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Abstract

Probability density estimation is widely-known as an ill-posed
statistical problem whose solving depends on extra constraints.
We investigated what prior beliefs people might have in their
learning of an arbitrary probability distribution, especially
whether the distribution is believed to be unimodal or multi-
modal. In each block of our experiments, participants repeat-
edly reconstructed a one-dimensional spatial distribution after
observing every 60 new samples from the distribution. The
probability distribution function (PDF) they reported on each
trial was submitted to a spectral analysis, where the powers
for 1-cycle, 2-cycle, . . . , n-cycle components respectively in-
dicate participants’ tendency of reporting unimodal, bimodal,
. . . , n-modal distributions. In two experiments, the reported
PDFs showed significant bimodality—that the 2-cycle power
was above chance and even larger than the 1-cycle power—not
only for bimodal distributions, but also for uniform distribu-
tion. Such illusory bimodality for uniform distribution was
first found when we used an adaptive procedure analogous to
“human MCMC”, updating the generative distribution of sam-
ples from trial to trial to reinforce potential biases in PDFs
(Experiment 1). However, even when we fixed the generative
distribution across trials (Experiment 2), the illusory bimodal-
ity did not vanish. The illusory bimodality was even observed
before participants experienced any bimodal distributions in
the experiment . We considered a few kernel density models
and discuss further computational explanations (e.g. prior be-
liefs following Chinese Restaurant Process) for this new phe-
nomenon.
Keywords: Probability density estimation, human MCMC

Introduction
Learning a probabilistic model of the world lies at the heart
of categorization (Flannagan et al., 1986), inference (Griffiths
& Tenenbaum, 2006), optimal foraging (Stephens & Krebs,
1986), and more generally, the human ability of generalizing
from a few instances of experience (Tenenbaum et al., 2011).
However, the learning of such model as probability density
estimation is itself an ill-posed statistical problem that can-
not be solved without extra constraints (Vapnik, 1995). What
prior beliefs do people have when they learn arbitrary proba-
bility distributions?

According to some early studies, people are slower in
learning U-shaped than learning Gaussian distributions (Flan-
nagan et al., 1986) and may mistakenly recall multimodal dis-
tributions to be unimodal (Nisbett & Kunda, 1985), which
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seems to suggest that people expect the to-be-learned prob-
ability distribution to be unimodal or Gaussian. However,
later studies show that people may not have a general dif-
ficulty in learning multimodal distributions. For example,
people can learn a distribution with as many as four modes
from as few as 70 samples (Sun et al., 2019) or use multi-
modal prior distributions for inference (Acerbi et al., 2014;
Sanborn & Beierholm, 2016). Bimodal or U-shaped distri-
butions are not slower to learn or reduced to Gaussian distri-
butions unless samples are associated with high perceptual or
mnemonic noises (Yeung & Whalen, 2015). As Tran et al.
(2017) pointed out, mistakenly reporting multimodal distri-
butions as Gaussian may simply reflect a failure to learn the
distribution except for its mean.

In studies where probability distributions are reasonably
learned, evidence even points to the reverse direction: In
a motor decision task, people are found to represent their
Gaussian-like, unimodal motor error distributions as multi-
modal distributions (Zhang et al., 2015). Multimodal in-
stead of unimodal representations are also found for infer-
ence based on very few (four) samples from a Gaussian dis-
tribution (Schustek & Moreno-Bote, 2018). In one study of
temporal distributions (Acerbi et al., 2012), hints of multi-
modal representations for unimodal distributions, though not
being described in the text, are visible in their figures. These
pieces of evidence together suggest that people’s prior beliefs
for probability distributions may be (counterintuitively) mul-
timodal instead of unimodal. But this is far from a conclusion,
partly because the assertion is too counterintuitive to be built
on only a few studies, and partly because the estimation of
distribution representations in all these studies is indirect, re-
lying on sophisticated modeling analysis whose assumptions
are not necessarily true.

Here we developed a new distribution report task and data
analysis method to more directly and sensitively detect the
potential multimodality in participants’ prior beliefs for prob-
ability distributions. In each block of our experiments, we
asked participants to reconstruct a distribution on a 20-bin
distribution reporter, after observing every 60 new samples
generated from the distribution. An adaptive procedure was
applied to the generative distribution after each trial so that it
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changed slightly towards participants’ report on the trial. In-
spired by the idea of human Markov chain Monte Carlo (hu-
man MCMC, Sanborn and Griffiths (2008)) and more closely
by Lew and Vul’s (2015) cascading method, this adaptive pro-
cedure was designed to reinforce the biases in participants’
behavioral patterns and thus to more efficiently capture the
influences of prior beliefs that might otherwise be transient.

