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bDepartment of Mathematics, Lawrence Berkeley Laboratory, Berkeley, CA 94720

cDepartments of Mechanical Engineering and Computer Science, University of
California, Santa Barbara, CA 93106

Abstract

An Eulerian simulation is developed to study an elastoplastic model of amor-
phous materials that is based upon the shear transformation zone theory
developed by Langer and coworkers [1]. In this theory, plastic deformation is
controlled by an effective temperature that measures the amount of config-
urational disorder in the material. The simulation is used to model ductile
fracture in a stretching bar that initially contains a small notch, and the ef-
fects of many of the model parameters are examined. The simulation tracks
the shape of the bar using the level set method. Within the bar, a finite
difference discretization is employed that makes use of the essentially non-
oscillatory (ENO) scheme. The system of equations is moderately stiff due
to the presence of large elastic constants, and one of the key numerical chal-
lenges is to accurately track the level set and construct extrapolated field
values for use in boundary conditions. A new approach to field extrapolation
is discussed that is second order accurate and requires a constant amount of
work per gridpoint.

Keywords: plasticity, numerical methods

1. Introduction

Plastic deformation in amorphous materials (e.g. glasses or granular me-
dia) displays a wide variety of complex behavior such as shear-localization
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and jamming, or shear history dependence. Particles in an amorphous ma-
terial interact according to short-range forces on a very short timescale, and
may undergo rapid random vibrations or collisions with each other, while
keeping their overall configuration. Plastic deformation, in which the parti-
cles change their configuration, happens on a longer timescale. Experiments
and simulations show that these configuration changes can happen in small
localized regions that have been described as flow defects [2, 3, 4] and mean
field approaches based upon this microscopic model have been developed.

Over the past decade, Langer and coworkers [1] have developed the shear
transformation zone (STZ) theory, which can be viewed as extension to this
work. The basic concept, introduced by Falk and Langer [5], is to say that
an amorphous material contains a number of STZs, that represent localized
regions of the material that are susceptible to plastic deformation. Typically,
STZs may be present in multiple orientations; this could either be described
with tensors, or by proposing a simplified model in which there are several
populations aligned with each axis. Macroscopic plastic deformation is then
the sum of events at STZs, each causing local configuration changes. After
the configurational change, the STZ is no longer available for further trans-
formations in the original shear direction. However, STZs are continually
being created and annihilated, either mechanically during the shearing itself,
or thermally in response to the background temperature. Depending on the
rate factors used, this simple physical picture can be be used to understand
many of the features of amorphous materials. Jamming can be explained
when the rates of STZ formation during shear are not enough to sustain the
process. Shear localization happens when deformation creates more STZs in
one particular area, making it progressively more amenable to flow. History-
dependent effects occur when shear leads to STZs being preferentially present
at certain orientations as opposed to others.

The STZ theory can be interpreted within a statistical mechanics frame-
work [6], by making use of an effective temperature Teff, that measures the
amount of configurational disorder in a packing. At high energies, this is
equivalent to the thermal temperature, but the two separate below the glass
transition. Suppose the energy required to form an STZ is EZ . Then the
probability of a site being occupied by an STZ is proportional to the Boltz-
mann factor exp(−EZ/kBTeff). In situations where the real temperature is
unimportant, an athermal version of the theory can be developed [7, 8] where
the dynamics is driven by the effective temperature only.

From the microscopic principles of the STZ theory, a macroscopic elasto-
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plastic continuum model can be derived which can be used to predict and test
against real data. Manning et al. [9, 10] have simulated a variety of models
to investigate shear-localization in a one-dimensional model, compared with
analytic results. Pechenik [11] has derived a multi-dimensional elastoplastic
model, and a two-dimensional model has been developed to study the neck-
ing instability in a stretched bar [12]. However, in this model, the width of
the bar is described as function of horizontal position and time only, meaning
that the numerics cannot approach the pinch-off point.

The aim of this paper is to develop a numerical framework for simulat-
ing and testing continuum elastoplastic STZ theories for complex deforming
bodies. A variety of different numerical techniques could be employed, and
in solid mechanics it is particularly common to employ the finite-element
method with a mesh deforming with the object, such as those employed by
the software package Abaqus. However, in the STZ theory it is natural to
make use of an Eulerian perspective, since it is never necessary to reference
an initial undeformed state, and all history information can be encapsulated
by the STZ densities themselves. We have therefore developed a finite differ-
ence framework, using the level set method to track the edge of bodies under
consideration. The level set method makes it particularly easy to study topo-
logical changes and examine nonlinear behavior that would be hard to study
analytically.

To simulate a deforming body, the continuum stress and velocity fields
are only held for grid points that are within the body itself. Near the edge
of the body, boundary conditions are applied by extrapolating the fields and
constructing ghost values. Some of the key numerical challenges are to cor-
rectly handle this extrapolation, in the presence of large elastic constants that
make the underlying equations stiff. In the following Section, the governing
equations are presented, and are rescaled into a dimensionless form that is
used within the simulation. In Section 3, the implementation of the level set
method and extrapolation technique is discussed. The numerical methods
for solving the elastoplastic model are presented in Section 4. In Section 5
several convergence studies are performed to test the numerical scheme, and
a variety of simulations are carried out to investigate the different parameters
in the STZ system.
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2. Governing equations

This paper is based upon a two-dimensional elastoplastic model with a
velocity ũ = (ũ, ṽ) and a stress tensor

σ̃ =

(
−p̃+ s̃ τ̃
τ̃ −p̃− s̃

)
.

The angular velocity is defined as ω̃ = 1
2
(∂ṽ/∂x̃ − ∂ũ/∂ỹ). Here, tildes are

used to signify dimensional quantities that are later replaced with rescaled
dimensionless equivalents to be used within the simulation. In dimensional
form, the elastoplastic system can be written as

ρ̃0
dũ

dt̃
= −∂p̃

∂x̃
+
∂s̃

∂x̃
+
∂τ̃

∂ỹ
+ κ̃∇2ũ (1)

ρ̃0
dṽ

dt̃
= −∂p̃

∂ỹ
− ∂s̃

∂ỹ
+
∂τ̃

∂x̃
+ κ̃∇2ṽ (2)

dp

dt̃
= K̃

(
∂ũ

∂x̃
+
∂ṽ

∂ỹ

)
(3)

ds̃

dt̃
= 2ω̃τ̃ + µ̃

(
∂ũ

∂x̃
− ∂ṽ

∂ỹ

)
− 2µ̃s̃D̃

|σ̃0|
(4)

dτ̃

dt̃
= −2ω̃s̃+ µ̃

(
∂ũ

∂ỹ
+
∂ṽ

∂x̃

)
− 2µ̃τ̃ D̃

|σ̃0|
(5)

where K̃ and µ̃ are the elastic constants, ρ̃0 is the density of the material, D̃ is
the plastic deformation rate, κ̃ is the viscosity, and σ̃0 refers to the deviatoric
part of the stress tensor. Here, d/dt̃ represents the convective derivative, so
that for a given field f , df/dt̃ = ∂f/∂t̃+ũ·∇̃f . In this model, we assume that
elastic constants are large, so that the elastic deformations are small when
compared to the plastic parts. This allows us to assume a constant density.
The above system is based on the assumption that the rate-of-deformation
tensor can be viewed as the sum of the elastic and plastic parts, referred to
as hypoelastoplasticity. For small elastic deformations, this can be shown to
be equivalent to the hyperelastoplastic model, in which the total deformation
is written as a map F = Fe ◦ Fp, where Fe is the elastic part and Fp is the
plastic part.

