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African and Asian Mitochondrial DNA Haplogroups Confer 
Resistance Against Diabetic Stresses On Retinal Pigment 
Epithelial Cybrid Cells In Vitro

Andrew H. Dolinko1,2, Marilyn Chwa1, Shari R. Atilano1, M. Cristina Kenney*,1,2

1Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, 
California, 92697

2Department of Ophthalmology, University of California Irvine, Irvine, California, 92697

Abstract

Diabetic retinopathy (DR) is the most common cause of blindness for individuals under the age of 

65. This loss of vision can be due to ischemia, neovascularization and/or diabetic macular edema, 

which are caused by breakdown of the blood-retina barrier at the level of the retinal pigment 

epithelium (RPE) and inner retinal vasculature. The prevalence of diabetes and its complications 

differ between Caucasian-Americans and certain minority populations, such as African-Americans 

and Asian-Americans. Individuals can be classified by their mitochondrial haplogroups, which are 

collections of single nucleotide polymorphisms (SNPs) in mitochondrial DNA (mtDNA) 

representing ancient geographic origins of populations. In this study, we compared the responses 

of diabetic human RPE cybrids, cell lines containing identical nuclei but mitochondria from either 

European (maternal European) or maternal African or Asian individuals, to hypoxia and high 

glucose levels. The African and Asian diabetic ([Afr+Asi]/DM) cybrids showed (1) resistance to 

both hyperglycemic and hypoxic stresses; (2) downregulation of pro-apoptotic indicator BAX; (3) 

upregulation of DNA methylation genes, such as DNMT3A and DNMT3B; and (4) resistance to 

DNA de-methylation by the methylation inhibitor 5-Aza-2’-deoxycytidine (5-Aza-dC) compared 

to European diabetic (Euro/DM) cybrids. Our findings suggest that mitochondria from African and 

Asian diabetic subjects possess a “metabolic memory” that confers resistance against 

hyperglycemia, hypoxia, and demethylation, and that this “metabolic memory” can be transferred 

into the RPE cybrid cell lines in vitro.
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1. INTRODUCTION

Diabetes has become one of the most widespread disorders affecting people worldwide. The 

number of individuals in the United States with this disease has more than doubled over the 

last decade such that 9.3% of Americans over the age of 20 (a population of at least 29 

million people) as well as an estimated 8.5% of the global adult population, suffer from 

diabetes.[1–3] Minority populations such as African-Americans are particularly more likely 

to be diagnosed with diabetes and to suffer from its complications compared to Caucasians. 

Individuals over the age of 45 years old are much more likely to be diagnosed with diabetes 

as compared to those younger than 45. Obesity is a strong risk factor for developing diabetes 

as approximately 87.5% of all diabetic individuals have a BMI of 25 kg/m2 or greater.[1] 

Diet and physical activity strongly influence the risk of developing diabetes, as therapy 

combining increased exercise with improved diet reduced the risk of developing diabetes in 

individuals with impaired glucose tolerance.[4] Poor health care coverage due to lack of 

insurance or access to health care is associated with increases in missed diabetes diagnoses 

and worse blood glucose, blood pressure, and overall well-being.[5,6]

Diabetes induces a shift in cellular metabolism due to decreased cellular glucose uptake. 

Since diabetes and its secondary complications arise from this altered metabolic 

environment, mitochondria may play a role in the progression of this disease. Mitochondria 

are unique organelles that possess their own genome. Individuals can be categorized by their 

mitochondrial DNA (mtDNA) into haplogroups, based on specific sets of ancestrally-derived 

single nucleotide polymorphisms (SNPs).[7] Some of these sets of SNPs modify the activity 

of protein complexes involved in mitochondrial oxidative phosphorylation (OXPHOS), 

influencing the risk and severity of certain diseases. For instance, mitochondria with 

haplogroup M mtDNA have more OXPHOS Complex I activity than those with haplogroup 

N mtDNA; consequently, mtDNA mutations associated with diseases such as Leber’s 

Hereditary Optic Neuropathy (LHON) are more penetrant in haplogroup N individuals than 

those of haplogroup M.[8] Within European haplogroups, haplogroups H and J have more 

tightly-coupled OXPHOS and more mtDNA per cell than the Uk haplogroup; however, this 

more efficient OXPHOS is associated with increased ROS generation, which is correlated 

with an increased risk of neurodegenerative disease in individuals of haplogroups H and J.

[9,10]

Certain mtDNA mutations and polymorphisms are also known to induce or increase the risk 

of developing diabetes. The A3243G mutation, an abnormal change not associated with any 

haplogroup, occurs within the coding sequence for mitochondrial tRNA for leucine and is 

associated with Mitochondrial Inherited Diabetes and Deafness (MIDD) disorder.[11,12] 

Patients with this condition show damaged, dysfunctional mitochondria in pancreatic cells, 

which may contribute to decreases in both exocrine and endocrine function.[13,14] Cells 
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possessing mitochondria with this mutation demonstrate a preference for glycolysis over 

oxidative phosphorylation and an increase in reactive oxygen species.[15]

While the A3243G mutation may induce diabetes, certain normally-occurring mtDNA 

variants may modify the risk of developing diabetes and its complications. For example, 

diabetic patients of haplogroup H, the most common European haplogroup, are more likely 

to develop more severe proliferative diabetic retinopathy (PDR), characterized by increased 

retinal neovascularization. However, patients of haplogroup Uk are at a decreased risk for 

PDR.[16] A large study performed by the Wallace laboratory in Taiwainese individuals 

showed that the N9a, F4, and D5 haplogroups are at much lower odds of having diabetes 

than others, suggesting that these haplogroups may be protective.[17]

Diabetic retinopathy (DR) is the leading cause of blindness in adults under the age of 65.

[18] In diabetic macular edema (DME), one form of DR, fluid accumulates in the neural 

retina, particularly in the fovea due to breakdown of the blood-retina barrier (BRB). One 

component of the BRB is the retinal endothelial cells (RECs) lining the vessels of the inner 

retina and forming a tight barrier governing molecular flow to retinal cells. The second 

barrier component, between the choroid vasculature and the outer retina, is formed by tight 

junctions of the retinal pigment epithelial (RPE) cells. However, in DME, this collection of 

barriers weakens, allowing fluid, protein, and lipoprotein from blood into the layers of the 

retina.[19]

A major factor for DR is an increase in vascular endothelial growth factors (VEGFs). 

Members of the VEGF family, particularly VEGF-A, are found at increased levels in the 

eyes of DR patients as compared to eyes of healthy individuals.[20,21] In response to the 

ischemic diabetic environment, RPE cells, Müller glia, and retinal ganglion cells produce 

VEGF.[22] Upregulated VEGF signaling not only induces the production of new, leaky 

blood vessels but also increases permeability of the RPE layer.[23,24] To combat this, 

clinicians administer soluble (decoy) VEGF receptors or anti-VEGF antibodies into the 

vitreous of diabetic patients in order to significantly improve visual function and decrease 

neural retina thickness.[25–27] Despite this revolution in the treatment of DR, a remarkable 

percentage of diabetic patient eyes, between 40–50%, are resistant to anti-VEGF therapy.

[28,29] It is therefore critical to characterize other cellular and molecular targets that govern 

blood-retina barrier (BRB) function in order to better treat DR and DME.

Although most DR and DME studies have focused on RECs and pericytes lining retinal 

vessels, more recently researchers have become more interested in the role of RPE cells in 

DME. Among other functions, the RPE transports nutrients from the choroidal vessels to the 

rod and cone photoreceptors and breaks down degraded outer segments of photoreceptors. 

While clinical and scientific data suggested that RPE function is compromised in DR, it has 

been difficult to determine whether DME leakage was due to an increase in RPE 

permeability or an inability to compensate for leakage of the inner retinal vasculature.

[30,31] However, injections of small FITC-dextran molecules in a diabetic mouse model 

have shown both the retinal vasculature and the RPE leak, demonstrating that the RPE 

contributes to fluid accumulation in DR and DME.[32]
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To isolate the mitochondrial influence on disease, our laboratory has developed a cybrid 

(cytoplasmic hybrid) model. To generate cybrids, cells from a parent line are treated with 

low-dose ethidium bromide to result in mtDNA disruption and degradation while keeping 

nuclear DNA intact, resulting in mitochondria-free Rho0 cells. These cells are then fused 

with platelets, which contain mitochondria and mtDNA, but no nuclear DNA, to form 

cybrids.[33] Since the resulting cybrids have the same nuclear DNA but mitochondria from 

different individuals, the biochemical and molecular changes seen in culture are due to the 

modulation by the mitochondria. Cybrids are an excellent system to investigate retrograde 

signaling (from mitochondria to nuclei) and mitochondrial influences on cell behavior. 

