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Abstract: Recent studies have found limited associations between antimicrobial resistance (AMR)
in domestic animals (and animal products), and AMR in human clinical settings. These studies
have primarily used Escherichia coli, a critically important bacterial species associated with significant
human morbidity and mortality. E. coli is found in domestic animals and the environment, and it can
be easily transmitted between these compartments. Additionally, the World Health Organization
has highlighted E. coli as a “highly relevant and representative indicator of the magnitude and
the leading edge of the global antimicrobial resistance (AMR) problem”. In this paper, we discuss
the weaknesses of current research that aims to link E. coli from domestic animals to the current
AMR crisis in humans. Fundamental gaps remain in our understanding the complexities of E. coli
population genetics and the magnitude of phenomena such as horizontal gene transfer (HGT) or DNA
rearrangements (transposition and recombination). The dynamic and intricate interplay between
bacterial clones, plasmids, transposons, and genes likely blur the evidence of AMR transmission from
E. coli in domestic animals to human microbiota and vice versa. We describe key factors that are
frequently neglected when carrying out studies of AMR sources and transmission dynamics.

Keywords: commensal E. coli; antimicrobial resistance; food-animals; gene transfer

1. Introduction

The rapid evolution of antimicrobial resistance (AMR) in bacteria is one of the most dangerous
trends in public health [1,2] causing increased morbidity, mortality [1,3–8], and economic loss [9].
The AMR crisis is being felt more intensely in hospitals where outbreaks of pan-resistant opportunistic
pathogens are emerging at an increasing pace [10–13]. Most of these drug-resistant opportunistic
pathogens found in clinical settings are members of the human (or other animal) commensal
microbiota [14–16]. AMR in bacteria from food-animals has been reported since the 1950s when
antimicrobial supplements began to be used as growth promoters in animal feed [17–21]. Currently, 75%
of antimicrobials produced in the world are used in food-animals [22]; both small-scale food-animal
producers and intensive food-animal operations use a variety of antimicrobials in animal feed and
water as growth promotors or prophylactics [23–27]. Food-animal performance is an important issue
in the food-animal industry and antimicrobials are perceived as a means to prevent disease or improve
weight gain and feed conversion efficiency [28,29]. Antimicrobial use in this setting, however, causes
selective pressure on the bacterial populations which accumulate AMR genes [30–35], and the large
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numbers and diverse AMR genes in the microbiota of domestic animals has created concern about the
spread of AMR from food-animals to humans [13,36–38].

Transmission of AMR bacteria can occur through the environment [39] and food-chain [40–42],
especially in low- and middle-income countries (LMICs) where water, sanitation, and hygiene are
inadequate [43–45]. We focus on the role of commensal E. coli in the AMR crisis for three reasons. First,
E. coli is probably the most studied indicator [46,47] and its transmission can be tracked more easily
(among animal hosts) than anaerobes, which are the most abundant members of the microbiota [48,49].
Second, E. coli can survive and even grow in the environment outside of the host [50]. Third, E. coli
may mobilize AMR genes more easily than other intestinal bacteria (such as Bacteroides) [51–53].

In this review, we focus on recent reports showing a lack of relationship between AMR in domestic
animals and antimicrobial resistant bacteria in humans. We postulate that the complexities, due
to high diversity, strain turnover, and horizontal gene transfer, hamper our ability to find greater
linkage between AMR in domestic-animals and humans. We include pets in this study to show how
an antimicrobial resistant E. coli can colonize different hosts. We analyze all the potential pitfalls
associated to these types of studies. To minimize the potential overestimation of human–domestic
animal transmission, we focus on reports in which whole-genome sequencing (WGS) was used, as
multi locus sequence typing (MLST) can show homoplasious sequence-types [54] or strains belonging
to the same sequence-type may show many single nucleotide polymorphisms (SNPs) in other genes
indicating non-recent ancestry [55].

