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ABSTRACT

. The effect of finite resistance in the Vaeuum—tank wells7on the .

longitudlnel stability of an intense beam of particles in an accelerator

B is investigated theoretically. We show that even if the particle fre-

4 -
- quency is an 1ncreasing function of particle energy, the wall resistance

_ can render the beem unstable against longitudinal bunching. In the’
" absence of frequency spreeé in the unperturbed beam,.the instability fv’
";A occurs with a growth rate that is proportional to (N/a)lla, vhere N |
" is the number of particles in the beam and ¢ is the conductivity of "_;l:i .

- the surface material, By meang of the Vlasov equetion a criterion

o for beam stability ie'obtained. In the limit of highly conducting o

walls the criterion involves the frequency spread in the unperturbed . .. . -

beam, the number of particles N, the beam energy, geometrical pro= o
pertmes of the accelerator but not the conduct1v1ty ¢, A numericel’ s inJﬁﬂlf
- example presented indicates that eertain observatxons of beamhbehevior |

ia the MURA hOfMeVﬂelectron-accelenatof may be related to the phenomenon

we investigated.
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- IR INTRODUCTION

The observation that longitudinal density fluctuations in an -

”w{T‘electron stream may be amplified by the resistance in the surrounding

B walls was>f1rst made-by Birdsall, who;used the_concept to construct a

."‘ﬁgzresistive-wall amplifier. Pierce has presented a general_theory ofoQi"'

' slow wave am.plifiers,l whereas Birdsall andehinnery?have given a ,'-‘
"_general analyais of such- structures.g' _
o The purpose of our work is to extend the theory developed for '

‘the analysis of traveling-wave tubes to an.analysis of longitudinal_.‘ o

resistive instabilities(of,intense relativistic beams in cyclicﬁparticlee_’ffiVAE??

v

~accelerators. 'In contrast to the ‘hydrodynamic approach in Ref. 2, -‘3«"3
: the theory presented here includes details of the particle dynamics‘
~+" that are v1tal to obtaining the criterion for stability. Our work is

ﬁ,»also an extension of previous studies of longitudinal instabilities3 h's-

and draws heavily upon the notation of Ref, 4, Our analysis was

"f stimulated by experiments with the MURA ho MeV electron accelerator,

le these experiments show a pronounced longitudinal bunching of the bean

near the . injection energy.6v Although the obserVed instability above

‘u’the transition energy islvell understood, and had even been predicted

i,theoretically in Ref. U4, the observations of bunching_helow the transi-c'rﬁﬁ

B tion energy came initially as a~surprise. The analysis presented here

culminates in a criterion for stability and a. growth rate in the.

4"absence of stability, both of which are in approximate agreement with SR

'f-;the observations at MURA The theory suggests further experiments

v"suitable for determining whether or not the observed phenomenon ~*1'?

o o



- to

=3

'ié in facﬁ a resistive instability. Iﬁ addition, the theory suggests.

limitations on the design of high-current particle accelerators.

. In the following linear-perturbation treatﬁeht, the unperturbed

~ beam is taken to be uniform in theé azimuthal (6) direction, A perturbation.

in particle density of the form exp[i(nd - @&t)]is assumed, The electric ;

‘and maghétic fields arising from the perturbation are calculated in

Sec. II for two different geomertries. In Sec. IIT the Vlasov equation

3and the formalism of Refs, 4 and § are émployed;to derive a‘df%persidn
" relation that détermines'the allowed values of the frequency w .

“Sectibn IV is a discussion of the dispersion relation.'.The analysis

shows that resistance in the surrounding walls leéds to exponential 'u‘

growth of the denéity-fluxuqtion if~ail particles in the unperturbed

beam have the éame circulation frequency. The growth rate is proportional .-

0-1/2, vhere ¢ is the conductivity of the wall material. An ef-

fectivé-stabilizing mechanism is a spfegd in particle~circulation fre-
queﬁcy afising primarily from a spread in particle energy. Béicause .the

contribuﬁion to the azimuthal electric field E, from the finite resistance

6

;_ in the walls is #ery chh,smallér»than this field in the'absence.of

:_ resistancé; the stability cfiterion is quite sensitive to the distribution
 §£ circulation frequencies:in the unﬁerturﬁed beam, For & realistic - -

' “ehefgy‘distributioh and highly conducting»surfaées,“thé stabiliqrA
.cfiterioﬁ is independent of é.‘ A numerical example, namely an épplicaf

. tion.of the results to the MURA L0-MeV -electron acce;erétof,.is gi?en"'

__.;Ln Sec. V. |
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Althoush the analysis'is resﬁricted'to an azimuthally uniform;;'.“'
bean, 1t is expected that a very analogous phenomenon w1ll occur even
b_if the unperturbed beam is azimuthally bunched by an rf cavzty. Somel‘
support is given to this argument by the c1rcumstance that although the -..LA

