
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Neural representation of navigation in multi-species and solo environments in Egyptian 
fruit bats

Permalink
https://escholarship.org/uc/item/397526n6

Author
Snyder, Madeleine

Publication Date
2024
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/397526n6
https://escholarship.org
http://www.cdlib.org/


 

 i 

Neural Representation of Navigation in Multi-Species and Solo Environments in Egyptian Fruit 
Bats 

 
 
 

by 
 

Madeleine Corbett Snyder 
 

 
A thesis submitted in partial satisfaction of the 

 
requirements for the degree of 

 
Joint Doctor of Philosophy 

 
with The University of California, San Francisco 

 
in 
 

Bioengineering 
 

in the 
 

Graduate Division 
 

of the 
 

University of California, Berkeley  
 

 
 
 

Committee in charge: 
 

Professor Michael Yartsev, Chair 
 

Professor Loren Frank 
 

Professor Doris Tsao 
 

Professor Joni Wallis 
 
 
 

Summer 2024 



 

 ii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2024 Copyright, Madeleine Corbett Snyder 
 

All Rights Reserved 
 



 

 1 

Abstract 
 
 

Neural Representation of Navigation in Multi-Species and Solo Environments in Egyptian Fruit 
Bats 

 
by 
 

Madeleine Corbett Snyder 
 

Joint Doctor of Philosophy  
with The University of California, San Francisco in Bioengineering  

 
University of California, Berkeley 

 
Professor Michael Yartsev, Chair 

 
 

Many species negotiate complex spatial environments alongside other individuals and display 
the capacity to recall rewarding and costly locations. Prodigious navigators like the Egyptian 
fruit bats forage for food in convoluted aerial spaces and must account for the choices of other 
flying conspecifics to reach reward locations. We can simulate this challenging feat in the lab 
environment while using high-speed positional tracking and neural recording methods to 
investigate how bats solve this high-dimensional multi-agent foraging problem. However, in the 
lab the multi-agent foraging problem has a latent extra player: the human experimenter. While 
most studies involving a spatial reward task ignore the presence of the human in reporting and 
controls, we sought to explicitly include the experimenter in the task paradigm to test whether 
there is an appreciable effect of human presence on ongoing neural signal.  
 
The first section of this thesis explores the neural representation of the human experimenter 
during a multi-agent foraging task. We find that a substantial amount of variance in the code for 
allocentric spatial representation can be accounted for simply by controlling for the identity of 
the human the bat lands on. This study shows, for the first time, that non-conspecifics are 
encoded in the canonical place cell code for spatial position. On a practical level, these findings 
serve as a cautionary tale to encourage future studies to limit the uncontrolled effects of human 
presence and intervention in behavioral neuroscience tasks.  
 
The second section of this thesis strips down the complex foraging problem to its simplest form 
to study the stability of the neural code that supports flight in a familiar foraging environment. 
We find that, across days, the code for flight is largely stable and apparent variance may be 
accounted for simply by behavioral drift, not changes in the underlying neural code.   
 
The thesis concludes with caveats of the current research, possibilities for future investigation, 
and avenues for combining modeling work with cross-species representation in the environment.
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Chapter 1: Introduction  
 
1.1   Motivation  

 
Animals must find and recall both resource-rich and costly locations in their environment to 
survive. Tolman theorized that the brain supports these behaviors by constructing a cognitive 
map of the environment1. The hippocampus and supporting neural structures, such as medial 
entorhinal cortex, have been proposed as the site of this cognitive map, and empirical evidence 
supports its role in coding the allocentric location of the animal2,3. The goal of investigating how 
the hippocampus represents the environment is to uncover the neural mechanisms that support 
this representation and formalize a complete model of navigation. Competing findings in the 
hippocampal literature have produced a complex landscape of models, and it is crucial to 
examine potential sources of discrepancy between studies to make progress towards a unified 
model. It is critical to acknowledge that the ecological niche of the animal is inextricably tied to 
the neural code that supports behavior, and as such, an ethological approach to behavioral 
neuroscience can further refine the interpretation of empirical findings of how the hippocampus 
represents the environment.    

What follows in this thesis are two studies that leveraged spontaneous flight behavior in 
multi-agent and solo environments to examine the neural code in hippocampus that underlies a 
spatial navigation task. Each study explicitly investigated how a standard practice in the spatial 
behavior literature may lead to illusory instability in the hippocampal code. The first investigated 
the effects of human experimenter presence and behavior on spatial representation and found that 
a large fraction of hippocampal neurons modulated their firing around takeoff and landing 
depending on the identity of the human experimenter at the landing location. This study shows 
that the neural code for space includes information about the experimenter’s location, behavior, 
and identity, and provides impetus to eliminate uncontrolled effects of experimenters in future 
behavioral neuroscience studies. The second project leveraged single photon calcium imaging to 
record the same neurons across many days and examined stability of place fields while the bats 
executed spontaneous and repeated flight motifs. This study found that the hippocampal code for 
space during solo navigation for reward is stable across days when controlling precisely for 
behavior, but illusory instability appears if behavioral drift of a flight path is not accounted for. 
Together, these studies demonstrate the importance of accounting for sources of variance that are 
baked into common task paradigms in behavioral neuroscience.  