Population Genetics of E. coli and AMR

Escherichia coli is found almost exclusively in the intestines of warm-blooded animals and although
it represents only around 1% of the intestinal microbiota [56], it is probably the most abundant member
of the intestinal microbiota possessing the ability to survive and even grow outside the host [50].
Commensal E. coli is probably the most common commensal bacteria transmitted among different
species of animals [48,49]. Each E. coli strain falls into one of the six phylogenetic groups (A, B1, B2,
D, E, or F) [57]. The majority of E. coli clones can colonize the intestines of different animal species
(generalists), however, different E. coli strains may display a different degree of host adaptation, and the
strains belonging to some phylogroups may be better adapted to certain animal species [57–60]. E. coli
strains with a higher degree of adaptation to a given intestinal milieu may become long-time colonizers
(residents) [61] and numerically dominant [62], while strains with lower adaptation may colonize
transiently and/or may become a numerical minority. Numerically dominant and resident lineages
may disseminate more between different hosts. The constant competition between new arrivals with
colonizing strains in the intestine is likely responsible for the rapid turnover of dominant E. coli strains
observed in the intestines of humans [63]. Although a minority among E. coli lineages, pathogenic
strains of E. coli (such as ST131 genotype) are an important category that contains virulence genes
and are associated with invasive infections. Antimicrobial resistance is another layer of complexity;
the transmission of AMR genes among strains of E. coli occurs through the movement of mobile
genetic elements (MGEs; e.g., plasmids, phages, transposons, integron-cassettes, and other mosaic
structures) [33,64,65]. Transposable elements and cassettes (integrons) mediate the movement of
AMR genes from one MGE to another or from a bacterial chromosome to plasmids (or vice versa),
whereas plasmids mediate the movement of AMR genes from one bacterium to another [33,66,67].
This phenomenon is very dynamic; it is possible to find isolates that are the same E. coli clone, in the
same intestine with different AMR genes [68,69]. All these categories (dominant, pathogenic, and
antimicrobial resistant) are very fluid as E. coli strains may change their status by acquiring genes
(horizontal gene transfer-HGT and recombination) or by mutations.
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2. Materials and Methods

2.1. Study Population and Outcome of Interest

For this review, we considered relevant peer-reviewed literature that studied humans, farm
animals, and pets carrying antimicrobial resistant commensal E. coli.

2.2. Identifying the Relevant Literature

The peer-reviewed literature was searched using Google, Google Scholar, MEDLINE, and PubMed
using the keywords: farm animals OR domestic animals AND antimicrobial resistance OR antibiotic
resistance AND Escherichia coli OR E. coli AND human.

2.3. Eligibility Assessment

Selected articles were submitted to an initial screening to determine the relevance based on title,
abstract, and keywords. A second full-text screening was performed to analyze methods. Those
that reported whole-genome sequencing for comparison of interspecies transfer of E. coli or AMR
determinants were selected (Table 1).



Int. J. Environ. Res. Public Health 2020, 17, 3061 4 of 12

Table 1. Description of studies that applied next-generation sequencing to study interspecies transfer of E. coli or antimicrobial resistance (AMR) genetic determinants.

Study Advanced Typing
Methods 1

Spatially Matched
Sampling

Temporally Matched
Sampling

Focused on Human
Pathogens

Strong Evidence of
Animal-Human

Transmission
Financial Support

De Been, et al., 2014 [39] + − − + − Government
De Been, et al., 2014 [39] + + + − + Government
Hu, et al., 2016 [53] + − − − + Government
Salinas, et al. 2019 [55] + + + − + Government
Ludden, et al., 2019 [70] + − − + − Government
Day, et al., 2016 [71] + − − + − Government, private, NGO
Dorado-Garcia, et al., 2018 [72] + − − + − Government, private
Mainda, et al., 2019 [73] + − + + − Government, private
Falgenhauer, 2019 [74] + + + − + Government
Berg, et al., 2016 [75] + + + − + Government
Li, et al., 2019 [76] + + + − + Government
Loayza, et al., 2019 [77] + + + − + NGO
Liu, et al., 2016 [78] + − − + + Government
Trung et al., 2019 [79] + + + − − Government
Falgenhauer, et al., 2016 [80] + − − − + Government
Reeves, et al., 2011 [81] + + + + + Government
Hedman, et al., 2019 [82] − + + − + Government, NGO
Trung, et al., 2017 [83] − + + − + Government
Valentin, et al., 2014 [84] − − − − − Government

1 Advanced method include whole core-genome sequence typing and plasmid sequencing. NGO: non-governmental organization.
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3. Results and Discussion

3.1. Why Have Studies Failed to Show a Link between Antimicrobial Resistance in Humans and
Domestic Animals?

Different sampling protocols often yield different results, and below we describe critical aspects of
studies that can affect study findings. We note here that none of the studies included in this analysis
reported to receive funding from sources that may have financial interests at stake, and all of the
authors declared no conflict interest (Table 1).

