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Individual, Household, and Community Drivers of Dengue
Virus Infection Risk in Kamphaeng Phet Province,
Thailand
Gabriel Ribeiro dos Santos,1, Darunee Buddhari,2 Sopon Iamsirithaworn,3 Direk Khampaen,3 Alongkot Ponlawat,4 Thanyalak Fansiri,4 Aaron Farmer,2

Stefan Fernandez,2 Stephen Thomas,5,6,7 Isabel Rodriguez Barraquer,8 Anon Srikiatkhachorn,9,10 Angkana T. Huang,1,2 Derek A. T. Cummings,11,12

Timothy Endy,5,6,7,13 Alan L. Rothman,9 Henrik Salje,1,11,a, and Kathryn B. Anderson2,5,6,7,a,

1Department of Genetics, University of Cambridge, United Kingdom; 2Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand; 3Department of Disease
Control, Ministry of Public Health, Tiwanond, Nonthaburi, Thailand; 4Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand; 5Department of
Medicine, SUNY Upstate Medical University, Syracuse, New York, USA; 6Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA; 7Institute for
Global Health and Translational Sciences, SUNY Upstate Medical University, Syracuse, New York, USA; 8Department of Medicine, University of California, San Francisco, San Francisco, California,
USA; 9Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, Rhone Island, USA; 10Faculty of Medicine, King Mongkut’s
Institute of Technology Ladkrabang, Bangkok, Thailand; 11Department of Biology, University of Florida, Gainesville, USA; 12Emerging Pathogens Institute, University of Florida, Gainesville, USA;
and 13Coalition for Epidemic Preparedness Innovations (CEPI), Washington, District of Columbia, USA

Background. Dengue virus (DENV) often circulates endemically. In such settings with high levels of transmission, it remains
unclear whether there are risk factors that alter individual infection risk.

Methods. We tested blood taken from individuals living in multigenerational households in Kamphaeng Phet province,
Thailand for DENV antibodies (N= 2364, mean age 31 years). Seropositivity ranged from 45.4% among those 1–5 years old to
99.5% for those .30 years. Using spatially explicit catalytic models, we estimated that 11.8% of the susceptible population gets
infected annually.

Results. We found that 37.5% of the variance in seropositivity was explained by unmeasured household-level effects with only
4.2% explained by spatial differences between households. The serostatus of individuals from the same household remained
significantly correlated even when separated by up to 15 years in age.

Conclusions. These findings show that despite highly endemic transmission, persistent differences in infection risk exist across
households, the reasons for which remain unclear.

Keywords. Dengue virus; serology; force of infection; drivers of transmission.

Dengue virus (DENV) is an arbovirus transmitted by Aedes
mosquitoes [1]. The 4 serotypes have circulated in Thailand
for decades, with all provinces in the country reporting cases
throughout the year [2]. Human immunity, climate, and the ge-
notypes in circulation are known to shape annual infection risk;
however, there are likely a myriad of other unidentified human,
entomological, and environmental factors that lead to differ-
ences in risk of individuals, households, and communities liv-
ing within the same region [3–5]. The need to identify
modifiable risk factors of infection is especially important be-
cause we still do not have clearly effective vaccines or widely
available vector control technologies.

Dengue virus transmission tends to occur over small spatial
scales [6, 7], resulting in the local clustering of cases in both space
and time [8, 9]. In addition, the diversity of circulating viruses has
also been shown to be closely linked to the number of individuals
living in the community [10]. However, it remains unclear the ex-
tent towhich such strong local spatial structure ultimately leads to
different experiences of infection across communities.
Understanding underlying heterogeneities in DENV risk is

complicated. In particular, relying on passive surveillance sys-
tems can be problematic. Most infections are not severe enough
to result in healthcare visits. Across infectious diseases, the sub-
set of infections that are detected by surveillance systems may
be strongly affected by heterogeneities in healthcare seeking
habits [11]. Surveillance systems themselves also are not perfect
and often rely on cases that present at large tertiary care health-
care facilities, which tend to be located in urban centers.
Mosquito datamay provide an alternative approach to indirect-
ly capture spatial heterogeneity in the underlying level of infec-
tion. Attempts to characterize the impact of mosquito
abundance on infection risk have largely relied on mosquito
larval indices (eg, container, household, and Breteau indices),
with no consistent relationship identified [12, 13]. Adult
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mosquito densities have been associated with dengue virus in-
cidence in some studies, although the robustness of this metric
across diverse environments remains unexplored [12, 14, 15].

