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ABSTRACT OF THE DISSERTATION

Characteristic Dependent Linear Rank Inequalities and Applications
to Network Coding
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Professor Kenneth Zeger, Chair
Let P be a finite or co-finite set of primes. We prove that there exists a linear rank
inequality valid for all finite fields with characteristic in P. These linear rank inequalities are

then used to prove that there exists a network that is linearly solvable over a field, F', if and

only if the characteristic of F is in P.
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Chapter 1

Introduction

In 2000, Ahlswede, Cai, Li, and Yeung introduced the field of Network Coding
[R. Ahlswede 00]. It has been shown that Network Coding is a useful tool to improve the
performance of networks in lieu of routing. However, the field is young, complex, and full of
open and deep problems. There are no known algorithms to determine the capacity of a given
network, even if you restrict your coding solutions to be linear. In fact, it is not clear if an
algorithm exists.

Information inequalities are linear inequalities that hold for all jointly distributed
random variables and Shannon inequalities are information inequalities of a certain form
[Shannon 48]. Both are properly defined in 1.2. It is known [Yeung 02] that all information
inequalities containing three or fewer variables are Shannon inequalities. The first “non-Shannon"
information inequality was of four variables and was published in 1998 by Zhang and Yeung
[Zhang 98]. Since this publication, many other non-Shannon inequalities have been found. See for
example, Lnénicka [Lnénicka 03], Makarychev, Makarychev, Romashchenko,and Vereshchagin
[K. Makarychev 02], Zhang [Zhang 03], Zhang and Yeung [Zhang 97], Dougherty, Freiling, and
Zeger [R. Dougherty 06], and Matus [Matus 07]. Additionally, Matus was the first to show
that the list of non-Shannon information inequalities is infinite [Matus 07] and provides two
lists. A third infinte list was discovered by Xu, Wang, and Sun [W. Xu 08].

There is a close connection between information inequalities and network coding
[Chan 07]. Capacities of some networks have been computed by finding matching lower and
upper bounds [Dougherty 07]. Lower bounds have been found by deriving coding solutions.
Upper bounds have been found by using information inequalities and treating the sources as
independent random variables. Information inequalities might also play an important role in
one day developing an algorithm to compute the capacity of a given network by looking at the
entropy space bounded by the inequalities. So in order to further our understanding of network

coding it is vital to analyze these information inequalities.



It has been shown that linear codes are insufficient for network coding in general
[R. Dougherty 05]. However, linear codes are very popular to use because they are easier to
produce and analyze and most likely what would be used in practice. When restricting the codes
to being linear codes, we call the capacity the linear coding capacity. It has been shown that the
coding capacity is independent of the alphabet size [J. Cannons 06]. However, the linear coding
capacity is dependent on alphabet size, or more specifically the field characteristic. In other
words, one can achieve a higher rate of linear communication by choosing one characteristic
over another. To provide good upper bounds for the linear coding capacity for a particular
field one can look at linear rank inequalities [Dougherty 13]. Linear rank inequalities are linear
inequalities that are always satisfied by ranks of subspaces of a vector space. All information
inequalities are linear rank inequalities but not all linear rank inequalities are information
inequalities. The first example of a linear rank inequality that is not an information inequality
was found by Ingleton [Ingleton 71]. Information inequalities can provide an upper bound for
the capacity of a network, but this upper bound would hold for all alphabets. Therefore, to
determine the linear coding capacity over a certain characteristic one would have to consider
linear rank inequalities.

All linear rank inequalities for up to and including five variables are known and are all
characteristic independent [R. Dougherty 10]. All the linear rank inequalities for six variables
have not yet been determined. The first characteristic dependent linear rank inequalities are
of seven variables [Dougherty 13]. One is valid for characteristic two and the other is valid
for every characteristic except for two. These inequalities are then used to provide upper
bounds for the linear coding capacity of two networks. In Chapter 2, we give two characteristic
dependent linear rank inequalities of eight variables. One is valid for characteristic three and
the other is valid for every characteristic except for three. These inequalities are then used to
provide upper bounds for the linear coding capacity of two networks. In Chapter 3, we give
two families of characteristic dependent linear rank inequalities. One is valid for any finite set
of primes, and the other is valid for any co-finite set of primes. Again these inequalities are
then used to provide upper bounds for the linear coding capacity of two families of networks.
In [Dougherty 08], it was shown that every finite or co-finite set of primes, P, there exists a
network that is scalar linearly solvable only over primes in P. We generalize this result to linear
solvability. In [Ngai 04], an example of a sequence of networks was given where the ratio of
coding capacity to routing capacity is arbitrarily large. We give another example of this result
with a simpler sequence of networks.

Each of the two Chapters 2-3 in this dissertation are sections of submitted journal

papers. These are as follows:



Chapter 2 || R. Dougherty, E. Freiling, and K. Zeger,

“Characteristic Dependent Linear Rank Inequalities

and Applications to Network Coding,”

submitted to the IEEE Transactions on Information Theory, 2013.
Chapter 3 || E. Freiling

“Characteristic Dependent Linear Rank Inequalities for every Finite

and Co-finite Set of Primes with Applications to Network Coding,”
submitted to the IEEE Transactions on Information Theory, 2014.

1.1 Matroids

The book [Oxley 92] is a very useful book on Matroid Theory and we will reference it
for the majority of this section. A matroid is an abstract structure that captures a notion of

“independence" that is found in matrices and many other topics in mathematics.

Definition 1.1.1. A finite matroid, M, is a pair (F,I), where E is a finite set and I is a set of
subsets of E that satisfy the following properties:

I1) D el
12) I is closed under subsets, VA CACE,if Ael then Ael.

I3) I has the augmentation property. If A, B C I and |A| > |B|, then Ju € A such that u ¢ B
and {u}UB eI

The sets in I are called independent sets. If a subset of E is not an element in I, then
it is called dependent. An example of a matroid is obtained from linear algebra. Suppose A is
an m x n matrix over a field F. If E = {1,...,n} and [ is the set of all X C F such that the
multiset of columns of A indexed by the elements of X is linearly independent in the vector space
V(m, F), then M = (E, I) is a matroid called the vector matroid of A. If a matroid is isomorphic
to a vector matroid over V(m, F) we say that the matroid is representable over the field F. It
is clear why (I1) and (I2) hold for this example of a matroid, but the third condition is not
obvious at first. To prove that (I3) holds, let I, Iz € I such that |I1| < |Iz]. Let W = (I3, I2),
(W is the subspace of V' (m, F') spanned by I; U Iz). Then dim(W) > |I3|. Now suppose that
Ve € Ib\I1, I1 U {e} is linearly dependent, then W C (I). Thus |I2| < dim(W) < || < |I2|.

We have reached a contradiction, so (I3) must hold.

Consider the matrix



Let a, b, ¢,d, and e denote the columns of A going from the left to the right. Note, here
we are indexing the columns by letters instead of numbers for simplicity. Then there is a vector

matroid on A, M = (E,I), where E = {a,b,c,d,e} and

I = {0.{a},{b},{d},{e},{a,b},{a e}, {b,d},{b,e},{d, e}}.

A maximal independent set is a set that is not contained in any larger independent set.
We will define a base to a maximal independent set, and we will denote set of all bases of a
matroid M by B(M). Since I is closed under subsets B(M) is sufficient to define a matroid.
In our example, B(M) = {{a,b},{a,e},{b,d},{b,e},{d,e}}. Tt is a well known result that all
the bases of a matroid are of the same cardinality. Let X C F and let I|X = {i C X : 4 € I},
then it is easy to see that (X, I|X) is a matroid. We will define the rank of X, r(X), to be the
cardinality of a base in M|X. In our example, (M) = 2. We can also define a matroid by its
dependent sets. A circuit is a minimal dependent set, that is, a circuit is a dependent set in
which all of its proper subsets are independent. Unlike bases, circuits can differ in size. The
circuits in our example are {{c}, {a,d}, {a,b,e},{b,d,e}}. The independent sets can be derived
from the set of circuits, so the circuits are also sufficient to define a matroid. A spanning set,
X, of a matroid M is a subset of F such that r(X) = r(M). A hyperplane of a matroid is a
maximal non-spanning set. In our example, the set S = {a, ¢, d} is a hyperplane because it does
not contain a base (or 7(S) = 1) and for any element e € E\S, r(SU{e}) =2 (or SU{e} would

contain a base).

1.2 Linear rank Inequalities

Let A, B and C' be collections of discrete random variables over an alphabet X', and let

p be the probability density function of A. The entropy of A is defined by
H(A) = - Zp(u) 10g|X| p(u)
The conditional entropy of A given B will be denoted by
H(A|B) = H(A,B)— H(B), (1.1)
the mutual information between A and B will be denoted by
I(A;B) = H(A)—H(AB)=H(A)+ H(B)— H(A,B), (1.2)
and the conditional mutual information between A and B given C will be denoted by

I(A;BIC) = H(A,C)— H(A|B,C) = H(A,C) + H(B,C) — H(C) — H(A, B,C).(1.3)



We will make use of the following basic information-theoretic facts [Yeung 02]:

0 = H(®) (1.4)

0 < H(A) = H(AD) (1.5)

0 < H(AB) (1.6)

0 < I(A;B) (1.7)
H(A,B|C) < H(A|C)+ H(B|C) (1.8)
H(A|B,C) < H(A|B) < H(A,C|B) (1.9)
I(A;B) = H(A)+ H(B)— H(A,B) (1.10)
I(A;B|C) = H(A,C)+H(B,C)— H(C)— H(A,B,C) (1.11)
I(A4;B,C) = I(B;A|C)+1(A;0) (1.12)

The equations (1.5)-(1.9) were originally given by Shannon in 1948 [Shannon 48], and can all be
summarized by I(A4; B|C) > 0 [Yeung 02].

Definition 1.2.1. Let ¢ be a positive integer, and let Si,..., Sk be subsets of {1,...,q}. Let
a; € R for 1 < ¢ < k. A linear inequality of the form

O[lH({AZ'ZiESl})+"'+OékH({AiIiESk}) > 0

is called an information inequality if it holds for all jointly distributed random variables
A, A,

As an example, taking ¢ =2, S; = {1}, S2 = {2}, S3 =0, Sy ={1,2}, a1 = a2 = 1,
ay = —1, and using (1.8) shows that H(A;) + H(A2) — H(A1, A2) > 0 is an information

inequality.

A Shannon information inequality is any information inequality that can be expressed

as a finite sum of the form

where each «; is a nonnegative real number. Any information that cannot be expressed in the

form above will be called a non-Shannon information inequality.

A linear rank inequality is a linear inequality that is always satisfied by ranks of subspaces
of a vector space. Linear rank inequalities are closely related to information inequalities. For
instance, all Shannon inequalities are linear rank inequalities for finite vector spaces, but not
all linear rank inequalities are Shannon inequalities. The first known example of a linear rank

inequality that is not an information inequality is the Ingleton inequality [Ingleton 71]:

I(A;B) < I(A;B|C)+I(A;B|D)+1(C;D)



Let A, B,C, D be binary random variables, and let X = (A, B, C, D) with probabilities:

P(0000) = 1/4
P(1111) = 1/4
P(0101) = 1/4
P(0110) = 1/4
Then the Ingleton inequality fails:
I(A;B) < I(A;B|C)+I(A;B|D)+1(C;D)

3/2logy(4/3) —1/2 < 0+0+0
01226 < 0

When talking about information inequalities, we usually refer to entropies on random
variables. However, with linear rank inequalities, we are using the entropies to represent the
ranks of subspaces. To see this connection, it is easy to see that the entropy of a uniformly
distributed random variable is equal to 1 (here we are taking the base of the logarithm to be
the size of the alphabet). If we consider a vector space to be a uniformly distributed random
variable, then the entropy of a single dimension of a subspace that consists of finitely many
equiprobable field elements would also be 1. So every dimension of a subspace adds 1 to the
entropy, or the entropy of a subspace is the rank. So when A, B, and C' denote subspaces of a
vector space, H(A) denotes rank of A, the notation H(A, B) denotes the rank of (A, B), H(A|B)
is the excess of the rank of A over that of AN B, or the codimension of AN B in A, and I(A; B)
is the rank of AN B. For background material on this relationship and other topics used here, a

useful source is Hammer, Romashchenko, Shen, and Vereshchagin [D. Hammer 00].

1.3 Network Coding

We will first informally discuss some preliminaries of network coding. For more on
network coding, see [Yeung 08]. We can think of a network message as an arbitrary string of k
alphabet symbols and a packet as a string of n alphabet symbols, where an alphabet A is a
finite set. More precisely, a message is a variable with domain A* and a packet is a variable with
domain A™. A network is based on a finite, directed, acyclic multigraph and is assigned a finite
set of messages. Each message originates at a particular node called the source node for that
message and is required by one or more demand nodes. In our diagram, whenever the message
variable appears above the node, it is a source node that generates that message. If the message
appears below the node, it is a receiver node that demands the message. The information about
the messages is passed from node to node in the form of packets. There is one packet for each

edge of the graph. All edges have the capability of carrying a n dimensional packet. For a given
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Figure 1.1: The Butterfly Network

network we can consider different values of £ and n that remain consistent through out the
network.

The inputs to a network node are the packets carried on its in-edges as well as the
messages generated at the node. The outputs of a network node are the packets carried on its
out-edges as well as the demanded messages. Each output of a node must be a function of its
inputs. A coding solution for the network is an assignment of such functions. When the values
of k and n need to be emphasized, the coding solution will be called a (k,n)-coding solution.

We can know define the capacity of a network,C:
C = sup{k/n:3a (kn)-coding solution}

There are also specific types of solutions. In a linear solution, we assume the alphabet A consists
of the elements of a finite ring, and usually, it will be a finite field. Hence, all messages are
k-long vectors of ring elements while the packets are n-long vectors. The functions in a linear
solution must only use the operations of vector addition and multiplication of a vector by a
constant matrix (whose components are ring elements). If there exists a (k, n)-coding solution
such that k > n, then we say that the network is solvable. If there exists a (k,n)-linear coding
solution such that & > n, then we say that the network is linearly solvable. The linear capacity
would be defined the same as the capacity if we restrict ourselves to only using linear coding
solutions. It is also easily verified that if x is a message, then H(z) = k, and if = is a packet,
then H(z) < n.

Let’s look at a famous example often called the Butterfly Network depicted in figure



1.1. If we assume that the network messages x and y are independent, k-dimensional, random

vectors with uniformly distributed components, then in any solution it must be the case that
H(ylx,z) = 0 (1.13)

We can find the coding capacity of the butterfly network by first finding an upper bound and
then finding a coding solution that achieves the upper bound. We can calculate an upper bound

by [Dougherty 07]:

2k = H(z) + H(y)
= H(z,y) [from indep. of x and y]
< Hz,y,>) [from (1.9)]
= H(z,2)+ H(ylz, 2) [from (1.1)]
= H(z,2) [from (1.13)]
< H(z)+ H(2) [from (1.8)]
<k+n

So we have 2k < k + n which implies k/n < 1. Notice if we let z = x + y over any alphabet,
then a solution is achieved for k = n = 1. Thus the coding capacity for the butterfly network is

the same as the linear coding capacity which is 1.

1.4 Preliminaries

In this section, we given some technical lemmas which will be useful for proving the
main results of the dissertation.

If A is a subspace of vector space V, and A is a subspace of A, then we will use the
notation codim 4 (A) = dim(A) — dim(A) to represent the codimension of A in A. We will omit
the subscript when it is obvious from the context which space the codimension is with respect

to.

Lemma 1.4.1. [Dougherty 13] Let V be a finite dimensional vector space with subspaces A and
B. Then the subspace AN B has codimension at most codim(A) 4+ codim(B).

Proof. We know H(A)+ H(B)—1(A; B) = H(A,B) < H(V). Then adding H (V') to both sides
of the inequality gives H(V) —I(A;B) < H(V)— H(A)+ H(V)— H(B). Thus codim(ANB) <
codim(A) + codim(B). O

Lemma 1.4.2. [Dougherty 13] Let A and B be vector spaces with subspaces A and B respectively.
Let f: A — B be a linear function such that f(A\A) C B\B. Then the codimension of A is at

most the codimension of B.



Proof. Let {a1,...,a,} be a set of basis elements that extend A to A and let {by,...,bx} be a
set of basis elements that extend B to B. We would like to first show that {f(a1),..., f(an)}
is a linearly independent set. By way of contradiction assume {f(a1),..., f(an)} is a linearly
dependent set. Then there exists field elements a1, . .., ay,, not all zero, such that oy f(ay)+---+
an f(a,) = 0. Since f is linear we know that f(aja; + -+ apa,) = 0. Now aja; + -+ + apan,
cannot be a non-zero element, because that would contradict the fact that f(A\A) C B\B. So
aia1+ -+ ana, = 0. However, aq, ..., a, are basis elements and thus are linearly independent.
We have arrived at a contradiction so {f(a1),..., f(a,)} must be a linearly independent set.
Now since there can be at most k elements in B\B that are linearly independent over B, we

know that n < k or the codimension of A is at most the codimension of B. O

Lemma 1.4.3. [Dougherty 13] Let Z and A be vector spaces, A be a subspace of A, f:Z — A
be a linear function. Then fort € Z, f(t) € A on a subspace of Z of codimension at most the

codimension of A.

Proof. Let T = {t € Z : f(t) € A}. Then f(Z\T) C A\A. By Lemma 1.4.2, the codimension of

T is at most the codimension of A. O

Lemma 1.4.4. [Dougherty 13] Let V be a finite dimensional vector space and let Ay, ..., Ay, B
be subspaces of V.. Then fori =1,... k, 3 linear functions f; : B — A; such that fi+---+fr =1
on a subspace of B of codimension H(B|A1,...,Ay).

Proof. Let W be a subspace of B defined by W = (A;,..., Ax) N B. The subspace on which
this lemma holds is W. If H(W) = 0, then the lemma would be trivially true. Let’s assume
that H(W) > 0, then let {w1,...,wy,} be a basis for W. For each j = 1,...,n, choose z; ; € A;
fori=1,...,k such that w; =1 ; +--- + ;. Foreach ¢ = 1,...,k, define a linear mapping
gi : W — A, so that g;(w;) = x;; for all i and j. Then extend g; arbitrarily to f; : B — A,.
Now we have linear functions fi,..., fr such that f; +--- 4+ fr = I on W. The dimension
of Wis HW) = I(Ay,...,Ax; B), so the codimension of W is H(B) — I(Ay,...,Ax; B) =
H(B|Ay, ..., AL). O

Lemma 1.4.5. [Dougherty 13] Let V be a finite-dimensional vector space and let A, B, and C
be subspaces of V.. Let f : A — B and g: A — C be linear functions such that f +g =0 on A.
Then f =g =0 on a subspace of A of codimension at most I(B;C).

Proof. Let K be the kernel of f. Clearly, f maps A into BN C and since f is linear we have:

=
=
v

H(A) - I(B;C)

H(A) — H(K) 1(B;C)

IA

codim(K) < I(B;C)



10

Lemma 1.4.6. [Dougherty 15] Let V be a finite dimensional vector space and let A, By, ..., By
be subspaces of V. For each i = 1,...,k let f; : A — B; be a linear function such that
fit -+ fu=0o0nA. Then fi =--- = fr =0 on a subspace of A of codimension at most
H(By)+-- +H(By) — H(Bi,..., By).

Proof. First we apply Lemma 1.4.5 to f1 and (fo+ -+ fx) toget f1 = (fo+ -+ fx) =0
on a subspace A; of A of codimension at most I(B;;Bs,...,By) = H(By)+ H(Ba,...,By) —
H(By,Ba,...,By). Then apply Lemma 1.4.5 to fo and (fs + - + fx) to get fo = (f3 +
-+ fr) = 0 on a subspace Ay of A; of codimension at most I(Bs; Bs,...,By) = H(Bs2) +
H(Bs,...,By) — H(Bs, Bs,...,By). Continue on until we apply Lemma 1.4.5 to fr_1 and
fx to get fx—1 = fr = 0 on a subspace Aji_; of Ax_s of codimension at most I(By_1; Bx) =
H(By-1) + H(Bg) — H(Bk—1,Br). Now Aj_; is a subspace of A of codimension at most
H(By)+---+ H(By)— H(By,...,Bg), on which fj = fo=--- = f =0. O

Lemma 1.4.7. Let A, B,C, D and E be subspaces of a vector space V and let fr, fL,gr, and
g1, be functions such that fr: A—C,fr :C > A,gr:B— D, and gy : D - E. If frfr=1
on A and grgg is injective on B, then g1 fr is injective on fr(frANgrB).

