
Lawrence Berkeley National Laboratory
LBL Publications

Title
Longitudinal Resistive Instabilities of Intense Coasting Beams in Particle 
Accelerators

Permalink
https://escholarship.org/uc/item/3939276f

Authors
Neil, V Kelvin
Sessler, Andrew M

Publication Date
1964-09-01

Copyright Information
This work is made available under the terms of a Creative Commons Attribution 
License, available at https://creativecommons.org/licenses/by/4.0/

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3939276f
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


UCRL-11089 Rev 

University of California 

Ernest 0. 
Radiation 

lawrence 
Laboratory 

LONGITUDINAL RESISTIVE INSTABILITIES 
OF INTENSE COASTING BEAMS IN PARTICLE 

ACCELERATORS 

TWO-WEEK LOAN COPY 

This is a library Circulating Copy 
. which may be borrowed for two weeks. 

For a personal retention copy, call 

Tech. Info. Diuision, Ext. 5545 

Berkeley, California 

c.Q.... 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
Califomia. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



--------- -------~ 

Submitted for publication to j 
Review Scientific Instruments 

·-
UCRL-11089 Rev. 

I 
~----------------~ 

UNIVERSITY OF CALIFORNIA 

Lawrence Radiation Laboratory 
Berkeley, California 

AEC Contract No. W-7405~eng-48 

LONGITUDJINAL RESISTIVE. INSTABILITIES 
OF INTENSE COASTING BEAMS IN PARTICLE ACCELERATORS 

V. Kelvin Neil and Andrew M. Sessler 

September 29, 1964 



I •' . -,", 
·-J 

,• 

·-.. ;.· . 

.... 
{·•.• 

.. ·· 

.... 

.· 

,. 

,;., . ' 

UCRL-11089 Rev. 

. . ~-

LONGITUDINAL RESISTIVE INSTABILITIE9 
·' 

· . OF INTENSE COASTING BEAMS IN PARTICLE ACCELERATORS* 

., .... : 
. V. • .-Kelvin Neil .and Andrew M. Sessler 

. Lawrence Radiation Laboratory '' 
University of California 

Livermore and Berkeley, California 

September 29, 1964 

ABSTRACT 

. -' 

The effect of finite resistance in the vacuum-tank valls ·on the. 
~ . 

longitudinal stability of an intense beam of particles in an accelerator. 

is investigated theoretically. We show that even if the particle fre-
. \j . 

quency is an increasing function of particle energy, the wall resist~ce 

can render the beam unstable against longitudinal bunching. In the· 
.) 

absence of frequency spread in the unperturbed beam, the instability 

occurs with a growth rate that is propo:t:tional to (N/a)1/ 2 • where N· 

is the number of particles in the beam and a is the conductivity. of ~ · 

the surface material. By means of the Vlasov equation a criterion 

for beam stability is obtained. In the limit of highly conducting 

walls the criterion involves tpe frequency spread in the unperturbed 

beam, the _number of particles N, the beam energy, geometrical .pro• 

perties of the accelerator, but not the conductivity q. A numerical 

example presented indicates that ce~tain·observations of beam behavior 

in the MURA 40-MeV-·electron accelerator may be related· to the phenomenon · 

we investigated. . .. ··· 
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INTRODUCTION .·[ '!.. . . I. 
. ' ~ . ~- ,;,. 

.. ·· . _(. 

I , 

·' · The observation that longitudinal .. density fluctuations in an · · 
.·.:· .. ;~ ~~~ ·,_ ·.· ~.-

. ·¥ -' ;.·' ·: • f·: electron stream may be amplified by the resistance in the surrounding 
.~ ··- . . ' . . . . 

. •. 

walls was firs~ made by Birdsall~ 'who ·used the concept to construct a 

· .. • r~sistive-wall amplifier. . Pierce has presented a general theory- of. 

"slow wave"·amplifiers,i whereas Birdsall and.Whinner/have given a 
' 2 •' " 

general analysis of such structures. 
.. 

· .The purpose of our work is :to extend the. theory- developed for 

the analysis of traveling-wave tubes· to an. analysis of longitudinal . 

resistive ins.tabilities/of intense relativistic beams in ~yclic.lpar.ticle 

accelerators. In contrast to the·hy-dro~ynamic approach in Ref.~· 11 

the theory presented h~re includes details of the particle dynamics · 

that· are vital to obtaining the crit.erion for stability. Our work is 

also an extension of previ~us studies of longitudinal insta~ilities3 •4 •5 
and draws heavily upon the notation of ~ef. ·4. Our analy-sis was 

stimulatrd by expe~iments with the MURA 40 MeV electron accelerator; 

these experiments. show a pronounced longitudinal bunching of the beam 

near the injection energy~.6 Although the obser~ed instability- above 

the transition energy ~s well understood, and had even been predicted 

·theoretically- in Ref. 4, t.he observations of bunching .below the transi-.. 

tion energy came initially as a surprise. The analysis presented here 

culminates in a criterion for stability- and a growth rate in the. 

absence of stability, both of which are in approximate agreement_with 

. the observations at MURA. The theory suggests further experiments· .. • · · ·. · 

suitable for determining·whether or not the observedphenomenori 

'· 

--:: ·' ' 

•. 

. ~. 

r ••• . ·' 
•. ~ t . 

., . 

·.,: 

... 