In its most general form, the STZ theory specifies the plastic part of the
rate-of-deformation tensor as

Dpl
ij = e−1/χfij(σ̃0, T ),
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where χ = TeffkB/EZ is a dimensionless effective temperature, that character-
izes the configurational disorder of the material, and affects its mechanical
response. The tensor fij contains the details of the STZ dynamics and is
a function of the deviatoric stress tensor and the bath temperature T . A
number of different functional forms for Dpl

ij have been considered but here
we concentrate on a specific athermal model discussed by Bouchbinder et
al. [7, 8] where T plays no role and there is no detailed tensor dependence,
so that

D̃ =
ε0
τ0

e−1/χq̃(|σ̃0|)

where ε0 is a dimensionless constant of order unity and τ0 is a characteristic
timescale at which the material responds to microscopic perturbations. The
function q̃ is given by

q̃(ζ) =

{
ã
ζ
(ζ − sY)2 if ζ > sY

0 if ζ ≤ sY

where ã is an additional model parameter that has dimensions of inverse
stress. Plastic deformation only occurs when the magnitude of the deviatoric
stress tensor exceeds a specified yield stress sY. In this formalism the effective
temperature χ evolves according to

dχ

dt
=

2ε0
τ0c0

e−1/χq̃(|σ̃0|)
|σ̃0|
sY

(χ∞ − χ),

where c0 is a dimensionless parameter of order unity, so that as plastic de-
formation occurs, the configurational disorder of the material increases until
it saturates at a value of χ∞.

2.1. Rescaling the equations

The simulations in this paper are carried out in rescaled dimensionless
units. To begin, the yield stress is scaled out, so that

p =
p̃

sY

, s =
s̃

sY

, τ =
τ̃

sY

K =
K̃

sY

, µ =
µ̃

sY

, ρ0 =
ρ̃0

sY

.
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The first five of these quantities are dimensionless, while the last has units
of [Time]2/[Length]2, an inverse speed squared. The transverse wave speed
is given by considering the linearized equation for s,

∂2s

∂t̃2
∼ µ

ρ0

∂2s

∂x̃2
,

from which it is natural to define a speed

cs =

√
µ

ρ0

.

Using this, lengths and times can be rescaled in terms of a characteristic
system size L, so that x = x̃/L and t = cst̃/L. The velocities are then
rescaled according to csu = ũ and csv = ṽ so that the transverse wave
speed is unity. The function controlling the plastic deformation is rescaled
according to a = ãsY and aq(|σ0|) = q̃(|σ̃0|), so that

q(ζ) =

{
1
ζ
(ζ − 1)2 if ζ > 1

0 if ζ ≤ 1.

A dimensionless viscosity can be defined as κ = κ̃cs/Lµ̃. Finally, many of
the physical parameters in the STZ model can be scaled out by defining

ν =
2ε0La

csτ0

,

after which the system of equations can be written as

µ
du

dt
= −∂p

∂x
+
∂s

∂x
+
∂τ

∂y
+ µκ∇2u (6)

µ
dv

dt
= −∂p

∂y
− ∂s

∂y
+
∂τ

∂x
+ µκ∇2v (7)

dp

dt
= K

(
∂u

∂x
+
∂v

∂y

)
(8)

ds

dt
= 2ωτ + µ

(
∂u

∂x
− ∂v

∂y

)
− µνe−1/χ s

|σ0|
q(|σ0|) (9)

dτ

dt
= −2ωs+ µ

(
∂u

∂y
+
∂v

∂x

)
− µνe−1/χ τ

|σ0|
q(|σ0|) (10)

dχ

dt
=

ν

c0

e−1/χ(χ∞ − χ)|σ0|q(|σ0|). (11)
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The rescaled plastic deformation can then be defined as D = νe−1/χq(|σ0|).
The parameter ν controls the amount of plastic deformation, with a smaller
value corresponding to more brittle behavior, and a larger value giving a
more ductile response.

3. A level set implementation with rapid field extrapolation

The level set method is used to track the edge of the bar as it deforms in
the simulation. This method has been extensively used in the literature and
standard techniques are described in textbooks [13, 14]. However, in this
section, we present a variation that avoids some problems specifically asso-
ciated with simulating the PDE system introduced in the previous section.
In many problems involving moving interfaces, particularly those involving
multi-phase fluid flow, the continuum fields exist everywhere, and the level
set boundary demarcates regions with different physical characteristics, such
as changes in density or velocity. In the solid mechanics simulations pre-
sented here, all the field values for stress and velocity can only be defined
for points within the bar itself. In order to apply boundary conditions and
move the level set, it is necessary to be able to rapidly extrapolate field val-
ues to a small skin of grid points next to the bar. Aslam [15] introduced a
method to extrapolate normally outward from the level set boundary by solv-
ing a sequence of separate PDE problems. If executed with the most efficient
methods, this requires O(N logN) operations with a large prefactor. Here,
we introduce a variation of the method that can carry out normal extrapola-
tion with a single sweep, using O(N) operations with a small prefactor, and
achieving higher accuracy close to the interface.

For the simulations presented here, and in other situations, it is advan-
tageous to maintain the level set as a signed distance function during the
computation. However, as discussed elsewhere, transporting the level set ac-
cording to the simulation velocity field will typically perturb this property.
In the current simulations, if the signed distance function property is not
maintained, then the normal field extrapolations will become inaccurate. In
other situations, the signed distance function property is advantageous for
accurately calculating forces applied on the interface, such as surface tension.

Several approaches have been discussed in the literature for maintaining
the signed distance function property of the level set. One strategy is to
periodically reinitialize the level set to be signed distance function. A popular
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approach is that introduced by Sussman et al. [16], where the equation

∂φ

∂T
= sign(φ)(1− |∇φ|)

is solved to a steady state by integrating forward in the fictitious time unit
T . This PDE gradually improves the signed distance property, so that that
|∇φ| → 1. This method was tried in the current simulations, but it has
two drawbacks. Firstly, it was found to be computationally expensive, re-
quiring a significant number of updates for each grid point. It also has a
tendency to perturb the position of the boundary, φ(x, t) = 0, since this is
not explicitly constrained. For the current study, which uses moderately stiff
elastic constants with zero stress boundary conditions applied at the level set,
these perturbations can lead to unpredictable results: small movements of
the level set generate fictitious elastic waves. Fine features of the level set can
be smeared out, with the initial notch in the bar becoming more rounded.
Movement of the level set can be minimized by upwinding derivatives at
adjacent gridpoints [17, 18] although this was not considered here.

A second approach to reinitialization is that described by Sethian [13].
In this method, the position of the interface is first located by linearly in-
terpolating between adjacent gridpoints where φ changes sign. With the
boundary located, a first order method can be used to update the level set
values at these adjacent gridpoints. Two fast marching methods can then
be employed to initialize the values at the remaining gridpoints, solving the
Eikonal equation |∇φ| = 1 forwards for positive gridpoints, and backwards
for negative gridpoints. This method was also investigated, and typically
runs faster, since the algorithm only sets each gridpoint once, rather than
iteratively improving. It also does not smear out fine features of the level
set boundary as much as the PDE approach. However, despite finding the
boundary explicitly, the resetting of the adjacent level set values is only first
order accurate, and can cause perturbations that lead to artificial elastic
modes.

With either of these methods, a parameter must be introduced that sets
the interval between successive reinitializations. This choice of interval is a
trade-off, with a shorter interval creating more perturbations, and a longer
interval leading to a less accurate level set. Having this additional parameter
is undesirable, since it was found to have a weak effect on some of the physical
results.
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The method presented here maintains the signed distance function prop-
erty throughout the calculation, and does not require specific corrections at
certain times. It makes use of a combination of a direct update for points
next to the boundary using the second order method of Chopp [19], and a
second order fast marching method to update the remaining points. The
level set is stored as a narrow band that is continually updated, rather than
being rebuilt at specific intervals. The code keeps track of a list of points
currently in the band, sorted according to φ values. The procedure for build-
ing an initial narrow band is described below, after which the method for
moving the band is introduced. The field extrapolation method is presented
in Subsec. 3.3 and tested in Subsec. 3.4.

