Lawrence Berkeley National Laboratory
Recent Work

Title
THE REDUCTION OF BOOLEAN TRUTH FUNCTIONS TO MINIMAL FORM

Permalink
https://escholarship.org/uc/item/3942r3d§

Author
Natapoff, Alan.

Publication Date
1960-05-20

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/3942r3d8
https://escholarship.org
http://www.cdlib.org/

see £ Pa CA

SALp» E

UCRL-9227

UNIVERSITY OF CALIFORNIA

Lawrence Radiation Laboratory
Berkeley, California

-8

i
P

Contract No. - W-7405-eng-48

THE REDUCTION OF BOOLEAN TRUTH FUNCTIONS
TO MINIMAL FORM

Alan Natapoff

May 20, 1960



DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.



-2- .UCR1.-9227

THE REDUCTION OF BOOLEAN TRUTH FUNCTIONS
TO MINIMAL FORM

Contents
Abstract . . . . . . 0 o o 4 4 e e 4 e e e e e e s 3
Introduction . . . . . . . . . o . . . . . .. . . 4

I.  The Unique Portion of the Reduction of the Original Truth Table . -3
II. The Generation of the Class of Minimal Coverings
A. Outline of the Algorithm . ., ., ., .- . . . ‘. e . 14
B. Proof of the Central Theorem . . . . . . . . . . 15
C. Development of the Algorithm and Partition
of the Residue into Components S
D, Formal Characterization of the Partition in Terms of.an -
Equivalence Relation e o e e 6 e & & e e e .. 19
Uniqueness .of the Maximal Additive Partition . . . . . 21
F. Formél Analogy Between a Component and an Irreducible |
Representationofa Group . . . . . . .« . . . 23
.G. Illustration of the Algorithm by a Computation.on a
Sample Truth Table . , . e e ., 24
Conclusion. ., . . . . . . . . . 4 e e e e e e . . . 32
Acknowledgments . . . . . . 4 ¢ o+ 4 e o e e . . . . 33
Apiaendix - -Description of IBM 704 Program Salomé ., ., ., P 34

References . .. . ¢v o o & « o o o o & 4 4 4 4 e o . .38



-3- YCRL-9227
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Alan Natapoff
Lawrence Radiation Laboratory

University of California
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May 20, 1960

ABSTRACT

The problem of the reduction of an arbitrary truth function to the
minimal union of basic cells is discussed. The solution to this problem has
applications to pattern recognition and logical circuit design. An algorithm
. is presented that solves the problem and generates the class of minimal |
unions. It partitions an arbitrary truth function into a well-defined set of
subfunctions (components) in such a way that the partition is invariant under
all transformations that preserve the topology of the original truth function.
It is shown that this reduction exhausts the minimal coverings of each sub-
function and generates from these all minimal coverings of the original
function. The theorem that A union of cells basic to a vertex contains no
further cells basic to that vertex" is proved and is. used in the algorithm.
The IBM 704 program (SALOMET) that performs the reduction is described

in.the Appendix.
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THE REDUCTION OF BOOLEAN TRUTH FUNCTIONS_
' TO MINIMAL FORM

Alan Natapoff
Lawrence Radiation Laboratory

University of California
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May 20, 1960

INTRODUCTION

The algebra of Boolean truth functions is interesting because it is,
roughly speaking, the algebra obeyed by logical elements in computers and
by patterns of light and dark dots. Abstractly, it is.the algebra of the sets
of vertices of an N-dimensional Euclidean cube. ! Its applications derive
from the fact that any set of Boolean truth functions can be reduced to a
unique class of minimal functions. The minimal property is of interest in
the design of economical logical circuitry, and.the uniqueness property,
in the simple characterization of sets of similar patterns of light and dark
dots. We examine some of thé general aspects of the problem of simplifying
truth functions in order to illustrate applications to computers and to define
a procedure for finding the class of minimal Boolean functions.

The definitions of the terms given below are important for the under-
-standing of what follows. They are those generally used in applications to
logical circuitry {(where eléements canbe so gatedasito realize logicalil’land'.and
“ariloperations)and may differ fromusages currentinabstract Booleanalgebra.
»Definitions

Boolean Variable: A symbol that can be assigned the value 0 (false)

or the value 1 (true).

Boolean Expression (or vertex): An assignment, to each of a set

of N Boolean variables, of the value 0 or the value 1 in each case.
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(If the variables are written as XN o X3X2X1 .and .t}").e:values
.assigned .are written in.the same order 1 °--.010, each Boolean expression
.on N variables corresponds.to a unique ordered N-tuple, each of whose
.components is either -0 or 1. These may be read as binary numbers for
-conv.eniencve. ‘They may also be read .as the coordinates of a .point in.an
N-dimensional Euclidean space and, since each coordinate can take on only
,the value 0 or 1, the set of such expressions on N variables corresponds

‘to the Z‘N vertices of an N-dimensional cube. This correspondence explains

the alternate term ‘vertex''.)

Truth Table: A set ovavertices on N variables whose ; mmimal
.covering is demanded. (For definiteness, we assume that we are referring,
in what follows, to a particular problem of a truth.table on N wvariables .
'XN cee X3;X2X1°‘) |

-Don't Care Vertex: A vertex that may be included in the .covering of

the truth table where convenient. (The set of such vertices is . prescribed

‘at the same time as the truth table. Together they specify the problem to

‘be solved. Every minimal.cox)efing covers the entire truth table. - Where a
more compact . covering can be achieved by allowing one or more ''don't care'!
vertices to be included, they are also covered.) We call the table of "true

vertices the short truth'table, and.the combined table of '"true' and ''don't

‘care' vertices the long truth table.

