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Identifying and quantifying memory are often critical steps in developing a mechanistic understanding 
of stochastic processes. These are particularly challenging and necessary when exploring processes that 
exhibit long-range correlations. The most common signatures employed rely on second-order temporal 
statistics and lead, for example, to identifying long memory in processes with power-law autocorrelation 
function and Hurst exponent greater than 1/2. However, most stochastic processes hide their memory 
in higher-order temporal correlations. Information measures—specifically, divergences in the mutual in-
formation between a process’ past and future (excess entropy) and minimal predictive memory stored in 
a process’ causal states (statistical complexity)—provide a different way to identify long memory in pro-
cesses with higher-order temporal correlations. However, there are no ergodic stationary processes with 
infinite excess entropy for which information measures have been compared to autocorrelation functions 
and Hurst exponents. Here, we show that fractal renewal processes—those with interevent distribution 
tails ∝ t−α—exhibit long memory via a phase transition at α = 1. Excess entropy diverges only there and 
statistical complexity diverges there and for all α < 1. When these processes do have power-law autocor-
relation function and Hurst exponent greater than 1/2, they do not have divergent excess entropy. This 
analysis breaks the intuitive association between these different quantifications of memory. We hope that 
the methods used here, based on causal states, provide some guide as to how to construct and analyze 
other long memory processes.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Many time series of interest have “short memory”, meaning 
(loosely speaking) that knowledge of the past confers exponentially 
diminishing returns for predicting the future. However, many other 
time series of interest—those with “long memory”—exhibit intrin-
sic timescales that grow without bound as the amount of available 
data increases [1–6]. Examples include the hydrological data first 
studied by Hurst [7] and modeled by Mandelbrot [8] and many 
others, e.g., see Refs. [9,10].

These are qualitatively different processes that demand quali-
tatively different generative models. In other words, signatures of 
long memory imply a kind of structural organization of the un-
derlying process that differs from one with short memory. This is 
the inverse problem of long memory: Which statistical signatures 
identify, uniquely or not, which intrinsic organizations? Sharp an-
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swers are critical to successful empirical analysis and often provide 
necessary first steps in predictive theory building. The complemen-
tary forward problem, an open question, is to identify the kinds of 
memoryful process structure that lead to one or another statisti-
cal signature. Answering this question requires defining statistical 
signatures that quantify memory in stochastic processes.

Many existing quantifications of long memory are based on 
second-order statistics; e.g., on using the autocorrelation func-
tion, power spectrum, or Hurst exponent. These approaches have 
had notable successes in analyzing hydrological data [7,9], mu-
sic [4], spin systems [2], astrophysical flicker noise [6], language 
[11,12], natural scenery [13,14], communication system error clus-
tering [15], financial time series, and many other seemingly com-
plex phenomena [5,16].

However, there are at least two reasons to look to other statis-
tics besides the Hurst exponent. First, second-order statistics alone 
can be misleading, as most stochastic processes seem to hide infor-
mation about their temporal dependencies in higher-order statis-
tics [17,18]. Second, as suggested in Ref. [19], our determination 
of whether or not a process has long memory ideally should be 
invariant under invertible transformations of one’s measurement 
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values. The challenge is not only to find a new statistic that ad-
dresses these two concerns, but to find a statistic that is also easy 
to operationalize.

References [20–22] suggested a process might be said to have 
long memory when the mutual information between its past and 
future (excess entropy) diverges, and Ref. [20] suggested that long 
memory is associated with divergent statistical complexity with 
the effective memory architecture given by a process’ ε-machine. 
By construction, these statistics are invariant under invertible 
transformations of the data; and with sufficiently clever entropy 
estimation techniques, these statistics are also calculable directly 
from time series data.

Unfortunately, there is a paucity of concrete examples upon 
which to build intuition as to how these higher-order statistics and 
the more commonly used second-order statistics relate. In part, 
this lack of concrete examples might owe somewhat to the fact 
that it is nontrivial to construct ergodic stationary processes with 
divergent excess entropy, though see Refs. [23,24]. (Note that the 
processes considered in Ref. [21] were nonergodic [25].)

To that end, we study a tractable class of processes that can 
have both divergent excess entropy and Hurst exponent greater 
than 1/2: the fractal renewal processes [26–29] in which interevent 
intervals are drawn independently and identically (IID) from a 
probability distribution with tails ∝ t−α . These processes are very 
widely used in the physical, biological, and social sciences to model 
diverse long-memory phenomena, ranging from current fluctua-
tions in electronic devices and neuronal spike trains to earthquakes 
and astrophysical time series [30–39].

Previous studies analyzed the second-order statistics of such 
processes in some detail [9,40]. Here, we use techniques inspired 
by those in Refs. [23,24] to calculate the excess entropy and statis-
tical complexity of fractal renewal processes for the first time. We 
find that fractal renewal processes have divergent excess entropy 
only and exactly when α = 1 and divergent statistical complex-
ity as α → 1 from above and for all 0 < α < 1. However, frac-
tal renewal processes have power-law power spectra for all 0 <
α < 2 [40] and Hurst exponents greater than 1/2 [9]—the latter 
being two of the conventional second-order statistical signatures 
of “long memory”. Thus, even for these relatively straightforward 
processes, the excess entropy and statistical complexity encapsu-
late a different notion of long memory than one gleans using only 
second-order statistics. These results also add fractal renewal pro-
cesses to a very short list of known stationary ergodic processes 
with divergent excess entropy [23,24] and so, we hope, pave the 
way for more general comparisons between different definitions of 
long memory.