3.1. Building the narrow band

To begin, a discretized function ψi,j is provided whose zero contour is
the interface to be tracked, but that may not be a signed distance function
itself. To construct the narrow band level set function, all gridpoints (i, j)
are found that are next to the interface, so that a neighboring gridpoint has
an opposite sign.

For each of these points, the iteration described by Chopp [19] is carried
out. To begin, a bicubic interpolation ψb(x) is constructed from the ψi,j.
The vector x0 is set to the position of the gridpoint (i, j), and the following
iteration is carried out:

δ1 = −ψb(xk)
∇ψb(xk)

∇ψb(xk) · ∇ψb(xk)
(12)

xk+1/2 = xk + δ1 (13)

δ2 = (x0 − xk)− (x0 − xk) · ∇ψb(xk)

∇ψb(xk) · ∇ψb(xk)
∇ψb(xk) (14)

xk+1 = xk+1/2 + δ2. (15)

This is a combination of two Newton–Raphson root finding methods. Af-
ter the iteration has been carried out, the limiting point x∞ satisfies both
ψb(x∞) = 0 and (x∞−x0)×∇ψb(x∞) = 0. Typically, three or four iterations
are required in order to achieve double precision floating point accuracy.

In general, the above algorithm converges very reliably. Typically, the
magnitude of the gradient |∇ψb(xk)| is non-zero close to the zero contour,
and thus the divisors in the equations for δ1 and δ2 are large. However,
certain cases can cause problems, such as a local maximum, described by
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ψi,j = h/2 and ψi±1,j = ψi,j±1 = −h/2 where h is the grid spacing, in
which case ψb(x) is locally flat at (i, j) so that |∇ψb(xk)| vanishes. In the
simulation, these problem cases are recognized either when the number of
iterations exceeds 100, or when the size of step taken |xk+1 − xk| exceeds√

2h, the maximum step that can be taken within a single grid square. In
those cases, the simulation falls back on the less accurate first order method
described by Sethian [13].

Once the iteration is carried out, the level set function at (i, j) is initialized
to be φi,j = ±|x∞ − x0| using a negative sign for points inside the body and
a positive sign for points outside. We write cα = (i, j) to index a particular
grid point, and then store two unsorted index lists, L−1 = {c−α, . . . , c−1} and
L+

1 = {c0, . . . , cβ} for negative points and positive points respectively. After
all points are considered, L−1 and L+

1 can be resorted so that the points are
in ascending order by the corresponding value of φ.

The remainder of the level set narrow band can then be constructed using
two fast marching methods to sweep upwards and downwards from these
known points. We make use of the standard techniques, first creating a list
of trial values for φi,j at gridpoints adjacent to those that are known. The
values of the points are chosen via the second order discretization described
by Sethian [13]. This is based upon a first order difference operator that
switches to a second order scheme when the gridpoints are available and
monotonic. In the negative x direction, this can be written as

E−xi,j φ =

 3φi,j−4φi−1,j+φi−2,j

2h

if φi−1,j and φi−2,j are known and
φi−2,j < φi−1,j

φi,j−φi−1,j

h
otherwise

and similar expressions exist in the other directions. With this, the trial
values of φi,j can be constructed by solving the quadratic

max
[
E−xi,j φ,−E+x

i,j φ, 0
]2

+ max
[
E−yi,j φ,−E

+y
i,j φ, 0

]2
= 1.

These are stored in a binary heap, that allows us to select the lowest one
and fix its value. New values are then constructed for the φi,j at locations
adjacent to this fixed value. The computation of the narrow band stops once
the values of φ reach a cutoff.

During this computation, new index lists L−2 = {c−γ, . . . , c−1−α} and
L+

2 = {cβ+1, . . . , cδ} can be constructed using the negative and positive points
respectively. Unlike L±1 , these lists can be constructed in the ascending order
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of the corresponding φ values without the need for subsequent resorting, since
the fast marching method considers the points in order. From here, a master
list of indices {L−2 , L−1 , L+

1 , L
+
2 } = {c−γ, . . . , cδ} can be constructed. Each

section of this list is sorted, but the maximum value of L−2 may exceed the
minimum of L−1 , and the maximum value of L+

1 may exceed the minimum of
L+

2 . A global ordering can be very quickly constructed by applying a single
sweep of merge sort at these boundaries. We refer to N = δ + γ + 1 as the
total number of elements on this list.

3.2. Moving the narrow band

We now consider moving the band according to a given discretized velocity
field ui,j, making use of techniques similar to those used in the initial band
construction. Bicubic interpolations of the velocity ub(x) and the level set
function φb(x) can be defined, from which it is possible to define a normal
velocity field

n(x) = ub(x) · ∇φb(x).

To update the position of the band, all gridpoints (i, j) next to the interface
are first considered. Starting with x0 at the gridpoint, the Newton iteration
given in Eqs. 12–15 is applied to find the closest point x∞ on the interface.
The new value at the gridpoint is then given by

φi,j(t+ ∆t) = φi,j(t) + n(x∞) ∆t

where ∆t is the timestep. Once all gridpoints next to the interface are con-
sidered, the remaining points can be initialized using two second order fast
marching methods, in the same manner as described above. Similar routines
can be used to construct a sorted list {c−γ, . . . , cδ} of the narrow band points.

3.3. Field extrapolation

For a scalar field f(x) given within a region described by a level set,
φ(x) < 0, it is possible to carry out a constant normal extrapolation by
solving to steady state the PDE

∂f

∂t
+H(φ)n̂ · ∇f = 0

where n̂ = ∇φ/|∇φ|. Here H is the Heaviside function, so that only values
outside the region are modified. In practice, this procedure can be carried
out using a fast marching method, constructing new level set values outside
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the band, and then setting the field values by using n̂ · ∇f = 0 with the
second order operators E±x, E±y introduced previously.

As discussed by Aslam [15], this approach can be generalized to carry out
higher order field extrapolation. For example, for quadratic extrapolation,
the sequence of PDEs

∂fnn
∂t

+H(φ)n̂ · ∇fnn = 0

∂fn
∂t

+H(φ)(n̂ · ∇fn − fnn) = 0

∂f

∂t
+H(φ)(n̂ · ∇f − fn) = 0

must be solved. The first normal derivative is given by

fn(x) = n̂ · ∇f

=
φxfx + φyfy
|∇φ|

and the second normal derivative is

fn(x) = n̂ · ∇ (n̂ · ∇f)

=
1

|∇φ|2
(
φ2
xfxx + 2φxφyfxy + φ2

yfyy + (φ3
xfy + φ3

yfx)φxy

+φxφy(φx(fy(φyy − φxx)− fxφxy) + φy(fx(φxx − φyy)− fyφxy))
)
.

It can be seen from these expressions that in order to construct fn, first
derivatives in x and y are needed. These are calculated using centered differ-
ences, and thus they can only be calculated for points where the orthogonally
adjacent points are also within the region. For the second normal derivative,
cross derivatives φxy and fxy are needed, which additionally requires that the
diagonally adjacent gridpoints are also within the region. Because of these
restrictions, Aslam makes use of a modified system of equations,

∂fnn
∂t

+H(φ)n̂ · ∇fnn = 0

∂fn
∂t

+H(φ− h)(n̂ · ∇fn − fnn) = 0

∂f

∂t
+H(φ−

√
2h)(n̂ · ∇f − fn) = 0,
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so that the derivatives fn and fnn are extrapolated from interior regions that
contain only gridpoints for which the required neighbors have valid field val-
ues. These equations are then computed using three separate fast marching
methods, extrapolating outwards from the boundaries φ(x) = −

√
2h,−h, 0

in sequence. In some cases, fn and fnn may exist outside the regions from
which they are extrapolated, but these values are not made use of.