Cell: ;f each of N Boolean .variables may be either affirmed or -
negated, then .Z‘N .distinct Boolean .expressions may be constructed from
- them. -If N-k of the N variables are kept fixed (tha.t_ is, either specifically
.affirmed or specifically negated) and the other k are allowed to vary at
will, . then 2K distinct Boolean expressions. can be generated. Whenever

N-k variables are specified to be kept fixed, the set of Zk Boolean expressions

generated by varying the remaining k is called a cell (of dimension.. k).
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.Complete Cell: A cell is complete if and only if each Boolean ex-

pression it can generate is on the long truth table.

Basic Cell (or Maximal Cell): ‘A cell, C, is basic to the covering

of a given .vertex, V, if and only if C (1) contains V, (2) is compete, and

(3) is not a proper subcell of any other complete cell. (It follows immediately

that if C is basic to one vertex, it is basic to all vertices contained in it.)
Covering: A set of complete cells is a covering of a given truth table

T if and only if each vertex of T is contained in at least one cell of the set,

Irredundant covering: A covering is irredundant if and only if no

proper subset of it is also a covering.

Minimal Covering: A covering is minimal (with respect to some

given criterion) if its norm (with respect to that criterion) is less than, or
equal to, the norm of any other covering.

In logical circuit design, the norm usually adopted is the number of
.diodes required for the instrumentation . cf the logic. . This-.can be expressed
as a weighted sum of the number of cells and their dimensions., If Ki. is
the dimension of the Eth cell, and m is the number of cells, the norm for

the covering is expressed as

m
am + b Z (N=-Ki),.for a,b >0,

i=1
where the particular values of a and b depend on the kind of logic used.
The procedure . outlined here gives the minimum circuitry only for two-stage
logic of the N-input, l-ocutput type.  We are concerned only with norms of
this type. The solution of the general multistage N-input, M-output problem
has been examined, for example, by Prather. 2 His solution depends on the

prior solution of the problem we are considering.
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- Adjacent Vertex: _A'vertex,v W, is .adjacept to another. vertex, V, . if
and only if there is exactly one Boolean variable, the ._i_th, such that the
.components »Vi and ‘Wi corresponding to it differ, i.e.. Vi.aé: Wi;

Geometrically, this corresponds to the situation in which V and ‘W
are connected by an.edge of the N cube,.hence the name adjacent.

Essential Cell: A cell, E, is essential to the covering of the vertex,

V, if-and only if ’E (1) contains.every true or don't{. care vertex that is
adjacent to.V, and (2) is .complete. If we relax condition ..(2___),_ this .definition
becomes that of cell L given in .,Part_II. . We prove there that L {(and hence
every, essential cell) has the propér‘ty:- All complete cells covering V are
subsets of L. .If L is itself complete, it is called .essential.

If V has an.éssential cell E, then every other cell covering V has a
higher norm than .E. . We see this by noting that all other complete.cells
covering V are of sm‘aller difne_n:'sion, .k_i, because they are subsets of E.
-Thus if a vertex has an:essential cell, E, every minimal covering of that

vertex must contain E,
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I. THE UNIQUE PORTION OF THE REDUCTION
OF THE ORIGINAL TRUTH TABLE

The first step in the reduction of the truth table is the inspection
of each vertex of the short.truth table, T, to determine whether orlnot it
has an essential cell, E. If it has, we delete all the vertices covered by E
~ from T, and examine the remaining vertices for essential cells. No cells
of smaller norm are ignored by this procedure, because we know that
essential cells, where they exist, are the cells of smallest norm covering
the vertex in.question. If a vertex has no esseﬁtia_l cell of its .own, it may
, still be.covefed by a cell essential to some other vertex.

Aﬂcef we have deleted all possible essential cells from T, we are left
with a residue, R, of vertices not contained in any cell that is essential to
a vertex. . We now have the unique minimal covering of the portion of T
apart from R. Supposiﬁg that R is not empty, as in general it is not, we
then find .a whole class of minimal c~overiI{gs of R, each of which, when .
united with the essential cells for T, forms a minimal covering of T. Further,
each such minimal covering is composed entirely of basic cells, since any
_nonbasic cell in a covering is always replaceable by a basic cell containing
it, and the covering thus constructed is of smaller norm than the original.

The theory.developed so far is illustrated in the following example
in pattern.recognition. (Exploitation of this approach, incidentally, has
been meager). Suppose that we have a.2 by 2 grid on which each of the four
points can be either dark ("off" or 0) or light ("on" or 1). There are exactly
2‘4 = 16 Ppossible distinct configurations on such a grid. We can characterize,
for.examble, that subset comp.r.ising all the patterns possible on the ''main

©0 00 00 00
00 06 OO0 00
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‘Numbering. tht_e,po.si,tions;.l .2 we can-symbolize.the four patterns. by
3 4.
1000, 0'001', 0000, 1001. : These now represent the vertices on.a ffbur=-
dimensional cube, and form a truth table whiéh we must now cover. . The
é.ell of dimension.2 specified by fixing bits.2 and 3 at 0 and allowing bits
1 and 4 to range at will, . is .es.sen.tia_l to the c.oyer'ing of the first vert‘ex of the
table (inv‘fa,ct,7 -to all the vertices). The set of patterns on the main diagonal
can thus be characterized by, the notation -00- (where - means that either
zero or one may be substituted.at will). = For convenience we may. adopt.the
notation of Harris, 3 in ‘,'whivch a "2" replaces the symbol - and the essential
cell 2002 {or -00-) st;a,nd_s for the set of vertices generated by 5,11 possible.
-substitutions of Oya‘_nd-l_into_the arguments where ."2"'s appear. .In this
ca.s.e; 2002 stands for the set of vertices. (1000, 0001, 0000, ]_lOOIL)., 1f, for
cdmpacmess, .we.read.these binary expressions.as .decimal numbers, .then
we have the set (v8,:1, 0,9) fof our truth.table., Its minimal covérin‘g.i.S'ZOOZ.
A short éxample and a deta,iled‘,_calculation of minimization of logical

circuitry are given.below.