Section 2 briefly reviews definitions of memory in stochastic 
processes. Section 3 calculates informational measures of memory 
for fractal renewal processes. Section 4 then compares our findings 
to the second-order statistics calculated by Refs. [9,40] and draws 
out the lessons for the above application examples. We close by 
reflecting on structural organization associated with long memory.

2. Background

There are many definitions for a stochastic process to have 
long memory; Ref. [19] provides a particularly helpful survey. Con-
sider a sequence of � observations x0, x1, . . . , x�−1, realizations of 
discrete-valued random variables X0, X1, . . . , X�−1. For instance, if 
the autocorrelation function C(τ ) is asymptotically a power law 
multiplied by a slowly varying function g(τ ), then a process can 
be said to have “long memory”:

C(τ ) = σ−2
�∑

j=0

(x j − μ)(x j+τ − μ)

∝ g(τ )τ−γ ,
with 0 < γ < 1, mean μ, and variance σ 2. Yet other definitions are 
based on the decay of the spectral density:

P( f ) = �−1

∣∣∣∣∣∣
�∑

j=0

x je
−i j f

∣∣∣∣∣∣
2

.

The process has long memory when P( f ) ∝ f −β L1( f ) as f ap-
proaches 0 with 0 < β < 1, where L1( f ) is a slowly varying func-
tion near f = 0. Other definitions still are based on how variances 
deviate from time-local linear extrapolation. Starting with the vari-
ance of partial sums S j = X1 +· · ·+ X j , one uses the rescaled-range
statistics:

RS(�) = max0≤ j≤�(S j − j
�

S�) − min0≤ j≤�(S j − j
�

S�)

σ

∝ �−H ,

where H ∈ (0, 1) is the Hurst index. Processes with H > 1/2 are 
interpreted as having long memory. Unfortunately, even these 
second-order statistics are not always equivalent signatures of long 
memory. See Ex. 5.2 of Ref. [19] for an example of a process in 
which the spectral density but not correlations are regularly vary-
ing.

In a search for general principles from ergodic theory, Sec. 4 
of Ref. [19] proposed that we require a definition of long mem-
ory independent of invertible transformations of the data. That is, 
if an invertible transformation is applied pointwise to each ob-
servation Xi , we would hope that the resulting process has long 
memory if and only if the original process had long memory [41]. 
This desideratum is not always satisfied by definitions based on 
the above second-order statistics, though see Thm. 4.1 of Ref. [19].

Since strongly mixing processes have short memory and non-
ergodic processes could be said to have infinite memory [25], 
Ref. [19] proposed that one or another type of nonmixing prop-
erty is a good candidate for long memory in ergodic stationary 
processes. This criterion satisfies the invariance desideratum above 
but can be rather difficult to evaluate.

Fortunately, the information-theoretic notions of memory we 
consider also satisfy the transformation-invariant desideratum and 
have been successfully deployed as quantifications for the “com-
plexity” of stochastic processes [21,42]. We study two: the excess 
entropy E = I[←−X ; −→X ], or the mutual information between a pro-
cess’ past 

←−
X = . . . X−3 X−2 X−1 and future 

−→
X = X0 X1 X2 . . . [22]; 

and the statistical complexity Cμ , or the amount of information 
from the past 

←−
X required to predict the future 

−→
X as well as pos-

sible [42]. When the excess entropy diverges, we are interested 
in the asymptotic rate of divergence of finite-length excess en-
tropy estimates E(�) = I[←−X ; −→X �] [21,22]. This asymptotic rate of 
divergence is also invariant to temporally local convolutions and 
invertible transformations of the data [21].

To more precisely define and calculate the statistical complex-
ity and the excess entropy, we need to recall the causal states of 
computational mechanics. Consider clustering pasts according to 
an equivalence relation ∼ in which two pasts are equivalent when 
they have the same conditional probability distribution over fu-
tures: ←−x ∼ ←−x ′ if and only if Pr(

−→
X |←−X = ←−x ) = Pr(

−→
X |←−X = ←−x ′). 

The resulting clusters are forward-time causal states S+ , which in-
herit a probability distribution from the probability distribution 
over pasts. The forward-time statistical complexity is the entropy of 
these causal states: C+

μ = H[S+]. For more detail, see Refs. [43,44].
We can similarly define the reverse-time causal states S− by 

clustering futures with equivalent conditional probability distri-
butions over pasts: −→x ∼ −→x ′ if and only if Pr(

←−
X |−→X = −→x ) =

Pr(
←−
X |−→X = −→x ′). The reverse-time statistical complexity is the en-

tropy of those reverse-time causal states: C−
μ = H[S−]. Renewal 

processes are time-reversal invariant [45], or causally reversible, so 
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throughout the following we denote the statistical complexity as 
Cμ = C+

μ = C−
μ without loss of precision.

Reverse-time causal states and forward-time causal states can 
be used to calculate the excess entropy [46,47]:

E = I[S+;S−] .

For discrete-time processes, E is a lower bound on Cμ:

E ≤ Cμ . (1)

In other words, for discrete-time processes, if statistical complexity 
is finite, then so is excess entropy. Conversely, if excess entropy is 
infinite, then statistical complexity is infinite.