Here, a modified approach is introduced, that makes use of the sorted
boundary index {c−γ, . . . , cδ} to extrapolate outwards normally in a single
sweep with O(N) operations. By making use of a bisection search, the first
index α can be found so that φ(cα) > −

√
2h, in O(logN) time. R is defined

as the set of gridpoints that are inside the region φ(x) < 0. The extrap-
olation considers each point in the list in turn, according to the following
iteration:

while α ≤ δ do
(i, j) = cα
if (i, j) is within R then

if (i± 1, j) and (i, j ± 1) are all within R then
if (i± 1, j ± 1) are all within R then
{(f, fn, fnn) exist, no action needed}

else
Extrapolate fnn

end if
else

Extrapolate fnn
Extrapolate fn

end if
else

Extrapolate fnn
Extrapolate fn
Extrapolate f

end if
α→ α + 1

end while

With this algorithm, each point is only considered once, and any values for
f , fn, and fnn that can be directly constructed are used, instead of being
extrapolated. Extrapolating a field at a particular gridpoint makes use of
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Figure 1: (a) A quadratic function f that is initially defined inside the circle x2 + y2 = 4,
and is extrapolated to the region outside the circle. (b) Errors ∆f between the original
function f and the extrapolated function fex. These figures make use of a 256× 256 grid.

the equation
n̂ · ∇g = l, (16)

where (g, l) can be (fnn, 0), (fn, fnn), or (f, fn). The direction of extrapola-
tion is computed by evaluating the derivatives of the existing level set field.
In the x direction we compute(

∂g

∂x

)
i,j

=

{
E−xi,j g if E−xi,j φ > −E+x

i,j φ
E+x
i,j g if E−xi,j φ ≤ −E+x

i,j φ.

Here, when E±xi,j g is evaluated, the monotonicity condition in the definition
of E±xi,j applies to the values of φ, since if φ is non-monotonic g should not be
treated as smooth over this range. In a similar manner, (∂g/∂y)i,j and n̂i,j
can be computed, after which the value of gi,j can be found by substituting
into Eq. 16. For maximum efficiency, values of fn and fnn for interior points
are not computed beforehand, but are computed dynamically and stored only
when an extrapolation procedure at a neighboring gridpoint requires them.
In cases where an extrapolation is attempted and there are no neighboring
values to reference, the extrapolated value is set to zero.

14



3.4. Tests of the algorithm

The algorithms to build the level set and carry out field extrapolation have
been tested in a square domain, x ∈ [−π, π], y ∈ [−π, π], for a variety of n×n
grid sizes. The initial boundary is a circle defined by ψ(x, y) =

√
x2 + y2−2,

and the function to be extrapolated is

f(x, y) =
(
x− y

2

)2

which is initially defined in the region ψ(x, y) < 0. This function serves as a
good test of the algorithm, since it is quadratic along any normal ray from
the circle’s surface, so the extrapolated field fex(x, y) should converge exactly
to it.

The algorithms were tested on fifteen different grid sizes from n = 32
to n = 4096. A typical output, for n = 256, is shown in Fig. 1(a), where
the initial field f(x, y) is plotted within the circle, and the extrapolated
field fex(x, y) is plotted outside. A variety of different running times were
analyzed for the different values of n and are shown in Fig. 2. The large
grid sizes require a significant amount of memory allocation (i.e. more than
100 Mb), and times are reported for both a Mac Pro system and a Gentoo
Linux system, to examine possible differences in computer architecture and
cache utilization. The first time reported is the initial grid scan of the ψ field
that is required in order to locate the interface. While this is a very rapid
operation, it is necessary to consider every gridpoint, and therefore it scales
according to O(n2).

The next two times make use of a narrow band over the range −5
√

2h <
φ < 2.5

√
2h, for a grid spacing of h = 2π/n. Here, we would expect the

time to build the level set function to scale according to O(n log n), but we
see slightly worse scaling, that can be fit to O(n1.4) on both machines – this
is likely to be explained by a lowering of memory cache performance when
dealing with a very large grid. The field extrapolation is significantly faster
than building the level set function, running between four to ten times faster.
Theoretically, we expect the field extrapolation to have O(n) complexity as
each gridpoint requires a constant amount of time, although here, the results
fit well to O(n1.2). The remaining two times in the figure are based upon
computing the complete level set function and extrapolating f over the entire
grid. We expect at least O(n2) scaling as each gridpoint must be considered.
The times are approximatelyO(n2.1), although some small differences become
apparent at large grid sizes between the Linux and Mac Pro systems. For
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both the narrow band and the complete grid, it can be seen that the field
extrapolation is at least several times faster than building the level set.

Errors in the two algorithms were considered for the case when the com-
plete fields were constructed. We examined errors in the L1, L2, and L∞
norms, and we also considered the L∞ norm restricted to the gridpoints im-
mediately outside the circle that border the interface. Figure 3(a) shows
the differences between the built φ field and the initial ψ field. Since the ψ
field is a perfect distance function to the interface we would expect these two
fields to perfectly match. The scaling in the L1, L2, and L∞ norms is ap-
proximately O(n−1.9), O(n−1.8), and O(n−1.0) respectively. This is consistent
with the second order fast marching method employed here. If the residual
is plotted, as shown in Fig. 1(b), it can be seen that the vast majority of
error occurs close to x = 0 and y = 0, which are the regions where the fast
marching method makes use of the first order scheme when there are not
enough gridpoints available. The errors also become larger for areas that
are further away from the boundary. If the L∞ norm is restricted only to
the gridpoints adjacent to the boundary, the errors are very small and scale
according to O(n−3.0).

The errors between the extrapolated field fex and the original field f are
shown in Fig. 3(b), and follow a very similar behavior. The scaling in the
L1, L2, and L∞ norms is approximately O(n−2.0), O(n−1.5), and O(n−1.0)
respectively. For gridpoints adjacent to the boundary, the L∞ norm scales
according to O(n−2.0). In the following simulations, only extrapolated values
gridpoints that are close to the boundary are needed, and this scaling is
satisfactory.

4. Numerical methods

The simulations are carried out in the fixed rectangular domain −1 <
x < 1,−0.5 < y < 0.5. Vertical walls are located at x = ±xwall, with an
initial value of xwall = 0.73. A rectangular bar occupies the region |y| < 0.25
between the walls, and an initial notch of width nw and height nh is made in
the bar by removing the region |x| < nw, y > 0.25 − nh(1 + cos(xπ/nw))/2.
A finite difference discretization on a 2n × n rectangular grid is employed.
In the x direction, the gridpoints cover the range from −1 to 1, while in the
y direction, they cover the range from −(n− 1)/(2n− 1) to (n− 1)/(2n− 1)
to ensure an equal grid spacing in the two coordinate directions of h =
2/(2n − 1). A level set φi,j is initialized as the signed distance function to
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the edge of the bar. The interior of the bar is defined by φi,j < 0, and for
these gridpoints the velocity and stress are initialized to be zero, while the
initial effective temperature is set to χ0.

The simulations are carried out using a first order semi-implicit integra-
tion with a fixed timestep ∆t. For each step, the following procedure is
taken:

1. Extrapolate the velocity, stress, and effective temperature to a skin of
gridpoints outside the bar.

2. Move the level set boundary using the velocity field.

3. Carry out a finite difference update for all points within the bar.

Parts 1 and 2 make use of the level set methods discussed Sec. 3, using a
narrow band with the same size as those considered in the numerical tests.
Although the extrapolation method can carry out quadratic extrapolation,
we made use of linear extrapolation, since this provided more stable results
with the finite difference schemes that were employed. The finite difference
update and boundary conditions for part 3 are discussed below.