3,h,5

-previous theoretlcal work on longitudlnal 1nstabillt1es was also

restricted to coasting beams, the phenomenon has been observed7 dn
bunched beam° in the same form as in uniform beams. |
The longltudlnal resistive instablllty may . be regarded as 1ess

catastrophic than the'transverse resistive instability treated in the
oampanion ps.per.82 TheAlatter results in complete loss of the beam
when the amplltude of transverse 0501llatlons becomes so large that 15%
particles encounter_obsﬁructions in the:vacuum tank., The longltudlnal
:instability‘considered here merel& reduces the number of particles thatfcen
be captured and eccelerated with a given amount of rf power.. |

' Finally, it must;be pointed out that the nork_ovaef. 5 is
’inconpletf in that the possibillty,of the instability discussed here,w;s .
‘foverlooked. The work of Ref., 5 is correct, insofar as it goes, bus;» |

-must be augmented with the analysis of this paper to give a complete

R descrlption of the pOSSIble phenomena.



finite horizontally, but is infinitely thin in the vertical directio&f\

P';Finite resistance‘in the top and bottom tank walls is incorporated in -

?v exp[i(kz = wt)], so when we relate this calculation to an actual

. II, SOLUTION OF MAXWELL'S EQUATIONS
- In this section we'obtéin the electric and magnetic fields

associated with-a perturbed density that varies as exp[i(nd = wt)],.

“ﬂ'where“ n is an integer. We consider two simplified models 6f thé
, Yeam and v;cuum tank., The first is a beam of circular cross section
1centrally located ih a tank of circular cross seciion; ' The longitndinal
“:%?;iwavelengthﬁanR/nzis assumed large‘édmpafeditc the minor ra&ius-of the
‘ itank; From th;s model simple analytic formulas may be obtained for the
if_fields. The second model is a tank of rectangular-cross-section in which

~ the beam is located in the median plane of the cavity. The beam is

1

- the calculation, but the side walls are assumed to e perfectly conducting.
'_ In both geometries the maJor curvature of the vacuum tank is ignored

' :and Maxwell's equations are solved for a straight pipe.

t. A."Vacuum Tank of Circular Cross Section

" We consider a beam moving along the axial (z) direction in a -

pipe of radius' b. Let the beam have uniform density out tOra~iadius 8y

E as illustrated in Fig. 1. - The perturbation is assumed to vary as

“accelerator we will replace 'k 'by (n/R) and z by ‘R8, where R is
the major radius at which the beam circulates. The perfurbed,change (p)

» a@d current (J) densities are
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Clz,t) = (T S o (248)-
’ o - - ~_when r¥*a I
g, = wle . S

In this section perturbed‘quantities carry no subscript. The electric
and magnetic fields arlsxng from these sources have components E " E 29

‘] ¢, all with z and t dependence given by exp[i(kz - wt)].o»

The complete solution to Maxwell's equations may be exhibited
hin terms of modified Bessel functions.v If the condition

T
Y

v72 (2.2):

K2 - (w/e)? <
“fholds,.an?expression for Ez,inside the beam”mey be obtained by e simple'
"applicetion of the equation : o p

JE@ ¢ d& = A

ngBkda”} .  7KZﬂ

o -

R shown(in the next section, ‘the pertinent value of & is 'such _”T

'e'.that w/k is very nearly equal to the main speed v of particles

~.in the unperturbed beam. Therefore Eq. (2. 2) may. be stated as b/yA << 1,

" .where A is the wavelength of the perturbation and v =.[1 = (v/c) ]"'1/2

PRI "

When this condition holds, the radlal electrlc field is given approximately B
,Elbyf 3~"" : _ :

 Er,'#; 2“°lei(kz-wt) < R , e  v(2.h)_

T S
a”/r ‘whem ‘r > & .ty o v



T

From the radial component of the equation

. r'-r{"_ e af, ¢ 'SM : ' A °58' .
- we find
B¢ e wEr/kcl.- ‘ e (2.5b)

' The only boundary condition that must be satisfied at r = b is

E, = ~(z-RB -, - (2.6)
L «A 1/2 » . ., PO ’ . . . ,
< where = (w/8nc) “ and ¢ is the conductivity of the wall material:

- _ﬁin'sec-?. From Egs. (2.h),‘(2,5), and (2.6)'wé have
(B (r = b) = w2mpy (1 - ) Rw/ke)(a2/p)e KA (o)

_ We now apély Eq. (2.3) to a surface (Fig. 1) with the foilowing
"perimeter:' from a point z,b on the wall radially inwvard to a péint
r < a, along'the ‘z exis a distance dz,_radially outwardAto.afpoint '
z + dz;b on the wail, and then a;ong tbé wall back to the starting ~ .

 point.: Inserting Eqs. (2.5b) and (2.7) into Eq. (2.3), we have

/b Er(r',z)dr' + / ‘Er(r'sz + dz)dr' + | : B
S - Jr | , . -

‘ - ' " 2 v S
+ [E,(r,z) + 2ne§l - i)7ﬂ(wlkﬁ)(g2/b)}dzﬂ= i9§v E.(r'z)dr dz .
. ’ ¢ r . .

(2.8)
If we divide by dz and take the limit &z + 0, the first’two terms

on phé left-hand side of Eq. (2.8) become~



- across the beam, we wzll continue in the spirit of Ref. 4 and’ employ

't,E (r = 0), although E (r = a) is probably more accurate.