Using this model, our laboratory has discovered that mitochondria of specific haplogroups 

modify transcription of factors involved in inflammation, complement activation, and 

apoptosis that confer risks of developing retinal diseases such as AMD.[34–38]

In this study, RPE cybrids with mitochondria from diabetic (DM) or non-diabetic (Non-DM) 

patients of European (Euro) or African and Asian ([Afr+Asi]) haplogroups were generated 

and analyzed to determine if the mtDNA genetic background and the diabetic status affected 

RPE cell homeostasis. Our results show that cybrids containing mitochondria from African 

and Asian diabetic subjects have increased resistance to both high glucose and hypoxia 

along with altered methylation patterns compared to Euro/DM cybrids. Significantly, our 

findings suggest that mitochondria from [Afr+Asi] subjects are modified in a manner 

consistent with a „molecular memory’ that can be transferred to other cells in vitro and may 

confer adaptive advantages to cells. Future studies are needed to further understand the 

mechanisms of the „molecular memory’ and its role in diabetic pathology.

2. MATERIALS AND METHODS

2.1 Human Subjects

All research involving human patients was approved by the University of California, Irvine’s 

Institutional Review Board (#2003–3131). Written, informed consent from all enrolled 

patients was obtained. Clinical investigations were conducted as per the ethical principles in 

the Declaration of Helsinki.[39]

2.2 Cybrid Generation

Patient platelets were collected in tubes containing 3.2% sodium citrate, isolated by several 

centrifugations, and the resulting pellets were resuspended in Tris buffered saline (TBS). 

ARPE-19 cells, a spontaneously immortalized RPE cell line (American Type Culture 

Collection (ATCC), Manassas, VA), were depleted of mtDNA (Rho0) through serial 

passages in low-dose ethidium bromide and then cultured in standard culture media (10% 

FBS, 100 units/mL Penicillin, 100 μg/mL Streptomycin, 25 μg/mL Fungizone 

(Amphotericin B: Omega Scientific, Torzana, CA), and 50 μg/mL Gentamycin in DMEM/

F12) supplemented with uridine.[40] Cybrids were generated by polyethylene glycol-

mediated fusion of platelets with Rho0 cells according to modified procedures used by 

Chomyn et al.[41] Integration of the mitochondria into the Rho0 ARPE-19 cells was verified 

through a combination of polymerase chain reaction (PCR), restriction enzyme digestion of 

these PCR products, and mtDNA sequencing to determine the haplogroups of the 
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mitochondria in each cybrid.[42] The cohorts of Euro and [Afr+Asi] cybrids were generated 

from individuals of similar ages (p = 0.61), genders, and DM versus Non-DM status (Table 

1). Within the Euro and [Afr+Asi] cohorts, cybrids were paired by haplogroup and age 

within 12 years, but not gender matched (boxed). Clinical information on the diabetic 

patients from whom we acquired mitochondria show that most subjects had type 2 diabetes, 

and the majority had some form of diabetic retinopathy (Table 2). When we first constructed 

our cybrid library, we only had access to this limited clinical information.

In the present study, our cybrids were cultured in a standard DMEM:F12 media similar to 

the recommended growth media for ARPE-19 cells according to ATCC. The recommended 

growth media contains 3.151 g/L, or ~17.5 mM D-Glucose.[43,44] When our cybrids were 

cultured in media containing 5.5 mM glucose, they depicted poor growth rates and cell 

viability (data not shown).

2.3 High Glucose and Cobalt Chloride Metabolic Activity Assays

For each experiment, cells from a diabetic cybrid line and a non-diabetic, age-matched, and 

general haplogroup-matched cybrid line were simultaneously grown in similar treatment 

conditions. Cells were plated at 20,000 cells/well in a 96-well plate and incubated overnight 

at 37°C with 5% CO2. For each sample, cultures were run as sextuplets. Experiments were 

repeated three times.

2.3.1. High Glucose –—Cybrids(n = 3 Euro/Non-DM and Euro/DM, 4 [Afr+Asi]/Non-

DM and [Afr+Asi] DM) were cultured for 48 hours in standard media (17.5 mM glucose), 

medium glucose media (32.5 mM glucose, ~2x higher than standard), or high glucose media 

(62.5 mM glucose, ~4x higher than standard) with a final volume of 100 μL per well. Since 

a variety of D-glucose concentrations (25 mM and greater) have been used as diabetic 

conditions in the literature, we chose 32.5 mM (~2x) and 62.5 mM (~4x) as our higher 

glucose conditions.[45]

2.3.2. Cobalt Chloride –—Cybrids (n = 3 Euro/Non-DM and Euro/DM, 4 [Afr+Asi]/

Non-DM and [Afr+Asi] DM) were cultured for 48 hours in standard media supplemented 

with 0 μM, 25 μM, or 50 μM cobalt(II) chloride (CoCl2, MilliporeSigma, St. Louis, MO) 

with a final volume of 100 μL per well.

2.3.3. MTT Assay –—After incubation, 10 μL MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide) reagent (Biotium, Hayward, CA) was added to each well for 2 

hours, and then the reaction was quenched by adding 200 μL DMSO. The concentration of 

MTT in the stock solution of Biotium’s reagent is proprietary. However, the manufacturer’s 

protocol indicates that the reagent should be diluted 1:10, as was done in the original 

protocol by Mosmann, suggesting that the MTT concentration in the well is approximately 

0.5 mg/mL.[46] The plates were read at 570 nm (MTT) and at 630 nm (background) using 

an absorbance reader (Biotek Elx808 Absorbance Reader, Winooski, VT). Background was 

then subtracted from the MTT values. Within each cybrid line, values were normalized to 

the average standard glucose media value.
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2.4 High Glucose and Hypoxia Live Cell Assays

For each experiment, cells from a diabetic cybrid line and a non-diabetic, age-matched, and 

general haplogroup-matched cybrid line were simultaneously grown in similar treatment 

conditions. Cells were plated at 500,000 cells/well in a 6-well plate and incubated overnight 

at 37°C, 5% CO2. For each sample, cultures were run as triplicates.

2.4.1. High Glucose –—Cybrids (n = 3 Euro/Non-DM and Euro/DM, n = 4 [Afr+Asi]/

Non-DM and [Afr+Asi]/DM) were cultured for 48 hours in standard media or high-glucose 

(~4x higher than standard) media with a final volume of 2 mL per well.

2.4.2. Hypoxia –—Cybrids (n = 6 Euro/Non-DM, n = 4 Euro/DM, n = 6 [Afr+Asi]/Non-

DM, n = 4 [Afr+Asi]/DM) were cultured for 48 hours in 2 mL standard media at 37°C with 

5% CO2 in either room air (~21% O2) or 2% O2 (MCO-18M O2/CO2 Incubator, Sanyo, 

Osaka, Japan). A level of 2% O2 was chosen because it induces sublethal cell stress, as has 

been shown by others.[47,48] Based on animal data and diffusion modeling, the RPE is 

exposed to 50–60 mm Hg O2. The 2% O2 used in our cybrid studies represents less than 1/3 

of this level.[49] Experiments were repeated twice.

2.4.3. Trypan Blue Assay –—After incubation, cells from each well were trypsinized 

and collected separately. Cells were pelleted by centrifugation at 200 x g, subsequently 

resuspended in 500 μL standard media and transferred to a sample cup. Numbers of viable 

cells were counted using a ViCell Cell Viability Analyzer (Beckman Coultier, Brea, CA) 

using the trypan blue dye-exclusion method. Trypan blue is a diazo-dye that stains dead cells 

blue. This dye cannot permeate intact cell membranes, thus excluding live cells. An average 

of 50 images was acquired for each sample.