4.1. Implementation of the derivatives

The finite difference update is carried out using a second order accurate
spatial discretization that makes use of a combination of centered differenc-
ing and the essentially non-oscillatory (ENO) scheme developed by Shu and
Osher [20]. We write the first and second order centered difference approxi-
mations of a given field f as

[fx]i,j = (fi+1,j − fi−1,j)/2h

[fxx]i,j = (fi+1,j − 2fi,j + fi−1,j)/h
2.

In the horizontal direction, the ENO derivative is then given by

{
∂f

∂x

}
i,j

=
1

2h


−fi+2 + 4fi+1,j − 3fi,j

if ui,j < 0 and
|[fxx]i,j| > |[fxx]i+1,j|

3fi,j − 4fi−1,j + fi−2,j

if ui,j > 0 and
|[fxx]i,j| > |[fxx]i−1,j|

fi+1,j − fi−1,j otherwise.

The scheme switches between a second order forwards and backwards deriva-
tive and a centered difference, depending upon which group of three points
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has a lower second derivative. This procedure reduces short range oscilla-
tions and tolerates rapid changes in the field values. Below, a derivative
evaluated using centered differencing is written within square brackets, and
a term evaluated using the ENO method is written within braces.

Two different discretization methods have been investigated. In method
A, the derivatives appearing on the right hand side of Eqs. 6 to 11 are calcu-
lated with centered differences, while the advective derivatives that are part
of the left hand side are computed using the ENO method. The velocity and
pressure are updated using an explicit Euler step, so that

un+1
i,j = uni,j + ∆t

(
−u{ux}ni,j − v{uy}ni,j +

[τy − px + sx + µκ∇2u]ni,j
µ

)
(17)

vn+1
i,j = vni,j + ∆t

(
−u{vx}ni,j − v{vy}ni,j +

[τx − py − sy + µκ∇2v]ni,j
µ

)
(18)

pn+1
i,j = pni,j + ∆t

(
−u{px}ni,j − v{py}ni,j +K[ux + vy]

n
i,j

)
. (19)

The deviatoric stress components are handled using a semi-implicit method in
time, that can better handle rapid plastic deformation. In certain situations,
the terms involving νe−1/χq(|σ0|) in Eqs. 9–11 may grow large if |σ0| takes a
large step above the normalized yield of 1. These terms should then cause
the deviatoric stress to decay. However, if an explicit scheme is used, this
decay may overshoot, and become unbounded. We therefore compute the
plastic deformation as

Dn
i,j = νe−1/χn

i,jq((|σ0|)ni,j)

and make use of

sn+1
i,j =

sni,j + ∆t (−u{sx}ni,j − v{sy}ni,j + 2ωni,jτ
n
i,j + µ([ux − vy]ni,j)

1 + ( s
|σ0|)

n
i,jµD

n
i,j ∆t

(20)

τn+1
i,j =

τni,j + ∆t (−u{τx}ni,j − v{τy}ni,j − 2ωni,js
n
i,j + µ([uy + vx]

n
i,j)

1 + ( τ
|σ0|)

n
i,jµD

n
i,j ∆t

(21)

χn+1
i,j =

χni,j + ∆t (−u{χx}ni,j − v{χy}ni,j + χ∞(|σ0|)ni,jDn
i,j ∆t/c0)

1 + (|σ0|)ni,jDn
i,j ∆t/c0

. (22)

With this method, larger plastic deformations just create increasingly larger
denominators, meaning that the deviatoric stress more rapidly decays to zero.
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In discretization method B, the spin ω is computed using centered dif-
ferencing, but all remaining spatial derivatives are handled using the ENO
scheme. This requires carrying out an eigenvector decomposition on the
system of equations to rewrite it in terms of advective components. Since
the effective temperature only depends on derivatives of itself, the non-trivial
part of the decomposition depends on the velocity and stress only. Equations
6 to 10 can be rewritten as

ut
vt
pt
st
τt

 =


κ∇2u
κ∇2v

0
2ωτ
−2ωs

+


−u 0 −µ−1 µ−1 0
0 −u 0 0 µ−1

−K 0 −u 0 0
µ 0 0 −u 0
0 µ 0 0 −u




ux
vx
px
sx
τx

+


−v 0 0 0 µ−1

0 −v −µ−1 −µ−1 0
0 −K −v 0 0
0 −µ 0 −v 0
µ 0 0 0 −v




uy
vy
py
sy
τy

−


0
0
0
µsD
|σ0|
µτD
|σ0|

 .

For the x component, the eigenvectors and corresponding eigenvalues are

A = (µpx +Ksx, µvx + τx,−µvx + τx, µηux − px + sx,−µηux − px + sx)

α = (u, u− 1, u+ 1, u− η, u+ η)

and for the y component, the eigenvectors and corresponding eigenvalues are

B = (−µpy +Ksy, µuy + τy,−µuy + τy,−µηvy + py + sy, µηvy + py + sy)

β = (v, v − 1, v + 1, v − η, v + η)

where η =
√

1 +K/µ. The scheme works by evaluating the quantities in the
vectors A and B using the ENO scheme based upon the velocity given by the
corresponding eigenvalue. Once these quantities are found, matrix inversions
can be carried out to find expressions for the derivatives ux, vx, . . . , sy, τy,
which can then be used with the same discretization given in Eqs. 17–22.

Computing the derivative at a point (i, j) requires referencing nearby
gridpoints. Using the boundary conditions described in the following section,
ghost values can be constructed for the orthogonally adjacent points if real
values are not available. The ENO discretization may additionally make use
of values that are two gridpoints away. In cases where real values are not
available, the simulation makes use of a first order one-sided derivative.
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4.2. Boundary conditions

When a discretized derivative operator in the integration schemes given
above references a gridpoint that is not within the bar, a ghost value for that
gridpoint is constructed that is consistent with the boundary conditions.
Here we consider a point (i, j) within the bar, and a point (i′, j′) that is
orthogonally adjacent and outside the bar.

We first consider the boundary conditions at the edge of the bar that is
described by the level set function. Before beginning, we note that during
the stage when boundary conditions are used, we have already carried out
a normal extrapolation, and field values are available at (i′, j′) even though
it is outside the level set. For the velocity and stress components, which are
unconstrained at the boundary, these extrapolated values are used directly.

For the stress tensor, the normal–normal and normal–tangential compo-
nents must vanish, so that σnn = σnt = 0, while the tangential–tangential
component σtt is left unconstrained. This condition is effectively applied at
the point P on the line from (i, j) to (i′, j′) where linear interpolation of the
level set vanishes. The fraction of the distance along this line where this
happens is given by

z =
φi,j

φi,j − φi′,j′
.

From this, a stress tensor σP at this point can be constructed as σP = (1−
z)σi,j+zσi′,j′ . Similarly, the derivatives φx and φy can be linearly interpolated
to P , after which an outward-pointing normal vector nP = (nxP , n

y
P ) can be

constructed. Let θ be the angle the nP makes with with x axis in a counter-
clockwise sense. Then the stress tensor at P , in the frame rotated by this
angle, is given by

σ′P =

(
−p+ s cos 2θ + τ sin 2θ τ cos 2θ − s sin 2θ
τ cos 2θ − s sin 2θ −p− s cos 2θ − τ sin 2θ

)
.

From the given values of p, s, and τ , the tangential–tangential component of
the stress tensor can be calculated as

σtt = −p− s cos 2θ + τ sin 2θ,

making use of the identities sin 2θ = 2nxPn
y
P and cos 2θ = 1 − (nyP )2. From

this, ghost values at P that satisfy the stress boundary conditions can be
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computed using

pg = −1

2
σtt

sg = −1

2
σtt cos 2θ

τg = −1

2
σtt sin 2θ.