A common practice of previous distribution report stud-
ies (Nisbett & Kunda, 1985; Yeung & Whalen, 2015) was to
average the reported probability distribution functions across
trials and participants, which might have cancelled out differ-
ent multimodal distributions in different trials or participants.
To avoid so, we applied spectral analysis to the reported prob-
ability distribution functions in single trials and averaged the
power separately for different frequency components. The
1-cycle component corresponds to unimodal, 2-cycle compo-
nent corresponds to bimodal, and so on.

In two experiments, we found participants not only were
able to reconstruct real bimodal distributions, but also showed
bimodality in their reconstruction of uniform distributions—a
phenomenon we termed “illusory bimodality”. Further statis-
tical and modeling analysis have allowed us to exclude a few
trivial explanations for illusory bimodality. We discuss its im-
plications for human prior beliefs in representing probability
distributions.

Methods
Participants
Forty-eight students from Peking University participated in
our experiments (Experiment 1: 24 participants, 2 male, aged
18–28; Experiment 2: 24 participants, 9 male, aged 19–25).
The study was approved by the ethics committee of School
of Psychological and Cognitive Sciences at Peking Univer-
sity. All participants provided written informed consent. Par-
ticipants received a base payment of 60 RMB plus a bonus
that could range from 0 to 60 RMB according to their perfor-
mance.

Experiments
Participants were required to reconstruct a visually-presented
one-dimensional probability distribution based on the sam-
ples they saw, in a cover story of “collecting meteors on plan-
ets” (Figure 1A). On each planet, participants watched ani-
mated meteors falling down to the ground and were told that
the horizontal locations of the fallen meteors followed a spe-
cific distribution. They were encouraged to learn this distri-
bution and allocate “meteor-collecting machines” among the
possible locations proportional to each location’s likelihood
of welcoming meteors. Participants would receive bonus
points for the collected meteors. The scoring rule of our task
was designed in such a way that matching the allocation of
meteor-collecting machines to the generative distribution of
meteor locations would maximize expected reward and par-
ticipants were explicitly instructed so. That is, participants
were motivated to reconstruct the generative distribution of

locations as accurately as they could.
Each block was accompanied by a unique background im-

age of a planet. Participants were told that the meteor loca-
tions on each planet (block) had its own distribution. Each
planet (block) started with an initial 60 meteor samples and
proceeded through 30 trials, on each of which participants re-
ported the distribution of meteor locations on the planet and
then received 60 more samples as feedback.

Samples. During the presentation of samples, each meteor
appeared at one of 20 possible horizontal locations, falling
to the ground from the same height and at the same speed.
Every 100 ms a new meteor appeared and lasted for 500 ms,
resulting in no more than 4 meteors on the screen at a time
and a total presentation time of 6400 ms for 60 samples.

Distribution report. The distribution report was self-
paced, where participants could either click the mouse on
a bar or drag the mouse through bars to set the heights of
20 bars to indicate the relative probability of each location.
Participants could change their report as many times as they
needed before clicking on the “OK” button to confirm. In the
subsequent feedback, the relative probabilities participants
reported were scaled to adding up to 1 and shown as the back-
ground for the next 60 samples.

Adaptive procedure. In Experiment 1 (“adaptive-change
experiment”), to amplify the potential biases in participants’
report, after each trial the reported distribution was used to
update the generative distribution of next trial. According to
the adaptive procedure (dashed-line box at the bottom of Fig-
ure 1A), the generative distribution Pt+1 on trial t + 1 is a
weighted summation of the reported distribution Rt and the
generative distribution Pt :

Pl,t+1 = α ·Rt +(1−α) ·Pl,t . (1)

The updating factor α was set to 0.2, which is small enough
to prevent participants from discovering the adaptive proce-
dure and meanwhile large enough for the generative distri-
bution and participants’ report to converge. In Experiment 2
(“fixed-distribution experiment”), the generative distribution
was fixed in each block and no adaptive procedure was used
between trials, equivalent to setting the α in Eq. 1 to be 0.