S v Erdr /
.. r - B -

*v;'Inserting'Eq. (2,&).fOrQEr and‘@erfOrminglthe-necessaryiintegrations, we obtain

B, = 2-npl 2 i(lcz wt) &k(l - sz) [R.a(a/b) +..-12-‘:5 - ;"-é_] ‘ | |

‘an expression valid for r < a. In Eq. (2.10)'8w = w/ke is the’ phase -

".fvelocity of the perturbation in units of c.

In Sec. III we need the azzmuthal electric fzeld that acts on-

L the particles. This involves some average of E over the beam cross H
'-section, but in view of the. approxlmatlons inherent in Eq. (2 l), the

L precise average reqnzred is not clear. Because E varies slowly

‘Introducing the perturbed'charge per unit length

A= nplab exp[i(kz - wt)], we have for the total field in the z . °

direction: . S ' , - },'.i' L
Ay - o aA 2 _ W s 10a) ¢ .
(B2)np = =37 -8 )1+ 2mb/a)) - =5 4, {2.108)

in vhich we have neglected the‘term prOportiona1 to iTQ for reasons_givén '

. below. We note that the out-of-phase contribution decreases like

-2

v = 1 - 3 , involves a geometrlc factor, and is proportional to o

w

vthe variation of charge in the z dlrectlon--results all familiar:from i_e;;?lfff
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‘previous studies.h' The (new) innphase:compdnent exists only because of

ﬁhe wall fesistivity9 and furthermore does not vanish as k + 0 or as

;;, B -+ l. In all practical applications it appears that R is sufficmently

'small that the in-phase component Ais small compared to the (usual) out- i
.of-phase component.,
In the notation used in the next section, we have
..A.",.(REBVV = winA(l - sz)[l + gzn(b/g)] - 27<sw( R/OM , - (2.100)
5f' §here_ n is the number.pf waves about the Circumference, and the per-
_‘  turbed ¢harge per unit azimuthal length XA is written in the form .

A =g exp [i(n6 - ut)].

B. Vacuum Tank of Rectangular Cross Section
In ihis section we consider a beam infinitely thin in the
_‘#ertical'(z)-airectipn located in the median plane of a rectangular
_"duct of height h and width w, as illustrated in Fig. 2. The beam-

charge dlstrlbutlon in the x direction is assumed to be unaltered

‘by the longitudinal bunching and determlned by 1n1t1al conditions so

| the perturbed..surface~charge distribution a(x,y,t) is taken to be of

the fq:m

o(x,7,t) = Ajalx)e=0E) T (2.11)
with o(x) normalized so'thatfg o(x)dx = 1. Conservation of charge
3 implles a surface~current distribution J (x,y,t) Just equal to (w/k)

times § 6 ,y,t)
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The boundary conditions fof the eleétric_énd magnetic fields
are taken to be those appropriate to perfeétly c0ndu§;ing surfaces at

. the side walls so that the tangential electric and normal magnetic fields

venish at x = 0 and x = w. On the top surface (z = h/2) we require’

=
il

iﬂl-ﬁk%

i
f

-(1 - )RB,. , o -_. KZmﬂ

and on the bottom surface (z‘=.-h/2) we require

;,' . . | | Ex = -(1 - i)ﬂBy_ - g

b
’.,&

vul wheré.jZL‘haﬁ beéq defined following Eq. (2.6).
o ,Expressions for the.fie;ds are most easily written as tﬁo sets,
‘ tfansveréé magnetic (TM) and transverse electfié (TE), with transverse
'v_réferréng t0 .the ‘z’<di;g£tion. Each set ihdependenﬁly satisfies.
Maxvell's,eqnations‘for free space everywhére inside the tank exéep£'
at z =,0J and'hlso satisfies qu.,(z.lza) and,(2.l2b). The desifed o

‘expressions are as follows:
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It

- i(ky-wt) )
e - ZES * sinh v{z

s L

f
[co
 + [+f:oshv(z +1-12—) --303(1

Ve

: el(ky_m) z (£) E [3;

]

o | A
4)([-'11: sin n x 1

" i(ky~wt) ', | :
v_.Ae-'yw.?Z(%)'Bs[ls

s

L

oy

V._...J

- h i g @c -
+2)-Vc(l-1) cosh v(z +

2 Al
snxi + iksmnk j

- 1)@51nh viz + %/]%— sin 7 x

>

(2.13)

cosh .‘V(z rd %) .

[ WU

(l - 1;@31nh v(z 1%

AL
+.ncosnxj“,
(2.1%)

ol s
~r

inh v('z +

}y'c‘(l-l)ézcoshv( + % j

. . A ' A )
)([ikcosnzi +nsinnz,j] s

i ky-wt) — _
e z B_ Y|+ cosh viz +

.X(—nsm

ive

+ j:-?— sinh v(z -?%l) + ==(1

(2.15)

lVC

h, -h
T35t (l*l)G)\SlI’lh v(z +5 )

\ ]
n X1 +ikcosnxj.}
2

- 1)Qcosn v(z s -—-)} Z cos T X ?\1 .