 
 

1.2   Neural activity reflects the presence and behavior of human 
experimenters  

 
Human experimenters are ubiquitous in behavioral neuroscience. They control the structure and 
progress of the experimental paradigm, operate equipment to collect neural and behavioral data, 
and often administer reward to the animal performing the task. Despite the close spatiotemporal 
coupling of experimenter and recording animal behavior, there is little to no reporting or controls 
on human behavior. Implicitly, this suggests that the human has no appreciable effect on the 
neural data that may skew interpretation of results. However, anecdotally, many researchers 
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report that familiarity with their subject animals and consistent husbandry increases performance 
in behavioral testing and minimizes animal stress. A study on familiarity between rats and 
handlers confirmed this, as did a study examining preference of rats for unfamiliar versus 
familiar caretakers4,5. Further studies on the effects of female versus male experimenters found 
that latent neural activity and pain response behavior differed depending on whether a male or 
female administered a rapid-onset depressant6–8. Most recently, it was found that rats handled by 
fear-conditioned experimenters had greater expression of c-Fos in their amygdalae than rats 
handled by non-conditioned experimenters9. Together, these studies provide substantial evidence 
that the human experimenter has immediate and latent effects on the neural signal.  

The primary goal of this project was to explicitly test whether ongoing neural activity 
reflects the presence or behavior of the human experimenter during a simple spatial reward task. 
Additionally, we sought to replicate previous findings of ‘social’ place cells, found to fire in 
response to the position of a conspecific in the environment10,11. The findings presented in this 
study first and foremost serve as a cautionary tale—if humans do impact ongoing neural signal, 
future data collection paradigms should account for or eliminate uncontrolled effects of 
experimenters. Moreover, this study is a first foray into the nascent field of cross-species neural 
representation. This field aims to investigate the neural code underlying cross-species 
representation and propose models of how animals with different affordances jointly negotiate 
their environment. 

 The results this study show that a large fraction of hippocampal neurons in flying bats 
were robustly modulated at takeoff and/or landing depending on the identity of the human at the 
landing target, suggesting a joint representation of allocentric position and context that includes 
information about the experimenter. In stationary bats, we found populations of neurons 
encoding experimenter position as they walked around the room, as well as the position of the 
flying conspecific. The findings from this study highlight potential uncontrolled effects of 
humans during behavioral experiments and open the door to discovering the neural code for 
cross-species representation. The first extension of this work would seek to understand how the 
representation of a given non-conspecific evolves as the relationship between the recording 
animal and experimenter change. To build a foundation for this work, a crucial first step is to 
understand whether the neural representation of space evolves over time without the 
perturbances from non-conspecifics in the environment.  

 
1.3   Solo flight behavior is supported by a stable hippocampal code 

 
Skilled spatial navigators like the Egyptian fruit bat exhibit spontaneous and highly reproducible 
flight paths in the lab environment. We sought to discover whether a stable hippocampal code 
underlies this robust flight behavior under the simplest condition of solo flight. This experiment 
was critical to understanding the hippocampal place code in fruit bats, because findings from 
other model organisms including rats and mice have yielded competing conclusions about the 
stability of the place code and do not necessarily generalize across species12–20. The results from 
this study will provide a foundation to study how the representation of non-conspecifics in the 
environment changes as a function of familiarity and consistent interaction.  
 We used wireless single photon calcium imaging to record hippocampal neurons across 
days as single bats flew to two distinct reward locations in a large room. The bats spontaneously 
developed a repertoire of several different types of flight paths to reward and roost locations. We 
found that neurons that could be tracked across days consistently fired in the same location on 
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the same flight path, even if a given flight path was not executed for days between recordings. 
Notably, if a flight path morphed substantially across days, different neurons were active during 
these flights. Thus, if flight paths were grouped according to gross spatial location instead of the 
precise trajectory, this could lead to illusory instability in the hippocampal code. The methods 
and findings from this study provide a platform to study whether the neural representation of 
conspecifics is also stable over time, and future experiments may help refine models of spatial 
representation when there are sporadic local perturbations in a familiar environment. 
  
Chapter 2: The neural representation of human 
experimenters in the bat hippocampus  
 
2.1   Introduction 
 
Human experimenters are commonly present in laboratory environments where they interact with 
subject animals during experiments. Yet, the behavior of humans in such settings is rarely 
monitored or reported. Studies have shown that the presence, actions, and sex of humans can 
influence the animal’s behavior4–8, as well as volume- and time-averaged neural responses such as 
local field potentials8 or immediate early gene expression9. However, the impact of human 
experimenters on the neural dynamics of single neurons in behaving animals remains entirely 
unknown. To address this, we focused on the dorsal hippocampus, a region known to encode 
positional information and environmental factors21–23 and the study of which often involves 
humans actively interacting with the animal subjects10,12,21,24–30. We explicitly tested whether and 
how neural dynamics of hippocampal neurons are influenced by the presence and actions of human 
experimenters. We utilized the Egyptian fruit bat whose highly structured spatial behavior31 affords 
a rigorous control over behavioral variability. This allowed us to disentangle the ongoing neural 
modulation related to the presence and behavior of human experimenters from the positional 
coding prevalent in hippocampus.  
 
