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Abstract 
The development of symbolic algebra transformed 
civilization. Since algebra is a recent cultural invention, 
however, algebraic reasoning must build on a foundation of 
more basic capacities. Past work suggests that spatial 
representations of number may be part of that foundation, 
but recent studies have failed to find relations between 
spatial-numerical associations and higher mathematical 
skills. One possible explanation of this failure is that spatial 
representations of number are not activated during complex 
mathematics. We tested this possibility by collecting dense 
behavioral recordings while participants manipulated 
equations. When interacting with an equation’s greatest 
[/least] number, participants’ movements were deflected 
upward [/downward] and rightward [/leftward]. This 
occurred even when the task was purely algebraic and could 
thus be solved without attending to magnitude (although the 
deflection was reduced). This is the first evidence that 
spatial representations of number are activated during 
algebra. Algebraic reasoning may require coordinating a 
variety of spatial processes. 
   
Keywords: algebra; number and space; notations; mousetracking. 

Introduction 
The invention of symbolic algebra transformed human 
civilization. Algebraic notation allows for accomplishments 
as mundane as buying paint for a new fence and as fantastic 
as discovering antimatter. But symbolic algebra is a recent 
cultural invention. Thus, it cannot rely on devoted neural 
machinery that evolved specifically for that purpose — an 
innate ‘algebra module.’ Instead, our capacity for symbolic 
algebra must be cobbled together from other cognitive 
capacities. But which?   

One proposal is that higher mathematics, including 
symbolic algebra, builds on a foundation of space (e.g., 
Lakoff & Núñez, 2000; Sella et al, 2016). On this proposal, 
our evolutionarily ancient spatial abilities have been co-
opted by culture to reason about abstract mathematical 
entities and relations. Indeed, early spatial abilities are 
known to predict life-long mathematical performance, from 
grades in elementary school to the choice of a mathematics-
heavy college major.  

One crucial aspect of this spatial foundation may be the 
ability to use space to make sense of number (Hubbard et al, 
2005). Spatial representations of number could ground the 
highly abstract notion of numerical magnitude in the more 
basic, experiential notion of location. More complex forms 
of mathematics could then build on this foundation, from 
algebra to calculus and beyond (Núñez & Marghetis, 2015). 
The current study tests this account by examining whether 
spatial representations are activated during one canonical 
case of complex mathematical activity: solving equations.    

Mixed evidence for spatial-numerical associations 
in higher mathematics 
There is considerable evidence that spatial representations 
of number are ubiquitous and automatic, at least during 
simple numerical tasks (Hubbard et al, 2005; Winter, 
Marghetis, & Matlock, 2015). These spatial representations 
involve both the horizontal and vertical axes. Among literate 
adults in Western cultures, for instance, processing lesser 
numbers facilitates subsequent responses on the left, while 
processing greater numbers facilitates responses on the right 
(Dehaene et al, 1993). Similarly, when German adults 
generate random numbers while undergoing upward and 
downward motion, they produce numbers that are 
significantly greater when moving upward and lesser when 
moving downward (Hartmann et al, 2011). In adults, these 
spatial representations have been shaped considerably by 
culture. The association between numerical magnitudes and 
horizontal locations, for instance, is reversed among 
Palestinians who read both words and numbers from right-
to-left (Shaki et al, 2009). When we encounter a number, 
therefore, we automatically activate spatial representations 
of its magnitude. 

But do these implicit spatial representations play any role 
in mathematics beyond the domain of simple numbers? The 
evidence is rather mixed. One point in favor of such a role is 
that the correlation between early spatial abilities and later 
school success in mathematics is mediated by the ability to 
map numbers to a linear path (Gunderson et al, 2012). 
Causal evidence comes from the finding that training 
students to map numbers to linear path improves calculation 
(Siegler & Ramani, 2009). There is also evidence that 
spatial representations of number play a role in 
mathematical communication. Mathematical experts 
produce gestures that express numbers as locations, even 
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when their speech does not contain any mention of space 
(Marghetis & Núñez, 2013).  