2.5. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

2.5.1. RNA Extraction & cDNA Generation –—Euro/Non-DM, Euro/DM, [Afr

+Asi]/Non-DM, and [Afr+Asi]/DM cybrids (n = 4 per group) were grown in duplicate in 6-

well plates at 500,000 cells/well and incubated overnight at 37°C with 5% CO2. Cells were 

then cultured in in 2 mL standard media at 37°C with 5% CO2 in either room air (~21% O2) 

or 2% O2 for 48 h. For each experiment, diabetic and non-diabetic cybrid cells were 

matched for age and haplogroup, and were simultaneously grown in similar treatment 

conditions. Duplicate cultures grown in identical conditions were combined and pelleted by 

centrifugation before isolating RNA using a PureLink RNA Mini Kit (Invitrogen, Waltham, 

MA) as per the manufacturer’s protocol. RNA was quantified on a NanoDrop 1000 

spectrophotometer (Thermo Scientific, Waltham, MA) and reverse-transcribed into cDNA 

using the Superscript IV VILO Master Mix with ezDNase Enzyme (Invitrogen) as per 

manufacturer’s protocol.

2.5.2. qRT-PCR Analyses to Measure Gene Expression Levels –—qRT-PCR 

was performed on a StepOnePlus Real-Time PCR System (Applied Biosystems, Waltham, 

MA) to examine transcripts of angiogenesis, mitogenesis, apoptosis, and DNA methylation 

genes. Samples (Euro/Non-DM n = 4, Euro/Non-DM n = 4, [Afr+Asi]/Non-DM n = 3–4, 

[Afr+Asi]/DM n = 3–4) were analyzed in triplicate, using Power SYBR Green Master Mix 
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(Applied Biosystems) and primers representing specific pathways (KicqStart, 

MilliporeSigma and Quantitect, Qiagen, Germantown, MD) as listed in Supplementary 

Table ST1. HPRT1 was used as the housekeeping gene for all experiments. qRT-PCR data 

was analyzed by the ΔΔCt method where ΔCt = [Ct (threshold value) of the target gene] – 

[Ct for HPRT1], and ΔΔCt = ΔCt of the treatment condition (hypoxia) – ΔCt of the untreated 

condition. Fold changes in transcript compared to the untreated condition were calculated as 

follows: fold change = 2-ΔΔCt.

2.6. Analysis of Bioenergetics

Bioenergetic profiles of Euro/Non-DM (n = 4), Euro/DM (n = 4–5), [Afr+Asi]/Non-DM (n 

= 4), and [Afr+Asi]/DM cybrids (n = 4–5) were determined by measuring their oxygen 

consumption rates (OCR) via a Seahorse XF24 Extracellular Flux Analyzer (Seahorse 

Bioscience, Billerica, MA). Cybrids were plated at a density of 50,000 cells/well in quintets 

and grown overnight at 37°C with 5% CO2. Cybrids were then washed with XF Running 

Media (unbuffered DMEM, 17.5 mM D-Glucose (MilliporeSigma), 200 mM L-glutamine 

(Invitrogen) and 10 mM sodium pyruvate (Invitrogen), pH 7.4) and then grown in XF 

Running Media for 1 h at 37°C without added CO2.

In the Seahorse XF24 Extracellular Flux Analyzer, drugs were sequentially injected into the 

wells as follows: First, 1 μM Oligomycin (inhibits ATP synthase), then 1 μM FCCP 

(Carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone, uncouples the inner mitochondrial 

membrane to induce maximum respiration), and finally 1 μM Antimycin A plus 1 μM 

rotenone (inhibitors of Complexes III and I of the electron transport chain, respectively, that 

halt all mitochondrial respiration). Values were normalized to protein content per well. Total 

protein was harvested from each well in 40 μL of RIPA (Radioimmunoprecipitation Assay) 

buffer (MilliporeSigma) containing protease inhibitor (MilliporeSigma) and Phosphatase 

Arrest (Gbiosciences, St. Louis, MO) overnight at 4°C. After brief centrifugation, lysates 

were mixed with QuBit Assay Buffer (Invitrogen) and protein content was measured in a 

QuBit 2.0 fluorimeter (Invitrogen). Data was collected and processed using Wave 2.6 

software (Seahorse Biosciences). Bioenergetic characteristics were calculated as follows: 

For ATP Production: 100% * ([Baseline OCR] - [OCR After Oligomycin]) / [Baseline 

OCR], which measures the percent of OCR used to generate ATP through the ATP synthase 
via the electron transport chain. For Spare Respiratory Capacity: 100% * ([OCR After 

FCCP] - [Baseline OCR]) / [Baseline OCR], which measures the percent of additional OCR 
available in response to bioenergetic stresses. For Proton Leak: 100% * ([OCR After 

Oligomycin] - [OCR After Antimycin A and Rotenone]) / [Baseline OCR], which measures 

the percent of OCR lost to protons leaking across the inner mitochondrial membrane, down 

the electrochemical gradient, but not moving through the ATP synthase.

2.7. Total Global Methylation

Total DNA methylation in Euro/Non-DM (n = 5), Euro/DM (n = 4), [Afr+Asi]/Non-DM (n 

= 3), and [Afr+Asi]/DM cybrids (n = 4) was measured using the MethylFlash Global DNA 

Methylation (5-mC) ELISA Easy Kit (Colorimetric) (Epigentek, Farmington, NY) according 

to the manufacturer’s protocol.
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Cybrids were cultured 48 hours in standard media supplemented with 0 μM or 250 μM 5-

Aza-dC (MilliporeSigma), an inhibitor of DNA methyltransferases. Media was changed 

daily. Subsequently, cells were trypsinized and pelleted, and finally DNA was extracted from 

the cultures using the DNeasy Blood & Tissue Kit (Qiagen), as per the manufacturer’s 

instructions.

For the ELISA assay, 100 ng of sample DNA was bound to strip wells and incubated with an 

anti-5-methylcytosine (anti-5-mC) antibody. After washing and adding developer reagent, 

enzymes on bound antibodies induce a chemiluminescent reaction. The products of these 

reactions were quantified by absorbance on a plate reader at 450 nm. OD values were 

converted to %5-mC through calculations described in the manufacturer’s protocol. Samples 

were run in duplicate.

2.8. Statistical Analysis

Experimental data were compared using Unpaired Student’s t-test or One-Way ANOVA with 

Bonferonni’s Post-Test (GraphPad Prism, version 5.0, GraphPad Software, CA). p-values 

were adjusted using a Bonferonni correction. Raw p-values were multiplied by the number 

of comparisons in an experiment to get adjusted (reported) p-values. Data on the T16189C 

polymorphism was compared using the Pearson Chi-Squared test through the Simple 

Interactive Statistical Analysis website (SISA; http://www.quantitativeskills.com/sisa/

index.htm). Results with an adjusted p ≤ 0.05 were considered statistically significant.

3. RESULTS

3.1. [Afr+Asi]/DM cybrids are resistant to hyperglycemic stress

Since diabetes is characterized by hyperglycemia, cybrids were first challenged with either 

2x (medium glucose) or 4x (high glucose) glucose compared to the standard culture media 

(standard glucose; normalized to 1 for each group). There were significant decreases in 

metabolic activity (mean ± SEM) in medium and high glucose for Euro/Non-DM cybrids 

(medium glucose: 0.76 ± 0.02 relative metabolic activity of standard glucose, p < 0.0006; 

high glucose: 0.65 ± 0.02, p < 0.0006), and Euro/DM cybrids (medium glucose: 0.82 ± 0.02, 

p = 0.0048; high glucose: 0.72 ± 0.02, p < 0.0006) compared to the standard glucose-treated 

samples (Fig. 1A). The [Afr+Asi]/Non-DM cybrids also had decreased metabolic activity 

compared to the standard glucose-treated samples (medium glucose: 0.82 ± 0.02, p < 

0.0006; high glucose: 0.72 ± 0.02, p < 0.0006). In contrast, the metabolic activity of [Afr

+Asi]/DM cybrids did not significantly change in medium glucose (0.93 ± 0.02, p = 0.086) 

or high glucose (0.93 ± 0.02, p = 0.070) as compared to the standard glucose-treated 

samples (Fig. 1B). [Afr+Asi]/Non-DM cybrids had significantly lower viability than 

similarly-treated [Afr+Asi]/DM cybrids at both medium glucose (p < 0.0006) and high 

glucose (p < 0.0006). Euro/Non-DM cybrids treated with medium glucose had no significant 

difference in metabolic activity compared to similarly-treated Euro/DM cybrids (p = 0.17) 

while Euro/Non-DM cybrids treated with high glucose had a statistically significant increase 

in metabolic activity compared to similarly-treated Euro/DM cybrids (p = 0.018) (Figs. 1A, 

1B).
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Next, we compared these cybrids using the trypan blue dye exclusion assay. The ratio of live 

cells in a treatment condition to live cells in a standard condition reflects cell viability. We 

discovered that high glucose did not significantly decrease live cell numbers in [Afr

+Asi]/DM cybrids compared to cells grown in standard glucose (0.90 ± 0.04 relative ratio of 

live cells of untreated, p = 0.74) while there were significant decreases in live cell numbers 

for [Afr+Asi]/Non-DM cybrids (0.77 ± 0.03, p < 0.0006), Euro/Non-DM cybrids (0.84 ± 

0.04, p = 0.036), and Euro/DM cybrids (0.86 ± 0.02, p = 0.0024) compared to cells grown in 

standard glucose. The relative viable cell ratio for Non-DM cybrids treated with high 

glucose was not significantly different from than that of DM cybrids in high glucose for both 

Euro (p ≈ 1) and Afri+Asi groups (p = 0.29) (Fig. 1C).