From here, ghost values at (i′, j′) can be constructed using linear interpo-
lation. This is done using the values at point P and at point (i′′, j′′) =
(2i− i′, 2j − j′), so that

σi′,j′ =
2σg − (1− z)σi′′,j′′

1 + z
.

This worked better than interpolating using P and (i, j). In that case, the
denominator in the interpolating formula is z, which can give unpredictable
results when P is very close to (i, j) and z is small.

A similar procedure is used to apply boundary conditions at the end walls.
We consider constructing a ghost value at a point (i′, j) that is horizontally
adjacent to point (i, j), and in the same manner write (i′′, j) to be the point
on the opposite side of (i, j) so that i′′ = 2i − i′. We write z to be the
proportion of the distance from (i, j) to (i′, j) where the wall is located.
Some of the fields are left unconstrained, and some are fixed to a certain
value. For a particular unconstrained field f , the ghost value is constructed
as

fi′,j = 2fi,j − fi′′,j.
If a field needs to be fixed to a certain value ffix, then the ghost value is

fi′,j =
2ffix − (1− z)fi′′,j

1 + z
.

For similar reasons as discussed above, linear interpolation is done using
point (i′′, j), to avoid stability problems when the wall position is very close
to the (i, j).

For all cases, u is constrained to ±uwall and p, s, and χ are unconstrained.
For the majority of simulation runs, sliding boundary conditions were used
in which v is unconstrained, and τ is fixed to zero. However, fixed boundary
conditions were also considered in which v is fixed to zero, and τ is uncon-
strained.
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5. Numerical results

Figures 4–6 show snapshots of χ, p, and |σ0| respectively, from a typical
run of the simulation using a grid size of 600 × 300 and initial conditions
set by χ0 = 0.074, nw = 0.15, and nd = 0.1. The walls move at a speed
uwall = 0.005, the elastic parameters used are K = 60, µ = 30, and the
STZ plasticity parameters are set to ν = 108, c0 = 1, and χ∞ = 0.015.
Discretization method A is used, with sliding boundary conditions at the
end walls.

From t = 0 (a) to t = 1, a period of elastic deformation takes place. The
effective temperature remains unchanged, but a negative pressure builds up
within the bar, that is focused largely under the initial notch. Coupled with
this is an increase in deviatoric stress, that begins to approach the plastic
yield value of 1 at around t = 1.5 (b). A pair of shear bands of plastic
deformation then nucleates from below the notch, that are coupled with an
increase in the effective temperature. At t = 3 (c) these bands stretch halfway
across the bar, and by t = 3.5 (d) they begin to reach the opposite side of
the bar. By t = 7.5 (e) the bands are well developed, and small secondary
reflected bands can be seen emanating from x = ±0.3.

The shear bands continue to grow wider and more plastic deformation
takes place. By t = 23 (f) only a small triangle of undeformed material is
left between two large shear bands, and the initial notch has become larger
as the bar becomes thinner. At t = 34.3 (g), the bar is on the point of
separating and all material near the center of the bar has become heated,
up to a value of χ = 0.13. The effective temperature does not reach the
saturation value of χ∞ = 0.15. The bar splits and the two parts then move
away with no further deformation, to reach the final state at t = 50 (h).
Some remnants of deviatoric stress are visible, and the two parts undergo
small elastic vibrations.

Examining the force exerted on the end walls during the stretching process
is a useful method of comparing simulations with different parameters. The
force on the walls at x = ±xwall(t) can be calculated according to

F±(t) =

∫ y±u (t)

y±l (t)

σxx(±xwall(t), y, t) dy

where y±l (t) and y±u (t) are the lower and upper vertical positions where the
bar meets each wall. Numerically, this can be computed using the trapezoidal
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Figure 4: Snapshots of the effective temperature field χ for a stretching bar simulation
using a 600× 300 grid and initial conditions set by χ0 = 0.074, nw = 0.15, and nd = 0.1.
The wall moves at a speed uwall = 0.005, the elastic parameters used are K = 60, µ = 30,
and the STZ plasticity parameters are set to ν = 108, c0 = 1, and χ∞ = 0.015. Figures
(a)–(h) correspond to t = 0, 1.5, 3.0, 3.5, 7.5, 23.0, 34.3, 50.0 respectively. See Fig. 7 for a
key to the color gradient.
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Figure 5: Snapshots of the pressure p for the same simulation shown in Fig. 4. Figures
(a)–(h) correspond to t = 0, 1.5, 3.0, 3.5, 7.5, 23.0, 34.3, 50.0 respectively. See Fig. 7 for a
key to the color gradient.

rule, and bilinear interpolations of the fields. For the graphs in this paper,
the average force F (t) = (F−(t) + F+(t))/2 is then calculated, although
due to symmetry F+(t) and F−(t) agree to a high degree of accuracy – the
maximum differences seen are less than 5 × 10−3, and occur after pinch-off
when the details of the pinch-off point may introduce a small amount of
asymmetry.

This physical process, whereby the bar is split into two by a pair of shear
bands nucleating from the initial notch, happens for many of the simulations
considered in this paper. In the following subsections, we analyze this be-
havior in more detail. We begin by examining the numerical accuracy in
Subsec. 5.1, and then proceed to look in detail at the shear band structure
in Subsec. 5.2. In Subsec. 5.3, the effect of the elastic and STZ parameters
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Figure 6: Snapshots of the magnitude of deviatoric stress |σ0| for the same simulation
shown in Fig. 4. The material begins to yield plastically at |σ0| = 1. Figures (a)–(h)
correspond to t = 0, 1.5, 3.0, 3.5, 7.5, 23.0, 34.3, 50.0 respectively. See Fig. 7 for a key to
the color gradient.

is investigated, followed by an examination of the role of viscosity and small
perturbations in Subsec. 5.4. Alternative integration methods and models
are considered in Subsec. 5.5.

5.1. Grid size and numerical convergence

The PDE system under consideration is strongly nonlinear, and we are
not able to construct an analytic solution to the current problem that would
allow us to directly examine numerical convergence. Instead, we consider
how the results differ when the grid is refined and the timestep is altered. To
correctly model the viscous term in the PDE system, the timestep is chosen
to satisfy ∆t = λh2. For the rest of this paper, the timestep is set using
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Figure 7: Keys to the color gradients used in the figures, for effective temperature χ,
pressure p, the magnitude of deviatoric stress |σ0|, and the plastic deformation function
q(|σ0|).

Grid size Timestep Pinch-off time Computation time
80× 160 3.164× 10−4 31.12 13.5 min
100× 200 2.020× 10−4 30.89 29.9 min
150× 300 8.948× 10−5 32.61 1.59 hr
200× 400 5.025× 10−5 33.32 6.08 hr
300× 600 2.230× 10−5 34.63 46.9 hr

Table 1: The grid sizes considered to examine the numerical convergence. For each grid
size, the simulation timestep and the of value t for which the bar pinches off into two are
reported. The final column lists the wall clock times of the simulation runs up to t = 50
on a single thread of a Mac Pro system with 5 Gb of memory and a dual-core 2.66 GHz
Intel Xeon processor, that scale according to the fourth power of the grid size, as expected
from timestep restrictions.
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Figure 8: Plots of the force exerted on the end wall, using the same simulation parameters
given in Fig. 4, for five different timesteps using a grid size of 400 × 200, and (b) five
different grid sizes using λ = 2.
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λ = 2, but here we consider λ = 1, 2, 4, 8, 16 for a grid size of 200 × 400
using the same simulation parameters as presented above. For the values of
λ considered, the size of the timestep plays a very limited role on the results,
as can be seen in Fig. 8(a), where the forces exerted on the wall are almost
identical. By using λ = 2 we are well below the limit where temporal errors
could be important.