A more direct approach to understand spatial heterogene-
ities in dengue risk is through studies that explore the serosta-
tus in community residents [16, 17]. By identifying whether
individuals from different communities have DENV-specific
antibodies, we can identify risk factors linked to their serosta-
tus. Furthermore, we can combine the age of individuals and
their serostatus to inform mathematical models that recon-
struct the risk of infection and assess how it differs across space
[18–20]. In this study, we use baseline data from a large multi-
generational cohort study that recruited individuals across a
large province in Thailand, and we also conducted mosquito
trapping experiments, to estimate the underlying probability
of infection and explore the drivers of infection risk.

METHODS

Cohort Details

The details of the cohort study have been published elsewhere
[21]. In brief, the cohort is located in Kamphaeng Phet province
in Northern Thailand (Figure 1A). Between 2015 and 2021, ex-
pectant mothers and their households were screened for enroll-
ment. A minimum of 4 multigenerational residents was
required for enrollment of the household (the pregnant wom-
an, her newborn, another child aged less than 15 years, and a
grandparent of the newborn), but all household members
were allowed the opportunity to participate. Blood was taken
from all consenting household members at baseline as well as
annually thereafter. In addition, household members were
asked to complete questionnaires about individual and house-
hold characteristics. Approximately 23% of the population of
the province of Kamphaeng Phet live within 1 km of one of
our study households.

Mosquito Data

In each year of the study, study teams randomly selected at least
100 households and used BG traps to collect mosquitoes in-
doors for an 8-hour period. Because households were randomly
selected each year, some households were selected more than
once and some households were never selected. All mosquitoes
were counted and speciated [22]. In addition, potential breed-
ing sites (including water containers, organic “containers” [eg,
coconut shells], and plastic waste [eg, buckets, plastic bottles])
and larval abundance were enumerated.We calculated the con-
tainer index for each household, defined as the proportion of
water-holding containers that contain larvae or pupae.

Characterizing Urbanicity

We captured the urbanicity of a household using several differ-
ent metrics. First, we obtained WorldPop estimates of the

number of individuals living throughout the province.
Second, we used satellite imagery to capture differences in
land use and urban development across the study area.
Finally, a summary statistic measuring whether an area sur-
rounding a household was “developed” or not was created.
More details on this designation can be found in the
Supplementary Materials.

Determination of Serostatus

All serum samples were tested using hemagglutination inhibi-
tion assay to all 4 DENV serotypes [23].We considered individ-
uals to be seropositive (ie, had been infected with DENV in
their lifetime) if they had a titer of 10 or greater to any serotype.
Because Japanese encephalitis vaccination is routinely adminis-
tered, which can result in cross-reacting dengue antibodies, we
conducted sensitivity analyses in which we used a higher cut-
point of 20 to define seropositivity.

Capturing Spatial Dependence

To capture spatial dependence in serostatus, the number of
mosquitoes, and the container index by household, we fit semi-
variograms to the status of each individual (or household for
the mosquito measures) using an exponential model using
the geoR package in R [24]. Semivariograms are a way of mea-
suring the spatial autocorrelation between the labels (in this
case serostatus, the number ofmosquitoes and the container in-
dex) attached to points on a map. The extent of spatial depen-
dence is the distance when the semivariogram becomes
horizontal. When semivariograms give a completely horizontal
line, there is no evidence of spatial dependence.