'·, .. 



.·; 

is in fact a resistive· instability. In addition, the theory suggests 
. . )' 

limitations on the design of high-current particle accelerators • 

. In tpe fo~owing linear-perturbation treatment, the unperturbed 

beam is taken to be uniform in the azimuthal (e) direction•' A perturbation. 

in particle density of the form exp.[ i(ne - lilt )J is assumed. The electric 

and li)Agnetic fields arising from the perturbation are calculated in 

Sec. II for two different geomertries. In.Sec. III the Vlasov equation 

and the formalism of Refs. 4 and 5 are employed ~to derive a dispersion 

relation that determines the allowed values of the frequency w • 

Section IV is a discussion of the dispersion relation. The analysis 

shows that resistance in the surrounding walls leads to exponential · 11 

growth of the density tluxu~tion if-all particles in the unperturbed 
' 

beam have the same circulation frequency. The growth rate.is proportional 

-1/2 to a , where a is the conductivity of the wall material. An ef-

fective stabilizing mechanism is a spre~d in particle-circulation fre-

quency arising primarily from a spread in particle energy. Be;cause .the 
. I . 

contribution to the azimuthal electric field Ee·rrom the finite resistance 

in the walls is very m~ch smaller than this field in the absence of 

resistance, the stability criterion is quite sensitive to the distribution 

of circulation frequencies in the unperturbed beam. For a realistic 

· energy· distribution and highly conducting surfaces, the stability-, 

criterion is independent of a. A numerical example, namely an applica~ 

tion of the results to the MURA 40-MeV ··electron acce~erator, is given 

in Sec. V •. 

,i 

•• ,1. 
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Although the analysis is restricted to an azimuthally uniform 

beam, it is expected that a very analogous phenomenon will occur even 

if the unperturbed beam is azimuthally bunched by an rf cav~ty. Some 

support is given to this argument by the circumstance that although'.the < 

previous theoretical wo~k on longitudinal instabilities3 •4•5 was also 

restricted to coasting beams, the phenomenon has been observed7 in 

bunched be~s in the same form as' in uniform beams. 

· ·'~ The longitudinal resistive instability may be regarded "as less 

catastrophic than the transverse resistive instability treated in the 

8· . campanion paper. · The latter results in compl~te loss of the beam 

when the amplitude of transverse oscillations .becomes so large that 

particles encounter ob~tructions in the vacuum tank. The longitudinal 

, instability considered here merely reduces the number of part.icles that can 

be captured and accelerated with a given amount of rf power •· 

·Finally., it must be pointed out that the ~rork of Ref. 5 is 

incomplete in that the possibility. of the instability discussed here.was 
I 

overlooked. The work o£ Ref. 5 is correct, insofar as it goes, but. 

· mus~ be augmented with the analysis of this paper to give a complete 

description of the possible phenomena. 

. ,,_' 
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II. 
, • I 

SOLUTIOiq OF ~LL'S EQ.UATIONS 

In this section we obtain the electric and magnetic fields 

.. associated with·a. perturbed density that va.ries·a.s exp[i(ne .. wt).],. 

where n is an integer. We consider two sililplified models df the 

beam and vacuum tank. The first is a. beam of circular cross section 

centrally located in a tank of circular cross section. The longitudinal 

.• wavele~th 21TR/n is assumed large. compared. to. the minor ra.dius of the 
. , 

tank. Fr.om thi,s model simple analytic formulas p1ay be obtained for the 

. · fields. The second model is a tank of rectangular-cross-section in which 

the beam is located_in the median plane of the cavity. The beam is 
. . . . . I• 

finite horizontally, but is infinitely thin in the vertical direction~. 

Finite resistance·in tpe top and bottom tank walls is incorporated in 

I 
I 

· the calculation. but the side walls are assumed to be perfectly conducting. 

In both_ geometries the major curvature of the vacuum tank is ignored, 

and Maxwell's' equations are solved for a. straight pipe .• 

A. Vacuum. Tank of Circular Cross Section 

We consider a beam moving along the axial (z) direction in a. · 

pipe of radius b. Let the beam have u~iform density out tcn·a··r.adius . a, 

as illustrated in Fig. l. ·The perturbation is assumed to vary as 

exp[i(kz- wt}.], so when we· relate.this calculation to an actual 

accelerator we will replace "k by (n/R) and z by_ Ra, where R is 

the major radius at which the beam circulates. The perturbed change (p) 

and cUrrent (j) densities are 

,·: 
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i(kz..wt) ·.vhen, r. < a ple . • p(z,t) = {2.la)-
0 v~n r >. a • 

jz = wp/k • (2.lb) 

In this section perturbed quantities carry no subscript. The electric 

and magnetic fields arising from these sources have components E , E • . · . r z 

B~, all vith .z and .. t dependence given by exp(i(kz .. wt·)]. ~ 

The .complete solution to Maxwell's equations may be exhibited 

in terms of modified Bessel functions. If the condition 

( ) 2· -2 w/c « ·b: 

· • holds, an exp~ession for Ez· inside the beam may be obtained by a simple 

· . application of the equation 

(E ~ dt = J-v... v 
i a ·J ;.;.-- Be:da c at """ ~ 

As shovnl in the next section, the pert'inent value of w is such 

,(2.3) 
.• . ·" 

that w/k is very nearly equal to the .main Speed ·V. ;<)f.-.par-ti:cleS.. ·i 

. in the unperturbed beam.. Therefore Eq. (2.2) may be stated a.s b/y>.. <~ 1, · 

.. .. . · [ . ·( I )2]-112 -vhere . >.. is the .va.vel.engt):l of the perturbation and y = .. 1 - v c .. . -. · 

,, "-+'"" . 
· .. 