Proof. Let z,y € fr(frRANgrB). Since z € fr(frRANgrB), we know fr(z) € frfL(fRAN
grB) = frA N grB, which implies fr(x) = gr(b;) for some b, € B. Similarly, we know
fr(y) = gr(by) for some b, € B. So we have grgr(b;) = g1 fr(x) and grgr(by) = 9o fr(y). If
we assume gz, fr(z) = g1 fr(y), then we have gr.gr(bz) = grgr(by). Since grgr is injective on
B, we know b, = b,. Thus fr(z) = gr(bs) = gr(by) = fr(y), which implies fr, fr(z) = frfr(y).
Since frfr =1 on A, we know x = y. Thus g, fr is injective on f1(frA N grB). O



Chapter 2

Characteristic Dependent Linear
Rank Inequalities with
Applications to Network Coding

2.1 A Linear Rank Inequality for fields of characteristic
other than 3

The T8 matroid [Oxley 92] is represented by the following matrix, where column

dependencies are over characteristic 3:

A B C D W XY Z
10 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0

The T8 matroid is representable over a field if and only if the the field is of characteristic
3. Figure 3.1 is a network whose dependencies and independencies are consistent with the T'8
matroid. It was designed by the construction process described in [Dougherty 07], and we will
refer to it as the T'8 network. Theorem 2.1.1 uses the T'8 network as a guide to derive a linear
rank inequality valid for every characteristic except for 3. The new linear rank inequality can

then be used to prove the T8 network is only linearly solvable if the characteristic is 3.

Theorem 2.1.1. Let A, B,C,D, W, XY, and Z be subspaces of a vector space V. Then the

11
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Figure 2.1: The T8 network has source messages A, B, C, and D
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following is a linear rank inequality for fields of characteristic other than 3,

H(A) < 8H(Z)+29H(Y)+3H(X)+8H(W) — 6H(D) — 17TH(C) — 8H(B) — 17TH(A)
+55H(Z|A, B,C) + 35H(Y|W, X, Z) + 50H (X |A, C, D) + 45H(W|B, C, D)
+18H(A|B,D,Y) + TH(B|D, X, Z) + H(B|A,W,X) + TH(C|D, Y, Z)
+7H(C|B,X,Y) + 3H(C|A,W,Y) + 6H(D|A, W, Z)
+49(H(A) + H(B) + H(C) + H(D) — H(A, B,C, D))

Proof. Let V be a finite dimensional vector space with subspaces A, B,C, D, W, X Y, Z. By
Lemma 1.4.4 we get linear functions:

fi:Z— A, fo:1 72— B, f3:2—-20C,
f4ZW—>B, f5ZW—>C, f61W—>D,
f7ZX—>A, fg:X—)C, fg:X—}D,
fl():Y—)Z, f112Y—>W, f12:Y—>X,
flgiAg)B, f145A*>D, f152A*>Y,
flng—>Z, f172D—>W, flgiD%A,
fwiC—)Z, ngZC—>Y7 f2120—)D,
fQQZB—>Z, fgg:B—)X, f24ZB—>D,
f2550—>Y, fgﬁiC—}X, f2710—>B,
fgg:C%Y, f29:C*>W, fgoloﬁA,
fgliB—)W, ngZB—>X, f3ng—>A

such that

fi+ fo+fs = I on asubspace of Z of codimension H(Z|A, B,C) (2.1)

fa+ fs+fe = I onasubspace of W of codimension H(W|B, C, D) (2.2)

fr+fs+fo = I on asubspace of X of codimension H(X|A,C, D) (2.3)
fio + fi1 + fiz = I on a subspace of Y of codimension H (Y |W, X, Z) (2.4)
fis+ fia+ fis = I on a subspace of A of codimension H(A|B,D,Y) (2.5)
fi6 + fir+ fis = I on a subspace of D of codimension H(D|A, W, Z) (2.6)
fi9 4+ fa0 + for = I on a subspace of C of codimension H(C|D,Y, Z) (2.7)
faa + fas + faa = I on a subspace of B of codimension H(B|D,Y, Z) (2.8)
fos + fos + for = I on a subspace of C of codimension H(C|B,X,Y) (2.9)
fos + f20 + fzo = I on a subspace of C of codimension H(C|A,W,Y) (2.10)
fa1+ fa2 + fas = I on a subspace of B of codimension H(B|A, W, X) (2.11)

Now let

fa & frfia+ fifo
/B fafi1 + fafio
fc fsfiz + fsfi1 + fafio
fo & fohao+ fofn

(>
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Now combining the functions we got from Lemma 1.4.4 we get new functions:

faofis + A=A

fBofis+fiz : A—B

fc o f15 : A= C

fopofis+fia : A—=D
Using (2.1) - (2.5), Lemma 1.4.1, and Lemma 1.4.3 we know the sum of these functions is equal
to I on a subspace of A of codimension at most H(Z|A, B,C)+H(W|B,C,D)+ H(X|A,C, D)+

H(Y|W, X, Z)+ H(A|B,D,Y).

Now applying Lemma 1.4.6 and Lemma 1.4.1 to f4 o fis — I, fB o fi5 + fi13, fo © fis,

and fp o fis + fi4 we get a subspace A of A of codimension at most

Ay = H(Z|A,B,C)+ H(W|B,C, D)+ H(X|A,C,D) + HY|W, X, Z) + H(A|B,D,Y)
+H(A) + H(B) + H(C) + H(D) — H(A, B,C, D)

on which,

faofis = I (2.12)
feofis+fis = 0 (2.13)
feofis = 0 (2.14)
fopofis+fia = 0 (2.15)
Similarly, we get a subspace B of B of codimension at most
+H(A)+ HB)+H(C)+H(D)—-H(A,B,C,D)
on which,
frofas+fiofaa = 0 (2.16)
Jaofa = 1 (2.17)
fsofas+ fzofaa = 0 (2.18)
foaa+ foofaz = 0 (2.19)
We get a subspace B of B of codimension at most
Az = H(W|B,C,D)+ H(X|A,C,D) + H(B|A,W, X)

+H(A)+ HB)+H(C)+H(D)—-H(A,B,C,D)
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on which,
fas+ frofs2 = 0 (2.20)
f40f31 = I (221)
fsofsat+fsofsn = 0 (2.22)
foofs2+feofsn = 0 (2.23)
We get a subspace C of C of codimension at most
Ay = 2H(Z|A,B,C)+ HW|B,C,D)+ H(X|A,C,D)+ H(Y|W,X,Z)+ H(C|D,Y, Z)
+H(A)+ H(B)+ H(C)+ H(D)—-H(A,B,C,D)
on which,
faeofw+fiofie = 0 (2.24)
fBofao+ faofie = 0 (2.25)
fecofwo+ fsofio = 1 (2.26)
fpofaot+fa = 0 (2.27)
We get a subspace C of C of codimension at most
Az = H(Z|A,B,C)+ HW|B,C,D)+2H(X|A,C, D)+ H(Y|W,X,Z) + H(C|B,X,Y)
+H(A)+H(B)+ H(C)+H(D)—-H(A,B,C,D)
on which,
faofas+ frofss = 0 (2.28)
feofas+far = 0 (2.29)
Jeofews+fsofsse = 1 (2.30)
foofas+foofee = 0 (2.31)
We get a subspace C of C of codimension at most
Ay = H(Z|A,B,C)+2H(W|B,C,D) + H(X[A,C,D)+ H(Y|W, X, Z) + H(C|A,W.Y)

+H(A) + H(B) + H(C) + H(D) — H(A, B,C, D)

on which,
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faofis+fao = 0 (2.32)
fBofas+ fiofae = 0 (2.33)
fC (e} f28 + f5 o) f29 = I (234)
Ipofistfeofre = 0 (2.35)

We get a subspace D of D of codimension at most

A5 = H(Z|A,B,C)+ H(W|B,C,D)+ H(D|A,W,Z)
+H(A)+ HB)+ H(C)+ H(D) - H(A,B,C,D)
on which,
fis+ fiofie = 0 (2.36)
fiofir+faofie = 0 (2.37)
fsofirt+fsofie = 0 (2.38)
fG o f17 = 1 (239)
First notice that (2.12) implies

f15 is injective on A (2.40)

We need to define a subspace of A on which fi3 and fi4 are injective. The justifications can be
found on (2.44) and (2.45). Let

K

>

C
o

—%

A é fA(f15Z N f20€* N f286*)

F3(f19(C' N f3' fi5A) N fou B) € C

F5(f20(C N fog! fr5A) N fr7D) C C
CA

(1>

To justify why C* C C, by (2.14) we know fe fi15 = 0 and by (2.26) we know fo fao + f3f10 = 1.
Thus Ve € C N ]"2_01 fi5A, fcfa0 = 0 which gives

fafio = TonCNfy'fisA (2.41)
Using (2.14) and (2.34) we have

fsfao = TonCN ffisA (2.42)
Using (2.14) and (2.30) we have

fafse = ITonCn fos fisA (2.43)
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We are now going to show fi3 is injective on A". First we need to apply Lemma 1.4.7
to show fs f1g is injective on C" and then again to show fp fi5 is injective on A" By (2.17) and
(2.41), we know fa fao is injective on B and f3fi9 = I on C'N fy0' f15A. So we can apply Lemma
1.4.7 by letting g, = f2, gr = fo2, fL = f3, and fr = fig to get that f5f19 is injective on (o
Then using (2.25), we know fp foo is injective on C". Now we can apply Lemma 1.4.7 again by
using the fact that fafis = I on A and by letting g1 = fg, gr = f20, fr = fa, and fr = fi5 to
get fpf15 is injective on A" . Thus by (2.13),

f13 is injective on A" (2.44)

Similarly, we are going to show f14 is injective on A", We will first apply Lemma 1.4.7
to show fg fag is injective on C* and then again to show fp f15 is injective on A By (2.39) and
(2.42), we know fg f17 is injective on D and f5fa9 = I on cn f{SI f15A. So we can apply Lemma
1.4.7 by letting gr. = f6, gr = f17, fr = f5, and fr = fog to get that fgfo9 is injective on C*.
Then using (2.35), we know fp fag is injective on C*. Now we can apply Lemma 1.4.7 again by
using the fact that f4fis = I on A and by letting g1, = fp, gr = fo9, fr = fa, and fr = fi5
to get fpfisis injective on A" . Thus by (2.15),

f14 is injective on A" (2.45)

—3%

Now we are going to find an upper bound for codim (A ). First we need to find upper
bounds for codime(C") and codime(C*). Using (2.40) to show dim(f154) = dim(A), and

again using Lemma 1.4.1 and Lemma 1.4.3, we have

codime(C7) = H(C)—dim(C")
= H(C) —dim(fs[f10(C N f3' f154) N fa2 B))
= H(C)—dim(f1o(C N f5' f154) N f22B)
= H(C)— H(Z) + codimyz(f19(C N for' f154) N f22B)
< H(C) - H(Z) + codimz(f10(C N fa' f154)) + codimz( f22B)
= H(O)— H(Z)+ H(Z) = dim(f19(C N fo' f154)) + H(Z) — dim(f22B)
= H(C)+ H(Z) — dim(C N fy f15A4) — dim(B)
= H(C)+ H(Z) - H(C) + codimc(C N fa fisA) — H(B) + codimp(B)
= H(Z) - H(B) + codimc(C N f fisA) + codimp(B)
< H(Z) - H(B) + Ag + codime(fo' fisA) + Az
< H(Z)- H(B)+ Ag + codimy (fi54) + Ag
< H(Z)-H(B)+ Ag+ H(Y) — dim(fi54) + Ag
= H(Z)-H(B)+Ag+ H(Y)—dim(A) + Az
= H(Z)—-H(B)+Ag+ H(Y)— H(A) + codima(A) + Ag
< H(Z)-HB)+HY) - H(A) + Az + A5+ Ag (2.46)
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codimo(C*) = H(C) — dim(C™)
= H(C) — dim(fs[f20(C N f35' f154) N f17D]))
= H(C) — dim(f2e(C N fog' f154) N f17D)
= H(C)— H(W) + codimw (f20(C 0 fo5' f154) N f17D)
< H(C) — HW) + codimw (f20(C N foz' f154)) + codimy (f17D)
= H(C)— HW)+ H(W) — dim(f29(C N f35" f154)) + HW) — dim(f17D)
= H(C)+H(W) —dim(Cn fo' frsA) — dim(D)
= H(C)+ H(W) = H(C) + codime(C N f35t fisA) — H(D) + codimp (D)
= H(W)— H(D) + codime(C N fo5" fi5A) + codimp (D)
< HW)-HD)+Az+ codime (fas' fi54) + A
< H(W)—H(D) + Az + codimy (f154) + Ay
= H(W)—-H(D)+Az+ H(Y) - dim(fi54) + Ay
= H(W)-H(D)+Az+ H(Y)—dim(A) + Ay
= H(W)-H(D)+Ag+ H(Y) — H(A) + codima(A) + A
< H(W)—H(D)+H(Y) — H(A) + Agz + Ag + A (2.47)

In the justification for (2.44), we concluded that fp fao is injective on C", which implies fa0
is injective on C". In the justification for (2.45), we concluded that fp fog is injective on 5’*,

which implies fog is injective on C*. These facts combined with (2.40) will be used to arrive on
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line (2.48).
codima(A") = H(A) = dim(fa[fisA0 f20C" N fosC*))
= H(A) — dim(fi5AN fooC N fosC*)
= H(A) — H(Y) + codimy (fisAN faoC" N fogC*)
< H(A) — H(Y) 4 codimy (fi5A) + codimy (f20C ") + codimy (f25C*)
= H(A)—H(Y)+H(Y) = dim(fi54) + H(Y) = dim(f2C")
+H(Y) — dim(f25C*)
= H(A) +2H(Y) — dim(A) — dim(C") — dim(C*) (2.48)
= H(A)+2H(Y) — H(A) + codim4(A) — H(C) + codim¢(C")

—H(C) + codime(C*)

= 2H(Y) —2H(C) + codim 4(A) + codime(C") + codime(C*)
< 2H(Y)—-2H(C) + Ay
+H(Z) — H(B) + H(Y) — H(A) + Az + Ag + Ag
+H(W) — H(D) + H(Y) — H(A) + Az + A + Ap
= H(W)+4H(Y)+ H(Z) - 2H(A) — H(B) — 2H(C) — H(D)
305+ A5+ A+ Az + Ay
£ Ay (2.49)

Let t € A. Now we will assume ¢ satisfies conditions (2.50) - (2.55). The justification of
the conditions can be found below.

We will assume ¢ € A" . This is true on a subspace of A of codimension at most A4+ (2.50)
We will assume f1ofi5t € f19(C N f2_01f15Z*). This is true on a subspace of A of

codimension at most H(Z) — H(C) + H(Y) — H(A) + Az + A4+ (2.51)
We will assume f11 fi5t € fgg(é N ]“2_81 f15Z*). This is true on a subspace of A of

codimension at most H(W) — H(C) + H(Y) — H(A) + A5 + Ax+ (2.52)
We will assume f15 fi5t € f26(a N f{slflg,z*). This is true on a subspace of A of

codimension at most H(X) — H(C) + H(Y) — H(A) + Az + Ag- (2.53)
We will assume fiof15t € foo(B N fa5' f26]C N foz' f15A']). This is true on a subspace

of A of codimension at most

H(Z)-HB)+H(X)-H(C)+H(Y) - H(A) + Az + Ag+ A5 (2.54)
We will assume fy1 fi5t € f31 (BN faa fao [é N fost f15A"]). This is true on a subspace

of A of codimension at most

H(W) — H(B) + H(X) — H(C) + H(Y) — H(A) + A + A5 + Ag (2.55)
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To justify (2.51), first we know fig is injective on C' N f{olfmz* by (2.41). Then by
Lemma 1.4.3, we know fiofi5t € f1o(C' N f{olfwg*) on a subspace of A of codimension at most
H(Z)— H(C) 4+ codimc(C N f2_01f15ﬂ*). By Lemma 1.4.1, we know

codimc(C N f2_01f15z*) < A+ codimc(fz_olfwz*)
Then using Lemma 1.4.3 and (2.40), we know

COdimC (5 N f2_01 f15z*) S Aa + COdimy (f15z*)
= Ag+ H(Y) —dim(fi54")

= Ag+HY)—dim(A")
< A+ H(Y)—-H(A) + Ay (2.56)

So we have fiofist € f10(C' N f{ol fwz*) on a subspace of A of codimension at most H(Z) —
H(C)+ H(Y) - H(A) + Ag + A=

To justify (2.52), first we know fyg is injective on cn f2_81f152* by (2.42). Then by
Lemma 1.4.3, we know fi1 fi5t € fzg(é N fz_slfwﬁ*) on a subspace of A of codimension at most
H(Z)-H(C)+ codimc(é n f2§1f15z*). By Lemma 1.4.1, we know

codime(C N fr fisA) < Az + codime (foi f154))
Then using Lemma 1.4.3 and (2.40), we know

codimc(g' N f{slfwz*) < Aa + codimy (flsz*)

= As+H(Y) - dim(fis4")

= Az +H(Y) - dim(A")
< A+ H(Y) - H(A) + Ay (2.57)

So we have fi1 fi5t € f29(5 N f2§1f15z*) on a subspace of A of codimension at most H(Z) —
H(C)+ H(Y) - H(A) + Ay + Ag-.

To justify (2.53), first we know fag is injective on cn f2_51f152* by (2.43). Then by
Lemma 1.4.3, we know f12f15t € f%(é N fQ})Iwa*) on a subspace of A of codimension at most
H(Z)-H(C)+ cadimc((/i’ N 22l fisA7). By Lemma 1.4.1, we know

codime(C N fitfisAT) < Az + codime (f2:! f15A°)
Then using Lemma 1.4.3 and (2.40), we know

codime(C N fz_slfwz*) < Ag+codimy (fisA)
Ag+H(Y) = dim(fi54")

*

A+ H(Y) - dim(A)

IA

As+ H(Y) — H(A) + Ay (2.58)
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So we have fisfi5t € fgﬁ(a N f2751 f15Z*) on a subspace of A of codimension at most H(Z) —
H(C)+ H(Y) - H(A) + Ay + Az

To justify (2.54), we first know fo is injective on B N f2_31f26[é N f2_51f15z*} by (2.17).
Then by Lemma 1.4.3, we know figfi5t € fao(B N fa3' fos [6’ N f2_51f152*]) on a subspace of A
of codimension at most H(Z) — H(B) + codimg[B N f{?’lfgg(a N fot f1sA)]. Now again we
are going to use Lemma 1.4.1, Lemma 1.4.3, and (2.40). Also on line (2.59) we will use the fact
that fag is injective on C N f2_51f15z* from (2.43).

codimp[B N foz' fas(C N fozt fis A)] < Ag + codimp(fo3' f26]C 0 foz! fi5A])
< AE + codim x (f26 [5 N f2_51 f15z*])

= A+ H(X) — dim(fa[C N f55' f1547])
(

(
= Ag+ H(X) — dim(C N fo5' fsA") (2.59)
< Ag+ H(X) — H(C) + codime(C) + codime(fa5' fsA")
< Az + H(X) = H(C) + Ag + codimy (f154")
=Ap+H(X) - H(C)+ Az + H(Y) — dim(f154")
=Az+H(X)-H(C)+HY)+Ag—dim(A")
=Az+H(X)-H(C)+H(Y)+ Ag— H(A) + codim(A")
<A+ H(X)-H(C)+H(Y)—-H(A) + Az + Ax- (2.60)

So we have fiofist € fa2(BN f{31 fo6 [5 N f{sl f15Z*]) on a subspace of A of codimension at most
H(Z) - H(C)+ H(Y) — H(A) + Az + A + Ag.