2.2   Stable flight behavior across experimenters during a reward task 

 
To examine the influence of human experimenters on neural activity in the bat hippocampus, we 
designed a spatial reward task where pairs of bats could spontaneously fly to two experimenters 
standing at different locations in a room to obtain a fruit reward from their hand (Fig. 1a; Chapter 
2 Supplementary Methods). To minimize variability, the experimenters’ hands were rested on 
fixed platforms of identical heights and were covered by gloves of the same size (Chapter 2 
Supplementary Methods). Every five minutes, the experimenters swapped locations with one 
another to allow sufficient sampling of human positions and flight behavior. To monitor the 
spatial behavior of both bats and humans, we used a real-time-location-system (RTLS) that 
recorded the 3D position of both bats and humans in the room simultaneously with high 
spatiotemporal precision32 (Supplementary Fig. 1). The bats were very active during the 
behavioral sessions, resulting in many flights landing at the same locations but on different 
human experimenters (217 ± 59 total flights/session/bat, mean ± s.d., n = 4 bats; Supplementary 
Fig. 2a-b). Importantly, the bats spontaneously flew highly structured flight paths that were 
repeated at high precision towards different experimenters (Fig. 1b-c; Supplementary Fig. 2c). 
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This provided a natural “behavioral clamp” on the bat’s spatial variability across flights, which in 
turn allowed rigorously assessing the modulation in the neural activity associated with a 
particular human experimenter at the landing location.  

 
Fig. 1 | Hippocampal activity is modulated by experimenter identity during flight. 
a. Experiment schematic: two bats flew for reward in a self-paced task where two human experimenters (green and 
blue outline) provided reward at different fixed locations around the room. Only two tripods shown for illustrative 
purposes; bats and humans not to scale (Chapter 2 Supplementary Methods). Scale bar refers to room dimensions. b. 
Left: Top view of the three most executed trajectories during a representative session. Colors denote different flight 
trajectories of one bat. Middle: example trajectory with flights colored by the identity of the human, experimenter #1 
(green) or experimenter #2 (blue), at the landing target. Right: flight trajectories overlaid. c. Histogram of correlation 
values between flights of the same trajectory to the same (light blue) or different (orange) humans for all bats and all 
sessions (n = 18,450 within-human flight pairs, 14,572 = across-human flight pairs). d. Coronal section of the dorsal 
hippocampus from one recorded bat, stained for DAPI, PCP4 and Iba1. 14 out of a total of 16 tetrodes (across four 
microdrives and four bats) were successfully identified and localized in the dorsal hippocampus. White arrow 
denotes tetrode tracks. Scale bar: 500 μm. e. Three representative units, with the left and middle units showing 
modulation of activity depending on the identity of the human at landing and a third one (right) which does not. First 
row shows 2D rate maps for all flights from the same location, grouped by the identity of the human at landing. Peak 
firing rate is indicated. Second row shows the raster plot of that same neuron for all flights included in the 2D rate 
map. Background color corresponds to the identity of the experimenter at landing (green is human #1, blue is human 
#2). Third row shows the PSTH of the raster plot above. Color of PSTH matches color in the raster. Shaded area in 
PSTH denotes standard error of the mean. f. Number of units that carried significant spatial information about the 
bat’s position during flight (red), and those that significantly modulated their firing rate at takeoff and/or landing 
according to the identity of the human at landing (blue). g. Number of landing/takeoff locations for which a neuron 
was significantly modulated depending on the identity of the human at landing. Only neurons that could be analyzed 
at four or more locations are included in the analysis (n = 134 cells). 
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2.3   Hippocampal neurons are modulated by experimenter identity in flight 
 
We wirelessly recorded the activity of 307 dorsal CA1 hippocampal neurons from four bats 
engaged in the behavioral task (Fig. 1d, Chapter 2 Supplementary Methods, Supplementary Fig. 
3). Most of the units that were active during flight fired primarily around take-off and landing 
and carried significant spatial information about the recorded bat’s position (84.2% or 218 out of 
259 flight-active cells when assessed in 2D, and 71.3% or 176 out of 247 flight-active cells along 
specific trajectories; Bonferroni corrected; Supplementary Fig. 4; Chapter 2 Supplementary 
Methods), consistent with an allocentric representation of self-position within the 
environment21,22,33. However, when inspecting activity of each unit across flights, we also 
observed substantial variability in the neural responses (Supplementary Fig. 5). We therefore 
asked whether the firing of hippocampal neurons might also be modulated by the spatial 
locations and identities of other individuals—conspecifics or humans—in the room. We found 
that nearly half of the neurons significantly modulated their firing rates depending on the identity 
of the experimenter at the landing location (48%, 117 out of 244 analyzable units; Fig. 1e-f and 
Supplementary Fig. 5b – left and middle examples; remapping quantified in Supplementary Fig. 
6 and Supplementary Fig. 7; Chapter 2 Supplementary Methods). Changes in firing rates were 
stable between earlier and later parts of the session (Supplementary Fig. 8). Moreover, most 
neurons were significantly modulated by human identity in only one location (Fig. 1g; Chapter 2 
Supplementary Methods), pointing to a possible conjunctive code for positional and 
experimenter-identity information during spatial movement. To further examine the extent to 
which human identity and location significantly contribute to modulation of firing upon landing, 
we used a simple linear model (Supplementary Fig. 9a). This model enabled us to disambiguate 
between neurons using an additive code versus a conjunctive coding for human identity and 
location. The results aligned with the above finding and suggested that the conjunction of human 
identity and location is a significant contributor to the modulation in the activity of many 
hippocampal neurons (n = 127 neurons; Supplementary Fig. 9b and Supplementary Fig. 10). 