. ' 

When· this condition holds, .the radial electric field is given approxilna'tely. 
i· 

by 

. 21tpl ei{k~_-wt) 
r :vhen r < a •• 

E = )( 

r .. . . ' 2 a /r vhen r ·> a .. , 
{2.4) 

,_ 

.. 
.;. .. 
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From the radial component of the equation 

we find 

v X B 
r'-1 

l . 3! 4n 
=- -+--...e j 

.c at c ~ · 

The only boundary condition that must be satisfied at r = b is 

E = -{l -·i)'ftB · . z ~ • 

(2.5a) 

(2.5b) 

(2.6) 

) where ~ = c~/8na)1/2 and a is the conductivity of the wall material· 

'i -1 n sec • From Eqs. (2.4). (2.5), and (2.6) we have 

Ez(r = b) = '-2np~(l - i)1l(w/kc)(a2/~)ei(kz-wt) • {2.7) 

We now apply Eq. {2.3) to a surface (Fig. l) with the following 

· perimeter: from a point z,b on the wall radially inward to a point 

r < a, along the z axis a distance dzt radially outward to a···point 

z + dz,b on the wall. and then along the wall back to the starting 

point. : :fnsertipg Eqs. ( 2. 5b) and ( 2. 7) into Eq. ( 2. 3) 0 we have 

r · ·.. · ·b · · 

1 . E (r'.z)dr' + l .E (r',z + dz)dr' ~ ~ 
b r. . r r . 

1 2 b 
+ [E (r,z) + 2nP.(l- i}~(w/k.c)(a2/b)ldz. = iw2J Er(r",z)dr dz 

z 1 . ~ r . • 

c2.a > 

If we dtvi:de by . dz and take the limit dz -+- 0, the first·~two terms 

on the left-hand side of Eq. (2.8) become~ 
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J b 
· . ..1. E dr 

r . az r 
/ .. 

Inserting Eq. (2.4:). :f'or.Er ~~ .~per.formi'ng .t.he necess·a.ry integrations, we Obtain 

Ez = 2npla2ei(U-wtl &k(l - s.}l Gn(a/b) + ::2 - ~] 

~(1 ·- i)1LS /b ·) 
.. w ) t (2.9) 

an expression va+id for r <a. In Eq. (2.10) S~- w/kc is th~phase 

velocity of the perturbation in units of c. 

In Sec. III we need the azimuthal electric field that acts on 

the particles. .This involves some average of E · over the beam cross l1· 
z . ' •\ 

' 
section, b~t in view of the. approximations inherent in Eq. (2.l), .the,. 

precise average required ·is not clear. Because Ei varies ~lowly 
. . 

· across the beam, we will continue in the spirit of Ref. 4 and .~ploy 

·. Ez(r = 0), although Ez(r =a) is probably more accurate. 

Introducing the perturbed charge per unit length 

A : ~p1a2 exp[i(kz wt)], we have for the total field in the z 

direction: 

21(S 
w 

. ':b . ). •. (2~10a) · ax 2 = ·- ·az (1 - B.; )[1 + 2 tn(b/a)] 

in whi.ch we have neglected the· term proportional. to i 7'{_ for reasons giv(m 

below. We note that the out-of -phase contri but 'ion . decreases lJke . 

yw. - 2 = 1 - B. 2 , involves a geometric factor, and is proportional· to 
.w 

. !. 

the .variation of charge in the z direction~-results all fa.miliarffrom '· 

'.·,I 

,•·. 

.·: ... 

\ 
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: 4 
previous studies. The (new) in-phase-component exists only because of 

the wall resistivityt and furthermore does not vanish as k + 0 or as 

B + 1. In all practical applications it appears that ~ is sufficiently w . 
small that.the in-phase component.is small compared to the {usual) out-

of-phase component. 

In the notation used in the next section, we have 

2 . . 
~ -ini.{l - B )[1 + 2.tn(b/a)] - 2 ~8 { R /b)>. , . w w . {2.10b) 

., 
where n is the number of waves about the circumference, and the per-

turbed charge .Per unit azimuthal length i. is written in the form 

>. = >.1 exp ( :i. ( ne - wt) ] • · 

B. Vt(l.C.!:.,um Tank of Rectangular Cross Section 

In this section we consider a beam infinitely thin in the 

·vertical (z)- direction located in the median plane of a rectanSular 
- . . 

· duct of height. h and width w, as illustrated in Fig. 2. The beam-

charge distribution in the x direction is assumed to be unaltered 
! 

_by the longitudinal bunching and determined by initial conditions so 

the perturbed--sur:f'ace ... charge distribution a(x,y,t) is taken to be of 

the :rorm 

a(x,y,t) = • (2.11) 

. w 
wit"h a(x) normalized so that_)o a(x)dx = 1. Conservation of charge 

implies a surface-current distribution j (x,y,t) just equal to {w/k.~): 
y 

times 6 Gx,y,t). 