Estimating the Force of Infection

We constructed spatially explicit serocatalytic models using
R-INLA. We fit the baseline (enrollment) serostatus of each in-
dividual using a binomial model with a cloglog link function
with log(age) as an offset. The benefit of this approach is that
it allowed us to directly estimate the force (or “hazard”) of in-
fection [25]. We included aMatérn spatial correlation structure
and a random intercept for each household. All individuals un-
der 1 year in age were removed due to the potential presence of
maternal antibodies. We initially fit a model using age only to
estimate the overall force of infection. We then fit separate uni-
variate models using the different individual-, household-, and
community-level covariates of interest. In each model, log(age)
was included as an offset to allow us to explore the impact of
that covariate on the force of infection, taking into account
the strong dependence on age. Because almost all individuals
over 30 years in age were seropositive, we used only individuals
under 30 years as the main model, but we also calculated a sep-
arate estimate for when we included all individuals. We also ran
a multivariable model in which we included all terms, except in
instances in which 2 terms were collinear (number of different
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types of containers as well as the different variables used to
characterize urbanicity). We also only included a single mea-
sure of the number of containers and excluded the mosquito
measures because they were only conducted on a subset of
households.

To convert the estimated instantaneous force (or “hazard”)
of infection to a measure of the proportion of the susceptible
population infected each year, we used the following expres-
sion: 1− exp(− λ), where λ is the estimated force of infection.

Estimating the Basic Reproductive Number

The basic reproductive number (R0) is the number of second-
ary infections generated by a primary infection as mediated by
the vector in a completely susceptible population. We provide
an average R0 estimate across all serotypes derived from our
force of infection estimate and the national population
age-structure. Our estimation assumes that individuals can be
independently infected by the 4 serotypes and are subsequently
immune to further infection by the same serotype [26]. The for-
mulae can be found in the Supplementary Materials.

Spatial Prediction

We used the same spatially structured model structure to esti-
mate the force of infection throughout the province using the lo-
g(age) as an offset and the Matérn spatial correlation structure.
We could not include the covariates from our multivariable re-
gression model in the spatial prediction because covariate values

are not available outside our study households. We divided up
the province in 1 km× 1 km cells. We then fit a serocatalytic
model using the age of individuals only with aMatérn spatial co-
variance matrix. We then used the fitted model to predict the
force of infection in each cell throughout the province.
We next estimated the number of infections occurring in

each cell [16] (see Supplementary Materials for details).
Because symptomatic infections tend to occur from primary
and secondary infections, we present both the total number
of primary/secondary infections as well as all infections. To as-
sess the proportion of infections that are detected, we also ex-
tracted the average number of DENV cases reported to the
national surveillance system from Kamphaeng Phet in the pe-
riod 2003–2020.

Prediction Model Performance

To assess the performance of the predictionmodel, we conducted
additional analyses in which we predicted the serostatus for indi-
viduals in themodel using 3 differentmethods. First, we fitted the
modelusingdata fromall individuals and thenpredicted the seros-
tatus on the same individuals. Second,we randomly removed 20%
of individuals thenfit themodel usingdata from the remaining in-
dividuals. We then predicted the serostatus in the individuals not
included in themodelfitting process. Finally,we removed all indi-
viduals from clusters of households (representing 20% of all indi-
viduals in the dataset), where each cluster consisted of households
within 10 kmof randomly selected indexhouseholds.We againfit

Figure 1. Cohort details. (A) Map of study households in Kamphaeng Phet on a map of population density. Light blue line represents the river. Inset shows location of
Kamphaeng Phet within Thailand. The white dots represent the location of the households. (B) Seropositivity by age and sex. (C) Semivariance in seropositivity across the
province with a fitted exponential model.
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themodel using data from the remaining individuals and predict-
ed the serostatus in the individuals not included in the model fit-
ting process. For the second and third approaches, we created 500
such training and/or testing datasets. We then compared the pre-
dicted serostatuswith that actually observed for those individuals.
Thepresented spatial predictions (Figure 3) arewhendata fromall
individuals were included in the model fitting process.

Code Availability

All of the codes used in these analyses are available on a GitHub
repository (pdgcam/kpp_drivers_dengue).