To justify (2.55), we first know f3; is injective on Bn f3_21f26[é N f2_51f152*] by (2.21).
Then by Lemma 1.4.3, we know fi1fi5t € f31(§ N f§21f26[6' N f231f15z*]) on a subspace of A
of codimension at most H(W) — H(B) + codimp[B N f3' f26(C N £33 f15A7)]. Now again we

are going to use Lemma 1.4.1 and Lemma 1.4.3,
codimp(B N fi' fos[C N fo5' 15A47]) < Ag+ codimp(faz' fa6[C N fo5' f15A7])

A/é + codimx (f26 [6’ M f2_51 f15Z*])
< A;+H(X)—H(C)+H(Y) — H(A) + Ag + Ay

IA

The last line was derived by copying the argument from (2.60). So we have fi1 fi5t € f31(§ N
fa fa6[C N foxtf15A7]) on a subspace of A of codimension at most H(W) — H(C) + H(Y) —
H(A)+ Az +As + Ap.

From (2.51) and (2.54) we know 3¢ € C,b € B such that

frofist = fige = fasb where fooc € fi15A" and fazh € fos(C'N fos' fis A7) (2.61)
From (2.52) and (2.55) we know 3¢ € C,b € B such that

f11f15t = fggE: fglz)\ where fggg S f15z* and fggz)\ S f26 (6 N f2_51 f15z*) (262)



From (2.53) we know 3¢ € C such that

frafist = fae€ where fos¢ € fi5A

From (2.12) and (2.13), we know

fefis = —fiz
fB —fi13fa on fl5Z

From (2.12) and (2.15), we know

fofis = —fua
fp —fiafa on fisA

From (2.12) we have

frfizfist + fifiofist = t

Then (2.63), (2.61), (2.28), and (2.24) gives
frfiofist + fifiofist = t
f7f26/C\+ f1f195 = t

—fafosc— fafaot = t

fafesc+ fafot = —t
From (2.13) we have

fafuifist + fafiofist = —fist

Then (2.62), (2.61), (2.33), and (2.25) gives

fafiifist + fafiofist = —fist
fafooC+ fofioe = —fist
—fBfesC— fpfoot = —fist

By (2.62) and (2.61), we know fos¢ € f15A  and fao¢ € f15A . Now by (2.64), we have

—fBfesC — fBfa0C —fist
fiafafesC+ fisfafao¢ = —fist

Then using (2.12), we know fafos¢ € A and fafaoc € A . By (2.44), we have

fisfafasC+ fizfafaoc —fist
fafasC+ fafae = —t

22

(2.63)

(2.64)

(2.65)

(2.66)

(2.67)



From (2.15) we have

fofizfist + fefurfist = —fiat
Then (2.63), (2.62), (2.35), and (2.31) gives
fofiafist + fefiifist = —fiat
fofasC+ fofao¢ = —frat
—[pfesC+ —fpfosC = —fut
By (2.63) and (2.62), we know fa5¢ € f15Z* and fogC € f15z*. Now by (2.65), we have
—fpfasc+ —fpfesc = —fuat
fiafafos€+ frafafasc = —fiat

Then using (2.12), we know f4 fas5¢ € A" and fafosc€ A . By (2.45), we have

JiafafosC+ frafafosc = —fuat

fafosc+ fafosc = —t
From (2.24) and (2.41), we know
fifio = —fafa
fi = —fafoofs on fig(CN fa! fisA)
From (2.28) and (2.43), we know
frfee = —fafzs
fr = —fafasfs on fas(C0 f35! fisA)

From (2.16), we have

frfasb+ fifaeb = 0

By (2.61), we know fa3b € fgg(@ N f2_51f15z*). By (2.61), we also know faob = fi9¢,

implies fa2b € f19(C' N f{olflg)z*). Now we can apply (2.69) and (2.70) to give us

frfazb+ fifaeb = 0
—fafosfsfosb— fafoofsfaeb = 0

Now using (2.18), (2.61), and (2.41), we have

—fafasfsfasb — fafaofafarb = 0
fafasfafa2b — fafaofsfab = 0
fafos f3 fasb fafaofsfa2b
fafasfsfroC fafaofsfroc
fafss€ = fafaoC

23

(2.68)

(2.69)

(2.70)

which

(2.71)
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From (2.31) and (2.43), we know
fofe.e = —fpf2s
fo = —fpfesfs on fas(CN fos f1547) (2.72)
From (2.35) and (2.42), we know
fefao = —fpfas
fo = —Ipfasfs on fas(C 0 frst f154) (273)

From (2.23), we have

fofs2b+ fofsib = 0
From (2.62) we know f31/b\: f29C SO fgl/g € fgg(é N f;;fwz*). From (2.62) we also know that

fa2b € fos(C' N fot fisA7), so (2.72) and (2.73) give us

fofsab+ fofsib = 0
~fpfasfsfsb — fpfosfsfsib = 0
From (2.62), we know f323 € f%(é N f2_51f15z*). From (2.43), we know fgfog = I on cn

f2’51f152*. So f8f32/l; c f2})1f15Z*, which implies f25fgf32/l; c f15z*. By (2.62) and (2.42), we
know f28f5f313 = fosf5 20 = fosC € f15A . Now we can apply (2.65) to give us

—fo25f8f323—fo28f5f313 = 0
frafafosfsfab+ frafafosfsfarb = O

Since we already established that fos fs fs2b € fis A~ and fosfsf31b € fisA ', by (2.12) and (2.45)

we know

Frafafosfsfab + frafafosfsfarb = O
fAf25f8f323+ fAf28f5f31/b\ =

|
o

Now by (2.22)

fAf25f8f323+ fAf28f5f313 0

— fafasfsfaib + fafosfsfab
fafosfsfsib = fafosfsfsib

0

By (2.62) and (2.42), we have

Fafosfsfs1b fafosfsfab
fafos fs f20¢ fafosfsfaol
fafssc = fafosc (2.74)
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Now adding (2.66), (2.67), and (2.68), we have

-3t = 2(fAf205+fAf256+fAf28a

Now using (2.71) and (2.74) we have

-3t = 2(fAf25E+fAf25/C\+fAf25a
=3t = 2fafas(c+c+7c)

By (2.41), (2.42), and (2.43) we know

=3t = 2fafos(fsfio€+ fsfaeC+ f5f290)

By (2.61), (2.62), (2.63), and (2.14), we have

=3t = 2fafos(fafiofist + fafizfist + fsf11fi5t)
=3t = 2faf2s(0)
3t = 0 (2.75)

Thus if the field is of characteristic other than 3, then no nonzero ¢ can satisfy conditions
(2.50)-(2.55). Therefore the sum of the codimensions given in the assumptions must be at least

the dimension of A. So we have a linear rank inequality for fields of characteristic other than 3:

H(A) < Ap+H(Z)-H(C)+H(Y)—-H(A)+ Ag + Ay~
+H(W) — H(C)+ H(Y) — H(A) + Az + Ag
+H(X) — H(C)+ H(Y) — H(A) + Ag + Ay
+H(Z) - H(B)+H(X)-H(C)+ H(Y) - H(A) + Az- + Ag+ Ag
W) — H(B)+ H(X) - HC)+ H(Y) — H(A) + Ag- + Mg + Ag
= 2H(Z)+5H(Y)+3H(X)+2H(W) —5H(A) —2H(B) — 5H(C)
+6A + Ag+ A+ Az + Az +3A5
= 2H(Z)+5H(Y)+3H(X)+2H(W) — 5H(A) — 2H(B) — 5H(C)
+6(H
+6(3A5+ A+ Az + A5+ Ap) + Ap+ Ag+ Ag+ A5+ 3475
= 8H(Z)+29H(Y)+3H(X)+8H(W)—6H(D)— 17TH(C) —8H(B) — 1TH(A)

(W)+4H(Y)+ H(Z)—2H(A)— H(B) —2H(C) — H(D))

+H18AG + TAG + Ag + TAg + TA5 + 3A5 + 645

= 8H(Z)+29H(Y) + 3H(X) +8H(W) — 6H(D) — 17H(C) — 8H(B) — 17TH(A)
+55H(Z|A, B,C) + 35H(Y|W, X, Z) + 50H (X |A, C, D) + 45H(W|B, C, D)
+18H(A|B,D,Y) + TH(B|D, X, Z) + H(B|A,W,X) + TH(C|D, Y, Z)
+7H(C|B,X,Y) + 3H(C|A,W,Y) + 6H(D|A, W, Z)
+49(H(A) + H(B) + H(C) + H(D) — H(A, B,C, D))
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Now notice that the linear rank inequality does not hold for characteristic 3. A counterexample

would be: In V = GF(3)* where

A= <(1,070,0)>
C ={((0,0,1,0))
W= <(07 1,1, 1)>
Y =((1,1,0,1))
Then
H(Z|A,B,C) =

B= <(0,170,0)>
D= <(0,0,O7 1)>
X = <(170717 1)>
Z=((1,1,1,0))
H Y|VV,X,Z)

Since W, XY, Z are independent, we also have HW)+ H(X)+H(Y)+H(Z)=H(W, X,Y, Z).

So the inequality becomes

H(A)
1

IN

A

8+294+3+8—-6—-17-8-17

1

IN

0

8H(Z) +29H(Y) + 3H(X) + 8H(W) — 6H (D) — 17TH(C) — 8H(B) — 17TH(A)

which is clearly a contradiction. Therefore, the inequality above is a linear rank inequality for

fields of characteristic other than 3.

O

Corollary 2.1.2. The linear coding capacity of the T8 network is at most 48/49 over any

characteristic other than 8. The linear coding capacity over characteristic 38 and the coding

capacity is 1.

Proof. Let us apply the linear rank inequality derived in Theorem 2.1.1 to the T8 network.

Then we would have:



27

H(Z|A,B,C) = H(Y|W,X,Z)

Since W, XY, Z are independent, we also have HW)+ H(X)+ H(Y )+ H(Z) = HW, X,Y, Z).

So the inequality becomes

H(A) < 8H(Z)+29H(Y)+3H(X)+8H(W) —6H(D) — 17TH(C) — 8H(B) — 17TH(A).

Now we know H(A) = H(B) = H(C) = H(D) = k and H(W) = H(X) = H(Y) = H(Z) = n,

so we have

>
IN

8 +29n + 3n + 8n — 6k — 17k — 8k — 17k
49k

IN

48n
k/n < 48/49

So the linear coding capacity over every characteristic except for 3 is at most 48/49 < 1. The

T8 network is solvable over characteristic 3 by the following coding solution:

Z = A+B+C
W = B+C+D
X = A+C+D
Y = W+X+Z

We know the coding capacity is at most 1 because there is a unique path from source A to node
ng and by the coding solution given above we know the capacity is at least 1, thus the capacity
is 1.

O
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BCD ACD ABD ABC

B
A

Figure 2.2: Non-7'8 Network

2.2 A Linear Rank Inequality for Fields of Characteristic
3

We will define the non-T8 matroid to be the T'8 matroid except we are going to
force the circuit {W, X,Y, Z} to be a base. Figure 2.2 is a network whose dependencies and
independencies are consistent with the non-7'8 matroid. It was also designed by the construction
process described in [Dougherty 07], and we will refer to it as the non-7T'8 network. Theorem
2.2.1 uses the non-T'8 network as a guide to derive a linear rank inequality valid for characteristic
3. The new linear rank inequality can then be used to prove the non-7'8 network is only linearly

solvable if the characteristic is not 3.

Theorem 2.2.1. Let A,B,C,D,W, XY, and Z be subspaces of a vector space V. Then the
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following is a linear rank inequality for fields of characteristic 3,

H(A) < 9H(Z)+8H(Y)+5H(X)+6H(W)—4H(D) —12H(C) — 11H(B) — H(A)
19H(Z|A, B,C) + 1TH(Y|A, B, D) + 13H(X|A, C, D) + 11H(W|B, C, D)
H(AW, X,Y, Z) + H(A|B,W, X) +TH(B|D, X, Z) + 4H(B|C, X,Y)
TH(C|D,Y,Z) + 5H(C|A,W,Y) + 4H(D|A, W, Z)
+29(H(A) + H(B) + H(C) + H(D) — H(A, B,C, D))

Proof. Let V be a finite dimensional vector space with subspaces A, B,C, D, W, X,Y,Z. By

Lemma 1.4.4 we get linear functions:

fiW B, fo:W—C, f3:W =D,
fi: X = A f: X—>C, fe:X—=D,
f72Yv—>A7 fg:Y—)B, fg:Y—)D,
fl()ZZ—)A, f1122—>B7 flng—>C,
flglA—>B, ‘]1‘14114—>VV7 f15IA—>X,
flGZC%A, f17:C*>W, f18:C*>Y,
fiv:B—=C, fo:B—=X, fa:B-=Y,
f222D—)W7 f232D%A, f24ZD—)Z,
f25ZB—)X, ngZB—)D, f27ZB—)Z,
ngZC—>Y, fgg:C’—>Z7 f30:C—>D,

fgliA—)W, f322A—)X, f33IA—>Y, f345A—>Z

such that

fi+ fa+fs = I on asubspace of W of codimension H(W|B,C, D) (2.76)

fa+ fs+fe = I on asubspace of X of codimension H(X|A,C, D) (2.77)

fr+ fs+fo = I onasubspace of Y of codimension H(Y|A,B,D) (2.78)

fio+ fi1+ fiz = I on a subspace of Z of codimension H(Z|A, B, C) (2.79)
fis+ fia+ fis = I on a subspace of A of codimension H(A|B,W,X) (2.80)

fie + fir+ fis = I on a subspace of C of codimension H(C|A,W,Y) (2.81)
fio+ fao + fo1 = I on a subspace of B of codimension H(B|C, X,Y) (2.82)

fo2 + fas + f2a = I on a subspace of D of codimension H(D|A,W,Z) (2.83)

fos + fos + for = I on a subspace of B of codimension H(B|D,X,Z) (2.84)

fos + foo + fso = I on a subspace of C of codimension H(C|D,Y,Z)  (2.85)
fa1+ fa2+ fas+ fsa = I on a subspace of A of codimension H(A|W, XY, Z) (2.86)

Using (2.76) - (2.79), (2.86), Lemma 1.4.1, and Lemma 1.4.3 we know the sum of these functions
is equal to I on a subspace of A of codimension at most H(W|B,C,D) + H(X|A,C,D) +
H(Y|A,B,D)+ H(Z|A,B,C)+ H(AW,X,Y, Z).

Now applying Lemma 1.4.6 and Lemma 1.4.1 to f4 0 f32 + fr o fss + fio o faa — I,
Jrofsi+ fso fsz+ firo faa, fao far+ fs0 fa2+ fi20 f3a, and fyo f31+ fo o faz + fo o f33 we
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get a subspace A of A of codimension at most

A+ = H(WIB,C,D)+ H(X|A,C,D)+ H(Y|A,B,D)+ H(Z|A,B,C) + H(A|W, X,Y, Z)

+H(A)+ H(B) + H(C) + H(D) — H(A, B,C, D)

on which,
Jao faa+ frofsz+ fioofsa = 1 (2.87)
Jiofsi+ fsofss+ fiiofsa = 0 (2.88)
Jaofai+ fsofsa+ fizofsaa = 0 (2.89)
faofsi+feofsa+t foofss = 0 (2.90)
Similarly, we get a subspace A of A of codimension at most
Ay = H(W|B,C,D)+ H(X|A,C, D)+ H(A|B,W,X)
+H(A)+ HB)+ H(C)+H(D)—-H(A,B,C,D)
on which,
f4 o f15 = I (291)
fis+fiofiu = 0 (2.92)
faofiatfsofis = 0 (2.93)
fsofuutfeofis = 0 (2.94)
We get a subspace B of B of codimension at most
Ay = H(X|AC,D)+H(Y|A,B,D)+ H(B|C,X,Y)
+H(A)+ HB)+ H(C)+ H(D)—-H(A,B,C,D)
on which,
fiofoo+ frofar = 0 (2.95)
fsofa = 1 (2.96)
fio+ fsofao = 0 (2.97)
feofoo+ foofar = 0 (2.98)
We get a subspace B of B of codimension at most
Az = H(X|AC,D)+ H(Z|A,B,C)+ H(B|D, X, Z)

+H(A)+ H(B) + H(C) + H(D) — H(A, B,C, D)



on which,

fao fas + fro© for
firo for

f50 fos + fiz 0 for
Je o f25 + fo6

We get a subspace C of C of codimension at most

Ag =

on which,

H(W|B,C,D)+ H(Y|A,B,D) + H(C|A,W,Y)
+H(A) + H(B) + H(C) + H(D) — H(A, B,C, D)

fi6 + f7 0 fis
fiofir+ fso fis
f20 fir

fzo fir + foo fis

We get a subspace C of C of codimension at most

As =

on which,

H(Y|A,B,D)+ H(Z|A,B,C) + H(C|D,Y, Z)
+H(A)+ H(B) + H(C) + H(D) — H(A, B,C, D)

fr 0 fag + fro 0 fag
Js o fag + f11 0 fao
fi2 0 fag

fo o fas + fao

We get a subspace D of D of codimension at most

Ay =

on which,

H(W|B,C, D)+ H(Z|A, B,C) + H(D|A,W, Z)
+H(A)+ H(B) + H(C) + H(D) — H(A, B,C, D)

f23 + fr00 faa
fiofaz+ fi10 fa
f20 foa + fr20 foa
f3 0 fa2

oS O N OO

S N O O

S N O O

~N O O O

31
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Let B* = f11(f27§ﬂf296') C B. Considering (2.100) and (2.109), we can apply Lemma
2.7 1.4.7 to show that fi2fo7 is injective on B*. By (2.101), we know

f5 f25 is injective on B*. (2.115)

Let C* = flg(fgga N f27§) C C. Considering again (2.100) and (2.109), we can apply
Lemma 2.71.4.7 to show that f11 fog is injective on C*. By (2.108), we know

fsfas is injective on C*. (2.116)
Let A" = f4(f15A N fo5 B*) C A. Considering (2.91) and (2.115), we can apply Lemma
2.71.4.7 to show that f5 fi5 is injective on A By (2.93), we know f5f14 is injective on A" which
implies
f14 is injective on A" (2.117)
Let C" = fo(f17C N fa3D) C C. Considering (2.105) and (2.114),we can apply Lemma
2.71.4.7 to show that f3f17 is injective on C". Then by (2.106), we know
fofis is injective on C. (2.118)
Let B® = fa(farBN flsé*) C B. Considering (2.96) and the fact that fofis is injective
on C, we can apply Lemma 2.71.4.7 to show that

fof21 is injective on B (2.119)
By (2.98), we know
f6f20 is injective on B (2.120)
which implies
f20 is injective on B (2.121)

Now considering (2.96), (2.100), (2.105), and (2.109) we have

(2.104)  fi = —fsfisfo on fi1zC (2.122)

(293)  fo=—fsfisfia" on fuuA’ (2.123)
(2.94),(2.106)  fs = —fofisfii on fuuA and f3 = —fofisfo on fi:C  (2.124)
(2.95)  fa=—frfofan' on f20B (2.125)

(298)  fo=—fofo1fsg" on faoB (2.126)

(295)  fr=—fafoofs on f21B (2.127)

(298)  fo=—fofaofs on f21B (2.128)

(2.99), (2.107)  fio0 = —fafosf11 on forB and fig = —frfasf12 on fooC  (2.129)
(2108)  fir = —fsfasfr2 on faoC (2.130)
(2101)  fia = —fsfasfr1 on forB (2.131)
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and C". From

(2.100), we know f1; is injective on f27§ and fy7 is injective on B. These facts will be used to

arrive on lines (2.132) and (2.134). From (2.109), we know fa is injective on C, which will also

be used to arrive on line

codimpB* =

AN IA

IN

(1>

(2.134). Lemma 2.11.4.1 will be used to arrive on (2.133).

