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ABSTRACT OF THE THESIS

A Comprehensive Study of the Seminal

Monte-Carlo-Based Image Synthesis Algorithms

by

Ali Kouhzadi

Master of Science in Computer Science

University of California, Los Angeles, 2016

Professor Demetri Terzopoulos, Chair

This thesis presents an in-depth study of the problem of photorealistic image synthesis

in the field of computer graphics. To better understand the proposed solutions to this

problem, we first briefly overview several relevant fundamental topics, such as probability,

Monte Carlo integration, sampling methods, reflection methods, etc. We then review some

of the most influential Monte-Carlo-Based image synthesis methods introduced over the past

four decades. Finally, to better understand the advantages and weaknesses of each method,

we evaluate the reviewed methods using the Mitsuba Renderer, an open-source, research-

oriented rendering system.
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1. Introduction

1.1 Global Illumination and Photorealistic Image Syn-

thesis

Global Illumination refers to a group of algorithms concerned with simulating the interaction

of light with surfaces and volumes [10, p. 470], also called light transport simulation. The

purpose of global illumination is in synthesizing photorealistic images based on a scene

description. In the context of computer graphics, geometrical optics is almost exclusively

used for simulating the behavior of light [13, 20] and other theoretical frameworks (e.g., light

as waves or particles) are usually ignored, since they are either too complex and negatively

affect efficiency, or do not have noticeable visual effects at macroscopic scales.

The first attempt at approaching image synthesis using geometrical optics can be traced

back to Appel’s 1968 paper [2], which laid the foundations for Goldstein and Nagel’s 1971

milestone paper that introduced the first method for simulating the physical process of

photography and synthesizing fully computer-generated perspective images by “geometric

ray tracing”. These two seminal papers paved the way for the introduction of recursive ray

tracing by Whitted in 1979 [36], ray casting by Roth in 1982 [28], and radiosity by Goral

et al. in 1984 [9]. In turn, the introduction of Whitted’s recursive ray tracing and Goral’s

radiosity were arguably the start of a wave of scholarly interest in global illumination and

physically-based image synthesis.

As was discussed in [2], the most obvious method for simulating light transport is to

trace rays emitted from a light source through the scene until they reach the observer, but in

practice this method is not feasible since it is most likely that a small number, or even none,

of the selected rays reach the observer (e.g., in outdoor scenes). Tracing infinite beams of
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light emitted from a light source is also impractical for obvious reasons. The more practical

alternative is to trace light rays or beams of light backward, from the observer through

the image plane, and from there through the scene until some of them reach some sort of

light source. This is essentially the basis of all the global illumination methods in computer

graphics.

There are two types of widely-used light transport models:

1. Local Illumination and

2. Global Illumination.

In the local illumination approach, only direct lighting is taken into account—light rays

that are directly emitted from the light source and bounce off a single surface directly

towards the observer [10, p. 140]. Using this approach, all the inter-reflections between

different surfaces in a scene are ignored in exchange for performance, which makes it well-

suited for realtime application (e.g., video games, virtual reality). In realtime rendering, a

local lighting model is used by default, and numerous “hacks and tricks” and ad-hoc methods

are used to efficiently synthesize natural-looking images.

Global illumination methods, by contrast, take into account direct lighting as well as

indirect lighting, so that the process of shading a point on a surface takes into account

the direct light rays coming from the light sources, the reflected light rays coming from

other objects in the scene (inter-reflection), and refracted light rays passing through the

object itself, as well as the effects of participating media, etc., thus producing photorealistic

images. Using global illumination, one can simulate optical phenomena such as caustics,

color-bleeding, soft shadows, motion blur, etc.

Subsequent improvements on recursive ray tracing and radiosity resulted in one of the

most important contributions to the field in 1986 by Kajiya—the Rendering Equation, also

referred to as the Light Transport Equation (LTE), which was introduced in his seminal

paper [20] and was the starting point of Monte Carlo Ray Tracing (MCRT), methods that
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involve evaluating the rendering equation using Monte Carlo integration. These methods can

be categorized into two groups of algorithms (to be discussed in more detail in Chapter 2):

1. Biased and

2. Unbiased.

In general, we can categorize global illumination algorithms into two groups:

1. Algorithms based on point sampling and Monte Carlo integration (e.g., path tracing,

bidirectional path tracing, Metropolis light transport, etc.)

2. Algorithms based on the Finite Element Method (FEM) (e.g., radiosity)

Over time and through the introduction of new methods, it is now widely accepted that the

most general and robust approach to the global illumination problem is MCRT [13, p. vi].

1.2 Objectives

The main goal of this thesis is to conduct a focused and in-depth study of the topic of

photorealistic image synthesis and physically-based rendering.

Based on research that has been presented at the ACM SIGGRAPH Conference in recent

years, the film and animation industry seems to be moving toward replacing the decades old,

industry-standard rendering techniques based on rasterization and ad-hoc methods by Monte

Carlo Ray Tracing methods. Moreover, hardware manufacturers such as NVIDIA and Intel

corporations show a high level of interest, at least in principle, in a not so far off future when

GPU architectures based on ray-tracing could replace the current industry-standard GPU

architectures based solely on rasterization. Last but not least, the big players in the video

game industry more or less show the same level of enthusiasm and optimism in achieving

photorealism using global illumination and ray-tracing methods, a great example being the
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advent of game engines like Unreal Engine 41 in recent years that are capable of taking

advantage of ray-tracing to render soft shadows.

Based on the above considerations, now seems to be the perfect time to study this

particular subfield of Computer Graphics and understand the intricacies of these methods.

This thesis reports on our investigation into the most prominent existing methods for solving

the rendering equation.

1.3 Outline

Chapter 2 covers the prerequisite mathematical topics needed to understand the Monte-

Carlo-based rendering techniques, including basic probability concepts, Monte Carlo inte-

gration, geometrical optics, light scattering, etc.

Chapter 3 discusses the seminal MCRT methods in chronological order, starting with a

brief discussion and introduction of precursors to MCRT, namely ray-casting, ray-tracing,

and its variations, as well as radiosity, and then moving on to advanced Monte Carlo ren-

dering methods, culminating in the Stochastic Progressive Photon Mapping algorithm intro-

duced in 2009.

Chapter 4 presents a quantitative comparison of the introduced methods and sample

images rendered using the Mitsuba open source renderer,2 along with a discussion of the

comparative advantages and disadvantages of these methods.

Chapter 5 presents our conclusions, as well as a discussion of the opportunities for im-

proving global illumination methods, along with providing pointers to advanced topics such

as texture mapping, volumetric rendering, etc.

1Epic Games, Inc.
2Website: https://www.mitsuba-renderer.org/
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2. Background

2.1 Basic Probability Concepts

As a precursor to discussing Monte Carlo integration, we review in this section basic proba-

bility concepts that should be covered in an undergraduate probability and statistics course.

The material in this section is based on [27, Chapter 13] and [22, Chapter 1]. Readers un-

familiar with basic probability concepts are encouraged to refer to these two references for

more detailed discussions.

A continuous random variable x is a scalar or vector quantity that randomly takes on

some value from the real line R = (−∞,+∞). The behavior of x is described by the

distribution of values that it takes using a Probability Density Function, or pdf for short;

x p denotes the relationship between a pdf p associated with a random variable x.

The probability that x will take on a value in interval [a, b] is given by

Probability(x ∈ [a, b]) =

∫ b

a

p(x)dx. (2.1)

A pdf (here denoted as function p) describes the relative likelihood of a random variable

taking a certain value. For instance, if p(x1) = 0.6 and p(x2) = 0.3, then a random variable

with density p is twice as likely to have a value near x1 than near x2.

Density p has the following characteristics:

• p(x) ≥ 0;

•
∫ +∞
−∞ p(x)dx = 1.

The average value that a real function f of a one-dimensional random variable with pdf
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p will take on is called its expected value or mean, denoted by E[f(x)] and obtained by

E[f(x)] =

∫ +∞

−∞
f(x)p(x)dx. (2.2)

The expected value of the function f has the following properties:

• E[f(x) + g(y)] = E[f(x)] + E[g(y)];

• E[a.f(x) + b] = a.E[f(x)] + b.

A measure of the amount of variation of the values a random variable might take is

described in terms of its variance, showing how far the data are spread out relative to the

mean. For one-dimensional random variable, variance is obtained as

V (x) = E[(x− E[x])2]. (2.3)

Note that it can be proven (2.3) can also be written as

V (x) = E[x2]− (E[x])2. (2.4)

The standard deviation or σ describes the distance (difference) between a value and the

mean, it is also called the standard error of a sampling distribution. Using standard deviation

one can investigate the following:

1. How much variation exists from the mean?

2. How are the data spread on a specific interval?

3. The expected difference between an individual measurement and the mean.

The standard deviation is simply the square root of the variance:

σ =
√
V (x). (2.5)

6



Random variables and expected value can also be defined in two or more dimensions. Let

X and Y be two continuous random variables, and f(x, y) be their joint probability density

function (joint pdf); the probability that X and Y take on values in any two-dimensional

set A is the volume under the density surface above A

P [(X, Y ) ∈ A] =

∫∫
A

f(x, y)dxdy. (2.6)

Suppose the space S has associated measure µ; for instance, S is the surface of a sphere

and µ measures its area. We can define a pdf p : S → R, and if x is a random variable with

x p, then the probability that x will take on a value in some region Si ⊂ S is given by the

integral

Probability(x ∈ Si] =

∫
Si

p(x)dµ. (2.7)

Equation (2.7) gives the probability that x takes on a value in the region Si. In computer

graphics, S is often an area (A), therefore dµ = dA = dx × dy, or a set of directions (e.g.,

points on a unit sphere); therefore, dµ = dω = sin θ × dθ × dϕ.