On the other hand, there have been a number of failures to 
find any relation between spatial-numerical associations and 
higher mathematical ability (e.g., Cipora & Nuerk, 2013; 
Cipora, Patro, & Nuerk, 2015). Indeed, there is little 
evidence that spatial representations of number are activated 
at all during mathematical activities that are more complex 
than simple numerical judgments — judging a number’s 
relative magnitude, or determining whether it is even or odd. 
In contrast to these simple tasks, real mathematical activity 
seldom involves single numerals in isolation. Algebra, in 
particular, is often the first time that students begin to think 
about numbers, not just in terms of their magnitudes, but 
also in terms of their structural interrelations. As these more 
complex notions come to the fore, spatial representations of 
numerical magnitude may fade into the background.  

Moreover, many of these more complex notions may also 
have a spatial underpinning. During mental calculation, for 
instance, subtraction and addition are associated with 
leftward and rightward motion, respectively (Knops et al, 
2009; Marghetis, Núñez, and Bergen, 2014); and during 
algebraic reasoning, space is used to represent the 
hierarchical syntax of algebraic expressions (Landy & 
Goldstone, 2007). If space is playing these other roles, then 
the association between space and number might reasonably 
be expected to fade. The neural circuitry responsible for 
representing spatial location cannot be all things at once. On 
this account, as space is co-opted for new roles — 
arithmetic, algebraic syntax — its association with 
numerical magnitude might diminish. Number-space 
associations may be limited to simple numerical judgments, 
disappearing as mathematical complexity increases. 

The present study 
The current literature, therefore, appears to support 
conflicting accounts. On one hand, associations between 
number and space are activated automatically during a 
variety of simple tasks, and spatial processing more 
generally has been implicated in higher-level mathematical 
thinking. On the other hand, individual differences in spatial 
representations of number do not appear to correlate with 
mathematical expertise. This presents a puzzle. What is 
happening to these spatial representations of number as 
people transition from simple judgments of isolated 
numerals to more complex mathematical activities?  

To resolve this puzzle, we analyzed the spatial dynamics 
of individuals’ manipulations of algebraic equations, using a 
methodology that we have dubbed Dense Recording of 
Algebraic Manipulations (DREAM). In this approach, 
participants manipulate equations using click-and-drag 
dynamic algebra software; we record the moment-to-
moment details of these manipulations, including the precise 
mouse trajectories used to rearranging equations.  

In the current study, algebraic equations were displayed 
on a computer screen (e.g., x + 3 = 7), and participants 
could rearrange these equations by clicking and dragging 
symbols as if they were physical objects. We also 
manipulated whether participants performed a task that was 
focused on magnitude (“Click and drag the greatest/least 
number”) or algebraic structure (“Solve for x”). Throughout, 
we recorded the fine-grained details of these interactions, 
including the precise spatial locations at which individual 
numbers were clicked1. By varying the numbers in the 
equations, we could see whether numerical magnitude had a 
systematic effect on the location of symbolic manipulations.  

We foresaw several possible outcomes. If spatial 
representations of number play no role in higher 
mathematics — or play a role only in development — then 
spatial representations might not be activated at all while 
equations are manipulated, particularly if the goal is to solve 
the equation. If, on the other hand, spatial representations of 
number continue to play a functional role in algebra —
 perhaps by grounding the meaning of otherwise arcane 
symbolic manipulations — then we might find traces of 
spatial-numerical associations in the fine details of how 
equations are manipulated. In particular, greater numbers 
might be clicked higher or more rightward, while lesser 
numbers might be clicked lower or more leftward.     