,• 
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The boundary conditions for the electric and magnetic fields 

are taken to ~e those appropriate to perfectly condu~ting surfaces at 

the side walls so that the tangential electric and normal magnetic fields 

vanish at x = 0 and x = w. On the·top surface (z = h/2) we require 
/. ' . { 

'' 

E ·= (l - i)"R_B 
X y 

E = -(1 - i)"R_B . y X • (2.12a) 

and on the bottom surface (z = -h/2) we require 

E - -(1 - i)-,t{B 
X y 

(2.12b) . " 
E - (1 - i),t(_B • - y· X 

' . 

where 7{_ has been defined following Eq. (2.6). 

Expressions fo~ the-fields are most easily written as two sets,· 

transverse xna5netic ('l'M) and. transverse electric (TE), with transverse 

referring to the · z direction. Each set independently satisfies 

Maxwell's. equations for free space everywhere inside the tank except 
. 

at z = OJ and 'also satisfies Eqs_. (2.12a) and (2.12b). The desired 

express.ions are as follows: 

.· 

.• . 

, r •. ·• 
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__ ei(ky-<.O. t) \ l [ 
~ Es) +sinh v(z + ~) 
s l. 

l 
- ~~ (l -i) ci{cosh v( z + ~ )J 

,1\ /\1 
cos 7) x i + · i ~ sin 71 x j j 

~) J .~2 sin ~ x k} , 
(2.13) 

+ [+cosh v(z + %> - ::C (1- i)(i(sinh v(z + 

i(ky-<.Ot) \ [ 
· • ].TM = e ~ ( ~ ) . Es + cosh v( z + ~) .. . _: 

. s 

1\ 
ik sin TJ x i 

. j 

_im ( l - i)(R sinh v( z + E:
2 

) J! vc . 

+ Tj COS T) X J l J 

. J 
(2.14) 

.. e
i(_ky-<.Ot. )_ .- \. [ . . 

Jtm ~ ( ~~ ) Bs + sinh_ v(z .+ ~ ) 

B 1-....rE. 

s 

/\ 
z i + T) sin 11 

(2.15) 

= e i( ky-<.0. _.·t ). -I {[ - ( - h, ivc ( )() ( Bs +coshv z + 2; +ill l-_i \\\sinh v z 

S J r- ~ sin ~ X 'J' + i k coq X j ] 

+ [+sinh v(z + %) + i~c(l- i)~ coshv(z + ~)] ~2 cos~ x ~ 1 
( 2 .16). j 
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is an integer. The subscript s on these quantities has been omitted 

for brevity. The top and bottom signs apply \then z > 0 and z < 0 

respectively. 

. · We determine the constants E and B frp~ the discontinuity 
s s 

conditions at z = 0: 

E + - E - = 4wa(x,y,t) z z t 

'. B + - B - = 4wj(x,y,t)/c 
X X . 

· Expanding o(x) in a Fourier sin series in x, 

• 

. we find 

• 

· . (2.l7a) 

(2.17b) 

!. 
1\ 

(2.18) 

·,,_;. \ Es. = - ~ Al0 s 1?-) iw ( 
- --- l -vc 

i)7\sinh (~)] . 
. and 

(2.20)" 

The only field.component that enters into the.Vlasov equation 

in Sec. III is E ( z = 0) • After some simplification ''W'e ):).ave 1 to . 
y 

first order in 7(, 

.E· ·c·z =· 0) 41T ··'· i(ky-wt) ' sJ.'n = - - J.;..; e L, a n x 
Y . 'W' l s . s 

(2.21) 

. . ~ 
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\{e may ignore the term proportion4l to (-i) 2 Jl~ If the perturbation 

'1-ravelength is long compared to the transver.se dimensions of the vacuum 

tank, ~hen n ~> k and v~ R. ~ n. 

In Sec. III t-1e need the average azimuthal electric field that 

acts on the particles.· This average is obtained by ~ultiplying 

Eq. (2.21) by a(x) and integrating the equation over x. Using 

,Eq. (2.18) as.well as the normalization condition on a(x)~ we obtain 

4 .. ,n·i(na-wt)[···. Q · · 
n1Al e 2 n . 2 . 

. a -R (1 - B )tanh . w . s v w 
. s 

(~)- i~B,,sech2 (~)j =-

(2.22) 

. where we have replaced y by Re and k by n/R. II 

ti 
I 

This general expression may prove useful in some applications. 

We have evaluated it numericall~ for a particular choice o~ a(x) that 

has two parameters, namely that representing a beam of width A with center 

·. x0 as indicated. in Fig. 2. The functional. form chosen was 

• when 

a(x) = (2.23) 

0 • • 
and a 7094 FORTRAN program9 was developed to evaluate the quantities: 

,. 

. Relong 2) n S -R tanh 
W V· 

(2.24a) 

' ~-

' . 
--·--·------ .... ..,. ....... • ,_..,.....,. --.. ~. ~' --r"l~ 

' ' 
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,. 
~ 

., 

.' 

(2.24b) 

(2.25) 

. _. 

I. 

I 
\_. 
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III. THE DISPERSION RELATION 

The .... motion. of the particles is:·.treated by means. of the Vlasov 

~quation, which we solve in cylindrical coordinates. We incorporate the 

formali:sm of Ref's •. 4 and 5, and in particular the canonical variables··. 