In two dimensions, the expected value of the continuous random variable X is

E[X] = µX =

∫∫ +∞

−∞
xf(x, y)dxdy. (2.8)

And for Y ,

E[Y ] = µY =

∫∫ +∞

−∞
yf(x, y)dxdy. (2.9)

And, finally, the expected value of a function of X and Y , g(X, Y ) is

E[g(X, Y )] = µg =

∫∫ +∞

−∞
g(x, y)f(x, y)dxdy. (2.10)
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2.2 Estimators and Their Properties

Another concept that must be discussed before the introduction of Monte Carlo Integration

is how to estimate the expected value of a random variable. Summation of independent, iden-

tically distributed random variables xi, independent random variables that share a common

pdf p, divided by the number of random variables gives an estimate for the E[x]:

E[X] ≈ 1

N

N∑
i=1

xi. (2.11)

As N increases, the variance of (2.11) decreases; therefore, a large enough N is desired in

order to decrease the error of the estimate.

A function FN of N random variables is called an estimator for a quantity Q, if its

expected value can be used as an estimate to Q, meaning Q ≈ E[FN ].

The error of an estimator FN is its difference from the exact value of Q:

error = FN −Q. (2.12)

To make it more general, a more useful definition is the Mean Square Error of an estimator,

defined as

MSE = E[(FN −Q)2]. (2.13)

The bias of an estimator is defined as the expected value of its error:

β[FN ] = E[FN −Q]. (2.14)

An estimator FN is called unbiased if β[FN ] = 0, which in turn indicates

E[FN −Q] = 0⇒ E[FN ] = Q. (2.15)
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The advantage of an unbiased estimator is that it is guaranteed to produce correct results

given a large enough number of samples. The variance of an unbiased estimator is the same

as its MSE. On the other hand, a biased estimator does not guarantee to produce correct

results, regardless of number of samples taken, and its variance is not the same as its MSE.

In the context of unbiased MCRT, variance (or MSE) manifests itself as noisy pixels

in the output image; however, a biased MCRT method can produce images with less noise,

although results are not guaranteed to be correct.

Another important concept introduced in [22, Chapter 1] is the concept of consistency of

an estimator; an estimator is said to be consistent if its error converges to zero as the number

of samples increases. Therefore, an unbiased estimator that is not consistent can produce

incorrect results, while a biased estimator that is consistent can produce correct results.

To summarize, unbiased MCRT methods, as opposed to biased methods, do not contain

any systematic error—they can be stopped after any number of samples and the expected

value of the estimator will be correct regardless. The biggest problem with unbiased al-

gorithms is their variance, which will show up in the rendered image as noise that can be

reduced by taking more samples. Biased algorithms can also produce correct results, but

they can converge to the correct result by taking more samples [13]. In computer graphics,

the first unbiased Monte Carlo method was introduced by Kajiya [20], which was based on

earlier works by Cook et al. (1984) and Whitted (1980) [33].

Examples of unbiased MCRT methods are Path Tracing [20], Bi-directional Path Tracing

[23, 24, 31, 32], and Metropolis Light Transport [33]. Irradiance Caching [35], Density

Estimation [30], and Photon Mapping [15] are examples of biased MCRT methods.

2.3 Monte Carlo Integration

The Monte Carlo Integration method is a numerical method for approximating complex

integrals. Given a function f : S → R and a random variable x p, the expected value of
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f(x) is approximated by

E[f(x)] =

∫
x∈S

f(x)p(x)dµ ≈ 1

N

N∑
i=1

f(xi). (2.16)

We can take advantage of (2.16) to approximate any integral by an appropriate sum. To

simplify (2.16) and make it more general, we make the assumption that g = f × p, where p

is always positive and g 6= 0, giving us the following equation:

∫
x∈S

g(x)dµ ≈ 1

N

N∑
i=1

g(xi)

p(xi)
. (2.17)

To make estimations better in general, we should try to

1. Take as many samples as possible.

2. g and p should have a similar shape; in other words, g
p

should have a low variance.

For a more detailed discussion on Monte Carlo integration, refer to [27, Chapters 13, 14]

2.4 Geometrical Optics and Light Rays

In the context of computer graphics, we are mostly interested in simulating the interaction

of light with matter using geometrical optics. The true nature of light according to Quantum

Mechanics, or whether light acts exactly as particles or waves in a specific situation are not

of concern here, although these topics (electromagnetic waves and photons) will be touched

very briefly in the correct context (e.g., radiometry).

It is useful to think of light traveling as hypothetical constructs such as rays and beams

[34]. A Light Beam is a very thin collection of infinitesimal Light Rays traveling in the same

direction, or one can think of it as the path in which photons travel from the light source in

some specific direction. Although a light beam usually refers to a collection of parallel light

rays, in the context of rendering they are sometimes used interchangeably.
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Two basic rules describing light rays are [34]:

1. In a single unchanging medium, they travel in straight lines.

2. They are reversible, meaning that one can trace their path in opposite direction.

Studying light in terms of these hypothetical constructs helps us simplify the problem

while giving an accurate approximation of the behavior of light in the real world; for instance,

light scattering, reflection, and refraction.

2.5 Heckbert’s Light Transport Notation

A notation to describe a light transport path is desirable in order to avoid verbose descrip-

tions of a path bouncing off of several surfaces. Often in rendering literature a notation

known as Heckbert’s notation is used to describe light transport paths and different types

of reflections at each bouncing point using regular expressions. This method was first in-

troduced in [12]. The following symbols are used to describe different types of light-surface

interactions along a light transport path:

• E and L are two ends of a path—eye and light respectively.

• D is the diffuse reflection or transmission.

• G is the glossy reflection or transmission.

• S is the specular reflection or refraction.

2.6 Radiometry

Radiometry is concerned with the measurement of electromagnetic radiation as well as de-

scribing light propagation and reflection [26, p. 202][27, p 281]. It forms the basis of the

physically-based rendering algorithms [27, p. 281], which will be discussed in subsequent
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chapters. Here we will briefly go over the related concepts and terminology, along with their

definitions.

For our purposes, simulating only the interaction of light with relatively large objects

(larger than the light’s wavelength) is of concern; hence, radiative transfer is a good enough

model to describe these interactions at the level of geometrical optics [27, p. 281]. We will

also make the simplifying assumption that electromagnetic radiation consists of a flow of

photons and disregard their wave-particle duality; doing this we will not be able to account

for phenomena like polarization, interference, and diffraction, which are not necessary for

rendering [26, p. 202].

In rendering, we are mainly concerned with four basic radiometric quantities [27, p. 282]L

1. Radiat Flux (φ).

2. Radiant Flux Area Density.

(a) Outgoing, called Radiant Exitance, or Radiosity (B).

(b) Incident, called Irradiance (E).

3. Radiant Intensity, or Flux Density per Solid Angles (I).

4. Radiance (L).

An more detailed discussion on the more basic radiometric quantities starting from the

frequency, wavelength, and energy of a single photon to radiance can be found in [13, p. 13-

17], but here we will only discuss the above four quantities; material presented here is based

on [26, 13, 27].

Radiant flux of a light source, also known as radiant power, is the total amount of energy

Q, passing through space per unit time,

φ =
dQ

dt
(2.18)
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Radiant flux is measured in Joules per second (J
s
), or Watts (W ).

Radiant flux area density is defined as the differential Radiant Flux dφ per differential

area dA at a real or imaginary surface in space, and is measured in W
m2 ,

RadiantF luxAreaDensity =
dφ

dA
(2.19)

Incident and outgoing radiant flux area densities are often distinguished: if the flux

is incident on the surface this quantity is called irradiance, denoted by E(p, ~ωi), and if it

is leaving the surface, the quantity is called radiant exitance, or Radiosity, and denoted by

M(p, ~ωo) (or B in some texts), although some sources use irradiance to refer to both incident

and outgoing flux. Using the above definition, we can see why the amount of energy received

from a light source falls off with the squared distance from the light. We can measure the

irradiance of a light source at a distance r by imagining a sphere of radius r centered at the

light source; therefore the irradiance reaching the surface of this sphere equals

E =
φ

4πr2

As we get further from the light source the radius of this imaginary sphere increases and as

a result irradiance falls off with the squared distance.

Radiant intensity (I), or simply intensity of a light source is defined as the radiant flux

per unit solid angle ~ω,

I(~ω) =
dφ

d~ω
(2.20)

Radiant Intensity can also be defined as the flux density with respect to the area on an

enclosing unit sphere; this means the radiant intensity can also be calculated using irradiance

(E),

E(r) =
I

r2
⇒ I = E(r)× r2 (2.21)

And finally, radiance (L), is the most important radiometric quantity in rendering [27].
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Radiance is the radiant flux per unit solid angle per unit projected area,

L(x, ~ω) =
dφ

d~ω.dA⊥
(2.22)

Where dA⊥ is the projected area of dA on a hypothetical surface perpendicular to ~ω.