~ If some compute'xvjv circhitry,had to.examine two input bits and give as
output the logical "or™ of these bits, the required output fo:f all possible input
combinations would.be as -follows:

INPUT COMBINATIONS

Vertex Label * o Input X Input Y " Output. = X flor"" Y
0 -0 0 : 0
1 - ' 0 1 ' 1
2 | 1 0 : -1
3 i i . 1

= .
The label for each input combinationis its:numerical value read as a binary

number, e, g. , for the caseinput X=1, input Y = 0, thelabel is (T;O)2 = 2.
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. The table prescribes,that vertices .1, 2, 3 be covered.and that vertex
0 be left uncovered. (We cover those and only those vertices or input
combinations whose corresponding output is "1'.)

Representing the truth table geometrically, we have

A
.0,1=1 ° ° 1,1=3 The encircled number gives the

a
0, 0=0 Bl ,0=2

Cell A is the cell of dimension 1 represented by 21

output prescribed for that vertex.

Cell B is.the cell of dimension .1 represented by 12
Note that cell A is essential to vertex .1
B is .essential to vertex 2

Of the vertices a_djavcent to vertex 1, one is on the long list. A contains
this vertex and is complete, hence A is essential to vertex 1. Neither
.cell A nor cell B is essential to vertex 3. (In fac-t, vertex 3 has no
essential cell, because no complete cell containing vertex 3 also contains all
vertices adjacent to.vertex 3 that are on the long list. The long list is
identical with the short list here. .In.this case vertices 1, 2 are adjacent to
vertex 3 and no complete cell contains vertices 1, 2,3, implying immediately
that vertex 3 has no essential cell.)

Together, A and B cover all of T, hence R ils ,e.mpty,an.d our
solution is ,c.omp].ete and unique. Notice,. also, that cells A and B are both
1 cubes (cubes of dimension 1) and that each contains one "2' in its repre-
sentation (A = 21, B = 12). in general, the representation of a k cube has

k "2'"'s and N-k fixed arguments.
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From thié .example, which gave a unique minimal.covering, we pro-
ceed to the detailed .ca_lculatio.n in a i)roblem in which,thefe is a class of
minimal coverings. 4 There ‘is a logical probiem for six inputs (N = 6)
which leads to the féllovving truth table (Table I). (Each vertex is again
named by the numerical equivalent of its bina.vry'representa'cion's° )

Our prescription requifes that we examine each vertex of T to see
whether or not it has an essential cell.

The first vertex of T is _4,: 000100.

The vertices adjacent to 4 are: 5 =000101
6 = 000110
0 = 000000
12 = 001100
20 = 010100
36 = 100100

.Each of these differs in exactly one bit from the representation of
vertex. 4 in.accordance with our definition .of ""adjacent. ' In addition, we

note.that of these ,vertices:

.6 is on'the true list and differs from 4 in bit 2;
12 is on the true list and differs from 4 in bit 4;
36 is on.the true list and differs from 4 in bit 6;
5 is on the don't-care iist and differs from 4 in bit 1.

The other adjac,ent vertices, 0 and 20 are on neither list. -
Accordingly, wé construct the smallest cell containing all the vertices
4,6,12,36 and 5. Vertex 4 has an essential cell if and only if this cell (our
L or PELL, discussed in Part II; PELL stands for Potential Essential

ceLLL) is complete.
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Long list

True (Short List)

4
6

12

14
33
34
36
.39
41
42

44

47
50

54
57.

58
61
62

n

it

i

1

1]

000100
000110
001100
001110
100001
100010
100100
100111
101001
101010
101100
101111
110010
110110
111001
111010
111101

111110

Don't Care

9
11

13,

15
17

19.

21
22

23,
24 .
.25

26

L27.
28 .
29

30

31
49 .
51
53

~N 0 W -

000001
000011
000101
000111
001001
001011
001101
001111
010001
010011
010101
010110
010111
011000
011001
011010

011011

011100
ol1101
011110
011111
110001
110011
110101

55=110111
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The vertex ,4'j:is r-gpresent_ed by 4= ‘(5‘0.1__00. o

- The s,rlna_lleﬂs;t cell -c:.c;nta'i.ni,ngv 4, 6.,l 12, 57 1s ;eprleslélntecwi b'ly, 202122, :
and can be constructed by replacing the original value of 'azi.ai'gum'ent of
vertex 4 fbyv”Z:”v ‘whene,ver.a vertex adjacent to 4 and differing ::frcl>rn”4'in'
‘that argur_njenf isv,on the long truth table. o

In cell 202122, the 16 vertices that can be generated by varying
the arguments in 'whic.h "2" 1's appear (and hence.the vertices ,c'o:ntaiﬁed'
the cell) are ,4, 5; 6, 7,12,14,15, 36, 37, 38, 39, 44, 45,46, 47.  The vertex 37,
for example, .is not on the long truth table, therefore the cell is not complete
and the vertex 4'.;10es not have an .essential cell,