H(B) - dim(B")
H(B) = dim(f11(f2:B N f26C))

H(B) — dzm(f27B N fggC)

H(B) — H(Z) + codimz(f27B N f20C)

H(B) — H(Z) + codimz(far B) + codimz(f29C)

H(B) - H(Z) + H(Z) — dim(fx B) + H(Z) — dim(f2C)
H(B) + H(Z) — dim(B) — dim(C)

H(B)+ H(Z)-H(B)+A; - H(C)+Ag
H(Z)-H(C)+Az+ A5

AE*

(2.132)

(2.133)

(2.134)

(2.135)
(2.136)

From (2.91), we know f; is injective on fi54 and fi5 is injective on A. These facts will
be used on lines (2.137) and (2.139). From (2.115), we know fa5 is injective on B*, which will

also be used to arrive on line (2.139). Lemma 2.11.4.1 will be used to arrive on (2.138).

. —%
codimy A

= H(A)—dim(4")

= H(A) — dim(fs(f2sB" N fi54))

= H(A) —dim(fs5B" N fi54)

= H(A) - H(X) + codimx (fos B* N f154)

< H(A) — H(X) + codimx (f25B*) + codimx (f15A)
= H(A)+ H(X) — dim(fosB*) — dim(f154)

= H(A)+ H(X) — dim(B*) — dim(A)

< H(A)+H(X)-H(B)+Ag —H(A) + Az

= H(X)-H(B)+H(Z)-H(C)+Az+Az+ A7
2 A

(2.137)

(2.138)

(2.139)

From (2.105), we know f, is injective on f17C and fy7 is injective on C. These facts

will be used to arrive on lines (2.140) and (2.142). From (2.114), we know fo3 is injective on D,
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which will also be used on line (2.142). Lemma 2.11.4.1 will be used to arrive on (2.141).

codimeC™ = H(C)—dim(C")
= H(C) —dim(fo(f17C N f22D))
= H(C) — dim(f17C N fa2D) (2.140)
= H(C)— HW) + codimw (f17C N fa2 D)
< H(C)— H(W) + codimy (f17C) + codimyy (f22D) (2.141)
= H(C)—H(W)+ H(W) - dim(f17C) + H(W) — dim(f22D)
= H(C)+ HW) —dim(C) — dim(D) (2.142)
< H(C)+H(W)-H(C)+ Az - H(D)+Ap
= HW)-H(D)+Az+Ap
2 A

From (2.96), we know fg is injective on fo1 B and fo; is injective on B. These facts will
be used to arrive on lines (2.143) and (2.145). From (2.118), we know fis is injective on C,
which will also be used on line (2.145). Lemma 2.11.4.1 will be used to arrive on (2.144).

=

codim BE* = B

|
=

B

I
=

B

|
=

B

IA
=

B

I
=

B

Il
=

B

IA
=

B

I
=

(
(
(
(
(
(
(
(
Y
(

) —
) -
) -
) =
) -
) —
)+
)+
) =
) =

Il
=

Y

Ap-

dim(B")

dim(fs(f21B N f1sC))
dim(fuB N f1sC")

Y) + codimy (f2B N f15C")

(2.143)

::

Y) + codimy (f21B) + codzmy(flsc )

H(Y) — dim(fx1B) + H(Y) — dim(f1sC")

m(B) — dim(C") (2.145)
)+ Az — H(C) + Ag-

+ Ag-

HW) —

Y)
(Y) (2.144)
H(Y)+
H(Y) - di
H(Y)—-H(B
H(C)+ Ag
(C)+

H(C)+ H(D) +Az+ A5+ Ag

From (2.109), we know f15 is injective on fggé and fag is injective on C. These facts

will be used to arrive on lines (2.146) and (2.148). From (2.100), we know fo7 is injective on B,
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which will also be used on line (2.148). Lemma 2.11.4.1 will be used to arrive on (2.147).

codimcC* = H(C) — dim(C*)
= H(C) - dim(fr2(forB N f260))
= H(C) — dim(for BN f29C) (2.146)
= H(C)— H(Z) + codimy(for BN f20C)
< H(C)— H(Z) + codimz(f2rB) + codimz(f29C) (2.147)
= H(C)- H(Z)+ H(Z) — dim(f2B) + H(Z) — dim(f25C)
— H(C)+ H(Z) — dim(B) — dim(C) (2.148)
< H(C)+H(Z)-H(B)+A5-H(C)+ A
— H(Z)- H(B)+ Ay + Az
2 AL

Let t € A. Now we will assume ¢ satisfies conditions (2.149) - (2.154). The justifications

can be found below.

t € A ; this is true on a subspace of A of codimension at most A (2.149)
faat € f20§* N f25§* ; this is true on a subspace of A of codimension at most

2H(X)—2H(B) + A+ + Ag, (2.150)
f3st € fggé* N f21§* ; this is true on a subspace of A of codimension at most

2H(Y) — H(B) — H(C) + Ag- + Ag, (2.151)
faat € fgga* N f27§* ; this is true on a subspace of A of codimension at most

2H(Z) - H(C) —H(B)—i—Aa* + Az, (2.152)
fisfafait € f21§* N fgg@* ; this is true on a subspace of A of codimension at most

2H(Y) - H(B) — H(C) + Ag + Ag. (2.153)
Now we need to make two assumptions on t simultaneously.

fait € f1.C N fMZ* and f15ff41f31t IS fgoE* N f25§* ; this is true on a subspace of A of
codimension at most

2H(X) — 2H(B) + 2H(W) — H(C) — H(A) + Ag + Ag- + Mg + A, (2.154)

To justify (2.150), first we know faq is injective on B" by (2.120). Then by Lemma
2.3 1.4.3, we know fast € fo0B " on a subspace of A of codimension at most H(X) — H(B) +
codimp(B") < H(X) — H(B) + Ag+. By (2.115), we also know fa5 is injective on B*. Then
by Lemma 2.3 1.4.3, we know f3ot € f25§* on a subspace of A of codimension at most
H(X)— H(B) + codimp(B*) < H(X) — H(B) + Az, . Then using Lemma 2.1 1.4.1, we have
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faot € fgoﬁ* N f25§* on a subspace of A of codimension at most 2H(X) — 2H(B)Ax~ + As..
Conditions (2.151) - (2.153) can be justified using similarly.

To justify (2.154), first we know fy7 is injective on C by (2.105). Then by Lemma
2.3 1.4.3, we know f31t € f17C on a subspace of A of codimension at most H(W) — H(C) +
codime(C) < HW) — H(C) + Ag. By (2.117), we also know fi4 is injective on A", Then

by Lemma 2.3 1.4.3, we know f31t € fMZ* on a subspace of A of codimension at most

—%

H(W) — H(A) + codima(A) < HW) — H(A) + A3+. Then using Lemma 2.1 1.4.1, we have

fait € f1zC' N f14Z*

on a subspace, S, of A of codimension at most 2H (W) — H(C) — H(A) 4+ Az + A4-. Since fi4
is injective on Z*, the function fi5 ff41 fs1 is defined on S. Using the same technique as before

we can show that

fisfia fait € faoB N f25§*

on a subspace, S, of codimension with respect to S at most 2H (X ) —2H (B) + Ag- + Az, . Thus
both conditions are true on S, which has codimension with respect to A at most codimgS +
codimaS < 2H(X) —2H(B) +2H(W) — H(C) — H(A) + Az + Az + Ag- + A,

Our final goal is to show that ¢ = 3z for some x so that we may conclude that

t = 0 if the characteristic is 3. We will accomplish this by using (2.87) and by proving that
Jafsat = frfs3t = frofsat.
Claim 2.2.2. f4f32t = f10f34t

Proof. First we must show that fog fi2faat = fo1 faq f32t. By (2.88), we know
fafsst = —fiifsat — fifait
Then by using (2.130) and condition (2.152), we have
fefast = fsfosfiafsal — f1fs1t
Now by using (2.122) and condition (2.154), we have

fafast = fafosfiafaat + fsfisfafait

By (2.116), we know fs is injective on fggé*. By condition (2.151), we know f33t € fggé*. By
condition (2.153), we know figfafsit € fgga*. By condition (2.152), we know fsst € f296*.
Using (2.109), we know f12f34t € C-. Thus, we have

fast = fasfiafaat + fisfafa1t (2.155)

By (2.90), we have

fofsst = —fefsat — f3faitl
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Then by using (2.126) and condition (2.150), we have
fofsst = foforfao faot — fafart
Now by using (2.124) and condition (2.154), we have
fofsst = fofarfaq faot + fofrsfofat

By (2.119), we know fo is injective on f21B". By condition (2.151), we know f33t € f1B". By
condition (2.150), we know f3at € ngE* S0 fo1 f;olfggt € fglg*. By condition (2.153), we know
flgfgfglt € f21§*. Thus, we have

fast = forfag faat + fisfafart (2.156)
Now setting (2.155) and (2.156) equal to each other, we have
forfag faot = fasfrafaat (2.157)
By (2.125) and condition (2.150), we know
fafsat = —frforfsg faot
Using (2.157), we have

fafsat = —frfasfiafsat

Then using (2.129) and condition (2.152), we know

fafsat = fiofaat

Claim 2.2.3. f7f33t = f10f34t
Proof. First we must show that fosf11 f3at = foofsfast. By (2.89), we know
fsfsat = —fiafaat — fafait
Then by using (2.131) and condition (2.152), we have
fofsat = [fsfosfi1fsal — fafart
Now by using (2.123) and condition (2.154), we have

fsfaat = fsfosfirfaat + fsfisfiat fat

By (2.115), we know f5 is injective on f25§*. By condition (2.150), we know f3at € f25§*.
By condition (2.152), we know fsst € forB*. Now using (2.100), we know fi; fsst € B*. By
condition (2.154), we know fi5f1,' fait € f25§*. Thus, we have

faat = fosfiifaat + frs /i fat (2.158)
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By (2.90), we have
fefsat = —fofsst — fafsil
Then using (2.128) and condition (2.151), we have
fefs2t = fefoofsfast — fafart
Now by using (2.124) and condition (2.154), we have

fofsot = fofoofsfast + fofisfia' fait

By (2.120), we know that fg is injective on fgoE*. By condition (2.150), we know f3ot € fQOE*.
By condition (2.151), we know fsst € fo1 B . Now using (2.96), we know fsfsst € B . By
condition (2.154), we know f15ff41f31t S fgog*. Thus, we have

fast = foofsfast + fisfig' fart (2.159)

Now setting (2.158) and (2.159) equal to each other, we have

Jasfuifsat = faofsfast (2.160)
By (2.127) and condition (2.151), we know

frfast = —fafaofsfsst
Using (2.160), we have

Jrfast = —fafosfi1faat
Then using (2.129) and condition (2.152), we know

frfast = fiofsat

Now by (2.87), Claim 2.2.2 and Claim 2.2.3, we have

~+
|

= fafaol + frfast + frofaat
Jrof3at + frof3at + fiof3at
3f10f3at

Thus if the field has characteristic 3, then

t =0 (2.161)



So no nonzero t can satisfy all of the conditions (2.149) - (2.152), so we must have

H(A)

< A;+2H(W) - H(C) - H(A) + Ag + Ay

+2H(X) —2H(B) + Ag- + Ag,
+2H(Y) — H(B) — H(C) + Ag+ + A,
) —H(C)—H(B)+ Az, +Ag.
) —H(B) - H(C) + Ag- + Az,
+2H(X) — 2H(B) + Ag- + A,
2H(Z) +4H(Y) +4H(X)+2H(W) —4H(C) — TH(B) — H(A)
+AG + 40 + 305 +305, + A5+ Ag

(
+2H(Z
+2H(Y

(X

2H(Z)+4H(Y)+4H(X)+2H(W) —4H(C) —7TH(B) — H(A)
B)+H(Z)-H(C)+Az+ A5+ A7
C)+ H(W)—-H(D)+ Az + Ay + Ap)

VH(X) - H

9H(Z) +8H(Y) +5H(X) + 6H(W) — 4H(D) — 12H(C) — 11H(B) — H(A)
HA 2+ A+ TAS + 405+ TA; + 505 + 405

9H(Z) +8H(Y) + 5H(X) + 6H(W) — 4H(D) — 12H(C) — 11H(B) — H(A)
+H(W|B,C, D)+ H(X|A,C,D) + H(Y|A, B,D) + H(Z|A, B,C)
AW, X,Y,Z) + HW|B,C,D) + H(X|A,C, D) + H(A|B,W, X)

7(H(X|A,C,D) + H(Z|A,B,C) + H(B|D, X, Z))

+H

—~~

_|_

(
(

_|_

(H (

A(H(X|A,C, D)+ H(Y|A, B, D) + H(B|C, X,Y))

+7(H(Y|A, B,D) + H(Z|A,B,C) + H(C|D,Y, Z))

+5(H(W|B,C, D)+ H(Y|A, B, D) + H(C|A,W,Y))

+A(H(W|B,C, D)+ H(Z|A,B,C) + H(D|A,W, Z))

+29(H(A) + H(B) + H(C) + H(D) — H(A, B,C, D))

9H(Z) + 8H(Y) + 5H(X) + 6 H(W) — AH(D) — 12H(C) — 11H(B) — H(A)
19H(Z|A, B,C) + 17TH(Y|A, B, D) + 13H(X|A, C, D) + 11H(W|B, C, D)
H(A|W,X,Y,Z) + H(A|B,W,X) +TH(B|D, X, Z) + 4H(B|C, X, Y)
TH(C|D,Y, Z) + 5H(C|A,W,Y) + 4H(D|A, W, Z)

+29(H(A) + H(B) + H(C) + H(D) — H(A, B,C, D))

39

Now notice that the linear rank inequality does not hold for characteristic other than 3.
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A counterexample would be: In V = GF(3)* where

A={(1,0,0,0)) B ={(0,1,0,0))
C =((0,0,1,0)) D ={(0,0,0,1))
W=(0,111)  X=((1,0,1,1))
Y ={(1,1,0,1)) Z ={(1,1,1,0))
Then
H(Z|A,B,C) = H(Y|A,B,D)
= H(X|AC,D)
= H(W|B,C,D)
= H(A|B,W,X)

Since W, XY, Z are independent, we also have HW)+ H(X)+H(Y)+H(Z)=H(W,X,Y, Z).

So the inequality becomes

H(A) < 9H(Z)+8H(Y)+5H(X)+6H(W)—4H(D)—12H(C)—-11H(B)— H(A)
1 < 9+8+5+6-4-12-11-1
1 < 0

which is clearly a contradiction. Therefore, the inequality above is a linear rank inequality for
fields of characteristic 3.

O

Corollary 2.2.4. The linear coding capacity of the non-T'8 network is at most 28/29 over any
characteristic 3. The linear coding capacity over any characteristic other than 3 and the coding

capacity is 1.

Proof. Let us apply the linear rank inequality derived in Theorem 2.2.1 to the non-T'8 network.
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Then we would have:

H(Z|A,B,C) = H(Y|A,B,D)
= H(X|A,C,D)
= H(W|B,C,D)
= H(A|B,W,X)

= H(AW,X,Y,2)

= H(B|C,X,Y)

= H(B|D,X,Z)

= H(CIAW,Y)

= H(C|D,Y,Z)
(

— H(DIAW,Z)

|
o

Since W, XY, Z are independent, we also have HW)+ H(X)+H(Y)+H(Z)=H(W, X,Y, Z).

So the inequality becomes
H(A) < 9H(Z)+8H(Y)+5H(X)+6H(W)—4H(D)—-12H(C)—11H(B) — H(A).

Now we know H(A) = H(B) = H(C) = H(D) = k and H(W) = H(X) = H(Y) = H(Z) = n,

so we have

>
IN

In+8n—+5n+6n—4k — 12k — 11k — k

29k 28n

IN

k/n < 28/29

So the linear coding capacity over characteristic 3 is at most 28/29 < 1. The non-7'8 network is

solvable over every characteristic except for 3 by the following coding solution:

W = B+C+D
X = A+C+D
Y = A+B+D
Z = A+B+C

We know the coding capacity is at most 1 because there is a unique path from source A to node
ng and by the coding solution given above we know the capacity is at least 1, thus the capacity
is 1.

O
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This chapter, in full, is a reprint of the material in: R. Dougherty, E. Freiling, K. Zeger,
“Characteristic Dependent Linear Rank Inequalities with Applications to Network Coding,”
submitted to the IEEFE Transactions on Information Theory, November 2013. The dissertation

author was the primary investigator of this paper.



Chapter 3

Characteristic Dependent Linear
Rank Inequalities for every Finite

and Co-finite Set of Primes with
Applications to Network Coding

3.1 A Linear Rank Inequality for any Finite Set of Primes

In [Dougherty 07], an algorithm is given for constructing networks from matroids, or
matroidal networks. Figure 3.1 was first constructed using the given algorithm from the 7T'8
matroid [Oxley 92]. The T'8 matroid is represented by the following matrix, where column

dependencies are over characteristic 3.

S1 S S3 S Ci Cy (O3 Z

1 0 0 o o0 1 1 1
o 1 0 o0 1 0 1 1
o o 1 0 1 1 0 1
o o o0 1 1 1 1 0

Theorem 3.1.1. For every finite set of primes, P, there exists a linear rank inequality for

fields with characteristic in P.

Proof. For convenience we will use the MATLAB notation [a : b] to denote {z € Z : a < z < b}.
Let n be the product of all the primes in P. We will assume n > 3. For the case where P = {2},
we can let n = 4 to get the desired result. Recent work, [Dougherty 13], has also handled the

case for n = 2 and arrives at a simpler inequality than the following.

43
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We will construct a network as a guide to construct the inequality, but the network is
not necessary. Construct n+ 1 independent sources and label them Sy, ...,S,+1. We will define
a channel to be an input node, an output node, and a single directed edge connecting the input
and output nodes with the direction going towards the output node. Then construct n channels
and label them C1,...,C,. Then for each i € [1: n|, add a directed edge connecting the input
node of C; and S, for every j € [1 : n+ 1]\ with the direction going towards the input node
of C;. Now create one more channel, label it Z. For each i € [1 : n], and add a directed edge
connecting the input node of Z and the output node of C; with the direction going towards the

input node of Z.

For every i € [1 : n], create a receiver node, R;, that demands source S,11. Add a
directed edge that connects R; and the output node of C; with the direction going towards of
R;. Add an edge that connects R; and the output node of Z with the direction going towards
R;. Add a directed edge that connects R; and source S; with the direction going towards R;.

For every ¢ € [2: n], create a receiver node, T;, that demands source S;. Add a directed
edge that connects T; and the output node of C; with the direction going towards 7;. Add a
directed edge that connects T; and the output node of C; with the direction going towards T;.
Add a directed edge that connects T; and source S7 with the direction going towards T;.

Create a receiver node, A, that demands source S;. For every i € [2: n], add a directed
edge that connects A and source S; with the direction going towards A. Add a directed edge
that connects A to the output node of Z with the direction going towards A. We will denote the
network constructed above by N5. Figure 3.1 depicts the resulting network with n = 3 obtained
by the above procedure.

For notational purposes, let X; £ Si,...,8;_1,8i41,...,S41. Let V be a finite
dimensional vector space with subspaces S1,...,Sn,+1,C1,...,Ch, Z. By Lemma 1.4.4, for every

i€[l:n]and j € [1:n+ 1]\i, we get linear functions:
fl:Ci— S,
such that

> =1 (3.1)
je[lin+1]\i
on a subspace of C;, G, of codimension H(C;|X;). By Lemma 1.4.4, for i € [1 : n], we get linear

functions:

]‘}:Z—)C’i7
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Figure 3.1: The resulting network for n = 3. When an source S; appears above a node, it

implies that there is an edge connecting the node to the source.
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such that

S o= (32)

i€[1:n]

on a subspace of Z of codimension H(Z|Cy,Cs,...,C,). By Lemma 1.4.4, we get linear

functions:
A% .8 = Z,
A8y — Sjfor j€[2:n],
such that
A4 YA =T (3.3)
j€E[2:n]

on a subspace of S; of codimension H(S1|Z,Ss,...,S,). By Lemma 1.4.4, for j € [2: n], we

get linear functions:

T]] : Sj — Cj,
le : Sj — Ol,
S .
Tj : Sj — 51
such that
j 1 s
T +T; +17 = 1 (3.4)

on a subspace of S; of codimension H(S;|S1,C1,C;). By Lemma 1.4.4, for j € [1: n], we get

linear functions:

R; : Sn+1 — Cj,
RJZ : Sn+1 — Z,

R}g : Sn+1 — SJ‘
such that
j A S _
RI4 R4 RS = I (3.5)
on a subspace of S, 41 of codimension H(S,1|S;j,C;, Z). For j € [1:n], let

fs, = > ity

i€[1l:n]\j
fouer & D FT
=1

Claim 3.1.2. There is a subspace of Z, H, of codimension at most H(Z|Cy,Cq,...,Cy) +
S H(Cy|X;), such that 30! fs, = I on H.



