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Abstract of the Dissertation

Learning clinical outcomes from massive
observational data

by

Trevor Raymond Shaddox

Doctor of Philosophy in Biomathematics

University of California, Los Angeles, 2016

Professor Marc Adam Suchard, Chair

Emerging national patient claims and electronic health record databases offer

a rich frontier for learning about treatment effectiveness and clinical decision

making. However, these resources present statistical and computational chal-

lenges commensurate with their promise, requiring innovative approaches for

practically and efficiently extracting meaningful results. In this dissertation, I

seek to address some of these challenges. First, I present a hierarchical model

for learning about the relationship between treatments and multiple related

adverse outcomes simultaneously, showing that this approach can reduce bias

in relative risk estimates. Second, I develop a novel minorization-maximization

(MM) algorithm for uncoupling the sequential Newton steps that arise within

the state of the art model fitting procedure for the conditional models popular

for observational studies, allowing faster, parallelized model fitting. Third, I

develop a birth-death model for treatment trajectories among patients with dia-

betes mellitus type II. In these sections, I discuss applications to observational

healthcare datasets, demonstrating how these methods work at scale.
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CHAPTER 1

Introduction: the challenge of large scale

observational healthcare studies

“Data Science" has found medicine. The integration of technology into medical

practice and record-keeping continues to transform medical research, giving

birth to interdisciplinary fields like biomedical informatics while simultane-

ously stimulating new, overlapping branches of biostatistics, computer science,

and epidemiology. The breadth of shareholders reflects the challenges and

promise of learning from observational healthcare data. Three main domains

define this area. The first centers on the data: its collection and concerns

surrounding its use. The second domain I will loosely call the informatics

infrastructure: how the data are stored and represented. Finally, the challenge

most relevant to this dissertation is modeling at scale: how we transform the

data into actionable knowledge.

1.1 The data

The first question that should arise in a discussion of learning from observa-

tional healthcare data is "What added value do large repositories of medical

data bring to medicine and public health?" Schneeweiss and Avorn [2005]

remind us that clinical trials cannot answer all important medical questions.

The marginal cost of gathering observational healthcare data is considerably

smaller for the same number of patients than for traditional modalities of

medical studies. Randomized trials require recruiting and maintaining patients.

In contrast, observational healthcare data is collected for largely non-scientific

purposes: billing or patient care. Using the data as a scientific resource is

largely data repurposing.
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Consequently, the size of these datasets dramatically dwarfs the datasets

actively collected for scientific analysis. Alone, this difference in scale is a

tremendous asset. For example, drug trials have limitations for detecting rare

adverse events. Enrolling thousands of participants, such trials are underpow-

ered for sufficiently rare events. If a drug passes clinical trials and is used by a

sufficiently large population, that population can help identify rare events. A

classical example of this is identifying risk for drug-induced torsade de points
[Poluzzi et al., 2009]. This condition is both extremely rare, less than 1/100,000,

and clinically significant, potentially resulting in cardiac death. Clinical trials

are unable to accurately estimate the risk of a given drug for producing torsade
de points without considerable cost, and observational data become the resource

of choice [Poluzzi et al., 2009].

It is meaningful to remark on the difference between efficacy and effective-

ness. Clinical trials focus on appropriately measuring efficacy, the theoretical

impact of a drug on a disease [Flay et al., 2005]. However, effectiveness, how

the treatment behaves in practice, may be clearer from observational studies,

which looks at “real" world settings [Flay et al., 2005]. This becomes muddled

when asking questions of causality, but we will try to separate the division of

efficacy and effectiveness from causal inference [Imai et al., 2008]. Especially as

clinical care organizations become more closely monitored for their collective

decision making, having the appropriate application of knowledge to clinical

action within the local setting becomes important [Barieri and Maistrello, 2009].

That is, clinical effectiveness becomes a question dependent on the local patient

community.

Clinical trials may be ethically unfeasible. Clinical equipoise reflects a

physician’s absence of preference among treatment choices: presented with

drug A or drug B, the physician is equally fine with using either. Clinical trials

rely on clinical equipoise. When it egregiously breaks down, a randomized trial

would be ethically wrong. For example, it might be concerning to randomize

patients to placebo when comparing the treatment effect of metformin to a new

anti-hyperglycemic medication in newly diagnosed diabetic patients. There are

corrections to the randomized clinical trial framework that help accommodate

this, such as non-inferiority trials, but the observational data do away with this

conflict, as well as far subtler, less-easily corrected ones, entirely.
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Married with these benefits are several challenges [Schneeweiss and Avorn,

2005]. These challenges stem predominantly from the fact that these data are

not collected for scientific study. When using observational data, the analyst

will be quite far removed from the data collection process, much more so than a

counterpart working on survey data, for example. This often means the analyst

has less control of the data contents and may be blind to what is both measured

or, critically, unmeasured in the data. For a simple example, smoking status is

sparsely represented in some observational healthcare data resources. In some

resources, this reflects the fact that is just not relevant for the collection agency,

and for others, it reflects a system-specific incomplete recording practice [Jick

et al., 2000].

Patient privacy is a serious concern that drives much legislative involve-

ment in observational health data. Mechanically, this can be problematic for

accessing datasets, but that is more annoyance than flaw. True concerns arise as

de-identified datasets have greater coverage, increasing the likelihood of signif-

icant patient overlap. Linking databases becomes desirable but is structurally

prevented.

Similarly, drop-out is a concern. While loss-to-follow-up is not unique to

observational studies, its presence is significant. Turnover rates for insurance

data can reach as high as 30% per year [Short et al., 2003, Schneeweiss and

Avorn, 2005]. This can be critical when considering the data as representative

of long-term observation.

Here, we will consider two main types of observational healthcare data.

First, electronic health records (EHR) data consist of the data stored by care

centers who deploy clinical information systems to facilitate patient care. In

theory, EHR data are very complete, since they represent the data important

to a clinician making decisions about patient care. A drawback of EHR data

is that they are largely geographically limited. For example, an EHR dataset

may reflect a single care location or a shared network of care locations. But,

these networks are relatively small on a national scale, raising questions about

generalizing results from single EHR systems. On the other hand, insurance

claims data often have larger catch basins for the patients represented and

may better represent communities historically excluded from clinical trials
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[Schneeweiss and Avorn, 2005]. However, these data have less granularity, and

what is represented is chosen because of financial considerations.

1.2 Informatics infrastructure

Following the highly public recall of rofecoxib and renewed concern about

drug safety, the U.S. Food and Drug Administration (FDA) Amendments

Act of 2007 required that the FDA use observational data in an automated,

reproducible approach to identify risks from medical interventions. Prior, the

standard for observational pharmacovigilance was spontaneous reports data

[Bennett et al., 2007]. To help address this pressing need, the Observational

Medical Outcomes Partnership (OMOP) emerged [Stang et al., 2010]. Built as a

public-private partnership among the FDA, academia, data owners, and the

pharmaceutical industry, OMOP sought to provide a transparent framework

for comparing drug safety study methodologies and evaluating drug safety

risk. The OMOP community highlights the second main component of research

with observational data: the considerable informatics infrastructure that must

exist to facilitate meaningful analysis.

1.2.1 The common data model

In mentioning the limitations of observational data above, Schneeweiss and

Avorn [2005] list one weakness of observational data as the diverse “grammars"

in which data are maintained. This concern is certainly valid, but the OMOP

community, and others like them, has already taken steps toward addressing

this issue. One of the achievements of the OMOP community was the creation

and implementation of a transparent common data model (CDM) [Stang et al.,

2010]. The CDM and the extract-transform-load (ETL) processes developed to

impose the CDM ensure integrity across longitudinal observational databases

(LODs) [Hartzema et al., 2013].

The goal for creating the OMOP CDM was facilitating reproducibility of

study designs across datasets using different terminologies. In the absence of a

CDM, a researcher must run studies tailored to database specific terminology.
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Largely, this means most studies only focus on a single database. Working

with multiple terminologies means developing multiple studies, and such du-

plication invites errors. Distinct terminologies preclude assurance that studies

applied to one dataset are identical to studies applied to other datasets. With a

CDM, the same analyses can evaluate different datasets without modification.

It follows directly that another benefit of a CDM is including multiple data

sources when performing research. This allows the consumers of research to

ask relevant, meaningful questions about the generalizability of results. The

OMOP community brought this issue to the forefront through their landmark

paper comparing studies across multiple data sources [Madigan et al., 2013].

The CDM is structured to accommodate studies on medication [Reisinger

et al., 2010]. The format of the CDM is patient-centric. For each patient, there is

a unique identifier that links all relevant data tables. Distinct tables hold non-

overlapping information about the patient’s health. For example the Drug Era

table contains spans of time during which a patient was exposed to a particular

product. Many different representations for a drug exist. One could report

the brand name, the generic name, or the ingredients. For the Drug Era table,

the CDM records the ingredients. Thus if a patient were on empagliflozin and

linagliptin, a single pill with two medications to treat diabetes mellitus, from

August 1, 2005 until July 5, 2006, this would register as two separate drug eras

for empagliflozin and linagliptin, each from June 19, 2005 until July 5, 2007. A

drug era is a combination of individual prescriptions or drug fills. For example,

if the same medication is refilled routinely at the end of its 30 day supply for 2

refills, this appears as a single 90 day drug era. OMOP uses a standard 30 day

persistence window, where if a new supply of the same medication is given

within 30 days of the termination of a previous supply, it is considered the

same era. For example, consider a patient who takes metformin for 60 days,

forgets to refill a prescription for 4 days and does not take any medication.

Then on the 5th day, that patient refills the prescription and continues taking

metformin for 90 days. With a 30 day persistence window, all of the medication

use actions result in a single 154 day drug era. The 30 day persistence window

helps buffer refill discontinuities. Other tables include a Condition Era table

for diagnoses and a Person table for patient demographic data.

While this illuminates the overall format for the CDM, we still need to
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demonstrate how the standardization occurs. This involves two goals: 1) trans-

lating from the native data representation to the CDM representation and 2)

providing accurate structure for relationships within the CDM [Reisinger et al.,

2010]. The CDM achieves the first goal by maintaining a dictionary of relation-

ships between native and CDM representation. This includes information from

such disparate data terminologies as the International Classification of Diseases,

Ninth Revision - Clinical Modification (ICD-9-CM), Systematized Nomencla-

ture of Medicine-Clinical Terms (SNOMED-CT R©), and Medical Dictionary for

Regulatory Activities (MedDRA R©). The CDM accomplishes the second goal by

encoding the relevant “is-a" relationships that represent how concepts relate.

For example, the relationship from the SNOMED-CT or Anatomical Therapeu-

tic Chemical (ATC) hierarchy present in the CDM would allow us to see that

rofecoxib, an ingredient in our Drug Era table, is a cyclooxegenase-2 (COX-2)

inhibitor.

Taking a native dataset and translating it to the CDM, the ETL process,

follows four steps [Reisinger et al., 2010]. First, we copy the data from the source

database to the appropriate CDM structure, placing the data in appropriate

tables. Next, we annotate each datum with the CDM designation. Third, we

aggregate data to produce the appropriate drug eras, dependent on our selected

persistence window. Fourth, we export the data, now transformed to the CDM,

to a relational database.

While this concludes the data processing, it is reasonable to wonder how

well such processing captures the native data representation. Overhage et al.

[2012] studied this question in the context of 10 observational datasets, in-

cluding both claims and EHR data. OMOP created two packages to test

transformation fidelity: the Observational Source Characteristics Analysis Re-

port (OSCAR), which produces simple summary statistics, and the Generalized

Review of OSCAR Unified Checking (GROUCH), which checks for anomalous

results in OSCAR [Overhage et al., 2012]. Unacceptable results that GROUCH

detects include, for example, abnormally large patient ages, negative era time,

and pregnancy in males, among many others. Although the ETL process

required substantial teams of different skills, including informaticists and clin-

icians, the process itself took at most 11 days. The conversion to the CDM

was largely complete, around 90% or higher, and accurate, as evaluated by
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GROUCH.

1.3 Modeling at scale

Armed with a wealth of promising clinical data structured to facilitate repro-

ducible research, the last step in learning from observational healthcare data

is the transition from data to meaningful, actionable inference. This is the

modeling step. Many factors enter into selecting how to model healthcare

events in this space. Madigan et al. [2011] unambiguously states that the central

challenge of drawing inference from observational healthcare data is confound-

ing, where identified associations between drugs and outcomes are fallaciously

given causal significance. However, while addressing confounding through

fidelity in modeling the underlying biology and clinical decision making is

critical, practical demands motivate some modeling choices over others. In

particular, the key modifier in this field is “at scale." Our datasets consist of

tens of millions of patients exposed to the full spectrum of medical products.

Coping with such massive resources requires considering the computational

demands.

1.3.1 Univariate studies

At the beginning of modern pharmacovigilance, the dominant approach to

identifying drug-outcome pairs of interest relied on disproportionality testing

[DuMouchel, 1999]. The general structure of this technique is a two-by-two

table, where the table is populated with the counts of patients who took the

drug or did not and had the outcome or did not. Then, some measure of

“interestingness" would evaluate the table, and “interesting" drugs would call

for further investigation [Madigan et al., 2011]. In part, this reflected the most

widely used data, reports from physicians of events that they thought were

suspicious. However, this technique also emerged in the setting of claims and

EHR data.

This method satisfies our second requirement for modeling “at scale."

Namely, it deals with dimensionality with ease, since the reported values are
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essentially just counts. Any statistical inference for these disproportionality

methods builds conclusions from four numbers. The weakness of this method

is dealing with confounding. For an example from [Madigan et al., 2011],

consider an anti-emetic drug. Further, suppose that this drug makes patients

susceptible to eye infections. If an attentive physician treats a patient on the anti-

emetic with a prophylactic antibiotic, this antibiotic will appear to be strongly

correlated with nausea, unless we control for the anti-emetic medication. In

this case, the sacrifice of confounding adjustment for performance produces

a spurious result. Frustratingly, this technique continues to be near or at the

cutting edge of drug safety surveillance [Huang et al., 2014].

1.3.2 Multivariate studies

Moving beyond univariate studies to more sophisticated methods represents

a “quantum jump in pharmacovigilance" [Hauben et al., 2005]. Methods that

have gained considerable traction for analyzing outcomes from observational

datasets include cohort, case-control, and case-crossover methods [Maclure,

1991, Rothman et al., 2008]. Of these, cohort methods remain popular for

controlling for confounding variables [Schneeweiss, 2014]. Cohort methods

help correct the shortcomings of the univariate disproportionality testing.

However, these methods may encounter difficulties accommodating the second

requirement for modeling with observational healthcare datasets: working at

scale. In response, other approaches have gained popularity.

Farrington [1995] proposes the self-controlled case series (SCCS) method in

order to estimate the relative incidence of rare drug-specific outcomes to assess

vaccine safety. Risk of an event is a function of exposure-specific effects and

patient-specific risks. For Farrington [1995], the exposures are vaccine delivery

time intervals; for us, the exposures are medical products. For many appli-

cations, including pharmacovigilance, we are only interested in the exposure-

specific effects. Estimating a per-person underlying rate of an outcome does

not help identify what drugs are harmful. The SCCS model allows us to avoid

estimating these unhelpful covariates, and we gain efficiency in estimating the

meaningful covariates.

Simply, in these conditional methods, each patient acts as his or her own
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control. To this extent, we only focus on the increased rate of an outcome

of interest when exposed to a drug compared to absence of exposure versus

looking at the overall rate of that outcome per patient. In essence, the patient

specific rate defines how many events we see for that patient, but we really just

care about how that rate changes under exposure to a treatment of interest.

To explain this more rigorously, we follow the discussion of Short et al.

[2011] and Farrington [1995]. We will use notation that is consistent with our

later use of this model. Consider events happening as a non-homogeneous

Poisson process. Let patients i = 1, . . . , N have a baseline risk eφi . Define a

period of observation as an era, indexed by k, and let lik be the time duration

of the era. In the absence of exposure, we model the events of patient i in era k
as Poisson(lik × eφi).

Next we add in drug exposures. Let j = 1 . . . J index the potential exposures,

with the parameters β = (β1, . . . , β J)
′ measuring the instantaneous log relative

risks of treatment exposure, and let xik = (xik1, . . . , xikJ)
′ where xikj indicates

exposure to drug j in era k for person i. The drug exposures multiplicatively

modulate the underlying instantaneous event intensity during constant drug

exposure era k. The number of ADEs in era k of patient i is now yik ∼
Poisson(λik) where λik = lik × eφi+x′ikβ. Conditional on the drug exposure xik,

the density of yik is

p(yik|xik) =
e−λik(λik)

yik

yik!
(1.1)

For each person, the likelihood is

Li = p(yi|xi)

= ∏
k

e−λik(λik)
yik

yik!

= ∏
k

e−lik×eφi+x′ikβ(lik × eφi+x′ikβ)yik

yik!

= e−eφi ∑k lik×ex′ikβ(eφi)∑k yik ∏
k

(lik × ex′ikβ)yik

yik!
.

(1.2)

We condition on the total number of events ni = ∑k yik, the sufficient statistic,

to avoid estimating φi. We model the events in each ear as a non-homogeneous
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Poisson process, so the sum of the events per person also follows the Poisson

distribution:

ni|xi ∼ Poisson(eφi
Ki

∑
k

lik × ex′ikβ). (1.3)

For each person, the conditional likelihood is

Lc
i = p(yi|xi, ni)

=
p(yi|xi)

p(ni|xi)

=
e−eφi ∑k lik×ex′ikβ(eφi)∑k yik ∏k

(lik×ex′ikβ)yik

yik!

e−eφi ∑
Ki
k lik×e

x′ikβ
(eφi ∑

Ki
k lik×ex′ikβ)ni

ni!

=
ni! ∏k(lik × ex′ikβ)yik

yik!(∑Ki
k lik × ex′ikβ)ni

.

(1.4)

Thus, by conditioning on the sufficient statistics, the baseline risk falls out of

the conditional likelihood of the data.

How does this conditioning statement improve modeling compared with an

unconditional model? The utility from conditioning arises emerges as improved

efficiency. Efficiency is a reflection of how well an estimator or design uses data

to produce a reasonable result. To compare the SCCS method with the cohort

method, we are interested in the relative efficiency, the ratio of the efficiency

measures for each method.

Returning to Farrington [1995], we can measure the relative asymptotic

efficiency of the SCCS method compared with the cohort method with the ratio

of the asymptotic variance of maximum likelihood parameter estimates (MLE).

To look at the asymptotic relative efficiency, consider N patients as before, each

exposed to 2 eras of length l1 and l2. In particular, we assume no exposure

happens during the first era, and we let an exposure to a single drug happen

for V individuals during the second era. In the SCCS model, the log likelihood

for these patients is

Lsccs (β) =
N

∑
n=1

[
yi2 xi2β− (yi1 + yi2) log

(
l1 + l2 ex′i2β

)]
. (1.5)
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For β̂sccs, the MLE, Farrington [1995] finds

var(β̂sccs) =
(l1 + l2eβ)2

(∑i yi1 + yi2)(l1l2eβ)
. (1.6)

To this, Farrington [1995] compares the unconditional cohort model. This has

Poisson rate eφ[l1 + l2eβx], where the patient specific rate φi is the same for all

patients. Under this model, the log likelihood is

Lcohort (β) =
N

∑
n=1

[
(yi1 + yi2)φ + yi2βxi − eφ(l1 + l2eβx)

]
. (1.7)

For β̂cohort, the MLE for the cohort model, Farrington [1995] finds

var(β̂cohort) =
1

V(l2eφ+β)

(
1 +

l2(V
N )eβ

l1 + l2(1− V
N )

)
. (1.8)

We compute the efficiency as

E =
var(β̂cohort)

var(β̂sccs)

=

1
V(l2eφ+β)

(
1 + l2( V

N )eβ

l1+l2(1− V
N )

)
(l1+l2eβ)2

(∑i yi1+yi2)(l1l2eβ)

(1.9)

The expected value of ∑i(yi1 + yi2) is Veφ[l1 + l2eβ] using the cohort model.

Therefore, we substitute and get the asymptotic efficiency as

E =

1
V(l2eφ+β)

(
1 + l2( V

N )eβ

l1+l2(1− V
N )

)
(l1+l2eβ)2

Veφ[l1+l2eβ](l1l2eβ)

=
1 + l2 V

N
l1+l2(1− V

N )
eβ

1 + l2
l1

eβ
.