Methods 
Design 
Participants manipulated equations with a computer mouse, 
moving terms as if they were virtual objects. This was 
implemented with the Graspable Math software 
(www.graspablemath.com). Think of files and folders on a 
computer desktop, which can be reorganized and rearranged 
by clicking and dragging. Graspable Math offers the same 
functionality but for equations. In response to these 
manipulations, the software automatically adjusts the 
equation to maintain its validity. For instance, given the 
equation ‘x + 2 = 4,’ as the 2 is dragged to the far side of the 
4, the + symbol changes automatically into the – symbol as 
it crosses the equal sign, so that the final state of the 
equation would be ‘x = 4 – 2’ (Fig. 1a). This allows users to 
focus on how and why they want to rearrange equations. In 
addition, clicking on the equals sign flips an equation (e.g., 
x = 2 ! 2 = x), and clicking on an operation performs that 
operation (e.g., x = 4 – 2 ! x = 2; Fig. 1b).  

The full system is quite powerful and can be explored 
online (www.graspablemath.com). The current study used a 
simplified version that included only the dragging and 
clicking interactions described above. We recorded where 

                                                             
1 Technically, participants clicked numerals that denoted numbers, 
and it was the numerals’ denotations that had magnitude. For 
simplicity of presentation, however, we shall conflate numerals 
with their denotations and refer to them as numbers.   
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and when interactions occurred, including x,y coordinates of 
the mouse cursor. Here we focus on where, exactly, 
participants clicked on numbers, to investigate whether this 
spatial behavior was affected by the numbers’ magnitude.  

 

Figure 1. Manipulating equations using Graspable Math. 
(a) As an equation is rearranged, it’s updated automatically 
to remain valid. Here, ‘+2’ is dragged from left to right; the 
sign is switched as it crosses the equals sign. (b) Operations 
are triggered by clicking the operator.  

 
On each trial, an algebraic equation appeared on the 

screen (e.g., ‘x + 3 = 5’). Participants performed one of two 
tasks, assigned between-subjects.  

In the Algebra task, participants had to solve for the 
variable by clicking and dragging to simplify the equation 
(Fig. 1). For instance, given x + 3 = 5, one might start by 
dragging the 3 to the other side of the equation. Note that 
this does not require attention to numerical magnitude, only 
to the algebraic relations between the terms.  

In the Magnitude task, participants were presented with 
the exact same equations, but their task was to find the least 
number — or the greatest number, depending on the block 
— and indicate their selection by dragging it to other side of 
the equation. This click-and-drag response was chosen so 
that the two tasks involved comparable interactions with 
identical stimuli. 

Participants 
Volunteers participated in exchange for partial course credit 
(N = 69, Mage = 19 years, 51 women, 18 men). A target 
sample size of 68 was determined in advance on the basis of 
similar studies of number and space (e.g., n = 44 in Fischer 
et al, 2010).  

Materials  
For both tasks, items consisted of equations in the form x 

± b = c (N = 112). Values of b and c ranged from 1 to 9, 

excluding 5. The value of b was always different from c, so 
one number was always greater than the other, producing 56 
combinations of values for b and c. Each combination was 
used to create two equations: one with addition (e.g., x + 2 = 
3) and one with subtraction (e.g., x – 2 = 3).  

Procedure 
Participants gave informed consent, completed a brief 

tutorial on how to manipulate equations with the mouse, and 
read task instructions. This was followed by practice trials 
chosen randomly from the full list of items (n = 4). They 
then completed the experimental trials (n = 224). Each item 
appeared twice, ordered randomly across four blocks. For 
the Magnitude task, initial target magnitude (greater, lesser) 
was assigned randomly and switched halfway through. 

Each trial began with the appearance of a fixation symbol 
at the top-center of the screen. Clicking on this fixation 
symbol triggered the appearance of an equation toward the 
bottom of the monitor. The equation appeared either on the 
left or right of the screen and with the variable either on the 
left or right of the equal sign (i.e., ‘x + 2 = 3’ or ‘3 = x + 2’), 
assigned randomly. Participants were then free to 
manipulate the equation using the computer mouse. Trials in 
the Magnitude task ended automatically when a number was 
dragged across the equal sign and released. In the Algebra 
task, trials ended automatically when participants had 
solved for x. Participants finished by answering a series of 
standard demographic questions along with four questions 
about mathematical experience: Did they study calculus in 
high school? In college? What was their grade? And what 
was their SAT score? No other measures were collected.     