6 and W for the azimuthal motion. The quantity W = 2~(pe • p
0

) where 

p6 is the canonical angular moment')lm and p
0

. the mean value or Pe for 

.the beam. The transverse motion of particles is considered only inso-
. . ~ 

far as it. contributes to the transverse dimensions or the beam and to 

the relation between the circulation frequency of particles and their 

.· canonical angular momentum. \I 
I 

The particle-distribution function ~(w,e,t) satisfies th~ 
'i 
I . 

'· 

.·.one-dimensional equation5 

(3.1) 

The qu.antity (RE6) is evaluated in Sec. II. The .unperturbed beam is · · 

uniform in azimuth and constant in time so it may be described by a 

_distribution function·~ 0(W). We consider an infinitesimal perturbation 

that allows us to write the ~istribution function as 

~. (W,e;·t) .. = 1/1 (W) +·ljl (W)e:il(ne-wt) 
0 1 . (3.2) 

Inserting Eq •. (3.2). into Eq. (3.1) and. linearizing, we obtain 
. . ~, .. 

'l/ll(W)~i(ne~wt) = 
.,.) 

21Tie(RE6) dljl0 

(~ na) _dW 
(3.3) 

.. 
. ··. 

. ' '_,.· 
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... 

The ,function w0 is normalized so that the total n~be~ of particles 
. ' 

in the accelerator N is given by 

.. N . = 21rR -J~ 0 (W)dv1 t (3.4) 

but it will be convenient in vhat follows to define a function 

" The_ perturbed charge density per unit lc;:ngth . ~ is found from 

Al ·=·.efw1 {W)dW .• (3.5) 
.. 

Combining Eqs. (3.3) arid (3.5) yields 
I 

~~ \ 
I 

• ~3.6) · . 

. . 
in which we must insert 'the appropriate expressi~m for< RE

6
) from 

. Sec. II. The dispersion relation may be written in the form 

. ··t ••• ·· 

I 
-1 = . (U - iV)I • {3.7) 

~ith I defined by 

· ·=Jdfo dW 
I dW Ow - ne) 

(3.8). 

The definitions· of U and V in Eq. {3.7) depend upon which expression 

f'or (RE9)is used in:Eq. (3.6). ·If' Eq. (2~10b)' is used, we have 

' 

... (3.9b) 

.. 
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If Eq. (2.22). is employed, the definitions are 

2 ·L·a 2 ~~ (1 
2 . 

:(3.10a) r:.:1·•, u = ~411'Ne /w) B ) tanh (vh/2·) 
' s " ' w . . 

s ' ' \ 
. 2 ' 2 2 (3.l0b) .v. = ·(411'Ne /w)'!<[a B sech {vh/2) • . s w 

S· 
: ~ : ~ J 

. ,• 
. . . . 

· · By ~he de:t:initions, Eqs. (2.24a) and (2 .• 24b), the latter definitions of 
.• .... 

U' ·and V may ·be written . · 
.. 

u = 
2 ' 

. (411'Ne /w) Relong • (~.lla) , 
'· 

.·:./ ,. 

.. v .:a ( 4wNe 2;"R/w) Imlong • (3.llb) 
r1 
II 

'·' 
., 

.. •\ .. · 
Although ·u and V are functions of w through S = w/kc, we . w . 

.... , .. · ..... 
shall see.below that values of w near nw

0 
are of' interest. It is 

therefore a good approximation {provided the particles are not extremely 

relativistic) to replac~'ew by a= v/c, where v = w
0
R is the mean . 

. . /""' 

. . 
velocity of' particles in the beam and (1)0 is the mean angular frequency •. 

. . I . . . 
This simplification is strictly· true at the stability limit of the, 

negative-mass instability, where w = nw
0 

is a solution to the dis-· 

persion equation. There is a further dependence of' V on w through · 

·. . 1/2 
1{. = (w/Bwa) • This is a weak dependence, and we shall replace w by 

, , n~0 , thus rendering U and V independent of' w. The quantities U and. V 

· · are positive, and for all cases in which we have evaluated them Pl is 

so small .that V <<.U. 
... ,.:·.,'·" . ..... 

···~ . 

' 
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ANALYSIS OF THE DISPERSION RE~ION 
""l.! 

<-, 
~,L: !, 

·A~ Instability in Absence of Damping 

In order to demonstrate the resistive instability we first 

choose f 0(W) = cS(W), which. represents a beam with all particles having 

the same canonical angular momentum. Since we are concerned only with 

small deviations in W we may write 

(4.1) 

where w0 is 2'11' times· the· average value of the particles' circulation_ fre-

quency f.· The quantity k
0 

reflects the characteristics of-the 

accelerator guide.l'fiel~, .and .is related .. to ,'f ''by 

where -E is the particle energy. Below the transition energy 

(4.2) 

dt'/dE is positive, and above the transition energy df/dE is negative. I . 

The latter is the regime of "negative mass.". 

From Eqs. (3.7) and (3.8)we obtain 

(4.3) 

. ' 

If k0 (·o, then even for V = 0 {i.e., no resistiVity considered) Eq. {4.3) 

exhibits an instability, namely the negative-mass instability. In 

this regime we need not consider the effect of V since V is 

always very small compared to U. · For k
0 

> 0 we obtain from 

Eq. {4.3) 
. ..;: 

,. 
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·· ... • 

I 

. ( • (4.4) 
.. . t ,, 

. :, ,f ( 
. {' I· 

:.. ·.\:;;·, .. where .the positive dgn corresponds to a "fast wave" in ·which the wave 
, .. 
' . r . 