RESULTS

Werecruited 2364 individuals from 649 households, representing
86.7% of the total number of people living in these households
(Figure 1A). Individuals had a mean age of 31 years (range 0–
100;meanageofmales= 29years,meanageof females= 32years)
and 58.9%were female (Table 1). Themean population density of

households was 394 per km2 but ranged from 46 in the rural areas
to 4540 in the urbanMuang area. We found that 46.9% of house-
holds were located in developed areas based upon land use classi-
ficationmethods.Wedidnot identify any spatial correlation in the
number of mosquitoes or the container index trapped across
households, including when we considered data from each year
separately (Supplementary Figure S1 and S2).
Among participants who were .1 year old, 86% were sero-

positive (2029 of 2364). Female participants, who were slightly
older on average, had a slightly higher seropositivity than males
(88% vs 82%). We found a strong pattern of seropositivity by
age, with 45.4% of 1- to 5-year-olds being seropositive (95%
confidence interval [CI], 39.7–51.1) but 99.5% of over
30-year-olds being seropositive (95% CI, 98.9–99.8)
(Figure 1B). We found there was spatial dependence in the se-
rostatus of individuals up to a distance of 6.9 km (Figure 1C).
We initially fit a serocatalytic model using the ages of indi-

viduals only (Figure 2). We estimated an annual force of infec-
tion of 0.126 (95% CI, .116–.136), meaning that an average of

Figure 3. Spatial prediction. (A) Predicted force of infection across the province. (B) Predicted number of infections in the province. (C) Estimated versus predicted sero-
positivity in locations held out of the model fitting process.

Figure 2. Serocatalytic model. (A) Proportion seropositive by 5-year age group (dots, with 95% confidence interval [CI]). The fit of a serocatalytic model with 95% CI is
represented by the blue line. (B) Odds ratio of an individual being seropositive if a member in the household is seropositive by age of the individual with 95% CI. (C) Odds ratio
of being seropositive if a member in the household is seropositive by age difference (age minus age of the household member) with 95% CI.
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Table 1. Number of Study Subjects and Baseline Serostatus, by Individual-, Household-, and Community-Level Covariates

Covariate Total (N=2376) Seronegative (%) (N=342) Seropositive (%) (N=2034)

Individual Level

Age 1–5 291 159 (55) 132 (45)

6–10 253 96 (38) 157 (62)

11–15 169 40 (24) 129 (76)

16–20 226 27 (12) 199 (88)

21–25 210 12 (6) 198 (94)

26–30 189 3 (2) 186 (98)

31–35 154 1 (1) 153 (99)

36–40 118 1 (1) 117 (99)

41–45 108 0 (0) 108 (100)

46–50 125 2 (2) 123 (98)

51–55 156 0 (0) 156 (100)

56–60 141 0 (0) 141 (100)

61–65 97 0 (0) 97 (100)

66–70 62 0 (0) 62 (100)

71–75 37 0 (0) 37 (100)

76–80 20 0 (0) 20 (100)

.80 20 1 (5) 19 (95)

Sex Female 1399 163 (12) 1236 (88)

Male 977 179 (18) 798 (82)

Occupation Employed 654 11 (2) 643 (98)

Farmer 560 10 (2) 550 (98)

Student 437 129 (30) 308 (70)

Unemployed 725 192 (26) 533 (74)

Household Level

No. of containers total 0–10 324 43 (13) 281 (87)

11–20 568 84 (15) 484 (85)

21–30 595 82 (14) 513 (86)

31–40 295 40 (14) 255 (86)

41–50 191 38 (20) 153 (80)

.50 400 54 (14) 346 (87)

No. of water containers - plastic 0 783 110 (14) 673 (86)

1–10 969 128 (13) 841 (87)

11–20 352 52 (15) 300 (85)

.20 272 52 (19) 220 (81)

House type Poles 413 54 (13) 359 (87)

Single 1875 273 (15) 1602 (85)

Shop-house style 88 15 (17) 73 (83)

Garbage management Burn 1067 165 (15) 902 (85)

Bury 5 0 (0) 5 (100)

Pick-up 1170 164 (14) 1006 (86)