Consistent with previous reports32, we also found a subpopulation of neurons that were 
significantly modulated by the presence or absence of a conspecific at the landing location (8.4% 
16 out of 191 analyzable units; Supplementary Fig. 11). To test whether this result could account 
for the differences in neural responses observed during flights towards different human 
experimenters, we constrained our analysis to only include flights where the other bat was not 
present at the takeoff or landing location. Even with this additional constraint, we found that over 
40% of the units (41.2% or 77 out of 187 analyzable units) had significantly different firing 
activity depending on the identity of the human at the landing location (Supplementary Fig. 12). 
Therefore, the presence of a conspecific could not fully account for the neural modulation 
associated with the identity of the human experimenter. Furthermore, differences in reward 
quantities provided by different experimenters on a subset of the sessions (Chapter 2 
Supplementary Methods) also could not fully account for changes in neural modulation 
(Supplementary Fig. 13). Together, these findings suggest that during self-motion, information 
about the identity and positions of humans in the environment explains a substantial portion of 
variance in hippocampal activity that cannot be accounted for by changes in self-position, 
movement patterns, reward quantity, or the presence of conspecifics.  

 



 

 6 

2.4   Hippocampal neurons informative of experimenter location and 
identity during rest  
 
During many behavioral experiments, the human experimenter is ‘performing a task’ in parallel 
to the animal, such as distributing food, handling the subject(s), or moving from one location to 
another10,12,24,26–28. We therefore conducted an additional experiment to explicitly ask whether 
hippocampal activity in a stationary bat contains information about the position and movement 
of experimenters in the room (Fig. 2a). To compare movement across experimenters while 
controlling for the bat’s position, we leveraged the bats’ natural tendency to rest in self-selected, 
yet highly consistent, locations in the room32 (Supplementary Fig. 14). While the bat was resting, 
experimenters deliberately repeated fixed traverses from a designated starting location towards 
the bat (Fig. 2b-c and Supplementary Fig. 15; Chapter 2 Supplementary Methods). At the resting 
location, the human dispensed reward or briefly handled the bat and then followed a fixed path 
back to the start location. Experimenters randomly took turns performing traverses. When 
pooling all traverses from both humans, we found that a subpopulation of neurons carried 
significant spatial information about the position of the experimenter moving through the room 
(Fig. 2d; 20.3%, 44 out of 217 analyzable units; Chapter 2 Supplementary Methods). Given our 
observation of neuronal selectivity for human-identity in flying bats (Fig. 1) we asked whether 
similar identity selectivity would also be observed in stationary bats. We therefore split the trials 
according to the identity of the human traversing the environment and found that over a third of 
the units were significantly spatially informative about the spatial position of at least one 
experimenter (36%, 50 out of 139 analyzable units; Fig. 2e). Intriguingly, most identity-
responsive neurons carried significant spatial information exclusively for one experimenter 
(86%, 43 out of 50 analyzable units; Fig. 2f-g). Furthermore, there was little overlap in the 
subpopulations of neurons modulated by the identity of stationary humans during self-motion 
and those modulated by the position of moving humans while the bat was at rest (10.6%, 7 out of 
66 analyzable units), pointing to largely independent populations selective for human identity 
depending on the bat’s behavioral state.  Finally, we found roughly similar proportions of 
neurons selective for the human dispensing the reward (46% or 23 out of 50 analyzable units) or 
handling the bat (40% or 20 out of 50 analyzable units), with 14% of the units responding to both 
humans (7 out of 50 analyzable units).  
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Fig. 2 | Hippocampal activity is modulated by experimenter movement and identity during rest. 
a. Experiment schematic: Two human experimenters repeatedly approached the bats hanging in their preferred 
resting location. b. Top view of tracked position of both humans (human #1green, human #2 blue) performing 
traverses during a representative session. c. Histogram of correlation values between traverses within (blue), and 
across (orange) the different human experimenters (n = 5,904 within-human traverses, 5,829 across-human 
traverses). d. 2D rate maps of three representative units (rows) showing significant spatial selectivity for human 
position while the recording bat was stationary. Peak firing rate is indicated. e. 2D rate maps of the same three units 
as in panel ‘d’, but split according to human identity. f. Normalized spatial information for the preferred human (for 
which a unit carried significant spatial information) and the non-preferred human (n = 43 neurons, asterisk indicates 
significant difference by two-sided Wilcoxon signed rank test, p = 1.1 x 10-8 Chapter 2 Supplementary Methods). 
Median indicated by thick red line on boxplot, bounds of box indicate 25th and 75th percentiles, error bars indicate 
minima and maxima. Violin plot shows kernel density estimate. Grey lines connect the same neuron across 
conditions. g. Numbers of neurons that carried significant spatial information for one human or for both humans 
(total n = 50 neurons). Note that nearly all neurons were selective for only one human. h. 2D rate maps of three 
representative units, showing significant spatial selectivity for the position of the other flying bat while the recorded 
bat was stationary. Peak firing rate is indicated. i. Number of units that carry significant spatial information about the 
location of either a human experimenter (blue), or the other bat in the room (red). 
 