'./ j: • ~. 
phase velocity B is greater than the particle velocity B and the . ' w . . ' 

,;- perturbation is damped.1 •2 The minus sign .corresponds to a "slow vave'1 

.. ···.- .. 

·' 

c 
·' 

I 

that grovs' exponentially with an e'.:.. folding time t 0 given by 

(4.5) 
• I 

. This formula may be evaluated with Eqs. {3.9) used in the circular-
! ' . 

• -4"·· 

. ,,· 

'•· · geometry model • We further employ the approximation a = B with the II w ,, 

,• . 

result 

T = 0 
...E_ [ l + 2 tn (b/a.) 1112 

Sy'R 2~~.Ne2f{df'/dE). 
• {4.6) 

1/2 The e~folding time depends upon the conductivity a as o , and ~pon 

the number Of' Partl..cles as N~112 • Th d d f' i . e epen ence o . t 0 upon n s 

correct bnly f'or values of'. n such that Eq. (2.2) is satUf'ied. It. 

-1/2 . Ao is a weak dependence, n , wh1ch enters through t\ • The general 

·. dependence, of' 'r 
0 

upon. n ·must be obtained from Eq~. ( 4. 5) and ( 3.10). 

B. Criterion for Stability 

A stability criterion will automatically emerge from the 

dispersion relation if' we use a function f 0(w) that describes a f're

. quency spread in the unperturbed beam. This is simply the well-known 

phenomenon o:t' Landau damping. The analysis is complicated by the 

_fact that V << u, which means· that the growth rate is very small 

.and easily damped by particles riding at the wave velocity Bw· On 

' 



'i 
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the other hand, the wave velocity is shifted from B,. by the (relatively}- -

large ~erm (nk~U)112 ,'·_w~th ~he result that the damp~~~ is sensitive 
' ' ; ' 

'to the particle distr~bution a.t frequeneies removed from the central 
\'. 

frequency w0• In illustration, consider the Lorentz, or resonance, 

line Sh!\pe for f
0

(W}; 

. ' ' 
(4.7) 

where · o is a measure .of the spread in W and ·hence of the frequency ' 

spread in the beam. Equation (3.7) may be in~egrated readily with 

the resul~ 
lf, 

\l 

I 

!J) =, nwo !. \fn-ko? -· i ~) -: ink0o • (4.8) 
,. tj 

where Eq• (4.~) has been employed and V is assumed to be much smaller 

than U. The slow-~ave instability is damped out if .· 

1 
. nko_o·>

_·;c 0' 
. , 

. . .. 

(4.9).: 

this condition :is much less stringent than .the correct result derived 

.. below. The criterion [Eq •. (4.~9)] has resulted from the very large tail 

· of the Lore~tz line. 

To consider other functions~ we first write the dispersion 

relation in the form 

··nk
0

(u + iV) 

.(u2·+ v2) . 

'. 

* ·j. dfo dW 
{w - w1 ) . dW 

t _(4.10). 

·. ~· 

-' ' 

. ' 
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where wl = (w - nwo)/nko· 
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' ' ~ . 

Consider now a Gaussian d~~tribution in W, 
' . \ 

. ' 1 
= 

6111 
• 
I 

(4.11) 

A partial integration and a change of variable from ,'w to W/o =.t puts 

Eq. (4.10) into the form 

nk0o2(u + iV) 

(U2 + V2) 
• 

., 
(4.12) 

The, function ~'(t1 ) has been investigated numeric~lly by Fried,10 

but asymptotic _expressions will-suffice here. 

found by considering real t1 = (w - nw0)/nk0o. 

The stability criterion is 
·- '1. 

. ,• 
Since U >> V, we must ' 

_ .. have_ Re ~' ') '> Im ~. This occurs in the liini t of large E;:1 , where 

the expansion 

:' .:· 
.',~ I 

I 
- is a good approximation• 

once that 

. 2 
2 ~1-

.tl- =· -:2 
0 

., 

I : :"' l 
+-

F.: 2 
1 

From Eqs. (4.12) and (4~13) 

u2 + v2 
= 

. nk0o2u } 

(4.13) 

we know at· 

(4.14) 



. or., to good approximation,· 

'. 
' ' 

{4.15) 

The corresponding frequency shift ~ - nw0 is thus k0nw1 , or the same. . • 

as obtained for the two other. choices of f 0(w) in Eq~. {4.4) and {~.8). 

However, the stability criterion found from the Gaussian 

distribution differs drastically'from Eq. (4.9). The value of o 

necessary for stability is found by solving the transcendental~equation 

. (4.16) 

where we have used Eq. (4.14) in the right-hand side of Eq. {4.12). 

will not pursue this c~i terion further, but merely note that the. value' 

.· of o . necessary. for stability depends logarithmically on V • not 

directly as in Eq.·(4.9).r' For .numerical computations Eq. (4.16) can 

prove extremely useful •. 