(1.10)

Looking at this asymptotic efficiency, we can glean some intuition about how
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the efficiency varies with dataset characteristics. As the proportion of treated

people V
N declines, the relative efficiency declines. That is, for situations

where the exposure use is high, we see more efficiency in the SCCS method.

Furthermore, as the incidence of the outcome of interest decreases, we see

increase in relative SCCS efficiency. This is particularly noteworthy, since we

are frequently interested in rare outcomes. In summary, both of the situations

that boost the relative efficiency of SCCS apply to the problems of interest,

validating our use of conditional models in this setting.

An additional benefit of the SCCS model is that it reduces the study pop-

ulation. If we are interested in patients with a rare event, we just use the

patients in the dataset who have ever had that event. In datasets at the scale of

interest, rarely do we lack for patients. Often, the challenge is computationally

managing the patients we have. By limiting ourselves to the most informative

patients, we can mitigate the computational burden.
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CHAPTER 2

Hierarchical modeling of multiple outcomes

Clinical trials often lack power to identify rare adverse drug events (ADEs)

and therefore cannot address the threat rare ADEs pose, motivating the need

for new ADE detection techniques. Emerging national patient claims and

electronic health record databases have inspired post-approval early detection

methods like the Bayesian self-controlled case series (BSCCS) regression model.

Existing BSCCS models do not account for multiple outcomes, where pathology

may be shared across different ADEs. We integrate a pathology hierarchy

into the BSCCS model by developing a novel informative hierarchical prior

linking outcome-specific effects. Considering shared pathology drastically

increases the dimensionality of the already massive models in this field. We

develop an efficient method for coping with the dimensionality expansion by

reducing the hierarchical model to a form amenable to existing tools. Through

a synthetic study we demonstrate decreased bias in risk estimates for drugs

when using conditions with different true risk and unequal prevalence. We also

examine observational data from the MarketScan Lab Results dataset, exposing

the bias that results from aggregating outcomes, as previously employed to

estimate risk trends of warfarin and dabigatran for intracranial hemorrhage

and gastrointestinal bleeding. We further investigate the limits of our approach

by using extremely rare conditions. This research demonstrates that analyzing

multiple outcomes simultaneously is feasible at scale and beneficial.

2.1 Introduction

Adverse drug events (ADEs) pose a serious public health risk. While clin-

ical trials remain the gold standard for evaluating drug safety and efficacy,
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the emergence of massive healthcare repositories, in the form of longitudinal

observational databases (LODs), introduces a novel resource for asking and

answering drug safety questions. These databases contain insurance claims

and electronic health records, with time-stamped patient data that include

drug exposures and diagnoses. The scale of these datasets is remarkable, with

hundreds to thousands of observations on tens of millions of patients. These re-

sources can potentially support post-approval surveillance for ADEs, where we

can monitor the relative safety of drugs after they are clinically available. The

development of a common data model (CDM) for LODs through the Observa-

tional Medical Outcomes Partnership (OMOP) experiment facilitates statistical

methods implementation using these data to address pertinent questions about

health practices, including comparative drug safety [Overhage et al., 2012].

The OMOP experiment has demonstrated the value and efficacy of competing

analytical approaches [Stang et al., 2010]. While observational studies may be

vulnerable to variability of study design, and the OMOP community produced

the first steps toward systematic statistical evaluation of observational evidence

[Madigan et al., 2014].

Commensurate with its considerable promise, analysis of LODs presents

a significant statistical and computational challenge. Patients have different

levels of illness and compliance that are not readily identifiable from the LODs.

Observations are incomplete and inhomogeneous over time. In addition, the

scale of the data creates a massive, but extremely sparse, resource. Not only

are LODs massive in the number of patients recorded, they also contain the

full spectrum of medical products, interventions, and diagnoses. This scale

precludes many analytic approaches.

ADEs are clinical manifestations of specific pathologies. For example,

hypocoagulability affects the entire body, creating a general increased risk of

bleeding. However, the clinician will identify the results of hypocoagulability

by the anatomic location where a bleeding event occurs. If the bleeding occurs

in the brain, the diagnosis will be an intracranial hemorrhage. If the bleeding

occurs in the stomach, the diagnosis will be a gastric hemorrhage. The clinician

will identify the outcome but may not identify the pathology. The drug-specific

effect often occurs at the level of the pathology, but the identified ADEs appear

at finer granularity. Connecting outcomes and drugs without considering
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shared pathology ignores a crucial component of the pathophysiology.

Currently, most analytical approaches consider one outcome at a time, ignor-

ing relationships among the outcomes. In particular, we miss an opportunity

to "borrow strength" [DuMouchel, 2012] across outcomes where there is shared

pathophysiology. Dealing with multiple ADE outcomes remains of critical

importance to epidemiology and data mining [Thuraisingham et al., 2009,

DuMouchel, 2012]. DuMouchel [2012] and Crooks et al. [2012] approach this

problem by borrowing strength across outcomes to construct a multivariate

logistic regression.

A common method for avoiding multiple outcomes is aggregating all the

outcomes of interest into one overarching category, essentially considering

different outcomes as exchangeable. Selecting which outcomes are related

often follows directly from how clinicians codify diseases. For example, the

International Classification of Diseases version 9 (ICD-9) code 432 represents

“other and unspecified intracranial hemorrhage," of which 432.1 “subdural

hemorrhage" is a subtype. Using all 432.* ICD-9 codes would capture all the

subtypes of “other and unspecified intracranial hemorrhage" the ICD-9 con-

siders, essentially aggregating all subtypes under the 432 code. The OMOP

Standard Vocabulary encompasses multiple disease relationship representa-

tions, including the Systematized Nomenclature of Medicine-Clinical Terms

(SNOMED-CT) vocabulary. However, determining which outcomes are related

by shared pathology need not be limited to disease codes; the discretion of a

clinical expert should guide their selection.

Aggregating outcomes produces drug risk estimates that reflect a weighted

average of the risk for each outcome separately. This may introduce bias into

outcome-specific risks. Prevalence differences underscore this bias, with high

prevalence outcomes driving risk estimates. When considering outcomes with

low prevalence, we would like to combine information about them with closely

related common outcomes. However, aggregating these rare outcomes with

common ones overwhelms the drug-outcome specific relationship. Therefore,

we would like a way to treat similar outcomes as distinct while still respecting

their relatedness.

In this paper we move beyond focusing on one outcome at a time. Specifi-
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cally, we seek to reduce the bias that arises when we aggregate multiple, related

outcomes into one synthetic outcome. To do this, we develop a set of open-

source statistical tools relying on LODs structured according to the OMOP

common data model. We integrate a hierarchy of pathology and outcomes into

ADE detection.

2.2 The self-controlled case series (SCCS) model

2.2.1 SCCS framework

The most common approaches to analyzing outcomes from LODs include

cohort, case-control, and case-crossover methods [Maclure, 1991, Rothman

et al., 2008]. However, other approaches have gained popularity in recent

years. Farrington [1995] proposes the self-controlled case series (SCCS) method

in order to estimate the relative incidence of rare drug-specific outcomes to

assess vaccine safety. Simpson et al. [2013] and Suchard et al. [2013] use this

model successfully in ADE detection. A significant benefit of the SCCS model

is that it reduces the sample size to exposed patients experiencing at least one

adverse event. Adverse event risk is a function of drug-specific effects and

patient-specific risks, including underlying conditions. However, we are only

interested in the drug-specific effects, and the SCCS model allows us to focus

our statistical power on estimating these covariates of interest. These benefits

make the SCCS model ideal for pharmacovigilance. A major limitation of the

SCCS remains its formulation around one outcome at a time, a situation we

will rectify by splicing our hierarchical model into an SCCS framework.

The SCCS model assumes that ADEs arise according to an inhomogeneous

Poisson process. For a given LOD, let P count the number of outcome types

we are considering, and let p = 1, . . . , P index these outcomes. For a given

drug j, let Qj equal the number of outcomes where at least one patient who

has that outcome consumed that drug. Let jp = 1, . . . , Jp index the drugs

where there is at least one exposure to a patient with outcome p, such that

J1, . . . , JP count the total number of drugs observed in the exposure set for each

outcome. Parameters β = (β1, . . . ,βP)
′ where βp = (βp1, . . . , βpJp)

′ measure

the instantaneous, unknown, log relative risks given exposure for each drug
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with respect to each outcome. Under the model, let patient i = 1, . . . , N for

outcome p = 1, . . . , P have a baseline risk eφip . We consider drug eras as

intervals of exposure over which the drugs a patient takes remains constant.

Let the drug exposures multiplicatively modulate the underlying instantaneous

event intensity λikp during constant drug exposure era k.

We consider drug eras as intervals of exposure over which the drugs a

patient takes remain constant. This aspect of the OMOP CDM requires special

attention. We use the OMOP CDM 4 definition of a drug era. A drug era is a

combination of individual drug exposures, such as individual prescription fills.

For example, if the same medication is refilled routinely at the end of its 30

day supply for 3 refills, this appears as a single 90 day drug era. Our constant

eras are intervals of time where patients remain on the same combination of

medication. For example, consider a patient who takes drug A from July 5,

2009 through July 20, 2009 and drug B from July 10, 2009 to July 17, 2009. Three

distinct drug eras emerge: one era from July 5 to July 9; another from July 10

to July 17; and the last era from July 18 to July 20.

Let Kip be the total number of drug eras for person i in condition p. Follow-

ing the notation of Suchard et al. [2013] and Simpson et al. [2013], the intensity

arises as λikp = eφip+x
′
ikpβp , where xikp = (xikp1, . . . , xikpJp)

′ and xikpj indicates

exposure to drug j in era k for outcome p. The exposure duration for exposure

era k of patient i is likp. The number of ADEs in era k of patient i for outcome p
is yikp ∼ Poisson(likp × λikp). The SCCS method conditions on the total num-

ber of events for a particular outcome nip = ∑k yikp that a patient experiences

over her total observation period. For multiple outcomes, (ni1, . . . , nip) remain

sufficient statistics for the subject’s baseline risks (φi1, . . . , φip). By conditioning

on these statistics, the baseline risks fall out of the conditional likelihood of

the data regardless of their correlation and hence greatly reduce the number of

parameters to estimate:

N

∏
i=1

P

∏
p=1

P
(
yip|xip, nip

)
=

N

∏
i=1

P

∏
p=1

P
(
yip|xip

)
P
(
nip|xip

)
∝

N

∏
i=1

P

∏
p=1

Kip

∏
k

 ex
′
ikpβp

∑
Kip
k′ lik′pe

x′
ik′ pβp

yikp

.

(2.1)

17



Taking the log of Equation (3.1) yields the log-likelihood under our model

L (β) =
N

∑
n=1

 P

∑
p=1

 Kip

∑
k=1

(
yikp x

′
ikpβp

)
− nip log

 Kip

∑
k=1

likp ex
′
ikpβp


that forms only part of our objective function of interest. Specifically we work

in a Bayesian framework and choose to specify a prior distribution for the

covariates.

Bayesian techniques are ideal for pharmacovigilance, succinctly capturing

clinical prior knowledge of drug safety, and are common in the field, as seen in

Curtis et al. [2008], Madigan et al. [2011]. Furthermore, the Bayesian approach

mitigates many of the challenges of massive sparse data. Simpson et al. [2013]

reduce overfitting under a maximum likelihood approach by assuming a prior

over the drug effect parameter vector, constructing a Bayesian SCCS. We assume

a priori that most drugs are safe and therefore assume a prior that shrinks the

parameter estimates toward 0.

2.2.2 Disease hierarchies

To analyze a group of related outcomes, we follow DuMouchel [2012] in

framing our approach as a hierarchical multivariate regression, where the

specific outcomes are related under their shared pathology. Each adverse

event has a separate representation of each shared drug, a drug-outcome effect

estimate. We rely on our Bayesian perspective and project that idea onto

multiple ADE outcomes by extending our prior.

In the original Bayesian SCCS formulation applied to LODs, there can exist

upwards of Jp ∼ 10, 000 drug covariates. Multiple outcomes exacerbate this

extreme dimensionality. Namely, we need to compute J = ∑P
p=1 Jp covariates,

roughly P-fold more covariates. To cope with this ultra high dimensionality, we

model the effects of the same drug across outcomes hierarchically. We represent

each drug-outcome effect as inheriting from a drug-pathology effect. We extend

the prior structure of the original Bayesian SCCS model by using a hierarchical

prior that shares information across regression coefficients (β1j, . . . , βQj j) that

measure the association of a single drug j across all Qj outcomes where drug j
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appears in the records. The drug-level precision is τd, and the pathology-level

precision is τp.

Not all drugs need be present across all outcomes. Therefore, we scale the

prior precision for each drug by the number of outcomes in which the drug

appears as a non-zero covariate. For example, if drug A appears among the

patients with intracranial hemorrhage and gastric hemorrhage, while drug B ap-

pears only among patients with gastric hemorrhage, we seek to compensate for

this mismatch by scaling the universal drug-level precision when approaching

each outcome specific risk estimate. Specifically, we model

µj

β1j β2j · · · βQ j j

µj ∼ Normal
(
0, τp

)
, and

β1j, . . . , βQj j ∼ Normal
(
µj, Qj · τd

)
.

(2.2)

2.2.3 Computational swindle

As described, the hierarchical model imposes greater dimensionality, a more

cumbersome log-likelihood, and a host of new parameters to track, suggesting

that we will require new inference equipment that scales for LODs. However,

a redefinition of parameters demonstrates that our more complex model eas-

ily compresses into a form that allows for inference with the existing high

performance SCCS tools of Suchard et al. [2013]. We concatenate outcome

specific event counts vectors ỹ = (y1,y2, . . . ,yP)
′ and time of exposure vec-

tors l̃ = (l1, l2, . . . , lP) into new vectors representing the adverse events and

exposure times across all outcomes.

In practice, we take our data, a set of event counts and drug exposures, for

each outcome and add an outcome-specific tag to each of the drug exposures.

That is, each drug exposure now has an associated outcome. For example, if

we look at bleeding events, with outcomes intracranial hemorrhage and gastric

hemorrhage, and drug warfarin, a covariate would be warfarin-intracranial

hemorrhage or warfarin-gastric hemorrhage. Considering β̃ = (β1,β2, . . . ,βP),
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covariates for the same event are consecutive. We construct a new design matrix

X̃ ,

X̃ =


X1 0 · · · 0

0 X2 · · · 0
... . . . ...

0 0 · · · XP

 .

This design matrix is necessarily block diagonal, since the outcome-specific

covariates are not represented in other outcomes. For example, the warfarin-

intracranial hemorrhage covariate is not present among the data on patients

who have gastric hemorrhage events. Given this structure, the resulting log-

likelihood is

L (β) =
N

∑
i=1

[ Ki

∑
k=1

(
ỹik x̃′ikβ̃

)
− ni log

( Ki

∑
k=1

l̃ik ex̃′ikβ̃

)]
. (2.3)

Under this reindexed representation, log-likelihood (2.3) matches the ex-

pression in Suchard et al. [2013], enabling us to recycle existing computational

infrastructure. Furthermore, each Xp is extremely sparse, and the computa-

tional approach of Suchard et al. [2013] efficiently represents and computes over

sparse systems. While creating X̃ increases the dimensionality, it is a sparse

expansion, mitigating the computational demand. Thus, we can leverage the

extant sparse computing solutions to evaluate this more sophisticated model,

without drastically increasing the computational demand.

2.2.4 Maximum a posteriori estimation using cyclic coordinate descent

Given the reformulation, the changes to the univariate Bayesian SCCS frame-

work remain in the prior. For notation, we consider the set Gj of covariates

representing the same drug across all conditions we consider. The cardinality

of Gj is Qj. Let Gj{p} be this set excluding βpj. We consider the induced prior

distribution,

p(βGj) =
∫

p(βGj |µj)p(µj)dµj. (2.4)
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Taking the log of the integrand and recalling that all coefficients are independent

given the pathology effect yields:

log
[
p(µj)

]
+ log

[
p(βGj |µj)

]
=
[

f1(τp)−
τp

2
(µj − 0)2

]
+ f2(τd)−

Qjτd

2 ∑
g∈Gj

(βg − µj)
2


= f3(τp, τd)−

τp

2
(µj − 0)2 − Qjτd

2 ∑
g∈Gj

(βg − µj)
2

= f3(τp, τd)−
1
2

(Q2
j τd + τp)µ

2
j − 2Qjτdµj ∑

g∈Gj

βg

+Qjτd ∑
g∈Gj

β2
g

 .

In this construction, f1(τp), f2(τd), and f3(τp, τd) are constants with respect to

µj and Gj employed to simplify notation.

Completing the square to perform the integral returns

log
[

p(βGj)
]
= f4(τp, τd)−

1
2

Qjτd( ∑
g∈Gj

β2
g)−

(Qjτd ∑
g∈Gj

βg)2

Q2
j τd + τp

 , (2.5)

where f4(τp, τd) is a constant with respect to µj and Gj that remains after

integrating over µj.

The implementation of Suchard et al. [2013] uses cyclic coordinate descent

(CCD) to find the maximum a posteriori (MAP) estimates through optimizing

the model log posterior P(β) = L(β) + log[p(β)]. Our approach amounts to

regularized regression, for which CCD has been heavily employed [Friedman

et al., 2010, Wu and Lange, 2008]. CCD circumvents the need to invert the full

Hessian at each step [Wu et al., 2009b]. At each CCD iteration, the updates

are a function of the log-likelihood gradient ∂L/∂βpj and Hessian ∂2L/∂β2
pj
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as well as the penalty gradient ∂log[p(β)]/∂βpj and Hessian ∂2log[p(β)]/∂β2
pj.

A single Newton step is taken along each coordinate and proves extremely

efficient when X is sparse [Genkin et al., 2007, Suchard et al., 2013].

Working in the CCD framework, we require the gradient and the Hes-

sian contributions to the log-likelihood and log-priors. Fortunately, the log-

likelihood remains unchanged using our computational swindle. However, the

penalty component does change under the hierarchical model, with both the

gradient and the Hessian a function of the pathology precision. The forms of

the penalty components in the Newton steps are

∂log(p(βpj|βGj{p}))

∂βpj
= −Qjτdβpj +

(Qjτd)
2(∑g∈Gj

βg)

Q2
j τd + τp

and

∂2log(p(βpj|βGj{p})

∂βpj
2 = −Qjτd +

(Qjτd)
2

Q2
j τd + τp

.

(2.6)

2.2.5 Hyperparameter selection:

We use cross-validation based on the predictive log-likelihood of the hold-out

set to select the hyperparameters τp and τd. Suchard et al. [2013] use a log-scale

grid search that is computationally expensive even with only a single parameter.

When we add a second parameter, this method becomes impractically slow.

The additional parameter τp increases overall computing cost by an order of

magnitude. However, it remains desirable to use cross-validation to select both

τd and τp.

To help overcome this burden, we turn to Genkin et al. [2007] in implement-

ing an "autosearch" for hyperparameter selection. We start with an initial guess

and then increase or decrease our guess by one log unit until we have bracketed

the maximum of the hold-out set predicted log-likelihood. Then we compute

a quadratic approximation to the predicted log-likelihood. The maximum of

this approximate surface becomes our estimate. To find both hyperparameters,

we alternate between them, fixing one and finding the conditional maximum

of the other, and then fixing to that new conditional solution and finding

the conditional maximum of the other. We continue this process until both

previous and proposed hyperparameters are within an order of magnitude.
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We prefer using this flexible tolerance method to a fixed tolerance method, in

which finding the appropriate fixed tolerance would be difficult considering

the log-scale of the search space.

2.3 Demonstration:

2.3.1 Synthetic study: biased risk estimates

To evaluate the bias that arises when using aggregated outcomes, we simulate a

small dataset with three conditions of interest. For the first and third conditions,

the prevalence of these diagnoses is extremely low, with only 20 and 10 patients

having these conditions, respectively. For the second condition, the prevalence

is much higher, with 1000 patients present in our hypothetical dataset. We

expose these synthetic patient groups to 10 drugs. Two drugs are positively

associated with all conditions. However, the risk for these two drugs varies

drastically among the three groups. In particular, the two dangerous drugs

present a log relative risk of 0.5 for the first, rare condition, a log relative risk

of 1 for the second common condition, and a log relative risk of 2 for the third,

rare condition.