47

Proof.

n+1

S o fs=Tsun Y15
=1

i=1

=Sy N A
j=1

Jj=lig[l:n]\j

Using (3.1), for each i € [1: n], since 3 ci1. 1 f =T onG; CCy, we know

. A =r0

JE[L:in+1]\2
for every ¢ such that t € Z and f4(t) € G;. By Lemma 1.4.3, f4(t) € G; on a subspace of Z of
codimension at most codimc, (G;). So
> =1

JE[Lin+1]\¢

on a subspace of Z of codimension at most H(C;|X;). Using Lemma 1.4.1, the sum above

becomes
n
fi
z
i=1

on a subspace of Z of codimension at most >, H(C;|X;). Then using (3.2) and Lemma
1.4.1, we know there is a subspace of Z, H, of codimension at most H(Z|C1,Cs,...,Cp) +
S H(Ci|X;), such that Y77 fs, = I on H. O

Combining the functions above, we get new functions:

fSl AZ : Sl — Sl
Al + fg, A7+ Sy — S for j€2:n]
fsn+1AZ : Sl — Sn+1

Using Claim 3.1.2, (3.3), Lemma 1.4.1, and Lemma 1.4.3 we know the sum of these functions is
equal to I on a subspace of S of codimension at most

H($1|2,S5,...,50) + H(Z|C1,Ca,...,Co) + > H(C|X;)

i=1
Now applying Lemma 1.4.6 and Lemma 1.4.1 to fg, A% — 1, fs,,, A%, and A7 + fg A, for

j € [2:n], we get a subspace A of S of codimension at most

Ay = H(S1|2,5,...,8,) + H(Z|C1,Ca,....Co) + > H(Ci|X)
=1
n+1
_H(Sla .. '7Sn+1) + ZH(SZ)
=1
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on which
fs, AZ =1 (3.6)
Al + fg, A7 = 0Oforje[2:n] (3.7)
fsnmAZ = 0. (3.8)

Combining the functions above, for j € [1 : n], we get new functions:

FPPUR) 4 fs, RY 2 Spyt = Sunt
RS + fs,R? : Sni1—S;
f;Rg + fsiRjZ i Spg1 — S; fori e [1:n]\j.

Using (3.1), Claim 3.1.2, (3.5), Lemma 1.4.1, and Lemma 1.4.3 we know the sum of these
functions is equal to I on a subspace of S;,+1 of codimension at most

H(Sp411S;,Cj, Z) + H(Z|C1, Ca, ..., Cr) + H(Cj|X;) + Y H(Ci| X))
i=1
Now applying Lemma 1.4.6 and Lemma 1.4.1 to f;Hle + fs RjZ -1, RJS + fszjZ, and

Zie[lm]\j f;R; + fsl.RjZ we get a subspace S;,,+1 of Sy+1 of codimension at most

n+1

Njny1 = H(Sn41]S;.Cj 2) + H(Z|Cy,Co, ..., Co) + H(Cj|X;) + Y H(Ci|X;)
=1
n+1

—H(S1,..,Sn1) + Y H(S:)
1=1

on which

fIRI 4 fs,  RY = 1 (3.9)
RS + fs,R7 = 0 (3.10)
fIR)+ fo,RY = Oforie[l:n]\j. (3.11)

Combining the functions above, for j € [2 : n], we get new functions:
fjjjl : Sj — Sj (312)
TP + fiT) :+ S;— 5 (3.13)
AT+ fiT) © S;— Sifori€[2:n+1]\j. (3.14)

Using (3.1), (3.4), Lemma 1.4.1, and Lemma 1.4.3 we know the sum of these functions is equal

to I on a subspace of S; of codimension at most

H(S;181,C1,Cy) + H(C1|X1) + H(Cj]X;)
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Now applying Lemma 1.4.6 and Lemma 1.4.1 to ffT}—I, Tf—&—flejj7 and Zie[Q:n+1]\j f]’TJJ—&-f{le

we get a subspace S; of S; of codimension at most

A; = H(S;5,C1,C)) + H(Ci|X1) + H(Cj|X;)
n+1

—H(Sl, . .,Sn+1) + ZH(Sz)
i=1

on which
Aty =1 (3.15)
S 1 _
TS+ fjT) = 0 (3.16)
AT+ fiT) = 0forie[2:n+1)\j. (3.17)

By (3.8) we know fs,,, AZ =0 on A. By (3.9) we know fJTLHR; + fs, RZ =T on Sj, 1. So

we know fs, R =0 on S, 11N (R?)"'AZ(A). Thus

fIYRI =T on S0 N (RZ)7PAZ(A) for j € [1:n). (3.18)

Notice here we do not know if RjZ is injective, so consider (RJZ )"TAZ(A) to be a set.

Claim 3.1.3. There exists a subspace, A° C A, such that, for j € [2:n], A7 is injective on A

Proof. By (3.15) and (3.18), for j € [2 : n], we know

fijl =1 on gj, and
f1n+1R% =1 on §17n+1 N (Rlz)ilAZ(Z)

Then by Lemma 1.4.7, we know ffR% is injective on
gj,nﬂ 2 1 [RY (S1ng1 N (RE)TAZ(A)) N le(gj)] .
Then by (3.11), we know
fs,R{ is injective on §j7n+1. (3.19)
Then applying Lemma 1.4.7 to (3.19) and (3.6), we know
fs;A? is injective on fs, [AZ (A)n Rlz(gj,n+1):|.
Thus for each j € [2: n],
fs, A is injective on AL fg {AZ(Z) N (ﬂ?=2 Rf(§j7n+1))].

Then using (3.7), we know for j € [2: n], A7 is injective on A . O
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Now we would like to find an upper bound on the codimension of A", We will use (3.6)

to justify (3.20). For j € [1: n], by Lemma 1.4.3, we know

codimsg,, ., ((RJ-Z)_lAZ (Z)) < codimy (AZ (Z))

H(Z) — dim (A% (4))

H(Z) — dim(A) (3.20)
H(Z) — H(Sy) + codims, (A)

H(Z) — H(S1) + Aa (3.21)

We will use (3.18) to justify (3.22). We will use Lemma 1.4.1 to justify (3.23) and (3.25). We
will use (3.21) to justify (3.26).

COdimSnJrl(gjyn-'rl) H(Sn41) — dzm( ]n+1)
H(Sp41) — dim (7[R} (S1ne1 N(RY)TTAZ(A)) N T/ (S;)])
H(Sns1) — dim (R} (S1n41 N (RY)TTAZ(A)) N T/ (S;))) (3.22)
H(Snt1) — H(C1) + codime, (R} (81041 N (RY)TTAZ(A)) N T} (S;))
H(Snt1) — (4)))

+ codime, (T jl

ER)) (3.23)
= H(Spt1) — H(C1) + H(C1) — dim (R} (S1n41 N (RZ)LAZ(A)))

+ H(Cy) — dim (T} (S;))
= H(Sp+1) + H(Cy) — dim (S1,n41 N (RY) A7 (A)) — dim(S;) (3.24)
= H(Sn+1) + H(C1) (S1ns1 N (RY)TAZ(A))

— H(S;) + codims, (S;)
< H(Cy) — H(S;) + codims,,, (S1,n+1)

+ codims, ., (R{) ' A?(A)) + codims, (S;) (3.25)
< H(Cy) — H(S;) + H(Z) — H(S1) 4+ A1ny1 + D + A, (3.26)

(C1) 1
H(Ch) + codime, (R} (S1,n41 N (RY)TAZ
(
)

— H(Sp41) + codimg

n+1

We will use (3.6) to justify (3.27). We will use Lemma 1.4.1 to justify (3.28). We will use (3.6)
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and (3.19) to justify (3.29). We will use (3.26) to justify (3.30).

codimg, (A") = H(Sy) — dim(A")

= H(Sl) —dim <f51 [AZ(A) n (ﬁ Rlz(gj,n+1)) :| )

= H(S) — dim (AZ(A) N (ﬁ R? (§j,n+1)>) (3.27)

j=2
= H(S1) — H(Z) + codimz (AZ(A) N (ﬁ R? (§j’n+1)>)
Jj=2

< H(S)) — H(Z) + codimy (AZ(A)) + zn: codimy (Rf (EMH)) (3.28)

=2

= H(S1) — H(Z) + H(Z) - dim (A%(A)) + (n — VH(Z) - 3 dim (Rlz (§j,n+1))

= H(S1) + (n— 1)H(Z) — dim(A) — Z dim(S;ni1) (3.29)
= H(S1)+ (n—1)H(Z) — H(S1) + codimg, (A) — (n — 1)H(S,+1)
+ Z codimsg,, (§j?n+1)
j=2

< (n— DH(Z) — (n— 1) H(Sps1) + As
+ Zn: H(Cy) — H(S;) + H(Z) — H(S1) + Ay 1 + As + A, (3.30)
j=2
— (n— DH(Z) — (n— DH(Ss1) + (n — LH(CL) — (n— 1) H(S1)
+ (TL — 1)H(Z) + ’I’LAA + (n — 1)A1,n+1 + i: Aj — H(S])

=2

2 A%
Claim 3.1.4. For j € [2: n], there exists a subspace, ?; - gj, such that Tjj is injective on §;,
Proof. For j € [2:n— 1], by (3.15), we know

fijl =1 on S;, and

J+1lmpl <
i Ty =1Ion S

Then by Lemma 1.4.7, we know ffHle is injective on 5; 21 [T} (S;) N T} 1(Sj41)]. Then

by (3.17), we know f;+1TJj is injective on F;, thus Tf is injective on ?;. For j = n, by (3.15),
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we know

M =TonS, 1, and
{LTﬁ =Tons,.

Then by Lemma 1.4.7, we know fi' T} is injective on S,, 2 f7 [T}(S,) N T ;(Sn—1)]. Then
by (3.17), we know 1T is injective on S, thus T is injective on 5. O

Now we would like to find an upper bound for the codimension of ?;. We will use (3.15)
to justify (3.31) and (3.33). We will use Lemma 1.4.1 to justify (3.32). For j € [2:n — 1], we

have

codims, (?j) — H(S;) — dim(S))
= H(S;) — dim (] [T} (5;) N T}11 (S541)])
= H(S;) — dim (T} (S;) N Tj41(S;j+1)) (3.31)
= H(S;) — H(C1) + codime, (T} (5;) NT}41(Sj41))
< H(S;) — H(Ch) + codime, (T} (S;)) + codime, (T}1(Sj+1)) (3.32)
= H(S;) + H(C1) — dim(S;) — dim(S41) (3.33)
= H(S;) + H(C1) — H(S;) + codims, (S;) — H(Sj+1) + codims, ,, (Sj+1)
<H(C1)—H(Sj+1) + A+ Aj
N

We will use (3.15) to justify (3.34) and (3.36). We will use Lemma 1.4.1 to justify (3.35).

codimsg, (? ) H(S,) — dim(S")
= H(Sy) — dim (f{" [T, (Sn) N Tp_1(Sn-1)])
= H(S,) — dim (T,(S,) NTh_1(Sn-1)) (3.34)
= H(S,) — H(C1) 4 codim¢, (Tn(S YNTE 1(§n_1))
< H(S,) — H(C1) + codime, (T (Sn)) + codime, (Tr_y(Sn-1)) (3.35)
= H(S,) 4+ H(Cy) — dim(S,) — dim(S,_1) (3.36)
= H(S,) + H(C1) — H(S,) + codims, (Sn) — H(Sn—1) + codimsg, _, (Sn—1)
<H(Cy) — H(Sp 1) +Ap+ Ay
LAY

Let t € S1. Now we will assume ¢ satisfies conditions (D1) - (D3). The justifications can be

found below.

(D1) We will assume ¢ € A". This is true on a subspace of S; of codimension at most A%.
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(D2) We will assume, for j € [1: nj,
fLA%te RI (ﬁj,nﬂ N (RjZ)‘lAZ(Z*)) :
This is true on a subspace of Sy of codimension at most

H(Cy) — H(Sni1) + H(Z) — H(Sy) + A% + Ay

(D3) We will assume, for j € [2: n],
fLA%te 1) (70 (T RY [S1 0 (RE)AZ(A)))) .
This is true on a subspace of S7 of codimension at most

H(Cj) — H(Sj) + H(Cy) — H(Spy1) + H(Z) — H(S1) + Apny1 + A% + AL

To justify (D2), by (3.18) we know Rg: is injective on S 41 N (RJ»Z)*IAZ(Z*). Then by Lemma

1.4.3, we know
FLA%t e R (Sjnn 0 (RE) T AZ(X)))
on a subspace of S7 of codimension at most
H(C}) — H(Sn41) + codims, ., (ﬁmﬂ N (RZ)-1A7 (Z*)) .

By Lemma 1.4.1 and (3.21), we know

*

codimsg, <§j7n+1 N (R]-Z)*lAZ(Z*)) < codimsg, ,, (Sjnt1) + codims, ., ((RJ-Z)*IAZ(Z ))
< H(Z) - H(S1)+ A4+ Ajn1
So we know
fiA%t e R (@nﬂ N (R? )—1AZ(Z*))
on a subspace of S7 of codimension at most
H(Cy) ~ H(Sui1) + H(Z) — H(S1) + A% + D
To justify (D3), by Claim 3.1.4, we know Tjj is injective on

;0T RY [Suen 0 (RE) T AZ(A)))].

Then by Lemma 1.4.3, we know

A%t e T (850 (1) B[Sy 0 (RY) 1 47(20))
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on a subspace of codimension at most
H(Cy) = H(S;) + codims, (S5 0/(T}) 7 R} [S100 0 (RE) T AZ(A))) .

We will use Lemma 1.4.3 to justify (3.38). We will use Lemma 1.4.1 to justify (3.37) and (3.39).
We will use (3.21) to justify (3.40)

codims, (?j N (T})~ 'R} [ﬁl,nﬂ N (R? )—1AZ(Z*)])
< codims, (?j) + codims, ((T;)*Ri {?Lnﬂ N (Rlz)*lAZ(Z*)D (3.37)
< A% + codime, (R% [ﬁl,nﬂ N (R? )—1AZ<Z*)D (3.38)
= H(Cy) = dim (R} [Sy0a0 0 (RE) 1 AZ(A7)] ) + A
= H(Cy) = dim (Sy,n41 0 (RE) 7 A7(A)) + 4]
= H(Cy) — H(Sp41) + codims, .., (?Lnﬂ N (R? )—1AZ(Z*)) + A
< H(Cy) — H(Sp41) + codims, , , (S1,n41)
+ codims, ., ((Rlz >—1AZ(Z*)) + A (3.39)
< H(Ch) = H(Sui1) + H(Z) = H(S1) + Apnir + A% + A (3.40)
So we know
fpA%teT] (Ej n(T}) "'’y [gl,n-&-l n (Rlz)_lAZ(Z*)D
on a subspace of codimension at most
H(Cy) — H(S;) + H(C1) — H(Sn41) + H(Z) — H(S1) + A1 jns1 + A% + A].
By (D2), we know Jc; € Sy 41 such that
fLAZt = Rle; where RZ¢; € AZ(AD). (3.41)
By (D2) and (D3), we know for j € [2: 7], 3¢; € S 11,b; € S, such that

fLA%t = Rlc; = T!b; where RZc; € AZ(A7) and T}b; € R} (?Lnﬂ N (R )—1AZ(Z*)).

(3.42)
Claim 3.1.5.
(n—=1) Y fs, BRI A% = —nt
i=1
Proof. Using (3.6), (C1), and the definition of fg,, we have
SHgAT = ¢ (3.43)

Jj=2



Using (3.11) and (3.18), for j € [1 : n] we have

fSiR-Z—&—RJ:fZ-' = 0on S,y forie[1:n]\j
J 773 J»
i pi z
f]R; = _fSiRj
fi = —fs,RZf on R (S 41 N (R)7LAZ(A)).

So we have,
f= —fisjZf;H'l on Rg (Sjns1 N (RZ)"1AZ(A)) for j € [2:n]

Then applying (D2) and (3.45) to (3.43), we have

n
D [ RIFTI A% = —t.

=2

By (3.7) and the definition of fg,, for ¢ € [2 : n], we have

At + fs, A%t = 0
At+ > fiffA%t = 0,

JE[L:n]\7

By (D2) and (3.44), we have

At+ > —fs,RZfIH A% = 0.

j€[1:n]\i
By (3.42) and (3.41), we know
At+ Y —foRZfMTRic; = 0.
JE[L:n]\s
Then by (3.18), we have
Ait + Z —fSiRjZCj = O
jE[Lin]\7

From (3.6) and (3.7), for i € [2: n] we have
fsi = —Aifsl on AZ(Z)
We know RZ¢; € AZ (A7), so (3.47) becomes

At+ Y A'fg,RZc; = 0.
jE[Lin]\1
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(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

By Claim 3.1.3, we know that for i € [2: n], A’ is injective on A" Then by (C1) and (3.6), we

have

Z fSl RJ-ZC]' = —t.

jeln)\i
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Then using (3.18), (3.42), and (3.41), we have

> faRIfITNLA%E = —tforie(2:n] (3.49)
jelLm\i

Now adding (3.46) to the sum over i in (3.49), we have

(-0 S REFF AT =
j=1
O
Claim 3.1.6. For j € [2: n]
fs REfTURA%E = fo,RYf7 fr A1
Proof. By (3.17), for j € [2:n] and i € [2 : n]\j, we know
ATIb; + fiTIb; = 0.
By (3.42), we know
!, € R} (Fmﬂ N (Rf)—lAZ(Z*))
and
Tib; = Rjc; € ) (010 (R7) 71 AZ (X)),
Then by (3.44), we have
—fs, RY 71T — fs, RZ f1H1 0, = 0. (3.50)
From (3.18), we know f""' R} =T on S; .41 N (RY)"'A%(A). So
T € (RE)TTAZ(AY).
Then applying R, we have
RE 1T b € AZ(A). (3.51)
From (3.42), we also know Tjjbj = Rgcj. So using (3.18), we know
T = ¢
Then by (3.42), we know
RY fjH'T]b; = Rf¢; € AP(A). (3.52)

Then by applying (3.48), (3.51), and (3.52) to (3.50), we have

Alfs, REfIHIT 0, + A'fs, RZf7T90;, = 0.
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Since RZ f ™' T1b; € AZ(A") and RZ {7 T7b; € AZ(A"), by (3.6), we know

fs,REf1H 10, € A7, and
fs, RZf1TIh; € A

So we can apply Claim 3.1.3, to get
fs, RZFIH Ty + fs, RZ f7 7 T00; = 0. (3.53)

Now letting ¢ = n + 1 in (3.17), we have

ATy = =T,
So (3.53) becomes
fs, REFIHTIb; = fo,RZf71T0;.
By (3.42), we know
fs,RY [T LA = fs,R7 [ L A%

Now combining Claim 3.1.5 and Claim 3.1.6, we have

(n=1)Y fs,RZfIT A% = —nt
=1
(n—1)fs,RT> A% = —nt
=1

By the definition of fg, ., and (3.8), we have

+1
(n - 1)f5'1 RIZfSn+1AZt = —-nt
0 = nt
If the field characteristic is in P, then the characteristic will divide n. So if the field characteristic

is not in P, then no nonzero ¢ can satisfy (D1)-(D3). Therefore, the sum of the codimensions in

(D1)-(D3) must be at least H(S7). So we have

H(Sl) < A*A + Zn:H(O]) - H(Sn+1) + H(Z) — H(Sl) +Aq+ Aj,n+1 (354)

j=1
+ ZH(Cj) — H(Sj) + H(C1) — H(Sn41) + H(Z) — H(S1) + A1 1+ Aa + A
=2

(3.55)
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Notice that the inequality does not hold for fields of a characteristic that divide n (characteristics

in P). Let p € P. Then a counterexample would be: In V' = GF(p)"*1, let

S = ((1,0,0,...,0,0)) C1=((0,1,1,...,1,1))
S2 =((0,1,0,...,0,0)) Cy =((1,0,1,...,1,1))
S3 = ((0,0,1,...,0,0)) Cy = ((1,1,0,...,1,1))
Sn:<(0’0707"'7170>> Cn:<(171717""071)>
Spir = ((0,0,0,...,0,1)) Z={(1,1,1,...,1,0)).