Often continuous-time processes have an uncountable set of 
causal states. For them, the statistical complexity is taken to be 
the differential entropy:

Ĉμ = H[S+]
= −

∫
	

dμ(σ+) logμ(σ+) ,

where we have the simplex 	 of causal states and μ(σ+) is 
their measure in 	. In the continuous-time setting, the inequal-
ity analogous to Eq. (1) no longer necessarily holds [48]. We call 
the differential entropy Ĉμ the continuous-time statistical complex-
ity to distinguish it from the discrete-time statistical complexity 
Cμ , but simply refer to it as the statistical complexity when con-
text is clear.

One can also define finite-time reverse-time causal states, 
denoted S−

� , by clustering futures of finite-length � with the 
same equivalence relation as above. From these, we obtain finite-
length reverse-time statistical complexity C−�

μ = H[S−
� ], respec-

tively. These can be used to calculate finite-future excess entropy 
estimates: E(�) = I[S+; S−

� ] [46,47].
For discrete-alphabet, discrete-time processes, the statistical 

complexity is invariant to relabelings of the measurement alpha-
bet. However, as just noted, when the causal states are uncount-
able, the statistical complexity involves a differential entropy, and 
differential entropies are not invariant to invertible transformations 
of the coordinate system of the distribution’s support [49, Ch. 8.3]. 
Modulo such factors, whether or not statistical complexity di-
verges, the rate of divergence of its finite-length estimates C�

μ is 
invariant to temporally local convolutions of the data.

Realizations from a renewal process consist of sequences of 
events separated by epochs of quiescence, the lengths of which 
are drawn independently from the same interevent distribution. 
Throughout, when discussing a discrete-time renewal process, we 
use the following notation [45]: F (n) is the interevent count prob-
ability distribution function; w(n) = ∑∞

n′ F (n′) is the survival func-
tion; and μ is its mean interevent count. We use the following no-
tation for continuous-time renewal processes: φ(t) is the waiting 
time distribution; �(t) is its survival function; and T is the mean 
interevent interval. Fractal renewal processes have survival functions 
that have power-law tails, as introduced shortly.

3. Intrinsic memory in fractal renewal processes

Fractal renewal processes—those with power-law interevent in-
terval probability density functions—can have long memory in the 
sense of Ref. [50], as they can have a Hurst exponent greater than 
H > 1/2 [9] and their autocorrelation function can be (asymp-
totically) a power law [40]. Fractal renewal processes have been 
implicated in a variety of complex natural processes, to which the 
introduction alluded. Might these processes also have infinite sta-
tistical complexity or infinite excess entropy? To the best of our 
knowledge, the excess entropy and statistical complexity of fractal 
renewal processes have yet to be calculated.

Calculating statistical complexity and excess entropy can be 
challenging when going beyond finite causal-state processes [51]. 
To make progress with bounding the excess entropy of fractal re-
newal processes, we use two tools. The first tool is to coarse grain 
by time-binning. The Data Processing Inequality [49] then implies 
that the excess entropy of a discrete-time renewal process is al-
ways upper-bounded by the excess entropy of the corresponding 
continuous-time renewal process. See Appendix A. The second tool 
allows us to calculate excess entropy and statistical complexity 
even when the mean rate of events vanishes by conditioning on 
the presence of a proxy event. This tool was inspired by previous 
work [23] and is summarized in Appendix B.

Fractal renewal processes are typically considered in contin-
uous-time, with interevent intervals generated independently and 
identically distributed (IID) from the probability density function:

φ(t) =
{

0 t < 1

αt−(α+1) t ≥ 1
. (2)

The probability of seeing an interevent interval of length t or larger 
is the survival function:

�(t) =
∞∫

t

φ(t′)dt′

=
{

1 t < 1

t−α t ≥ 1
. (3)

Time intervals are given in terms of the shortest possible in-
terevent interval. When α > 1, the mean interevent interval T =

α
α−1 is finite; when 0 < α ≤ 1, the mean interevent interval is in-
finite, but one always eventually sees an event.

Appendix D describes how to manipulate the continuous-time 
analog of Eq. (B.1), an equation for E(�) in terms of survival func-
tion, to obtain:

Ê =

⎧⎪⎨⎪⎩
log α2

α−1 − 1 α > 1

∞ α = 1
α2+α−1
α(1−α)

+ log α
1−α − (1 − α)Kα α < 1

, (4)

where Kα = ∫ ∞
0 (u−α − (1 + u)−α) log(u−α − (1 + u)−α)du. Note 

that at small values of α, Kα is difficult to evaluate numerically 
due to the integrand’s long tails, even when Ê is quite small. 
For instance, when α = 1/4, Ê ≈ 0.089 nats, but 

∫ N
0 (u−α − (1 +

u)−α) log(u−α − (1 + u)−α)du does not return positive estimates 
for the excess entropy until N ≥ 1011. A more obvious benefit of 
Eq. (4), then, is that we can study the excess entropy’s asymp-
totic behavior near α = 1, where Ê(�) ∼ log log �. This divergence 
is slower than any previously reported divergence [21,23,24], but 
is a divergence nonetheless.