The reason radiance is called the most important radiometric quantity is that it represents

an object’s color; it can be thought of as the number of photons arriving per unit time at a

small area from a given direction. It can also be used to describe the intensity of light at a

given point in space in a given direction. Another important characteristic of radiance is that

it always remains constant through space for a light source. When dealing with equations

involving radiance, it is necessary to distinguish whether the radiance is incident on the

surface or outgoing; incoming radiance at point p in direction ~ω is denoted by Li(p, ~ω), while

the outgoing radiance is denoted by Lo(p, ~ω), such that

Li(p, ~ω) 6= Lo(p, ~ω) (2.23)

But,

Li(p,−~ω) = Lo(p, ~ω) (2.24)

2.7 Surface Reflection and Transmission

2.7.1 Reflection Types

In general surface reflection is split into two broad categories: diffuse reflection and specular

reflection, illustrated in Figure 2.1.

Perfectly diffuse surfaces scatter the incident light equally in all directions, also called a

Lambertian reflection [13]. The reflection (or outgoing) angle, θo, can be any direction chosen

uniformly at random from the upper hemisphere centered at the incident point. Although
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in practice an ideal diffuse surface does not exist, for the purpose of this thesis we assume

a Lambertian reflection when talking about diffuse surfaces unless otherwise noted. Matte

paint is an example of a diffuse surface.

Specular surfaces scatter most of the incident light in a particular direction (or set of

directions), resulting in a glossy surface. Mirrors are examples of perfectly specular surfaces,

reflecting all the incident light with the same angle, meaning θi = θo; surfaces which are not

perfectly specular, are called glossy specular (e.g. plastic or metallic surfaces), for which the

reflection is somewhere in-between perfectly diffuse surfaces and perfectly specular surfaces.

Figure 2.1: Left: diffuse surfaces scatter incident light uniformly in all directions. Right:
specular surfaces scatter most of the incident light in particular set of directions.

A more detailed discussion on this subject can be found in [27, Chapter 8], which catego-

rizes the reflection of light into Diffuse, Perfect Specular, Glossy Specular, Retro-Reflective

(reflecting light back towards the light source).

2.7.2 Transmission or Internal Reflection

Transmission of light, or internal reflection, is the broad case when the incident light enters

a surface, travels inside the surfaces, and exits from the opposite side, e.g. glass or water.

Snell’s Law (or Law of Refraction) describes this behavior of light based on the difference

between the index of refraction of the medium light is traveling in, and the index of refraction

of the medium the light will enter [27],

ηi sin θi = ηt sin θt (2.25)
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where,

• ηi is the refractive index of the medium light is traveling

• ηt is the refractive index of the medium light is entering

• θi is the angle between the incident light and surface normal

• θt is the angle between the transmitted light and surface normal

The index of refraction describes how much slower light travels in a medium compared

to the speed of light in vacuum (c). Internal reflection happens when the light traveling in

a medium with a relatively higher index of refraction, reaches a medium with a relatively

lower index [26].

2.7.3 Bidirectional Reflectance Distribution Function (BRDF)

Bidirectional Reflectance Distribution Function, or BRDF, describes the behavior of light

incident at a surface. A BRDF takes in two parameters: the direction of the incoming

light and the direction of the outgoing light, and returns the ratio of the outgoing radiance

Lo(p, ~ωo to the irradiance E(p, ~ωi)[26, 27],

fbrdf (~ωi, ~ωo) =
dLo(p, ~ωo
dE(p, ~ωi)

(2.26)

BRDFs have to important properties [27]:

1. Helmholtz Reciprocity, meaning have fbrdf (~ωi, ~ωo) = fbrdf ( ~ωo, ~ωi).

2. Energy conservation, meaning for any surface that is not a light source itself, the

outgoing radiance is always less than the incident radiance.

There are two other widely used models for describing the light’s behavior at a surface:

1. Bidirectional Transmittance Distribution Function, or BTDF, describes the behavior

of light at surfaces that transmit the incoming light, e.g. glass or water.
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2. Bidirectional Scattering Distribution Function, or BSDF, which is a generalization of

BRDFs and BSDFs, used to describe surfaces exhibiting both behaviors (reflection and

transmission)[27].

2.8 Light Transport Equation

The rendering equation, also called the light transport equation (LTE), forms the mathe-

matical basis for all global illumination algorithms [13], which all the Monte Carlo image

synthesis algorithms try to solve. The rendering equation is an integral equation, introduced

by Kajyia in [20], which generalizes a variety of known rendering algorithms and models

a wide variety of optical phenomena by performing a geometrical optics approximation. It

can be used to compute the outgoing radiance at any point on any surface in a scene[13];

it states that the outgoing radiance or light transport intensity from a surface point x to

another surface point x′ is the sum of the emitted light and the total light intensity which is

scattered toward x from all other surface points [20].

Although different forms and notations of Kajyia’s equation is used throughout the lit-

erature, I find the form and notation used in [31] to be more descriptive:

Lo(p, ωo) = Le(p, ωo) +

∫
S2

fr(p, ωo, ωi)Li(p, ωi)| cos θi|dωi, (2.27)

where Lo(p, ωo) is the outgoing radiance from point p in direction ωo, Le(p, ωo) is the emitted

radiance from p in direction ωo (in case the surface is a light source), the domain S2 is the

hemisphere centered at point p, Li(p, ωi) is the incident radiance at p from some direction ωi

in the domain scaled by fr (BRDF at point p) and cos θi (θi being the angle between surface

normal at p and ωi). Therefore what (2.27) describes is simply as follows: the outgoing

radiance at some p in some direction ωi is the sum of the emitted light in that direction

from that point, and the aggregate of all the radiance incident on p, taken into account the

surface’s BRDF and θi.
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The rendering equation in its original form does not attempt to model all interesting

optical phenomena; it only model time averaged transport intensity and does not take phase

and diffraction into account; it also assumes that the media between surfaces (usually air) is

of homogenous refractive index and does not itself participate in the scattering of light [20].

Evaluating LTE is the main reason we are interested in Monte Carlo integration method,

and the reason MC rendering methods dominate the field of physically-based image synthesis.

2.9 Sampling Methods

Having discussed the Monte Carlo integration method and the light transport equation, now

we need to discuss the methods by which we take the samples to complete this part of the

discussion. One way to get a good estimate for LTE (2.27) using the Monte Carlo integration

method (2.17) is to make N as big as possible (i.e. use as many samples as possible), but

in practice this is not efficient, and arguably not practical, and therefore not desirable. As

it was mentioned earlier in 2.3, another way to improve the accuracy of the estimate is to

take samples such that g(xi)
p(xi)

in 2.17 has a low variance [19]; different sampling methods have

been introduced to achieve this goal, and we are going to briefly go over a number of them

in this section, which are often used in the literature. The contents of this section are based

on [27, 7, 19, 22, 21, 29].

2.9.1 Uniform Sampling

The simplest method of sampling is to construct samples using independent and uniformly

distributed random numbers. The most obvious disadvantage of this method is that it

does not guarantee to sample a function according to the function’s shape, e.g. if we are

sampling a Gaussian function, this method will result in over-sampling and under-sampling

of the function. A more specific example would be the case of sampling the image plane,

a uniformly distributed random 2D point on the surface of a particular pixel is chosen as a
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sample. The problem arises when we try to take more samples using this method: how can

this method guarantee that samples are not located close to each other?

Using this method, we may end up taking a large amount of samples in one subregion of

the pixel of interest, while ignoring the rest of that pixel which may (or may not) be of more

importance; for instance imagine a case where shooting a ray into the scene through point

pj on some pixel Pi, hits a surface that is not visible from any light sources, if we continue

to take samples that happen to be located close to pj then the final color of Pi will end up

darker than it really is. To solve this problem, one obvious way is to take a large number of

samples to make sure we are also taking into account the samples with more contribution.

Same problem exists when sampling an area light source, or a hemisphere centered at an

intersection point in order to calculate indirect illumination, etc. It must be clear that the

rate of convergence for this method is very low. To address this issue, we use other sampling

methods which will be discussed in the following subsections.

2.9.2 Stratified Sampling

Stratified sampling is one of the simplest ways to address the shortcomings of the uniform

sampling, by dividing the domain of interest into subregions, or strata, and then use another

sampling method (e.g. uniform sampling) on each of these strata to ”forcefully” scatter

samples over the domain in order to make sure they are not concentrated in one area.
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Figure 2.2: Left: an 8x8 plane sampled using uniform sampling; note that some grid cells
have no samples, while some have multiple samples. Right: same plane sampled using
stratified sampling; a sample is taken inside each cell.

To continue with the pixel example mentioned earlier, a pixel can be divided into multiple

subpixels, each subpixel being treated as a pixel itself; then applying another sampling

method over the subpixels we can avoid the hypothetical problem described above. Same

technique can be applied to sampling an area light source, or a hemisphere: divide the area

of interest into subregions, use other methods to sample each subregions.

2.9.3 Importance Sampling

Importance sampling is a method that attempts to reduce the variance of the estimate by

choosing p(xi) in (2.17) intelligently; this means that we attempt to choose a density p(x)

that has a similar shape to g(x), is simple, and is efficient to evaluate [19, 22].

Using this method, we can try to avoid paying the extra cost of taking into account

samples which make relatively low contributions to the final estimate; instead we increase

the chance and weight of the samples with high contributions.