For i € [1 : n], we would have H(S;) = H(C;) =1 and H(S,41) = H(Z) = 1. We would also
have Aj 41 = Aj = Ay = A% = 0. Thus, the inequality would reduce to 1 < 0, which is
clearly a contradiction. Therefore, the above inequality is a linear rank inequality for fields of

characteristics not in P. O

3.2 A Linear Rank Inequality for any Co-finite Set of

Primes

The matroidal network in figure 3.2 was first constructed using the algorithm from
[Dougherty 07]. The matroid used in the construction we will call the non-7'8 matroid. The
non-7'8 matroid is identical to the T'8 matroid except {C1, Cs, Cs, Z} is a base, where in the T8

matroid it is a circuit.

Theorem 3.2.1. For every co-finite set of primes, P, there exists a linear rank inequality for

fields with characteristics in P.

Proof. For convenience we will use the MATLAB notation [a : b] to denote {z € Z : a < z < b}.
Let n be the product of all the primes not in P. We will assume n > 3. For the case where
P is the set of all primes except 2, we can let n = 4 to get the desired result. Recent work,
[Dougherty 13], has also handled the case for n = 2 and arrives at a simpler inequality than the
following.

We will construct a network as a guide to construct the inequality, but the network
is not necessary. Construct n + 1 independent sources and label them Si,...,5,11. We will
define a channel to be an input node, an output node, and a single directed edge connecting
the input and output nodes with the direction going towards the output node. Then construct
n + 1 channels and label them Ci,...,Cy41. Then for each ¢ € [1: n + 1], add a directed edge
connecting the input node of C; and S; for every j € [1 : n + 1]\¢ with the direction going
towards the input node of Cj.
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S S3 94 S1 53 94 S1 52 84 S1 52 S

Figure 3.2: The resulting network for n = 3. When an source S; appears above a node, it

implies that there is an edge connecting the node to the source.

For short hand purposes, let the term “for every pair (i,7)" denote “for every i € [1 : n]
and j € [i +1:n+ 1]." Now for every pair (i,j) except (1,n + 1), create a receiver node, R; ;,
that demands source S;. Add a directed edge that connects R; ; and the output node of C; with
the direction going towards R; ;. Add a directed edge that connects R; ; and the output node
of C; with the direction going towards R; ;. Add a directed edge that connects R; ; and source
S; with the direction going towards R; ;. Create a receiver node, Ry ,,11, that demands source
S1. Add a directed edge that connects R; ,,41 and the output node of C; with the direction
going towards Rj ,,41. Add a directed edge that connects R; 1 and the output node of Cj, 41
with the direction going towards R; ,4+1. Add a directed edge that connects R; ,,+1 and source
Sp+1 with the direction going towards Ry ,41.

Create a receiver node, A, that demands S;. For every ¢ € [1 : n+1] add a directed edge
that connects A and the output node of C; with the direction going towards A. We will denote the
network constructed above by N. Figure 3.2 depicts the resulting network with n = 3 obtained
by the above procedure. For notational purposes, let X; £ S1,...,8i_1,Si41,...,504+1. Let V

be a finite dimensional vector space with subspaces S1,...,S,+1,C1,...,Cpht+1. By Lemma 1.4.4,
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for every i € [1: n+ 1] and j € [1: n + 1]\¢, we get linear functions:
fzj :Cy — Sj,
such that

> =1 (3.56)

jE€[lin+1]\7

on a subspace of C;, T;, of codimension H(C;|X;). By Lemma 1.4.4, for every pair (i, j) except

(1,n 4+ 1), we get linear functions:

R;j : Sj — Ci,
Rﬁ,j : Sj — Cj,
RY,:S;— S,
such that
S i j _
R+ R ;+Rl;, = I (3.57)

on a subspace of S; of codimension H(S;|S;,C;,C;). By Lemma 1.4.4, we get linear functions:

1
Rl,n+1 : Sl — 017
1
R;l;_,'_l : Sl — Cn+17

Rin—&-l : Sl — Sn+1,
such that
R1S,n+1+R%,n+1+R?,ﬁH =1 (3.58)

on a subspace of Sy of codimension H(S1|Sp+1,C1,Crt1). By Lemma 1.4.4, for every i € [1:

n + 1], we get linear functions:

Ai : Sl — C’z
such that
n+1 .
oA =T (3.59)
i=1
on a subspace of S; of codimension H(S1|Cy,...,Cri1). Combining these functions we get new
functions:
n+1
Z leAz ST — 5
i=2

S HA L S Siforje2in+1].

i€[Lin+1]\j
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Using (3.56), for each i € [1:n + 1], since 3,41\ f7 =TIonT; CC;, weknow
Yo fA=A
jE[l:n—&-l}

for every t such that t € S; and A(t) € T;. By Lemma 1.4.3, A%(t) € T; on a subspace of S; of

codimension at most codim¢, (T;). So
> pa-a
j€[l:n+1]

on a subspace of S; of codimension at most H(C;|X;). Summing over ¢ and using Lemma 1.4.1,

we get
n+1 n+1
D, ), fA=) A
i=1 je[l:n+1] i=1
on a subspace of S; of codimension at most Z;:rll H(C;]X;). Using (3.59) and Lemma 1.4.1,
we get that
n+1 ]
Sy g
i=1 je[lin+1]
on a subspace of Sy of codimension at most H(S1|C1, . .. n_H)—l—Z"H H(C;|X;). Now applying

Lemma 1.4.6 and Lemma 1.4.1 to Zn+1 A" — T and Z

get a subspace S, of S of codimension at most

z€1n+1\Jf Al (for je2:n+1]) we

n+1
Ax = H(Si|C,....,Cop1) + > H(Ci| X))
=1
n+1
CH(S1,. - Sn) + 3 H(S

on which,
n+1 .
dofA =1 (3.60)
=2
Y HA = Oforje2:n+1] (3.61)
i€[lin+1]\j

Combining functions again, for every pair (i, j) except (1,7 + 1), we get new functions :
fIR; + 8;—8;
s ipi .
Rz,j + f;Ri] : Sj — S;
R+ ffRL, + ;= S for k€ [L:n+1]\{i,j}.

Using (3.56), (3.57), Lemma 1.4.1, and Lemma 1.4.3 we know the sum of these functions,

fixing ¢ and j and summing over k, is equal to I on a subspace of S; of codimension at most
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H(C;|X;) + H(C;|X;) + H(S;]5:,C;,C;). Now applying Lemma 1.4.6 and Lemma 1.4.1 to
ffsz -1, R;S:j + f;fRij, and fikRé)j + kaRg,j (for k € [1:n+ 1)\{i,j}) we get a subspace S;

of S; of codimension at most

Ai,j - H(CZ|X1)+H(C]|X])+H(5J|S“C“Cj)
n+1
—H(S1,.. ., Spy1) + > H(S))
i=1

on which,
fIR; =1 (3.62)
Ry + f;RZ,j =0 (3.63)
FERL 4+ fFR], = Ofor ke [l:n+1\{i,j}. (3.64)

Combining functions again, we get new functions :

1 +1 .
il 0 S1—= 5
s 1pl
Ry 11+ i Ry, 0 51— S
kpl k 1
fi le_,_l + fn+1R7f7TL+1 ¢ 81— S for ke [2:n].

Using (3.56), (3.58), Lemma 1.4.1, and Lemma 1.4.3 we know the sum of these functions,
summing over k, is equal to I on a subspace of S; of codimension at most H(C1|X7) +
H(Cpi1|Xnt1) + H(S1|Sn+1,C1,Cnt1). Now applying Lemma 1.4.6 and Lemma 1.4.1 to
ni BUR — 1 RY oy + fUIRY s and fERY L+ fh RERY (for k€ 20 n]) we get a

subspace ?Lnﬂ of S7 of codimension at most

Aipt1 = H(C1|X1) + H(Crog1|Xng1) + H(S1]Sn41,C1, Cng1)
n+1
—H (1, Snp1) + > H(S:)
i=1

on which,
71L+1R?,:}s-1 = 1 (3.65)
RY 1+ [T R = 0 (3.66)
ARy o + [RGB, = Oforke[2:n) (3.67)

Claim 3.2.2. For every pair (i, ), there is a subspace, S . C 71-7j, such that Rij and R;j are

ij =
both injective on S ;.

Proof. For every pair (i,j), except (i,n + 1) and (1,n), by (3.62), we have

ffRij = TonS,;and

G+1 i _ <
LiT Ry = ITonSjir.
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i+1 i s .
By Lemma 1.4.7, we know f7 R; ; is injective on
Sij & F (B ;(Sig) N R; 11 (Sig41)) C Sy,

so we know R} ; is injective on g:,j- Now by (3.64), we know ijHRgJ is injective on g:,j and
thus Rgﬁj is injective on ?;‘,j.
For (1,n), by (3.62), we have
flnR%n = ITonS;, and
flzRiQ = [ on ELQ.

By Lemma 1.4.7, we know ffR%n is injective on

*

Sin 2 1 (RL,(S1,0) NR1 5(S12)) € S,

so we know R}, is injective on ?in. Now by (3.64), we know f2 R}, is injective on gin and
thus Ry, is injective on ?in.
For (i,n + 1) with i € [2: n — 1], by (3.62), we have
frHip = JTong; d
i in+l T imnt1 Al
fii+1R§,i+1 = Ton S
By Lemma 1.4.7, we know fi""’lR;n+1 is injective on

*

Sini1 = (R 1 (Sim) N R (Siiv1)) € Sinat,

n+1

7 . . . . % ]
so we know R}, ., is injective on S; ;. Now by (3.64), we know f’:;,j—lle ot

1 Is injective on
el n+1l s e . . el
Sint1 and thus RY'7, is injective on S, 4.

For (1,n+ 1), by (3.62), we have

f3R34 = IonSy3and

f2n+1R§,n+1 = Ion §2,n+1-
By Lemma 1.4.7, we know
fSR%nH is injective on S;*M_l £ 2"+1 (R§7n+1(§27n+1) n R§73(§273)). (3.68)
Now by (3.64), we know
,?L’HR;;L is injective on ?;Tnﬂ. (3.69)
Applying (3.69) and (3.65) to Lemma 1.4.7, we know

3 nd+l ... . —=* A pl n+1 & n+1 g** K<
1By 18 injective on Sy 0 = fig (R1,n+1(51,n+1) N R2,n+1(52,n+1)> € Sin+t1
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. . . . % . . . .
so we know R?J{Lil is injective on Sy ,,,1. Then by (3.67), we know fER} 41 is injective on

. . . . =%
Sl,n+1 and thus R}, is injective on S ;.

For (n,n + 1), by (3.62), we have

flzR%)Q = TonS;sand
ffR},n = TonSy,.
By Lemma 1.4.7, we know
fiR1,, is injective on gI*n £ /1 (R,,(S1n) NRY 5(S1,2)) € Sipn- (3.70)
Now by (3.64), we know
fERY,, is injective on ?Tn (3.71)
y (3.62), we know
frriRn i1 = Ton S, (3.72)

Applying (3.71) and (3.72) to Lemma 1.4.7, we know
stz n+1 is injective on g;,n—o—l fnJrl ( n n+1(Sn,n+l) n R?,n(g*{,*n)> g gnﬂhLla

so R

—x
and thus thbﬂ_l is injective on .S, ;4. O

| is injective on S, .. Then by (3.64), we know f72L+1RZ:‘;_’Ll-‘,-l is injective on E:W_H

n,n—+ n,n+

Now we would like to find upper bounds on the codimensions of the subspaces found
in Claim 3.2.2. We will use Lemma 1.4.1 to justify lines (3.74), (3.77), (3.80), (3.83), (3.86),
(3.89), and (3.92). We will use (3.62) to justify lines (3.73), (3.76), (3.78), (3.75), (3.79), (3.81),
(3.82), (3.84), (3.88), (3.90), and (3.91). We will use (3.65) to justify (3.85). We will use (3.65)
and (3.69) to justify (3.87). We will use (3.62) and (3.71) to justify (3.93). For every pair (4, j),
except (2,n + 1) and (1,n), we have

*

codims, (?j.jj) = H(S;) — dim(S, )
= H(S;) —dim |} (R} ;(855) 0 Rl 12 (Siin) |
= H(S;) — dim (R; ;(Si ;) N R} j;1(Sij+1)) (3.73)
= H(S;) — H(C;) + codime, (R ;(Si;) N R, ;11(Sij+1))
< H(S;) — H(C;) + codime, (R; (S, .)) + codime, (R} j41(S:41)) (3.74)
= H(S;) — H(Ci) + H(Cy) — dim (R} ;(Si5)) + H(Ci) — dim (R; j41(Sij+1))
= H(S;) + H(C;) — dim (RZ (Si.5)) — dim (Rj ;11 (Sij41))
= H(S;) + H(C;) — dim(8; j) — dim(S; j11) (3.75)
= H(S;) + H(C;) — H(S;) + codims, (S; ;) — H(Sj41) + codims, ., (S; j+1)
< H(Cy) — H(Sjq1) + Aij + Ajji
L2 AX
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codimsg (Sm) — H(S,) — dim(S")
= H(Sy) — dim [f{" (R} ,(S1.n) N Ri5(S12))]
= H(S,) — dim (R} ,,(S1,n) N R} 5(S12)) (3.76)
= H(S,) — H(C1) + codimg, (Ry,,(S1,n) N R} 5(512))
< H(S,) — H(C1) + codime, (Ri,,(S1,,)) + codime, (R} 5(S1,2)) (3.77)
= H(S,) — H(C1) + H(C1) — dim (R} ,,(S1,n)) + H(C1) — dim (R 5(S1,2))
= H(S,) + H(C1) — dim (Ry,,(S1,n)) — dim (R} 5(S1,2))
= H(S,) + H(Cy) — dim(S1.,) — dim(S, 2) (3.78)
= H(S,) + H(C1) — H(S,) + codims, (S1.,) — H(Ss) + codimg, (S1,2)
< H(Cy) — H(S2) + A + Arp
2 AL,

For every i € [2: n — 1], we have

codims, ., (?j,nﬂ) — H(Snt1) — dim(S, 11)
) = dim [f{ (R} 41 (Sing1) N RE 41 (Siign))]
H(Sps1) = dim (R; 11 (Sisnt1) N R} 141(Sii11)) (3.79)
= H(Snt1) — H(Cy) + codime, (R}, 41(Sin+1) N R ;11 (Siig1))
(Snt1) —

H H(C;) + codimg, (R}, 1(Sint1)) + codime, (R§7i+1(§i)i+1))
(3.80)

( n+1

SnJrl

IN

Sn+1

H(Sni1) — H(Cy) + H(Cy) — dim (R; ,, 41 (Sint1))
H(Cy) = dim (R} ;1 (S5,i11))

= H( 1) H( ) + H(C ) dim(§i7n+1) + H(CZ) — dim(§i7i+1) (381)
= H(Spt1) + H(Cy) — dim(S; ni1) — dim(Sii41)
= H(Sn+1) + H(CZ) — H(Sn+1) + COd’L‘TTLSn_*_1 (§i7n+1)

— H(Si+1) + codims, (Ei,i+1)
< H(Ci) — H(Sip1) + Ainy1 +Aiipa

A *
- Ai,n—&-l .
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The following will be used for the case (1,n + 1),

codims,, (F;Jrl) = H(Su41) — dim(ngn-ﬁ—l)
H(Sny1) — dim [f3+1 (RS, 11(S2m41) N R3 3(S2,3))]
H(Sp41) — dim (R} .11 (S2,n41) N RS 5(52,3)) (3.82)
) —
) —

= H(Sn11) — H(Cs) + codime, (R3 41 (S2,n11) N R3 5(S2,3))
< H(Sp41) — H(C2) + codime, (R ,41(S2,n41)) + codime, (R3 5(S23))  (3.83)
= H(Sp41) — H(Cs) + H(C3) — dim (R} .11 (S2,n11))

+ H(C3) — dim (R3 5(52,3))
H(Sp41) + H(C2) — dim(S2n41) — dim(S23) (3.84)
H(Sp+1) + H(Co) — H(Sn41) + codims,,, (S2,n+1)
— H(S3) + codimg,(S2.3)
< H(C3) — H(S3) + Az ny1 + Ag3

é A;ﬁﬂ»l‘
For (1,n + 1), we have

codims, (Eiw) = H(S1) — dim(S .11
= H(S1) — dim [ a1 <Rﬁ1+1(51 nt+1) N Ry n+1(S2 n+1))}
= H($1) — dim (R (Srnsn) 0 RS (S0i)) (3.85)
= H($1) = H(Cps1) + codime, ., (RiAL (S1ni1) 0 RS (S5000))
< H(81) — H(Cp1) + codime,,, (RY 341 (S1,041))
+codime,,, (R5H4(55010)) (3.86)
= H(S51) — H(Cpy1) + H(Cpp1) — dim (R} (S1,041))
+ H(Cpy1) = dim (B35 (San))
= H(S1) + H(Cpy1) — dim(S1,n41) — dim(S5 1) (3.87)
= H(S)) + H(Cps1) — H(S1) + codims, (St.ns1) — H(Sns1)
+ codimg,, , , (?;LH)
< H(Cny1) = H(Snt1) + Arnrr + A5

A *
- A1,n+1
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*

codimg, (?1;) = H(S,) — dim (gi*n>
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= H(Sn) — dim [f{" (R1 ,,(S1,n) N Ri 5(S51,2))]
= H(S,) — dim (R} ,,(S1.,) N R} ,(S1.2)) (3.88)
= H(S,) — H(C1) 4 codime, (R ,,(S1,n) N R{ 5(51.2))
< H(S,) — H(Ch) + codime, (R}, (S1)) + codime, (R 5(S1.2)) (3.89)
= H(S,) — H(C1) + H(C1) — dim (R} ,,(S1,n)) + H(C1) — dim (R 5(S1,2))
= H(S,) + H(C) — dim(8y.,) — dim(S 2) (3.90)
= H(S,) + H(Cy) — H(S,) + codims, (S1.n) — H(Ss) + codims, (S1.)
< H(Ch)—H(S2)+A1n+ A1
2 A::n-'rl
For (n,n + 1), we have
codims, ., (?Z,nﬂ) = H(Sn11) = dim(S, 1)
H(Sus1) = dim [ £ (R} nH(?n we1) N RM?’{,’;))}
H(Sui1) = dim (Rt 1 (Snn) 0 RE,(570)) (3.91)
H(Sns1) = H(Cy) + codime, ( o1 Snnsn) O RLL(ST5,))
H(S11) = H(Cy) + codime, (R 11(Snni1)) + codime, (L, (57,))
(3.92)
= H(Sn11) — H(Cy) + H(C,) = dim (R 1 (Snnt1))
+ H(Cy) — dim (RL,(57",))
(Sns1) + H(Cn) = dim(Sn41) — dim(Sy,) (3.93)

H + H(C
= H(Sp+1) + H(Cn) — H(Sp41) + codims, ,, (Sn,n+1)
— H(S,) + codims, (S} ,,)
< H(Cp) — H(Sn) + An 1 + AT

A *
- An,n+1

Claim 3.2.3.

n+1

a) There exists a subspace S1 41 C ?Lnﬂ, such that ffH_lR1 ni1 is injective on S1 pq1.

b) There exists a subspace 52 ni1 € So n+1, such that fT?;HR;L ni1 is injective on Sg 1

Proof.
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a) By (3.62), we know

fbe = T onS;»and
fiBRi,S = [ on §173.