When α > 1 but close to its critical value, the excess entropy 
diverges as ∼ log 1

α−1 . As α → ∞, ̂E diverges as logα.
The discrete-time analog of fractal renewal processes has a sur-

vival function:

w(n) =
{

1 n = 0

n−α n ≥ 1
. (5)

The transient (small n) behavior of w(n) may not match that in 
some applications, but only w(n)’s asymptotic behavior is relevant 
to E’s divergence. Moreover, Appendix A guarantees that E is finite 
when α 
= 1 and that at α = 1 its divergence is at most log log �, 
where � is defined in Sec. 2. Additional arguments in Appendix D, 
in turn, show that E(�) diverges at α = 1 as log log�.
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The excess entropy E captures the amount of predictable ran-
domness of a stochastic process. As a comparison, we are also 
interested in the statistical complexity Cμ of discrete-time and 
continuous-time fractal renewal processes. The statistical complex-
ity is the number of bits required to losslessly predict (E nats of) 
the process’ future. Sometimes, Cμ is not much larger than E; for 
discrete-time periodic processes, the two are equivalent and equal 
to the logarithm of the period. More often than not, Cμ is infinite 
while E is finite; e.g., for processes generated by most (nonunifilar) 
Hidden Markov Models.

Cryptic processes have large statistical complexity and small ex-
cess entropy [46]; the larger the crypticity, the more that a process’ 
true structure is “hidden” from the observer. An open question 
is whether or not fractal renewal processes, with their statistical 
signatures of complexity, are highly cryptic. So, we focus some at-
tention now on evaluating Cμ for fractal renewal processes.

We can calculate Cμ of time-binned continuous-time renewal 
processes in the infinitesimal-τ limit [48]:

Cμτ ∼ log
1

τ
−

∞∫
0

�(t)

T
log

�(t)

T
dt .

The above expression is the differential entropy over continuous-
time causal states—the expression given in Sec. 2 as the
“continuous-time statistical complexity” Ĉμ—plus the logarithm 
of our time-bin resolution. Thus, Cμτ ’s log 1

τ divergence is an 
artifact of our failure to use the differential entropy when calcu-
lating memory storage requirements of continuous random vari-
ables [49]. As a result, we focus on Cμτ ’s nondivergent com-
ponent, Ĉμ = limτ→0

(
Cμτ + logτ

)
, or what was earlier called 

the continuous-time statistical complexity. Straightforward algebra 
shows that:

Ĉμ =
{

1
α−1 + log α

α−1 α > 1

∞ α ≤ 1
. (6)

Again, we can say that the (continuous-time) Cμ diverges when-
ever the mean interevent interval T diverges. When α ≤ 1, finite-
length statistical complexity estimates adapted to the continuous-
time case from Eq. (B.2) diverge as:

C+�
μ ∼

{
log� α < 1
1
2 log� α = 1

.

So, the special nature of α = 1 is also revealed as a discontinu-
ity in rates of divergence of the finite-length statistical complexity. 
In particular, the least cryptic fractal renewal process, among frac-
tal renewal processes with divergent statistical complexity, is the 
process generated when α = 1.

Equations (4) and (6) are plotted in Fig. 1. The divergences in ̂E
and Ĉμ at α = 1 are apparent in the plot. If Ê and Ĉμ are taken 
to be systems-agnostic order parameters, then a fractal renewal 
process exhibits a nonequilibrium phase transition exactly when 
its mean interevent interval diverges.

The behavior of Ê and Ĉμ as α tends to infinity also de-
serves special mention, as the process appears to become infinitely 
predictable (̂E → ∞) while requiring less memory for prediction 
(Ĉμ → 0). As α tends to ∞, φ(t) becomes more and more sharply 
peaked at t = 1. In other words, the process moves closer and 
closer to that of a periodic process with period 1. Periodic pro-
cesses are random enough, in that the phase of the process could 
be any real number between 0 and the period. In the language 
of computational mechanics, the causal state is the phase, and 
its differential entropy—the continuous-time statistical complexity 
Ĉμ—is the logarithm of the process’ period. As α → ∞, the mean 
interevent interval T = α tends to 1, and the continuous-time 
α−1
Fig. 1. Excess entropy ̂E and statistical complexity Ĉμ of continuous-time fractal re-
newal processes: Process realizations are generated by drawing interevent intervals 
IID from the probability density function φ(t) = αt−(α+1) for t ≥ 1 and 0 otherwise. 
Ê in nats as a function of α, evaluated using Eq. (4). The nondivergent component 
of statistical complexity ̂Cμ in nats as a function of α, evaluated using Eq. (6). Note 
that Ĉμ is a differential entropy and so not necessarily larger than the excess en-
tropy ̂E; a subtlety when working with continuous-time processes.

statistical complexity correspondingly tends to log 1 = 0. However, 
periodic processes are also highly predictable, in that the time to 
next event is determined by the time since last event; hence, the 
differential entropy of the time to next event conditioned on the 
time since last event tends towards negative infinity, resulting in 
an infinite Ê = Ĉμ − H[S−|S+] → ∞. Similar behavior was seen 
in Ref. [48] as the variability of interspike intervals tended to zero. 
The least cryptic fractal renewal process, then, occurs in the limit 
that α tends to infinity.

4. Conclusion

We showed that a fractal renewal process’s excess entropy di-
verges precisely when its mean interevent interval diverges. This 
adds a relatively easily understood process and one of much 
broader applicability to the existing list of ergodic stationary pro-
cesses with divergent excess entropy [23,24].