Experiments comparing treatment of ARPE-19 cells with high mannitol (60 mM, 17.5 mM 

glucose) versus high glucose for 48 hours reveal that mannitol induces a significant decrease 

in metabolic activity measured by MTT (Mannitol: 0.79 ± 0.06, p = 0.019; Glucose: 0.89 ± 

0.04, p = 0.10), suggesting that high osmolarity affects metabolic activity (Fig. S7A). 

However, mannitol did not induce a decrease in live cell numbers measured by trypan blue 

dye-exclusion assay while high glucose did (Mannitol: 1.00 ± 0.03, p = 0.89; Glucose: 0.91 

± 0.02, p = 0.0025) (Fig. S7B). Overall, these findings suggest that the [Afr+Asi]/DM 

cybrids uniquely resist hyperglycemic stresses.

3.2. [Afr+Asi]/DM cybrids are resistant to hypoxic stress

While the [Afr+Asi]/DM cybrids show resistance to decreases in metabolic activity after 

exposure to high glucose, we speculated that the cybrids may be more vulnerable to other 

types of stressors in the process, such as hypoxic stress that is often associated with diabetes. 

To test this, cybrids were grown in the presence or absence of cobalt chloride (CoCl2), a 

chemical used to mimic the hypoxic state. MTT assay data revealed that at the highest (50 

μM) concentrations of CoCl2, metabolic activity did not significantly decrease for Euro/DM 

cybrids (0.98 ± 0.01, p = 0.85) but did significantly decrease for [Afr+Asi]/DM cybrids 

(0.93 ± 0.01, p < 0.0006), Euro/Non-DM cybrids (0.91 ± 0.02, p < 0.0006) and [Afr+Asi]/

Non-DM cybrids (0.79 ± 0.01, p < 0.0006). Interestingly, at 50 μM CoCl2, metabolic activity 

was significantly increased in DM cybrids compared to Non-DM cybrids for both European 

(p < 0.0006) and African and Asian groups (p < 0.0006). Lower levels (25 μM) of CoCl2 

significantly decreased metabolic activity for all cybrids (Euro/Non-DM: 0.88 ± 0.01, p < 

0.0006; Euro/DM: 0.91 ± 0.02, p < 0.0006; [Afr+Asi]/Non-DM: 0.89 ± 0.01, p < 0.0006; 

[Afr+Asi]/DM: 0.88 ± 0.01, p < 0.0006). These levels were not significantly different from 

those of similarly-treated European (p = 0.63) or African and Asian groups (p ≈ 1) (Fig. 

2A,B).

To further investigate the response to hypoxia, cybrids were cultured in either room air or 

2% oxygen and numbers of live cells were measured using the trypan blue dye exclusion 

assay. The [Afr+Asi] cybrids grown in 2% oxygen significantly increased in live cell counts 

compared to similar cultures grown in room air (Non-DM: 1.20 ± 0.04, p < 0.0004; DM: 

1.14 ± 0.04, p = 0.0024) (Fig. 2D). There were no significant changes for Euro cybrids 

(Non-DM: 0.99 ± 0.03, p ≈ 1; DM: 0.99 ± 0.02, p ≈ 1) (Fig. 2C). In both experiments, only 
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the [Afr+Asi]/DM cybrids thrived in hypoxic conditions, suggesting that the [Afr+Asi]/DM 

cybrids resist hypoxic stress in addition to hyperglycemic stress.

3.3. [Afr+Asi]/DM cybrids have significant differential expression of BAX but not 
mitogenic markers

In response to the ischemic diabetic environment, RPE cells, Müller glia, and retinal 

ganglion cells produce VEGF.[22] To determine if our cybrids behave similarly, we 

performed qRT-PCR for VEGFA, finding that all cybrids significantly increased expression 

of VEGFA in hypoxic conditions compared to cybrids grown in room air. Gene expression 

in the room air cultures was assigned a value of 1. The VEGF transcript levels were 

increased in Euro/Non-DM cybrids (4.42 ± 0.24-fold, p < 0.0004), Euro/DM cybrids (4.41 ± 

0.65 -fold, p = 0.0076), [Afr+Asi]/Non-DM cybrids (5.50 ± 1.23 -fold, p = 0.043), and [Afr

+Asi]/DM cybrids (7.19 ± 1.50 -fold, p = 0.023) (Fig. 3A). However, HIF1A was 

downregulated for the majority of cybrids grown in hypoxia (Euro/Non-DM: 0.95 ± 0.14 -

fold, p ≈ 1; Euro/DM: 0.53 ± 0.06 -fold, p = 0.0008; [Afr+Asi]/Non-DM: 0.52 ± 0.12 -fold, 

p = 0.028; [Afr+Asi]/DM: 0.48 ± 0.10, -fold p = 0.0056) (Fig. S8A).

Wild-type ARPE-19 cells grown in 2% oxygen over a 36 hour time-course showed a 

decrease in HIF1A compared to untreated/baseline (6 hours: 0.79 ± 0.03 –fold, p = 0.022; 12 

hours: 0.56 ± 0.01 – fold, p < 0.0004; 24 hours: 0.48 ± 0.01 –fold, p < 0.0004; 36 hours: 

0.58 ± 0.02, -fold, p < 0.0004) (Fig. S8B). In contrast, after 12 hours of incubation in 2% 

oxygen, VEGFA levels increased compared to untreated/baseline (6 hours: 0.91 ± 0.08 –

fold, p ≈ 1; 12 hours: 1.74 ± 0.05 -fold, p = 0.0020; 24 hours: 3.92 ± 0.27 -fold, p = 0.0020; 

36 hours: 4.55 ± 0.10, -fold p < 0.0004) (Fig. S8C).

“Next, we performed qRT-PCR with representative markers of molecular pathways 

influenced by mitochondria. Only the [Afr+Asi]/DM cybrids showed a significant decrease 

in expression of pro-apoptotic indicator BAX in hypoxic conditions (0.84 ± 0.02 -fold, p = 

0.002) while the [Afr+Asi]/Non-DM cybrids showed a non-significant lower level in BAX 
(0.84 ± 0.10 -fold, p = 0.073). Remarkably, the European cybrids showed no significant 

change in BAX expression levels (Euro/Non-DM: 0.96 ± 0.10 -fold, p ≈ 1; Euro/DM: 1.01 ± 

0.18 -fold, p ≈ 1) (Fig. 3B). However, all cybrids grown in hypoxia demonstrated a decrease 

in expression of PPARGC1A, a master mitochondrial biogenesis regulator, compared with 

cultures grown in room air (Euro/Non-DM: 0.12 ± 0.01 -fold, p < 0.0004; Euro/DM: 0.31 ± 

0.11 -fold, p = 0.0024; [Afr+Asi]/Non-DM: 0.09 ± 0.02 -fold, p < 0.0004; [Afr+Asi]/DM: 

0.16 ± 0.04, fold p < 0.0004) (Fig. 3C). TFAM, a transcription factor downstream of 

PGC-1α that regulates mtDNA copy number and transcription, was not significantly altered 

in any of the cybrids grown in 2% hypoxic conditions (Euro/Non-DM: 1.10 ± 0.08 –fold; 

Euro/DM: 1.13 ± 0.19 -fold; [Afr+Asi]/Non-DM: 0.98 ± 0.06 -fold; [Afr+Asi]/DM: 0.97 ± 

0.11 -fold; all p ≈ 1) (Fig. 3D). Moreover, the mitochondrial copy numbers of Non-DM and 

DM cybrids were not significantly different for both groups of cybrids (Euro/DM: 0.84 ± 

0.19 – fold of Euro/Non-DM, p = 0.38; [Afr+Asi]/DM: 0.98 ± 0.13 – fold of [Afr+Asi]/DM, 

p = 0.89) (Fig. S9). Overall, these data suggest that Non/Euro DM mitochondria are unique 

in that they induce downregulation of BAX but not mitogenic genes in response to hypoxic 

stress.
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3.4. [Afr+Asi] and Euro cybrids have similar mitochondrial bioenergetics profiles.