Consider now a distribution function f
0

{w), which has nonze~o 
L . 

values for only a finite range of W. It is easy to see that for such 

a (physically realistic) function it is impossible to s~tisfy the 

dispersion ··relation with real w if t-1
1 

lies outside the range in which 

:r0 is nonzero. This can be seen by writing Eq. (4.iO).in the form 

nk
0 

- ·(U + iV) 
u2 + ~~-::a I • 

· W=W · .· . 1 

(4.17) 
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\ 
where cP indicates the Cauchy principle value. The ~quat ion cannot be 

'<i.,.i 

satisfied by a real val).le of v1
1 

if (df0/dW)I W=Wl is z·~ro. Furthermore, 

it can be shown that .. any w1 havine; a. :real part outBid~ the ranse of 

·• ·· · nonzero :r
0

(w) has an imagi.nary part with a sign corresponding to an 

instability~ The value of' Re w1 ha.s bee~ seen to be,~ insensitive to 

the f'orm of :r0 (w), so we can deduce a necessary condition for stability, 

namely the range· of :r 
0 

(W.). must include W 
1

• · Bec~use V ·is so small 

·compared to U , this necessB.ry condition is a_very good approximation 

. · .. to a suff'icient condition.. Quantitatively we have th~ f'requency spread 

' ... 
.,.·, 

, ... 
··'in t·h~ ·be(W ·i.\w

8 
~ 2k

0
o '· and so 

i .......... ' .. . . ' ' 

I •,:'• o • ., <'" ~ ~-. 

II ,, 
{4 .18;) 

• 1_, ·, 

.·is the condition :ror stability. Evaluating this :ror a vacuum tank of' 

circular cross section,,~e have f'rom Eqs. (3.ga~; 

t" • 

,· .A. . {
2

· [21r(f df/dE)Ne2 1112 
· . w > [ 1 + 2 tn ( b I a) ]J . 

s· , R 2 
(4.19) 

' ' - y ·' 
I 

·.·.This result is algebraically just the criterion f'or suppression of th~ 

negative-mass instability (but there, of course, df'/dE is negative 

. and its· absolute value appears in the f'orm~a). 4 
This last result · 

· .. has the· geometric f'a.ctor appropriate to the circular geometry, and 

is independent of' n. We must remember'however, that Eq. (4.19} is 

. valid only f'or n << yR/b~ The more general ~ase can be handled 

with Eqs. (4.la) ~d (3.10~)'. The stability criterion is independent. 
'• ' 

of the surf'ace ~esistivity a in this limit of highly conducting 

surfaces. ,·, 
'·\ ., 

. '~ 

'-· 

'' 
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Equation·.(4.19) may impose more severe desisn requirements·· 

on a high-intensity accelerator than those necessary to circumvent 

the negative-mass instability. This is because the negative-mass 

instability ia possible only if the energy is above the transition 
I , 

energy where jdf/dEI is usually small and y may be large. But 

Eq. (4.19) must be .applied near injection in an AGS. The absence 

of any observed effect in present-generation machines--in contrast 
~ 

to the observed negative-mass instability in Saturne, the Cosmotron. 

and the Bevatron7--must be laid to the rather large energy. spread 

. . from the linac injectors. 

'' . · .. ' 

. ... ' 

·'. · .. 

•. ~ .• t 
: 'j 

e , ... ,..-., ;,, 

'·.< 
···t 

... -~ . 

·. ~· 
. t .. 

,· ... 

·• 

. ',-' ... 

'II· . 
'' I 

. ·._, 
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.! 
'l V. ·NUMERICAL EXAMPLE 

~;h 

f. . . 
As a. numerical example ve take the MURA 40-MeY· -electron accelerator 

. ~. 

;. 

l 
\ 

· · · with parameters as listed in Tables I and II. \ole assume ~he conductivity 

·• . . ' . ( 17) -1. 
of the valls to be that of aluml.num-. namely C1 .= 3 >< 10 sec . ~ 

Table III shows the results of' numerical calculations for U and v. 
as well as a comparison vith the analytic formulas of Eqs. (3.9). ·The 

agreement ~n the values of V is seen to be excellent. although the 
., 

geometry is remote from a circular situation and; n is not much less 

~ ... . ' than yR/b. Tabie.IV gives results for the growth time in the 

. ~ ,, . ; 
,. .... 

\. 

' ' 

'} 

--; ... :.· absence of frequency spread t 0, and for the frequency spread t.ws re-
. '!. 

is taken at two values bracketing 
. I 

quired for st~bility. In Table V, N 
I 

. ·. ,.· the experimental range. and ~w is expressed in terms of a requisite 
•.: .. ··. '' .. ·;'' . ' s ' . 

·. ···energy spread ~Es on the assumption that the frequency spread is caused 

·;- · ,. solely by an energy spread. The numbers are in semiquantitative 

··::·· ... 

• agreement with observation, with the ~E being closer to observations s 
6 , than the1 to· The growth time t 0 is a function of the resistivity ·of 

g • • <~ .. . tbe ·walls and coul·d be co.nsiderably reduced if the effective. resistivity. 

;·. :· ·· _of the walls vere higher than the nominal value (for aluminum) used in 
.. ' _· 

. •. 

- .. ·.··· 

. '': . 

.. 

these theoretical calculations • 

.. , ... 
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Table I. Geometrical parameters that are employed in~the numerical example 
' ' 

and that approximate conditions in the MURA 40-MeV·.·electron acce1eratol". t 

The dimensions are definedin Fig.?. .·. 