(2.16).

LS .
N

1
!
J

s
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In these expressions n = swfv, 22 = n2 + k2, v = 22 - (w/c)2, and ‘s

.is an i_nteger. 'The subscript s on these quantlties has been omitted‘
'V .ti'c;r-bre\fity. The top and bottom signs apply when z > 0 and z < 0
respect_iveiy. } ' . | |

' ' We determine the constants E_ and Bs from the disconiipuity _

condi'tions at z = 0:
h Ez+ ".Ez- = bro(x,y,t) , - s (2.17a)
. o BY BT = Mmlxy,t)e o L (2.17b)

' Expand.ing o{x) in a Fourier sin series in x,'

H

| ,a(_x) = (% ZO% sin“n x .,' | o (2. 18)
. s . -
we find ‘
E, = - -% Alas«(z\é’- [?osh -\-’-}21) - -\l;‘é-’- (1- i)R;inh %I-T . | .'§_2,a'19')' '
’ B, = -l-J—::- Alc 8 ‘22) .[cosh v121 1vc (l - i) Zsinh %’-} . " (2;2‘0')"

The only field component that enters into the Vlasov equatmon '
in Sec. III is E (z = 0). After some simplification:we have, to.

first order in 7€ s

E (z=0)=- Lid i em(ky-wt) 2 o sinn x
Yoo \ w 1 ) s _

-

X [%- ('; - sz)tanhf{?z ) - 1(1 - 1)7@3 sech2 (‘E” ,

(2.21)
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We may ignore the term proportionsl to (-1)%A. If the perturbation
wavelength is long compared to the transverse dimensions of the vacuum
tank, then n >> k and var Lan.
In Sec. III we need the average szimuthal electric field that

acts on the particles;’ This average ié obtained by multiplying

'~ Eq. (2.21) by a(x) and integrating the equatlon over x. Using

‘ f',Eq. (2 18) as well as the normallzatzon condltlon on c(x), ve obtain

. i.whgré‘we have replaced y by RO and k by a/R. =~ o

mlr:r

s .

AJ¢2:.- <.,.  .' - Rei(ge-wt) | | | . |
- <RE6> =j ' l w : ‘G 22.;_\,_ (l - B )tanh ) - 1ﬂ8 seChzf\)g)}

o

i
|
]
\
1

' This genérél expressibn may prove useful in some applications.,
We have evaluated it numerically er a particular choice of: o(x) that
| ﬁas'-tﬁo paranmeters, n*amely that ;tepresenting a beam of width A with center

. X, 88 indicated,in Fig. 2. _The functional form Chosen was

° v e S
T . ECOSK (x - xo) Ty when lx - xO.l fA/g |
o = N
.- ’ 0 v-h." B ’ whén ; ]x - x0|>/A/2 ] ’ e
9

| and a TO9k FORTRAN'program was dgveloped to,evaluate the quantities:-

b

Relong : E:c (l - B ) %;.tanh (2%} <. - (2.2ka)

e roein e wneq vt bereeh e pmmr—— e - 23, Pk S e -
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g W
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. CRE = <hmix {_;‘)[Relongv - iR Imlong] . - : (2.25)
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III; THE DISPERSION RELATION 5

5

Thefhmotion: of the particles ig:treated by means of the Vlasov

.r'.eéuation, ﬁhich we solve in cylin@rieal coordinates, We incorﬁofate the
Y. fbrmelism of Refs..h and 5, and in particular the canonical variables :
.8 and W‘forvthe‘azimuthai motion. The quantity W = 2ﬂ(pe.; pc) where

§6 is tﬁevcanonieal anéﬁlar ﬁoqentum andrpo,the‘mean‘value of‘pe f'or

- ,the;beAm. "The transverse motion ef particles‘is considered only inso=-

§ rfar as 1t contributes to the transverse dlmensions of the beam and to

f the relation between the - circulation frequency of particles and their o

The;particle~distribution‘function $(W,0,t) satisfies the .
5 B |

'Vif,dne-dimensiepal equation’ - ‘ o Sl

2 , 5 2 D
at+eae+2 <REe§ 5 = 0. - . (‘3..;.)

The quantity (REé) is evaluated in Sec., II. The unperturbed beam is

~ uniform in azimuth and constant in time so it may be described by a

distribution func oni ' . e consider an infinites . pertur a ion
distribution functi wo(w) W d finitesimal perturbat

that allowgius to write the.distribution function as

eilme=it) (5

- Inserting Eq..(3 2) into Eq. (3 l) and llnearlzlng, we obtaln

2rie(RE.\ dy D
) i(ne-wt) - o o e (3.3)