Notably, the expected number of events observed in a finite 
time interval for a fractal renewal process with divergent excess 
entropy is zero. This brings in an interpretational challenge. A pro-
cess that, on average, produces arbitrarily long silence is not often 
described as random. So, should not the excess entropy of a point 
process with infinite mean interevent interval be zero? However, 
the mutual information between finite-length pasts and futures, 
assuming that we do see an event, can diverge. And, we will al-
most surely see an event when we view a semi-infinite past.

Our calculations revealed that fractal renewal processes flip 
from finite to divergent statistical complexity and exhibit diver-
gent excess entropy exactly when the mean interevent interval 
diverges. These information-theoretic measures of memory point 
to the power-law coefficient α = 1 as being a “critical” parame-
ter in this process family. When the mean interevent interval is 
finite, both excess entropy and continuous-time statistical com-
plexity are finite, though excess entropy grows unbounded as α
tends to infinity. When the mean interevent interval is infinite and 
the power-law coefficient is not α = 1, excess entropy is finite, but 
continuous-time statistical complexity is infinite.

Employing signatures of long memory based on second-order 
statistics suggests, instead, that α = 2 was a “critical point”. Specif-
ically, the power spectrum of a fractal renewal process exhibits 
power-law scaling when α < 2 [40], and the Hurst index of the 
processes with α < 2 is greater than 1/2 and increases with de-
creasing α [9]. Therefore, at a minimum, drawing conclusions 
about a process’ complex organization via such low-order statis-
tics can be ambiguous.
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Finally, our results suggest that certain previously studied ex-
perimental phenomena are poised at a critical point between fi-
nite and infinite “memory”, as suggested by many others using 
other definitions of criticality [52]. The stochastic process of neu-
ron membrane ion channels opening and closing has divergent 
excess entropy when the kinetic rate adopts the form keff(t) ≈ t−1. 
This may be the case for some potassium-selective channels in cul-
tured mouse hippocampal pyramidal cells near resting membrane 
voltage, V = −60 V [53, Fig. 10, bottom right]. Similarly, the phe-
nomenological fit of the stopping probabilities used for Wikipedia 
edit–revert time series has divergent statistical complexity when 
α = 1 and divergent excess entropy when p = 1 as well [54,55]. 
This seems to suggest that increased cooperativity between editors 
drives Wikipedia towards increasing its social memory.

However, one lesson from our results is tantamount to a cau-
tionary note on interpreting the implicated memory organization. 
To the extent that the estimated fractal renewal processes with di-
vergent memory are good models, one cannot conclude that the 
content of that memory reflects sophisticated computational pro-
cessing or highly organized storage of detailed information. Indeed, 
like all renewal processes, fractal renewal processes are simple: 
they count up to some threshold and reset. Surely these coarse 
statistics, while useful and even necessary as tools for a first-cut 
analysis, fall far short of fully describing the hierarchies of infor-
mation processing in neurons and the rich social dynamics driving 
Wikipedia’s accumulating human knowledge.

To close, let’s return to our initial discussion of statistical sig-
natures of structural organization. We drew a comparison of diver-
gent memory in ergodic processes to that we previously identified 
in the so-called Bandit nonergodic processes [25]. The mechanism 
underlying the latter was rather straightforward: from trial to trial 
the process remembers the operant ergodic component subprocess 
and so uses an infinite memory and exhibits an excess entropy that 
diverges as log �. The case for ergodic processes is subtler. For re-
newal processes, which are ergodic, we showed that the divergence 
is log log �. What’s the associated mechanism? Renewal processes 
track time between events and so, in computation-theoretic model 
terms, it appears that the process somehow embeds a counter 
[20, Sec. 4.5.2]. An interesting contrast is the log � excess entropy 
divergence seen at the onset of chaos through period-doubling, 
associated with pushdown stack mechanism [20, Sec. 4.5.1], and 
seen in the branching copy process [23]. At this stage, though, the 
possibility of unique associations between the form of informa-
tion measure divergence and mechanism is not sufficiently well 
explored. Nonetheless, with further extension and refinement in-
formation measures and their divergences will become increasingly 
more insightful diagnostics of nature’s diverse forms of intrinsic 
computation.
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Appendix A. Continuous- versus discrete-time excess entropies

Often, integrals are easier to evaluate than the corresponding 
sums. One practical goal, leveraging this below, is to relate the ex-
cess entropy of time-binned continuous-time processes to that of 
corresponding discrete-time renewal processes.

Reference [45] found that the excess entropy of a discrete-time 
renewal process is:

E = log(μ + 1) − 2

μ + 1

∞∑
n=0

w(n) log w(n)

+ 1

μ + 1

∞∑
n=0

(n + 1)F (n) log F (n) . (A.1)

While Ref. [48] showed that the excess entropy of a continuous-
time renewal process X(t) is:

Ê = I[X(t)t<0; X(t)t≥0]

= log T − 2

T

∞∫
0

�(t) log�(t)dt

+ 1

T

∞∫
0

tφ(t) logφ(t)dt , (A.2)

which is in units of nats when the mean interevent interval T is 
finite.

Consider time-binning the continuous-time point process X(t)
by asking how many events are observed in an interval [t, t + τ ). 
If at least one event is observed, then we record a 1; if no events 
are observed, then we record a 0. This data labeling technique is 
common; e.g., when studying neural spike trains. The probability 
of observing at least n counts between successive 1s is given by:

wτ (n) = �(nτ ) .