For instance, consider sampling directions over the hemisphere centered at some inter-

section point p; here we can use the Cosine of the angle θ between the surface normal ~N

at p and the sample (i.e. direction) as our density function according to which we choose
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our samples: as the angle increases, cos θ decreases, hence the contribution of light in that

direction decreases. This will result in taking more samples where cos θ is higher hence the

contribution of light is higher [27, 19].

One disadvantage of importance sampling is that a poorly chosen density can result in

higher variance, in which case stratified sampling (or even uniform sampling) would end up

being much more effective than importance sampling.

2.9.4 Multiple Importance Sampling

Looking at the light transport equation (2.27) we notice that the integrand is a product of

three different functions:

Lr = fr(p, ωo, ωi)Li(p, ωi)| cos θi|, (2.28)

which begs the question whether or not using a single importance density function (e.g.

a Cosine importance function) would result in a good enough estimate? In the best-case

scenario, we may manage to choose a density that is close to (2.28), but in practice this

can rarely happen [22]. However, the form of the integrand can potentially provide some

opportunities to use more than one importance functions together.

As an example, imagine the situation where the point of interest p lies on a near-perfect

specular surface; if we based the importance density on fBRDF at p, we are effectively ignoring

all the incoming radiance that is outside the range of fBRDF .

Multiple importance sampling (MIS), introduced by Veach and Guibas in [31, 32], ad-

dresses the above issue: take samples using more than one importance density, and weight

samples according to their respective densities such that the final estimate has the lowest

variance. In MIS, a variety of sampling techniques (even for special cases) can be used,

wherever one (or more) particular method is not desired, the fact that we are weighting the

samples will take care of the undesired effects[27].
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We can rewrite the Monte Carlo integration estimator (2.17) with MIS as follows[27, 32]:

∫
x∈S

f(x)g(x)dx ≈ 1

Nf

Nf∑
i=1

f(xi)g(xi)ωf (xi)

pf (xi)
+

1

Ng

Ng∑
j=1

f(xj)g(xj)ωg(xj)

pg(xj)
(2.29)

where Nf is the number of samples taken from density pf weighted by ωf , and Ng is the

number of samples taken from density pg weighted by ωg.

In [32], Veach and Guibas describe three methods to compute ω:

1. Balance heuristic,

ωi =
Nipi∑
j Njpj

(2.30)

2. Cutoff heuristic, discard samples with low weights,

ωi =


0, if pi < α pmax∑

j

{
pj | pj ≥ αpmax

}
, otherwise

(2.31)

Where pmax = maxjpj, and α is a constant deciding the lower-bound for the cutoff.

3. Power heuristic, raise all weights to a power β, and then normalize,

ωi =
Nip

β
i∑

j Njp
β
j

(2.32)

For detailed proof and an in-depth discussion please refer to [31, 32, 27, 22].
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3. Monte Carlo Ray Tracing Methods

3.1 Precursors to MCRT

This section contains a brief overview of the methods introduced in 1970s and 1980s which

are precursors to MCRT methods, although none of the algorithms mentioned in this section

are directly implemented as part of my work. Having a general understanding of these

methods paves the way for understanding more advanced approaches such as Path Tracing

and Metropolis Light Transport.

Taking global illumination information into account to accurately render a scene was

first discussed in Turner Whitted’s seminal paper titled An Improved Illumination Model

for Shaded Display published in 1979. It is worth noting that Whitted’s method, commonly

known as Recursive Ray Tracing, is partially based on Arthur Appel’s 1968 paper titled

Some Techniques for Shading Machine Renderings of Solids which introduced a much simpler

method commonly known as Ray Casting.

Whitted’s paper [36] has two main contributions,

• A new shading model.

• A new visible surface detection algorithm based on tracing rays from camera into the

scene.

Whitted’s proposed a new shading model is summarized in this equation:

I = Ia + kd

j=I∑
j=1

( ~N. ~LJ) + ksS + ktT (3.1)

Where I is the reflected intensity, Ia is the reflection due to ambient light, kd denotes the

diffuse reflection constant, ~N is the unit surface normal, ~LJ is the vector in the direction of
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Jth light source, S is the intensity of specular light, kt is the transmission coefficient, and T

is the intensity of transmitted light.

To make the surface less glossy, ks should be smaller and kd should be larger. Note that

Whitted’s illumination model improves the methods introduced by Phong and Blinn, using

a recursive algorithm; (3.1) in itself does not take global illumination into account rather it

approximates the reflection from a single surface. In a real scene with moderate complexity

light will reflect off of several surfaces, causing inter-reflection, before reaching the viewer,

therefore the above model needs to be evaluated for each surface that takes part in these

inter-reflections.

Whitted proposed building a tree to represent the inter-reflection of rays from a light

source to the viewer. Creating this tree requires calculating the point of intersection of each

component ray with the surfaces in the scene. This is done by recursively calling the visible

surface detection algorithm which was proposed in the same paper.

The visible surface detection algorithm is based on Arthur Appel’s aforementioned 1968

paper [2]: trace rays through image plane into the scene and find the nearest ray-object

intersection point. Whitted adds the idea of calling the method recursively for each intersec-

tion found, and building the tree of inter-reflections using this method. Whitted proposes

the use of bounding volumes (e.g. axis-aligned bounding volumes) to reduce unnecessary

ray-object intersection tests which is itself based on a previous work [5] published in 1976.

Once the tree is formed, the shading model is applied to each intersection point (i.e. each

tree node), taking the attenuation of light into account based on the intersection point’s

distance from the light source.

Ray tracing is a precise algorithm to render a scene. Although this is essential for

generating realistic images, it has some limitations to simulate the behavior of light in the real

world. Rendered scenes with ray tracing have precise and sharp shadows, sharp reflections,

sharp refractions, cannot handle motion blur, and have some difficulties showing depth of

field. Simulating these ”fuzzy phenomena” was addressed by Distributed Ray Tracing [8].
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In distributed ray tracing, the rays are distributed in a time frame so that every sampling

happens in a different time frame. Using this approach, it is easy to generate the following

fuzzy effects without any extra sampling efforts:

• Blurred reflection by sampling the reflected ray according to the specular distribution

function produces gloss.

• Blurred transparency by sampling the transmitted ray produces translucency.

• Penumbras by sampling the solid angle of the light sources.

• Depth of field by sampling the camera lens area.

• Motion blur by sampling in time.

With this method, an analytic function is used to calculate each pixel’s intensity; this

function consists of integrations over pixel region, time, lens area, and so son. Although these

integrations could be difficult to compute, it is possible to solve them using point sampling.

Another method was introduced by John Amanatides, called Ray Tracing with Cones

(or more commonly, Cone Tracing) to address the problem of sharp shadows in ray-traced

images [1]. The proposed method is to redefine light rays as cones. Using this approach,

there is no need for super-sampling to generate soft shadows. Instead, at the intersection

point of ray and surface, the portion of the ray (i.e. cone) which is in intersection area

can be calculated instead, more intersection area means softer shadows. Although there are

workarounds for the conventional recursive ray tracing to render soft shadows (anti-aliasing),

this new method reduce the computations significantly and is faster. Besides, considering

rays as cones, a renderer can control level of details in the scene by manipulating the size of

the cone for each ray.

Another refinement for Whitted’s method was introduced in 1986 by James Arvo [3];

ray tracing cannot simulation the diffuse reflection of indirect lights properly. To solve this

problem, Arvo proposed a new method in which a scene is rendered in several phases. In
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the pre-processing phase, an illumination map is created to help the final phase to better

simulate indirect diffuse reflection. James Arvo called this method Backward Ray Tracing,

in contrast to Whitted’s ray tracing, which Arvo labeled Forward Ray Tracing.

In Arvo’s backward ray tracing, the rays are traced from the light source to the objects.

In the pre-processing step, a large number of rays are emitted from the light sources and the

reflections and refractions are then calculated recursively. At each reflection and refraction

step, the energy of the ray is reduced, to mimic the natural behavior of light. The result of

this phase is an illumination to be used by the next phase: forward ray tracing; therefore

the ray tracing algorithm runs at least twice in Arvo’s method, one time from the point of

view of each light source in the scene, and the last phase from the camera.

Radiosity is another precursor to MCRT methods, introduced in 1984 by Goral et al. [9].

They proposed a method to solely model the interaction of light between diffuse surfaces.

This method is based on thermal engineering and heat transfer, which was a completely

different approach compared to other global illumination methods at the time. The key

point of this approach is to simulate what exactly happens in the real environment by

considering the total energy of the light in the scene. This method assumes that the surfaces

in the scene are ideal diffuse reflectors, although in reality such a surface does not exist.

Radiosity tries to model the object-to-object reflections between surfaces in a physically-

correct manner, therefore it is considerably slower than the traditional ray tracing. One of

the most important characteristics of this method is that the rendering process is independent

of the viewers position, meaning it can be used as a precomputed lighting effect to use in a

scene where the observer can move without having to re-render the scene.

3.2 Path Tracing and The Rendering Equation

In 1986 Kajyia introduced the Rendering Equation which forms the mathematical basis for

almost all of the global illumination algorithms proposed since then. We briefly discussed

26



the rendering equation in Section 2.8, here we are going to discuss the equation as it was

first introduced by Kajyia in [20].