The XF24 Extracellular Flux Analyzer was employed to determine differences in 

mitochondrial OXPHOS between Euro and [Afr+Asi] cybrids. In general, the bioenergetic 

profiles of DM and Non-DM cybrids were similar between groups. The amount of OCR 

used for ATP production was lower in DM cybrids as compared to their Non-DM cybrid 

counterparts (Euro/Non-DM: 41.55 ± 3.74 % of baseline OCR vs. Euro/DM: 25.65 ± 5.19, p 

= 0.15; [Afr+Asi]/Non-DM: 44.87 ± 7.75 vs. [Afr+Asi]/DM: 29.56 ± 7.61, p = 0.62) (Fig. 

4A). In addition, the DM cybrids showed substantially less spare respiratory capacity 

compared to the Non-DM (Euro/Non-DM: 39.56 ± 6.02 % vs. Euro/DM: 10.31 ± 20.09, p = 

0.75; [Afr+Asi]/Non-DM: 45.19 ± 12.13 vs. [Afr+Asi]/DM: 9.40 ± 16.96, p = 0.46) (Fig. 

4B). Moreover, DM cybrids showed increased levels of proton leak compared to the Non-

DM cybrids. (Euro/Non-DM: 17.58 ± 3.84 % vs. Euro/DM: 26.69 ± 4.41, p = 0.51; [Afr

+Asi]/Non-DM: 18.99 ± 4.18 vs. [Afr+Asi]/DM: 24.17 ± 4.54, p ≈ 1) (Fig. 4C). In 

summary, the changes in bioenergetic measurements between DM and Non-DM cybrids are 

similar for European and [African plus Asian] cybrids.

3.5. [Afr+Asi]/DM Cybrids resist decreases in global DNA methylation from DNA 
methyltransferase inhibition

The total global methylation levels were compared by culturing cybrids at room air 

conditions in the presence or absence of a DNMT1 inhibitor, 5-aza-dC (Figure 5). Compared 

to untreated controls (assigned value at 100%), we found that the DNA was demethylated to 

a similar degree in 5-Aza-dC-treated Euro/Non-DM and Euro/DM cultures (Euro/Non-DM: 

70.8 ± 11.9 % versus Euro/DM: 68.6 ± 11.0%, p ≈ 1). The 5-aza-dC treated [Afr+Asi]/Non-

DM cultures showed a large decrease in total global DNA methylation (31.0 ± 18.3 %) 

compared to untreated. In contrast, [Afr+Asi]/DM cultures were not significantly affected by 

5-aza-dC treatment (98.4 ± 11.5%) compared to untreated, indicating unique resistance to 

DNA demethylation in the presence of 5-Aza-dC, a known DNA methyltransferase inhibitor. 

The total global methylation levels in [Afr+Asi]/Non-DM cybrids were significantly lower 

after 5-aza-dC treatment compared to [Afr+Asi]/DM cybrids (p = 0.044). These data suggest 

that [Afr+Asi]/DM cybrids resist demethylation from 5-Aza-dC.

To determine if our cybrids differentially express DNA methylation factors, we performed 

qRT-PCR for several methyltransferases and methylation co-factors. All hypoxia-treated 

cybrids showed a decrease in the DNA methyltransferase DNMT1 (Euro/Non-DM: 0.41 ± 

0.06 -fold, p < 0.0001; Euro/DM: 0.49 ± 0.05 -fold, p < 0.0001; [Afr+Asi]/Non-DM: 0.46 ± 

0.04 -fold, p < 0.0001; [Afr+Asi]/DM: 0.54 ± 0.10 -fold, p = 0.0025) (Fig. 6A). Only the 

Euro/Non-DM cybrids had a decrease in the S-adenylmethionine synthase MAT2B (Euro/

Non-DM: 0.73 ± 0.07 -fold, p = 0.0091; Euro/DM: 1.02 ± 0.10 -fold, p = 0.85; [Afr+Asi]/

Non-DM: 0.95 ± 0.07 -fold, p = 0.48; [Afr+Asi]/DM: 1.21 ± 0.12 -fold, p = 0.12) (Fig. 6D). 

Interestingly, the hypoxia-treated [Afr+Asi]/DM cybrids showed a consistently significant 

increase in DNA methylation-related genes compared to untreated cultures: the DNA 

methyltransferases DNMT3A (Euro/Non-DM: 1.24 ± 0.16 -fold, p = 0.18; Euro/DM: 1.54 ± 

0.20 -fold, p = 0.037; [Afr+Asi]/Non-DM:
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1.43 ± 0.28 -fold, p = 0.18; [Afr+Asi]/DM: 2.10 ± 0.37 -fold, p = 0.025) (Fig. 6B) and 

DNMT3B (Euro/Non-DM: 1.44 ± 0.29 -fold, p = 0.18; Euro/DM: 2.11 ± 0.48 -fold, p = 

0.060; [Afr+Asi]/Non-DM: 1.09 ± 0.02 -fold, p = 0.0011; [Afr+Asi]/DM: 2.67 ± 0.56 -fold, 

p = 0.025) (Fig. 6C). In addition, hypoxia-treated [Afr+Asi]/DM cybrids had increased 

transcript levels of the methyltransferase-recruiting scaffold protein MBD2 (Euro/Non-DM: 

1.34 ± 0.18 -fold, p = 0.097; Euro/DM: 1.49 ± 0.17 -fold, p = 0.028; [Afr+Asi]/Non-DM: 

1.54 ± 0.24 -fold, p = 0.068; [Afr+Asi]/DM: 1.71 ± 0.11 -fold, p = 0.0006) (Fig. 6E) and the 

RNA methyltransferase TRDMTs1 (Euro/Non-DM: 1.09 ± 0.07 -fold, p = 0.23; Euro/DM: 

1.38 ± 0.05 -fold, p < 0.0001; [Afr+Asi]/Non-DM: 1.24 ± 0.07 -fold, p = 0.016; [Afr

+Asi]/DM: 1.82 ± 0.26 -fold, p = 0.021) (Fig. 6F), suggesting that the distinct responses of 

these cybrids to stress are due to differential regulation of DNA methylation.

3.6. The behavior of our cybrids is not likely due to the presence of the diabetes-
associated T16189C polymorphism.

Certain mtDNA polymorphisms that do not affect the structure of RNA and protein products 

may predispose an individual to disease. In particular, the T16189C mutation has been 

highly associated with type 2 diabetes in Asian and Caucasian subjects.[50,51] A meta-

analysis suggested that this polymorphism may not be associated with type 2 diabetes in 

African populations.[52] We examined the mtDNA sequences of our cybrids to determine if 

this polymorphism is more prevalent in our diabetic cybrids than our non-diabetic cybrids. 

We found that, of the DM cybrids for which we had information, 3 out of 8 had 16189C 

while the others were 16189T (Table 3). Of those, 1 out of 4 Euro/DM cybrids and 2 out of 4 

[Afr+Asi]/DM cybrids had this polymorphism. Within our cybrids, the association of this 

polymorphism and diabetic status was not statistically significant (p = 0.84), suggesting that 

the T16189C mutation is unlikely to account for the distinct behavior of our cybrids.

4. DISCUSSION

In this study, we investigated the effects on cell viability of diabetic mitochondria from 

subjects of European or African and Asian ancestry using RPE cybrid cells. Our results 

showed that mitochondria isolated from African and Asian diabetic patients conferred 

resistance against hyperglycemic and hypoxic stresses and could induce unique 

transcriptional changes. Cybrid models have been used to compare mitochondria from 

individuals with the major diabetes-susceptible versus diabetes-resistant haplogroups[53,54] 

and from individuals with known mtDNA mutations associated with diabetes (A3243G).