(w - ne) :aw

(W



 in the accelerator
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i

The function Yo is normalized so that the total number of particles

N dis given by

N = 211R'.\,(¢0(W)d\'1 o, i
but it will be convenient. in what follows to define a function
| C£(W) = »2n=.§'___¢0(w)/1‘v .
The perturbed charge densiiy per unit length X is found from
Comdining Eqs. (3.3) aid (3.5) yields . . . . i)
‘r dw . . .. ' ..'.‘
_ i(ne‘-mt) o aw _ A
. Al ' . 21[13 (RE >J (w - né) ) ‘ - 6306)
’ 1n which we must 1nsert the approprlate expre551on for<:RE )from
. Sec, II. The dispersion relation may be wrltten in the form . .
0 :’_' ‘ - ,"‘ e
. ' el = (U-iv)T (3.7)
" With I defined by
. rar, - R
- _1%0 aw : B ' .
- | I f,dw e U (3.8‘)
The definitlons of U and V in Eq. (3.7) depend upon which expression
for<(REg)is used in Eq. (3.6). 1If Eq. (2.10b) is used, Ve have ;-
U = Ne (n/R)(l - 8,1+ 22 (v/a)] (3.92) -
(3.9p)

v = 2Ne2RBw/b ‘ _? ‘. S



U’ and V may ‘be written |

o shall see below that values of w near nw, are of interest. It is

PRSP - Lo R L et R L T

ST

-va Eq. (2.22) is employed, the definitions are

wmem)Zo u-s )mm(mm),ﬁgﬂx&mw 

8 vR’

’ v é'}(hnﬁezlw)ﬂi:qsasw sech2 (vh/é) e o o (3.10b),

By the definxtions. Eqs. (2 2ha) and’ (2 ahb), the latter definitions of

U =,.(hﬂNe2/w) Reléngbl s R ’.(3.lia) -

¥; (hﬂNe?}2/ﬁ) Imloné - . S (3.llb)
ne. ; _ - o

. l

Although U and v are functlons of w through B, = m/kc, we

{ .
N

A

V]

.»therefore a good approxxmation (provided the particles are not extremely‘

relativistic) to replacé Bw by 8 =‘v/c, where v = wOR is the mean

¢ : : S
velocity of particles in the beam and w, is the mean angular frequency.

§ 0

. This simplification is strictly true at the stability limit of the,
. negative-mass instability, vhere w ='nw0 is a solution to the dis=
) ﬁersion equation. There is a further dependence of V on w through

';t.i (w/8ﬂo)l/2.f This is a weak dependence, and we shall replace w by

‘V,_nwo, thus rendering U and V independent of w, The quantities U and V

R, so»sm511 th$t VU,

if_are positive, and for all cases in which we have evaluated them R is



18-

IV, - ANALYSIS OF THE DISPERSION RELATION

‘A. Instability in Absence of Damping

In order to demonstrate the resistive instability we first
* choose fo(W) = §(W), which represents a beam with all particles having
the séme canonical'angular‘momentum._'Since we are éonce:ned oﬁly with

 small deviations in' W we may write

>
[3

I R (U

where W is 2r times the average value of the particles'circulation fre-
quency f.  The quantity.ko
"_acgelerat9r guideffiélg,uand.is.rélatedato ‘£ by

-

reflects the characteristics of -the ZM

Kk, = entlar/a®) , . . (b.2)

, wherellEv is the particle energy. Below the transition eneigy-

&

- df/dE islpositive, and above the transition energy'df/dE isAhegafive. L
. The latter is the‘regime‘of "negative mass." ‘
From Egs. (3.7) and (3.8) we obtain

(w -3nm0)2 = 'nko(u,* iv). . - (4.3) .

Y

If k, <0, then even for V.= 0 (i.e., no resistivity considered) Eq. (4.3)

N

- exhibits an instability, namely the negative-mass instability. jIn::“
this regime we need not consider the effect:of V since V _ié.;‘ S
> 0 we obtain from . . '

S élways very small c¢mpafed to U, For ko

| 'Eq.i(h‘3)- S   J:;; ;¢ Vl3» ;?z 1:-:';f-',  ‘§"1,='1qj‘."
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... where the positive sign corresponds to a "fast wave“%in'#hich the wave

7‘“'phase velocity Bé ;s,éreater”than the particle velocity B8 and the
SRR 7., perturbation is damped.l’? The minus sign corresponds to a "slow wave"
© that grow§'exponeptialiy with an el-foldingAtime T given by
o= Mum)Y? (s
'~?} This formula may be evaluated with Eqs; (3.9)‘used in the circular-

‘?53géometfy model.  We further employ the approximation B8_ = B with-the |, =

result
; _ b 1+ 2 2n (b/a) 1/2 ‘ ' |
TO = B, 0 "> . (ho6).'
YR | 2ng Ne“r(ar/aE) | | ‘ |
 The é-folding time depends upon the conductivity o as 01/2, and upon

v1/2

_ the number of particles asl /<., The dependence of to upon n is

© correct Bply for values of n such that Eq. (2.2) is satiSfied.f:It.""’ f‘

1/2

is a weak dependence; n~'“, which enters through'¢2. The génerallu

x t=depéndencglof TO

upon. n -must be obtained from Eqs. (L4.5) and (3.10).