When τ = 1, then the survival function of the time-binned process 
is exactly that of the discrete-time renewal process with excess 
entropy given in Eq. (A.1).

The excess entropy or estimates thereof for a discrete-time re-
newal process are upper bounded by the excess entropy of a corre-
sponding continuous-time renewal process, as shown shortly. This 
is a special case of a more general statement: coarse-graining a 
time series always reduces its excess entropy, due to the Data 
Processing Inequality. This statement can be easily generalized 
to other discrete-alphabet, continuous-time processes. Despite its 
simplicity, it proves useful for the calculations to come in Sec. 3.

In particular, let Ê denote the excess entropy of a continuous-
time renewal process X(t) with survival function �(t) and E the 
excess entropy of the discrete-time renewal process Xt with sur-
vival function w(n) = �(n) for all nonnegative integers n. Then, 
when ̂E < ∞:

E ≤ Ê .

To see this, let Eτ denote the excess entropy of the discrete-time 
process that comes from time-binning the continuous-time re-
newal process with discretization bin size τ . To obtain the above 
inequality, we apply the Data Processing Inequality:

E1/n = I[. . . , X(−2/n), X(−1/n); X(0), X(1/n), . . .]
≥ I[. . . , X−2, X−1; X0, X1, . . .]
= E1 .

If we take the limit of the left-hand side as n → ∞, we obtain:

Eτ=1 ≤ lim
n→∞ E1/n

= lim
τ→0

Eτ .
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Again by the Data Processing Inequality, Eτ=1 is lower-bounded by 
the mutual information between the counts since last event and 
counts to next event, as the former is a function of the past and 
the latter is a function of the future: E ≤ Eτ=1. By definition [56], 
limτ→0 Eτ = Ê.

Appendix B. Renewal processes with infinite mean interevent
intervals

When the mean interevent interval T (or μ) is infinite, the 
formulae for excess entropy in Eqs. (A.1) and (A.2) no longer ap-
ply. Causal states, however, still provide a useful framework for 
calculating it. Using them we introduce an analysis method for 
discrete-time renewal processes in this case. The obvious exten-
sions to continuous-time renewal processes follow when we re-
place F (n) with φ(t), w(n) with �(t), and summations with inte-
grals.

We calculate E(�) for renewal processes with infinite μ via 
an analysis technique inspired by Ref. [23] and then calculate E
as a limit of E(�) as � tends to infinity, seemingly valid for er-
godic processes. First, we would like to directly calculate E(�)

in terms of forward and reverse-time causal states [46]: E(�) =
I[←−X ; −→X �] = I[S+; S−

� ], where S−
� are finite-time reverse-time 

causal states. Unfortunately, inspecting the corresponding joint 
probability distribution in App. II of Ref. [45] shows that while 
we can identify the joint probability distribution up to a normal-
ization constant, this normalization constant is infinite when μ is 
infinite.

So, we define a “proxy” binary random variable U� which is 
1 if there has been an event sometime in 

−→
X � and past 

←−
X , 

and 0 otherwise. A little reflection shows that Pr(U� = 0) =
limN→∞ w(N + �) = 0. Even so, this auxiliary random variable is a 
surprisingly useful construct. A standard information-theoretic de-
composition gives E(�) = I[S+; S−

� |U�] + I[S+; S−
� ; U�], but since 

Pr(U� = 0) = 0, we have that I[S+; S−
� |U�] = I[S+; S−

� |U� = 1]
and I[S+; S−

� ; U�] = 0. Altogether this yields:

E(�) = I[S+;S−
� |U� = 1] .

The conditional probability distribution Pr(S+, S−
� |U� = 1) is nor-

malizable and, as shown in Appendix C, leads to:

E(�) = log Z(�) − 1

Z(�)

�∑
n=0

w(n) log w(n)

− 1

Z(�)

( ∞∑
n=0

(w(n) − w(n + � + 1))

× log(w(n) − w(n + � + 1))
)

+ 1

Z(�)

�∑
n=0

(n + 1)F (n) log F (n)

+ � + 1

Z(�)

∞∑
n=�+1

F (n) log F (n) , (B.1)

where Z(�) = ∑�
n=0 w(n). If lim�→∞ E(�) diverges, then we look 

for the asymptotic rate of divergence of E(�). Otherwise, the pro-
cess’ excess entropy can be defined as E = lim�→∞ E(�). We expect 
E will often be finite even when μ diverges.

A similar method allows us to calculate Cμ when mean in-
terevent count is infinite. This time, we define U� as a proxy 
random variable that is 1 if there has been an event in 

←−
X � and 

0 otherwise. Since U� is a function of S+ , a standard information-
theoretic identity implies that:
Cμ = H[S+|U�] + H[U�]
and, in particular:

Cμ = lim
�→∞

(
H[S+|U�] + H[U�]

)
.