In our simulations, we first draw a patient-specific underlying risk from a

Normal(-1,0.5) distribution. Then, for each patient, we uniformly select between

1 and 10 observations, or drug exposure eras, as well as an observation length

per observation. In each observation, we assign between 1 and 10 drugs to

the patient. For each drug, we know the log relative risk for the given event.

Armed with the underlying risk rate as well as the drugs per observation, we

compute the overall risk rate for each observation and draw from a Poisson

distribution with that intensity to get the event count during that observation.

We compare the marginal estimates of the relative risks in both the aggre-

gated data situation and using our hierarchical model. We first run our analysis

considering all conditions exchangeable, extracting one risk estimate per drug.

Effectively, when we aggregate data, the log relative risk among these three

populations becomes a weighted average risk estimate. In Figure (2.1 a) we

see that the analysis of the aggregated data slightly underestimates the log
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Figure 2.1: Mode estimates and 95% bootstrap confidence intervals (gray) of the log relative
risk for each drug and their simulated relative risk (black) across two conditions
with different prevalence. The first 10 covariates represent the estimates from one
condition with a prevalence of 20 patients; the second 10 represent estimates from
the condition with high prevalence, affecting 1000 patients; and the last 10 covari-
ates represent a second condition with low prevalence, affecting 10 patients. Using
the multiple outcomes in an aggregated approach (a) produces less appropriate
estimates than the hierarchical outcomes approach (b).
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relative risk of the dangerous drugs in the large population. In the 20 patient

and 10 patient populations, the method seriously overestimates and underesti-

mates, respectively, the log relative risk of the dangerous drugs. In contrast,

the estimates from modeling these outcomes together under a hierarchical

structure avoid this problem. Separate risk estimates for each drug-outcome

pairs demonstrate much less bias, as seen in Figure (2.1 b).

We compare the model fitting times for each of these datasets, including

cross-validation and bootstrapping with 200 replicates. For the cross-validation,

we averaged the predicted log-likelihood over 6 permutations of the 10-fold

sampling of the data. Fitting the aggregated dataset took 5 seconds, and

the cross-validation variance was 0.1. Using the autosearch cross-validation

method, fitting the hierarchical model took 9 seconds. We also fit the model

using the grid search cross-validation method. Specifically, we used a 10 by 10

grid ranging from 10−4 to 105 for both τ−1
p and τ−1

d . Using this grid, fitting the

model took 32 seconds. The results from the autosearch, with starting estimates

of 100, produced estimates of τ−1
p and τ−1

d at 1.1 and 2.2; the results from the

grid search produced estimates of τ−1
p and τ−1

d at 100 and 1.

The difference between the estimates for τ−1
p from the autosearch method

and the grid-search method is noteworthy. The autosearch method finds a

value beyond a grid point of 100. This results from two effects. First, both

the autosearch and grid-search estimates may be sensitive to fitting parameter

choices, like the number of permutations over which to average. This reflects

the relatively flat topology of the predictive log-likelihood in this small dataset,

where chance selections of data for cross-validation can move our perceived

apex. We remedy this partly by averaging over multiple data permutations.

Second, this difference underscores the inability of the grid method to adjust

resolution as needed. The grid-search method is bound by our decision of grid

size. Resolving the method using a finer grid is computationally daunting. The

autosearch method avoids this problem, adjusting resolution as needed without

the computational tax. However, the difference we see between the search

methods in this case fails to appreciably change the estimated relative risks,

with no risk estimates changing by more than 0.015. This result highlights the

stability of our risk estimates to different hyperprior estimates.
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2.3.2 Real world study: warfarin and dabigatran

The standard for outpatient anticoagulation is warfarin, an inhibitor of vita-

min K metabolism. Clinically, warfarin is difficult to use, requiring frequent

laboratory tests to identify its sensitive, patient-specific dosing. Alternatives

to warfarin present an opportunity for improving anticoagulation care. In

2009, a randomized, controlled, noninferiority trial suggested that dabigatran

etexilate has a comparable treatment effect to warfarin [Connolly et al., 2009].

Furthermore, the manufacturer claims that dabigatran requires less clinical

attention than warfarin to find the appropriate dose. Although this trial also

found grossly similar risk profiles for dabigatran and warfarin, there were

notable differences. In particular, warfarin posed a greater overall risk of

major bleeding. However, dabigatran posed a significantly elevated risk of

gastrointestinal hemorrhage (GIH). Among the worst outcomes for patients on

anticoagulation therapy with warfarin is intracranial hemorrhage (ICH). The

rate of this ADE among dabigatran patients was one third that of warfarin

patients. Thus, for one ADE, dabigatran appears to increase risk; for another, it

appears to be safer. Many concerns about this trial have surfaced [Charlton and

Redberg, 2014]. New events of interest from the trial emerged later [Connolly

et al., 2010]. Reilly et al. [2014] produced better dose-risk trade-off results.

Subsequent clinical trials have reexamined the risk of major bleeding events.

The results of these trials are equally inconclusive, with greater transfusion

needs among dabigatran treated patients counterbalanced by lower intensive

care stay and lower mortality [Majeed et al., 2013].

We contribute to this debate by considering a real world equivalent of the

simulated study above. We want to use our hierarchical model to tease out

the risk profiles for both warfarin and dabigatran while reflecting the shared

pathology of bleeding events. Thus, we consider each of these outcomes under

our hierarchical model. Furthermore, we explore what would happen if we

aggregated these data, considering GIH and ICH exchangeable.

To perform these studies, we examine the MarketScan Lab Results (MSLR)

dataset, maintained by the Reagan-Udall Foundation Innovation in Medical

Evidence Development and Surveillance project. This dataset comprises 1.5

million patient lives. We depend on the OMOP common data model version 4
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Figure 2.2: Mode estimates and 95% bootstrap confidence intervals for the effect of dabigatran
(light gray) and warfarin (dark gray) on gastrointestinal hemorrhage (GIH) and
intracranial hemorrhage (ICH), compared to an aggregated outcome where GIH
and ICH are exchangeable.

for representation of concepts of interest. To examine GIH and ICH, we select

all patients who experienced a diagnosis that the OMOP common data model

version 4 considered a subset of GIH or ICH. There are 37,909 patients who

had GIH and 2,893 patients who had ICH.

Figure (2.2) demonstrates our results. Grossly, three trends appear. First,

we see that warfarin presents a lower risk for GIH than dabigatran. Second,

this risk pattern reverses for ICH. This replicates trends previously found in

the literature. Third, we see that considering these outcomes as exchangeable

seriously masks the ICH estimates. The larger population of GIH patients

overwhelms the analysis.

We again consider the computation time for each analysis, including cross-

validation and bootstrapping. We used 200 replicates for the bootstrapping and

averaged over 20 permutations of the cross-validation sampling data. Analyzing

the GIH and ICH datasets independently took 124 and 9 seconds producing

single variance estimates of 5.28 and 29.06 using one dimensional autosearch

with a starting value of 0.1. Analyzing the aggregated dataset using one

dimensional autosearch required 111 seconds and produced a single variance
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estimate of 1.1. Under the hierarchical model, the 10 by 10 log grid-search

approach with a range of 10−3 to 106 took 4735 seconds and produced estimates

of τ−1
p and τ−1

d of 1 and 0.1. Using the two dimensional autosearch approach

with an initial value of 0.001 took 2163 seconds and produced estimates of τ−1
p

and τ−1
d of 4.15 and 0.18.

2.3.3 Real world study: extreme prevalence differences

In some cases, we want to evaluate the risk of extremely rare events, which

may contain very little information about each drug risk pair. To explore what

happens in this situation, we return to the MarketScan Lab Results (MSLR)

dataset. Specifically we focus on two conditions: chronic gastrojejunal ulcer

with hemorrhage and obstruction (CGJUHO) and vomiting blood (VB). Both

of these diagnoses inherit from the OMOP common data model version 4

representation of upper gastrointestinal bleeding. We produce risk estimates

from modeling these two categories as exchangeable, and we contrast our

results when treating these two categories hierarchically. To construct our

patient population, we select all patients who have had either of those diagnoses

delivered in an inpatient, emergency department, or outpatient setting. There

are only 24 patients with CGJUHO; there are 16,062 patients with VB. We

consider the entire spectrum of drugs for both conditions.

Using 10-fold cross-validation with the predictive log likelihood averaged

over two permutations and the one dimensional autosearch with an initial

value of 0.1, analyzing the CGJUHO data alone produces a single prior variance

estimate of 0.060 in 4 seconds, and analyzing the VB data produces a single prior

variance estimate of 0.0076 in 200 seconds. The aggregated model required

200 seconds to find the point estimates, with a variance estimate of 0.0077.

Under the hierarchical model, using a 10 by 10 log-scale grid of variance

values ranging from 10−8 to 101, we find τ−1
p and τ−1

d maximize the predicted

log-likelihood at 0.01 and 0.0001, respectively. Using the autosearch method,

we find the optimal τ−1
p and τ−1

d to be 0.019 and 0.00017, respectively. The

autosearch required 10,500 seconds; the grid search required 209,500 seconds.

Although we consider all drugs for each condition of interest, it is most

interesting to look at the drugs that are present among both the set of patients
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with CGJUHO and the set of patients with VB. The 288 drugs that fit this

criterion have non-trivial hierarchies. From Figure (2.3), we see that under

the hierarchical model, the condition-specific risk estimates are very close.

Furthermore, the estimates under the hierarchical model are very close to those

under the aggregated model.

Ostensibly, this result undercuts the purpose of the hierarchical modeling.

However, there are notable differences between this study and both the previous

simulated study and the warfarin and dabigatran study. In this case, CGJUHO

had drastically fewer patients than VB. Given the stark contrast in prevalences,

it is reasonable for the very common condition to dominate the risk estimates of

both the hierarchical and aggregated models. This suggests that the hierarchical

model will correct for risk estimate bias as long as the prevalence differences

between two conditions are not extreme. But, in the case of extreme prevalence

differences, the results will be similar to aggregating the data. While the greedy

iterative two dimensional autosearch approach greatly reduces computational

time relative to the exhaustive search, it is still faster to compute a single

hyperprior. Therefore, the differences in prevalence should guide the user in

determining whether using the hierarchical model is warranted in her analysis.

2.4 Discussion

In this work, we have developed a novel hierarchical framework for analyzing

multiple outcomes in the setting of massive observational data. We have

demonstrated that we can easily restructure this framework to leverage extant

inference tools that mitigate the dimensional explosion of analyzing multiple

outcomes. Furthermore, we have shown the value of such a framework in

better discrimination of dangerous drugs and in better risk identification in

small populations.

There are challenges in working with observational data [Ryan, 2013]. Inter-

database variation in reported risk estimates can be considerable [Madigan

et al., 2013]. Bias in the recording of the data percolates through all analyses.

Assumptions regarding the uniformity of treatment and diagnosis decisions

among physicians are almost certainly incorrect. The time-invariant risk as-
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sumption underlying the SCCS model is almost certainly false for some drug

and disease pairs.

However, the quantity of data from observational healthcare datasets will

not decrease, and the promise of these data remains strong. One hope for

success in this field is to channel the information present in these databases

into a framework that optimally allows for signal detection and noise reduction.

One method for achieving this goal effectively is to integrate more biological

and medical knowledge into the models. The simple hierarchical model of

disease, which matches both disease biology and clinical perspectives of disease,

is one modest example of such structural knowledge motivating advances in

modeling.

In the future, hierarchical modeling can extend beyond diseases. Drugs

also follow a natural hierarchical structure. Physicians and pharmacologists

use drug classification heavily to group medications with similar modes of

action together. These classification systems form a natural framework for

understanding drug risk. The post-approval withdrawal of Vioxx (rofecoxib)

has been one of the highest profile cases of a drug with insidious side effects.

The medical community did not fully appreciate the cardiac effects of rofecoxib

until after the drug had been released to the market. It is thought that the

entire class of COX-2 inhibitors puts patients at risk for cardiovascular events

[Cannon and Cannon, 2012]. While traditional NSAIDs inhibit COX-1 and

COX-2, COX-2 selective inhibitors have negligible effects on COX-1. One could

consider the hierarchical structure of the drugs following a similar model

as suggested here. Each of the drugs could inherit a class-specific risk. For

example, all of the COX-2 inhibitors would share a greater risk for MI than the

COX-1 inhibitors. This would allow the model to capture class specific effects

that are currently inefficiently estimated independently.
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31



CHAPTER 3

Minorization-maximization (MM) methods for the

SCCS model

Adverse drug events (ADEs) remain a serious public health risk. Identifying

dangerous drugs from emerging national patient claims and electronic health

record databases is a non-trivial statistical challenge. Specifically, fitting models

in the context of datasets with tens of thousands of covariates and millions of

observations always perches on the edge between computationally expensive

and intractable. New techniques for optimization in this setting add to the

arsenal of strategies that can push sophisticated, meaningful modeling toward

feasibility. Here, we develop a Minorization-Maximization (MM) algorithm in

the context of the Bayesian self-controlled case series (SCCS) regression model.

We take two minorization transformations of the SCCS likelihood to produce

parameter separation in the surrogate. Although this increases in the number

of iterations required for convergence, it transforms a sequential iterative

algorithm into a parallel iterative algorithm. Looking to an observational

dataset examining the relationship of diclofenac and gastrointestinal bleeding

with 940 drug exposure covariates and more than 5.5 million distinct drug eras,

we find that parallel processing with the decoupled Newton steps improves

model fitting 10 fold. We further demonstrate how acceleration with augmented

Newton steps and quasi-Newton approximation can improve speedup to 17

and 28 fold above the sequential algorithm. These results underscore the value

MM algorithms can bring to high-dimensional regression problems in setting

of massive observational data.
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3.1 Introduction

Questions of drug safety and comparative effectiveness hold considerable inter-

est for the medical community and present novel challenges for the statistical

community. While randomized controlled trials remain the gold standard, the

emergence of massive healthcare data repositories presents a new setting in

which to learn about drug exposures [Stang et al., 2010]. These data resources

are often in the form of longitudinal observational databases (LODs), with mil-

lions of patients represented in insurance claims and electronic health records.

These resources have the scope and diversity to identify rare events and to

address medical product use ’in the wild.’ Here we will frame our work in

terms of adverse events (AEs).

Traditionally, learning about drug exposure risks relies on cohort, case-

control, and case-crossover methods [Maclure, 1991, Rothman et al., 2008].

The self-controlled case series (SCCS) designed by Farrington [1995] has gained

popularity in recent years [Simpson et al., 2013] and [Suchard et al., 2013].

Conditioning on the presence of at least one adverse event for each subject

reduces the sample size to exposed patients and eliminates questions of appro-

priate case and control matching criteria. Additionally, under this conditioning

argument, the patient-specific risks, including underlying conditions, disappear,

reducing the problem to estimating drug-specific effects.

Analysis of LODs presents a significant computational challenge. These

data track millions of patient observations including thousands of medical

products, a massive and extremely sparse resource. Learning about associations

between all products and specific AEs, while controlling for simultaneous

exposures, is a compelling goal. Generalized linear models (GLMs) with

unknown parameter regularization or Bayesian priors provide a fruitful and

popular framework [Madigan et al. 2011]. However, naive implementation

to find maximum a posteriori (MAP) point-estimates, often with multivariate

Newton’s method slows to a crawl with millions of outcomes and thousands of

predictors. Within the SCCS model, mode finding remains the computational

bottleneck. Simpson et al. [2013] and Suchard et al. [2013] avoid the taxing high-

dimensional matrix inversion component of Newton’s method and implement

mode finding through cyclic coordinate descent (CCD). This is a standard
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strategy to mode finding in regularized regression [Friedman et al., 2010, Wu

and Lange, 2008]. One of the drawbacks of this optimization strategy is that

the Newton steps are inherently serial.

In this paper, we develop a method to decouple the CCD Newton steps,

and, by doing so, create a parallelizable optimization procedure. We do this by

leveraging the minorization-maximixation (MM) algorithm [Hunter and Lange,

2000]. The MM algorithm replaces directly evaluating the objective function of

interest with computing over a surrogate function. When using the MM algo-

rithm, the objective function of interest often satisfies some property that the

original objective function did not. For us, this property is local independence

of the covariates. We also demostrate two methods for accelerating optimiza-

tion with this MM algorithm. We compare these strategies by looking at an

observational healthcare dataset with 5.5 million drug eras and 940 distinct

exposures, focusing on the risk of the painkiller diclofenac on gastrointestinal

bleeding.

3.2 Methods

3.2.1 SCCS

SCCS is a cases-only design, where each individual controls for her own

exposure, removing individual-specific effects. The method compares AE rates

between exposed and unexposed time-intervals . The SCCS model assumes

that AEs arise according to an inhomogeneous Poisson process. For j = 1 . . . J
drugs under consideration, the parameters β = (β1, . . . , β J)

′ measure the

instantaneous, unknown, log relative risks given exposure. Under the model,

let patient i = 1, . . . , N have a baseline risk eφi . We consider drug eras as

intervals of exposure over which the drugs a patient takes remains constant.

Let the drug exposures multiplicatively modulate the underlying instantaneous

event intensity λik during constant drug exposure era k. That is, following

the notation of Suchard et al. [2013] and Simpson et al. [2013], the intensity

arises as λik = eφi+x
′
ikβ, where xik = (xik1, . . . , xikJ)

′ and xikj indicates exposure

to drug j in era k . The exposure duration for exposure era k of patient i is

lik. The number of AEs in era k of patient i is yik ∼ Poisson(lik × λik). The
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SCCS method conditions on the total number of events for a particular outcome

ni = ∑k yik that a patient experiences over her total observation period. By

conditioning on these statistics, the baseline risk falls out of the conditional

likelihood of the data and greatly reduces the number of parameters to estimate:

N

∏
i=1

P (yi|xi, ni) =
N

∏
i=1

P (yi|xi)

P (ni|xi)
∝

N

∏
i=1

Ki

∏
k

(
ex
′
ikβ

∑Ki
k′ lik′e

x′
ik′β

)yik

. (3.1)

Taking the log of Equation (3.1) yields the log-likelihood under our model

L (β) =
N

∑
n=1

{[
Ki

∑
k=1

(
yik x

′
ikβ
)
− ni log

(
Ki

∑
k=1

lik ex
′
ikβ

)]}
. (3.2)

Bayesian techniques are ideal for pharmacovigilance, succinctly capturing

clinical prior knowledge of drug safety, and are common in the field, as seen in

Curtis et al. [2008], Madigan et al. [2011]. Furthermore, the Bayesian approach

mitigates many of the challenges of massive sparse data. Simpson et al. [2013]

reduce overfitting under a maximum likelihood approach by assuming a prior

over the drug effect parameter vector, constructing a Bayesian SCCS. We assume

a priori that most drugs are safe and therefore assume a prior that shrinks the

parameter estimates toward 0. Thus, Equation (3.2) forms only part of our

objective function of interest. For each covariate, we have

β j ∼ Normal (0, τ) (3.3)

for precision τ. Equivalently, this transforms our optimization problem into a

penalized regression problem, where we employ an L2 norm. For a deeper un-

derstanding of the connections between penalized regression and our Bayesian

formulation, Kyung et al. [2010] is a notable resource.

The implementation of Suchard et al. [2013] uses cyclic coordinate descent

(CCD) to find the maximum a posteriori (MAP) estimates through optimizing the

model log posterior P(β) = L(β) + log[p(β)]. The common idea behind CCD

algorithms is to update β by cycling through β j. Each update is a function of the

unidirectional log posterior gradient ∂P(β)
∂β j

and Hessian ∂2P(β)
∂β2

j
. This approach
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is widely used for regularized regression [Friedman et al., 2010, Wu and Lange,

2008]. Preference for the CCD algorithm over traditional multivariate Newton’s

method stems from avoiding the Hessian inversion [Wu et al., 2009a].

Within each univariate Newton step, there are choices for the size of one-

directional step. Rather than iterate one-dimensional updates to convergence

within a cycle, many prefer taking a single Newton step [Genkin et al., 2007,

Wu and Lange, 2008, Zhang and Oles, 2001]. Here, we use the implementation

of Simpson et al. [2013] that follows from Genkin et al. [2007], Zhang and Oles

[2001]:

∆β j = −
∂

∂βl
(L(β) + log[p(β)])

∂2

∂βl
2 (L(β) + log[p(β)])

. (3.4)

We reiterate the fitting procedure from Suchard et al. [2013] in Algorithm 1,

with a terser representation to highlight the structure we will contrast with

subsequent algorithms. Following Genkin et al. [2007] and Suchard et al. [2013]

we declare convergence when the sum of the absolute change in Xβ from

successive iterations falls below 1× 10−6.