B, Criterion for Stability
A stability criﬁerion will automatically emerge from.the
dispersion relation if we use a function £,(W) that descrives a fre-
;;' queﬁcy spread in the unperturbed‘beam; This is simply the well;known
| phendmenoh of.Landau dam@ing. The analysis is complicated by the _:
5‘:lf;c£ that V ;? U, which ﬁeans‘that tﬁé‘gfowth rate is‘very small -

-.and easily damped by particles riding at the wave velocity_sw. On



L S ey,

e

' freqpency wo.

'spread in the beam.

E'the result . : o o ".'. S 1

:'%n,below.

~ the other hand the wave veloclty is shifted from B by - the (relatiVely)

large term (nk U)llz, with the result that the damplng is sensitive

{A-_’to the particle distribution at frequeneies removed from the central

'In illustration, consider the Lorentz, or resonance,

~ line shape for fO(W)ée

U T

A ]

where 6 is & measure of the spread in W and ‘hence of the frequency

Equation (3 7y may be 1ntegrated readily with :

 (4.8)

A

w ﬁ.i,' nm'o :’_ V;};op (l - i -é%) - ink06 » '

¢

where Eq. (4.1) has been employed end V is assumed to be much sneller,'

than U. The slowéyave instability is damped out_ifx

G ’.f‘ko,‘s""‘si';‘ b

this condition #s much less stringent than the correct result derived

"; of the Lorentz line.

To consider other functlons, we flrst wrzte the dlsper51on

relation ln the form

fn};o(Ut iV)v . f afy o oaw ., (k.10)

(W2« v3) '_'A.aw | (V =Wy ‘- |

The criterion'[Eq.f(h,Q)] has resulted from the very large'taill.

2



~2l- |
.
Consider now a Gaussian dfétribution in W,

'

N where-Wi‘= (w - nmo)/nkof

: with '
B L = R e )
| &
A partial integration and a change of variaple frdm,iw to W/§ = & puts
Eq. (4.10) into the form ' '
nkgd°(U + 1V) L[ expl- 52)(3:5 | L
S ) Cowaz)

2
(U + v°) - (8= gy)
10 :
The functmon Q}\(gl) has been investigated numerically by Fried.

but asymptotic expressions will suffice here. The stability crlterzo? is

(

found by conszdering real £, = (0 - nw )/nk 5. Slnce U >> V, we must’

have Re Q;' » Im 72&.. This occurs in the limit of large El’ where

the expans;on '
. ' . [ L 1 . .
o : : - - N - (h.13)
o L e 4 =S~ -f- —re—— . . .
O ‘_2} (El) p azlgi{? exp(_El ) + ; S . ;
) ‘ ' . . . " l '
.. , - . ‘ , . . N .
. 1s a.good approximation: From Egs. (L4.12) and (L.13) we know at-
~ once that, |

.'al ” ’ ._ 2 . :
L W.© 2, .2 : -
2 5 . L2l - | C(b.1b)
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'v:or; €q good approximation, - . A ST

W= e et (ha5)

The corresponding frequehcy shift w - nw, is thus konwl, or the same

o
as obtained for the two other choices of fO(W) in Eqé. (.4) and (h.8).
However;-the»stability criterion found from fhe Gaussian

distribution differs drastically from Eq. (4.9). The value of §.

'necessary for stability is found by solving the transcéndental‘eéuation
3 o, L. L |
§° exp(=g ") =" w=V/2U{i, . (k16) -

- where we have used Eq. (4.14) in the right-hand side of Eq. (5,12). We

"will not pursue this criterién‘further but merely note that the valuérv

'»5 of § necessary for stability depends logarlthmlcally on. V, not

" directly as in Eq. (L. 9).: For numerical computations Eq. (h 16) can
i'fprOVe extremely useful

?onsider nov & distribution function f (W), which has nonzero

* values for only a flnlte range of W. - It is easy to see'that for suchv

’-:;.13 (physically realistic) function it is impossible to sétisfy the

: dispersioﬁ‘relation with real w if W, lies outside the range in which

1
i;»fd is nonzero.. This can be seen by writing Eq. (4L,10) in the form |

3+ -

U+ 1v) JDJ A(W i i m—‘l , ‘. o (san



o satlsfied by a real value of W, if (df /dWﬂ

"' ig the condition for stebilify."Evaluating this for a vacuum tank of

:- circular cross section,,ve-have from Eqs. (3.9a},

'.|

Moa

R

23

i
'

" where (FDindicates the Cauchy nrinciple value. The equation cannot be

1 W=y is zero. Furthermore,

-1t can. be shown that. any Wl having a real part outaide the range of

"”7nonzero £ (W) has an imaginary part with a sign correspondins to an

s

'; instability. The value of Re W. has been seen to beeinsensitive_to-

1

' the form of fo(w),'so we can deduce a necessary condition for stability,'

,'5ivnamely the range of £ (W)Amust include W, Beceuse v 7is.so snall

1°

‘compared to U ’ this necessary conditzon is a very good approximation
to a sufficient condition. QuantitatiVely we have the frequency spread

in the beam Aw A_2k 6, and 50 -

,nAw > 2(nk U)l/2 ?“7';* .'-_IIJ - (4.18)

oy . . . . . . .