Previous reports suggested that the activity of hippocampal neurons in stationary animals 
may carry information about the position of a conspecific that is moving10,11 (but see ref.34) We 
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therefore asked whether there was a comparable population of neurons encoding information 
about the position of the other bat in the room, and importantly, whether this might account for 
our results. We found a modest population of neurons that carried significant spatial information 
about the position of the other conspecific while the recording bat was at rest (Fig. 2h; 10.8%, 14 
out of 130 analyzable units). Interestingly, the populations encoding conspecific and human 
position were minimally overlapping (4.7%, 3 out of 64 analyzable units; Fig. 2i). Finally, 
excluding all epochs of conspecific flight during human traverses had no significant impact on 
the results (Wilcoxon signed rank test p = 0.44; Supplementary Fig. 16). Together, these findings 
suggests that there are units in the dorsal CA1 region of the hippocampus with a conjunctive 
code for the identity and position of the experimenter traversing the environment while the 
animal is stationary.  

 
2.5   Discussion  
 
Human observation and intervention shapes animal behavior in the laboratory4–8. Our study 
aimed to ask whether experimenter presence and behavior influenced the ongoing activity of 
hippocampal neurons recorded from animals engaged in a spatial behavioral task. Leveraging the 
highly structured spatial behavior of bats we found that neural responses were robustly 
modulated by experimenters when bats were flying or stationary. These findings emphasize the 
potential gravity the human experimenter incurs on the dynamics of single neurons recorded 
from behaving animal subjects.  

In this study we explicitly tracked the position of each human interacting with the subject 
animals, but this is not the case in most experiments, even those where the experimenters 
commonly interact with the subject animal during neural recordings. These interactions include 
delivering reward10,12,30, physical relocation24,25 and manipulating objects or barriers as part of 
the behavioral task10,24–27. In these and other cases, the human is spatiotemporally coupled with 
the animal’s behavior in the environment. Given our findings, we encourage the neuroscience 
community to control, and if possible eliminate, the immediate and latent effects of experimenter 
behavior on neural data collected during a behavioral task.  

The scope of this work was intentionally confined to a minimal number of subjects (two 
bats and two humans) while still providing sufficient complexity to assess whether the presence, 
behavior, and identities of humans impacted ongoing neural activity. Yet, further work is needed 
to elucidate the complex interactions that emerge between experimentalists, subjects, and other 
salient features of the environment. Such studies should systematically vary the number of 
humans, animals, and their relationship history, while controlling for behavior. Additionally, 
while this study focused on female Egyptian fruit bats, it would be important to further 
investigate experimenter representation across species and sensory modalities as well as across 
sexes of both experimental animals and researchers.  

Our study focused on interspecies interactions in the laboratory environment. Yet, most 
animals navigate environments populated by members of other species, or live within 
demarcated territories, making interspecies interaction and representation a critical factor in 
shaping behavior and spatial decisions in the wild. The behavioral narrative of interactions 
between different species is often driven by the degree of overlap in their ecological niches, or 
their relationship as recognized predator and prey. For example, interspecies relationships 
surrounding feeding and hunting behaviors have been characterized across taxa35 and include co-
predation and competition for small prey between humans and reticulated pythons36, cooperative 
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hunting amongst grouper fish and moray eels37, domestication of aphids by ants38, and 
cooperative hunting between groups of surface-hunting fish and seabirds39. Yet very little is 
known about the neural landscape during interspecies interactions. In the laboratory environment 
the human experimenter and the subject animal are engaged in a complex and dynamical 
interspecies relationship that is suitable for rigorous study of the neural basis of interspecies 
interactions. This line of investigation lends itself well to incorporating a diversity of animal 
models across a range of subdisciplines40 and highlights the importance of eliminating the 
uncontrolled effects of humans on the examined neural phenomena. 

 
2.6   Future theoretical frameworks for spatial representation in multi-
species environments  

 
A key challenge of learning how to behave in spaces with multiple animals is how to optimize 
actions when changes in the environment depend on others’ as well as an animal’s own actions. 
This problem can be simplified by either ignoring the other individuals or leveraging established 
communication protocols and behavioral narratives to make better predictions about upcoming 
states41,42. Established narratives such as predator-prey or common threat signaling are 
potentially fruitful platforms to study the neural mechanisms that support cross-species 
representation41–44. However, if there is no established narrative, as in the case of naïve lab 
animals and experimenters, the two species must build a communication protocol from scratch to 
successfully predict how their joint environment will evolve.  