Algorithm 1 Cyclic coordinate descent (CCD) algorithm for fitting the Bayesian
self-controlled case series model. This highlights the serial nature of the
algorithm. In particular, we see β, the J-dimensional vector of regression
coefficients, as both the target over which we wish to maximize the log-posterior
and the focus of our serial updates.

Initialize: β = 0
while Xβ has not converged do

for j ∈ {1, . . . , J} do
Compute ∂

∂β j
(L(β) + log[p(β)]) and ∂2

∂β j
2 (L(β) + log[p(β)])

Update β j = β j + ∆β j

Update Xβ and ∑Ki
k=1 lik ex

′
ikβ ∀i

end for
end while

3.2.2 MM algorithm: a philosophy

The popular expectation-maximization (EM) algorithm is a critical tool for situ-

ations where closed-form score equations in maximum likelihood estimation
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are absent [Dempster et al., 1977]. Statisticians have come to realize that the EM

algorithm is a special case of the broader class MM (minorization-maximization

or majorization-minimization) algorithms [Lange et al., 2000, Hunter and Lange,

2004, Wu and Lange, 2008].

The MM algorithm is not a recipe for solving an optimization problem, but

a framework for constructing algorithms. The main idea of the MM approach

is to avoid maximizing a difficult function by working with an easier surrogate

function. Consider an objective function f (x) which we want to maximize.

We seek a surrogate function that will minorize f . The surrogate function of

interest g(x|xm) minorizes f (x) if it shares the value of f (xm) and for all other

x, g is below f . That is, we require

f (xm) = g(xm|xm), and

f (x) ≥ g(x|xm),x 6= xm. (3.5)

In the MM algorithm, the goal is to move the surrogate function uphill,

relocate the point of tangency, and recompute the surrogate function. For many

MM approaches, this means actually maximizing the surrogate function

xm+1 = argmax(g(x|xm)) (3.6)

and reconstructing a surrogate function g(xm+1) using the point of tangency

f (xm+1) = g(xm+1|xm+1).

However, a step in the right direction accomplishes the same goal. A

Newton step along the surrogate function would move in the right direction

xm+1 = xm −
∂g

∂xm
∂2g
∂x2

m

. (3.7)

This new point xm+1 is sufficient for creating a surrogate function g(xm+1),

using the point of tangency f (xm+1) = g(xm+1|xm+1).

Under the dual problem of minimization, the surrogate function we seek
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will be one that majorizes f . Majorization shares the structure of minorization.

The function h(x|xm) majorizes f (x) if it shares the value f (xm) and for all

other x, h is above f . More precisely, we require

f (xm) = h(xm|xm)

f (x) ≤ h(x|xm),x 6= xm. (3.8)

Under the minimization formulation, we follow the same procedure as with

maximization, driving the surrogate function downhill.

3.2.3 Exploring MM techniques

The marginal utility of the MM algorithm hinges on the selection of the surro-

gate function. There are many ways to find a majorizing or minorizing function

for a given problem of interest; the key is selecting the surface to accomplish

a particular goal. We will discuss two well-known MM tools, which we use

together in our implementation. For a concave function, the simple tangent line

satisfies the requirements of a majorizing function [Hunter and Lange, 2004].

Specifically, for a concave f (x), the tangent line

g(x|xm) = f (xm) + d f (xm)(x− xm) (3.9)

satisfies the majorizing requirements. That is, we have g(xm|xm) = f (xm) and

g(x|xm) ≥ f (x) ∀x 6= xm. When using this approach, finding argmin(g(x|xm))

is obviously problematic. This will not be a concern for us, as we will use this

technique in conjunction with others.

The second method relies on Jensen’s Inequality, which states that a secant

through a convex function lies above the arc of the function bounded by the

two points of intersection [Hunter and Lange, 2004]. For a convex function

f (t), this is

f (∑
i

αiti) ≤∑
i

αi f (ti). (3.10)

We take this inequality and transform it into a recipe for dealing with inner

products within convex functions. First, we can transform x with a linear
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function c′x for some c. Setting αi = cixmi /c
′xm gives the majorization

g(x|xm) = ∑
i

αi f
(

ci

αi
(xi − xmi) + c

′xm

)
. (3.11)

Again, we can see that g(x|xm) fulfills the MM criteria: g(x|xm) = f (c′x) and

g(x|xm) ≥ f (c′x) ≤ ∀x 6= xm.

3.2.4 Developing an MM algorithm for the SCCS model

We consider both of these tricks in the context of the self-controlled case series

likelihood. The goal when constructing our surrogate surface is decoupling

the covariates. That is, we preserve the Newton step framework from CCD

implementation, and we want the Newton steps along each coordinate to be

locally independent. Looking at Equation (3.2), we see that the numerator

contribution ∑Ki
k=1

(
yik x

′
ikβ
)

is already decoupled. Therefore, we focus on

separating variables out of the log denominator term in Equation (3.2). That

is, we want to apply MM transformations to the log denominator term so that

each Newton step relies on the other coordinates only through the previous

iteration’s solutions. We do this by taking two MM transformations of the log

likelihood denominator.

For clarity, we specify notation for the sums that appear the numerator and

denominator contributions for each patient i. The sum that appears in the

numerator is

Ti =
Ki

∑
k=1

(
yik x

′
ikβ
)

, (3.12)

and, the sum from the denominator is

Di =
Ki

∑
k=1

lik ex
′
ikβ. (3.13)

Under this new notation, our log likelihood becomes

L (β) =
N

∑
n=1

Ti − ni log (Di) . (3.14)
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We begin constructing our minorizing surface to Equation (3.14) by address-

ing the outer logarithm. Using the tangent line inequality from Equation (3.9),

we see that
− log (Di) ≥− log (Dm

i )−
1

Dm
i
(Di − Dm

i ) (3.15)

where

Dm
i =

Ki

∑
k=1

lik ex
′
ikβ

m
. (3.16)

Checking the minorizing constraint

L (β) ≥
N

∑
i=1

{
Ti + ni

[
− log (Dm

i )−
1

Dm
i

(
Ki

∑
k=1

lik ex
′
ikβ − Dm

i

)]}
(3.17)

we see that we have an appropriate minorization. We can confirm the tangential

requirement

L (βm) =
N

∑
i=1

{
Tm

i + ni

[
− log (Dm

i )−
1

Dm
i

(
Ki

∑
k=1

lik ex
′
ikβ

m − Dm
i

)]}
. (3.18)

Using the tangent line technique allows us to cope with the log term at each

iteration, but the covariate updates would still be coupled. There remains an

inner product within the exponential, and we need to decouple this term. We

return to Equation (3.11), recognizing that ex is a convex function. Again, we

define notation to simplify the exposition. Let

Sik = lik ex
′
ikβ (3.19)

so that

Sm
ik = lik ex

′
ikβ

m
. (3.20)

Note that
Ki

∑
k=1

Sik = Di. (3.21)
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With this notation and using the result of Equation (3.11), we see that

Sik ≤
J

∑
j=1

αje
xikj
αj

(
β j−βm

j

)
Sm

ik (3.22)

where

αikj =
|xikj|p

∑J
h=1 |xikh|p

(3.23)

for some integer p. For indicator X the choice of p is inconsequential, and we

have

αikj =
xikj

zik
(3.24)

for zik the count of drugs present in era k for patient i. Using the results of both

MM techniques together, we have the full MM surface

Q(β|βm) =
N

∑
i=1
{Ti + ni [− log (Dm

i )

− 1
Dm

i

(
Ki

∑
k=1

J

∑
j=1

αikje

(
xikj
αikj

(
β j−βm

j

))
Sm

ik − Dm
i

)]} (3.25)

or

Q(β|βm) =
N

∑
i=1
{Ti + ni [− log (Dm

i )

− 1
Dm

i

(
Ki

∑
k=1

J

∑
j=1

xikj

zik
e
(

zik

(
β j−βm

j

))
Sm

ik − Dm
i

)]}
.

(3.26)

We see that Q(β|βm) satisfies the two requirements. That is,

L (β) ≥ Q(β|βm), and

L (βm) = Q(βm|βm).
(3.27)

Most importantly, we see that the covariates are decoupled.
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3.2.5 Newton steps in the MM approach

Within the MM framework, we keep the strategy of updating with Newton

steps. Rather than maximize the surrogate function, we take a single Newton

step along each covariate to advance our position. To obtain the Newton’s

steps, we require both the partial derivative and unidirectional Hessian for

each covariate. The partial derivative of the surrogate function for covariate l is

∂Q(β|βm)

∂βl
=

N

∑
i=1

{
Ki

∑
k=1

yik xikl −
ni

Dm
i

Ki

∑
k=1

αikj
xikl
αikj

e

(
xikj
αikj

(
β j−βm

j

))
Sm

ik

}
(3.28)

or, equivalently,

∂Q(β|βm)

∂βl
=

N

∑
i=1

{
Ki

∑
k=1

yik xikl −
ni

Dm
i

Ki

∑
k=1

xikle
(

zik

(
β j−βm

j

))
Sm

ik .

}
(3.29)

When evaluated at our current location,

∂Q(β|βm)

∂βl

∣∣∣∣
βl

m
=

N

∑
i=1

{
Ki

∑
k=1

yik xikl −
ni

Dm
i

Ki

∑
k=1

xiklSm
ik

}
. (3.30)

Similarly, the local curvature is

∂2Q(β|βm)

∂βl
2 =

N

∑
i=1
− ni

Dm
i

{
Ki

∑
k=1

zikxikle
(

zik

(
β j−βm

j

))
Sm

ik

}
. (3.31)

Evaluating this curvature at our current location gives

∂2Q(β|βm)

∂βl
2

∣∣∣∣
βl

m
=

N

∑
i=1
− ni

Dm
i

{
Ki

∑
k=1

zikxiklSm
ik

}
. (3.32)

The regularization component of the Newton step remains the unchanged from

the CCD implementation, so we do not show it here.

As we see in Equations (3.30, 3.32), the gradient and Hessian components

of our Newton steps for a particular βl rely only on β j j 6= l through the

constants βm. Thus, we have succeeded in our main goal for employing the
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MM algorithm: decoupling our updates to the covariates. Our change to βm
l is

now

∆mβm
l = −

∂
∂βl

(Q(β|βm) + log[p(β)])
∂2

∂βl
2 (Q(β|βm) + log[p(β)])

∣∣∣∣
βl

m
. (3.33)

We modify the fitting procedure from Suchard et al. [2013] shown in Algorithm

1 in our new MM algorithm shown in Algorithm 2. Again, we declare conver-

gence when the sum of the absolute change in Xβ from successive iterations

falls below 1× 10−6.

Algorithm 2 MM algorithm for fitting the SCCS model. This highlights the
parallel steps of the algorithm. In particular, we see the three parallelized
targets for computation.

Initialize: m = 0
Initialize: βm = 0
while not Xβ converged do

In parallel compute ∂
∂β j

(Q(β|βm) + log[p(β)]) and ∂2

∂β j
2 (Q(β|βm) +

log[p(β)]) and update βm+1
j = βm

j + ∆mβm
j

In parallel compute Xβ
Atomically add ∑Ki

k=1 lik ex
′
ikβ ∀i

m = m + 1
end while

Multi-core implementation

Now that we have decoupled the Newton steps, we can move away from the

serial iterative approach of CCD toward a parallel iterative implementation.

We expose three targets for parallelization.

3.2.5.1 Decoupled update

First, each Newton step or augmented Newton step can proceed in parallel.

Each update is independent between covariates. Therefore, we can assign

each update as a separate tasks to computing elements. The work per thread
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becomes

βm+1
l = βm

l −
∑N

i=1

{
∑Ki

k=1 yik xikl − ni
Dm

i
∑Ki

k=1 xiklSm
ik

}
+ ∂

∂βl
(log[p(β)])

∑N
i=1− ni

Dm
i

{
∑Ki

k=1 zikxiklSm
ik

}
+ ∂2

∂β2
l
(log[p(β)])

. (3.34)

3.2.5.2 Matrix-vector multiplication

The CCD approach efficiently updates Xβ by incrementing with each partial

step. After a Newton step for covariate j,

Xβ = Xβ+ ∆β jXj . (3.35)

In this setting, we are not required to recompute Xβ. However, this advantage

breaks down when using decoupled updates. We may simultaneously update

a group of covariates in β. Waiting after these steps to iteratively update Xβ

would negate the benefits of working in parallel.

Therefore, we no longer update Xβ with each step, but rather recompute

after updating β. This matrix-vector multiplication is amenable to paralleliza-

tion. We allocate each Xkβ as the parallelized task, with each Xkβ handled

independently.

3.2.5.3 Sum of exponentials

We can also compute

Dm
i =

Ki

∑
k=1

lik ex
′
ikβ

m
(3.36)

in parallel for each i ∈ {1, . . . , N}. However, there is a notable caveat. For

updates to Dm
i by k, there is a race condition, where updates from separate

eras for the same patient try to access the same partial sum. To account

for this, we atomically add lik ex
′
ikβ

m
for every k to Dm

i . These sums Dm
i are

independent between different i, allowing the majority of these updates to

occur simultaneously.
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MM with acceleration

A well-known side effect of the MM algorithm is bloating of the iteration count

[Lange, 1995]. Each Newton step is conservative; we could move further up the

surface than the surrogate function permits. The result is slow convergence.

Many have tried to address this problem by developing acceleration techniques,

tricks that allow the MM step to be larger.

One straightforward approach to accelerating an MM algorithm is to double

the size of the MM step. That is, instead of updating

βm+1
l = βm

l + ∆mβm
j (3.37)

we update

βm+1
l = βm

l + 2 ∗ ∆mβm
j , (3.38)

following Lange [1995] and Lange and Wu [2008]. This approach nullifies the

MM guarantee of ascent. For some problems, experience dictates that this

violation is not practically significant [Lange and Wu, 2008]. When this is

used absent regularization, doubling the MM step is equivalent to halving

the Hessian. We take this idea and apply it to the regularized setting, but we

would prefer to preserve the guarantees of the MM algorithm.

We extend this approach by dividing each of our unidirectional MM Newton

Hessian values by a factor φ ≥ 1. Now, we update

βm+1
l = βm

l −
∂

∂βl
(Q(β|βm) + log[p(β)])

∂2

∂βl
2 (

1
φ Q(β|βm) + log[p(β)])

. (3.39)

After completing MM Newton steps for each covariate, we recompute the

log posterior density. If L(βm) > L(βm+1), we recognize that the augmented

Newton step was too ambitious. We could discard or accept this step, but we

choose to accept it here. This moves our position to the other side of the zenith.

However, we reset φ = φ
2 , ensuring that our next step is more conservative. We

always decrease the augmentation factor. At worst, this pushes φ to 1. This

ensures that we drive the optimization uphill, even if we take a small number
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of inappropriate steps. Since we already compute many components of the log

likelihood after a full cycle through β, the marginal cost to check for uphill

movement is minimal.

Algorithm 3 MM algorithm for fitting the SCCS model, similar to the one
shown in Algorithm 2. Here we include updating the augmentation factor φ.

Initialize: m = 0
Initialize: φ = φ0

Initialize: βm = 0
while not Xβ converged do

In parallel compute ∂
∂βl

(Q(β|βm) + log[p(β)]) and ∂2

∂βl
2 (

1
φ Q(β|βm) +

log[p(β)]) and update βm+1
j = βm

j + ∆mβm
j

In parallel compute Xβ
Atomically add ∑Ki

k=1 lik ex
′
ikβ ∀i

m = m + 1
if L(βm) + log[p(βm)] > L(βm+1) + log[p(βm+1)] then

φ = φ
2

end if
end while

MM with quasi-Newton acceleration

A class of techniques for acceleration that also preserve the ascent guarantee are

quasi-Newton methods, and these are useful for accelerating MM algorithms

[Zhou et al., 2011]. The unifying idea of quasi-Newton methods is the use

of secant approximations. We develop our quasi-Newton acceleration closely

following Zhou et al. [2011].

We begin by considering Newton’s method in the context of root finding

for 0 = β − F(β). Following Zhou et al. [2011], F(β) is an algorithm map.

In the context of the SCCS model, F(β) is the resulting position from a cycle

of uncoupled Newton steps along the MM surface tangent at β. Newton’s

method solutions for root finding proceed as

βm+1 = βm − [I − dF(βm)]−1[βm − F(βm)],

where the Hessian matrix dF(βm) may be challenging to invert. Quasi-Newton
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methods avoid inverting dF(βm) by substituting a low rank secant approxima-

tion M . With M in hand, we could substitute (I −M ) for (I − dF(βm)) and

compute the easier (I −M )−1.

We consider U = (um−q, . . . ,um) and V = (vm−q, . . . ,vm), matrices of the

q most recent u and v vectors where um = F(βm)− βm and vm = F(F(βm))−
F(βm). Here, the secant requirements are Mum = vm. Relying on Proposition

1 from Zhou et al. [2011], we observe that M = V (U ′U )−1U ′ provides our

secant approximation to dF(βm). Our quasi-Newton update is

βm+1 = βm − [I − V (U ′U )−1U ′]−1[βm − F(βm)].

Finding the optimal q is not obvious. For different problems, the q that produces

the fewest iterations to convergence may vary [Zhou et al., 2011].

3.3 Demonstration

3.3.1 Comparing steps graphically

We begin with a tiny synthetic study to compare the MM steps graphically.

With a microscopic dataset of two patients and two drug exposures, we can

easily visualize the log posterior. On this surface, we plot the steps that our

optimization methods take to attain the maximum in Figure (3.1). Specifically,

we plot the CCD steps and the MM approach with no augmentation factor

(φ = 1). Both algorithms start at the origin, and each point represents the

position after a full traversal through β. We specify the prior variance as λ = 1.

For clarity in the graphic, we limit the iterations to 4. At 4 iterations, the CCD

method converges to the true optimum. However, the MM approach without

acceleration does not.

3.3.2 Diclofenac and gastrointestinal bleeding

Non-steroidal anti-inflammatory drugs (NSAIDs) are a cornerstone of pain

management, providing both anti-inflammatory and analgesic action. They

are commonly used in management of osteoarthritis and rheumatoid arthritis,
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Algorithm 4 MM algorithm for fitting the Bayesian self-controlled case series
model using the quasi-Newton approximation.

Initialize: m = 0
Initialize: βm = 0

Update β1 = β0 + ∆0β0

Compute u = β1 − 0 and add to set U
for p ∈ (2, . . . , q− 1) do

Update βp = βp−1 + ∆p−1βp−1

Compute u = βp − βp−1 and add to set U
Compute v = u and add to set V

end for
Update βq = βq−1 + ∆q−1βq−1

Compute v = βq − βq−1 and add to set V
while Xβ not converged do

Update βm = βm−1 + ∆m−1βm−1

Compute u = βm − βm−1 and add to set U
Update βm+1,(MM) = βm + ∆mβm

Compute v = βm+1 − βm and add to set V
Compute M = U ′(U − V )

Compute βm+1,(QN) = βm + VM−1U ′(βm − βm− 1)
if L(βm+1,(MM)) + log[p(βm+1,(MM))] > L(βm+1,(QN)) +

log[p(βm+1,(QN))] then
Update βm+1 = βm+1,(MM)

else
Update βm+1 = βm+1,(QN)

end if
end while
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Step comparison

●

● Start
MM
CCD

Figure 3.1: Step comparison between the Cyclic Coordinate Descent (CCD) and minorization-
maximization (MM) without acceleration (φ = 1) using our toy two dimensional
dataset. For each method, we limit the iterations to 4, showing how far each
progresses in the same number of iterations. The CCD approach converges after
4 iterations; the MM approach does not. The common starting point for both
approaches is (0,0), shown with an open circle, and each point represents the
position after a full traversal through β.

among other conditions [Hawkey et al., 1998]. This class of medications

includes naproxen and ibuprofen, common over-the-counter medications, as

well as diclofenac, a more potent variety available with prescription. Among

the most common adverse events associated with these drugs are events related

to the gastrointestinal (GI) system [Hawkey et al., 1998, Lanas, 2010]. Minor

adverse events from these medications include nausea and abdominal pain.