Dump 134 13 (10) 121 (90)

Highest household education No school/primary 461 73 (16) 388 (84)

Secondary 898 141 (16) 757 (84)

High school 774 97 (13) 677 (87)

Higher 243 31 (13) 212 (87)

Concrete household construction Yes 2067 303 (15) 1764 (85)

No 309 39 (13) 270 (87)

Type of roof Not zinc 622 102 (16) 520 (84)

Zinc 1754 240 (14) 1514 (86)

Water nearby No 739 109 (15) 630 (85)

Yes 1637 233 (14) 1404 (86)

Water supply Other 219 33 (15) 186 (85)

Pipe 2157 309 (14) 1848 (86)

Door screens No 2049 285 (14) 1764 (86)

Yes 327 57 (17) 270 (83)
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11.8% of the susceptible population gets infected with DENV
each year. We estimated the R0 was 2.60 (95% CI, 2.44–2.76).
The household-level random effect explained 37.5% of the var-
iance in individual risk of being seropositive, and 4.2% of the
variance could be explained through spatial differences outside
the household. In models that included all age groups, the an-
nual force of infection was 0.124 (95% CI, .115–.133), and R0

was 2.57 (95% CI, 2.43–2.71). In the base model, we used the
serostatus and age of individuals from the moment of their en-
rollment (range, 2015–2018). We repeated the analysis using
the age and serostatus from the blood draws from a single
year (2018). We found that our results remained unchanged
with an annual force of infection of 0.122 (95% CI, .113–.132).

We found that overall, householdmembers had 1.26 the odds
(95% CI, 1.06–1.54) of being seropositive if an individual from
that household was seropositive than if this individual was sero-
negative, with a consistent pattern across age groups (restricting
the analysis to those under 30 years) (Figure 2B). This difference
wasmaintained for pairs of householdmembers whowere up to
15 years difference in age (Figure 2C). By contrast, an individual
that lived in a different household,1 km away from a seropos-
itive individual had 1.01 the odds (95% CI, .95–1.09) of being
seropositive than if they lived,1 km away from a seronegative
individual (Supplementary Figure S3).

We used our regression approach to identify individual-,
household-, and community-level risk factors associated with
the force of infection (Table 2). Individuals from households
that had door screens had 0.69 (95% CI, .50–.94; adjusted haz-
ard ratio [aHR] 0.70; 95% CI, .49–1.01) the hazard of being se-
ropositive compared with individuals from households that did
not have door screens. The population density surrounding the
household was associated with being seropositive, with each
1000 increase in population size associated with 1.10 the hazard
of being seropositive (95% CI, .98–1.25; aHR 1.14; 95% CI,
1.00–1.31). Our more nuanced description of urban develop-
ment also appeared to explain some differences in infection
risk. Individuals who were categorized as living in a developed
environment through this metric had 1.32 the hazard (95% CI,

1.05–1.66) of being seropositive than individuals who lived
elsewhere. For the mosquito measures, the number of adult
Aedes aegyptimosquitoes trapped in a household gave a hazard
ratio of 1.01 (95% CI, 1.00–1.02) and the container index gave a
hazard ratio of 1.67 (95% CI, .77–3.71). Models that used indi-
viduals of all ages or used a higher cutpoint to define seroposi-
tivity gave consistent results (Supplementary Tables S1–S2).
We used our framework to predict the force of infection

throughout Kamphaeng Phet province. We found that the force
of infection varied between 0.09 and 0.17, with communities
along the river having a slightly increased force of infection
than elsewhere, potentially a proxy for urbanization
(Figure 3A). Using these estimates of the spatial heterogeneity
in infection risk, the number of individuals living in the whole
province, and the age structure of the population from the
2015 national census, we estimated the average number of infec-
tions each year in the province. We estimated there were an av-
erage of 27 517 primary and secondary infections and 54 001 total
infections annually. We estimated that 9.5% of infections in the
province occur within 5 km of the main city (Muang). The na-
tional surveillance system reported an averageof 703 yearly infec-
tions for the province between 2013 and 2020. Assuming that all
infections detected by the surveillance system are from primary
and secondary infections, due to a lower rate of symptomatic dis-
ease in tertiary and/or quaternary infections, suggests that 2.6%
of primary and/or secondary infections (and 1.3% of all infec-
tions) are detected by the surveillance system.
To assess the performance of our prediction model, we re-

moved spatial clusters of households representing 20% of individ-
uals and used the rest of the data to fit the model. We were able to
accurately estimate the serostatus in the individuals excluded from
the model-fitting process (Figure 3C, Supplementary Figure S4).