Historically, there are robust paradigms for establishing behavioral narratives across 
species, largely from the practices of equine and canine training45,46. These protocols emphasize 
consistency, routine, and gradual behavioral shaping as the backbone for effective training and 
highlight the importance of establishing rudimentary communication between the animal and the 
trainer. In laboratory behavioral science, these principles of consistency, routine, and behavioral 
shaping are practiced by experimentalists to obtain high-quality performance from subject 
animals4,5, but the emphasis has shifted from establishing a behavioral narrative to executing a 
best practices protocol. This reductive approach to cross-species interactions in the lab 
obfuscates a fascinating question: what are the neural mechanisms that support establishment of 
a successful behavioral narrative between species with different affordances?  

This question lends itself well to both a mature theoretical framework (reinforcement 
learning) and a practical empirical setting (any behavioral neuroscience lab). Reinforcement 
learning models capture how an agent constructs a behavioral policy using the values of state-
actions pairs it experiences, and recently these models have been extended to multi-agent cases47. 
This framework may be further extended to capture the iterative evolution of a cross-species 
narrative and the biological constraints of this slow and sparse learning process. The 
experimental platform to test these models could be supported by any single-species behavioral 
neuroscience lab, or labs with multiple interacting species. A first extension of the work 
presented in this chapter could test whether current linear RL models (i.e. the successor 
representation48,49 or default representation50,51  capture the changes in neural representation that 
occur as the joint behavioral policy of two animals crystallizes. This experiment would marry the 
cross-species experimental paradigm from chapter 2 and the recording methodology pioneered in 
chapter 3 to examine the stability of neurons across days as a bat learns the role of the human 
experimenter in the environment.  
 



 

 10 

 

Chapter 3: A stable hippocampal code underlies structured 
flight motifs during solo navigation in bats  
 
3.1   Introduction 
 
To tackle the question of how an animal’s representation of a shared environment emerges and 
crystallizes over time, it is crucial to establish a method for reliable, wireless, multi-day 
recording, and understand the neural code that supports a solo animal’s representation of the 
environment over time. As an author on this project, I performed data collection, preprocessing, 
and initial exploratory analyses. The joint first authors of the project were Tobias Schmid and 
William Liberti, and the other coauthor was Angelo Forli.  

Neural activity in the hippocampus is believed to support spatial memory and navigation 
across a wide range of species2,3,21,22,52, including in bats33,53. Egyptian fruit bats (Rousettus 
aegyptiacus) are renowned for their spatial memory and navigational abilities and are believed to 
use cognitive map-based navigation to forage in the wild1,2,54–57. Members of this species 
navigate along structured paths night after night for many months, pointing to the potential 
existence of a stable representation of their environment55,56. Early studies utilizing extracellular 
electrophysiological recordings in rats reported that the spatial firing of hippocampal neurons 
remained stable in familiar environments over days12,13 and weeks14, thereby supporting the 
existence of a stable hippocampal code2. In contrast, studies in mice utilizing recent advances in 
optical imaging methods, which overcome several of the shortcomings associated with 
longitudinal monitoring of individual neurons’ activity using electrophysiological recordings58,59, 
reported a highly dynamic code15–20. These studies found that, even in familiar environments, 
only a subset of hippocampal neurons remained spatially selective from one day to the next, yet 
the ones that did, maintained their original spatial preference – suggesting a temporally drifting 
positional code15–20. Therefore, the stability of the hippocampal code in familiar environments 
and across species remains in question.  
 
3.2   Wireless imaging from CA1 in flying bats 

Here, we used custom wireless miniature microscopes60 to longitudinally image neural activity 
from the dorsal CA1 hippocampal region of Egyptian fruit bats (Fig. 3a-e; Chapter 3 
Supplementary Methods) engaged in self-paced, goal-directed aerial foraging61 (Fig. 3d, 
Supplementary Fig. 17). We expressed Ca2+ indicators (GCaMP6f) in CA1 neurons and monitored 
their activity through an implanted GRIN lens (Fig. 3b; Chapter 3 Supplementary Methods). This 
approach enabled us to track activity of the same cells over multiple days (Fig. 3c). In line with 
previous electrophysiological recordings from the hippocampus of freely flying bats33,53,62, we 
found that individual neurons were primarily active during flight (Fig. 3e), exhibited spatial 
selectivity (Supplementary Fig. 18a), and combined, spanned the available environment 
(Supplementary Fig. 18b-c). Each bat (n = 7) developed a unique set of structured ‘flight paths’ 
that were executed with high precision (Fig. 3f; Supplementary Fig. 19a-b). Aligning neural 
activity to specific flight paths revealed time-locked responses in the majority of recorded neurons 
(494/562, or 87.9%, of regions of interest [ROIs] significantly tuned to flight; Fig. 3g; 
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Supplementary Fig. 19c-d; Chapter 3 Supplementary Methods). Furthermore, neural activity was 
largely distinct for different flight paths, with spatially overlapping portions exhibiting more 
similar activity (Supplementary Figs. 20) irrespective of distance or angle to goal location 
(Supplementary Figs. 21; but see ref.63). 