The rendering equation is an integral equation generalizing a variety of known rendering

algorithms, and models a wide variety of optical phenomena by performing geometrical optics

approximations. It can be used to compute the outgoing radiance at any point on any surface

in a scene; it states that the outgoing radiance or light transport intensity from a surface

point x to another surface point x′ is the sum of the emitted light and the total light intensity

scattered toward x from all other surface points:

I(x, x′) = g(x, x′)×
(
ε(x, x′) +

∫
S

p(x, x′, x′′).I(x′, x′′)dx′′
)

(3.2)

In which:

• I(x, x′) measures the energy of radiation passing from point x to point x′, called un-

occluded two point transport intensity from x′ to x. It’s unit is Joules
m4sec

.

• g(x, x′) is a geometry term that encodes the occlusion of surface points by other surface

points; if it is 0 then surface points x and x′ are not mutually visible, otherwise it will

be equal to 1
r2

where r is the distance between two points (attenuation of light, refer

to 2.6).

• ε(x, x′) is the emittance term which measures the energy emitted by a surface at point

x′ reaching a point x. It is called the un-occluded two point transport emittance from

x′ to x. It gives the energy per unit time per unit area of source and per unit area of

target; its unit is Joules
m2sec

.

• p(x, x′, x′′) is called the scattering term or more precisely un-occluded three point

transport reflectance from x′′ to x through x′; it is the intensity of energy scattered by

a surface element at x′ originating from a surface element at x′′ and terminating at a

surface element at x.
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• S is the domain of integration and is the union of all surface including a global back-

ground surface S0 which is a large enough hemisphere to act as an enclosure for the

entire scene.

The above quantities (except for S) are called un-occluded multipoint transport quantities

[20].

The rendering equation in its original form does not attempt to model all interesting

optical phenomena; it only models time averaged transport intensity and does not take

phase and diffraction into account. It also assumes that the media between surfaces (usually

air) is of homogenous refractive index and does not itself participate in the scattering of

light[20].

Kajiya in the same paper introduces a new global illumination method, which today is

commonly referred to as Path Tracing, which makes [20] the first to propose a general-purpose

Monte Carlo approach to image synthesis.

Path Tracing is a straightforward extension to ray tracing that makes it possible to com-

pute lighting effects that requires evaluating integration problems such as area lights and

indirect light reflected by diffuse surfaces. Mathematically, path tracing is a continuous

Markov Chain random walk technique for solving the rendering equation, in which the un-

known function used in Monte Carlo integration to approximate the integral part of the

rendering equation is sampled by tracing rays stochastically along all possible light paths.

By averaging a large number of sample rays for a pixel we get an estimate of the integral

over all light paths through that particular pixel [13].

Like ray tracing, path tracing starts by shooting a number of rays from the view point

into the scene and continues by tracing each ray until it can reach a light source; however,

there are a number of differences between Whitted’s ray tracing and path tracing [13]

1. The illumination model; for path tracing it is described by the rendering equation

whereas ray tracing’s illumination model is Whitted’s improved model based on Phong

shading.
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2. The paths these two algorithms choose in order to shade pixels; for Whitted’s ray

tracing the form of each path can be described as E[S∗](D|G)L and for path tracing

it can be described as E[(D|G|S) + (D|G)]L

Path tracing algorithm works well for many scenes, but it can exhibit high variance in the

presence of particular tricky lighting conditions; for instance consider a scene where a light

source only illuminates a small area on the ceiling and the rest of the room is illuminated by

the indirect lighting bouncing from the illuminated area on the ceiling. Using path tracing

we will almost never happen to sample a path vertex in the illuminated region on the ceiling

before we trace a shadow ray to the light. Most of the paths will have no contribution, while

a few of them will have a large contribution. The resulting image will have high variance

[27].

Most important disadvantages of the Path Tracing algorithm are the followings:

• Rendering is time consuming (very slow convergence)

• Variance in the estimation will show up as noise in the final image; this can be elimi-

nated by using large number of samples per pixel; in cases of complex scenes a noise-free

final image can be rendered by using 1,000 to 10,000 paths/pixel, and even more than

this amount for scenes with higher complexities.

• Although it can trace a wide variety of paths with different patterns, it ignores the paths

of the form E(D—G)S*L; it means that paths containing multiple specular bounces

from the light source (e.g. in caustics) are ignored.

A number of methods have been proposed such as reusing paths [4] and use of noise

reduction filters [18] to deal with Path Tracing’s efficiency and noise issues.
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3.3 Bidirectional Path Tracing

Bidirectional Path Tracing (BPT) is an extension to the path tracing algorithm, which was

introduced first by Lafortune and Willems [23], and advanced further in [24, 31, 32].

BPT is a Monte Carlo rendering algorithm which combines the advantages of algorithms

based on the camera position (such as ray-tracing and path tracing) and the algorithms

based on the position of the light sources in the scene (such as radiosity) [23], in order to

address the problem of slow rate of convergence in path tracing.

To better understand the advantages of bidirectional path tracing, imagine an in-door

scene illustrated by Figure 3.1, where a room is illuminated only by indirect lighting (e.g.

one or more light sources located outside the room, and a window or door frame is the

only way any light ray can find its way inside the dark room). Now consider rendering this

scene using path tracing (or distributed ray tracing), we start from the camera, shoot rays

inside the dark room, and try to connect the intersection points directly to a light source.

There is a high probability that we won’t be able to find any visible light sources from the

intersection point. Same problem persists when we continue with computing the diffuse

reflection component, no matter how many bounces taken into account, there is a very low

probability of ever finding a light source located outside this room. This will result in high

variance and the final image will end up extremely noisy.
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Figure 3.1: Example of a scene lit almost completely by indirect lighting.

It must be obvious now that taking the position of the light sources into account is

important to get the best estimate possible and lower the variance. This is exactly what

bidirectional path tracing tries to add to the original path tracing method.

Figure 3.2: Constructing paths in BPT.

The way BPT works is to shoot rays both from the camera position and a selected light

source at the same time, bounce the light from each of these starting points independently
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for some number of iterations and then connect the ending vertexes using a visibility ray.

The algorithm then proceeds to connect vertexes on one paths to all the vertex on the other

path [23, 27], forming the graph shown in Figure 3.2.

Here the path starting from camera is denoted by v0, v1, ..., vNi
, where each vi+1 is a point

visible from point vi along direction ωvi+1
; note that the first point v0 is not located on the

camera itself but on the first intersection of ray shot from the camera. The path starting

from the light source is denoted by l0, l1, ..., lNj
, where each lj+1 is a point visible from point lj

along direction ωlj+1
; note that the first point l0 is located on the light source itself, meaning

we need to sample the area light source’s surface to begin the path.

Paths in Figure 3.2, are formed by performing random walks according to appropriately

chosen probability distribution functions at each of the vertexes. To start building these

paths, we first must find the initial points v0 and l0.

As described by Lafortune and Willems in [23], to sample v0 and ωv0 , we can use the

following pdf :

pdf(v, ωv) =
g(v, ωv)|Cosθv|

G
(3.3)

where θv is the angle between ωv the normal at v, g(v, ωv) is a function that is 1 for all the

contributing pairs of points and directions (e.g. not obstructed, not in the shadow, etc.) and

is 0 otherwise, and G is the normalization factor of the pdf .

We can sample l0 and ωl0 using a similar pdf :

pdf(l, ωl) =
Le(l, ωl)|Cosθl|

L
(3.4)

where θl is the angle between ωl the normal at l, Le is the self-emitted radiance at point

l in direction ωl, and L is the normalization factor of the pdf . This pdf is derived based

on importance sampling method ensuring both amount of emitted light and direction are

sampled where the light is brighter.
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Figure 3.3: Having formed the two paths from a light source and the camera, BPT proceeds
by connecting all the vertexes on these paths using visibility rays.

Having v0 and l0, we can start the random walk by sampling directions ωv1 and ωl0

according to the BRDFs at points v0 and l0, then find the intersection point, and repeat the

process for as many iterations as needed (light source path and camera path need not to be

of the same length):

pdf(ωv) = fbrdf (vi, ωv, ωvi)|Cosθvi | (3.5)

pdf(ωl) = fbrdf (li+1, ωli , ωl)|Cosθvi+1
| (3.6)

Having formed both paths, next step is to connect all the points using visibility rays

as illustrated in Figure 3.3, then add the weighted partial contributions of each subpath to

calculate the final estimate,

F =

Nl∑
i=0

Nv∑
j=0

ωi,jCi,j (3.7)

where Ci,j denotes the partial estimate for i random walks on the light source path and j

random walks on the camera path, and ωi,j is the weight associated with this partial estimate.

Without going into details of computing the partial contributions, it is worth noting that
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three cases are possible based on number of random walks performed:

• Direct contribution of light source to v0 when i = 0 and j = 0, meaning v0 is directly

illuminated by the light source.

• Special case, where i = 0 and j > 0, making bidirectional path tracing equivalent to

pure path tracing.

• General case, where both i > 0 and j > 0.

For detailed discussions and proofs on computing the weights and partial contributions

refer to [23, 24, 31, 32].

Although bi-directional path tracing results in less noisy images compared to the path

tracing algorithm, the resulting image still end up being noisy if enough samples are not

taken for each pixel.

3.4 Photon Mapping

Photon mapping is one of the classical Monte Carlo rendering algorithms which was intro-

duced by Henrik Wann Jensen in [15] based on his earlier published work in [16, 14, 17].

In this section we will discuss the classical photon mapping algorithm as it was introduced

by Jensen, and will separately discuss an improvement on this algorithm at the end of this

chapter (Section 3.6), namely Progressive Photon Mapping [11].