[55,56] However, to our knowledge, this is the first study to use cybrids to determine the 

effect of these mitochondria on how the cell lines respond to stress.

Two of the major stresses promoting retinal pathology in diabetes are hyperglycemia and 

hypoxia. Earlier studies revealed a decrease in ARPE-19 cell viability in response to high 

glucose conditions.[57–59] In this study, we found that Euro/Non-DM, Euro/DM, and [Afr

+Asi]/Non-DM cybrids significantly decreased in metabolic activity when treated for 48 

hours with high glucose. In contrast, the [Afr+Asi]/DM cybrids did not have a significant 

decline in viability in high glucose. This property may arise from differences in metabolic 

processing of glucose between individuals with [[Afr+Asi]] mtDNA versus Euro mtDNA. 
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For instance, one study found that non-obese African-American women had lower insulin 

sensitivity and mitochondrial content in skeletal muscle compared to Caucasian women. 

These measures were also correlated to mitochondrial oxidative capacity, which was lower 

in the African-American cohort.[60] Previous cybrid studies have shown that mitochondria 

with L haplogroup mtDNA (of African descent) have lower oxidative capacity and express 

mtDNA transcripts more efficiently than H haplogroup cybrids.[61] These data, along with 

our findings, suggest that cybrids containing [Afr+Asi] mtDNA may have greater metabolic 

flexibility. Additionally, our cybrid studies suggest that the mtDNA variants and adaptations 

distinguishing Euro versus [Afr+Asi] subjects are incorporated into the mitochondria and 

transferable into recipient Rho0 cells in vitro, implying a “metabolic memory” of previous 

conditions.

In addition to high blood glucose, diabetes induces a hypoxic microenvironment for RPE 

and neural retinal cells. Previous studies demonstrated that ARPE-19 cells decrease in cell 

viability in response to hypoxia and chemicals that mimic hypoxia.[62,63,47] In this study, 

we found that Non-DM cybrids (both Euro and [Afr+Asi]) and [Afr+Asi]/DM cybrids 

showed significant decreases in cell viability from high CoCl2 while Euro/DM cybrids did 

not. However, when analyzed by trypan blue assay, [Afr+Asi] cybrids (both DM and Non-

DM) showed significant increases in viable cells grown in 2% O2 while Euro cybrids (both 

DM and Non-DM) showed no change. These results may differ from each other for technical 

reasons. The MTT assay measures NAD(P)H-oxidoreductase activity, which measures 

metabolic activity and is thought to represent the number of viable cells. In contrast, the 

trypan blue assay measures dye exclusion and accurately represents live versus dead 

cells[64] CoCl2 induces Hif1α and Hif2α activity, which is only a part of the cellular 

processes that occur in physical hypoxia. [65] In contrast, incubation in 2% oxygen achieves 

the multiple aspects of hypoxia and is a more accurate stressor. Overall, only the [Afr

+Asi]/DM cybrids showed resistance to high CoCl2 compared to their Non-DM counterparts 

and thrived in low oxygen conditions. Since the nuclear DNA in all of our cybrids is the 

same, these data suggest that [Afr+Asi]/DM mitochondria uniquely confer resistance to 

hyperglycemia and hypoxia.

One explanation of this property could be that the [Afr+Asi]/DM mitochondria originated 

from hypoxia-adapted populations. For instance, the Sherpa have adapted to higher altitudes 

with lower oxygen through improved efficiency in coupling mitochondrial oxygen 

consumption to energy production through OXPHOS. However, they had a lower capacity 

for generating energy from fatty acids.[66] Alternatively, it may be that the [Afr+Asi]/DM 

mitochondria are more capable of shifting their threshold for hypoxia tolerance than [Afr

+Asi] mitochondria. To illustrate, a Chinese population study showed that D4 haplogroup 

individuals were more resistant to developing pulmonary edema at high altitudes while the B 

haplogroup subjects had a much greater risk of pulmonary edema.[67] These data support 

the concept that the mtDNA plays a role in how well individuals can adjust to sustained 

decreases in oxygen levels.

To determine possible mechanisms for this property, qRT-PCR on RNA from cybrids 

cultured in 2% O2 for 48 hours was performed. Stressors commonly present in the diabetic 

retinal microenvironment are known to induce apoptosis,[68,69] decrease mitogenesis and 
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mitochondrial replication,[70] and increase VEGFs to promote neovascularization.[71–73] 

Consistent with these findings, all groups of cybrids cultured in hypoxia significantly 

increased expression of VEGF-A transcript. Remarkably, we found that the [Afr+Asi]/DM 

cybrids were the only group to show a significant decrease in transcript of the pro-apoptotic 

indicator BAX in response to hypoxia, suggesting that [Afr+Asi]/DM mitochondria alter the 

transcriptome to prevent apoptosis. Interestingly, the [Afr+Asi]/Non-DM cybrids showed a 

decreased, though not statistically significant, trend in BAX expression in hypoxia. These 

decreases in BAX are supported by our findings that numbers of viable cells in [Afr+Asi] 

cybrids in hypoxic conditions are increased compared to controls. However, in all hypoxia-

treated cybrids, the PPARGC1A transcript was significantly decreased while levels of 

TFAM, a downstream effector, were unchanged, suggesting that the resistance to hypoxia 

conferred by [Afr+Asi]/DM mitochondria does not act through mitogenic pathways. Our 

findings suggest that [Afr+Asi]/DM mitochondria uniquely alter the transcriptome to resist 

decreases in cell viability from hypoxia.

One way that [Afr+Asi]/DM mitochondria could confer resistance to stress is through 

improved OXPHOS. Mouse models of diabetes and cells from diabetic patient donors 

express significantly less mitochondrial transcripts for OXPHOS factors compared to control 

animals and non-diabetic patient cells, respectively.[74] Mitochondria from retinal cells 

exposed to high glucose exhibit decreased ATP production and decreased spare respiratory 

capacity compared to untreated cultures.[75,76] Consistent with these results, we found that 

both Euro/and [Afr+Asi]/DM cybrids showed decreased trends in oxygen consumption used 

for ATP production in spare respiratory capacity compared to non-diabetic controls. 

Additionally, these cybrids showed increased trends in oxygen consumption lost to proton 

leak, suggesting that all DM mitochondria have decreased efficiency in forming ATP 

through OXPHOS. Since the DM cybrids demonstrated similar impairments in bioenergetics 

compared to their respective Non-DM cybrids, these data suggest that the unique response to 

stress in [Afr+Asi]/DM cybrids (compared to Euro/DM cybrids) does not arise from changes 

in OXPHOS.

One other possible mechanism for the resistance imbued by [Afr+Asi]/DM mitochondria is 

through modulation of DNA methylation. One way such information may be encoded in 

mitochondria is through methylation of mtDNA. The role of mtDNA in mammalian cells is 

a subject of much controversy. Studies in mouse and human cells suggest that mtDNA can 

be methylated in certain regions, such as the D-loop, a region that regulates mitochondrial 

transcription and DNA replication.[77,78] In particular, a study by Almeida and Cheng in 

primary cells from human patients showed that increases in the HOMA-IR insulin resistance 

measurement are significantly correlated with increases in DNA methylation of the ND6 and 

D-loop regions.[79] However, other work indicates that mtDNA methylation in mtDNA may 

be quite rare, at a level of 2% or less. Such work also suggests that increases in mtDNA 

methylation may reflect changes in mtDNA secondary structures.[80–82]

One reason why mtDNA methylation may not have been seen in those studies is that the 

cells were cultured in the absence of stressors. Kowluru and coworkers report that a REC 

cell line exposed to high glucose showed increased methylation of the D-loop. Chromatin 

immunoprecipitation also showed elevated DNMT1 association with the D-loop in RECs 
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cultured in high glucose; if the elevated mtDNA methylation in high glucose were an artifact 

of DNA supercoiling, DNMT1-binding would have been lower than in the untreated 

condition. As a result of increased mtDNA methylation, these cells expressed lower 

transcript levels of OXPHOS-related factors. RECs from patients affected by diabetic 

retinopathy showed similar decreases in OXPHOS-related transcripts, increases in mtDNA 

methylation, and increases in DNMT1-binding in the D-loop compared to cells from 

unaffected patients.[83] Further investigation in RPE cells showed D-loop methylation 

persisted when these cells were removed from the glycemic challenge.[84] More recent data 

suggests methylated cytosines in mtDNA of RECs cultured in high glucose can undergo 

deamination to thymines. This production of base mismatches was absent when cells were 

cultured in high glucose with 5-aza-2′-deoxycytidine (5-Aza-dC), a DNMT1 inhibitor, 

suggesting that the process is dependent on DNMTs.[85] These findings suggest that 

mitochondria have a “metabolic memory” of the retinal diabetic microenvironment.