DISCUSSION

We have used the results of a large household study to explore
underlying differences in risk for DENV infection. We found
that DENV was highly endemic with 11.8% of the susceptible

Table 1. Continued

Covariate Total (N=2376) Seronegative (%) (N=342) Seropositive (%) (N=2034)

Toilets outside No 1208 171 (14) 1037 (86)

Yes 1168 171 (15) 997 (85)

Community-level

population density Low 1717 255 (15) 1462 (85)

Med 364 49 (13) 315 (87)

High 295 38 (13) 257 (87)

Level of urbanicity Low 991 157 (16) 834 (84)

Mid 946 134 (14) 812 (86)

High 439 51 (12) 388 (88)

Development index Undeveloped 1265 201 (16) 1064 (84)

Developed 1111 141 (13) 970 (87)
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population being infected each year, with limited spatial vari-
ability in risk between households. We estimated that there
are over 50 000 infections annually, only 1% of which are de-
tected by the national surveillance system.

Our estimate of the mean force of infection of 0.13 is similar
to that previously found for other provinces in Thailand, in-
cluding estimates of 0.12 in Bangkok and 0.15 in Rayong prov-
ince [20, 27]. We found limited heterogeneity in risk across the
province, although households that were located in more urban
environments had an elevated estimated risk, with a hazard ra-
tio of 3.0 for urban settings compared with rural ones, consis-
tent with studies elsewhere [16, 28]. By contrast, we found that
the household appears to be a central determinant of infection
risk, with one third of the overall variance in individual risk be-
ing explained by differences across households. This household
effect appears to persist for many years, with seronegative indi-
viduals being more likely to live with other seronegative indi-
viduals, even when they are separated by up to 15 years in

age. The correlation in serostatus disappeared when we consid-
ered individuals living in different households, even when
those households were nearby. Virtually all individuals ulti-
mately do become infected, but the household of residence ap-
pears to change the age of first infection by many years.
It remains unclear whether this key role played by the house-

hold is due to substantial within-household transmission or
whether there are household-specific factors that can lead to
long-term changes in risk. Among the potential household co-
variates we considered, the presence of door screens resulted in
a 12% reduced hazard compared with households that had no
screens. Overall, 13.1% of households had door screens in-
stalled. Door and window screens have previously been shown
to be protective in studies in Puerto Rico, Australia, and Taiwan
[29–32]. This modifiable household-level risk factor may repre-
sent an important opportunity to interrupt DENV transmis-
sion, worthy of further attention and research. Nevertheless,
the use of door screens could only explain a fraction of the

Table 2. Results of Univariate and Multivariable Binomial Regression

Covariate
Univariate Multivariable

HR (95% CI) aHR (95% CI)

Individual Level

Sex Female REF REF

Male 0.90 (.74–1.10) 0.88 (.72–1.08)

Occupation Employed REF REF

Farmer 1.00 (.98–1.03) 1.00 (.98–1.02)

Student 1.00 (.96–1.02) 1.00 (.97–1.02)

Unemployed 1.00 (.98–1.03) 1.00 (.98–1.02)

Household Level

No. of water containers 1.00 (1.00–1.01) 1.02 (.94–1.10)

No. of water containers - plastic 1.00 (.99–1.01) …

No. of plastic bottles 0.92 (.73–1.17) …

House Type Poles REF REF

Single 1.00 (.98–1.02) 1.00 (.98–1.02)

Townhouse 1.00 (.98–1.02) 1.00 (.98–1.02)