 
Fig. 3 | Wireless calcium imaging and spatial movement patterns in freely flying bats 
a. Bats carry a wireless miniature microscope system during flight. b. A GRIN lens was implanted above dorsal 
CA1. Inset: Coronal section of the hippocampus with GCaMP6f stained in green and DAPI nuclear stain in blue. c. 
Two example maximum intensity projections from one animal, separated by three days. d. Flight room schematic 
and experimental paradigm. Two feeders on one wall dispensed a puréed fruit reward upon landing if a virtual 
boundary was crossed during the flight. Bottom: experimental session timeline. e. Experimental data from the same 
animal shown in (c). Top: bat velocity (m/s), middle: mean calcium activity of all regions of interest (ROI), units are 
normalized ∆f/f0, bottom: fluorescent time series of 55 ROIs over the entire foraging session. Inset: zoom-in on 
calcium activity during two flights. f. Representative flight paths (top view, XY projection) across a single session 
from three different example bats showcasing the diversity of structured routes taken by each animal. Flights for 
each bat are clustered by similar paths (colors). g. Neural responses aligned to flight activity. Top: bat velocity (m/s) 
for 15 flights along the same path, bottom: calcium traces from seven simultaneously recorded ROIs for flights 
along the same path in a single bat, aligned to flight takeoff. The mean across flights for each ROI is in black. 
Individual flights are in gray.  
 
3.3    Stable hippocampal tuning during flight 
 
Flights along the same path were highly correlated both within and across days (the mean flight 
correlation changed at a rate of -0.001 per day, R2 = 0.68, p = 1.6x10-3; Fig. 4a; Chapter 3 
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Supplementary Methods). Since hippocampal activity is known to be modulated by ongoing spatial 
movement64–66, including in bats33,53,67, we leveraged the highly structured, stable nature of the 
bat’s flight to assess hippocampal tuning stability during a spatial behavior that exhibited low 
variability. We observed that spatial tuning was stable for the majority of neurons that were tracked 
over days (Fig. 4b-d; Supplementary Fig. 22a-h; Chapter 3 Supplementary Methods). Stability 
persisted even when specific paths had not been flown for several days, suggesting that stable 
spatial tuning may not require continuous behavioral reinforcement (Supplementary Fig. 22i-j). 
Only a small fraction of well-isolated ROIs (2.6%) that were clearly visible on one session could 
not be located on an adjacent session (Supplementary Fig. 23; Chapter 3 Supplementary Methods). 

 
Fig. 4 | Neural tuning for stable flight paths persists across days  
a. Average correlation of flights from the same cluster across different day lags, computed relative to the first day for 
each bat (different colors). Marker size corresponds to the relative number of flights in a session. Inset: zoom-in on 
the higher correlation values. Error bars indicate 99% confidence interval, black line indicates the mean across n = 7 
bats. b. Average correlation of neural tuning to the first day across all spatial firing fields and across different day 
lags for each bat; each color indicates a different bat. Error bars indicate 99% confidence interval, black indicates the 
mean across n = 7 bats. c. Trial-averaged activity from all significantly flight-tuned neurons from all animals that 
can be tracked over a five day interval, sorted by peak activity on day one. The same sorting is maintained for all 
subsequent days. d. Example flight patterns across five sessions performed over six days. Common flight paths are 
colored red, green, and blue. e. Example ROIs (normalized ∆f/f0) aligned to takeoff (vertical gray dotted line) of the 
three most common flight paths. The x-axis is extended relative to (c) in order to show the calcium signals return to 
baseline. Top: mean activity trace for each day (gray); Shading represents SD. Bottom: chronological trial-by-trial 
responses aligned to flights (different flight paths are separated from top to bottom); red lines for each ROI separate 
different days. Black (in ROI 27) indicates that the ROI was not confidently identified for that session.  
 
3.4 Illusory instability via behavioral variance 
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Despite the overall stability exhibited by the majority of hippocampal neurons in flying bats, there 
was still a quantifiable decrease in the average tuning over days relative to repeated flight paths 
(significant linear decrease in mean ROI tuning correlation of 0.02 per day, R2 = 0.54, p = 9.1x10-

3, Fig. 4b; see two examples in Fig. 5a). However, we found that even these relatively small 
changes in tuning were significantly correlated to flight-to-flight variability (R2 = 0.2, p = 3.2 x 
10-29; Fig. 5a-c, Supplementary Fig. 24a-b; Chapter 3 Supplementary Methods). For neurons tuned 
to multiple flight paths, we found that neural activity on more variable paths displayed greater 
variability (p = 9.7 x 10-15 Wilcoxon Rank Sum; Fig. 5d). Similarly, tuning stability was degraded 
when only considering unstructured flights (i.e., unique flight paths that do not repeat and are 
therefore inherently more variable) as compared to the bat’s structured flights (Supplementary Fig. 
24c; Chapter 3 Supplementary Methods), suggesting that stability is not an intrinsic property of 
individual neurons but instead reflects behavioral variance. To further understand how behavioral 
changes over days impact our estimation of neural tuning, we implemented a simulation in which 
stable spatial firing fields are convolved with the empirically observed flight paths. This allowed 
us to approximate a null model of a stable code that considers differences in flight patterns from 
day-to-day (Fig. 5e; Chapter 3 Supplementary Methods). We found that the empirically observed 
decrease in coding stability qualitatively matched what we would expect given behavioral drift 
and a stable underlying neural code (Fig. 5f).  