However, more serious adverse events can follow from NSAID use as well. GI

bleeding is among the most common serious adverse events associated with

NSAIDs.

We contribute to the risk estimates of diclofenac for GI bleeding by con-

sidering it in the context of our longitudinal healthcare datasets. We want to

compare our MM approaches with the CCD method fitting the SCCS model

on GI bleeding events among users of diclofenac. To perform these studies,

we examine the MarketScan Lab Results (MSLR) dataset, maintained by the

Reagan-Udall Foundation Innovation in Medical Evidence Development and

Surveillance project. This database contains time-stamped patient data, in-

cluding laboratory results, drug exposures, and diagnoses, deidentified to
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compliance with the Health Insurance Portability and Accountability Act of

1996 (HIPAA), comprising 1.5 million patient lives. The MSLR dataset includes

both inpatient and outpatient records.

The development of a common data model (CDM) through the Observa-

tional Medical Outcomes Partnership (OMOP) experiment facilitates statistical

methods implementation using these data [Stang et al., 2010]. The CDM allows

us to address pertinent questions about health practices, including comparative

drug safety, by standardizing data concept representation across resources

[Overhage et al., 2012]. Standardization takes the native representation in a clin-

ical data set of concepts like medication ingredients and diagnosis definitions,

such as International Classification of Diseases version 9 (ICD-9), and translates

them to a common representation. This facilitates consistent and reproducible

analysis across datasets; we can apply the same analyses to different data

resources, without having to recode our approach to accommodate dataset-

specific variations. We depend on the OMOP CDM version 4 for representation

of concepts of interest.

One aspect of the OMOP CDM version 4 requires special attention. We use

the OMOP CDM 4 definition of a drug era. A drug era is a combination of

individual prescriptions or drug fills. For example, if the same medication is

refilled routinely at the end of its 30 day supply for 2 refills, this appears as

a single 90 day drug era. OMOP uses a standard 30 day persistence window,

where if a new supply of the same medication is given within 30 days of

the termination of a previous supply, it is considered the same era. For

example, consider a patient who takes metformin for 60 days, forgets to refill a

prescription for 4 days and does not take any medication. Then on the 5th day,

that patient refills the prescription and continues taking metformin for 90 days.

With a 30 day persistence window, all of the medication use actions result in

a single 154 day drug era. The 30 day persistence window helps buffer refill

discontinuities.

We select all patients who experienced a diagnosis that the OMOP common

data model version 4 considered a subset of GI bleeding and who were exposed

to diclofenac. There are N = 120, 034 such patients. To control for the other

medications that may contribute to risk for GI bleeding, we include all other
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drug exposures. In the MSLR dataset, this population used J = 940 distinct

drugs. Over all of these patients, there are K = 5, 681, 213 distinct drug eras.

We use cross-validation based on the predictive log-likelihood of the hold-

out set to select the prior variance 1
τ . Suchard et al. [2013] use a log-scale grid

search that is computationally expensive even with only a single parameter. To

help overcome this burden, we turn to Genkin et al. [2007] in implementing an

“autosearch" for hyperparameter selection. We start with an initial guess and

then increase or decrease our guess by one log unit until we have bracketed

the maximum of the hold-out set predicted log-likelihood. Then we compute a

quadratic approximation to the predicted log-likelihood. The maximum of this

approximate surface becomes our estimate. For this problem, our estimated
1
τ is 1.21. We only perform this cross-validation once using the CCD fitting

approach, and this computational cost does not enter into our calculations. For

all following performance comparisons, we pre-specify this prior variance. We

find the point estimate of the log relative risk for Diclofenac in this population

is 0.17 with a bootstrap 95 % confidence interval of [0.02, 0.26].

3.3.2.1 Parallelization

To take advantage of all of our parallelization opportunities, we turn to Amazon

Web Services. For all of our timing comparisons, we elect to use 36 core,

compute-optimized, Intel Xeon E5-2666v3, 60 GiB memory, EBS-only instances.

We test each of the parallelization tasks using 1, 2, 4, 8, 16, and 32 threads. To

measure performance gain from parallelization alone, our baseline speed is the

MM algorithm with φ = 1 using no parallelization. The speedup as a function

of parallelization appears in Figure (3.2).

The speedup from parallelization alone in the context of the MM algorithm

follows a similar pattern for both the decoupled Newton steps and the Xβ

computation. For both of these tasks, the relative gain in speed plateaus around

6 fold using 16 cores. Of the full fitting time in the non-parallelized (single

core) implementation, 83% of time is spent in either the decoupled Newton

steps or the Xβ computation, with only 15% of time is spent summing the

exponentials. Therefore, it is reasonable that the overall speedup of the MM

algorithm from parallelization tracks with the speedup from the decoupling

51



0
20

60
10

0
14

0

Performance Comparison

Cores

T
im

e 
(s

)

2 4 8 16 32

2 4 7 13 17
●

●
● ● ●

2 2 4 5 6

● ● ● ● ●

2 3 4 6 6

2 3 4 5 6

●

Sum
XBeta
Newton
Total

Figure 3.2: Convergence time and fold speedup for each parallelization task as well as total
mode-finding time for the MM implementation without acceleration over different
thread counts. The open symbols represent the single core times, and the closed
symbols represent the times at each core count shown on the axis. The fold speed up
relative to the single core times is above the symbols. The speedup for the decoupled
Newton steps and the Xβ computation both plateau at just above 6 fold speed-up
around 16 threads. Since these dominate the computational load, the total time
follows a similar pattern. The atomic addition of exponentials outperforms these
calculations with a maximum speedup of over 17 fold at 32 cores.
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and the Xβ computation.

It is somewhat surprising that the atomic summing of exponentials signif-

icantly outperforms the decoupled Newton steps and the Xβ computation.

This process showed in excess of 17 fold speedup using 32 threads. Using the

full 36 cores did not improve the performance. In fact, using 36 cores was

slightly slower than using 32 cores. This is helpful when looking at Figure (3.2),

where it appears that the performance improvement is strictly increasing with

the number of cores used.

3.3.2.2 Acceleration

We first turn to the performance of the augmented Newton step acceleration.

Considering φ ∈ {1, 2, 4, 8, 16, 32}, we see that the time to convergence is

not monotonic in φ. For φ = 1, we have the non-accelerated MM algorithm.

Increasing to φ = 2 slows down the convergence rate. However, between 4 and

16, the number of iterations required for convergence decreases by roughly a

factor of three. The greatest improvement over the MM algorithm appears at

φ = 4, where 51 iterations produce convergence.

Similarly, we can look at the performance of the quasi-Newton acceleration,

and we see that the number of iterations is not perfectly related to the order

of Newton approximation q. The greatest improvement over the non-quasi-

Newton MM algorithm appears at q = 2, where only 32 iterations produced

convergence. Beyond q = 2, the effect of the quasi-Newton approach fluctuates.

3.3.2.3 Time

Finally, we compare the raw fitting time of the CCD approach with the MM al-

gorithm, considering the non-accelerated version as well as the two acceleration

methods. For the acceleration methods, we cherry-pick the best performing

settings as shown above. This helps capture the best-case scenario for speedup.

The CCD fitting time is the standard, requiring 83 iterations and 195 seconds.

We report the performance of the other methods as fold speed-up relative to

this time. The simple MM algorithm produces up to 10 fold speedup, despite

needing an additional 65 iterations. The quasi-Newton acceleration with q = 2
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Figure 3.3: We compare the fitting time for the MM with φ = 1, MM with φ = 4, and MM
with quasi-Newton acceleration with q = 2 fitting procedures with parallelization
(shown as symbols) to the CCD fitting time, shown as the horizontal line. We
report the performance as fold speedup, shown in the printed values beneath the
symbols versus the CCD algorithm.
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boosts the performance to 17 fold speedup versus the CCD fitting time, needing

just 32 iterations for convergence. The augmented Newton steps with φ = 4

produces the best speed-up, improving model fit time more than 28 fold with

51 iterations.

3.4 Discussion

In our two dimensional toy example, we see the challenge that the MM algo-

rithm presents. Each of the MM Newton steps with φ = 1 is excruciatingly

more conservative than the CCD steps, which visually converges to the optimal

point within two full updates. This captures how the MM Newton step and

the CCD Newton steps differ. This also allows us to see how the acceleration

choices discussed here ameliorate this situation. In particular, guessing φ = 4

or using quasi-Newton with q = 1 in this problem produces updates that

qualitatively replicate those of the CCD Newton steps. This helps explain how

these correct for the conservative MM Newton steps.

Comparing the plain MM algorithm with the CCD approach, we see a

notable decrease in cost per iteration, even without parallelization. Using CCD,

the cost per iteration is roughly 2.3 seconds. For the MM algorithm, this drops

to 0.8 seconds per iteration. This difference gives us an estimate of how much

iteration bloating in the MM approach we can tolerate. Using these values, we

break even at roughly 3 fold more iterations from the MM algorithm.

Recognizing when the MM approach produces faster results than CCD, or,

conversely, when it slows model fitting, is critical. For some problems, the MM

surrogate function may force our updates to be considerably more conservative

than CCD. By identifying the computational cost break-even point, we can pivot

from one approach to the other. This is particularly relevant for dynamically

determining the procedure to use as a function of the local hardware. If the

iteration count for the MM approach mildly exceeds the break-even point on a

32 core machine, the MM approach will likely be faster when leveraging all the

parallelization opportunities. On the other hand, the same situation presented

on a dual core laptop may make CCD the best choice. These comparisons

are likely unreasonable for single model fitting events. However, if we are
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fitting multiple models serially, within a cross-validation, bootstrapping, or

Markov chain Monte Carlo framework, it might be reasonable to adjust the

fitting algorithm on the fly.

Considering the augmented Newton step acceleration approach, the fact

that we guess φ = 4 well in toy problem raises more questions than answers.

One of the drawbacks of our approach is finding the initial step augmentation

value φ. Guessing a poor value may lead to considerably longer time to

convergence. Ideally, we would like to have a better method for selecting φ.

Searching through the space of φ is not reasonable for a single fitting of the

model. However, this becomes more appealing in a setting where a model

may be fit multiple times. For example, we could double the initial φ at each

model fitting, starting with φ = 1. The efficiency gain from using a good φ

might offset the inefficiency of searching for appropriate φ as the number of

serial uses increased. Alternatively, we see that φ = 4 helps the initial MM

Newton step match with the size of the initial CCD step. We could extend this

observation. If we take one full CCD step as well as one MM Newton step with

φ = 1, we could estimate φ from the length of the CCD update and the length

of the MM update. With this as our initial guess, we can proceed with the step

halving as appropriate if we overshoot the zenith.

Turning to the quasi-Newton acceleration, the efficiency fluctuation around

q is nominally surprising. Intuitively, the higher q, the better the secant ap-

proximation should be. In practice, this is known to not be so simple [Zhou

et al., 2011]. As with finding φ, selecting the best q is not obvious. Zhou et al.

[2011] offer little guidance on how to find the optimal q, suggesting that it is

problem-specific. Reflecting our experience with selecting φ, it is possible to

imagine learning the best q as part of a sequence of model fittings.

The quasi-Newton acceleration with the best q requires the fewest iterations

for convergence among all the approaches shown hear. While this reflects well

on this approach, we should be cautious when comparing this count to the

others. For each quasi-Newton step, we are effectively cycling through β twice.

Additionally, we take q cycles through β before beginning the quasi-Newton

steps. Therefore, the quasi-Newton iterations substantially underestimate the

amount of work done to achieve an update if they are directly compared to the
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augmented step acceleration.

This additional work helps explain the performance discrepancy between

the best quasi-Newton formulation and the best augmented Newton step formu-

lation in Figure (3.3). The other work that differs between the two approaches

includes the matrix inversion and several matrix-vector multiplications. Since

we have constructed M to be low rank, its inverse is less costly to produce.

However, this cost would certainly manifest for larger values of q.

Examining our regression risk estimate for diclofenac and GI bleeding, the

log relative risk that we recover is lower than some reported values. Reviews

of observational studies suggest the true relative risk diclofenac on upper GI

bleeding is near 3.98 with 95% confidence interval [3.36− 4.72], while our re-

covered relative risk is 1.19 with 95% confidence interval [1.02− 1.30][Gonzalez

et al., 2010]. While the fact that our method finds a significant positive associa-

tion between diclofenac and GI bleeding is encouraging, the risk estimates are

measurably different. There are several possible explanations for the discrep-

ancy. First, this is a penalized estimate, biasing our value toward 0, which is

consistent with underestimating the reported risk. Another possible result is

that significant difference in controlling for other exposures exists between this

study and those reported. Other research may not have controlled for as many

exposures as we have. Finally, observational datasets frequently represent very

different populations, with different group risk estimates. It is important to

note the challenge observational datasets poses. Unmeasured confounding

persistently complicates these results, our method may be unable to remove

all unmeasured confounding. We use one major observational data modalities:

claims data. These data are not collected for the scientific purposes. The claims

data reflect billing practices and are limited by insurance acceptance policies. It

is plausible that the source of bias from such collection is considerable.

In summary, the MM algorithm provides an elegant framework for devel-

oping optimization algorithms. However, integration of the MM algorithm

into the tools for observational healthcare analysis has been slow. The primary

concern is slow convergence in high-dimensional applications. Nevertheless,

the potential for this algorithm remains, and some have pushed through the

challenges in other disciplines [Zhou and Zhang, 2012, Zhou et al., 2010]. Our
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results highlight how an MM algorithm can improve speed fitting the SCCS

model at scale, shedding light on a new resource for computing in the setting

of massive observational data.
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CHAPTER 4

Diabetes Treatment Trajectories

Well-established guidelines anchor clinical treatment for diabetes mellitus type

II. However, characterizing actual treatment in practice is more elusive. To

our knowledge, little research illustrates how patients progress through drug

treatment regimens and how clinical tests alter these trajectories. We take

a step forward by examining insurance claims and electronic health records

data from four national datasets spanning 1994 to 2014, including a Medicare

subset, private insurance claims, and data from General Electric Centricity

users. This population consists of over 1 million patients who received at least

one diagnosis of T2D at some time in their medical history and have both

two hemoglobin A1c (HbA1c) tests and an oral anti-hyperglycemic mediation

in their observed history prior to any insulin initiation. Across patients, we

extract HbA1c measurements, the key justification for treatment intensification.

Following the framework of guideline recommendations, we track the number

of oral anti-hyperglycemic medications taken concurrently over the course of

each patient‘s history. We model this treatment count over time jointly with

most recent HbA1c status as a birth-death process, with first insulin use of

any formulation as a terminating state. We track the percent at 0, 1, 2, 3

or 4+ of drugs over time and count the patients who transition from high

to low HbA1c categories. We compute the transition rates between paired

drug count and HbA1c state, which represent treatment intensification and

de-intensification or response to treatment. We stratify by high/low persistent

HbA1c status and compare intensification rates. The relative proportion of

patients on 1,2,3, or 4+ drugs after a year on treatment stabilizes consistently

across datasets. Between 49% and 64% of patients remain in their initial HbA1c

state, independent of treatment. Furthermore, between 40% and 60% of patients

who start with high HbA1c never achieve low HbA1c, even transiently. Patients
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with perennially high HbA1c often show both faster intensification and de-

intensification. Therefore, we see that treatment impact on glycemic control

may be moderate; diabetes patients fail to intensify treatment along previously

recommended timelines; and poorly controlled patients struggle finding a

consistent treatment strategy.

4.1 Introduction

Clear treatment guidelines from both the American Diabetes Association (ADA)

and the American Association of Clinical Endocrinologists (AACE) direct man-

agement of diabetes mellitus type 2 (T2D) [Handelsman et al., 2015, American

Diabetes Association, 2015]. For a treatment naive patient, the initial ap-

proach is monotherapy, with metformin usually recommended. Failure to

meet hemoglobin A1c (HbA1c) goals triggers introduction of a second or third

treatment at three month intervals. Persistent failure to attain HbA1c goals

leads to insulin initiation.

Identifying how treatment intensification evolves in practice is more elusive

[Grimes et al., 2015]. Current approaches have been largely limited to cross-

sectional snapshots through longitudinal studies, surveys, and patient tracking

databases [Turner et al., 1999, Alexander et al., 2008, Hampp et al., 2014,

Dailey et al., 2002, Hazel-Fernandez et al., 2015]. The UK Prospective Diabetes

Study (UKPDS) followed patients every three months for three, six, and and

nine years post study initialization. From these patients, the UKPDS study

demonstrates that 50% of patients need an additional treatment to manage

their diabetes at three years, while 75% require an additional treatment at

nine years [Turner et al., 1999]. However, this was a structured, randomized

intervention, rather than an observation of real-world clinical data. To assay

the clinical experience, Alexander et al. [2008] examine the National Disease

and Therapeutic Index, a survey of office-based physicians selected by the

American Medical Association and the American Osteopathic Association

where the physicians report treatment patterns over two randomly sampled

consecutive days per quarter. The authors compare these mixed samples from

1994 to 2007. They find that the proportion of patients on monotherapy declined
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from 82% in 1994 to 47% in 2007.

Massive observational resources, including insurance claims and electronic

health records (EHRs) offer a new resource for understanding trajectories.

Observational datasets have become fertile resources for addressing questions

about diabetes in practice [Hampp et al., 2014, Grabner et al., 2013, Boccuzzi

et al., 2001, Dailey et al., 2002, Pladevall et al., 2004, Maclean et al., 2004, Grimes

et al., 2015, Slabaugh et al., 2015, Hazel-Fernandez et al., 2015, Weng et al., 2016].

Hampp et al. [2014] examine IMS Health Vector One National and Total Patient

Tracker databases for annual prescription use from 2003 to 2012. Like Alexander

et al. [2008], they are able to paint the trend in treatment using broad strokes.

They identify a rising use of non-insulin anti-hyperglycemics and a surprisingly

low rate of concomitant use of meformin with other treatment. Using eleven

data sources including claims and electronic health records (EHR) data with

a total of 250 million patients, Hripcsak et al. designed and implemented

an observational study to map out treatment trajectories without information

about how long a patient remains on a drug that the authors call pathways.

The authors found that 75% of patients started on metformin. However, only

29% of patients remained on metformin monotherapy. The prevalence of

persistent monotherapy varied dramatically across their data sources, from 10%

to 80%. The most striking result from their study is the combinatorial number

of potential treatment pathways observed.

While Hripcsak et al. quantify the diversity of diabetic treatment pathways,

they fail to capture the time component of treatment evolution. Among the few

studies that have considered time to treatment intensification is Berkowitz et al.

[2014]. They analyze the transition from monotherapy to dual therapy. They

sought to identify initial drug choices that are associated with an increased

hazard of treatment intensification. However, intensification may occur many

times during a patient’s history. Berkowitz et al. [2014] only illustrate the first

step of this process.

The challenge of identifying how patients traverse treatment choices shares

complexity and motivation with clinical pathway discovery, as in Huang et al.

[2013b] and Huang et al. [2013a]. However, while clinical pathway discovery

seeks to learn movement through the clinical system, we are more focused

61



evaluating how diabetes patients receive treatment given the existence of a

solid, consistent system of guidelines. Recent work has offered new insight

into how answering this type of question may proceed in practice [Yoon et al.,

2013].

In the face of the little knowledge existing about treatment trajectories in

practice, there is an opportunity to learn about the full trajectory of treatment

intensification. This study defines a framework to begin this process. We focus

on oral anti-hyperglycemic medication for treatment intensification and treat

insulin initiation as a separate class of clinical outcome. The core structure for

our work will be the count of oral anti-hyperglycemic medication that a patient

takes over time. Particular medication choice often reflects individualized

clinical decision making. To accommodate this, the guidelines couch their

recommendations in overarching categories of monotherapy, dual therapy,

and triple therapy, while making softer recommendations for drug choices

within each category. We identify this flexibility as an asset. To allow for

patient-specific treatment choices, we echo the guidelines and focus on drug

count. In this framework, intensification is the addition of a medication, de-

intensification the subtraction of a medication. We want to understand how

intensification changes as a function of HbA1c measurements. The interplay

between HbA1c and treatment intensification is relevant and nontrivial, with

HbA1c being both the dominant trigger for intensification and the indicator for

treatment effectiveness. Finally, we will consider insulin use as an escape from

oral anti-hyperglycemic medication. That is, as soon as a patient begins using

insulin, we will consider insulin use to proceed indefinitely. We recognize that

different forms of insulin represent different treatment strategies, but we will

treat all insulin initiation as exchangeable.