3.2. Inadequate Sampling

Many studies have failed to find a clonal relationship or AMR gene homology between AMR E.
coli obtained from humans in hospitals (opportunistic pathogens) and domestic animals [39,70–73].
When commensal isolates were obtained from domestic animals and humans living in proximity
and during the same period, however, isolates were identified that showed clear clonal relationships
and the same AMR genes in E. coli from humans and domestic animals [74–77]. We argue that
reports analyzing isolates from different locations or different time frames underestimate the E. coli
diversity and population dynamics. Populations of E. coli collected from different locations and
different time frames are most likely different. Despite this fact, some reports have been able to find
clonal relationships between infections in hospitalized humans and fecal samples from domestic
animals [74,78]. We found one exception where commensal E. coli from domestic animals did not
show clonal similarity to human E. coli in the same community and during the same time period [79].
An alternative interpretation of the discrepancies between studies is that E. coli from domestic animals
transmit to humans through the environment (people working on farms or who are in contact with
animals or their waste) and not through the food-chain [39], however, it seems more likely for an
enteric bacteria (like all zoonotic enteric pathogens) to enter the human gut through food than any
other route.

3.3. Focus on Opportunistic Pathogens

The bulk of the E. coli transmitted from domestic animals to humans are probably numerically
dominant commensals, not frank pathogens. Numerically dominant E. coli commensals are lineages
representing the majority [62]. Pathogenic strains of E. coli make up a limited number of the E. coli
lineages which may be moving from domestic animals to humans; these pathogens, however, are
probably a minority in many animal intestines. Therefore, it is no surprise that some studies failed to
detect some opportunistic human pathogens (such as E. coli ST131) in fecal samples from domestic
animals or animal products [39,70,71]. If these strains are part of the commensal E. coli in domestic
animals, they are experiencing the same population fluctuations associated with clonal competition
(described above). Assessing the prevalence of pathogenic E. coli in domestic animals or animal
products may require massive sampling and metagenomic approaches. Nevertheless, some studies
have been able to detect the same clones of opportunistic pathogens in hospitals and domestic animals
or food-animal products [42,74,75].

3.4. Complex Dynamics of Mobile Genetic Elements

Transmission of AMR genes between domestic animal microbiota and human microbiota seems
to occur more frequently by HGT than clonal transmission [39,53,68,77,78,80,81,85]. Nevertheless, the
HGT of AMR genes complicates the identification of the source of AMR genes. It is possible that AMR
E. coli strains (e.g., from a domestic animal) marginally colonize the human gut, but it may transfer
a plasmid to a dominant bacterial strain (human-adapted) in the human intestine [68,78,86] and the
same AMR gene may move via a transposon (or cassette) from the mobilized plasmid (from an animal
bacteria) to a plasmid in the human bacterium [33,66] (Figure 1). Under this scenario, only a longitudinal
analysis including whole plasmid sequencing of epidemiologically related (spatiotemporally linked)
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strains could capture this phenomenon. Identical AMR genes are carried by different E. coli plasmids
in diverse isolates obtained from humans and domestic animals living in the same community and
during the same period [55]. Recent studies (using WGS and plasmid sequencing of epidemiologically
related isolates) show how transposable elements restructure plasmids with AMR genes in bacterial
strains that are causing infections in one hospital over time [66], and how some plasmids can undergo
rearrangements in a short period of time [67]. Plasmids carrying AMR genes also have a different ability
to disseminate, such that many exhibit different levels of bacterial host specificities and cause different
fitness costs in different bacterial populations [87]. Due to the complexity of the phenomena involved,
the transmission of AMR genes from food-animal E. coli to human E. coli may not be possible to
demonstrate molecularly but only epidemiologically (i.e., E. coli strains isolated from epidemiologically
related sources, have the same AMR genes) [55,82,83,88,89].
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studying antimicrobial resistance transmission. Plasmids (P) carried by E. coli from a food-animal can
be transferred to human E. coli and the ARG can move between plasmids.