As before, lim�→∞ Pr(U� = 0) = lim�→∞ w(�) = 0, so
lim�→∞ H[U�] = 0. Also, H[S+|U�] = Pr(U� = 0) H[S+|U� = 0] +
Pr(U� = 1) H[S+|U� = 1] by definition. Since there is only one 
semi-infinite past without an event, lim�→∞ H[S+|U� = 0] = 0. 
And, H[S+|U� = 1] = − 

∑�
n=0

w(n)
Z(�)

log w(n)
Z(�)

. Altogether, this im-
plies:

Cμ = lim
�→∞

�∑
n=0

w(n)

Z(�)
log

(
1
/ w(n)

Z(�)

)
. (B.2)

One can also study the growth rate of finite-time statistical com-
plexity estimates which are, after a moment’s reflection, the C�

μ =
− 

∑�
n=0

w(n)
Z(�)

log w(n)
Z(�)

estimates above in Eq. (B.2).
One comment, perhaps obvious from Eqs. (B.1) and (B.2), is 

that whether or not E and Cμ diverge depends entirely on the 
asymptotic form of F (n). Another is that the sums in Eq. (B.1) can 
be quite difficult to evaluate numerically when the renewal pro-
cess has long-range temporal correlations, since then F (n) decays 
slowly with n.

Appendix C. Finite-time excess entropy estimates with infinite 
mean interevent interval

From App. II of Ref. [45]:

Pr(S+ = σ+,S−
� = σ−|U� = 1)

= 1

Z

{
F (σ+ + σ−) σ− ≤ �

0 σ− = � + 1
,

where the normalization constant is:

Z =
�∑

σ−=0

∞∑
σ+=0

F (σ+ + σ−)

=
�∑

σ−=0

w(σ−) .

The marginals are easily calculated:

Pr(S+ = σ+|U� = 1) = 1

Z
(w(σ+) − w(σ+ + � + 1))

and:

Pr(S−
� = σ−|U� = 1) = 1

Z

{
w(σ−) σ− ≤ �

0 σ− = � + 1
.

From this, we calculate finite-length excess entropy in nats:

E(�) = H[S−
� |U� = 1] + H[S+|U� = 1] − H[S+,S−

� |U� = 1]

= log Z − 1

Z

�∑
n=0

w(n) log w(n)

− 1

Z

( ∞∑
n=0

(w(n) − w(n + � + 1))

× log(w(n) − w(n + � + 1))
)

+ 1

Z

∞∑
n=0

�∑
m=0

F (n + m) log F (n + m) .

This simplifies to Eq. (B.1).
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Similar manipulations hold for continuous-time processes. 
Briefly, the time since last event t and time to next event t′ have 
a joint probability distribution proportional to φ(t + t′), since the 
time since last event plus the time to next event is an interevent 
interval.

Appendix D. Fractal renewal processes

The α > 1 case simply requires substituting φ(t) and �(t) from 
Eqs. (2)–(3) into Eq. (A.2) and solving:

Ê = log T − 2

T

∞∫
0

�(t) log�(t)dt

+ 1

T

∞∫
0

tφ(t) logφ(t)dt. (D.1)

After straightforward calculations, we find that:

T = α

α − 1
,

1

T

∞∫
0

�(t) log�(t)dt = − 1

α − 1
, and

1

T

∞∫
0

tφ(t) logφ(t)dt = logα − α + 1

α − 1
.

These together yield: ̂E = log α2

α−1 − 1.
Now, we turn our attention to the case of 0 < α ≤ 1. There are 

two possibilities for Ê when 0 < α ≤ 1. One is that Ê diverges, 
in which case, we only care about the asymptotic rate of diver-
gence of Ê(�). The other possibility is that Ê does not diverge, in 
which case, we only care about contributions Q to Ê(�) that are 
not o(1); i.e., that satisfy lim�→∞ Q 
= 0. Our strategy in evaluating 
Ê(�) from Eq. (D.1) is to systematically find closed-form expres-
sions for all components that are not o(1).

Direct substitution gives:

Z =
{

�1−α

1−α α < 1

log� α = 1
, (D.2)

plus components of o(1); and:

− 1

Z

�∫
0

�(t) log�(t)dt =
{

− α
1−α + α log � α < 1

1
2 log � α = 1

(D.3)

plus components of o(1); and:

1

Z

�∫
1

tφ(t) logφ(t)dt + �

Z

∞∫
�

φ(t) logφ(t)dt

=
{

− 1−α−2α2

α(1−α)
+ logα − (1 + α) log � α < 1

−2 − log � α = 1
, (D.4)

plus components of o(1).
Finally, we address the only component with no simple closed-

form expression:

1

Z

∞∫
0

(�(t) − �(t + �)) log(�(t) − �(t + �))dt

= 1

Z

∞∫
1

(t−α − (t + �)−α) log(t−α − (t + �)−α)dt

+ 1

Z

1∫
0

(1 − (t + �)−α) log(1 − (t + �)−α)dt .
Since the last term vanishes, we ignore that term as a correction of 
o(1). The case for α = 1 can actually be evaluated explicitly since 
1
t − 1

t+�
= �

t(t+�)
:

lim
�→∞

1

Z

∞∫
1

�

t(t + �)
log

(
�

t(t + �)

)
dt = −1

2
log� .

Now, consider the case of α < 1. We extract the asymptotic scaling 
in � of the first term by the change of variables u = �t , giving:

1

Z

∞∫
1

(t−α − (t + �)−α) log(t−α − (t + �)−α)dt

= �1−α

Z

∞∫
1/�

(u−α − (1 + u)−α) log(�−α(u−α − (1 + u)−α))du

= −α
�1−α log�

Z

∞∫
1/�

u−α − (1 + u)−αdu

+ �1−α

Z

∞∫
1/�

(u−α − (1 + u)−α) log(u−α − (1 + u)−α)du .