We use observational data to approach the problem of treatment trajectories

from three directions. First, we report basic descriptive statistics of treatment

patterns through medical claims and electronic health record data tracking

1 million diabetic patients from four national databases. Second, we look

at the proportions of patients on different counts of oral anti-hyperglycemic

over time after treatment initiation. Third, we model the number of oral anti-

hyperglycemic medication a patient consumes as a Markov process, coloring

drug count states with high (H) or low (L) HbA1c status, and using first insulin
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use as an absorbing state. We then fit this model to evaluate and compare

intensification and de-intensification rates as functions of HbA1c level.

4.2 Methods

To learn about treatment in practice, we turn to four massive observational

healthcare databases maintained by the Reagan-Udall Foundation Innovation

in Medical Evidence Development and Surveillance (IMEDS) project. These

databases contain time-stamped patient data, including laboratory results, drug

exposures, and diagnoses, deidentified to compliance with the Health Insurance

Portability and Accountability Act of 1996 (HIPAA).

4.2.1 A diverse library of observational datasets

Three of these databases are from the Truven Health MarketScan Research

family of datasets. One of these datasets, the MarketScan Commercial Claims

and Encounters (CCAE) contains claims data from employees and their spouses

and dependents covered by employer-sponsored private health insurance,

including PPO and HMO plans, from inpatient and outpatient settings. The

MarketScan Medicare Supplemental and Coordination of Benefits database

(MDCR) includes inpatient and outpatient data from retirees with Medicare

supplemental insurance paid by employers. This dataset includes Medicare-

covered as well as employer or patient-covered expenses. The Medicare datasets

have a history of use in understanding diabetes treatment use, as in Grabner

et al. [2013], among others. Finally, the MarketScan Lab Database (MSLR)

includes patients with inpatient and outpatient records, with an additional

benefit of a high concentration of recorded laboratory results. We have access

to one electronic health record (EHR) dataset as well. This is the General

Electric Centricity Medical Quality Improvement Consortium (GECC) dataset.

It contains ambulatory EHR data from providers using the GE Centricity record

system who agree to share their data for research. Patients start their first

medication from 2005 to 2014, from 2005 to 2014, from 2004 to 2014, and from

1994 to 2014 for the CCAE, MDCR, MSLR, and GECC datasets, respectively.
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It is important to note the diversity of these datasets. We use the two major

observational data modalities: claims data and EHR data. This is relevant

because these data are not collected for the same purposes. The claims data

reflect billing practices, while the EHR data do not. The EHR data are limited

to clinical experiences where the EHR is deployed, while the claims data are

limited by insurance acceptance policies. It is not immediately clear that one

dataset is superior to another, but it is plausible that the sources of bias among

them differ. This offers us the chance to broaden our perspectives of the

problem at hand while lending credence to results shared among the datasets.

The development of a common data model (CDM) through the Observa-

tional Medical Outcomes Partnership (OMOP) experiment facilitates statistical

methods implementation using these data. The CDM allows us to address

pertinent questions about health practices, including comparative drug safety,

by standardizing data concept representation across resources [Overhage et al.,

2012]. Standardization takes the native representation in a clinical data set,

such as International Classification of Diseases version 9 (ICD-9), of concepts

like medication ingredients and diagnosis definitions, and translates them to a

common representation. This facilitates consistent and reproducible analysis

across datasets; we can apply the same analyses to each of these data resources,

without having to recode our approach to accommodate dataset-specific varia-

tions. We depend on the OMOP CDM version 4 for representation of concepts

of interest in all of our datasets.

One aspect of the OMOP CDM version 4 requires special attention. We use

the OMOP CDM 4 definition of a drug era. A drug era is a combination of

individual prescriptions or drug fills. For example, if the same medication is

refilled routinely at the end of its 30 day supply for 2 refills, this appears as

a single 90 day drug era. OMOP uses a standard 30 day persistence window,

where if a new supply of the same medication is given within 30 days of

the termination of a previous supply, it is considered the same era. For

example, consider a patient who takes metformin for 60 days, forgets to refill a

prescription for 4 days and does not take any medication. Then on the 5th day,

that patient refills the prescription and continues taking metformin for 90 days.

With a 30 day persistence window, all of the medication use actions result in

a single 154 day drug era. The 30 day persistence window helps buffer refill
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discontinuities.

4.2.2 The study population

To create our study populations, we begin by selecting all patients who ever

receive at least one diagnosis of T2D from each dataset, who are prescribed

at least one oral anti-hyperglycemic medication, and who have at least two

HbA1c measurements taken. Patients enter our study once they have had both

a drug era started and a HbA1c measured. For CCAE, MDCR, and MSLR,

96% of patient visits were in the outpatient setting, with 3% in the emergency

department (ED) and 1% in the inpatient setting. For GECC, 92% of visits were

outpatient, 5% were inpatient, and 3% were in the ED.

To understand the clinical background of the patients, we collect age at first

oral anti-hyperglycemic medication use, gender, HbA1c values, average serum

creatinine and albumin:creatinine ratio (ACR) over all samples, and the number

of statins ever used. We report the median, 25th, and 75th quartiles for each of

these clinical parameters. We report the percent of patients who ever receive

a diagnosis of cardiovascular disease (CVD), congestive heart failure (CHF),

hypertension (HTN), hyperlipidemia, kidney disease, eye disease, neuropathy,

or peripheral circulatory disorder. Although we rely on the OMOP CDM

version 4 concepts, we select diagnosis concepts based on ICD-9 codes. For

cardiovascular disease we used ICD-9 codes 410.*, 411.*, 412, 413.*, and 414.*.

For congestive heart failure, we used 398.91, 402.*, 404.*, and 428.*. Hyper-

tension and hyperlipidemia were identified with 401 and 272.*, respectively.

Kidney disease corresponded to codes 581.81, 583.81, and 585.* . Eye disease

corresponded to 362.07, 365.44, 366.41, and 369.*. Neuropathy consisted of

337.1, 353.5, 354.*, 355.*, 357.2,358.1, 396.54, 536.3, 713.5, and 782.0. Peripheral

circulatory disorder related to 250.7, 443.81, and 785.4.

For our study, we will treat HbA1c as ≥ 7 (high) or < 7 (low), rather than

as a continuous measurement. We do this to simplify the analysis. HbA1c of

7% reflects the value used in the UKPDS study and the ADA guidelines.

To have an overview of treatment trajectories, we extract summary statistics

characterizing over-arching treatment patterns in each of our datasets. First,

we consider the total time our patients are observable. We want to know
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how long patients persist in our dataset. We report the median observation

time, where we define the median observation time as the total time each

patient spends covered in our data. As a proxy for how frequently clinical

interactions occur, we report median follow-up after the first treatment. We

define follow-up time as the time between initiation of therapy and a relevant

clinical event: a medication count change, a HbA1c measurement, insulin

initiation, or any clinical visit. We count the proportion of patients who ever

attain drug counts of 1, 2, 3, and 4 or more drugs during their time present in

the dataset. We extend the persistence window concept to drug counts, where

any pattern of de-intensification followed by intensification within 30 days is

ignored, and we consider the count persistent. This buffers our data against

mistaking medication switching with a de-intensification and intensification

pattern. Finally, we report the proportion of patients who fail to change HbA1c

status. These are the patients for whom all of their HbA1c measurements

consistently fall within the high or low categories.

Although we will not consider medication type in our study, we query the

percent of patients who have metformin as one of the treatments they receive

within the first day of treatment. This allows us to compare our treatment

initiation profile with that of Hripcsak et al.. Also, this helps orient us to how

closely the patients we observe follow the strong recommendation to begin

treatment with metformin.

We want to understand how patients progress through drug counts. To

do this, we look at the percent of patients on 0,1,2,3, or 4 or more drugs at 3

month intervals following the initial treatment era beginning for 10 years. Not

all patients persist for 10 years, and we show the percent extant patients from

the starting cohort.

4.2.3 Birth-death processes

Birth-death processes have a significant history of use modeling populations

[Kendall, 1948, Jaquette, 1970, Irvine et al., 1994]. When Kendall presents

generalized solutions to the birth-death process, the problem is framed in the

context of birth and death of individuals in a population [Kendall, 1948]. The

population of interest varies with application. Early populations of interest
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included infected individuals in epidemics [Becker, 1972]. More recently, the

populations of interest rely on clinical data. For example, Irvine et al. [1994]

uses a modified birth-death process to model geriatric patients navigating

in-patient resources. However, to the best of our knowledge, the application of

birth-death processes to model patient treatment trajectories is novel.

A birth-death process is a Markov process operating on a discrete space

over continuous time. State transitions only occur between neighboring states.

Considering a simple birth-death process over integer values j, for a state

j, one can only move from j to j + 1 (a birth) or j − 1 (a death). In many

modeling situations, j represents the count of an item of interest. The facility

of moving between states is captured by the transition rates, which measure

the probability of moving from one state to another in infinitesimal time.

0 1 2 3 · · ·

This simple model will form the skeleton of our approach. The states of

interest are the counts of oral anti-hyperglycemic medications consumed. We

extend this framework to capture some of the critical pieces to the clinical

puzzle. First, we include the interplay between the treatment intensification

and HbA1c. The guidelines make it clear that HbA1c should motivate clinical

decision making; high HbA1c should drive drug counts higher or inspire

faster progression to insulin use. However, increasing the number of diabetes

treatments should reduce the disease impact, driving down HbA1c. It is

possible to treat this interplay conditionally, looking at the count of drugs for

patients with high or low HbA1c. However, this approach misses the feedback

between HbA1c and drug treatments. We prefer to integrate HbA1c into the

birth-death model. We allow each drug count state to assume both a high and

low HbA1c level. This enables us to compare intensification / de-intensification

rates between drug counts across HbA1c status.

In this model, we are assuming that HbA1c is fully known over time and

stationary between observations, via the last observation carried forward. In

reality, we only have partial observations of the complete process. However,

we feel comfortable making this assumption because it represents the data
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Figure 4.1: The treatment trajectory for a 61 year old male patient from the MarketScan Lab
database (MSLR) over the course of observation. Each rectangle represents a single
drug era, with hemoglobin A1c (HbA1c) measurements shown as vertical bars. We
mark the part of his history that enters into our study with a red segment above
the measurement values.

available to the physician. That is, in between observations it is likely that the

physician refers to the last observed HbA1c. Therefore, we model the HbA1c

between observations as equal to the last observed HbA1c.

Figure 4.1 shows a 61 year old male patient from the MSLR dataset. While

the data tracks him from the first HbA1c measurement, he only enters into

our birth-death model once both his HbA1c status is established and his first

medication era begins. For him, this is shown with the red segment above his

history. This structure forces us to ignore the time prior to the first known

medication.

Second, we consider progression to insulin treatment separately from oral

anti-hyperglycemic medication. Progression to insulin treatment is often non-

reversible, with patients who begin insulin treatment often requiring insulin

for the rest of their disease duration. With this in mind, we will model insulin

initiation as an absorbing state. All treatment states can jump to the insulin use
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state, but no transitions exists from insulin.

Combining the insulin and HbA1c models together gives us our full model.

(0, L) (1, L) (2, L)

I

(0, H) (1, H) (2, H)

· · ·

· · ·

To keep track of this network of states, we need sufficiently general notation.

Since we are not just moving along a linear chain of possible states, the notions

of birth and death are less obvious. Let κm,n be the transition rate from state

m to state n. Let Dm be the set of possible destinations from m. If m = (1, L),
Dm = {(0, L), (1, H), (2, L), I} and κ(1,L),(2,L) is the transition rate for escalating

from one oral anti-hyperglycemic medications to two while remaining at low

HbA1c. We define Tm,n as the number of transitions from state m to state n and

Sm as the total time spent in state m. Because we are considering patients as

exchangeable and because the model is Markovian, we can sum all over all

patients and observations for a single T for each pair of states and a single S
per state.

4.2.4 Maximum likelihood estimates under the birth-death model

The likelihood under this model is well-known. Following Keiding [1975],

among many others, the likelihood is

L =
M

∏
m

e−(∑n∈Dm κm,n)Sm ∏
n∈Dm

κm,n
Tm,n ,
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and the log likelihood is

L =
M

∑
m
−( ∑

n∈Dm

κm,n)Sm + ∑
n∈Dm

Tm,n log κm,n.

We can compute the maximum likelihood estimate for the parameters. Taking

the derivative with respect to κp,q we find

∂L
∂κp,q

= −Sp +
Tp,q

κp,q

Setting ∂L
∂κp,q

= 0 and solving yields intensification / de-intensification rate

estimates
κ̂p,q =

Tp,q

Sp
.

To derive the asymptotic standard error, we compute the observed information

matrix. The diagonal elements are readily found as

− ∂2L
∂κ2

p,q
= − ∂

∂κp,q

(
−Sp +

Tp,q

κp,q

)
=

Tp,q

κ2
p,q

,

while the off-diagonal elements simplify to

− ∂2L
∂κr,q∂κp,q

= − ∂

∂κr,q

(
−Sp +

Tp,q

κp,q

)
= 0.

Inverting the observed information matrix and taking the square root gives the

standard error. Thus, for κ̂p,q, the standard error is SE(κ̂p,q) =
κp,q√

Tp,q
. Armed

with κ̂p,q and its standard error, we can construct an asymptotic 95% confidence

interval as κ̂p,q ± 1.96× SE(κ̂p,q).
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Table 4.1: The demographic profile, including gender, age at the start of the study, comorbidities,
important clinical outcomes, and other medication use of the diabetic patients
included in the study from each of the datasets MarketScan Commercial Claims and
Encounters (CCAE), General Electric Centricity Medical Quality Improvement
Consortium (GECC), MarketScan Medicare Supplemental and Coordination of
Benefits Database (MDCR), and MarketScan Lab Database (MSLR)

CCAE GECC MDCR MSLR
n 114,060 757,135 27,073 133,042
Women (%) 46.6 51.7 48.3 47.1
Age (years) 55 [48,60] 61 [51,69] 71 [67,77] 56 [49,62]
Comorbidities

CVD (%) 21.4 19.1 38.9 24.4
CHF (%) 6.7 7.5 20.2 9.3
HTN (%) 71.3 55.3 87.1 73.6
Hyperlipidemia (%) 88.1 79.2 91.5 88.5
Kidney disease (%) 9.5 13.0 35.2 14.1
Eye disease (%) 2.2 1.1 5.2 2.8
Neuropathy (%) 26.1 14.7 34.8 27.2
Peripheral circ. 1.0 0.5 5.9 1.9

disorder (%)
Clinical outcomes

Hypoglycemia (%) 3.2 1.7 4.6 3.5
HbA1c 6.9 [6.3,7.9] 6.8 [6.2,7.6] 6.8 [6.3,7.5] 6.9 [6.3,7.8]
Serum creatinine 0.9 [0.7,1] 1 [0.8,1.2] 1 [0.8,1.3] 0.9 [0.8,1.1]
ACR 7 [4,18] NA 10 [5,30] 7 [4,20]

Other medications
Statins used 1 [1,2] 1 [1,2] 1 [1,2] 1 [1,2]

4.3 Results

We extract study populations from each of the four national databases, yielding

in total over 1 million T2D patients with at least one oral anti-hyperglycemic

claim or prescription and at least two HbA1c laboratory measurements. Table

4.1 offers a summary of the patient demographics and their health status.

4.3.1 Study population demographics

We begin with the general trends of drug use among patients, showing our

results in Table 4.2. Patients are present in our datasets for a median of 5

to 6 years. This reflects the entire time they are eligible for recording events.
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Table 4.2: A clinical treatment profile of the diabetic patients included in the study from each of
the datasets CCAE, GECC, MDCR, and MSLR. We show the median observation
length in the dataset and follow-up time from the onset of treatment, where follow-up
was defined as a clinical visit, a diabetes medication count change, a HbA1c test, or
progression to insulin. We report the percent of patients who start treatment with
metformin. We compute the percent of patients who ever reach a given count of
drugs, independent of time, in our data.

CCAE GECC MDCR MSLR
Median observation time (y) 5.9 5.1 5.1 5.6
Median follow-up time (d)

After first drug 20 30 16 19
Starting treatment (%)

Metformin 76.8 75.4 63.5 74.8
Proportion ever attaining drug count (%)

1 drug (%) 83.7 91.9 86.4 84.5
2 drugs (%) 53.2 52.4 48.8 52.8
3 drugs (%) 20.1 19.4 14.9 19.5
4+ drugs (%) 3.9 3.8 2.2 3.7

For all datasets, the overall median follow-up time from initiation of the first

treatment varied from 15 to 30 days. We defined the follow-up time as either a

relevant diabetes clinical event, including HbA1c measurement and medication

change, or a clinical visit for any reason. Our rational for these choices is that

each of these events represents an opportunity for physician-patient interaction

regarding treatment.

We also report an overview of treatment decisions. We find that roughly

75% of patients begin treatment with metformin, with the exception of the

MDCR data, where only 63.5% of patients begin treatment with metformin.

Additionally we examine the proportion of patients ever attaining a number of

medications. Specifically we count all patients who are on a medication for at

least one day at any point during their observation period. Roughly 50% of

patients will take two drugs concurrently at some point, and roughly 20% ever

take three drugs concurrently. However, the proportion of patients on 4 drugs

or more is less than 5%.

We also examine the dynamics of HbA1c testing across the datasets. In

Table 4.3, we see the median number of observations per person, the median

period of HbA1c testing, and the median time in between tests. Each patient
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Table 4.3: The hemoglobin A1c (HbA1c) testing profile of the diabetic patients included in the
study from each of the CCAE, GECC, MDCR, and MSLR datasets. We report the
time in days. For each quantity, we show the median and upper and lower quartiles.

CCAE GECC MDCR MSLR
Count HbA1c / person 4 [2,6] 6 [3,11] 5 [3, 7] 4 [2,6]
[median (Q1,Q3)] (%)

HbA1c testing period 472 223 365 410
median (Q1,Q3)] (%) [273, 803] [155,354] [212, 638] [247, 711]

Time between tests 134 129 139 135
[median (Q1,Q3)] (%) [92, 220] [95,195] [92, 209] [92, 218]

has, on average, 4 to 6 tests over her time in the study, and we have already

selected this population so that all patients have had at least two HbA1c tests.

The median period examines how many days occur in our study for each

HbA1c test. For all of the datasets, this ranges between half a year to a year

and a half per test. Similarly, we report the median time between tests. This

is the average time from one test to another, which differs from the median

period by not considering time between the study start and the first HbA1c test

or the time between the last HbA1c test and the study end.

We next turn to with the general trends of HbA1c dynamics among patients,

showing our results in Table 4.4. A remarkable result is the proportion of

patients who remain at either a high or low HbA1c state throughout the

duration of their observation. Collectively, across all datasets, between 49% and

64% of patients remain in their initial HbA1c state, independent of treatment.

Between 20% and 30% of patients remain in a high HbA1c state independent of

treatment. Similarly, between 29% and 40% of patients remain at a low HbA1c

state. Within the high HbA1c group, the median A1c values are 8.4, 8.1, 7.9,

and 8.3, and in the low HbA1c group, the median A1c values are 6.1, 6.1, 6.2,

and 6.1 for CCAE, GECC, MDCR, and MSLR, respectively.

We next turn to the relative breakdown of HbA1c events among patients

who start with high or low HbA1c. Specifically, we report the percent of

patients who start at high or low HbA1c and then the percent who move from

high to low, or high to low and back again, aggregating the group that makes

at least three such transitions. We show these results in Table 4.4. Between

40% and 60% of patients who start with high HbA1c never achieve low HbA1c,
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Table 4.4: These are a description of the HbA1c events among patients who start with high
or low HbA1c. We show the relative number of patients who remain stationary at
their HbA1c category, as well as the most frequent movement patterns. The percent
of patients starting at high versus low HbA1c is remarkably similar. Relatedly, all
of the datasets have largely consistent proportions of each transition type.