3.5. Focus on Non-Dominant Clones

Results from studies carried out on strains isolated with non-selective media (e.g., containing
no antimicrobials) will differ from studies in which E. coli was isolated in media with antimicrobials.
In the first case, we are likely assessing the numerically dominant E. coli [62], while in the second case
we may be looking at a minority E. coli lineage with a specific resistance phenotype. As previously
mentioned, numerical dominance may be related to some degree of adaptation of some E. coli lineages
to an animal host; some generalist strains can thrive similarly in the intestines of different animal
species, while others likely thrive in one animal species rather than in others [58,60]. We argue that
a specialist E. coli strain colonizing the intestine of a host, for which it is not adapted, may remain
a numerical minority [58] and undetectable by standard bacteriological culturing techniques (e.g.,
collecting 5–20 colonies from a culture plate) [62]. Conversely, when a strain is more adapted to the host,
it is likely to become a numerically dominant lineage and easily detected by standard bacteriological
culture. This property may then indicate that human to human E. coli transmission is more frequent
than the transmission of E. coli from domestic animals to humans because of a higher exposure of
human populations to human strains [72].

3.6. Different Environmental Contexts

Other factors responsible for discrepancies between studies may be associated with the
environmental setting; industrialized countries have better environmental and food hygiene and
sanitation than low- and middle-income countries (LMICs), and some differences in E. coli transmission
should be expected in different contexts. Similar considerations must be made when comparing rural
(farming communities) vs. urban communities [72,74,77]. For food-animal operations in low-income
countries, or where there is insufficient biosecurity and hygiene in the facilities, reducing the use of
antimicrobials is perceived as a big challenge [90,91].

The review of the literature indicates that there is little doubt that cross-colonization of AMR
bacteria from domestic animals to humans is occurring and many studies have shown this. There is
also compelling evidence that AMR genes that originated in food-animals can end up in E. coli strains
that reside in the human gut [39,55,77,83]. However, in some instances, these phenomena may not be
evident because the large diversity and constant turnover of E. coli strains in the intestines reduces
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the chances of finding a link, especially when sampling from different locations or during different
timeframes as was done in many previous studies. The movement of AMR genes from one plasmid to
another, or plasmids undergoing rearrangement, are also important obstacles to understanding the
linkage between AMR in human and domestic animals [67].

Horizontal gene transfer acts as a mechanism that can quickly spread resistant determinants to
new carriers regardless of whether they are human or animal linages of bacteria [83,92]. AMR genes
and the MGEs that mobilize these genes are likely to be derived from diverse parts of the microbial
biosphere [13,93]. The gut microbiome has been defined as an important source of AMR genes in
both animals and humans [94], and the dynamic nature of the gut is likely complicated further by the
dynamics of HGT [95,96].

There are likely major differences in the transmission of AMR in high-income, middle-income,
and low-income countries. For example, poor hygienic conditions in the food-animal industry in
low-income countries may accelerate the transmission of bacteria from food-animals through the
food-chain; lack of wastewater treatment or lack of basic sanitation infrastructure may contaminate
irrigation water or soil where crops are raised [97,98]. The latter transmission pathway is also
troublesome as AMR may return to humans via food-animals and the food-chain. One potential
example of this phenomenon is carbapenem resistance, which is thought to most likely originate in
humans (i.e., carbapenems are not used in food-animals). A study in China found clonally related
carbapenem resistant E. coli in backyard food-animals, humans, and the environment [76].

Finally, E. coli is a diverse species and shows high rates of recombination and HGT. To understand
the true role of animal E. coli in the AMR crisis, it is necessary to take into account all the biological
(population genetics and physiology) aspects of this bacterium and apply WGS, including whole
plasmid sequencing. Fortunately, the declining costs of this technology are allowing its implementation
in LMICs. The AMR crisis in human medicine is another example where the One Health paradigm
is important.

4. Conclusions

We suggest that transmission of antimicrobial resistant commensal E. coli or AMR genes between
E. coli from domestic animals and humans occurs frequently, however it is difficult to detect.
The diversity of E. coli clones and the turn-over rate of E. coli clones in the intestines does not
facilitate finding relationships between strains in domestic animals, animal products, and humans.
The only way to observe this connection in is by sampling humans, animal products, and domestic
animals in the same location and during the same period of time. Finding evidence of AMR gene
transmission between bacteria in humans and domestic animals is made even more complex as genes
frequently move from one plasmid to another. Observing transmission phenomena will likely require
that studies collect spatiotemporally matched samples.
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