The first of the two integrals can be evaluated explicitly as:
∞∫

1/�

u−α − (1 + u)−αdu = − �α−1

1 − α
+ �α−1

1 − α
(� + 1)1−α .

So, that we find the first term’s asymptotic behavior to be:

−α
�1−α log�

Z

∞∫
1/�

u−α − (1 + u)−αdu ∼ −α log � ,

plus corrections of o(1). One of the more notable corrections of 
o(1) is proportional to log �

Z , which is o(1) for α < 1 and otherwise 
has a nonzero limiting value when � → ∞.

Surprisingly, the latter of the two integrals limits to a finite 
value for α < 1:

lim
�→∞

�1−α

Z

∞∫
1/�

(u−α − (1 + u)−α) log(u−α − (1 + u)−α)du

= (1 − α)

∞∫
0

(u−α − (1 + u)−α) log(u−α − (1 + u)−α)du ,

where we used lim�→∞ �1−α

Z = 1 −α for α < 1. As a result, we find 
that:

1

Z

∞∫
0

(�(t) − �(t + �)) log(�(t) − �(t + �))dt

=

⎧⎪⎨⎪⎩
− 1

2 log � α = 1

−α log � + (1 − α)
∫ ∞

0 (u−α

− (1 + u)−α) log(u−α − (1 + u)−α)du 0 < α < 1

,

(D.5)

plus corrections of o(1). Altogether, combining Eqs. (D.2)–(D.4) and 
(D.5) into Eq. (D.1), we recover Eq. (4) of the main text.

As discussed there, we still must evaluate E(�) at α = 1. We 
focus again on asymptotic expansions in � and drop corrections to 
expressions that do not contribute to E. When α = 1:
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Z(�) = 1 +
�∑

n=1

1

n
= log� ,

plus corrections of O (1). Next, we evaluate:

−
�∑

n=0

w(n) log w(n) =
�∑

n=1

logn

n

=
�∑

n=2

logn

n
.

Since log n
n is a monotone decreasing function with n, we lower-

and upper-bound this sum using integrals: 
∫ �+1

2
log n

n dn ≤∑�
n=2

log n
n ≤ log 2

2 + ∫ �

2
log n

n dn. These are easily evaluated, giving:

−
�∑

n=0

w(n) log w(n) = −1

2
log2 � ,

plus corrections of O (1). For other sums, we need an expression 
for F (n):

F (n) = w(n) − w(n + 1)

=
{

0 n = 0
1

n(n+1)
n ≥ 1

.

Then, we evaluate:
�∑

n=0

(n + 1)F (n) log F (n) = −2
�∑

n=1

log n

n
+

�∑
n=1

log(1 + 1
n )

n

= log2 � ,

plus corrections of O (1), where we have noted that 
∑∞

n=1
log(1+ 1

n )

n

converges since 
∫ ∞

1
log(1+ 1

x )

x dx converges. The next term takes the 
form:

(� + 1)

∞∑
�+1

F (n) log F (n) = −(� + 1)

∞∑
�+1

log(n(n + 1))

n(n + 1)
.

We can bound the sum using 
∫ ∞
�+1

log(n(n+1))
n(n+1)

dn ≤∑∞
�+1

log(n(n+1))
n(n+1)

≤ log(�2+�)

�2+�
+ ∫ ∞

�+1
log(n(n+1))

n(n+1)
dn. These integrals are 

both easily evaluated, revealing an asymptotic form of:

(� + 1)

∞∑
�+1

F (n) log F (n) = −2 log � ,

plus corrections of O (1). Finally, to evaluate the last term in the 
sum, we note that:

w(n) − w(n + � + 1) = 1

n(1 + n
�+1 )

= 1/� + 1
n

�+1 (1 + n
�+1 )

,

when n ≥ 1. We define xn = n
�+1 with dxn = 1

�+1 and write:

w(n) − w(n + � + 1) = dxn

xn(1 + xn)
.

Then:
∞∑

n=0

(w(n) − w(n + � + 1)) log(w(n) − w(n + � + 1))

= (1 − w(� + 1)) log(1 − w(� + 1))

+ log dxn

∞∑
n=1

dxn

xn(1 + xn)
+

∞∑
n=1

log(xn(1 + xn))

xn(1 + xn)
dxn .
The first term is o(1), since lim�→∞(1 − w(� + 1)) log(1 −
w(� + 1)) = 0. We can view the other two sums as Riemann sums 
for integrals 

∫ ∞
1/�

dx
x(1+x) and 

∫ ∞
1/�

log(x(1+x))
x(1+x) dx respectively, giving:

∞∑
n=1

dxn

xn(1 + xn)
= log� ,

plus corrections of o(1) and:
∞∑

n=1

log(xn(1 + xn))

xn(1 + xn)
dxn = −1

2
log2 � ,

plus corrections of o(1). Altogether, substituting the above expres-
sions into Eq. (B.1) yields:

E(�) = log log� − 2 ,

plus corrections of o(1). The various divergences of order log � all 
cancel one another, but the divergence of log log � due to the log �

divergence in Z(�) remains, just as for the continuous-time case. 
When F (n) is monotone decreasing at some finite N sufficiently 
rapidly, manipulations similar to those above imply that divergence 
in ̂E is a sufficient condition for divergence in E.
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