Errors associated with the spatial discretization are more significant, and
Tab. 1 shows the details of a sequence of runs that were performed with
different grid sizes. As would be expected, the simulation time scales ap-
proximately with the fourth power of the number of horizontal gridpoints,
with the largest grid size taking approximately two days to compute. Plots
of the wall force are shown in Fig. 8(b). While the curves have different
random fluctuations, they all exhibit the same trend, and the results for the
two finest grids are very similar.

One of the largest possible sources of error is the due to the boundary
conditions applied at the level set boundary, particularly in regions of high
deformation. Figure 9 shows the initial position of the boundary, and its
position at two later times, for the sequence of grid sizes that were consid-
ered. In this plot, it was necessary to account for vertical drift. The sliding
boundary conditions do not constrain the vertical velocity, and thus small
random variations can cause it to move position. To correct for this, the
point yw where the top of the bar intersects the wall is found, and then a
drift ∆y = yw − 0.25 is computed. The graph shows that we have good
convergence as the grid size is increased, with the curves being very close
at t = 150 and still similar at t = 300. The main point where the curves
differ is at the notch tip, which becomes progressively sharper as the reso-
lution is increased. It is not surprising that this is the most difficult point
to simulate, since the previous simulation snapshots suggest that the shear
bands emanate from here. It is also a difficult point at which to apply the
field extrapolation, since outward-pointing normals around the notch will
cross. This does not cause problems for the extrapolation routine itself, but
may mean that an extrapolated value used to construct a derivative may less
consistent.

5.2. Shear band structure

Here, we examine more closely the formation and structure of the shear
bands seen in Figs. 4–6, by looking at cross-sections of the simulated fields.
Figure 10(a) shows the effective temperature in the bar at t = 3.0, for six
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Figure 9: Plots of the deformation of the initial notch for five different grid sizes. The
highest family of curves correspond to the initial notch position, at t = 0. The middle and
bottom families correspond to the notch position at t = 150 and t = 300 respectively. To
counteract bar drift due to the sliding boundary conditions, a displacement ∆y is added
to the curve positions.
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different values of y. At this time, the shear band has just formed. The
increases seen in χ are small, and are approximately Gaussian and symmetric.
The increases are progressively larger for higher values of y that are closer
to the initial notch. At the later time of t = 12.5, shown in Fig. 10(b), the
shear band is much more developed, with χ approaching values of 0.13. By
this point, the structure of the shear band is much more even throughout the
bar, with the curves from y = 0.05 through to y = −0.2 looking very similar
in form.

It can also be seen that the shear band has become asymmetric, rising
faster on the left side, and having a long tail on the right side. To determine
the cause of this, it is useful to examine a close-up of a single shear band,
shown at t = 12.5 in Fig. 11. Figure 11(b) shows a plot of q(|σ0|), the
function that controls the plastic deformation, where it can be seen that all
of the plastic deformation occurs on the left side of the shear band. This
behavior suggests that the region of increased χ is progressively widened
from the left side as the bar is stretched. It is worth noting that the values of
q(|σ0|) plotted in very small. This is typical for the entire stretching process,
where the maximum value of |σ0| is only just above 1, pointing to a very fast
relaxation of stress by plastic deformation for these particular simulation
parameters – this is explored in more detail in the following section.

5.3. Physical effect of the elastic and STZ parameters

We now turn attention to how the various parameters in the PDE system
in Eqs. 6–11 affect the stretching process. Figure 12 shows a sequence of
snapshots taken at t = 15 for three different values of ν, the parameter that
controls the rate of plastic deformation. The plots look very similar for ν =
108 and ν = 109, and although not shown here, a simulation with ν = 1010

also looks identical. Despite a factor of 100 difference in ν, these simulations
give similar results because the timescale on which the plastic response occurs
happens very rapidly, meaning that |σ0| can never achieve values significantly
higher than 1, since any plastic behavior happens immediately. This can be
confirmed by looking at the amount by which |σ0| exceeds 1. For t = 12.5
with ν = 108, a typical maximum value of q(|σ0|) is 6× 10−4, while for ν =
1010, a typical maximum value is 6×10−6. Thus, the overall plastic response,
which is proportional to νq(|σ0|), is very similar for the two simulations.
Figure 13(a) shows the wall force for these three simulations, and as would
be expected, the F (t) curves look almost identical.
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Figure 10: Cross-section plots of the effective temperature for several different values of
y, at (a) t = 3.0 and (b) t = 12.5, for the same simulation run presented in Fig. 4.
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Figure 11: Close-up of the shear band at t = 12.5 after it is well-developed, showing (a)
the effective temperature, (b) the plastic deformation function q(|σ0|) = (|σ0| − 1)2/|σ0|
for regions where |σ0| > 1. See Fig. 7 for a key to the color gradients.

Also shown in Fig. 12 is a simulation using ν = 107, where some differences
become apparent. While the shear bands form in a similar manner, but the
angle that the notch makes as it grows is shallower. This behavior seems to
be primarily due to the plastic response being slower in the vicinity of the
notch tip. The bar takes longer to split for this case, and the wall forces in
Fig. 13(a) decrease at a slower rate.

Fig. 14 shows a sequence of three snapshots for ν = 106, where a qualita-
tively different behavior can be seen. Here, diagonal shear bands of higher χ
form, but yielding at the notch tip does not occur immediately, causing two
notches to be visible at t = 10.0 (a). At t = 17.0 (b), a second pair of shear
bands appears, which then begin to widen in a similar manner to the other
simulations, becoming large by t = 24.0 (c).

Two simulations were also carried out to investigate the effect of the
elastic moduli. Figure 15 shows a snapshot at t = 24.0 of a simulation where
K = 100 and µ = 50. Overall, there is little qualitative difference with the
runs using K = 60, although the wall force, shown in Fig. 13(b), more rapidly
reaches its peak value. For lower elastic moduli of K = 20 and µ = 10,
a sequence of snapshots shown in Fig. 16 exhibit different behavior. The
initial notch, shown at t = 6.5 (a) undergoes a significant amount of elastic
deformation before plastic behavior occurs. Once the plastic deformation
occurs, the angle of the notch, shown at t = 24.0 (b) is sharper, meaning
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Figure 12: Simulation snapshots of the effective temperature χ at t = 24.0 for (a) ν = 107,
(b) ν = 108, and (c) ν = 109. See Fig. 7 for a key to the color gradient.
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Figure 13: Plots of the wall force for (a) several different values of ν, and (b) several
different elastic moduli.
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Figure 14: Simulation snapshots of the effective temperature χ for ν = 106 at (a) t = 10.0,
(b) t = 17.0, and (c) t = 24.0. See Fig. 7 for a key to the color gradient.
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Figure 15: Simulation snapshot of the effective temperature χ at t = 24.0 for higher elastic
moduli of K = 100, µ = 50. See Fig. 7 for a key to the color gradient.

that the two remaining halves (c) have flatter ends. The forces on the wall
for this simulation run, shown in Fig. 13(b), behave very differently to the
other simulations, and take a long time to reach a maximum value.

5.4. Viscosity and small perturbations to χ

The viscous term in the PDE system is needed to damp out elastic sound
waves. If no viscosity is used with the centered difference scheme employed
here, then the simulation rapidly breaks down, with elastic waves growing in
magnitude. While it is physically reasonable to include a viscous damping,
with sound waves in real materials being attenuated, the value of κ = 0.002
used in the previous sections was chosen to be small, so that viscous ef-
fects are relatively less important when compared the plastic deformation.
Here, we examine whether the value of κ plays a significant role in the de-
formation process. Figure 17 shows simulation snapshots at t = 24.0 for
κ = 0.001, 0.004 keeping all other simulation parameters the same. While
the shear bands are similar in width, the angle of the notch varies. This sug-
gests that the most significant effect of the viscosity is to alter the dynamics
near the notch, which appears reasonable since the velocity fields vary the
most around this point. As shown in Fig. 18(a), higher viscosities lead to a
slightly lower decay in the wall force.