Analysis 
We focused on where numbers were clicked, specifically the 
first number manipulated during each trial. Our primary 
measure was the deflection of these locations, relative to 
where the participant would click typically (i.e., 
standardized by participant). A value of zero thus indicated 
no deflection; negative values, deflections downward or 
leftward; and positive values, deflections upward or 
rightward. Analyses used linear mixed-effects models, with 
centered predictors and the maximal converging effects 
structure justified by the design (Barr et al, 2013). 

Results 
One participant was removed for poor accuracy (72%). 
Accuracy was high among remaining participants (M = 
96%, 95% CI [86%, 100%]). One additional participant was 
removed for corrupted data. Before analysis, we removed 
trials where the participant did not arrive at the correct 
response (4% of trials), followed by those that were three 
standard deviations faster or slower than each participant’s 
mean (1.4% of trials).  
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Overall spatial deflection due to numerical 
magnitude 
We first investigated whether numerical magnitude caused 
systematic spatial deflections in click locations. For each 
trial, we calculated a measure of overall spatial deflection 
by summing the deflection along the vertical and horizontal 
axis (i.e., a signed Manhattan distance). On this measure, 
positive values indicate deflections that are, overall, 
congruent with our predictions for greater numerical 
magnitudes (i.e., rightward and upward), and negative 
values indicate deflections congruent with predictions for 
lesser magnitudes (i.e., leftward and downward). This 
spatial deflection was analyzed with a model that included 
fixed effects of Relative Magnitude (i..e, whether the 
selected number was greater or less than the equation’s 
other number), Task (Algebra vs. Magnitude), and their 
interaction; and random intercepts and slopes for both 
participants and items. 

There was no effect of Task (p > .9). As predicted, 
interactions with numerals were deflected spatially by their 
magnitude, b = .25 ± .03 SEM, t = 8.8, p < .0001. These 
deflections were congruent with canonical spatial 
representations of numerical magnitude. When participants 
manipulated the lesser number in an equation, they clicked a 
location that was deflected in the congruent left-downward 
direction (M = -0.09); when they manipulated the greater 
number, they clicked more right-upward (M = 0.11). 

The size of this spatial deflection, moreover, was 
moderated by the task, b = -0.14 ± 0.06 SEM, t = -2.4 p = 
.02. The size of the magnitude-based spatial deflection in 
the Magnitude task (b = 0.30 ± 0.03 SEM) was significantly 
larger than in the Algebra task (b = .18 ± .04 SEM), even 
though the magnitude-based deflection was significant in 
both tasks (both ps < .0001). Thus, magnitude induced an 
overall spatial deflection of numeral manipulations, and the 
size of this deflection was task-dependent.  

Axis-specific spatial deflections 
We next investigated whether this task-sensitive spatial 
deflection was specific to either the vertical or horizontal 
axis. Along the vertical axis, there was no evidence that 
responses differed by Task, b = 0.001 ± .02 SEM, p > 9. By 
contrast, a number’s relative magnitude had a systematic 
impact on where it was clicked, b = .18 ± .02 SEM, t = 7.7, 
p < .0001. When the selected number was greater than the 
other number in the equation, it was clicked 0.18 standard 
deviations higher than when it was less than the other 
number. This spatial-numerical deflection was moderated by 
the task, as revealed by a significant interaction, b = -0.14 ± 
.05 SEM, t = -2.3, p = .02. Additional analyses confirmed 
that a spatial-numerical deflection occurred for both tasks, 
and differed only in size. In the Magnitude task, greater 
numbers were clicked higher than lesser numbers, b = 0.23 

± 0.04 SEM, p < .0001. In the Algebra task, greater numbers 
were still clicked significantly higher, but the deflection was 
dampened, b = 0.12 ± .03 SEM, p = .0001. Thus, there was 
spatial-numerical deflection in both tasks, but the amount of 
deflection was greater with explicit attention to magnitude. 