CCAE GECC MDCR MSLR
n 114,060 757,135 27,073 133,042
Start ≥ 7 (%) 49.1 50.2 58.8 50.7

Always ≥ 7 (%) 29.5 20.2 21.5 28.0
≥ 7→< 7 (%) 8.2 8.1 9.2 8.4
≥ 7→< 7→≥ 7 (%) 3.7 5.3 5.6 4.1
Other 2.9 7.7 4.5 3.3

Start < 7 (%) 50.9 49.8 41.2 49.3
Always < 7 (%) 34.3 29.1 39.5 35.0
< 7→≥ 7 (%) 12.5 12.5 10.6 12.2
< 7→≥ 7→< 7 (%) 5.5 7.3 5.1 5.5
Other 3.4 9.8 4.0 3.6

even transiently. In contrast, less than 20% make exactly one transition from

high HbA1c to low HbA1c. Relatively far more patients make the transition

from low HbA1c to high HbA1c one time.

4.3.2 Trends in medication count over time

Assessing the percent of people at given drug counts at three month follow up

intervals post initial treatment reveals that the distribution of medication counts

among the study patients changes rapidly in the first year, supplanted by much

more gradual change thereafter. We report these distributions in Figure 4.2. All

datasets show a similar rapid descent of the population of patients taking only

one drug, with an attendant rise in the percent of patients taking zero, two, or

three drugs. The percent of patients remaining on one drug hovers around 40%

for all datasets. For all but the GECC dataset, the next highest population is the

group of patients taking two drugs, whose proportion increases from roughly

20% within the first year toward 30% to 40% at 10 years. In the GECC dataset,

the patients taking zero drugs dominate, but their population steadily declines

from a peak near 40% within the first year after initial treatment initiation. The

absolute number of patients observed at each sample is strictly decreasing with

a super linear change.
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Figure 4.2: Tracking the distribution of patients at given counts of drugs over time after the
beginning of their first eras of treatment suggests a similar trajectory across each
of the MarketScan Commercial Claims and Encounters (CCAE), MarketScan
Medicare Supplemental and Coordination of Benefits database (MDCR), Mar-
ketScan Lab Database (MSLR), and General Electric Centricity Medical Quality
Improvement Consortium (GECC) datasets. In all datasets, the percent of patients
on one drug falls dramatically within one year, replaced by patients taking 0 or
2 drugs. After the initial recalibration, the proportion of patients at each count
changes slowly for the rest of observation.
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4.3.3 Full treatment trajectories

Turning to the results from our birth-death model, Figure 4.3 provides the first

full depiction of the treatment trajectory including HbA1c and insulin initiation.

The time spent in each state is proportional to the node size in our graph. For

the intensification / de-intensification rates, the edge thickness is proportional

to our maximum likelihood rates. Edge opacity is inversely proportional to the

standard error of the rates; rate estimates of which we are more certain appear

darker.

From the figure, we see that the time spent on 0, 1, and 2 drugs dominates

all the datasets, with time spent on 3 and 4 or more drugs appearing relatively

small. For most of the count states, the time spent in the low HbA1c category

appears higher than the time spent in the corresponding high HbA1c category.

Except for the zero to one transition, de-intensification rates appear higher than

intensification rates, but the intensification and de-intensification rates dwarf

the transition rates between the high and low HbA1c states and the transition

rate to insulin initiation.

Focusing on the patients who fail to change HbA1c status shown in Table

4.4 we recreate the plots from Figure 4.3, restricting ourselves to the patients

with perennially high or low HbA1c, which we treat separately. The resulting

plots are shown in Figure 4.4. Using the birth-death modeling framework,

we compare the 95% confidence intervals we constructed between the always

high and always low corresponding transition rate pairs for each dataset. A

red asterisk labels each of the transition arrows that is significantly higher

than its counterpart in the other group from the same dataset. Except for

three transitions in the GECC dataset, all of the asterisks label the high HbA1c

group of patients for each of the datasets. That is, for most intensifications,

de-intensifications, and transitions to insulin, the transition rates computed

using the population of patients whose HbA1c values are not seen falling below

7% are significantly higher than the corresponding rates for the patients whose

HbA1c values are not seen rising above 7%.
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Figure 4.3: Birth-death processes including high and low HbA1c status and insulin initiation
(I) for patients in the CCAE, GECC, MDCR, and MSLR datasets. Each of the
drug count states is a circle connected by arrows that reflect the rate of transition
between states. The size of the nodes is proportional to the time spent in drug
count state, {0, 1, . . . , 4+}, the edge widths are proportional to the maximum
likelihood transition rates, and opacity is inversely proportional to standard error.
Drug counts with high HbA1c status lie in the inner circle; those with low HbA1c
status remain further away from the central insulin node.

The time spent on 0, 1, and 2 drugs dominates all the datasets, with time spent on 3 and
4 or more drugs appearing relatively small. For most of the count states, the time spent
in the low HbA1c category appears higher than the time spent in the corresponding high
HbA1c category. De-intensification rates often appear higher than intensification rates.
Most notably, the intensification and de-intensification rates dwarf the transition rates
between the high and low HbA1c states and the transition rate to insulin initiation.
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4.4 Discussion

This research provides an emerging depiction of patient trajectories through

T2D treatment. Given the challenge of observational data, recovering patterns

that we expect can validate our conclusions. Beginning by examining our

patient cohort, we see trends that we naively expect. Considering Table 4.1, the

MDCR patients are generally older and have more comorbidities than their

counterparts from the other datasets. We expect medicare patients to represent

an older population compared to patients who have insurance through employ-

ers. Furthermore, it is reasonable that older patients have more comorbidities

on average than their younger counterparts.

The percent metformin use at treatment initiation is largely consistent with

previous findings [Hripcsak et al., Berkowitz et al., 2014, Grimes et al., 2015,

Weng et al., 2016]. The question remains why many patients begin on a drug

other than metformin. One reason might be that metformin is contraindicated

for some patients. Another reason might be treatment initiation outside of our

datasets. The short median observations times suggest that much of the patient

history exists outside of these datasets. Ultimately, this is a shortcoming of

decentralized claims and EHR data, where patients may pass in and out of the

isolated systems.

While our datasets contain inpatient, outpatient, and ED visit events, the

overwhelming majority of visits occur in the outpatient setting. This is reassur-

ing, since treatment decisions in the inpatient or ED settings may differ from

standard, long-term care approaches as an outpatient. Also, this underscores

the relevance of our results to clinicians working in an outpatient setting.

One of our most surprising findings is that there is a low level of transition

between the high and low HbA1c states. Half to two-thirds of the patient

population fails to change HbA1c status. This is unexpected for several reasons.

First, the population of patients at high HbA1c for the duration of their obser-

vation suggest that treatment with oral anti-hyperglycemic medication may be

ineffective at dropping the HbA1c of some patients below the 7% threshold.

Conversely, the patients who remain below 7% suggest that a population exists

whose disease course may be less severe, or for whom treatment may inhibit

disease course. Our estimates for low transition rates from high to low HbA1c
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are not isolated [Maclean et al., 2004].

Comparing the high and low HbA1c populations, intuition suggests that

the transition rates for intensification should be greater in the high HbA1c

population, and we recover this result. None of the intensification rates in the

low HbA1c population significantly exceed the corresponding rates in the high

HbA1c population. Similarly, the rates of transition to insulin in the low HbA1c

population never significantly exceed their counterpart rates in the high HbA1c

population. However, the de-intensification rates are also often higher for the

high HbA1c population.

High intensification and de-intensification rates together suggest that the

treatment states may be less stable for the high HbA1c patients. We could

be seeing the results of patients trying different medications. By moving

onto and off of different medication, patients would appear to have transient

intensification and de-intensification events. It is possible that we are seeing

issues of adherence. Patients who are poorly compliant would have a propensity

to both stop and restart medication regimens and have higher HbA1c. These

explanations are not mutually exclusive. In fact, our results may reflect a cycle

of frustration, absence of clinical response, and poor adherence, as frustrated

patients with high HbA1c that is resistant to treatment become less compliant.

Measuring adherence is challenging, but it has a notable impact on HbA1c

[Lawrence et al., 1970, Pladevall et al., 2004]. We ultimately do not know with

certainty when patients took medication, even if it was prescribed. This is an

inherent limitation of working with claims and EHR data. Future work should

create an independent compliance proxy and evaluate how that compliance

changes as a function of time for high HbA1c patients.

Poor follow up and compliance may not present the whole story. In par-

ticular, the median follow up times across the datasets are quite low. This

suggests that physicians and patients are communicating. While some of these

events are certainly not diabetes related, the frequency of follow up suggests

that physicians have the opportunity for intervention on patient treatment

trajectories. Phillips et al. [2001] discusses the phenomenon of clinical inertia,

where clinical treatment aggressiveness may be dampened in conditions where

treatment is not symptom motivated. Citing Harris et al. [1999], Phillips et al.
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[2001] report that only 33% of diabetic patients are adequately treated to lower

HbA1c below 7%, echoing our observed percent of patients who remain at high

HbA1c. This phenomenon has appeared before [Dailey et al., 2002, Slabaugh

et al., 2015].

Observational data are notorious for producing different results for different

databases [Madigan et al., 2014, 2013]. When different databases, with different

populations, show similar results, it is worth noting. Here, we see similar

trends for all the databases in Figure 4.2. After treatment initiation, all datasets

show that the percent of patients on a given medication count are similar

over time. Furthermore, the plateau level of patients on monotherapy hovers

between 40% and 60%, echoing the results of Alexander et al. [2008], Weng et al.

[2016]. Similarly, our reported levels of duel therapy may seem low. However,

the levels we see are very close to other studies; Qui et al. [2015, 2012] report

similar trends, despite looking exclusively at new users.

Clinically, this is really a cause for concern. The UKPDS study demonstrates

that 50% and 75% of patients will need an additional treatment to manage

their diabetes at 3 and 9 years, respectively [Turner et al., 1999]. The percent of

patients actually taking at least one additional medication at 3 and 9 years after

treatment initiation falls woefully short of 50% and 75%. This suggests that

clinicians may need to be more willing to intensify treatment than they show

in practice.

Insulin use rates are low. Compared to the rates of oral anti-hyperglycemic

medication, the rates of transition to insulin are markedly less. One obvious

explanation for this reticence is that there is a preference for avoiding insulin

on the part of the physicians and patients. 10-15 years used to be the standard

wait time between onset to insulin use, [Nathan, 2002]. Current guidelines

suggest at most 9 months between treatment initiation and insulin [American

Diabetes Association, 2015].

Working with observational data is inherently problematic, and many of

limitations apply here. First, all records relevant to each patient may not be

present in the dataset. For example, the GECC data reflects the prescriptions

written by a majority population of primary care physicians [Crawford et al.,

2010]. If a patient were to transfer care to a specialist, that patient might seem
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to disappear from our records. If this patient then reenters our dataset after

some time under the care of a specialist, it would seem that there were on no

treatments for a long time, when the reality may be far different. The shadow

of this limitation is visible in Figure 4.2. Specifically, in Figure 4.2, a much

larger percent of patients persist at 0 drugs over time in the GECC population.

This is possibly due to patients leaving the system for specialist care. However,

the percentages of patients remaining on monotherapy versus discontinuing

therapy actually have precedent in the literature [Hazel-Fernandez et al., 2015].

Some have offered economic reasons for departure from guidelines [Vigersky

et al., 2013].

Similarly, frequency of HbA1c testing depends on physician and patient,

and inadequate testing is not uncommon [Maclean et al., 2004]. Decisions to

test more or less frequently might alter our ability to draw conclusions from

this data. Future work should look closely at the relationship between going

on and off of a drug and the frequency of HbA1c testing and should be willing

to remove patients from our study who are insufficiently tested.

While it is concerning that the majority of patients appear to stop treatment

at some time, treatment changes are common [Boccuzzi et al., 2001]. This

is possibly a reflection of prescription era modeling decisions. The 30-day

persistence window is an arbitrary interval. It is still possible to observe

disjoint eras, when a single continuous era would be more clinically reasonable.

Medication may be taken sporadically, with some doses stored and then used

later. Future work should investigate how clinical information can better be

integrated into these drug eras.

Modeling the count of drugs introduces notable issues during medication

switching. In particular, if a patient changes from one medication to another,

this can enter the data as an erroneous intensification or de-intensification. For

example, if the patient switches midway through a prescription and receives

a secondary prescription, the overlapping eras will appear as a transient es-

calation to two drugs. Unfortunately, these issues are difficult to avoid in an

observational setting, when the only data we see are drug eras.

Another limitation of this study is the transformation of the HbA1c data

from a partially observed continuous process into a completely observed
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discrete process. The true HbA1c for a given individual moves stochastically

between observations, and it would be more meaningful to learn about this

process including the drug counts during the unobserved period. However,

we justify our approach by recognizing that we are in some sense modeling

the physician’s decision making, and it would be reasonable for a physician to

make treatment intensification decisions reliant on the last observed HbA1c

rather than the estimate of the current HbA1c. Future work will include

identifying the effect and importance of HbA1c cutoff and granularity. It is

reasonable to suspect that physician decision making as a function of HbA1c is

far more nuanced than branching on a high or low value.

Although the limitations of observational data are not to be underestimated,

one of the goals of this research is to highlight practice in a realistic clinical

setting. The questions of compliance and data completeness in our data

resemble the uncertainty of clinical decision making. Thus, in some sense,

the limitations of observational data force us to account for some of the same

uncertainties facing clinical decision makers. Our approach is a first step to

understanding the treatment trajectories of patients, offering insight into how

patients are treated and framing the conversation in terms of trajectories for

the first time.
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CHAPTER 5

Future Work

5.1 Markov chain Monte Carlo for SCCS at scale

Bayesian ideas have won approval in the setting of observational healthcare

data. Placing prior distributions over the estimates of relative risk for each

drug captures our belief that most drugs are safe and allows us to consider

related outcomes. In addition, using a Bayesian framework efficiently manages

challenges in estimation at scale [Madigan et al., 2011]. However, moving from

posterior mode estimates to extracting full posterior distributions is a standing

challenge in this setting.

5.1.1 Motivation

Current approaches for capturing uncertainty of our risk estimates for medical

interventions rely on bootstrapping. In bootstrapping, our goal is estimating

the standard error of a parameter of interest Efron and Gong [1983]. Bootstrap-

ping is a non-parametric approach. We approximate the standard error of a

parameter by estimating that parameter repeatedly using data resampled from

the full dataset with replacement. Although computationally intensive, it is

not prohibitive in the setting of observational healthcare data. In particular,

Suchard et al. [2013] bootstrap the mode estimates.

However, this approach is notoriously problematic. The Bayesian modeling

that we use is equivalent to a regularized regression framework, where our

prior distribution results in the penalization term. One particular example of

this is a Lasso penalized regression [Tibshirani., 1996]. The Lasso estimator

optimizes an l1 penalized regression. This regression corresponds to using

a Laplace prior in our formulation. There are two main benefits to using
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a Lasso penalized regression. First, it enforces sparse solutions, shrinking

small estimates to zero and producing a parsimonious model. Effectively,

this is simultaneous model selection and model fitting. Second, it allows for

computationally feasible inference [Tibshirani., 2004].

This shrinking effect is problematic when combined with bootstrapping.

Chatterjee and Lahiri [2010] consider bootstrapping a Lasso penalized linear

regression. They find that the bootstrap estimator converges weakly to a

random probability measure, rather than the target distribution. In particular,

their results show that the bootstrap is inconsistent when regression coefficients

are forced to zero. This is precisely the setting in which we expect our Lasso

penalized regressions to live. Chatterjee and Lahiri [2011] offer a modified

bootstrap approach to correct for this phenomenon.

However, a similar problem arises from selecting the hyperprior. To select

the hyperprior, the current best practice is to use cross-validation [Suchard

et al., 2013]. We use cross-validation based on the predictive log-likelihood of

the hold-out set to select the prior variance σ2 = 1
τ . Suchard et al. [2013] use a

log-scale grid search that is computationally expensive even with only a single

parameter. To help overcome this burden, we turn to Genkin et al. [2007] in

implementing an “autosearch" for hyperparameter selection. We start with

an initial guess and then increase or decrease our guess by one log unit until

we have bracketed the maximum of the hold-out set predicted log-likelihood.

Then we compute a quadratic approximation to the predicted log-likelihood.

The maximum of this approximate surface becomes our estimate.

Ultimately, both the bootstrapping approach for estimator variability and

the predictive log-likelihood cross-validation approach for estimating the prior

variance fall short of capturing what our Bayesian framework really demands:

the full posterior distribution. In this project, we address these shortcomings

by developing fully Bayesian inference for SCCS using our massive datasets.

We address the challenges of dimensionality by exploiting model averaging.

We first simulate from the marginal posterior distribution of covariate inclusion

using a Laplace approximation. Next, we use Metropolis-within-Gibbs to learn

about both the drug relative risks given each covariate inclusion model and the

hyperprior variance. In the Metropolis step, we develop an adaptive indepen-
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dence sampler with proposals from a tuned multivariate normal distribution

around the mode estimate.

5.1.2 Methods

5.1.2.1 SCCS

In using the SCCS model, we follow the notation of Simpson et al. [2013] and

Suchard et al. [2013]. To revisit our nomenclature, the SCCS model assumes

that ADEs arise according to an inhomogeneous Poisson process. For j = 1 . . . J
drugs under consideration, the parameters β = (β1, . . . , β J)

′ measure the

instantaneous log relative risks of treatment exposure. As before, let patients

i = 1, . . . , N have a baseline risk eφi and let the drug exposures multiplicatively

modulate the underlying instantaneous event intensity λik during constant

drug exposure era k. That is, the intensity arises as λik = eφi+x′ikβ, where

xik = (xik, . . . , xik)
′ and xikj indicates exposure to drug j in era k for outcome

p. The exposure duration for exposure era k of patient i is lik. The number

of ADEs in era k of patient i is yik ∼ Poisson(lik × λik). The SCCS method

conditions on the total number of events for a particular outcome ni = ∑k yik

that a patient experiences over her total observation period. By conditioning

on these statistics, the baseline risk falls out of the conditional likelihood of the

data.

We place a prior distribution over each of the covariates

p(β|σ2) ∼∏
j

[
Normal

(
0,

1
σ2

)]
p(β|σ2) ∼∏

j

[
Laplace

(
0,

1
σ2

)]
.

(5.1)

As the model is currently formulated, we select the prior variance σ2 that

maximizes out of sample prediction through cross-validation. However, we

would like to place a distribution over this hyperprior and learn its value. We

start by making this adjustment to the hyperprior modeling. We place an

inverse-gamma distribution over our hyperprior variance σ2. This approach is

commonly used [George and McCulloch, 1993].
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5.1.2.2 Spike and slab prior

Variable selection is a long standing challenge [Ishwaran and Rao, 2005]. Some

approaches offer theoretically perfect model selection by considering all 2J mod-

els for J covariates, as compared in Shao [1997] among others. However, these

methods may fail in practice [Shao and Rao, 2000]. Furthermore, enumerating

2J for moderate J quickly become impractical.

One of the Bayesian solutions to this problem was the development of

spike and slab prior distributions [Mitchell and Beauchamp, 1988, George and

McCulloch, 1993]. Mitchell and Beauchamp [1988] designed the spike and slab

prior as a tool for selecting a subset of variables within a model. The core

idea of the spike and slab prior is a hierarchy of prior distributions over the

parameters and the model [Ishwaran and Rao, 2005]. Some model parameters

are vulnerable to exclusion, and that we would like the data to choose which

of these variables to remove. As such they allow covariates to have discrete

probability mass at zero. This discrete mass represents the “spike" component

of their name. Functionally, this component of the prior hierarchy is responsible

for model selection.

However, the non-zero covariates would still have a prior distribution over

them. Mitchell and Beauchamp [1988] maintain a diffuse prior distribution

over these non-zero values as well. This diffuse component of the prior is the

“slab" part of the name. This component is already built into the SCCS model;

the Normal and Laplace priors we currently use are functionally “slab" priors.

Our current model formulation is a degenerate case of the spike-and-slab prior

model - one without any spikes.

In the setting of observational healthcare data, using priors of this form is

reasonable. First, our prior distributions over the covariates are already centered

at zero, reflecting our belief that most diagnosis-intervention relationships are

null. Therefore, placing a point mass over zero merely underscores this belief.

Second, for any given adverse event, it is reasonable that most drugs will be

unrelated to it.