Thé‘ next vertex on the short truth table is vertex 6. Tbh.e appropriate
cell to examine is 022;22, This cell contains, among others, vertex 20,
which is not on the long truth table; 6, therefore has no esseqtial c.eli e_ither,

Wé repeat the process.successively on the other vertic;as of T, t’he
short.table, and we find in .each case.that the cell: appropriate to <the. vertex
is . inccv»mvpl‘ete until we reach vertex.33. The appropriate cell, :22.2001,
.for‘verte‘x :3_3 is complete and is thus the essential cell for vertex :33. The
vertices it contains (1,9,17, 25,33,41,49,57) are all deleted from our short
list, and placre.d in .the don't care list. We then examine the remaining vertices
of the short list and find that vertices 34, 36, 47,61 have essential cells con-
taining, . respectively, the vertices, (34,42, 50, 58), (4, 12, 36, 44), (7, 15,

-39,47), (17,21, 25, 29,49,53,57,61).

Wh‘én the-elements of--T- contained in.all five essential cells are de-
leted from T and placed on the don't care list the vertices 6,14,54,62, are
the only ones remaining uncovered. They comprise R, and the c.onstrucfion
.of the set of minimal coverings for them is discussed in II. We have com-

‘pleted the first step referred.to in II.
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II. THE GENERATION OF THE CLASS OF
MINIMAL COVERINGS

A, Outline of the Algorithm

The class of minimal coverings {(in terms of sums of products) of
a given set {(or short truth table™) of Boolean expressions can be generated
by the following algorithm.

First: Find the maximal set of partial coverings which must appear
in every minimal covering (the set of essential cells). 'Remove from the
truth table of expressions to be covered all expressions that are covered by
‘this maximal set, leaving a residue R, of expressions remaining to be
covered. (The expressions c.overed,by,theb essential cells are thereafter
treated exactly as don't care vertices).

Second: artition R into clusﬁ:ers5 of uncovered expressions that
we call the "components' of R. Each component has the property that if
any complete cell covers two vertices of R, the vertices belong to the same
component.

Third: Construct the clas s‘Aof minimal coverings of each component.
Any selection of one minimal covering from each class constitutes a minimal
coveririg of the entire residue R.

Each covering of R, taken together with the essential cells of/step
one, forms. a minimal covering of the entire short ¢ruth table.

We now show that each part of the algorithm is feasible. The first

part has already been successfully examined by varicus investigators. -The

second part. is developed below.
* N
The short truth table is the set of true statements; the long truth table =

short truth table plus the set of "don't care' statements. Every covering

must cover the short, and be covered by, the long truth table.
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B. Proof of the Central Theorem
Sublemma: If C is a cell containing (or covering) a vertex V, then

for every argument i such that Ci # 2 we have Ci = Vi“

Proof of éublernma: The cell C covers.those and only those vertices
generable by its variable arguments while keeping ité fixed arguments
constant. Hence all vertices of C agree with C in all of its (C's) fixed
arguments. Thus, no vertex.differing from the representation of C in any
fixed argument can be covered by C. ~

Lemma 1: If B-and C are distinct cells, each basic to the covering
of a particular vertex V, then there is:

1. At least one argument, say the mth, such that Cm %:—2 and
B__ # 2 and in addition,

2. At least one argument, say the nth, such that Bn = 2 and

C_ 5 2.

n

Proof of Lemma: From the sublemma above we deduce that if

B, #* Ci for some i, then B, # 2 or Ci # 2 and not both, since both
B and C contain vertex V. Consider the set of i's for which Bi':}é Ci’ This
set is not empty, since B and C are distinct cells,

Assume that for each such i, Bi = .Zvand Ci :;é 2, This implies that
B contains C as a subcell, contradicting our assumption that C is basic
to the covering of V. This possibility is .thus excluded. Similarly, the
possibility is also excluded that C, = 2and B, =# 2 for each i where
Bi.aé Ci° We conclude that there is af least one m such that cm': 2 and

Bm# 2 andone n suchthat B_=2and qu& 2,
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Theorem:

If. B(l), B(Z) B(3) Lee ch(r)_ a..:fe distinct cells . each basic to the

2 2

covering of a vertex V, and if - C is a.cell basic.to. V which is contained

in the union of the B™1s, then C is identical with one of B,

)

Proof of Theorem: Assume C is distinct from each B('?j . For each

B(j)” th_en, there is (by Lemma 1), at least one argument i for which
Bim.: -Vi.#.Z and C, = 2, These i's taken together, for all.the cells gl ,
form a set of arguments whose typical member we shall denote by k. The
values of these arguments may be varied at will to give vertices covered.by
~cell C.

If we fix all the arguments k so that they disagree with the correspond-
ing values of the arguments of the vertex V, and specify that the remaining
arguments agree with V, we have constructed a vertex W which lies in C
. but not in any of the B(j')"s, {This is clear because Wk #* Vk for every k,
but for at least one k, Bk'(j) = ‘Vk, by construction. Hence, W differs in.a
fixed argument from B(j) for each B(j) and is not covered by it.

Vertex . W {and hence, Cell C) dees not, therefore,.li\e in the ﬁnion

HEN

of the BU)r g,



-17- .UCRL-9227

. C. .Development of the Algorithm and the Partition
of the Residue Into Components

Definition: ‘A PELL (Potential Essential ceLL) of a vertex V is any cell
such that:

1. All complete cells covering V are subsets of it.

2. No proper subcell of it has properfy'(l).

- The PELL of a vertex V is the smallest cell containing all cells
basic to V, and in that sense can be called the cell-wise least upper bound
of the unions of basic .cells covering V.