On the horizontal axis, the effect of Magnitude was 
smaller but still significant (b = 0.06 ± 0.02 SEM, t =2.9, p 
< .01). While there was no evidence that this magnitude-
based deflection was moderated significantly by the Task (b 
= -0.02 ± 0.04 SEM, t = -0.5, p > .6), additional analysis 
revealed that the magnitude-based horizontal deflection was 
only reliable in the Magnitude task, b = 0.07 ± .03 SEM, p = 
.01. In the Algebra task, by contrast, there was no evidence 
of a magnitude-based deflection along the horizontal axis, b 
= 0.05 ± 0.04 SEM, p = .17.   

 

 
Figure 2: Magnitude-based spatial deflection while 
manipulating equations. The vertical axis indicates mean 
spatial deflection, normalized for each subject (i.e., z-
scored). Interactions with greater numbers (red squares) 
were deflected upward and rightward; interactions with 
lesser numbers (blue circles), downward and leftward. This 
occurred in both tasks, but it was significantly more 
pronounced in the Magnitude task. (Error lines = SEM.) 

 

Discussion  
We investigated whether symbol-mediated algebraic 
reasoning activates spatial representations of number, using 
dense recordings of algebraic manipulations (DREAM). 
Manipulations of algebraic equations were deflected upward 
and rightward when interacting with greater numbers, and 
downward and leftward when interacting with lesser 
numbers. The strength of this magnitude-based deflection, 
however, was moderated by the task. Spatial deflection was 
greatest when the task required explicit attention to 
numerical magnitude, and was dampened when the task 

2678



Spatializing numbers during algebra  5 

required algebraic reasoning. This was true even though the 
two tasks involved interacting with identical equations using 
comparable movements. In sum, when manipulating 
equations, people automatically activate a spatial 
representation of numerical magnitude, and the strength of 
this activation depends on the task’s mathematical demands. 

Spatial deflection along the horizontal axis was less 
pronounced than along the vertical axis. One explanation of 
this finding is that algebraic notation uses horizontal spacing 
for another purpose: to indicate syntactic hierarchy. In 
algebraic notation, higher-precedence operations are often 
written with little space between operands (e.g., 3•x•y) or no 
space at all (e.g., 3xy), while lower-precedence operations 
often introduce additional space between operands (e.g., 3 + 
x + y). Thus, during equation manipulation, the horizontal 
axis may be co-opted to represent algebraic structure, 
dampening horizontal representations of numerical 
magnitude (Landy & Goldstone, 2007; Landy, Allen, & 
Zednik, 2014). By contrast, on purely numerical or 
arithmetic tasks, numerical magnitude does deflect hand 
movements along the horizontal axis: to the left for lesser 
magnitudes, and to the right for greater magnitudes 
(Marghetis et al, 2014; Faulkenberry, 2016).  

A new DREAM for studying algebraic reasoning  
The study reported here is the first to use a methodology 
that we have dubbed dense recording of algebraic 
manipulations (DREAM) to gain insight into the cognitive 
processes at work during algebraic reasoning. Similar 
computer mousetracking approaches have been used to 
study the dynamics of simple numerical judgments (e.g., 
Faulkenberry, 2016; Song & Nakayama, 2008) and mental 
arithmetic (e.g., Marghetis et al, 2014). DREAM extends 
this mousetracking methodology to a domain where manual 
interaction with external symbols is not just an artificial 
feature of the experimental design, but an integral part of the 
mathematical activity itself. One contribution of this study 
is to introduce this data-rich paradigm, which we hope can 
open new avenues of inquiry into mathematical cognition.  

Algebraic reasoning is powerful because it transforms 
difficult conceptual tasks into a series of simple, robust 
physical manipulations of stable external symbols 
(Hutchins, 1995). Indeed, it is a canonical example of a 
cognitive accomplishment that depends on distributing the 
cognitive load across time and space. This requires 
coordinating skull-internal processes (perception, planning) 
with external processes like writing and gesturing. At its 
core, therefore, the practice of algebra demands the skillful 
use of hands: writing and erasing equations; using a finger 
to point to some aspect of an equation. DREAM allows us 
to analyze this distributed ‘manual labor’ that is a natural 
part of algebraic activity. 