Design. Except for the presence or absence of the adap-
tive procedure, the two experiments were identical in stim-
uli, procedure, and design. In both experiments, each partic-
ipant completed a practice block of 5 trials and six experi-
mental blocks of 30 trials, which took approximately 80 min-
utes. A block might start with one of three different gen-
erative distributions (see Figure 1B): a uniform distribution
and two bimodal distributions that are mixtures of two (dis-
cretized) left- or right-skewed beta-distribution components
(“skewed bimodal distributions”). The practice block used
the uniform distribution. The six experimental blocks used
an ABCABC design for the three different distribution con-
ditions, with their orders counterbalanced across participants.
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Figure 1. Repeated reconstruction of probability distributions. A, Task. Each planet (block) started with an initial 60 meteor samples
(visualized as falling firing balls) and proceeded through 30 trials. On each trial, participants were required to report the distribution of the
horizontal locations of the meteors on the planet. To do so, they used the mouse to adjust the heights of the 20 bars and clicked on OK to
confirm. They then received 60 more samples as feedback. In each block, the generative distribution for samples was initially one of three
distributions (one uniform distribution and two bimodal distributions, as shown in B). In Experiment 1 (“adaptive-change experiment”), the
generative distribution was updated after each trial according to an adaptive procedure (weighted summation of reported distribution and the
previous generative distribution, see dashed-line box). In Experiment 2 (“fixed-distribution experiment”), the generative distribution was fixed
throughout each block. B, Response convergence in Experiment 1. Each panel is for one of the three different initial generative distributions
(black curve). The reported probability density functions (PDFs) of the last 1–3 trials, 4–6 trials, and 7–9 trials, averaged across participants,
overlapped with each other, indicating that participants’ responses well converged at the end of each block.

In other words, participants would not experience the same
distribution condition in two consecutive blocks. Neither
were they informed that two different blocks might have the
same distribution.

Statistical analysis

Across-block consistency. We first tested whether partic-
ipants’ reports in two blocks of the same distribution had
a higher similarity than those of different distributions, us-
ing the procedures as follows. Distribution reports in each
block were averaged across 30 trials, which resulted in a 20-
dimensional vector (i.e., the averaged PDF) for the block. The
similarity of two blocks were defined as the cosine value of
the angle between their vectors. For each participant, 6 blocks
were divided into the first 3 blocks and the last 3 blocks. Be-
tween one block from the first group and another block from
the last group, there were 9 similarities, among which, 3 were
between two blocks with same initial distribution and 6 were
not. We averaged the similarities within each participant and
obtained the similarity between blocks of same distribution
and the similarity between blocks of different distributions
for each participant. Last, a paired t-test was applied to see
whether the two similarities were different.

Spectral analysis. For each participant and trial, we ap-
plied Fast Fourier Transform (implemented by the fft func-
tion of the Python 3 library Numpy) to the PDF (i.e., a series
of 20 probabilities) participants reported.

Permutation test. In both Experiment 1 and Experiment 2,
we generated surrogate data by randomly shuffling the series

of 20 probabilities separately for each trial and each partici-
pant, and applied the Fourier transformation procedures de-
scribed above for real data to the surrogate data. This per-
mutation procedure was repeated for 1000 times to obtain the
distribution of chance-level powers for each frequency, based
on which we tested whether the powers at particular frequen-
cies in real data were significantly above the chance level.

Modeling

Histogram model. The histogram model assumes an ob-
server who has perfect memory and who separately counts
the number of samples fallen into each bin of the distribution
report task. Up to trial t of a block, the observer has observed
a total of 60 · t samples. The reported probability for bin loca-
tion l(l ∈ [1,20]) is thus the proportion of samples cumulated
at the location:

Rl,t =
Σt

τ=1Nl,t

60 · t
. (2)

where Nl,t is the cumulated number of samples at location l
up to trial t.
Gaussian model. The Gaussian kernel model takes the lim-
ited capacity of working memory as well as perceptual and
mnemonic noises into consideration. It assumes that the ob-
server can only use the 60 samples observed in the last trial.
Each sample influences not only the hit location but also its
nearby locations, with the strength of influence following a
Gaussian kernel function centered at the hit location. The re-

1308



ported probability for bin location l(l ∈ [1,20]) is thus

Rl,t =
Σ20

ξ=1Nl,t ·ϕ( l−ξ

σ
)

Σ20
l′=1Σ20

ξ=1Nl′,t ·ϕ( l′−ξ

σ
)
. (3)

where ϕ denotes the density function of standard Gaussian
distribution. The Gaussian kernel model has one parameter,
the kernel width σ.