By Lemma 1.4.7, we know ffRig is injective on
i3 2 fi [Ri3(S13) N Ri5(S1,2)] € S13
Now by (3.64) and (3.62), we know

f3R? 4 is injective on §f3 and (3.94)
f§l+1R3 n41 = I on §3,n+1~

(3.95)
By Lemma 1.4.7, we know f3R3, , is injective on
Sy 2 51 [R:s n+1(83,n41) N R:f,s(gis)} C S3n+1-
Now by (3.64) and (3.65), we know
¢2L+1R§,ﬂr1 is injective on §§ ny1 and
n+1R?—;}-1 = Ion gl,n—i-l-

By Lemma 1.4.7, we know ffLHRﬁ;lH is injective on

St 2 fh [RIE Grned) 0 B (B540)] € S
b) By (3.62), we know

2T R2 mi1 = JTon Sy, and

f2 R2’3 = Jon ?2,3.
By Lemma 1.4.7, we know f3R3, ., is injective on

S, g1 = ot [RQ n+1(52 nt1) N RS 3(52 3)] C Sopt1-

Now by (3.64), SHRg‘;lﬂ is injective on §2’n+1.
O

Now we would like to find upper bounds for the codimensions found Claim 3.2.3. We
will use Lemma 1.4.1 to justify lines (3.97), (3.100), (3.103) and (3.107). We will use (3.62) to
justify lines (3.96), (3.98), (3.99), (3.106), and (3.108). We will use (3.62) and (3.94) to justify
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(3.101). We will use (3.65) to justify (3.102). We will use (3.65) and (3.96) to justify (3.104).

codim53§1*73 = H(S3) — dim(gfﬁ)

= H(S3) — dim [f} (R} 5(S1,3) N R{ 5(S512))]
= H(S3) — dim (R{ 5(S1,3) N R} 5(S1,2)) (3.96)
= H(S3) — H(C1) + codime, (Ri5(S1,3) N R} 5(S1.2))
< H(S3) — H(C1) + codime, (R 3(S1,3)) 4 codime, (Ri5(S1,2)) (3.97)
= H(S3) — H(C1) + H(C1) — dim (R} 5(S1,3)) + H(C1) — dim (R} 5(S1.2))
= H(Ss) + H(Cy) — dim(S1.3) — dim(S1.2) (3.98)
= H(S3) + H(C1) — H(S3) + codimsg, (S1,3) — H(S2) + codims,(S1.2)
< H(Ci)—H(S2)+ A1 3+ A
codimg, +1(S3 ni1) = H(Sps1) — dim(S3 1)
= H(Sni1) = dim | [ (i1 (Sa.ni1) 0 B3 5(S13)) ]
H(Sps1) — dim (R3 it (Ssnin) MRS (St 3)) (3.99)
= H(Su11) = H(Cs) + codime, (RS 41(Ss.01) N RS 5(51.3))
< H(Sn11) — H(C3) + codimes, (R3.,,41 (S ni1)) + codime, (R§’73(§f,3)) (3.100)
= H(Sn11) — H(C3) + H(C3) — dim (R34 1(S3.n41))

+ H(Cy) — dim (B 4(57 )

H(Sy41) + H(C3) — dim(Ss,541) — dim(Si 5) (3.101)
H(Sn+1) + H(Cg) — H(Sn+1) + COdimSn+1 (§3,n+1) - H(S3) + COdimS3 (§T,3)
< H(C3) —H(S3)+ H(C1) — H(S2) + A3 pt1) + A1z + A1 o
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codims,,, (81 n11) = H(S1) — dim(Sy ny1)

= H(S1) —dim | f, [ n+1 (R?n}rl(sl nt1) N Rgﬁd(%,nﬂ))}
H(S1) = dim (BRI S1n) 0 RS (55000)) (3.102)
H($1) = H(Cpy1) + codime, .., (REAL (S1ni1) 0 RS (85,000))
H(S1) — H(Cpy1)+
codimg,, ., (R]‘,n+1(§1,,L+1)) + codimg,, ., (Rgﬁil(§§n+1)> (3.103)

= H(S1) — H(Cp11) + H(Cpp1) — dim (R?,Tl}q-1(§1,n+1))

+ H(Cuyr) = dim (B5341(S5,000))
= H($1) + H(Cy1) — dim(S1 1) — dim(S5,.1.1) (3.104)
= H(S)) + H(Cy) — H(S1) + codims, (St n+1) — H(Sp41) + codims, , , (S5,,141)
<2H(Cy) — H(Sp41) — H(S2) + H(C3) — H(S3)

F A1+ Asgr + Ars + Ao

2 R, (3.105)
codimsg,, (Sont1) = H(Spi1) — dim(Sa p11)

= H(Sn41) — dim [f3 (R 41 (S2,n11) N RS 5(S2,3))]

= H(Sn+1) — dim (RS 41 (S2,n41) N RS 5(52,3)) (3.106)

= H(Sp41) — H(Cs) + codime, (B3 ;41(S2,n41) N R3 5(S2,3))

< H(Sp41) — H(C3) 4 codime, (R3,,,1(S2,n+1)) + codime, (R3 5(S23))) (3.107)

= H(Sp41) = H(C2) + H(C2) — dim (R3 11 (S2,n41))

+ H(Cy) — dim (R3 5(S2,3))
H(Sn41) + H(C) — dim(S2,n41) — dim(S2,3) (3.108)
H(Snt1) + H(C2) — H(Sp41) + codims,, , , (S2.n41) — H(S3) + codimsg, (S2.3)
H(Cy) — H(S3) + Az i1 +A23
2 Appat. (3.109)

IN

Now using Claim 3.2.2, (3.64), and (3.67), for every pair (¢,7) and k € [1: n+ 1)]\{4, j}, we have
ko _ kpJ i \—1 i (qF
fi = _fj Ri,j(Rz,j) on Ri,j(si,j)' (3.110)
Using Claim 3.2.2, (3.64), and (3.67), for every pair (4,j) and k € [1: n+ 1]\{7,j}, we have
koo kR -1 i ot
fi = —fiR (RJ ) on R (S ) (3.111)

Let t € S;. Now we will assume ¢ satisfies conditions (C1) - (C7). The justifications

can be found below.
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C1) We will assume ¢ € S;. This is true on a subspace of S; of codimension at most A 4.

C2) We will assume for k € [3: n], AF~1t € RZ:ik(ngLk). This is true on a subspace of S;
of codimension at most H(Cy—1) — H(Sk) + Aj_; .

C2a) For i € [1: k — 2], we will assume
At € Ry (R R RS ) DRI (Sik)| -
This is true on a subspace of S of codimension at most
H(C;) — H(Sk) + H(Cy—1) — H(Sk—1) + Df_1 1 + A7 k1
C2b) For i € [k+ 1:n + 1], we will assume
At € Ri—l,i(RZ:},i)il R’éii,k(gz_l,k) n RII::i,i(EZ—l,i) :
This is true on a subspace of S of codimension at most

H(C;) — H(Sg) + H(Ch—1) — H(S;) + Af_1 1 + A% 14

C3) We will assume for k € [3: n], A¥~1t € Rﬁ:ikﬂ(gz_l’kﬂ). This is true on a subspace of

A of codimension at most H(Cx—1) — H(Sk+1) + A% _1 pi1-
C3a) For i € [1: k — 2], we will assume
At e R (R R Saie) DRI (51| -
This is true on a subspace of S7 of codimension at most
H(C;) = H(Sk+1) + H(C—1) = H(Sk—1) + Ay g1 + AT 1
C3b) For i € [k:n+ 1]\k + 1, we will assume
At e Rz—l,i(Riz%J)il Rz:i,k+1<§2—l,k+l) N Rllz:i,i(FZ—l,i) .
This is true on a subspace of S; of codimension at most

H(Ci) — H(Sk1) + H(Cr—1) — H(Si) + Af_y g1 + Bhorie

C4) We will assume A"+t € Ri‘;il(é\l,n_i,_l) N Rg,zi1(§27n+1). This is true on a subspace of

Sy of codimension at most 2H (Cpy1) — H(S1) — H(Sn+1) + 31,n+1 + &2,n+1.
C5) For i € [3: n], we will assume
At e Rl (R ™[RI (S1n) 0 RIS (ST00)] -
This is true on a subspace of S of codimension at most

H(Ci) = H(S1) + H(Cps1) — H(Sps1) + D s + ALy
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C5a) We will assume
At e R, (§17n+1 m?’{mﬂ) .
This is true on a subspace of S; of codimension at most
H(Cy) — H(S1) + 31,n+1 + Aik,n—kl'
C6) For i € [2: n]\3, we will assume
A€ R (R (RS (Samin) N R (ST 00)] -
This is true on a subspace of S7 of codimension at most
H(C3) + H(Cp1) = 2H(Snt1) + Dot + Al
C6a) We will assume
At € R%,n-&-l(R?;}q-ﬂil Rg,211(§2,n+1) n R?,—;i1(§i,n+1) .
This is true on a subspace of S7 of codimension at most
H(C1)+ H(Cpy1) — H(Sny1) — H(S1) + £2,n+1 + AT i1
C7) For k € [4: n+ 1], we will assume
Art e RZ—1,1¢(§Z—1,1€)~
This is true on a subspace of S; of codimension at most

H(Cy) — H(Sk) + Af_q -

To justify (C2), by Claim 3.2.2 we know R’;:})k is injective on SZ—l,k' Then by Lemma 1.4.3,

we know A*~1t € RZ:}’k(ngl)k) on a subspace of S; of codimension at most
H(Cy—1) — H(Sk) + codims, (Sy_14) < H(Cr—1) — H(Sk) + Aj_y 4.

To justify (C2a), by Claim 3.2.2 we know

*

3 k— e . k— —* k— — k— —
z,k_1(R¢,ki1) ! is injective on Rk—i,k(skq,k) n Ri,kh(si,kq) < Ri,kil(si,kq)-

Then by Lemma 1.4.3, we know

Alte Ry (REE )™ [REZL L (Shca ) 0 REEL (51|

K2

on a subspace of S of codimension at most

H(C;) — H(Ck-1) + codimg,,_, (Rz:ik(§2—1,k) N Rﬁgh(g:,kfl)) ‘
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We will use Lemma 1.4.1 to justify (3.112). We will use Claim 3.2.2 to justify (3.113). So we

know

codime, _, (Rllzii,k(ngl,k) N Rﬁi;(gzﬂ,kq))

< codime, , (RE~14(S1)) + codime, , (REE(S75)) (3.112)
= H(Cp1) —dim (RE=,(51o100)) + H(Chy) — dim (RE L (57,00))
= 2H(Cj_1) — dim(S)_1 ;) — dim (S} ,_,) (3.113)

= 2H(Cy—1) — H(Sk) + codims, (S,_y ) — H(Sy—1) + codims, _,(S; _1)
<2H(Ck-1) — H(Sk) — H(Sk—1) + Aj_1p + A7 41

So we have,

At e R (REEL) T [RECL L (Shoie) 0 RECL (51|

(3

on a subspace of S7 of codimension at most

H(C;) — H(Sk) + H(Cr—1) — H(Sk—1) + A1+ Af 4y
To justify (C2b), by Claim 3.2.2, we know

RZ—Li(R/]zj,i)_l is injective on R’Iz:},k(ngl,k) n RZ:%,i(ngu) < R}lz:ii(ngl,i)'

Then by Lemma 1.4.3, we know

At € R;-cfl,i(RI]i:ii)il {RZ:},k(EZ—l,k) n RZj,i(EZ—m)}
on a subspace of S of codimension at most

H(C;) — H(Cx—1) + codimg,,_, (Rllz:ik(ngl,k) N Rllz:ii(ngl,i» .

We will use Lemma 1.4.1 to justify (3.114). We will use Claim 3.2.2 to justify (3.115). So we

know

codime,,_, (Rii},k(gz_m) n RZ:}J(FZ—LZ‘))
< codimc,_, (RZ:17,€(§271’,€)> + codimc;, (Rﬁ:%7i(§271’i)) (3.114)
= H(Cg—1) — dim (RZI},;C(?Z_M)) + H(Cy—1) — dim (Rllij,i(SZ—l,i))
=2H(Cr—1) — dim(FZq,k) - dim(ngu) (3.115)
= 2H(Cj—1) — H(Sk) + codims, (Sy,_y ) — H(S;) + codims, (Sy_1 ;)
<2H(Ck-1) — H(Sk) — H(S:) + A1 + Af_1

(3.116)
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So we have,
A'te Ry (RETE )T [RECL L (Shon) D BETLSh )]
on a subspace of S; of codimension at most
H(Ci) = H(Sk) + H(Cr—1) — H(Si) + Ap_q g + Dforie

To justify (C3), by Claim 3.2.2 we know R],z:ikﬂ is injective on ngl,kJrl‘ Then by Lemma

1.4.3, we know A*~1t € Rij,lﬁ-l(gZ—l,kH) on a subspace of S; of codimension at most
H(Cj—1) — H(Sk41) + codims,,, (Sy_1 ps1) < H(Cro1) — H(Sks1) + Aj i ppr
To justify (C3a), by Claim 3.2.2, we know
Ry (REGE )~ is injective on REZL, L (Sh_y i) DR (ST o1) € RECL (ST i)

Then by Lemma 1.4.3, we know

*

j j k—1 \—1 [ pk—1 o k-1 (G
A't e R j_1(R720) {Rk—l,kﬂ(skq,kﬂ) N Ri,kq(&',kﬂ)}
on a subspace of S7 of codimension at most

*

H(C;) — H(Ck-1) + codimg, _, (RZ:},I@JA(FZ—LIH-I) n Rigil(gi,k—lo .

We will use Lemma 1.4.1 to justify (3.117). We will use Claim 3.2.2 to justify (3.118). So we

know

. k— —% P —
codimg, _, (Rk—%,k-y-l(sk—l,k-&-l) n Ri,kil(Si,k—l))

< codime,_, (sz’kﬂ(?;;_l’k_ﬂ)) + codime,_, (R§;11(§:,k—1)) (3.117)
= H(Cyx—1) — dim (Rllz:i,k+1(§271,k+1)> + H(Cy—1) — dim (R?,;il(g:,kfl)>

= 2H(Cp1) — dim(S)_ 41) — dim(S,, ) (3.118)
=2H(C-1) — dim(ngl,kJrl) - dim(gqu)

=2H(Cy—1) — H(Sk+1) + codims, , , (32—17k+1) — H(Sk-1) + codims, _, (E‘ik—l)
S 2H(Cr—1) = H(Sky1) = H(Sk—1) + Afq o1 + Afg1-

So we have,

j j k—1 \—1 [ pk—1 = k—1 ("
Ate R (R ) | By ko (Sk—1 1) N Ri,kq(&‘,kﬂ)}
on a subspace of 57 of codimension at most

H(C;) — H(Sk+1) + H(Cr—1) — H(Sk—1) + A1 g1 + AT k1
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To justify (C3b), by Claim 3.2.2, we know
R?c—l,i(RZj,i)_l is injective on Rllzj,kﬂ(?;;q,kﬂ) n R}Iz:%,i(ngl,i) < RZ:%,i(gkq,i)-
Then by Lemma 1.4.3, we know
At e Ry (R BT Sk ki) N BEZL (S5 )|
on a subspace of S7 of codimension at most
H(C;) — H(Cg—1) + codimg, _, (RZ:},kJrl(ngl,kJrl) n Rllz:i,i(ngl,i)) .

We will use Lemma 1.4.1 to justify (3.119). We will use Claim 3.2.2 to justify (3.120). So we

know

; k—1 o* =1 [T
codime, _, (Rk717k+1(5k71,k+1) N kal,i(skfl,i))

< codimc,_, (RZj,kH(SZ_LkH)) + codimg,_, (R’,::ii(?,:_lﬂv)) (3.119)
= H(Cg—1) — dim (RZ:},I@JA(?Z—LM—I)) + H(Cy—1) — dim (Rij,i@z_l,i))
=2H(Cr—1) — dim(ngl,lwrl) - dim(ngl,i) (3.120)

= 2H(Cj—1) — H(Sk+1) + codims, ,, (Sx_1 x11) — H(Si) + codims, (Sy,_, ;)
< 2H(Ck-1) — H(Sk+1) — H(S:) + Af_q g1 + Dj_1i-
So we have,
A'te Ry (REZE )T [RECL s (Shc i) D BEZLSh )]
on a subspace of S; of codimension at most

H(C;) — H(Sk+1) + H(Cr—1) — H(S;) + Af_1 jy1 + Df_1,i-

To justify (C4), by (3.2.3), we know Rfﬁrl is injective on §1’n+1 C S1.nt1- Then by Lemma

1.4.3, we know A"t € R?,—;}i-l(é\lﬂl-&-l) on a subspace of S; of codimension at most
H(Chy1) — H(S1) + codimsg, (Synt1) < H(Cnyr) — H(S1) + A par.
Similarly by Claim 3.2.2 and Lemma 1.4.3,
A" e REHL (Sh001)

on a subspace S7 of codimension at most H(Cp41) — H(Sp+1) + 327714_1. Then by Lemma 1.4.1,

we know
1 1 (q L (g
ATl e R?,—;+1(Sl,n+l) N Ry 41 (S2,n41)

on a subspace S; of codimension at most 2H (Cp41) — H(S1) — H(Sn+1) + 317n+1 + &27n+1.
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To justify (C5), by Claim 3.2.2, we know
Rz,n+1(RZI}r1)il Is injective on R?;—Lil(gl,n+l) n R?,I}rl(gzn+l) - Rﬁﬁl(ginﬂ)-
By Lemma 1.4.3, we know
At e R (R ™[RI Brnn) 0 R (8] )]
on a subspace of S of codimension at most
H(Cy) = H(Coupa) + codime, y, (BIE4 1 (Sunin) 0 R (SE00))

We will use Lemma 1.4.1 to justify (3.121). We will use Claim 3.2.3 and Claim 3.2.2 to justify
(3.122). So we know

. n+1 ral n+1 a*
codime,, |, (Rl,n+1(‘s’17n+1) n Ri,n+1(si,n+1))

< codimg,,, ( ?’til(§11n+1)> + codimg,, ., (RZIL(?;HH)) (3.121)
= H(Cps1) — dim (B{14 1 (S1001)) + H(Coir) — dim (R (5000
= 2H(Cpy1) — dim(S1 1) — dim(S; ,.1) (3.122)

= 2H(0n+1) — H(S1) + COdimsl (gl,n-i-l) - H(Sn-l-l) + COdimSn+1 (E:,n-l-l)
< 2H(Cpyr) — H(S1) = H(Sn41) + Brpgr + AL,y

So we have,

A't e sz,n+1(RZ:-1H)fl R?;il(é\l,n+l) n Rzz}rl(gznﬂ)}
on a subspace of S7 of codimension at most

H(C;) — H(S1) + H(Cry1) — H(Sny1) + 31,n+1 + A% g1
To justify (Cbha), by Claim 3.2.2, we know

Ri .y is injective on S i1 ﬂ?inH - ?im_l.
By Lemma 1.4.3, we know
A'te R}, (§1,n+1 N ?fﬁnﬂ)
on a subspace of S7 of codimension at most
H(Cy) — H(S1) + codimg, (§17n+1 ﬂgzm-l) ,

which by Lemma 1.4.1 is at most

H(Cy) — H(S1) + Ay i1 + A
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To justify (C6), by Claim 3.2.2, we know

3 I . -~ —% —x
Ri,nﬂ(R?,ZL) Lis injective on Rg;};-l(sln—i-l) n RZ’,ZL(SMH) - RZI}A(Si,n-&-l)-

By Lemma 1.4.3, we know
At e R, (R ™[RR (Bonin) ORI (5T )]

on a subspace of S7 of codimension at most

*

H(C;) — H(Cyy1) + codime, (R%L(@,nﬂ) N Rﬁh(?@nﬂ)) :

We will use Lemma 1.4.1 to justify (3.123). We will use Claim 3.2.3 and Claim 3.2.2 to justify
(3.124). So we know

*

. n+l (Q n+1l (@
codimg,, ., <R2,n+1(527"+1) n Ri,n+1(Si,n+1))

< codimc,, (Rg7t},’_1(§2’n+1>) + codimg,, ., (RZ:}rl(gan)) (3.123)
= H(Cpi1) = dim (R334, (Sens1) ) + H(Cuga) = dim (B2 (S,00))
= 2H(Cpy1) — dim(Sz 1) — dim(S; ,,41) (3.124)

=2H(Cpy1) — H(Sp+41) + codimsg,, ., (§2,n+1) — H(Sp41) + codimsg,, ., (gf,nﬂ)
<2H(Chy1) —2H(Sn41) + 82,n+1 + A?,nH-

So we have,

*

At e R, (R )™ R, (Sos1) N RZZL(E,"H)]

on a subspace of S of codimension at most
H(Ci) + H(Cpy1) — 2H(Sn+1) + D1 + A 40
To justify (C6a), by Claim 3.2.2, we know
— . . . . ™ % %
Rin+1(R?;}|—1) ! is injective on Rg,i_z}q—l(52ﬂl+1) n R?,—;il(sl,nﬂ) - R?,—;i1(51,n+1)-
By Lemma 1.4.3, we know
— 1 o %

Alte RY o (REL) ™ (RS Son) N REEL (ST )|

on a subspace of S7 of codimension at most

H(Cy) = H(Cpy1) + codime, ., (REE51 (Sani1) N REGL (5] ) -
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We will use Lemma 1.4.1 to justify (3.125). We will use Claim 3.2.3 and Claim 3.2.2 to justify
(3.126). So we know

. n+1 ra n+1 a*
codimc,, (R2,n+1(52,n+1) N Rl,n+1(Sl,n+1))

< codimc,,_, , <R§;i1(§2’n+1)> + codimg,, ., (R’fj;frl(ginﬂ)) (3.125)
= H(Cp41) = dim (R334 1(S2ns1)) + H(Coir) = dim (R (51 ,010))
= 2H(Cpp1) — dim(Sa 1) — dim(Sy 1) (3.126)

= 2H(Cp1) — H(Sns1) + codims, ., (Sa,ns1) — H(S1) + codims, (S} ,,11)
< 2H(Cpyr) — H(Sni1) — H(S1) + Dois + A, 4.