The initial value of the effective temperature can also play a role in the
dynamics. Since the plastic deformation has a factor of e−1/χ, even a rela-
tively small change in this field can have a significant effect on the material
behavior. Figure 19(a) shows a snapshot of a simulation using an initial tem-
perature of 0.068, with all other simulation parameters kept the same. We
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Figure 16: Simulation snapshots of the effective temperature χ for lower elastic moduli of
K = 20, µ = 10 at (a) t = 6.5, (b) t = 24.0, and (c) t = 50.0. See Fig. 7 for a key to the
color gradient.
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Figure 17: Snapshots of the effective temperature χ at t = 24.0, for the different values of
viscosity of (a) κ = 0.001 and (b) κ = 0.004. See Fig. 7 for a key to the color gradient.

see that the plastic deformation has happened slightly more slowly than in
Fig. 12(b), although there are no large qualitative changes. Correspondingly,
the wall force for this simulation, shown in Fig. 18(b), takes a slightly longer
time to decay.

It is interesting to ask whether small variations in the effective tempera-
ture would have a significant impact on the stretching process. To investigate
this, a grid Ui,j was initialized where each point is chosen to be uniformly dis-
tributed from 0 to 1. From here, a smoothed random field Ri,j was computed
according to

Ri,j =

∑m
k=0

∑n
l=0 e

−0.3((i−k)2+(j−l)2)Uk,l∑m
k=0

∑n
l=0 e

−0.3((i−k)2+(j−l)2)
.

For the 400 × 200 grid used here, this corresponds to smoothing on a scale
of h/

√
2× 0.3 = 0.0118. With this, the effective temperature is initialized so

that χi,j = 0.5 + 0.4Ri,j, which gives an initial average of 0.5 + 0.4/2 = 0.7.
Figure 19(b) shows a snapshot of this simulation at t = 24.0. While there are
some small random variations in the shear bands, there is no large breakage
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Figure 18: Plots of the wall force for simulations using (a) varying values of viscosity and
(b) using varying initial effective temperatures.
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Figure 19: Snapshots of the effective temperature χ at t = 24.0 for simulations using
different initial conditions for χ. In (a), the effective temperature is initialized to 0.068.
In (b), the effective temperature is randomly initialized according to the process described
in the text, with a mean value of 0.07. See Fig. 7 for a key to the color gradient.

of symmetry, and the position of the edges of the bar is almost identical to
the unperturbed case shown in Fig. 12(b).

5.5. Alternative methods and models

The fixed boundary conditions were also considered, and a simulation
snapshot is shown in Fig. 20 at t = 24.0. These boundary conditions have
the advantage that the y coordinate is constrained, so that the bar does not
drift vertically as discussed in Subsec. 5.1. However, there is an additional
complication that the stress field in an elastic bar can form weak singular-
ities at corners [21, 22]. Here, because of viscosity and plastic yield, we do
not encounter singular fields in the simulation, but additional increases in
effective temperature are visible at the corner where the bar is fixed to the
wall. The forces exerted on the wall in this simulation are almost identical
to those using the sliding boundary.
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Figure 20: Snapshot of the effective temperature χ at t = 24.0, for a simulation making
use of the fixed boundary conditions at the wall. Small increases in χ are visible at the
interface between the wall and the lower edge of the bar. See Fig. 7 for a key to the color
gradient.

Figure 21(a) shows a simulation snapshot using discretization method
B. This technique has the advantage of being able to tolerate more rapid
changes in field values, and as shown in Fig. 21(b) it can be run without
requiring any viscosity, using κ = 0, which results in the bands in effective
temperature being slightly sharper. This simulation technique has the disad-
vantage of being anisotropic, so that rapid changes in field values are handled
well in the orthogonal directions, but not in the diagonal directions. As an
example, consider the snapshot of the pressure shown in Fig. 21(c), which
shows rapid horizontal changes that are much stronger than with centered
differencing: smaller, rapid vertical changes are also visible below the initial
notch. This causes a different behavior near the initial notch, leading to
a small disturbance in the level set boundary at the point where the shear
band starts. This feature does not appear to be significant, and a refinement
study using the same grid sizes employed in Fig. 9 shows that the results
converge, with this disturbance becoming progressively less visible. Switch-
ing between orthogonally and diagonally aligned stencils between timesteps
may circumvent this issue.

6. Conclusion

We have developed a numerical method for studying elastoplastic models
from the STZ theory, that makes use of the level set method and rapid
field extrapolation. The scheme has been shown to converge well as the
timestep and grid size are decreased. Using this method, ductile fracture
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Figure 21: Simulation snapshots making use of discretization method B, at t = 14.0. (a)
A snapshot of χ for a simulation using a viscosity of κ = 0.002. (b) A snapshot of χ
for a simulation with no viscosity. (c) A snapshot of p for κ = 0.002, highlighting rapid
horizontal and vertical changes in the field. See Fig. 7 for a key to the color gradients.

44



has been studied in a bar being stretched. The numerical method we use
has allowed us to simulate the entire failure process, whereby shear bands of
higher effective temperature form that gradually widen, until the bar splits
into two. We have investigated the effect of the STZ parameters, the elastic
constants, and the initial conditions on the stretching process, and we have
considered the effects of using alternative discretization methods.

The simulation method presented can be used as a basis for further study.
It can be readily adapted to a wide variety of geometries, and we have written
a preliminary version in polar coordinates for computing STZ elastoplasticity
problems involving circular and elliptical holes in an infinite medium, for
which a variety of exact and asymptotic solutions have been examined [21,
23]. We also aim to study some newer versions of the STZ theory [24, 25,
26], and hope to incorporate orientational effects when a non-isotropic STZ
density is employed.

7. Nomenclature

Physical quantities

ũ – Horizontal velocity (L/T)

ṽ – Vertical velocity (L/T)

p̃ – Pressure (M/T2)

s̃, τ̃ – Shear stresses (M/T2)

ρ̃0 – Density (M/L2)

κ̃ – Viscosity (M/T)

K̃ – Bulk modulus (M/T2)

µ̃ – Shear modulus (M/T2)

D̃ – Plastic deformation (T−1)

ρ0 – Rescaled density (T2/L2)

cs – Transverse wave speed (L/T)

L – Characteristic system size (L)
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σ̃ – Stress tensor (M/T2)

σ̃0 – Deviatoric tress tensor (M/T2)

sY – Yield stress (M/T2)

ω̃ – Angular velocity (T−1)

ε0, c0 – STZ model parameters

ã – STZ model parameter (T2/M)

τ0 – Molecular rearrangement timescale (T)

Rescaled quantities

u – Dimensionless horizontal velocity

v – Dimensionless vertical velocity

p – Dimensionless pressure

s, τ – Dimensionless shear stresses

κ – Dimensionless viscosity

K – Dimensionless bulk modulus

µ – Dimensionless shear modulus

D – Dimensionless plastic deformation

σ – Dimensionless stress tensor

σ0 – Dimensionless deviatoric stress tensor

ω – Dimensionless angular velocity

a, ν – Dimensionless STZ model parameters

χ – Dimensionless effective temperature

χ0 – Dimensionless initial effective temperature

χ∞ – Dimensionless limiting effective temperature
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Additional quantities

ψ – Initial signed distance function

φ – Level set function

xwall – Dimensionless wall position

uwall – Dimensionless horizontal wall speed

nw, nh – Dimensionless notch sizes

h – Dimensionless grid spacing
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