Mexican-hat model. We adopted the Mexican-hat curve
widely used in modeling neuronal receptive fields (Marr &
Hildreth, 1980) as another kernel function to model the po-
tential influence of a sample on locations other than the hit
location. It assumes that each sample has positive effects for
nearby locations but negative effects for more distant loca-
tions. Otherwise the model is similar to the Gaussian kernel
model described above. The reported probability for bin lo-
cation l(l ∈ [1,20]) is thus

Rl,t =
ReLU(Σ20

ξ=1Nl,t ·ψ(l−ξ,σ))

Σ20
l′=1ReLU(Σ20

ξ=1Nl′,t ·ψ(l′−ξ,σ))
. (4)

where ψ is the Mexican hat wavelet with width σ. The recti-
fication function ReLU(.) sets negative values to 0 and does
not change positive values. The Mexican-hat model has one
free parameter σ.

Results
We first verified that participants in our task did learn from
samples and make reliable report of probability distribution
functions (PDFs). Figure 1B shows the PDFs reported in the
last a few trials of a block, separately for the three distribution
conditions (uniform, left-skewed bimodal, and right-skewed
bimodal) and averaged across all 24 participants in Experi-
ment 1. There were little differences between the last 1–3,
4–6, and 7–9 trials, all of which resembled the starting gen-
erative distribution in the block. Moreover, each participant
completed two separate blocks for each distribution condi-
tion, which allowed us to evaluate their consistency across
blocks, in other words, to test whether the PDFs reported for
the same condition were more similar to each other than those
of two different conditions (see Methods). As expected, the
between-block cosine similarity was significantly higher for
the same distribution condition than for two different distri-
bution conditions (t23 = 3.60, p = 0.002).

Meanwhile, participants’ report had patterned deviations
from the initial generative distribution (Figure 1B), among
which one pattern was counterintuitive: The reported PDFs
for the uniform distribution seemed to have two modes. As
we will see, this “illusory bimodality” is more pronounced in
single trials, because averaging multimodal PDFs with vary-
ing mode positions across trials or participants might cancel
out the modes. Next we look into single trials and, to cir-
cumvent the cancelling-out issue, we use a spectral analysis
to provide group-level measures of illusory bimodality.

Uniform Skewed bimodal
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Figure 2. Ridgeline plots for reported PDFs of the 30 trials
across the block. Top and bottom rows are respectively for one
block from an example participant and the group average. Left
and right columns are respectively for the uniform and skewed-
bimodal conditions (left- and right-skewed collapsed). Closely-
located modes in adjacent trials would overlap with each other to
form vertical ridges, that is, darker bands along the vertical axis.
Two separate ridges are visible not only for the skewed-bimodal con-
dition whose generative distributions were really bimodal, but also
for the uniform condition, especially in the plot for one block of one
participant, which demonstrates the existence of illusory bimodality
in single trials.

Illusory bimodality in uniform distributions
The reported PDFs for each of the 30 trials in a block are
shown in Figure 2 as ridgeline plots, where closely-located
modes in adjacent trials would overlap with each other to
form vertical ridges (i.e., darker bands). Two separate ridges
are visible not only for the skewed-bimodal condition (left-
and right-skewed collapsed) whose generative distributions
were really bimodal, but also for the uniform condition, espe-
cially in the plot for one block of one participant (upper-left
panel of Figure 2), which demonstrates the existence of illu-
sory bimodality in single trials.

To measure bimodality and higher-order multimodality
signals, we performed a spectral analysis on the reported
PDF, which decomposes the PDF of each trial (i.e., a series
of 20 probabilities) into frequency components of 1-cycle, 2-
cycle, . . . , 9-cycle. The resulting power spectrum was then
averaged across participants and blocks, shown separately for
trials 1–30 in a block (Figure 3A). The power spectrum of the
skewed-bimodal condition was evidently dominated by the 2-
cycle component. Our further statistical analysis thus focused
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on the power spectrum of the uniform distribution.
Compared with random permutations (see Methods), the

reported PDFs for the uniform distribution had significantly
higher power in 1-cycle (p < 0.001), 2-cycle (p < 0.001) and
3-cycle (p< 0.001).We further tested the power of these three
frequencies separately for the 30 trials in the uniform blocks
and found significant 1-cycle and 2-cycle power across al-
most all trials (Figure 3B).