Lemma.2: For each V there exists a unique PELL. Construct
the set, S, of vertices on the long truth table which differ from V in ex-
-actly one argument. If these arguments are then changed to variable ones
in the representation of V, a cell, L,.is specified. which is the smallest cell
containiﬁg V and all adjacent true and don't-care vertices. = No complete
cell can-contain V and have any varidble argument not also variable in L,
| since that would imply the existence of an-adjacent vertex which is on the
long truth table and is not contained in S. Since any cell whatever must
agree with V in fixed arguments if it covers V, all complete cells containing
V are subsets .of L.

It is clear from the construction that L. is the smallest cell covering
V and containing all of S. If any element, s, of S is not covered by a subcell
L', of L., the.complete cell composed of s and .V is not covered by L'.
Then no proper subcell of L. can be a PELL; for V. The construction of a

PELL for 'V is unique.
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Corollary: The PELL for V c.o‘ntains all cells basic to V,.

Having proved the .central theorems and lemmas, we can proceed
to the development of the second part of the algorithm, the partitioning of
the residue R into clusters. |

1. Choose from R a vertex V.

2. Construct a11,bésic cells containing V.

a. Construct L, the PELL of V. L cannot be complete

- or it would be an.essential cell and V would not lie in‘ R.

b. Choose a second vertex, V'., in L. There is a smallest
cell, G, containing V and V!, If G is complete, construct any basic cell
containing V and V! and delete all vertices covered by it from L. If G
is not complete, delete V! from L.

In either case, after the appropriate vertex or vertices have been
deleted from L, s,ele'ct a new V' from the undeleted portion of L. and .repeat
- Step 2b, until L is completely exhausted.

Assertion: All the basic cells covering V have not been computed.

Proof of Assertion: The union of basic cells computed by procedure

B contains no further cell basic to 'V (by our theorem), -and the rest of L
contains none, by construction. Since every cell basic to V is a subcell of
L, we have computed all cells basic to V.

3. After all the basic cells covering V have been computed, de-
termine which vertices of R have been covered by them. Keep all such
vertices in CORRAL, return to Step 2 and repeat the subsequent processes
until every vertex placed in ,CQRRAL at any stage has been so processed,

- When this is done, we have computed a component.of R and have a list of
basic cells making it up. It is clear from the ‘pr‘oce'du're that the same com-

ponent would be generated no matter which vertex was chosen as initial V.
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It follows from the above that we have computed all cells basic to any
_vertex of any component, A. . Since all minimal coverings of A are composed
entirely of cells which are basic to some vertex of A, every minimal covering

of A is a subset of the basic cells thus computed.

D. Formal Characterization of the Partition
in . Terms of an Equivalence Relation

We now prove that the components form a partition of R (that is, we
prove that R is ,c'overed,by_ the union of the components and that distinct
components are disjoint.) Every vertex of R is covered by at least one
component, since the process of construction does not terminate until this
is true. We prove the disjointness of components by giving a forral
characterization as follows: A nonempty subset, A, of R is a component
of R if and only if:

1. Every pair V, W; of vertices of A obeys the condition V¥'W

where V 2 W if and only if there exists a sequence (chain) of cells Cl’ CZ’ oo Ct
such that
a. Ci is complete for 1 £i <t

b. V is contained in ’Cl
‘W is contained in Ct
C. ‘Ci@ Ci+ln_Ris nof empty, for 1 Li <t
2. A is not a proper subset of any subset of R that satisfies con-
dition(l). The relation = gives a partition of a set Rin general if 2, is:
Symmetric (V ¥ W implies W ¥ V)
Reflexive (V £ V)

Transitive (V¥ W, W¥ Z implies V ¢ Z)
for all V, W, and Z in R.
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. We need to prove that the relation ¥ as defined by conditions (1) (a) -
(1) (c) is symmetric, reflexive and transitive.

To be proved:

(i) 2 is symmetric:

V ¥ W implies the existence of a chain.Cl, CZ’ cee Ct
satisfying the conditions .l a-c given above. If we renumber
these Ci's in reverse order, we get a chain whose existence

implies W £ V,

(ii) £ is reflexive:

-There is always at least one complete cell, C, covering
every vertex V. This forms a chain satisfying conditions
I (a) - (c) hence V Yv.

(iii) % is transitive:

V £ .W implies the existence .of a chain.C;,Cy, v 0, Gy
for V, W.

w2z impiies the.ekistence of a chain D,,D,,*"*,D

| A s
for W;Z2 where both chains satisfy conditions (a)-(c).
Thus él c.dntainer, Ct céntains.W

Dl contains W, Ds contains Z,
1f 'Ct- and »D]l contain W, since W is ,an‘.ele,ntqent of R we
.conclude CthIQR:'isnot empty. and_thé chain _Cl,» CZ" oo
Ct"Dl’ DZ’ --+D satisfies conditions 1 {(a)-{c) for V, Z.

s
We conclude V € Z and that 2 is a transitive relation.
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It follows immediately that any two distinct components, A and A',
of R are disjoint,. forif fhey have a vertex V in common, a contradiction
results: Assume a and a' are arbitrary vertices of A and A' respectively
,and that V lies in both. This means a 2 v a,ndvv a'= V (or V= al since -
¥ is symmetric.)