Garbage management Car collection REF REF

Burnt/buried/dumped 1.00 (.79–1.26) 1.03 (.79–1.33)

Highest household education No school/primary 1.00 (.98–1.02) 1.00 (.98–1.02)

Secondary 1.00 (.98–1.02) 1.00 (.98–1.02)

High School 1.00 (.98–1.02) 1.00 (.98–1.02)

Degree REF REF

Concrete house 1.12 (.87–1.43) 1.07 (.75–1.54)

Zinc roof 1.27 (.99–1.65) 1.22 (.91–1.65)

Nearby source of water 1.10 (.86–1.40) 1.11 (.85–1.45)

Water supply by pipe 0.85 (.56–1.27) 0.91 (.59–1.41)

Door screens 0.69 (.50–.94) 0.70 (.49–1.01)

Mean container index 1.67 (.77–3.71) …

Adult aegypti mosquitoes captured 1.01 (1.00–1.02) …

Toilets outside 0.93 (.74–1.17) 0.88 (.69–1.13)

Community level

Population density 1.10 (.98–1.25) 1.14 (1.00–1.31)

Level of urbanicity 3.00 (1.09–8.40) …

Development index 1.32 (1.05–1.66) …

Abbreviations: aHR, adjusted hazard ratio; CI, confidence interval; HR, hazard ratio; REF, Reference category.
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household effect on risk, and we did not identify other
household-level factors linked to infection risk, despite consid-
ering many different facets of the household. More nuanced
measures of household-level characteristics, including behav-
iors of household members, are needed.

We found that the number of adult mosquitoes trapped in the
households was not linked to infection risk. The relationship be-
tweenmosquito indices and infection risk has been highly variable
across studies and regions [12]. The most consistent correlation
has been between adult mosquito densities and DENV risk [14,
16], although this remains an imperfect proxy for actual exposure
(ie, bite from an infected mosquito). In this study, we obtained
mosquitoes from a subset of households (44.2%)withmost house-
holds only providing data from a single time point. The large
year-to-year differences in mosquito numbers may make levels
from a single time point uninformative of lifetime risk.
Longitudinal measures of mosquito number may be more predic-
tive of underlying dengue risk [33]. Alternatively, the overall num-
ber of adult mosquitoes may not be linked to infection risk. In
support of this latter hypothesis, cluster studies have found that
only a small proportion (approximately 1%) ofAedes aegyptimos-
quitoes found around the households of confirmed cases have de-
tectable virus [34]. In the context where only a small fraction of
mosquitoes are involved in transmission, the overall number of
mosquitoes may not be predictive of infection risk. This effective
saturation of mosquitoes may be particularly relevant in
Kamphaeng Phet where most households had both immature
and adult mosquitoes at any household visit.

Our study has limitations. Our results come from a single
snapshot of serostatus, and we have not considered time-
varying changes in the force of infection or differences in the
risk of infection by age. Nevertheless, even our simple model
has been able to reconstruct the observed seropositivity by
age. Our study design meant that we only recruited multigen-
erational households with an expectant mother. This may not
be representative of all households in the region. The mean
age of our cohort is also younger than the wider population.
However, our modeling approach explicitly accounts for the
age structure in the population, so this would not affect our es-
timates. We used a simple cutpoint to define seropositivity
based on hemagglutination inhibition titers. Cross-reactivity
with Japanese encephalitis vaccine may result in false positives;
however, in a sensitivity analysis, we used a higher cutpoint that
would be unlikely to result in false positives and obtained con-
sistent results. Our estimate of R0 relied on assumptions of no
cross-protection between serotypes and up to 4 infections over
a lifetime. These assumptions may lead to underestimates in R0.

CONCLUSIONS

Kamphaeng Phet is likely typical of the dengue-endemic world,
with high levels of year-on-year transmission at the population

scale across the rural to urban gradient. Our findings show that
despite the pervasiveness of the pathogen, individual house-
holds appear to have persistently different levels of risk to other
neighboring households in the community, the reasons for
which require further study.
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