Case n R (cin) h (em) w (em). ~0 (em) · 6 (em) 

. '' ... '. 

. A. l ':'.125 5.4 . 100 15. .., l.O 
.· 

B' 10 125 5.4 100 15 1.0 

10 140 5.4 100 30 1.0' • 1, ;.1-· ··'· 
" • ,: f 

·:.·- : 

D 10 140 5.4 100 30 2.0 i\. 
' 

'. . .. ·. ~ .. ; . 

;_. ·, 

I . 
~ . ··, 

'. 

•.'r . 

. t• 

- ., -·~ . ·. 

!· 
-!-, 

. .". 

: . . -.,. . •. 
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Table II. Beam. parameters employed .in the numerical example. The 

quantity K corresponds to a :field-index parameter .o:t' .9 .• 3. 
-. ' 

. ·, ... . ~· '· 

. ' ; .. \~ . '· ========:;::::::====:::::::::=====··'' 

I-

.; 
(' J• 

· ... 

. ,·,,, ',• 

' ~, ... 

. , ~·· Case. 

' ' 

,. 
'· '. 

.. 
'· .. A 

··.-... ·;·-
.,;-, 

D 

. ~. 

-, ., 

. t 

. _·-, 

. . '-

-~. 

':: 

' .. ~ 

"'J ••• ,. 

< j _, • 
:_, ; .. · 

.. 

· .. ,;,~., .;· E 'dt' ' 2 1. 
· ·ac: · · ·'·_k

0
('s_ ec:;" .· erg-.-) -_raE. 'wo(cm/sec)· . 

~ ' . 

0.5528 .. ·. 1.2 ' : ~ 
' ' 8 

1.33<~· 10 1,96- ··0. 575 )( 1022 

0.5528 1.2. 
' . 8 

1.33 ·X·lO 1·.96' 0.575 )( ro22 

0.8660 2.0. 1.86 )( ,, 10 8 .2.04 0.702 )( 
.~ 

1022 

o.e66o 
.. 
-1.86 108 '' 2.04 2.0' )( 0.702 ~ 1022 

.' .. ;. :" ~ .. . . 

I 

··-. 

·•. -_ . 

_ .. _ . 

_ ..... 

. :_;_ .. :_·.· ',· 

. . . :.:-_:, 

. ' , ·,.- .... -

. ' 

.. 
" ·~ .~ ' 

\\t 
'' 

'"· 
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Table III~ Values of the quantities U and V • as defined in Eq. (3.9).· 

The conductivity. in this example, is taken to be that of aluminum; 

namely., ·a =: ·: 3 x to1! .sec -1 •. In the evaluation of Eq. ( 3. 9a) • b has been 

taken as h/2. and a as ·~/2. It can be seen that thtr analytic formula 

is an exceedingly good approximation--in this example, at least--to the 

numerical computations. 

~ 

Employing Eq. {3.9a.) EmmJ.oying Eq. (3.10a) 

b''."·::· * x1o
20 

(ergs) · 
v 26 u 20 v . 26 

ase . N xlO. (ergs) if xlO. (ergs) i xlO (ergs) 
- !L-

A . 0.561 : . 39.6 o.rn4 39.5 

.B .. 5.61 . 125 : 7.69 .. 121 
;. 

c 2.02 232 2.47 .229-1 

D 1.38 232 1.91 226. 

-·· .... : 

·•. 

.. 
·' ' . 

·.· ... 
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Table IV. ' Growt·h time and frequency spreads requireci''~ror stability in 

t,he numerical example. The quantity ·1' 0 is computed v~th Eq. (4.5). 

· wh~reas t.w .is. evaluated with Eq. (4.19); in both cases the last two ,. s ' . . ' . . 
·!"·_ 

. · .. -

·.columns of Table III ~e used.·- .The· quantity t.E is the energy spread ' s . 

·in the beam. required: to· give· the· f'r~quency spread t.w
6 

(and hence 

stability),. ·under the· assumption ·that the. frequency spread. arises 

solely from energy spread • ., 

. Case N1/ 2 T · (sec) 
. . 0 

t.Es · 6 
-r-r2 ~ 10 · (k.V) 
NJ./ t:. I . 

tj 

. B. 

c 

·D 

-.. 

. .--

',··· .. 

.. 

. 13.5 . 30 

13.0 30 

8.4 22 

·19 

,·. 

' ' 
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Table v •. Growth times in the absence of energy spre~d. and energy spread 

)· 
required for stability for two different values of the total number of 

I 

'., 
;;,::l p&U"ticles in an example approximating conditions in the MtJRA. 40-MeV-

electron accelerator. 
',, 

'' 
·' lO~. ' ' 1010 N = N = 

Case 
to (msec) AE (kV) -ro (msec) AE (kY) 

s s .. .. 

A 59.0 0.3 59 . '- . · 3.iO .·· 
' 

.. 190 0.3 19 3.0 t r 
I· 

I 

'· c . ~-.~ ·. 52 )0.22 5.2 '2.2 
' 

D 47 0.19 4.7 1.9 

\ 
' ... 

. \ •.. 

•·' 

' ' 

·• 

'',>' r 
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Fig. l Geometry of beam and tank of circular cross section. 
I!· 

... 
Fig. 2 ·Geometry of beam andtank of-rectangular cross section •. 
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