From the transitivity of relation ¥, a¥ V,. V% a" implies a¥™at,
arid hence components A and A' are identical, contradicting owrassumption.
- We conclude that the set of components forms a.partition of R.
The foregoing justifies the use of the name . ''component' for the sub-

‘sets forming on partition.of R. Intopology, a.component of a set R is.a

maximal connected subset of it, . Definitions (D, 1) and (D, 2) confer these

properties on the subsets we have called "components. "

E. Discussion of the Uniqueness of the
Maximal Additive Partition

To each éomponent there corresponds a set of basic cells that is
diéijoint from each of the sets of basic cells corresponding to the other
conip_onent's; .(If a_basic cell aplpe.ared,irll two such sets, we could conclude
that the two cori-espoﬁding components intersectéd° } Since our norm is linear,
the norm for,a.-ny c_overing,of' R bya ,sét U of basic cells equals the sum of
the norms for the subsets,of U covering the .coméonenté. Conversely, we
can consider those partitions P of R I-suc.h that thevvnorfn for any. union U
of 'basic ceils_ covering R eq.uals,thg sum (over all th.e lsubsets Pi comprising P) i
of‘the .normlsvfo'r the subﬁniéns of U cqvering "Pi" A subunion .S of U

covers ‘Pi if each basic cell B of U is in .S if and only if B covers.a *

vertex of Pi’
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. We see that every such partition P must insure that every basic

cell covers elements of R belonging to a single subset Pi: (If a basic cell
B covered vertices in distinct: subsets in.any covering of R containing
B, B would contribute twice to. the norm of subunions, but only once to the
norm of the original union, U. The sum of norms of the subunions would
not equal the norm of U.) From this it follows that distinct subsets Pi,.a'nd
P. must be disjoint. (For any vertex V of R, there is some basic cell
-that covers it. If v lie.é in two components, such a basic cell covers’
vertices in two distinct componenﬁs,a.contradictiom We have seen..’;hat each
subset vPi of R under P contéins, with any vertex V, all vertices V! éf
R such that there is. a complete cell covering V Va.n‘d. Vi, If we specify,thét
each subset be the minimal subset having this property, we have reproduced
the partiﬁion,_into components as defined above. |

To summarize‘the results of the preceding paragraphs:

1. The decofnpos,ition _,df R into components is.a .p.artition of R and
has the additive prop.ertyA Q,. The norm for any covering of R by.a union, U,
of basic cells is.equal to the sum of the norms for the subcoverings of the
.components., (A subcov.e.ringv‘of A is:the subset of cells, C, of U such that
C vcovers‘= a vertex of A). |

2., Conversely, any decomposition of R into nﬁinimal subsets having
additive -propei'ty Q is‘identicél with the decomposit.ion into components.
In this ,sense., .theb gartitién into components is the maximal additive partition.

The property Q implies that any minimal covering, M, of R is
composed entirely of minimal subcoverings of cofnponents. (Every covering
of R decomposes into subcoverings of components and i’f any, such subcovering
is not minimal, a subcovering of lower norm could be substituted, giving by

property Q, a covering of R having a ndrm lower than that of M. . This

contradicts our assumptions of the minimality of M.
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Finally, since all minimal subcoverings of the components are gén—
erated by the algorithm, it follows that all minimal coverings of R are
also generated. If there vare q .clusters and P; minimal coverings of the'
ith component, there will be piPZ cee pq ‘min;lma.l coverings of .R. These
will be generated, however, by Py tpotcc pq coverings, a\much smaller
-number in .general.

F. Remarks on the Formal Analogy Between a
Component and an Irreducible Representation of a Group

The partition of R intd components A issuch that each component
has the important property tha_.t ranyvcovering of a vertex of A covers a
portion of R contained .entireiy within A, Statedvslightly_differently, A

_is an invariant s,ub.space of T und;er all covering operations.

This procedure bears a striking resemblance to .a procedure in the
theory of representation of groups >by‘v’which the matrices representing the
elements of th;a group are.reduced (by linear transformations on the base
vectors) to the form of squares appearingalong the matrix diagonal. There,
each such square corresponds to a.subspace of the entire linear space which
is iﬁvariaiﬁt under the action of the groupvbe.ing represented. Our components
~c,01:'re‘spond.lto these in;rariant subspaces With.'.the basicvcells .covering the
vertices .of the component corresponding to the base vectors of the invariant
subspace. The decomposition is unique in both cases. A component con-
taining a vertex V is é.léo the closure of V withi>n R under the operation
vof co-vering by com_pléte .ce,ils and is .a precise analog to an irreducible

Markov chain with vertices playing the rolé of states.
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G. Illustration of Algorithm by a Computation.on a
Sample Truth Table

As an example, suppose, for a given truth table, that the vertices

uncovered by essential cells are:

Vertices - . Basic Cells Covering These Vertices
- B  Cell No. N Cell
6 = 000110 ' : o 002122
14 = 001110 ’ - _ 2 ' 022112
54 = 110110 o » 3 021122
62 = 111110 4 212110
5 210112
6 112210
7 . 110212
8 211210

Let us form the square, symmetric‘ matrix M whose rows and
coclumns are 1abe1e§ b"y, the vertices _Vi of R and whose elements are
specified by the rﬁlé Mij .= 1 if there is a complete cell which covers Vi’
and .Vj, Mij = 0 if not.

G, 1y :
For our example, R =,(A{,6,/54, 62).

6 14 54 62

6f1 |.1
141 | 1
54 1 |1

62 1 1
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MU -20984

Fig. la. Diagram of Cluster 1: Cell 022122, which contains
it, is shown.
Cluster 1 contains vertices (6, 14) of R and basic
cells 022112 (covering vertices 6, 14), 021122
(6,14) and 002122 (14). :

Key for Fig. 1. [J at a vertex denotes that the
corresponding vertex is on the long list, but not

in R. at a vertex denotes that the correspond-
ing vertex is in R.