Photon mapping is a two-step biased Monte Carlo rendering algorithm which takes ad-

vantage of the concept of photon maps to optimize the sampling process in Monte Carlo

ray tracing algorithms, deal with the noise problem in unbiased MC methods, speed up

the process, and to deal with rendering caustics which can be extremely difficult or even in

certain scenarios almost impossible to achieve using unbiased Monte Carlo ray tracing algo-

rithms, this is true even for methods that were introduced years after photon mapping such

as Metropolis light transport and energy redistribution path tracing. However, note that
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photon mapping sacrifices the unbiased property of other Monte Carlo rendering algorithms

such as path tracing and Metropolis light transport to achieve this goal, therefore the results

are not guaranteed to be correct but may look visually plausible.

Before going into details about the algorithm itself, it is necessary to understand why

rendering caustics using path tracing (or similar unbiased Monte Carlo rendering algorithms)

is extremely inefficient and may even in some cases be practically impossible. This particular

problem sometimes is referred to as SDS path problem [11]. An SDS path in Heckbert’s

notation is a light transport path from a specular surface to a diffuse surface and then again

to a specular surface and from there to the camera. For instance, any specular surface seen

by the camera in a scene where the light source is a light bulb (light source inside a glass

bulb) is an example of an SDS path.

Imagine the scenario illustrated in Figure 3.4; a light ray emitted from the light source

hits a glass surface, is refracted inside the glass object, again hits another side of that glass

objects and exits the object hitting a diffuse surface, bounces towards another highly glossy

surface (e.g. a mirror) before bouncing towards the camera.

Now let us try and trace this path from the camera: first we sample the pixel area,

shoot a primary ray inside the scene through that sample. Let’s assume this ray happens

to hit the mirror at point p1, then we are bound to perform a mirror reflection, which will

hit the point p2 on the diffuse surface. Now here is where the problem arises: we have a

reflection at a diffuse surface, therefore we need to randomly choose a direction in the upper

hemisphere centered at p2; the probability of sampling the exact direction to form the rest

of the path shown in Figure 3.4 over the continuous domain of all the possible directions in

the hemisphere is exactly zero if the light source if infinitely far from the surface, and it is

very small for area light sources (the probability gets worse as the light source gets smaller).
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Figure 3.4: This figure illustrates why rendering caustics can be very difficult and extremely
inefficient.

Intuitively, we can see that the biggest issue with rendering the above scenario, is that

after the diffuse reflection at p2, we cannot guarantee to randomly sample the correct di-

rection which in turn makes yet another mirror reflection towards the light source. One of

the main strong points of photon-mapping-based algorithms is the ability to deal with these

types of situations by introducing bias into the estimate.

Photon maps were introduced in [16] by Jensen and Christensen as a new way to store

irradiance information of surfaces, and as an improvement on James Arvo’s illumination

maps [3]. A photon map is a space partitioning data structure named kd-tree which is used

to store photons and some information about each photon such as the intersection point,

normal, and energy.

As it was mentioned in the beginning of this section, photon mapping is a two-step

rendering process:

1. Constructing two photon maps

2. Rendering the scene using a Monte Carlo ray tracing algorithm

In the first pass, a large number of photons (packets of energy) are emitted towards the
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scene from the light sources. Tracing these photons using a ray-tracing-based method (e.g.

path tracing), we proceed to store the photons in the photon maps as they hit surfaces.

Russian Roulette is used to decide at each intersection whether or not the photon gets

absorbed by the surface or is reflected.

Two photon maps are stored in the first pass, one high resolution photon map for caustics

rendering named Caustics Photon Map, and one low resolution photon map for other cases

named Global Photon Map.

Caustics photon map is constructed by emitting a high density of photons toward specular

surfaces; a photon is stored in the caustics map if after hitting the specular surface, it hits a

diffuse surface (e.g. the problem we discussed earlier in this section). We will use this map

exclusively to render caustics in the second pass.

Global photon map is constructed by emitting photons toward all the objects in the scene.

Two types of photons are stored in this case: illumination photons and shadow photons.

The concept of shadow photons was introduced by Henrik Wann Jensen in [17] as a way

to capture shadow information in a scene inside a photon map and eliminate the need for

casting shadow rays (e.g. in most ray-tracing-based algorithm). The difference between a

illumination photon and a shadow photon is that former contains a positive amount of energy

but the latter contains a negative amount of energy. A shadow photon is stored by emitting

photons from light sources for one single pass then storing an illumination photon at each

hit point, but shadow photons are stored at all the hit points formed by the consequent

reflections of these photons.

Second pass of this algorithm consists of rendering the scene by a Monte Carlo ray tracing

algorithm (e.g. path tracing), using the two photon maps constructed in the first pass to

speed up the process of evaluating the light transport equation.

In [15], the integral part of the rendering equation (introduced in Section 2.8) which

computes the total incoming radiance at the hit point p over the upper hemisphere centered
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at p, is split into a sum of four integrals as follows:

Lr =

∫
S2

frLi,l| cos θi|dωi+∫
S2

fr,s(Li,c + Li,d)| cos θi|dωi+∫
S2

fr,dLi,c| cos θi|dωi+∫
S2

fr,dLi,d| cos θi|dωi

(3.8)

where Li,l denotes incoming radiance contribution directly coming from the light sources, Li,c

denotes the specular reflection contributions directly coming from the light sources (caustics),

Li,d denotes the indirect illumination (diffuse bounces), fr,s denotes the specular part of of

the BRDF, and fr,d denotes the diffuse part. Note that

Li = Li,l + Li,c + Li,d

fr = fr,s + fr,d

(3.9)

The directions stored in the photon maps in conjunction with surface BRDFs are enough

to estimate the above integrals (except for the specular radiance case for which a standard

Monte Carlo ray tracing algorithm suffices) using nearest neighbor density estimation.

Imagine a point x on a surface with fr as the BRDF at that point. We form a sphere

centered at x, and expand its radius r until exactly N photons in the photon map are

contained inside this sphere, then we can use them to estimate the rendering equation as

follows:

Lr ≈
N∑
p=1

fr
∆φp(x, ωi,p)

∆A
(3.10)

where φp(x, ωi,p) denotes the energy of the photon incident on point x from direction ωi,p,

and ∆A is an estimate for the area of the sphere that contains these N photons. Assuming

the area surrounding x is completely flat, the photons are located on a circular surface, cross

section of the sphere with radius r centered at x, therefore ∆A = πr2.
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For a more detailed discussion on this method refer to the four original papers [15, 16,

14, 17] as well as Henrik Wann Jensen’s book on the same topic [13].

Photon mapping’s biggest weakness is arguably the need for a high resolution/high den-

sity photon mapping for rendering caustics. As the caustics effects in a scene gets more

complex, more and more memory is needed to get an acceptable result, which is also a prob-

lem when it comes to performance since emitting more photons mean more time needed for

the rendering process. Another related problem is that the nearest neighbor density estima-

tion performed by photon mapping tends to make the image blurry unless a large number

of photons are used.

3.5 Metropolis Light Transport

Metropolis Sampling uses random mutations to produce a set of samples with a desired

density. It was introduced in 1953 by Metropolis et al. [25] for handling difficult sam-

pling problems in computational physics and is the basis for the Metropolis Light Transport

algorithm [33].

This technique has the ability to generate a set of samples from any non-negative function

f : S → R that are distributed proportionally to f ’s value; the algorithm can work without

any knowledge about the properties of f , it only needs to be able to evaluate it[19].

The Metropolis sampling algorithm generates a set of samples xi from a function f :

Ω → R which is defined over an arbitrary-dimensional state space Ω (usually Ω = Rn) and

returns a value in real numbers.

Suppose that the first sample point x0 ∈ Ω is selected then Metropolis sampling can gen-

erate each subsequent sample xi using a random mutation over its previous sample xi−1 to

compute a proposed sample x′; we denote this by T (x→ x′). The proposed sample may be

accepted or rejected according to an acceptance probability a(x→ x′); this acceptance prob-

ability should be defined in a way that can ensure the distribution of samples is proportional
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to f [27].

The acceptance probability is best obtained by

a(x→ x′) = min(1,
f(x′)

f(x)
) (3.11)

The pseudocode for the basic Metropolis sampling algorithm is

x := x 0

f o r i := 1 to n

x ’ := mutate ( x )

a := accept (x , x ’ )

i f ( random ( ) < a )

x := x ’

s t o r e ( x )

As it was mentioned earlier, the goal of all global illumination algorithms is to solve the

rendering equation for every visible point in the scene; the integral part of the rendering

equation cannot be solved by analytical integration methods mainly because the integrand

is not always known for every surface in every scene and even if it is known, it is most likely

that it cannot be solved analytically; therefore Monte Carlo integration methods are used

to approximate this integral equation. For doing so, we must make use of suitable sampling

methods to make this approximation more accurate (decrease the variance). In Metropolis

Light Transport algorithm (MLT), the sampling process is done using Metropolis Sampling

Method which was briefly introduced above.