L3

o ‘ 1/2 o o
[l + 2'2n(b/a)?}A L o ‘, (4.19)

b, [2n(f df/dE)Ne
Ry :

{

J‘;ff-éhisiresult is algenreically justvthe'criterion'for suppression of the
" negat1ve-mass instability (but there, of course, df/dE is negative
". 'and its absolute value appears in the formula) This last result =
"?}ghas the geometric factor approprlate to the clrcular geometry, and -

b'iﬁis independent of n. We must remember however, that Eq. (k. 19) is

zfcvalid only for n << yR/b. The more general case can be handled

with Eqs. (h.lG) and (3 lOa) The stabillty criterion is independent'.'v‘

‘of the surface fe31st1V1ty o in this limit of highly conducting

" surfaces. _:-fvf'g' : .J“”}

-t

g, L

.,



. ohe

Equation:(L4.19) mayvimpos§ more sevéré dgsigﬁ requirements;7 
on a highminéensity aécelerator than those.necessary to circumveﬁt
~the negative-mass instability. This.is.because the négatiVe-mass‘ﬁ
insfability is possible only if the energy is above the transitiop
energy where IdfldEl is usually small and. ¥ may'bé~largeQ But
Eq. (4.19) must be applied near inqection,invgn AGS. The absence |
~of any observed effect in'present-generatibn machipes--ih contrést ”
3fo thg observea negaﬁivé-mgss instability_in»Satprne, the.Cosﬁbtron,'l
_#nd the Bevatfon7--must_be_igid to the rgthér'large energy.sp;ead J:h'

. _from the linac injectors.®

B Do B " : . o . HAN B R B .
NP S B [E i X [T : : L - N PO L . i
! P AT oo . . ‘ " - - o . S .
L PR g . .



§ ijenergy spread AE on the assumption that the frequency‘spread'is caused

=25~

V. ' NUMERICAL EXAMPLE

[
W
g

As a numerical eXample we take the MURA hO-Me§~electron accelerator_'7

H
b

' of the walls to be that of aluminum, namely o= (3 x 1017) ‘sec ;[

Table 111 shows the results of numerical calculations for U &nd V,
as well as a comparison with the analytic formulas of Egs. (3.9). ' The
': agreement in the values of V is seen to be excellent, although the -

';rgeometry is remote from a circular situation and n is not much less

‘"*f,.than-yR/b.':Table;IV'gives results for the growth time in thé

ij absence of frequency spread The and for the frequency spread Am re-'

_ 0
Hupquired Tor stability. In Table vV, N is taken at two values bracketing

the experimental range_andems is expressed in terms of a requisite

i

,f:.solely by an energy spread. The numbers are in semiquantitative

”5f:agreement w1th observation, with the AE being closer to observations

’:“fgthan the o 6 The growth time <t

O

.u?;,the walls and could be considerably reduced if the effective resistivity
' ff;of the walls were higher than the nominal value (for aluminum) used in.

”l:r'these theoretical calculations.

- ACKNOWLEDGMENTS | S

The authors wish to thank Mr. Ed Rowe, Dr. Cy Curtls, and

vDr. Fred Mills of MURA for stimulating discu551on as well as detailed

L ;vdescriptions of their experimental results. They are 1ndebted to f'

Lers. Barbara Steinberg of the Lawrence Radiation Laboratory for

. lassistance with numerical computations._;,j"ft

o yith parameters as listed in Tables I and II. We assume the conductivity .

1

is a function'of the re51stivitonf T
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Ta.bl’e” I. Geometrical parameters that are employéd in’ the numerical example '

- and that a.pﬁroxin’xate conditions in the MURA 40-MeV.-electron accelerator. RS

':'Z_The dimensions are defined in Fig. 2.

i ..'Case o.on - ’R:.(ém) h (vcn‘l) : w v(cm)‘. X (cm.)._ 8 (cmj '

At 1. :eso o sA . 100 15 v 10
B' 10 125 0 .54 . ..100 15 . ¢ 1,0

e .10 .0 sk 100 030 1.0.

oD . .10 o - gk 200 . 30 2.0 0 o

-
- 1
-
-
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‘ 'fi”Téﬁle I1, Beam,parameters émployedgin thé'numerical example, The .

 ;£ ;ui.’_{f_qﬁantity_ K cofrespoﬁdsvto a‘field-index parameter of 9.3.

o V.‘» "_. _F.V S - .,’."-, .;-'-‘. o, ™ . .. S .n’. E
,.Hﬁ,i?‘ggse;.v-~ ‘B v",“;Y~ , wo(gm/seg), K =3

af '-ikd(;ec?z:erg’l)"J: 51‘

of
dE .

cA 7005528 - 1,20 1,33 108 L 1,060 0 h0.sTs % 1022 L

B 0.5528- 1.2 1.33x100 1,96 0,575 x 10%

c 10,8660 . 2.0,  1.86x 18 2,08 0.702

D o660 2.0 ~1.86x10% 20k 0702 x 107

1022

X

N

s
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Table III. Values of the quantities U and V , as defined in Eq. (3.9),

The cohductivity, in this example, is taken to be that of éluminum;

| nemely, 9 = {3 ”'101? sec‘l@ In the evalustion of Eq. (3.92), b has béen
taken as h/2 and a as 3/2, It can be seen that the andlytic formula

_’is an exceédinglj goodeapp;oximatioﬁ-;in.this_examplé, ;t least=-=to the

numerical computations.