Could this illusory bimodality arise naturally from sam-
ples? We considered three kernel density models, which dif-
fer in the assumed functional form for the kernel, or in cogni-
tive terms, the way each sample influences the reported PDF.
Among them, the histogram model assumes that the reported
PDF is a histogram of all samples, with each sample con-
tributing to the bin it belongs to. In contrast, the Gaussian
model applies a Gaussian kernel to each sample, echoing
visuo-motor Gaussian noises. The Mexican-hat model as-
sumes a difference-of-Gaussian kernel (mimicking the shape
of a Mexican hat), so that each sample increases the density of
its neighboring regions but decreases the density in more dis-
tant regions, which is motivated by psychophysical findings
(Marr & Hildreth, 1980). The histogram model has no free
parameters and for the other two models, we estimated the
kernel width parameters that minimize the summed square
errors between the PDFs participants reported and those pre-
dicted by the model (see Methods).

We compared the power spectrum predicted by these mod-
els to the data in Experiment 1 (Figure 3A), focusing on the
qualitative differences in the pattern. The prediction of the
histogram model bore little similarity to the data. The Gaus-
sian model captured the higher power in lower frequencies
but contradicted the data in predicting a lower power in 2-
cycle than in 1-cycle for the uniform condition. The pre-
diction of the Mexican-hat model was close to the Gaussian
model.

The over-simplified models we considered above were
used to provide computational insights for the cognitive pro-
cesses behind illusory bimodality. Together, they suggest that
illusory bimodality can hardly arise from simple kernel den-
sity models, where each sample is treated as equal. Later we
will discuss prior beliefs and more structured representations
of probability distributions.

Illusory bimodality does not vanish under fixed
generative distributions
Though the adaptive procedure in Experiment 1 provides a
sensitive measurement for prior beliefs that might otherwise
be too elusive to grasp, its results are potentially open to some
trivial explanations. For example, participants might have re-
alized their response could influence future stimuli and tried
to take advantage of the adaptive procedure. If so, however,
they should have placed all collecting machines into one bin,
instead of spreading them out over two modes, let alone shift-
ing the modes from trial to trial (Figure 2). As a second con-
cern, early random patterns in samples, after amplified by
the adaptive procedure, might have led to illusory bimodal-
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Figure 3. Powers of frequencies for Experiment 1. A, Power
spectrum for all frequencies (from 1-cycle to 9-cycle) averaged
across participants for each of the 30 trials in the block. Left and
right columns are for the uniform and skewed-bimodal distributions.
Colors code power spectrum on the logarithmic scale. Darker colors
denote higher values. Rows from top to bottom: power spectra of
the reported PDFs from real data, shuffled data and three different
model simulations. The powers of lower-frequency components, es-
pecially the 1-cycle and 2-cycle components, were visually higher
in real data than those of shuffled data (see B for results of statistical
tests). See text for the implications of model simulations. B, Pow-
ers for the 1-cycle and 2-cycle components in the uniform condition.
Both the 1-cycle and 2-cycle powers in real data (blue and red solid
curves) were higher than the 95% quantile of those of shuffled data
(blue and red dashed curves, overlapped).

ity. But this possibility is also largely ruled out, according to
the modeling analysis we reported above.

Still, one may have some other reasons to doubt that the bi-
modal illusion observed in Experiment 1 was an artefact from
the adaptive procedure. To exclude this possibility and to fur-
ther test whether illusory bimodality can be washed out by
continuing exposure to uniform distribution, we performed
Experiment 2 (with 24 new participants), which was identi-
cal to Experiment 1 except that there was no adaptive pro-
cedure and the generative distribution was fixed throughout
each block.

Under such fixed generative distributions, we still observed
illusory bimodality (Figure 4A), with the 2-cycle power in the
uniform condition significantly above the chance level (p <
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Figure 4. Power spectrum of the reported PDFs for Experi-
ment 2. Conventions follow Figure 3. A, Power spectrum for all fre-
quencies (from 1-cycle to 9-cycle) averaged across participants for
each of 30 trials in the block, separately for the uniform and skewed-
bimodal condition but also in the uniform condition. B, Powers for
the 1-cycle and 2-cycle components in the uniform condition. Sim-
ilar to Experiment 1, the above-chance-level 2-cycle power in the
uniform condition (“illusory bimodality”) persisted throughout the
block in Experiment 2, while the 1-cycle power was indistinguish-
able from chance.