Metropolis Light Transport was first introduced by Eric Veach and Leonidas J. Guibas

in 1997 in a paper[33] of the same title; they recognized that Metropolis Sampling algorithm

could be applied to the image synthesis problem after it was appropriately reformulated,

and they used it to develop a general and unbiased Monte Carlo algorithm which was named

Metropolis Light Transport [13, 33].
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To render an image using MLT, the paths are sampled starting from the light sources to

the lens (view-point). Each path is x̄ is a sequence x0x1 · · ·xk of points on the scene surfaces,

where k ≥ 1; this sequence of light transport paths are generated by randomly mutating

a single current path using a suitable mutation strategy. Each mutation is accepted or

rejected with a carefully chosen probability, to ensure that paths are sampled according to

the contribution they make to the ideal image. Then the image is estimated by sampling

many paths and recording their locations on the image plane [33].

A function f is defined together with a measure µ such that
∫
D
f(x̄)dµ(x̄) represents the

flux that flows from the light sources to the image plane along a set of paths D. The function

f is called the image contribution function and it is proportional to the contribution made

to the image by light flowing along the path x̄ [33].

In MLT another form of the rendering equation is used which essentially the same as

Kajiya’s original rendering equation (3.2) [33]:

L(x′ → x′′) = Le(x
′ → x′′) +

∫
S

L(x→ x′)fs(x→ x′ → x′′)G(x↔ x′)dA(x) (3.12)

Where,

• S is the union of all scene surfaces

• A is the area measure on S

• Le(x
′ → x′′) is the emitted radiance leaving x′ in the direction of x′′

• L(x→ x′) is the equilibrium radiance function

• fs is the BSDF of the surface point

• Notation x→ x′ symbolizes the direction of light flow between two points of S

• Notation x↔ x′ denotes symmetry in the argument pair

• G represents the throughput of a differential beam between dA(x) and dA(x′).
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G can be obtained using

G(x↔ x′) = V (x↔ x′)× | cos θo. cos θ′i|
||x− x′||2

(3.13)

where θo and θ′i represent the angles between the segment x ↔ x′ and the surface normals

at x and x′ respectively. V (x↔ x′) is the visibility test and equals to 1 if two points x and

x′ are mutually visible and is otherwise zero.

The overall strategy of MLT is to sample paths with a probability proportional to f , and

record the distribution of paths over the image plane. As it was mentioned earlier, these

paths are a sequence of subpaths each of which is generated by a proposed mutation to its

previous subpath which may or may not be accepted according to an acceptance probability.

MLT estimates a finite number of measurements of the equilibrium radiance L (3.12)

equal to the number of total pixels in the final image; therefore we have to measure L (solve

the rendering equation) for every single pixel m1,m2, · · · ,mM in the final image, M being

the total number of pixels in the image [33]. Each measurement will have the below form

mj =

∫
S×S

W j
e(x→ x′)L(x→ x′)G(x↔ x′)dA(x)dA(x′) (3.14)

where W j
e(x → x′) is a weight that indicates how much the light arriving at x′ from the

direction of x contributes to the value of the measurement; W j
e(x→ x′) in computer graphics

is called importance function and in physics is called flux responsivity [33].

As it was mentioned, we need to define a function f as well as a measure µ with some

constraints; now considering the above equation (measurement of L for each pixel) the goal

is to rewrite that equation in form of f ,

mj =

∫
Ω

fj(x̄)dµ(x̄) (3.15)

Now (3.15) can be handled as a pure integration problem; we can also extract f and µ from
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it:

fj(x, x
′) = Le(x→ x′)G(x↔ x′)W j

e(x→ x′) (3.16)

dµk(x0 · · ·xk) = dA(x0) · · · dA(xk) (3.17)

If we let Ω be the union of all the Ωk, and define a measure µ on Ω by the following

equation:

µ(D) =
∞∑
k=1

µk(D ∩ Ωk) (3.18)

Now we have an integral equation that can be approximated using Monte Carlo inte-

gration method. Another important topic that needs to be discussed is choosing the right

mutation strategy. We can summarize the mutation strategies into the following cases (ξ

denotes a random variable) [27],

• Applying random perturbations to the current sample [Equation]. For example one

possibility is to perturb by adding or subtracting a scaled random variable:

xi+1 = xi ± sξ (3.19)

• Perturb using values from an exponential distribution; for example the following per-

turbation generates an exponentially distributed sample in the range [a, b]:

xi+1 = xi ± be− log b
a ξ (3.20)

• Discard the current sample and generate a new one with uniform random numbers:

xi+1 = ξ (3.21)

MLT is an unbiased algorithm, it handles general geometric and scattering models, uses

little storage, and can be orders of magnitudes faster than previous unbiased algorithms;
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it performs especially well on the problems that are usually considered difficult [33]. It is

known for its robustness, meaning that while it is (at least) as efficient as other unbiased

algorithms (e.g. bidirectional path tracing) in relatively simple scenes, it is considerably

more efficient in dealing with scenes with difficult settings where most of the light transport

happens along a small fraction of all of the possible paths through the scene [13, 27]. In

general scenes with regions with bright direct light, non-diffuse reflections, caustics, glossy

surfaces, and strong indirect lightings are considered difficult rendering problems and MLT

in general is capable of handling all of these situations [33].

Another key advantage of MLT with respect to previous unbiased approaches for image

synthesis is that it performs local exploration by favoring mutations that make small changes

to the current path [33]. Most important consequences of local exploration are the average

cost per sample is small (usually one or two rays per sample), when a path that makes a

large contribution to the image is found, the nearby paths are also explored, therefore the

cost of finding every single light transport path in the scene is reduced significantly; this

will make it easy to sample other paths that are similar to the important paths by making

small perturbations to them, and finally, the mutation set is easily extended by constructing

mutations that preserve certain properties of the path while changing others.

However MLT is not perfect in every situation; for instance caustics due to mirror re-

flections are still difficult with MLT and especially in the case of point light sources it can’t

render this kind of scenes. Another difficulty with MLT is that picking the right mutation

strategy is highly scene-dependent, and it can result in high variance in the final image [13].

3.6 Progressive Photon Mapping

As with photon mapping, the most notable advantage of PPM compared to unbiased Monte

Carlo ray tracing algorithms such as path tracing, bidirectional path tracing, and Metropolis

light transport is the ability to deal with complex caustics and the SDS path problem which
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was discussed in Section 3.4.

Progressive photon mapping is a multi-pass rendering algorithm based on photon map-

ping, which starts with a single ray tracing pass, and then continues with running consecutive

photon tracing passes to iteratively increase the accuracy of the estimate computation from

previous passes. As the name suggests, the rendering process is progressive, meaning after

each pass the algorithm produces visible results but as we continue with more passes the

result gets more and more close to the accurate result.

The algorithm starts by running a standard ray tracing pass to find all the visible points

in the scene from camera; a ray is reflected as long as it hits specular surfaces and stops

when a non-specular surface is hit. If the scene has a large number of surfaces with specular

components, Russian roulette can be used to terminate the ray. As a ray hits the surfaces

in the scene, we store the hit points on the surfaces with non-specular components in their

BRDFs; besides the point’s position, we store a number of accompanying information such

as ray direction ~ω, BRDF, associated pixel location, current photon radius (decreases as we

run each photon tracing path), total unnormalized flux, etc.

After finishing the first path, the algorithm starts running consecutive photon tracing

paths to increase the accuracy of the estimate by accumulating photons at each hit point

found in the first step. Each pass proceeds by emitting some number of photons into the

scene from the light sources and constructs a temporary photon map. The main advantage

of PPM over the original photon mapping is that after a photon tracing pass is finished,

there is no need to keep the photons in the map and they are discarded. These passes can

continue indefinitely until we are satisfied with the estimate meaning we can use infinite

number of photons without worrying about memory limitations (unlike photon mapping), or

we can set a maximum number of total photons to be taken into account and after reaching

that limit we can terminate the rendering process.

Progressive photon mapping uses progressive radiance estimate, a method introduced in

the same paper, to increase the accuracy of the estimate at each photon tracing pass by
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reducing the radius of the sphere and increasing the accumulated photons at point x.

Remember that in the first pass (standard ray tracing), we allocated a current photon

radius to each stored hit point x, let’s assume this radius is a function of x and denote it by

R(x), another piece of information accompanying x is the number of accumulated photons

at x, denoted by N(x). The goal is to decrease R(x) by dR(x) to get the new radius R′(x),

and at the same time increase N(x) by some number of photons M(x) in order to converge

to the correct result. It is proven in [11] that the new radius for a pass can be given by:

R′(x) = R(x)

√
N(x) + αM(x)

N(x) +M(x)
(3.22)

where α = (0, 1) chosen such that total amount of photons at x after the reduction in sphere’s

radius, is larger than it was after the previous photon tracing pass completed.

Now we need to calculate the accumulated flux at point x after increasing the number of

photons and decreasing the radius. First step is to update the the value of total unnormalized

flux for point x, denoted here by τ(x, ω̄):

τ(x, ω) =

N(x)∑
p=1

fr(x, ω, ωp)φ
′
p(xp, ωp) (3.23)

where ω denotes the direction of incident ray at x, ωp is the direction of incident photon,

and φ′p(xp, ωp) is the flux carried by the photon p. To add the contribution of a new

photon tracing pass, considering the reduced radius R′(x) and the addition of αM(x) photons

originally, and N̂ photons in total after the radius reduction, it is proven that the new

increased total flux is:

τN̂(x, ω) = τN+M(x, ω)
N(x) + αM(x)

N(x) +M(x)
(3.24)

where τN+M = τN + τM (which would not need the scaling factor if the radius remained

constant).