Employing Eq. (3.98) = = . * Employing Eq. (3210a)
;E&éé. | %xl'oeo(ergs‘) - % x102|6(erg8) S %xlo.zo(erg'S) - %XI0?6(lerBS) SO
AL L0056L. Lt 39,6 o 0.7k Ce e 23945
4:3"' f"“5f51 S 1es L 169 . aa
e w2 e 2dt 229+
> .1,38' ) 232 _' 1.91 226
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.r‘;-Table IV Growth time and frequency spreads requlred%for stabillty in

P . : . N
o il - S
T Wy e .

.

- the numerical example. The quantity T, is computed with Eq. (4. 5),

0
fwhereas Aw is. evaluated with Eq.- (h 19); in both cases the last two

V‘-f‘ﬁlcolumns of-Table.III are used,. .The  quantity AE 1s the energy spread

“-in the beamﬁrequired:tO'give=the'fre@uency'spread Aws (and hence -
1'5 stability),»under the assumption that the frequency spread arises

"j{ selely‘f:om ehergy spread.

Y C . ME, . ¢ |
Case o WUT g (see) o ”7" (ses”? S gE R
A 5.9 x 10° 3.5 T 30
B, 1.9 x10° 13.0 30
“ 2
c 5.2 x 10 8.4 22
. "_Dv T h,?’ x 10° ¢ 7.)4 R 19 :




«30w
5_Table-v.' Growth times in the absence of energy spread, and energy spread
‘ _ . . 4t
 required for stability for two different values of the total number of

¢?vparnicles in an example approximating conditions in the MURA 40-MeV-

electron accelerator.

x & 108 7w = 100

Case . : ’ A — ;
: T (msgc); | AE_ (kv) T (msec) 8E (xV)

A

AT 590 .03 o5 o,3)0

B w190 . 03 - 19 - 3.0

. c L oLsoS2 . 3.2 - 5.2 S22

D B 3 0.9 kT 19




R

e,

V“i_'s,;

,7.‘

‘lInstrumentation,'Geneva, 1959 (CERN Geneva, 1959), p. 239, f

" High Energy Particle Accelerators, Dubna, 1963 (Atomizdat Moscow, l96h), -

© e e i e e

-‘3'1"

FOOTNOTE AND REFERENCES

k

f‘Reaearoh supported by the U.S, Atomic Energy Commission
" J. R Pierce, Bell Systen Techs J. 30, 626 (1951). | ' .

A. A, Kolomensky and A, N, Lebedev, Proccedings of the International

Conference on High Energy Accelerators and Instrumentation, Geneva.:

£+ 1959 (CERN Geneva, 1959), p. 115. . >
. Cs E. Nielson, A, M. Sessler, and K. R. Symon, Proceedings of the

‘SInternational ConVerence on High Energy Accelerators and

R

Le Js Laslett V. K. Neil, and A, M. Sessler, Rev. Sci. Instr. 32,
| | 276 (1961).
6.

C. D. Curtis, et ai;; Proceedings of* the Internétional Conferences on

.
Do 620.

H. Bruck et al.. Proceedings of the International Conference on

High Energy Accelerators, Brookhaven National Laboratory, 1961
"'i-(Brookhaven Naﬁional Laboretory, Upton, N.Y., 1961) p. 175;
M. Q. Barton and. C. E. Nlelsen, Proceedings of the International

 Conference on High Energy Accelerators, Brookhaven National . .

Laboratory, 1961 (Brookhaven National Laboratory, Upton, N, Y., 1961)
Do 163; | .
M. Q. Barton, Coherent Effects in the Cosmotron, Abstract of paper

presented at the International Conference on High Energy Acceleratcrs,

- Dubna,_u.s.s.n., 1963 (unpublished);



9.

. : lo.

®
. L4

UCRL~11090.(Rev,) 196& (unpubllshed), submitted to Rev. Sci.

G. R. Lambertson, High Intensity Phenomena at the Bevatron, Abstract

of paper presented at the International Conference on High Energy

' i Accelerators, Dubna, U. $.8.R. (unpublished)

L. Jackson Laslett, V. Kelvxn Neil, and Andrev M, Sessler, '

Transverse Resistive Instabilities of Intense Coasting Beams in

© Particle Accelerators, Lawrence Radlation Laboratory Report

A ]

Instr,
IBM TO94 FORTRAN program MESS, Computer Center Lawrence Radiation

X Laboratory, Univer51ty of California, Berkeley, 1963 (unpublished).

A -
B, D, Fried and S D. Conte, The Plasma Disperson Function, h _

H

~ (Academic Press, N.Y.; 1961),




e e ;
Fig. i, Geometry of beam and tank of circular cross qgction;
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- Fig. 2 - Geometry of beam and

e . . AR 4

~tank of rectangular cross section. -
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