2. Here a
liquid-filled deformable toy bounces of the floor causing the
liquid inside to swirl. The liquid conserves its volume inside

the cavity of the toy and prevents the toy from collapsing on
itself upon impact with the ground.

Another interesting interaction between a fluid and a solid
is shown in Figure 3 where a jet of smoke is blown on a de-
formable paddle. The paddle rotates and bounces off the
floor, and in turn causes the smoke to swirl around the pad-
dle.

We also generated examples of liquids with free surfaces
interacting with deformable solids. In Figure 4 paint is

c© The Eurographics Association 2006.
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poured over a bunny causing it to deform under it. Frames
from an animation of a bowl filled with liquid falling onto
a shallow water contained in an invisible tank are shown in
Figure 5. The impact causes the bowl to deform and squirt
the liquid out. Both of these examples are generated using a
regular grid fluid simulator.

In Figure 6 we compare results obtained using a time-
splitting method with our method of simultaneous coupling.
The time-splitting method alternates between simulating the
solid, with forces exerted by the fluid pressure and simulat-
ing the fluid with the boundary condition provided by the
solid. Using a time step of 1

30 the time-splitting method
quickly goes unstable while our simultaneous method re-
mains stable. Only after reducing the time step to 1

120 (4×
smaller) are we able to obtain a stable time-splitting solution.
On a per-time step basis our method takes longer because
we solve the larger non-symmetric linear system from Equa-
tion (7), but this difference is more than compensated by the
fact that we can take larger time steps. Additionally, we had
originally wanted to simulate a bar with less damping in or-
der to get a more interesting motion of the bar, however ob-
taining a stable solution for the time-splitting case required
a small enough time step to render our attempts impractical.

The collision detection and response module for our finite
element based tetrahedral deformable solid simulator is in
its early stages. Even though we respond to the collisions
with surrounding obstacles our current implementation does
not account for self-collisions of a deformable body. This
is apparent in our bunny example where the right ear of the
bunny goes through the head and pokes through the nose
of the bunny in our video. We also do not prevent inver-
sion of solid tetrahedra which could lead into problems with
accuracy. Currently we are investigating methods that are
robust against element inversions such as the one proposed
in [ITF04].

The main drawback of the method presented in this paper
is that we need to solve a large non-symmetric linear system
that is composed of all fluid and solid degrees of freedom in
the domain instead of solving smaller symmetric linear sys-
tems for each separately. The main structure of the system
resembles a block diagonal matrix where each block repre-
sents the individual solid body and fluid system. The only
entries outside the block diagonal region are those used in
the coupling of the boundary values. Therefore the system
is still very sparse and efficient to solve with preconditioned
iterative methods, and by solving it our method does not in-
cur an overhead large enough to offset the advantage of using
large time steps.
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Appendix
The time integration of Equation (3) using the general Newmark
scheme results in the following set of equations:

Man+1 + C(un+1,dn+1)+ K(dn+1)− f n+1
p − f n+1

e = 0 (9)

dn+1 = dn + hun +(
1
2
−β)h2an + βh2an+1 (10)

un+1 = un +(1− γ)han + γhan+1 (11)

Choosing the integration parameters β = 1
2 and γ = 1, and substi-

tuting Equation (11) into Equation (10) we obtain the trapezoidal
rule:

dn+1 = dn +
h
2
(un + un+1) (12)

un+1 = un + han+1 (13)

According to Equation (13) the acceleration an+1 can be estimated
as:

an+1 =
1
h
(un+1 −un) (14)

Substituting Equation (14) and Equation (12) into Equation (9), and
assuming Rayleigh damping we obtain:

1
h

M(un+1−un)+Cun+1+K(dn+
h
2
(un + un+1))− f n+1

p − f n+1
e = 0

(15)
The first order approximation to the non-linear stiffness above can
be written as:

K(dn +
h
2
(un + un+1)) = K(dn)+

h
2

K′ (un + un+1) (16)

where K′ = ∂K
∂d |d=dn . Substituting this into Equation (15) we obtain:

1
h

M(un+1−un)+Cun+1+K(dn)+
h
2

K′(un+un+1)−f n+1
p −f n+1

e =0

(17)
Collecting the terms involving un+1 and un, and using the fact that
f n+1
p = Jpn+1, we finally obtain:

(
1
h

M+C+
h
2

K′)un+1−Jpn+1 =(
1
h

M−
h
2

K′)un−K(dn)+ f n+1
e

(18)
which is same as Equation (4).
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