No box at a vertex denotes that the corresponding
vertex is not on the long list,
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Fig. 1b. Diagram of Cluster 2: Cell 212212 which
contains it is shown.
Cluster 2 contains vertices(54, 62) of R and basic
cells 212110 (covering vertices 54, 62), 210112(54),
110212(54), 112210(54,62), 211210(62).

(Note that vertex 22 lies both in Cluster 1 and in
Cluster 2. . This is no contradiction because 22
is a don't care vertex., If 22 lay in R, Clusters
1 and 2 would become a single cluster).
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| Schematic
- representation
| of a 3- cube
M
MU -20986

AFig. lc. Schematic diagram of a truth table, T, having
two minimal coverings each with a different number

of basic cells.
Short list: (2, 3,4,.6)
Long list: (2,6 + cells D, and D)

i 2
Cells A = (2,3) = 000012
' B =(2,6) = 000210
C = (4,6) = 000120
Dé - = 222102

The minimal coverings are (A, C), (Dl’ DZ’ B).
Each has norm 12.
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It is always possible to '"diagonalize'' M by permutations of rows
and columns. The sets of vertices corresponding to each subsquare are the
- components of R. The procedui‘e of diagonalization geometrically is simple.
Choose a vertex Vi and place its row at the top, its column to the left.

Next permute again so that all other vertices that have entries in their first
row {(or in their first column, since M is symmetric) have their corresponding
rows (columns) brought up (left) past all the rows {columns) of vertices not
having this property. After this is done perform the corresponding operation
on the vertex row corresponding to row and column 2. When the last vertex
row and column is reached, the process will be complete.

It is useful to note that if Vi and Vj are covered by a complete
cell, then there is at least one basic cell covering them. We have seen how
to generate all the basic cells covering the vertices of a component. It is
important that although a cluster A may be covered by cells containing
vertices not in A, such cells do not contain any vertices of R that é,re not
in A, |

In our example, we now write down the table U whose rows are
labeled to correspond to the basic cells C.1 and the columns, to the vertices
Vj, of the cluster. Uij = 1 if Ci contains Vj’ if not, Uij = 0.

6 14 54 62 Vertex

Basic Cell No. 1 i1 1 0 0

2 1 1 0 0

300 1 0 0

4 lofjo] 1]
5o lof1fo
6o o 1] 1
70 o] 1] o

8 |0 0 0 1
Notice that U has the same diagonal structure as M.
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The process of diagonalization (or component formation) can now be
‘visualized. The steps for this specific case are reviewed (referring to the
chart):

1. Choose the lowest numbered vertex V, in R (Vertex 6),

2, Find all basic cells covering V (cells numbered 1, 2).

3. Set aside all new vertices in. R that are covered by these cells

{vertex 14).
4, Repeat Step 2 with each new vertex found {(cell 3 is now added).
5. Repeat Step 3 with each cell found in Step4. (No new vertices
of R are covered). If new vertices are.covered, repeat
Step 4, if not,

6. - When all basic cells about all vertices are computed, the component
is completed. Delete from R all vertices of thé component
(6,14 are deleted, leaving 54, 62) and perform Step 1
again on the remainder of R (which gives us vertex 54)
and conti.nuevthrougllxx Steps 2 through 6 until R is empty.
R has then been partitioned into components (two-in this
case), with the set of basic cells and the vertices they
must cover both available. We now go to the relatively
s.traightfor'wardg third part of our algorithm.

Given a list of all the basic cells covering a component we wish to
select all the subsets of this list which form minimal coverings of A. We
first compute all possible coverings of A containing cell 1. This i§ done
by adding cell 2 to the partial covering of ‘A begun by cell 1, if and only if
it covers at least one vertex that 1 leaves'uncovered. If cell 2 do.es not. have
this property, cell 3 is examined, and so on. If cell 2 does have this property,

cell 3 is added to the partial covering begun by cells 1 and 2, if and only if
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it covers a vertex left uncoveréd,_by the union of cells 1 and 2. The process
.continues until all the vertices of .A are covered. Suppose cells 1,2,6,9
comprise the covering so constructed, we next exhaust all coverings con-
taining cells .1, 2, 6 by, trying to replace cell 9 with e€l1 10 or some other
cells of higher number. . When we have reached the highest numbered basic
cell covering A, we will have exhausted all cover-ings’ containing 1, 2, 6.
We then exhaust all coverings containing cells 1, 2 by the analogous pro-
cedure.of seeking to continue thé partial covering begun by cells 1, 2 with
a cell numbered greater than 6 and proceeded as befqre. Finally, we exhaust
all cells containing cell 1 by seeking to continue the partial'cdvering begun
by cell 1 with a cell numbered higher».than 2 and proce.ediﬁg,as before. When
.all coverings containing cell 1 ilave been covered, we start a new covering
with cell Z‘unti_;l we ha_ve computed all coverings containing cell 2 but not
cell 1. This procedure, too, is repeated until the end of the list of basic
cells for A is reached. |

At that point we have a set of coverings of the component A that
contains. as a subset all irredundant coverings by basic cells and hence all
minimal coverings of A. By inspection of the norm for each covering we
can select out the minimal covers of A, We could also select the irredundan"c
s,ﬁbset of these coverings.

To illustrate this procedure of selection .of coverings, we use.the
example given in part. G. There, component 1 has 3 basic .cells and .2

vertices to be covered, vertices 6. 14.
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Cell 1 alone constitutes a',.cbvering of component l,b as does cell 2.
Cell 3 does not appear in.any minimal or irredundant coyering of component. 1.