0.001). Moreover, the significance in the 2-cycle power was
throughout all 30 trials in the uniform blocks (Figure 4B).

Illusory bimodality emerges even before real
experience of bimodal distributions
In our experiments, each participant completed two blocks
of uniform condition and four blocks of bimodal conditions.
The illusory bimodality in the uniform condition might be
explained by an influence from earlier bimodal blocks. For
example, participants might use the distribution learned in a
previous block as their prior for the present block, though
this would not explain why illusory bimodality did not vanish
even after participants had observed up to 1800 samples from
the uniform distribution.

We further extracted the first block of the participants
whose experiment started from the uniform condition (Fig-
ure 5). We found that even in these blocks (8 participants
for each experiment), the 2-cycle power was still significantly
above chance (p < 0.001 for both experiments).

Discussion
In the present study, we asked human participants to recon-
struct probability distributions from samples. Despite their
fast learning and overall accurate reconstructions, we found
a counterintuitive bias—illusory bimodality—in participants’
reconstructions of uniform distributions, that is, participants
reported a bimodal distribution after observing samples from
a uniform distribution. We first found the bias in Experiment
1, where an adaptive procedure was used to reinforce partic-
ipants’ biases. In Experiment 2, we excluded the possibility
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Figure 5. Power spectra of the reported PDFs in the two
uniform blocks for the participants whose experiment started
from the uniform condition. Conventions follow Figure 3A. Left
and right columns are respectively for the first and second uniform
blocks in the experiment. Top and bottom rows are respectively for
Experiments 1 and 2, each of which had 8 participants whose experi-
ment started from the uniform condition. Even in these participants’
first uniform block, the 2-cycle power was the 2-cycle power was
still significantly above chance (p < 0.001 for both Experiments 1
and 2).

that illusory bimodality could be an artefact of the adaptive
procedure: when the adaptive procedure was removed, we
still observed illusory bimodality. Remarkably, participants
exhibited illusory bimodality even before they were exposed
to any other distributions in our experiments and even after
they had continuously observed 1800 samples from the uni-
form distribution.

Some biases we found in representing real bimodal distri-
butions (Figure 1B) had been reported in earlier studies, such
as the loss of local details in variance (Tran et al., 2017) or
skewness (Sun et al., 2019). But why was not illusory bi-
modality found in earlier studies? An important reason, we
think, is our use of more sensitive experimental paradigm and
data analysis methods, including the adaptive procedure, mul-
tiple times of reconstructions and spectral analysis. Had we
used a one-time test for each distribution or directly averaged
the reported probability distributions across trials or partici-
pants, as many previous studies did, we would probably have
lacked the statistical power to detect illusory bimodality.

Our finding of illusory bimodality provides further evi-
dence for the hypothesis that people may have multimodal
representations for unimodal distributions (Zhang et al.,
2015). Unlike previous evidence for the hypothesis (Schustek
& Moreno-Bote, 2018; Zhang et al., 2015), our results do not
rely on complicated modeling methods.

What is the origin of illusory bimodality? Illusory bi-
modality was found even in the first block, that is, before
exposure to any non-uniform distributions in the experiment,
which suggests that bimodality is already part of participants’
prior beliefs before our laboratory experiments.

Though seeming counterintuitive at first sight, a prior be-
lief of multimodality is consistent with the fact that the world
is often “bumpy”, with clustered distributions of resources
(Orhan & Jacobs, 2013) and co-existence of multiple causes

1311



(Gershman & Blei, 2012). Meanwhile, multimodal represen-
tations may also reflect a discretized representation, proba-
bly of basis functions (Anderson & Van Essen, 1994; Poggio,
1990), which serves as a useful approximation under limited
cognitive resources (Tran et al., 2017; Zhang et al., 2015).

How are prior beliefs of multimodality used to constrain
the learning of arbitrary probability distributions from sam-
ples? From the perspective of Bayesian inference, distribu-
tions resulting from a Chinese Restaurant Process can serve
as a flexible prior to accommodate distributions with indefi-
nite number of modes (Gershman & Blei, 2012). Predictions
from these perspectives need to be tested in future research.
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