So we have,

At e R (R ™ (RS Sonn) N REEL (51 )]
on a subspace of S; of codimension at most

H(Cy) + H(Cpy1) — H(Spy1) — H(S1) + 32,n+1 + AT g1
To justify (CT7), by Claim 3.2.2, we know

Rﬁ_Lk is injective on gz_lyk.
By Lemma 1.4.3, we know
At e RE_(Sizuw)
on a subspace of S of codimension at most
H(Cy) — H(Sk) + codims, (Sy_y ) < H(Cr) — H(Sk) + Aj_y 1.

Claim 3.2.4. f}A%t = flA3t
Proof. By (3.61) and (C1), we know

Z f2A%t = 0,s0

i€[1l:in+1]\2
fan A" = Y A
i€[1:n]\2
By (3.110), for ¢ € [1 : n]\2, we know
sz = _f72L+1R?;i1( §,n+1)_1 on R%,n—s—l(g:,njtl)'

By (C5) and (C5a), for i € [1 : n]\2, we know A’t € R;nﬂ(gznﬂ), so we have

FraA e = N LRI (R, )T A (3.127)
i€[1:n]\2
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By Claim 3.2.3, we know

2,1 is injective on Ry HY (Sins1)- (3.128)

By (C5) and (C5a), for i € [1: n]\2, we know

i ' - 1 (a 1 (o*
At € Ry (R ™[RI (Sini) N R (51

(3

By Claim 3.2.2, we know R} ., is injective on (Rzzil)_l R?’t}kl(é\l’nJ’,l) N RZZL(?;,LH)} -
gzn+1~ So we know

1 i —1 4i 1 (3 1 o*
Ry (R )T A € RIGL (S1nan) MR (Singa),
or more specifically
RZ:_L( E,n+1)_1Ait € R?,Jrrﬁrl(sl,wrl)- (3.129)

Then applying (C4), (3.128), and (3.129), to (3.127), we have

At = N RPEL (R, )AL (3.130)
i€[1:n]\2

By (3.61) and (C1), we know

Z fi?’Ai = 0, so

i€[1:n+1]\3
JCS-HAnJrl = Z _figAi
i€[1:n]\3
By (3.110), for i € [1 : n]\3, we know
fzg = _f2+1R2241r1( §,n+1)_1 on R%,n—&-l(?;‘k,n—&-l)'

By (C6) and (C6a), for i € [1 : n]\3, we know A’t € Rﬁ,nﬂ(gznﬂ), so we have
n AT = Z f2+1RZ:i1(RE,n+1)_1Ait- (3.131)
i€[1:n]\3

By Claim 3.2.3, we know

3,1 is injective on Ry Y (Sant1)- (3.132)

By (C6) and (C6a), for i € [1 : n]\3, we know
At € R (R T [REEL San) ORI (S, )]

By Claim 3.2.2, we know R, is injective on (Rzzil)_l R;ﬁt}kl(é\Q’nJ’,l) N RZZL(?;,LH)} -
g;k,n+1~ So we have

*

1 i —1 4i 1 (q 1 (g
R (Risn) A € R3St (S241) 0 R (Sig),
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or more specifically
R (R, )7 A € Btk (Sangn). (3.133)

Then applying (C4), (3.132), and (3.133) to (3.131), we have

At = N RIEL(R, )T A (3.134)
i€[1:n]\3

Now setting (3.130) and (3.134) equal to each other, we can derive
RS,ZL(R%,nH)_IAzt = Rg,JrrLL(Rg,nH)_lAgt (3.135)
By (3.110), we know
f21 = _frlz+1Rg,Jﬁil(R§,n+1)_l on R%,n+1<§;,n+l)'
By (C6), we know A%t € R§,n+1(§;,L+1), so we have
LAt = — 11+1R3,ZL1(R§@+1)_1A275-
Then using (3.135), we have
f2 A% = —faa R (RS ) AR (3.136)
By (3.110), we know
fs = - 71L+1R:737',TL}+1(R§,71+1)71 on Rg,n+1(§§,n+l)'
By (C5), we know A3t € Rg,nﬂ(?;nﬂ). Now (3.136) becomes

faA%t = fiA3t

Claim 3.2.5. For k € [3:n], fiAFt = fl ARt

Proof. By (3.61) and (C1), we know
ookt =0
i€[lm+1]\k
A =Y gt
i€[lin+1)\{k—1,k}

S —ffAt+ > —ffA

1€[1:k—2] i€[k+1n+1]

By condition (C2a), for i € [1: k — 2], we know A’t € Rz,kfl(gzk—l)' Then by (3.110), we have

A = T A RGLRL )T Y —ffA

i€[1:k—2] i€[k+1:n+1]
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By condition (C2b), for i € [k +1: n + 1], we know At € R2—1,¢(§271,i)~ Then by (3.111), we

have

R A = Z f/:—lRf,;h( fro1) A
i€[1:k—2]
+ Y FRTL(R ) A (3.137)
1€[k+1:n+1]

By (3.62), we know
fE_| is injective on Rl;f;j,k(gkq,k) 2 R’,z:ik(gz_l,k). (3.138)
By (C2a), for i € [1: k — 2], we know

At € le,kq(Rf,;ﬁ_l [Rllziik(gkq,k) N Riﬁl(gi,kqﬂ .

(2

By Claim 3.2.2, we know R!,_, is injective on (R ;' )™" [RETL (S, ) N Rfﬁgil@;k_l)} c
?;,%1. So we have
Rf}h( f,kq)_lAit € Rllz:%,k(ngl,k) N Rﬁih(g:,kq)v
or more specifically,
RiL(Rion) A € BT (Sho). (3.139)
By (C2b), for i € [k +1:n+ 1], we know
A't € Rz—l,i(Rﬁ:%,i)il [Rilzj,k(gz—m) N R;’iih(?Z_l,i)} .
By Claim 3.2.2, we know Rj,_, ; is injective on (R’,j:ii)_l Rﬁjik(ngl’k) N RZ:L(EZAJ)} C
ngl,i' So we have
Ry i(Ri) T A € BT (S O R (Skea)-
or more specifically,
RiZii(Bioy) M A € R (Sho ). (3.140)
Then applying (C2), (3.138), (3.139), and (3.140) to (3.137), we have

A = Z Rf,;il( o) A Z Rﬁii,i( 1) TA (3.141)
i€[1:k—2] 1€[k+1:n+1]
By (3.61) and (C1), we know

i€[1l:in+1]\k+1

fll:irllAk—lt _ Z _kaJrlAlt
i€[lin+1\{k—1,k+1}
f]?jllAk_lt — Z _fikJrlAit + Z _fszrlAzt

i€[1:k—2] i€[kn+1]\k+1
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By condition (C3a), for i € [1: k — 2], we know A't € R;:,k_l(?zkfl). Then by (3.110), we have

fk-l-lAk 1t — Z fk+1Rfk11( ;k_l)_lAit
i1€[1:k—2]

+ Y A

i€lk:n+1]\k+1

By condition (C3b), for i € [k :n+ 1]\k + 1, we know At € Rizfl,i(gl:—l,i)' Then by (3.111),

we have

FERANY = Y IR (R )T AT
1€[1:k—2]

+ Y AHRIT(R ) AT (3.142)
i€[k:n+1]\k+1

By (3.62), we know

fErl is injective on Rﬁ:%7k+1(§2717k+1). (3.143)

By (C3a), for i € [1: k — 2], we know

*

At e Ré,k—l(Rﬁgi1)7 [RZ }k+1(5k 1k+1)mRzk 1(@&-1)}-

%

By Claim 3.2.2, we know Rﬁyk_l is injective on (Rﬁ;il)_l [RZ:ikH(ngl’kH) N Rﬁgil(gi,k,l) c
g;‘k,k—l' So we have

Rf};( §,k71)_1f4it € Rllzj,kﬂ(gkq,kﬂ) N Rigil(gi,kA%
or more specifically,

Rf’,;;( 1) At € Ry~ k+1(Sk—1,k+1)' (3.144)
By (C3b), for i € [k : n+ 1]\k + 1, we know
At e By (REZL) T R e S i) N REZE (i) -
By Claim 3.2.2, we know Riz—l,i is injective on
(Rl,ij,i)fl [Rgii,k+1(§k—1,k+l) n jo,i(gk—l,i)} .

So we have

R'ziii,z—( 271,1')_1Ait € Ry k+1(Sk Lkt1) N Ri™) 1(Sk 1)
or more specifically,

Rﬁ:ii( ho1a) At € Rg:},kﬂ(gzq,kﬂ)- (3.145)
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Then applying (C3), (3.143), (3.144), and (3.145) to (3.142), we have

Al = Z Ry (R o) AT+ Z R~y (Rj_y ) M A (3.146)
1€[1:k—2] 1€ [kin+1]\k+1

Now setting (3.141) and (3.146) equal to each other, we can derive
Ry p(Bioa) AR = BT (BT ) Th AT (3.147)
By (3.111), on RZ—l,k(ngl,k) we have
fi = _f}%—lRII::%,k(Rllz—l,k)_l' (3.148)
Similarly, on Rﬁﬂ,k+1(§z_1,k+1)
flow = —fREL L (REL T (3.149)

By (C7), we know that for k € [4 : n + 1], A*t € RZ—l,k(§Z—1,k)' By (C3b), we know that
A3t € R§,3(§;3). So for k € [3:n + 1], we know A*t € Rz—l,k(§2—l,k)' Now using (3.148), we

have
frAft = 7fli—1R£:i,k(Rllz-Lk)ilAkt'
Now using (3.147), we have
frARt = iR e (B ) AR
By (C2b), we know that A¥+1t ¢ Rﬁf},k+1(§Z—1,k+1)- Then using (3.149), we have
A = glAt
O

Using Claim 3.2.4 and Claim 3.2.5, for k € [2 : n], we have fi A%t = fl A1t By
(3.60) and (C1), we have

n+1
S At =t
1=2
nfyA*t = t

If the field characteristic is not in P, then the characteristic will divide n. So if the field

characteristic is not in P, then no nonzero ¢ can satisfy (C1)-(C7). Therefore, the sum of the
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codimensions in (C1)-(C7) must be at least H(S7). So we have

H(S1) < Aa+ ) H(Cr1) = H(Sk) + Af
k=3
n k—2
+ Z Z H(C;) — H(Sk) + H(Cr—1) — H(Sk—1) + Aj_1 1 + A7 k1
k=3 i=1
n  n+l

+Y Y H H(Sk) + H(Cr—1) — H(S:) + Mp_y o+ Dy
k=3 i=k+1

+ Z H(Cy—1) — H(Sk+1) + AZ—l,k+1

n k-2
+ZZH H(Sk41) + H(C—1) — H(Sk—1) + Af_1 jp1 + A k1
k=3 i=1
+ Z H(Cx) = H(Sk41) + H(Cp1) = H(Sk) + A1 py1 + D1
n+1
+ Z Z H(C;) — H(Sk+1) + H(Cr—1) — H(S;) + Af_q g1 + Dk—14
k=3 i=k+2

+2H(Cpy1) — H(S1) — H(Sn+1) + ﬁl,n+1 + 32,n+1
+ Z H(Cy) — H(S1) + H(Crg1) — H(Sp41) + Av s + Af s

+H(C) = H(S) + Ay pgr + A7
+ H(Cy) + H(Cps1) — 2H(Snt1) + Doy + Ad i

+ 3 H(C) + H(Cps1) = 2H(Sni1) + Do + Af iy
k=4

+ H(C1) + H(Cpsr) — H(Sns1) — H(S1) + Dapgr + A iy
n+1
+ Z H(Cr) — H(Sk) + Mj_1 4 (3.150)

Notice that the inequality does not hold for fields of a characteristic that do not divide n
(characteristics in P). Let p € P. Then a counterexample would be: In V = GF(p)"*!, let

S, =((1,0,0,...,0,0)) Cy = ((0,1,1,...,1,1))
Sy ={((0,1,0,...,0,0)) Cy =((1,0,1,...,1,1))
S5 =((0,0,1,...,0,0)) Cs = ((1,1,0,...,1,1))
S, = ((0,0,0,...,1,0)) Cp=((1,1,1,...,0,1))

Spt1 = <(07 0,0,...,0, 1)> Cny1 = <(17 1,1,...,1, O)>
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For i € [1:n+ 1], we would have H(S;) = H(C;) = 1 and for every pair (i, ), A;; = A} ; =
El’nJ’,l = 327n+1 = 0. Thus, the inequality would reduce to 1 < 0, which is clearly a contradic-
tion. Therefore, the above inequality is a linear rank inequality for fields of characteristics not
in P.

O

3.3 Applications

It was recently shown in [Dougherty 08] that for every finite or co-finite set of primes,
P, there exists a network that is scalar linearly solvable over a field, F', if and only if the

characteristic of F' is in P. Here we generalize this result to linear solvability.

Theorem 3.3.1. Let P be a co-finite set of primes. There exists a network that is linearly

solvable over a field, F, if and only if the characteristic of F' is in P.

Proof. Let P be a co-finite set of primes and let n be the product of all the primes not in P.
Then the network A is linearly solvable over a field F, if and only if the characteristic of F
is in P. We can show N is not solvable over characteristics not in P by applying the linear
rank inequality in (3.150) to N. Let &' = H(S1) and n’ = H(C}). Then for every pair (4, j),
A; ; = 0. We would also know that ﬁlmﬂ, ﬁgmﬂ, and every A;j would be equal to a multiple

of (n' — k’). So the inequality would reduce to k' < m(n' — k'), for some m € N. Thus
K/n' <m/(m+1) <1,

so the linear coding capacity of A is less than 1 over characteristics not in P. The network N

is solvable over characteristics in P by the coding solution:

51 =((1,0,0,...,0,0)) Cy=((0,1,1,...,1,1))
Sy = ((0,1,0,...,0,0)) Co=((1,0,1,...,1,1))
S3 =((0,0,1,...,0,0)) Cs =((1,1,0,...,1,1))
Sn = ((0,0,0,...,1,0)) Cn,=1{((1,1,1,...,0,1))
Spi1=((0,0,0,...,0,1)) Chir = ((1,1,1,...,1,0)).

O

Theorem 3.3.2. Let P be a finite set of primes. There exists a network that is linearly solvable

over a field, F, if and only if the characteristic of F is in P.
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Proof. Let P be a finite set of primes and let n be the product of all the primes in P. Then the
network N3 is linearly solvable over a field F', if and only if the characteristic of F' is in P. We
can show N is not solvable over characteristics not in P by applying the linear rank inequality
in (3.55) to Na. Let k' = H(S;) and n’ = H(Cy). Then A; = Aj .41 = Ay = 0. We would
also know that A% and every A% would be equal to a multiple of (n’ — k’). So the inequality

would reduce to k' < m(n’ — k'), for some m € N. Thus
K/n' <m/(m+1) <1,

so the linear coding capacity of N> is less than 1 over characteristics not in P. The network N>

is solvable over characteristics in P by the coding solution:

S1 = ((1,0,0,...,0,0)) Cy=((0,1,1,...,1,1))
S = ((0,1,0,...,0,0)) Cy = ((1,0,1,...,1,1))
S5 = ((0,0,1,...,0,0)) Cs = ((1,1,0,...,1,1))
S, = {(0,0,0,...,1,0)) Cp=((1,1,1,...,0,1))

Sni1 = ((0,0,0,...,0,1)) Z=1((1,1,1,...,1,0)).

O

Corollary 3.3.3. Let P be a finite or co-finite set of primes. There exists a network that is

linearly solvable over a field, F, if and only if the characteristic of F' is in P.

We will define the network coding gain to be the coding capacity divided by the routing
capacity. In [Ngai 04], it has been shown there exist a sequence of networks N'(n), such that
the network coding gain — oo as n — oo. Here we show the same result, but with a simpler

sequence of networks.
Theorem 3.3.4. The network coding gain of No isn — 1.

Proof. Consider a (k',n’) routing solution to Ny Then for j € [2 : n], the receiver T; demands
S;, which must pass through C;. So C; must contain all k¥’ components of Ss, Ss,...,S,. So
n' > (n—1)k, or

<

k' 1
"~ n-1



87

A (1,n — 1) routing solution exists by:

Cy =[52,53...,5],
Cy = [S1,Sn+1,0,...,0],
CS = [0707"'70}7

C, =10,0,...,0]
Z: [Sl,Sn+170,...70].

Thus, the routing capacity is 1/(n—1). The network A5 is solvable over fields whose characteristic
divides n. Since there is a unique path from S to T5, the coding capacity is at most 1. Thus

the coding capacity is 1. Then we know that the network coding gain is n — 1. O

3.4 Open Questions

Let P be a finite or co-finite set of primes. It was shown in [Dougherty 08], that there
exists a network that is scalar linearly solvable over a field, F', if and only if the characteristic of
F isin P. It was also shown that this result is not possible for any other set of primes that is

not finite nor co-finite. So the following is a question that remains to be answered:

1) Is there a set of primes, P, that is not finite nor co-finite such that there exists a network

that is linearly solvable over a field, F', if and only if the characteristic of F' is in P?
2) Are there other techniques to tighten these inequalities?

3) Given an upper bound on the number of edges or nodes in a network, is there an upper

bound on the possible characteristics that the network could be solvable over?

4) Let n € N. Is there a bound on the number of characteristic dependent linear rank

inequalities of n variables 7

This chapter, in full, is a reprint of the material as it appears in: E. Freiling, “Charac-
teristic Dependent Linear Rank Inequalities and Applications to Network Coding,” submitted
to the IEEE Transactions on Information Theory, May 2013. The dissertation author was the

primary investigator of this paper.
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