Component 2 can .be covered by the following sets of cells (as gen-
verate;i by the procedure cited):

(4), (5,6), (5,8), (6), (7,8).

. The minimal and irredundant covers are

. Component Component
1 2
Minimal | A
m— . Cells ‘(1), (2) Cells ‘(42), (6)

Irredundant | Cells (1), (2)| Cells (4), (6)
covers (5,8), (7,8)

There are 2 minimal coverings of component 1, and 2 minimal coverings

of component 2;  hence.there are 4 minimal coverings of R.
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.CONCLUSION

The procedure we have examined gives, for an arbitrary Boolean
truth function, the class of sums of Boolean products, each misrnber of which
is minimal under what we have called a "1in'eﬁar norm', One .éppliéatioﬁ of
this solution would lead, by a procedure ndevise.d by Prather, 2 to 'a solution
of the N-input, M-putput problem. Our solution is of ti’le N-input, l-output
problem. Our scheme is desirable because;: (1) It is well ada'pted.,for h
mechanization by digital computers--this has been aécompliéhed .in a program
entitled .SALOMﬁI—-(see A_pp_endix)o (2) It treats the problem in terms of
fundamental topological units, simplifying the description of results. (3) It
provides a framework of structural sets on which to build further investigations,
in contrast to the unstructured set that is the starting point of the problem.
(4) It gives the entire class of minimal (as well as the entire class of
| "Trredundant’’) coverings by basic cells. This is of use in any,fundameﬁtal
research into the structure of Boolean functions.I (5) In .common ‘with many
,earlier schemes, it employs only notions that are invariant under choice
of description. If we transform the description of our logic, for example,
by interchanging 0's and 1l's .everywhere, the solution to our problem in
the transformed coordinates is generated.by transforming our original

solutions.similarly.
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APPENDIX

 DESCRIPTION OF SALOME
IBM 704 program SALOME takes a truth table T of vertices and
a table of don't-care vertices as input. . Its output is a set of coverings of
T by basic cells with the subset of minimal coverings noted from among

these. Unless it:is altered (as can easily be done), the norm assumed is

TR

M+ (N - ki)’ where M = the number of cells in the covering and _ki

1

is the dimension of the _i_th cell.

Specifications

Running time. About 12 seconds for a .typical table for N = 6.

For higher N, running time should go up more slowly than .ZN, and would
depend on the structure and density of the truth table.

Storage Needed. For N =17, a 32-K memory is needed. . This would

not be adequate if any component had more than 1024 cells in it,

Input. Vertices are specified by punching one vertex on .a card
starting in column 12 (column:13 for BCD). The decimal, octal, or BCD
representation of the vertex should be preceded in columns 8-11 by the
appropriate three-letter code (DEC, OCT, BCD). In BCD, the symbols
‘T, F are used for 1,0 and entire cells may be entered, using the BCD mode,
by the use of the symbol U (unspecified) for the .notation,"Z". The number
of arguments, N,.in the truth table.is -loz;de,d into the decrement of octal

location 4000 by a single card preceding the transfer card.
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Output. The entire true and don't-card lists are printed out on tape 9,
with representation.in BCD as.v{ell as in decimal (if octal is desired in place
of decimal, sense switch 6 should be down).

All the basic cells and their norms are listed by component, as well
as the class of coverings of each component with norms for. each.

Sense Switches and Options

Sense Switch 1. - i

Must be down. until all data cards have been loaded, then it is
.superfluous.

Sense Switch 2.

Until data cards have been loaded:

Q Input in OCT or DEC form

DOWN: Input in BCD form

After data cards have .been loaded:

UP: Does not fill in flag positions

DOWN: Counts the number of traverses of program part a set of
flags: and.stores this number in region FLAG in storage.

Sense Switch 3,

UP: (Always)

Sense Switch 4.

UP: vGive-s.a list of coverings containing only a few per cent of
redundant coverings. (Second slowest option)

DOWN: Redundant c,o{rerings will comprise half or more of output
unless.Senge Switch 5 is up. |

Sense Switch 5.

UP: Only irredundant coverings are listed as output {slowest option)

All irredundant coverings by basic.cells are given;
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.DOWN: Redundant coverings comprise half or more of output unless

Sense Switch 4 is up.

© el ...'ch Sy
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Option.

‘All the vertices in the input cards will have been listed when the
program stops just after all the data cards have been read. This
allows use of the program not only to reduce a truth table, but also
to list vertices in cells already computed without going through the
entire reduction. The cells in question.are loaded.in.the BCD
format specified above and the program is run only until the program
stop after all the cards have been loaded.

Order of deck.

1. Deck of instructions (without traﬁsfer card).

2. N card: In absolute loading format, a ,carci containing the value of
N (number of arguments in input truth table) in.the decrement
of first word (8L), and specified to be loaded into octal.
location 4000.

3. Transfer card.

4. True vertices, listed one per card. (Starting in column 12 if
listed in DEC or OCT; starting in column 13 with a
blank in.column .12 if listed in BCD). In .columns 8-11
the appropriate 3 letter code. (DEC, OCT, BCD),. DEC
and OCT cards may be mixed if desired and the order of
the vertices is irrevelant. If repetitions occur, they will

be ignored.
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<.
5. Don!t-card vertices (if any) preceded by a card punched in SAP

format as: .TRA 32767, 4.

Note. - Every covering given by SALOME is composed entirely of basic cells.

8

[

73
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