In our study, the cybrids were cultured in the presence of 5-Aza-dC and total global DNA 

methylation levels were measured. The Euro/Non-DM, Euro/DM, and [Afr+Asi]/Non-DM 

cybrids showed decreased DNA methylation (29.2%, 37.8% and 69%, respectively) 

compared to untreated controls. Surprisingly, [Afr+Asi]/DM cybrids resisted demethylation 

from 5-Aza-dC, showing only 1.6% decline. These results suggested that [Afr+Asi]/DM 

mitochondria uniquely promote the preservation of DNA methylation.

To determine if molecular pathways involved in DNA methylation are differentially-

expressed in [Afr+Asi]/DM cybrids, the levels of DNMTs and related factors were analyzed. 

Results showed that DNMT1 levels were decreased for all cybrids grown in hypoxia, but 

only the [Afr+Asi]/DM cybrids had significantly elevated expression levels of DNMT3A, 

DNMT3B, MBD2, and TRDMT1. In summary, the presence of [Afr+Asi]/DM mitochondria 

prevents DNA demethylation and increases transcription of DNMT3A, DNMT3B, MBD2, 

and TRDMT1, which may lead to altered epigenetic regulation of downstream genes in 

response to hypoxia. Future studies will be necessary to understand the mechanisms 

involved.

Other studies have also shown that hypoxia upregulates genes promoting DNA methylation 

and changes in epigenetics. For example, Watson et al. found that incubating cardiac 

fibroblasts in hypoxic conditions resulted in upregulation of DNMT1 and DNMT3B, which 

were correlated with increased expression of genes associated with fibrosis, such as α-

smooth actin and Collagen-1. Treatment with either 5-Aza-dC or small RNA inhibitor of 

DNMTs prevented the upregulation in these pro-fibrotic genes, suggesting that the increase 

in pro-fibrotic genes was a consequence of higher DNA methylation levels.[86] DNA 

methylation has also been associated with ocular diseases such as glaucoma.[87] These data 

are consistent with our finding that transcripts of certain DNA methylation factors, such as 

DNMT3B, are elevated in hypoxic [Afr+Asi]/DM cultures.

Our methylation results lead us to speculate that the modification(s) of the mitochondria in 

the [Afr+Asi]/DM patients are retained as a “memory” that can then be transferred into other 

cells in vitro, modulate DNA methylation characteristics and result in altered regulation of 

downstream genes. The concept of “metabolic memory” in diabetes has been described by 
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the Kowluru group and others as the collection of beneficial or deleterious adaptations to a 

previous metabolic environment that persist for an extended period of time after the 

metabolic environment is changed. The influence of high glucose in diabetes can modify 

epigenetics for nuclear genes, such as that of insulin, and mtDNA regions.[88,89,85] In our 

study, we found differences in total global DNA methylation and expression levels of 

methylation genes. It is reasonable to hypothesize that chronically high glucose could lead to 

alterations in epigenetic status that can be passed on through mitochondrial influence.

However, our findings could be explained by other mechanisms inherent to the mtDNA. For 

instance, certain haplogroups may produce more ROS, which can act as signaling molecules, 

than others, particularly in stress conditions.[9] In addition, different haplogroups may 

express mitochondrially-derived OXPHOS factors, such as cytochrome b and the NADH 

dehydrogenase subunit 4, at higher levels than others. While increases in these factors may 

bolster energy production, such changes may also increase the amount of ROS produced and 

thus alter the downstream signaling patterns.[34,61] One other way haplogroups may 

influence function is through biochemical signals from the mitochondria to the rest of the 

cell, known as retrograde signaling. For instance, we and others have found that small, 

mitochondrial-derived peptides (MDPs), such as humanin, can protect cells against 

apoptosis and DNA damage.[90,91] In particular, the Cohen laboratory has shown that 

protein levels of SHLP2, another MDP, are higher in Caucasians than African-Americans, 

but low SHLP2 is correlated with increase prostate cancer risk only in Caucasians and not in 

African-Americans.[92] Another example of mitochondrial modulation of nuclear genomes 

is that cybrids with normal versus AMD mitochondria express different microRNA levels 

that modulate expression of angiogenesis, apoptosis and autophagy pathways.[93] While our 

findings suggest that epigenetic changes are involved, the mechanisms are unclear and will 

require future investigations.

Given the clinical data that certain minorities are more likely to develop diabetes and 

diabetic retinopathies than Caucasians, the data from our study are unexpected and 

paradoxical. However, a similar phenomenon has been shown with the T mtDNA 

haplogroup, in which diabetic haplogroup T subjects were more likely to have diabetic 

retinopathy and coronary artery disease compared to diabetic individuals of the H 

haplogroup.[94] These data implied that T haplogroup mitochondria might be more 

susceptible to stress. Yet surprisingly, a study using HEK293 cybrids showed that T cybrids 

had greater cell viability than H cybrids when treated with hydrogen peroxide, a stressor that 

promotes reactive oxygen species (ROS) formation.[95]

We recognize that there are limitations to this study. First, we performed our experiments in 
vitro using cybrids derived from the ARPE-19 cell line. These cells are widely used as RPE 

cell models as they express tissue-specific markers, such as CRALBP, BEST1, and RPE65, 

though the levels of protein products are decreased compared to primary cultures.[96,97] 

Our lab has shown that our parent cell line also expresses these markers.[98] Functionally, 

ARPE-19 cells resemble primary RPE cells as they both demonstrate polarized secretion of 

cytokines in response to IL-1β administration.[99] However, ARPE-19 cells lack certain 

surface markers, such as claudin-19, resulting in substantially lower barrier strength than 

that of primary cell cultures.[100] Despite this, we use our cybrid system as an elegant 
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model to study the specific influence of mitochondria on cellular health and transcription 

while keeping the nuclear DNA sequence the same between different cybrid lines. Since the 

same parent, mitochondria-free Rho0 ARPE-19 cell line can be fused with platelets from 

many different patients to form unique cybrid lines, we have generated a total of 25 cybrid 

lines from diabetic and non-diabetic patients for this study. It is not feasible to use primary 

cultures for these experiments due to the cells’ limited lifetime in vitro and the fact that they 

have different nuclear DNA, which would confound our ability to examine the specific 

influence of mitochondria.

The second drawback is that we had limited information on the clinical phenotype. However, 

there were similar numbers of diabetic individuals with either background retinopathy or no 

retinopathy (Euro n = 2, [Afr+Asi] n = 3) and non-proliferative diabetic retinopathy (Euro n 

= 3, [Afr+Asi] n = 2). Unfortunately, the study lacked diabetic subjects with proliferative 

diabetic retinopathy in either group. While our findings showed significant differences 

between Euro and [Afr+Asi] cybrids in vitro, further studies will be necessary to discern if 

the differences are due to the mtDNA haplogroups or other clinical parameters that were not 

taken into account in this study. In future studies, we will expand our cybrid library to 

include larger numbers of diabetics. In addition, we will gather information about the 

clinical severity of their retinopathy, the extent of any nephropathy or neuropathy they may 

have, the presence of any other diabetic complications, and the status of their blood sugar 

control.