Given some shape and scale parameters κ and θ for our hyperprior distri-
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bution, our prior structure is now

σ2 ∼ Inv-Gamma(κ, θ) (5.2)

and

p(β|σ2) ∼∏
j

[
δ0(β j) + Normal

(
0,

1
σ2

)]
(5.3)

or

p(β|σ2) ∼∏
j

[
δ0(β j) + Laplace

(
0,

1
σ2

)]
. (5.4)

Note our use of δ0(β j), a delta function over β j to represent the point mass at

0 for β j. To capture our spike and slab prior, we consider the set of models

G = {g0, g1, ...g2J}, where gj represents the set of non-zero covariate values.

There are 2J possible models.

Gibbs sampling is commonly employed to learn about models with spike

and slab priors [George and McCulloch, 1993]. We follow the spirit of this

approach. But, to learn about our models, we use the Laplace approximation

to the posterior distribution, developed by Tierney and Kadane [1986]. In the

Laplace approximation, we use Laplace’s method to approximate our posterior

density. Laplace’s method relies on a second order Taylor expansion about

the posterior mode. Specifically, we find that the posterior is approximated by

a normal density centered at the posterior mode with a covariance equal to

minus the inverse hessian at the mode.

Armed with our cyclic coordinate descent framework, we have the tools nec-

essary for the Laplace approximation already in hand. Specifically, we already

compute the posterior mode β̂. Computing the Hessian at β̂ is straightforward.

Under the SCCS model, the Hessian at the mode of model j is

∂2l(βj)

∂βj∂βj
=

N

∑
i

ni


 ∑Gi

g=1 tigex
′
igβjxig

∑Gi
g′=1 tig′e

x′
ig′βjxig′

⊗2

−
∑Gi

g=1 tigex
′
igβj
(
xig
)⊗2

∑Gi
g′=1 tig′e

x′
ig′βj

 , (5.5)

where⊗ is the Kronecker product. Our covariance matrix for the approximating
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normal distribution is Σ̂j. We construct

Σ̂j = −
(

∂2l(βj)

∂βj∂βj

)−1

. (5.6)

Therefore we approximate the posterior distribution with N(β̂j, Σ̂j).

Exploring the space of G = {g0, g1, ...g2J} is straightforward. We move

through the space of models by introducing or removing one variable at a time.

If we consider the current model gj and propose model gk, we accept gk with

probability

p =
Lgk πk

Lgj πj
(5.7)

where

Lgk =
L(β̂k)

(|Σ̂k|2π)
1
2

(5.8)

is the Laplace approximation likelihood and πj is the prior contribution for

model gj.

5.1.2.3 Metropolis-within-Gibbs

We will use Markov chain Monte Carlo (MCMC) to construct our posterior dis-

tribution. One of the great challenges of MCMC in high-dimensional problems

is poor mixing, or the slow convergence of an MCMC chain to a stationary

distribution. Many have tried to find solutions to this problem [Roberts and

Rosenthal, 2009]. However, this remains a challenge. For us, this is critical

when we are considering implementing MCMC to learn about models with

thousands to tens of thousands of parameters. Also, it is frustrating to be

limited by this dimensionality when we strongly believe that most parameters

will have negligible relevance for a given outcome of interest. By selecting

smaller models through the spike and slab prior, we mitigate some of the

dimensionality issues.

We will average over the models selected from the Gibbs-like process above.

Specifically, we will record the frequency with which each model is visited.

Then we will learn about the parameters included in a model given that model.
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Many Markov chain approaches are available to sample from our posterior

distribution. Two of the canonically dominant methods are the Metropolis-

Hastings algorithm and Gibbs sampling. While the method of choice for

exploring the posterior space should not alter the inevitable result, efficiency

of convergence is often the driving force in selecting one method over another.

Many have found that hybrid methods combing the Metropolis-Hastings al-

gorithm and Gibbs sampling emerge as the most efficient [Tierney, 1994]. We

follow in these footsteps by employing the Metropolis-within-Gibbs algorithm

[Metropolis et al., 1953, Tierney, 1994]. In particular, we will use this approach

to draw inference on our covariates given G.

In the Metropolis-within-Gibbs algorithm, we nest a Metropolis-Hastings

algorithm within a Gibbs sampler, learning about β and σ2 through two

dependent processes. We use the Metroplis-Hastings algorithm to learn about

P(β|Y ,X , σ2). To implement the Metropolis-Hastings portion, we use an

independence sampler for β with a normal transition kernel. Given a mode

estimate β̂, we make a tentative draw of

β∗ ∼ N(β̂,
1
τ

Σ̂), (5.9)

for positive τ. Following the standard form of the Metropolis-Hastings step,

we compute

r =
P(β∗|G,Y ,X , σ2)

P(β̂|G,Y ,X , σ2)
. (5.10)

To accept or reject this proposal, we define

δ = min(r, 1) (5.11)

and sample

u ∼ Uni f (0, 1). (5.12)

βt is accepted if δ is greater than a sampled u.

Mixing remains a concern. Adaptive Metropolis-Hastings algorithms are

designed to help with mixing problems [Roberts et al., 1997, Roberts and

Rosenthal, 2009]. We address this problem in our model by adaptively selecting
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a tuning parameter τ that scales the variance of the proposal distribution kernel.

Following Roberts et al. [1997], we strive for an acceptance frequency α around

0.25. Specifically, for MCMC iterate m, we tune τ as

τm = τm−1 +
1

1 +
√

m
(αi − α). (5.13)

We learn about the hyperprior σ2 with the Gibbs sampler. Specifically, we

have modeled our hyperprior with an inverse Gamma distribution. Therefore,

we will sample the precision 1
σ2 from a Gamma(κ, θ) distribution. We define µ

as the mean of β̂. For fixed constant κ0 and θ0, we draw

1
σ2 ∼ Gamma(κ0 +

N
2

, θ0 +
1
2 ∑(β̂i−1 − µ)2). (5.14)

After drawing 1
σ2 , we recompute β̂ using cyclic coordinate descent.

5.1.3 Demonstration

5.1.3.1 Synthetic study: small illustration

We look to validate our model with a small synthetic dataset that illustrates

the effectiveness of our approach. We simulate 1,000 patients exposed to 10

medical products. Among these products, 7 are safe, with log relative risks of

0. The other 3 products pose a risk to the simulated patients, with log relative

risks of 0.2. We structure the simulated data in this way to underscore why

model selection makes sense for comparative effectiveness and drug safety

surveillance studies. Most medical products have no effect on a given outcome

of interest. The true model of interest is therefore considerably smaller than

the full model.

βtruth = (0.2, 0, 0.2, 0, 0, 0, 0, 0, 0, 0.2)′ (5.15)

We first find that the model selection chooses the most reasonable models

given our simulation framework. Showing the top 8 models, we see that model
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selection chooses, ordered by posterior density,

βG =



βg1 = (β0, 0, β2, 0, 0, 0, 0, 0, 0, β9)
′

βg2 = (β0, 0, β2, 0, 0, 0, 0, β7, 0, β9)
′

βg3 = (β0, β1, β2, 0, 0, 0, 0, 0, 0, β9)
′

βg4 = (β0, 0, β2, 0, 0, β5, 0, 0, 0, β9)
′

βg5 = (β0, 0, β2, 0, β4, 0, 0, 0, 0, β9)
′

βg6 = (β0, 0, β2, 0, 0, 0, 0, 0, β8, β9)
′

βg7 = (β0, 0, β2, 0, 0, 0, β6, 0, 0, β9)
′

βg8 = (β0, 0, β9, β3, 0, 0, 0, 0, 0, β9)
′

. . .

. (5.16)

Among the models shown, 92% of the density is placed on g1, the true model,

and the trail of models with less density are a single covariate inclusion away

from the true model, as seen in Figure (5.1). Notably, among the top 8 models,

none have dropped the 3 covariates that have true non-zero log relative risk.

g1 g2 g3 g4 g5 g6 g7 g8

Figure 5.1: The relative posterior density placed on the top 8 models selected using our Bayesian
model selection approach.
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Working with these smaller models facilitates the Metropolis-within-Gibbs

approach. To compare acceptance rates of our Metropolis-Hastings transition

kernel, we fix τ = 1. Under g f ull, even in this low dimensional setting, the

acceptance rate is 46%. As a comparison, under g1 the acceptance rate is 75%. In

the context of this toy synthetic data, these differences are irrelevant for overall

convergence. However, as the dimensionality of the problem increases, the

marginal benefit of using the model selection approach before the Metropolis-

within-Gibbs simulations offers greater potential merit.

5.1.3.2 Small real world study: bleeding events

We also test our approach on a small, real world example. Using the small

dataset introduced in Chapter 2, we revisit the problem of comparative risk

for dangerous bleeding events between warfarin or dabigatran etexilate. In

particular, we again examine the risk of gastrointestinal hemorrhage (GIH) and

intracranial hemorrhage (IcH). We do not use our hierarchical model, but rather

draw risk estimates ignoring the shared pathology. To perform these studies,

we again examine the MarketScan Lab Results (MSLR) dataset, maintained by

the Reagan-Udall Foundation Innovation in Medical Evidence Development

and Surveillance project. Using the OMOP common data model version 4 for

representation of concepts of interest, we collect all patients who experienced

a diagnosis of IcH or GIH. There are 37,909 patients who had GIH and 2,893

patients who had IcH.

We can compare the results from Figure (2.2) and Figure (5.2). Qualitatively,

a few trends are striking. First, both the bootstrap confidence intervals and

the marginal posterior distributions reflect the same risk patterns, namely,

warfarin shows the higher risk for IcH and the lower risk for GIH, relative

to dabigatran. However, the differences between the outcome-specific risk

distributions for warfarin are much more striking when looking at the marginal

posterior distributions.
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Figure 5.2: Marginal densities for the relative risk of dabigatran and warfarin for gastroin-
testinal hemorrhage (GIH) and intracranial hemorrhage (IcH) using the MSLR
dataset.
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5.1.4 Discussion

In this work, we leverage Bayesian model averaging to implement fully Bayesian

inference at the scale of observational healthcare data. We accomplish this by

averaging over covariate inclusion models. Then, given our model probabilities,

we learn the relative risks for each included covariate as well as the hyperprior

variance. Specifically, we rely on adaptive Metropolis-within-Gibbs.

There are many opportunities for improvement in this project. First, we

fail to include the graphic processing unit (GPU) mode finding strategy used

by Suchard et al. [2013]. For the model averaging component of the project,

mode finding remains the computational bottleneck. Therefore, using the GPU

implementation will have a significant effect on run time. Furthermore, there

are other opportunities for GPU parallelization in this project. In the mode

finding approach of Suchard et al. [2013], the log likelihood undergoes rank

one updates, as resetting all of the regression coefficients and recomputing the

log likelihood does not occur. However, in the Metropolis-Hastings method

we use, we frequently reset all of the β and recompute the log likelihood from

scratch. The computationally expensive component to this step is a sparse

matrix vector multiplication. We can implement this operation on the GPU as

well.

5.2 Non-parametric treatment intensification

Although modeling treatment intensification as a birth-death process helps to

elucidate the trajectory of patients through the space of oral anti-hyperglycemic

medication, the simple birth-death model that we use left much to be desired.

First of all, we did not provide a framework for learning about parameters

other than HbA1c. Comorbidities, concurrent treatments, and previous adverse

events could all reasonably alter treatment trajectory. For example, patients

with renal disease are often advised against taking metformin, otherwise the

first-line treatment of choice. Similarly, patients who experience hypoglycemic

events may avoid more aggressive treatment regimens. These clinically relevant

questions are beyond the scope our current approach. In a effort to mitigate

these shortcomings, we propose an approach to modify our birth-death model.
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5.2.1 Including covariates

Beginning with notation as before, let j index the states of the birth-death

process, the number of drugs a patient is taking. Let λj be the birth rate for

moving from j to j + 1 drugs. Similarly, let µj be the death rate of moving

from j to j− 1 drugs. To account for the edge conditions, define the maximum

number of drugs taken concurrently in a dataset as J. We enforce λJ = 0 and

µ0 = 0.

0 1 2

λ0

µ1

λ1

µ2

Before we start by considering covariates in our model, we are going to

introduce a toy dataset that we will use to illustrate how each of our methods

will be put to use. The graph in Figure (5.3) shows 3 example patient trajectories.

The time is in arbitrary units, and we disregard HbA1c status, focusing solely

on the drug count. Under the constant model, the likelihood is

L =e−(λ1+µ1)3µ1

× e−(λ1+µ1)4λ1 × e−(λ2+µ2)9λ2

× e−(λ1+µ1)5λ1 × e−(λ2+µ2)1µ2.

(5.17)

This allows us to estimate λ̂1 = 1
6 .

We want the transition rates to be non-parametric, multiplicatively modu-

lated by the covariates of interest. We begin by considering the Cox proportional

hazards model. In this model, the hazard function λ(t,x) is given by

λ(t,x) = λ0(t)ex
′β. (5.18)

Let the time to event T have density f (t,x) and distribution F(t,x). The
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Figure 5.3: This illustrates the treatment trajectories for 3 patients using oral anti-
hyperglycemic medication. These data will be central to the methods discussion of
integrating covariates.

survival function S(t,x) is

S(t,x) =
f (t,x)

1− F(t,x)
=

f (t,x)
S(t,x)

. (5.19)

Equivalently,

S(t,x) = e−Λ(t,x) (5.20)

where

Λ(t,x) =
∫ t

0
λ(u,x)du. (5.21)

Let p index the patients. We start with a simple survival model. Consider

T = {t1, t2, . . . tP} the set of observed event times, one per patient. Let δp

indicate if tp is censored or not. δp = 0 if tp is a censored event. We only

consider right censoring.

The full likelihood under this model is

L(β) = ∏
p
[ f (tp,xp)]

δp [S(tp,xp)]
1−δp

= ∏
p
[λ(tp,xp)]

δp [S(tp,xp)]
(5.22)
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But this is cannot be optimized because λ0(t) is unknown. So we use the partial

likelihood instead. To do this, we must introduce Qtp , the set of patients still

observed at tp. In the partial likelihood, we consider

Lpartial(β) = ∏
p

[
λ(tp,xp)

∑q∈Qtp
λ(tq,xq)

]δp

= ∏
p

 λ0(tp)ex
′
pβp

∑q∈Qtp
λ0(tq)ex

′
qβq

δp

= ∏
p

 ex
′
pβp

∑q∈Qtp
ex
′
qβq

δp

(5.23)

where the final step is made possible by canceling the underlying non-parametric

baseline hazard.

Two parts of the birth-death model are, in isolation, survival problems. In

particular, birth from the first state and death from the last state can be modeled

with the Cox proportional hazards model. Treating these steps independently,

for constant λ0 we substitute λ0,0(tp)ex
′
pβ1 . Similarly, for our simple model with

up to 2 drugs, we substitute λ2,0(tp)ex
′
pβ2 for µ2. Others have recognized that

the first step is a Cox proportional hazards model [Berkowitz et al., 2014].

Extending this insight, each of the other transitions emerge as separate

competing risks problems. That is, for each state other than the edge cases,

birth or death from that state represent competing events. An extension of the

Cox proportional hazards model exists for the competing risks framework. For

a model with k competing risks (causes), it is possible to have a cause-specific

hazard

λk(t,x) = λk,0(t)ex
′βk . (5.24)

Note that there are cause-specific covariates βk as well.

In the multiple cause scenario, we define S(t,x) as the probability of sur-

viving all types of events up to t. By analogy, we have

Sk(t,x) = e−Λk(t,x) (5.25)
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where

Λk(t,x) =
∫ t

0
λk(u,x)du. (5.26)

Denoting outcome kp as the outcome for person p, the total likelihood here is

L(β) = ∏
p
[λkp(tp,xp)]

δp [S(tp,xp)]. (5.27)

Note that S(ti, xi) = ∏k Sk(ti,xi). Thus,

L(β) = ∏
p
[λkp(tp,xp)]

δp ∏
k

Sk(tp,xp)

= ∏
p

∏
k
[λk(tp,xp)]

δp,k Sk(tp,xp)
(5.28)

where δp,k is a patient-outcome specific indicator such that δp,k = 1 if and only

if patient p experienced cause k.

This allows us to split the likelihood by cause type. Furthermore, for each

cause of interest, we treat the other causes as censored points. The partial

likelihood becomes

L(β|X ,T , δ) = ∏
k

∏
p

[λkp(tp,xp)]
δp,k

∑q∈Qtk,p
[λkq(tq,xq)]

δq,k

= ∏
k

∏
p

[λkp,0(tp,xp)ex
′
pβk ]δp,k

∑q∈Qtk,p
[λkq,0(tq,xq)ex

′
qβk ]δq,k

= ∏
k

∏
p

 ex
′
pβk

∑q∈Qtk,p
[ex

′
qβk

δp,k

(5.29)

5.2.2 Non-parametric birth-death process

Having identified subproblems within our birth-death process formulation that

are amenable to non-parametric regression, we must still splice all of these

components together together. There are a few obstacles to this goal. First,

how we deal with time requires more consideration than in a single survival

or competing risk model. If we take the naive approach and use some metric
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∆tk,m the amount of time spent at state k in observation m, our baseline hazard

becomes a λk,0(∆tk,m). We loose the time dependent form that makes this

model desirable in the first place. Second, one of the assumptions underlying

the Cox proportional hazards model is the independence of observed survival

events. Using the offset per state approach, many observations will not be

independent, as patients will re-enter states and thus be present multiple times

in the analysis.

We solve these issues by left truncating. This technique is commonly used to

address staggered entrance into survival studies and is the preferable method

for accounting for different patient ages. For observation m, let the drug count

transition be at tm. Furthermore, let vm be the time at which observation m
began. In the Cox proportional hazards partial likelihood, we consider the set

of observations, Qtm , against which to compare observation m. Without left

truncating,

Qtm = {j : tj > tm}. (5.30)

With left truncating, we redefine

Qtm = {j : vj < tm < tj}. (5.31)

In other words, for each observation, we only compare it to the other observa-

tions whose time intervals contain tm. Looking at our toy data set in Figure

(5.3), we can recognize the transitions that can be evaluated and what their

comparator sets contain. The first transition that we include in our model

is the deescalation event of patient 1 from 1 drug to 0 drugs at time 3. The

comparator set for this event includes both patient 1’s own transition (an event)

and patient 2’s escalation to 2 drugs, which enters as a censored event. Notably,

patient 3 also makes the transition from 1 drug to 2 drugs, but this would not

enter into the comparator set because patient 3 is not extant at time 3. Patient 1

exists during patient 2’s transition from 1 to 2 drugs at time 4, but they do not

share a common state. Therefore, the transition from 1 to 2 for patient 2 does

not enter into our analysis. In fact, the only two transitions that enter into the

likelihood using left truncation from the toy dataset are the transition from 1 to

0 in patient 1 and the transition from 2 to 1 in patient 3.
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Left truncation solves both problems listed above. First, we are no longer

using the offset time from arrival to each state. Therefore, the model treats time

universally. This allows the baseline hazard rate functions to be meaningfully

interpreted. Second, a single patient cannot be at the same state during

overlapping times. Therefore, we avoid the problem of dependence among the

observations within each patient.

5.2.3 Dimensionality

Using our large observational datasets poses a dimensionality problem. Specifi-

cally, we need to draw inference on the effects estimates for all covariates of

interest for each transition. That is, while βk,k+1, the regression covariates for

transitioning from k to k + 1, is large, β = [β0,1, . . . ,βK−1,K,βK,K−1, . . . ,β1,0 is

much larger. However, we have already developed a framework for dealing

with problems like this in Chapter 2. We can consider using the hierarchical

prior. This is medically reasonable because similar covariates should similarly

affect time spent in each state.

Our sample size was notably reduced with left truncation in the toy dataset,

as we went from 5 included transitions to 2. This will certainly be problematic

for small datasets. Our large datasets come to our rescue. Because of our

conditioning arguments, the number of patients in any given denominator

will be small relative to the total number of patients in the dataset. With too

little data, the number of overlapping intervals may be too small to perform

any analysis. Therefore, we may only be able to fit this model because we are

working in a high dimensional setting. This is a somewhat unique approach

in that it succeeds only in the setting of massive amounts of data. We are

empowered to use left truncation, the more rigorous approach, strictly because

of the setting in which we are drawing inference.
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