At this point the algorithm can proceed to estimate the radiance at point x for the current
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photon tracing pass, which can be calculate using:

L(x, ω) ≈ 1

πR(x)2

τ(x, ω)

Nemitted

(3.25)

where Nemitted is the total number of emitted photons so far. Note that the algorithm assumes

the photon density and illumination inside the disc is constant.
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4. Sample Results and Comparison of

MCRT Algorithms

We presented an overview of some of the most important and highly cited Monte Carlo

ray tracing algorithm in Chapter 3, including:

1. Path tracing (PT) [20],

2. Bidirectional path tracing (BPT) [23, 24, 31, 32],

3. Photon mapping (PM) [15, 16, 14, 17],

4. Metropolis light transport (MLT) [33], and

5. Progressive photon mapping (PPM) [11].

To better understand the differences between these algorithms and their advantages and

disadvantages, it is important to compare them based on the images they produce using

different scene settings. For this purpose, we have employed a research-oriented rendering

system named Mitsuba developed and maintained by Wenzel Jakob.1

We will examine sample results for each of the algorithms discussed in Chapter 3 and

compare their performance both in terms of rendering time and accuracy (e.g., amount

of noise) on model scenes widely used throughout the rendering literature to assess the

performance of rendering algorithms. For all cases the Mitsuba renderer was run on an 8

logical core Intel Core i7 computer clocked at 2.6 GHz.

Three different scenes were selected to perform the tests. First we use the “Cornell Box”

scene which contains only diffuse surfaces, to assess the performance and accuracy of the

1Website: https://www.mitsuba-renderer.org/
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above algorithms in such scenes. Next we will use the Torus Scene (from [6]) to assess

performance and accuracy in the context of SDS path problems (complex caustics effect

which were discussed in Section 3.4). Finally, one of the scenes from [33] is used to assess

the performance in the situation described in Figure 3.1 where the primary source of light

in a scene is indirect lighting.

As demonstrated in Figure 4.1, taking more samples results in a decrease in noise. Also

note that MLT needs more samples to converge to the correct result, but at the same time

examining the rendering times in Table 4.1, it performs better than PT and much better

than BPT in terms of rendering time. Table 4.1 also demonstrates that in terms of rendering

time and efficiency, BPT performs worse than PT and MLT, and MLT performs better than

the other two algorithms. These results show that, taking both accuracy and rendering

time into consideration, MLT is the best approach among these three algorithms for scenes

consisting entirely of diffuse surfaces.

The second scene consists of a torus with diffuse surfaces located completely inside a

glass cube in order to test each of these algorithms for the SDS path problem. Figure 4.2

is the result of rendering this scene with PT, BPT, and MLT with an increasing number of

samples per pixel. Figure 4.2 clearly shows that, among these unbiased MC methods, only

MLT is capable of dealing with this scene, while PT and BPT get worse as they take more

samples. Rendering times are tabulated in Table 4.2.

The third scene demonstrates the problem of occluded light sources and indirect illumi-

nation of the scene (refer to Section 3.3). As it is demonstrated in Figure 4.3 and mentioned

in Section 3.3, PT cannot efficiently deal with these types of scenes. Not only have caustics

effect in this scene, but the primary light source is occluded and the scene is illuminated

indirectly by the walls and the ceiling. Here MLT again outperforms PT and BPT when

both rendering time and accuracy are taken into account. Table 4.3 provides the rendering

times.
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Figure 4.1: PT, BPT, and MLT results as the number of samples taken per pixel increases.
Note that in this example MLT needs more samples to converge to better estimates compared
to PT and BPT, but at the same time its performance is better than PT and much better
than BPT. Refer to Table 4.1 for rendering times.

Cornell Box rendering (256× 256) times in seconds (unbiased algorithms)
Algorithm 25 SPP 400 SPP 841 SPP
PT 1s 17s 37s
BPT 6s 92s 200s
MLT 3s 14s 27s

Table 4.1: Rendering times for results in Figure 4.1 (Cornell Box scene).
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Figure 4.2: This scene demonstrates the problem of finding SDS paths by unbiased Monte
Carlo rendering algorithms. Note that PT and BPT degrade as they use more samples, since
these algorithms cannot find the correct path; therefore, paths with little contribution are
taken into account instead of the correct paths of SDS form, hence the noise in the results.

Torus scene [6] rendering (256× 256) times in seconds (unbiased algorithms)
Algorithm 25 SPP 400 SPP 841 SPP
PT 2s 22s 47s
BPT 3s 49s 109s
MLT 3s 33s 69s

Table 4.2: Rendering times for results in Figure 4.2 (torus scene with caustics).
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Figure 4.3: This set of images demonstrate the problem of tracing paths to an occluded light
source (indirect illumination by occluded light source) in PT. On the other hand, BPT and
MLT can converge to the correct result quickly by taking more samples. Also note that the
caustics effect in this scene is different from the SDS problem. Hence, all three algorithms
seem to be capable of handling it reasonably well.

Room scene [33] rendering (256× 256) times in seconds (unbiased algorithms)
Algorithm 25 SPP 400 SPP 841 SPP
PT 2s 31s 67s
BPT 8s 138s 294s
MLT 4s 20s 38s

Table 4.3: Rendering times for results in Figure 4.3 (room scene with indirect illumination).
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Figure 4.4: PM and PPM results improve as the number of photons emitted into the scene is
increased for PM, and as we perform more photon tracing passes in PPM. Refer to Table 4.4
for rendering times.

Cornell Box rendering (256× 256) times in seconds (biased algorithms)
Algorithm 250k photons/pass 500k photons/pass
PM 53s 4s
PPM (3 passes) 2s 56s
PPM (75 passes) 29s 52s

Table 4.4: Rendering times for results in Figure 4.4 (Cornell box scene).

As the results so far demonstrate, Metropolis Light Transport outperforms both Path

Tracing and Bidirectional Path Tracing and is capable of dealing with all the shortcomings

of other unbiased rendering algorithms; therefore we can argue that MLT is the best choice

among the unbiased rendering algorithms we discussed here, both in terms of performance

and robustness.

Now we will proceed to examine the results for the biased algorithms we discussed in

Chapter 3 for the same set of test scenes.
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Figure 4.5: This scene demonstrates the most important advantage of the biased rendering
algorithms we discussed. As the results show, unlike the unbiased algorithms, PM and PPM
have no trouble converging to a good estimate for the caustics in this scene.

Torus scene [6] rendering (256× 256) times in seconds (biased algorithms)
Algorithm 250k photons/pass 500k photons/pass
PM 54s 61s
PPM (3 passes) 22s 58s
PPM (75 passes) 222s 438s

Table 4.5: Rendering times for results in Figure 4.5 (torus scene with caustics).

Room scene [33] rendering (256× 256) times in seconds (biased algorithms)
Algorithm 250k photons/pass 500k photons/pass
PM 38s 76s
PPM (3 passes) 2s 4s
PPM (75 passes) 35s 71s

Table 4.6: Rendering times for results in Figure 4.6 (room scene with indirect illumination).
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Figure 4.6: Here the problem with PM is only lack of a sufficient number of photons stored
in the photon map, and PPM is reaching a good estimate as more photon tracing passes are
completed.
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5. Conclusion

This thesis reported on our investigation of the problem of global illumination and pho-

torealistic rendering using Monte Carlo integration techniques. The focus was mostly on

the classical algorithms such as path tracing (PT), bidirectional path tracing (BPT), photon

mapping, and Metropolis light transport. These four algorithms are arguably among the

most important contributions to the rendering literature, and they are without a doubt the

most influential algorithms in the field of photorealistic rendering, consistently cited in the

literature till today. Most of what researchers have introduced in the past two decades or so

has been incremental improvements of these classical algorithms.

On the basis of our comparative evaluation reported in the previous chapter, we can

conclude overall that except for the SDS path problem, Metropolis light transport is still an

efficient and robust unbiased Monte Carlo rendering algorithm; not only does it converge

to the correct results usually faster than the alternatives, but the results are not as noisy

as the PT and BPT results. On the other hand, Progressive Photon Mapping seems to be

an algorithm that can yield good results in general, including for SDS path scenarios by

performing more photon tracing passes.

5.1 Outlook

Given the direction that the entertainment industry, both the motion picture and video

game industries, has been pursuing in the past few years, it is not hard to see the current

trend of moving towards ray-tracing-based algorithms and slowly abandoning the ad-hoc

realtime rendering techniques which are common place today. This is true even for interactive

applications such as virtual reality and video games for which there are two great examples—
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Unreal Engine 41 and the Brigade Renderer.2

It is also worth noting that although animation production studios have been using

some form of ray tracing to render specific effects that are hard or expensive to solve using

rasterization-based methods, the trend of moving towards Monte Carlo ray tracing and

physically-based rendering is fairly recent.

Another driver behind the new found interest in these decades old algorithms in recent

years is the advances in hardware, such as multicore processors, GPUs with thousands of

processing units, as well as the availability of fast and cheap memory. The advances in hard-

ware have been so dramatic that these past few years at the ACM SIGGRAPH conference

we can see hardware manufacturers such as NVIDIA and Intel, rather than focusing on the

current rasterization-based graphics pipelines, starting to talk about the next generations of

graphics hardware based on ray tracing.3

1Epic Games, Inc.
2OTOY, Inc.
3For instance at SIGGRAPH 2013 a course was offered entitled “Ray Tracing is the Future and Ever Will

Be” discussing this issue.
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