In conclusion, the RPE cybrids containing [Afr+Asi]/DM mitochondria (1) resist decreases 

in cell viability after exposed to either high glucose or hypoxia; (2) express higher levels of 

DNA methylation genes; and (3) are resistant to de-methylation by 5-Aza-dC compared to 

Euro/DM cybrids (Figure 7). These findings support the hypothesis that [Afr+Asi]/DM 

mitochondria have a “molecular memory” of a prior microenvironment that is transferrable 

in vitro and can modulate DNA methylation mechanisms in [Afr+Asi]/DM cybrids. Future 

studies will be necessary to characterize the molecular mechanism(s) for these properties 

and determine how it affects cellular functions.
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Figure 1. [Afr+Asi] DM cybrids resist decreases in viability from high glucose.
(A and B) Changes in viability after 48 hours normalized to Standard glucose (Std) controls, 

measured by MTT assay. (n = 3 Euro/Non-DM and Euro/DM, 4 [Afr+Asi]/Non-DM and 

[Afr+Asi] DM; 20 independent experiments total) (C) Changes in viability after 48 hours 

normalized to untreated (Std glucose) controls, measured by trypan blue dye-exclusion 

assay. (n = 3 Euro/Non-DM and Euro/DM, n = 4 [Afr+Asi]/Non-DM and [Afr+Asi]/DM; 7 

independent experiments total) * = p < 0.05, ** = p ≤ 0.01, *** = p ≤ 0.001
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Figure 2. [Afr+Asi] DM cybrids resist decreases in viability from hypoxic stress.
(A and B) Changes in viability after 48 hours ±CoCl2, measured by MTT assay and 

normalized to untreated controls. (n = 3 Euro/Non-DM and Euro/DM, 4 [Afr+Asi]/Non-DM 

and [Afr+Asi] DM) (C and D) Changes in viability after 48 hours. Cybrids were cultured 

±2% O2, and metabolic activity was measured by trypan blue dye exclusion assay, 

normalized to untreated controls. (n = 6 Euro/Non-DM, n = 4 Euro/DM, n = 6 [Afr+Asi]/

Non-DM, n = 4 [Afr+Asi]/DM; 18 independent experiments total) * = p < 0.05, ** = p ≤ 

0.01, *** = p ≤ 0.001
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Figure 3. qRT-PCR of Selected Targets in cybrids grown ± hypoxic conditions.
RNA from cybrids grown 48 hours ±2% O2 was measured by qRT-PCR against (A) VEGF-

A, a pro-angiogenesis factor, (B) BAX, a marker of apoptosis, (C) PPARCG1A, a master 

regulatory factor for mitogenesis, and (D) TFAM, a transcription factor involved in mtDNA 

transcription and replication. (Euro/Non-DM n = 4, Euro/Non-DM n = 4, [Afr+Asi]/Non-

DM n = 3–4, [Afr+Asi]/DM n = 3–4; 11 independent experiments total) * = p < 0.05, ** = p 

≤ 0.01, *** = p ≤ 0.001
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Figure 4. Euro and [Afr+Asi] cybrids have similar bioenergetic profiles in baseline conditions.
Measurements of the amount of Oxygen Consumption Rate (OCR) relative to untreated 

conditions used for (A) ATP production, (B) Spare Respiratory Capacity, and (C) Proton 

Leak using the Seahorse XF24 flux bioanalyzer. (Euro/Non-DM n = 4, Euro/DM n = 4–5, 

[Afr+Asi]/Non-DM n = 4, and [Afr+Asi]/DM cybrids n = 4–5; 10 independent experiments 

total)
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Figure 5. Euro and [Afr+Asi] cybrids have different levels of DNA methylation after treatment 
with 5-Aza-dC.
Amount of DNA methylation of Euro and [Afr+Asi] cybrids grown ± 5-Aza-2-

deoxycytidine (5-Aza-dC), a DNA methyltransferase inhibitor, as measured by an ELISA 

against 5-methylcytosine. (Euro/Non-DM n = 5, Euro/DM n = 4, [Afr+Asi]/Non-DM n = 3, 

[Afr+Asi]/DM cybrids n = 4; 8 independent experiments total) * = p < 0.05
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Figure 6. qRT-PCR of DNA Methylation Factors in cybrids grown ±hypoxic conditions.
RNA from cybrids cultured 48 h ±2% O2 was analyzed by qRT-PCR to measure transcript 

levels of DNA methylation genes: (A) DNMT1, (B) DNMT3A, and (C) DNMT3B (DNA 

methyltransferases); (D) MAT2B, an S-adenylmethionine synthase, (E) MBD2, a 

methyltransferase-recruiting scaffold protein, and (F) TRDMT1, an RNA methyltransferase. 

(Euro/Non-DM n = 4, Euro/Non-DM n = 4, [Afr+Asi]/Non-DM n = 3–4, [Afr+Asi]/DM n = 

3–4; 8 independent experiments total) * = p < 0.05, ** = p ≤ 0.01, *** = p ≤ 0.001
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Figure 7. [Afr+Asi]/DM mitochondria confer transferable resistance to both high glucose and 
hypoxia.
Summary of data from this study.
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Table 1.
Euro and [Afr+Asi] cybrids used in these experiments have a similar average age, p = 
0.61.

Bold Box, Upper Panel: Cybrids listed in pairs of Non-DM and DM cybrids of similar mtDNA haplogroup 

and age were used for high glucose and hypoxia experiments. The average ages of Euro and [Afr+Asi] cybrids 

are not significantly different from each other. (2 column image)

European African and Asian

Cybrid Haplogroup Age Sex DM/Non-DM Cybrid Haplogroup Age Sex DM/Non-DM

11.08 K1c1c 24 M Non-DM 11.30 L1b2a 54 F DM

13.103 K1a3 25 F DM 11.31 L2b2 42 M Non-DM

13.45 H1e1a 47 F Non-DM 11.38 L0a1a1 38 F Non-DM

16.186 H1 48 M DM 13.124 L1b2a 31 M DM

10.06 U5 53 M Non-DM 13.126 L1b1a7 40 F Non-DM

16.184 U 60 M DM 15.176 L0a1a 32 M DM

14.135 H1c3 75 F Non-DM 11.18 D4a6 39 M Non-DM

16.190 H 80 F DM 13.55 D4a2b 48 F DM

13.65 H4a1a4b 52 F Non-DM 11.17 L3e1a1a 64 F Non-DM

15.161 H5a1 67 M Non-DM 13.125 L1c2a1 52 F Non-DM

16.185 U5a1a1 68 M DM 16.182 L 78 M DM

10.07 H66a 49 M Non-DM

11.10 H4a1a4b2 30 M Non-DM

11.35 H1b5 30 F Non-DM

Avg Age (yrs) 50.57 p = 0.61 Avg Age (yrs) 47.27

# Male 8 # Male 5

# Female 6 # Female 6

Non-DM Avg Age (yrs) 47.44 Non-DM Avg Age (yrs) 45.83

# Male 5 # Male 2

# Female 4 # Female 4

DM Avg Age (yrs) 56.20 DM Avg Age (yrs) 48.60

# Male 3 # Male 3

# Female 2 # Female 2
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Table 2.

Diabetes and diabetic retinopathy status of patients whose mitochondria were used in our cybrids. (2 column 

image)

Cybrid Haplogroup Age Diabetes Type DR Status

13.55 D4a2b 45 Type 2 Background DR

13.124 L1b2a 31 Type 1 No DR

15.176 L0a1a 32 Type 2 No DR

13.103 K1a3 25 Type 2 Background DR

16.190 H 80 Type 2 Background DR

11.30 L1b2a 54 Type 2 NPDR

16.182 L 78 Type 2 NPDR

16.184 U 60 Type 2 NPDR

16.185 U5a1a1 68 Type 2 NPDR

16.186 H1 48 Type 2 NPDR

Mol Neurobiol. Author manuscript; available in PMC 2021 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Dolinko et al. Page 34

Table 3.

DNA Base Identity at Position 16189 in our cybrids.

Cybrid # Haplogroup DM Status mtDNA residue 16189

10.06 U5 No C

10.07 H66a No C

11.08 K1c1c No T

11.10 H4a1a4b2 No T

11.17 L3e1a1a No T

11.35 H1b5 No C

13.45 H1e1a No T

13.65 H4a1a4b No T

14.135 H1c3 No T

15.161 H5a1 No T

13.103 K1a3 Yes T

16.184 U Yes T

16.185 U5a1a1 Yes T

16.186 H1 Yes C

16.190 H Yes N/A

11.18 D4a6 No T

11.31 L2b2 No T

11.38 L0a1a1 No C

13.125 L1c2a1 No T

13.126 L1b1a7 No C

11.30 L1b1a Yes C

13.55 D4a2b Yes T

13.124 L1b2a Yes C

15.176 L0a1a Yes T

16.182 L Yes N/A
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