Soft-assembling space for mathematics 
This is the first evidence that spatial representations of 
number are activated during algebraic reasoning. Previous 
research, however, has documented other spatial processes 
that play a role in algebraic reasoning. The conventions of 
our algebraic notation use horizontal spacing to indicate 
syntactic hierarchy: higher-precedence operations are 
compressed (e.g., xy), while lower-precedence operations 
introduce more space between symbols (e.g., x + y).  
Participants are sensitive to these conventions (Landy & 
Goldstone, 2007; Landy et al, 2014). Once participants 
master the basic syntax of algebra, moreover, they retrain 
their visual system so that they literally see equations as 
consisting of visual objects that respect the syntactic 
hierarchy of algebra (e.g., x • a + y • b is perceived as two 
objects: ‘x • a’ and ‘y • b’; Marghetis, Landy, & Goldstone, 
2016). The current study adds to this list of spatial processes 
that are deployed to solve algebraic equations.   

This menagerie of spatial processes raises the question of 
how they are all brought into coordination. We favor an 
account where these different brain-based spatial resources 
are soft-assembled: they are brought into coordination in a 
way that is both transient and situated, responding to the 
demands of the task and the material environment (Clark, 
2008). On this account, the development of mathematical 
expertise is not merely a process of piling new insights on 
top of old. Instead, the mathematical expert learns to 
combine, flexibly, a range of spatial processes, sometimes 
deploying one representation, other times another.   

This account raises just as many questions as it answers. 
First, what is the time course of these processes? Are they 
all activated at once, or are they brought online sequentially 
in a cascade of activations? Marghetis and colleagues 
(2014), for instance, documented how, when individuals 
perform exact symbolic arithmetic (e.g., 2 + 7), they first 
activate a spatial representation of the magnitude of the first 
number, then of the arithmetic operation, and finally of the 
solution. A similar cascade may occur in algebra. 

Second, given our limited cognitive resources, how do all 
these mathematical facets—magnitude, arithmetic, algebraic 
syntax—become coupled to space without conflicting with 
each other? The spatial impact of relative magnitude was 
dampened significantly when the goal was to solve the 
equation rather than to judge relative magnitude. This 
suggests that spatial representations of number may fade 
over time, particularly when it comes to mathematical 
activities, like algebra, that foreground structural 
relationships over numerical magnitudes.  

This fading may occur on multiple timescales, from the 
developmental to the momentary. On a developmental 
timescale, mathematical expertise might involve 
redeploying spatial resources to represent arithmetic or 
algebraic relations, pushing aside representations of 
magnitude. On shorter timescales, the activation of spatial 
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representations may be task-dependent, as it was in this 
study, or change from moment-to-moment—for instance, as 
an individual goes from identifying the symbol they intend 
to manipulate, to actually moving that symbol. Thus, as 
attention shifts away from magnitude or as other concepts 
acquire spatial associations, a symbol may become 
“semantically bleached” of its spatial-numerical content.  

Indeed, the current results leave open the question of 
whether these spatial-numerical associations play a 
functional role in algebraic reasoning. Taken to the extreme, 
our results are consistent with an account wherein, for 
higher mathematics, spatial representations of number are 
largely epiphenomenal, playing a diminished role as spatial 
circuits are re-deployed to represent other aspects of the 
mathematical content (e.g., hierarchical algebraic structure). 

Conclusion 
Are spatial representations of number really as ubiquitous as 
some have assumed, or are they limited to simple numerical 
tasks? Using dense behavioral recordings of equation 
manipulations, we found that numerical magnitude did, 
indeed, cause deflections that suggest a bottom-to-top and 
left-to-right spatial representation of number. This occurred 
even when the task was entirely algebraic, though the 
deflections were more pronounced when the task did require 
attending to magnitude. Our capacity for algebraic 
reasoning depends on a host of skills and processes — many 
of which are spatial — that must be brought in and out of 
coordination during situated reasoning. This singular ability 
would be impossible without the capacity to cobble together 
such processes both flexibly and dynamically. 
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