 
Fig. 5 | Apparent changes in neural tuning can be explained by measurable changes in flight behavior 
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a. Two example ROIs with apparent unstable tuning. For each example, left top: average calcium responses in units 
of normalized ∆f/f0, aligned to takeoff (vertical gray dotted line); left bottom: chronological flight-by-flight responses, 
red lines indicate day transitions, right: calcium ∆f/f0 superimposed as a heatmap onto an XY projection of individual 
flight paths. Note that the neuron is active where there is increased flight variability. b. Correlation of ROI stability 
and flight variability (Chapter 3 Supplementary Methods) for the example bat shown in (a), demonstrating that flight-
flight variability is significantly correlated to the trial-trail variability seen in neural activity. c, Same as (b), but across 
all ROIs for the top three flight paths for all bats. d. Comparing flight-by-flight consistency for ROIs that are 
significantly tuned to more than one trajectory. ROI consistency is separated into two groups based on flight 
variability: more variable flights in blue and less variable flights in orange (i.e., a sharper distribution of Euclidean 
distances from the mean flight path at the deconvolved burst time). Note that there is a significant difference in the 
distribution of flight-by-flight consistency with lower flight variability corresponding to higher neural consistency. e. 
Average ROI correlation to day one across different lags (days) for simulated stable firing fields in black, shuffling 
ROI identity (blue), and shuffling flight order to eliminate behavioral drift (green). f. Same as (e) but with mean 
correlation of empirically recorded Ca+2 data for all ROIs across different lags for each bat in black, shuffling ROI 
identity (blue) and shuffling flight order to eliminate behavioral drift (green). Bars for (e-f) indicate 99% confidence 
intervals of the mean across n = 7 bats. *** p < 0.001.  

 
3.5   Stable tuning across sensory contexts  
 
The results presented thus far demonstrate that the hippocampal code in flying bats is highly stable, 
and the ability to estimate neural tuning stability can be compromised by variability in spatial 
behavior. This in turn suggests that greater apparent tuning instability may arise from more 
substantial changes in spatial movement patterns, even if the animal continues to navigate in the 
same environment. To explore this notion further we leveraged recent findings in bats where a 
comprehensive change in sensory context (turning off the lights) appeared to induce a significant 
changes in hippocampal spatial tuning28. We therefore asked whether greater changes in neural 
tuning could also be accounted for by altered behavior between different contexts. To address this 
question, we conducted an additional set of longitudinal calcium imaging experiments during 
which the lights alternated on for 20 minutes (lights-on), off for 20 minutes (lights-off), and on 
again for 20 minutes (lights-on’) during each foraging session (Chapter 3 Supplementary 
Methods). When comparing two-dimensional (2D) rate maps across conditions we observed what 
appeared to be condition specific sensory remapping, in agreement with previous 
electrophysiological findings in bats28 (Fig. 6a; and Supplementary Fig. 25). However, a closer 
examination of the bats’ spatial movements patterns revealed that while flight behavior was highly 
similar within a given contextual condition (lights-on or lights-off) it was highly dissimilar across 
conditions (10 sessions per bat for n = 2 bats; Fig. 6b; Supplementary Fig. 26). The bats still flew 
along structured paths in both conditions, but many paths were flown disproportionately more 
often in either the lights-on or the lights-off condition (Fig. 6b, Supplementary Fig. 26a-g). Taking 
advantage of both the stability of the bats’ flight behavior and our ability to longitudinally track 
individual neurons over days, we were able to accumulate many examples of trajectories that 
occurred across both conditions (Supplementary Fig. 26h-i). When restricting our analysis to these 
flight trajectories, stable neural tuning persisted (Fig. 6c-e) and we found no statistical difference 
in population tuning stability when comparing within or across conditions (Fig. 6f). To further 
address if differences in flight behavior may account for perceived changes in spatial tuning, we 
compared 2D rate maps of simulated stable tuning fields for all flights across both lights-on 
conditions, and between lights-on and lights-off conditions. Similar to what we observed 
empirically (Fig. 6f), we found that illumination-dependent changes in flight variability gave the 
appearance of stability within lights-on conditions but instability when comparing across 
conditions (Fig. 6g). Taken together, these findings demonstrate that condition-dependent changes 
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in behavior can lead to the illusion of tuning instability, even when the underlying neural code 
remains highly stable.  

 
Fig. 6 | Neural tuning persists despite a change in sensory context  
a. 2D firing maps for three example ROIs in lights-on vs. lights-off cue conditions when considering all flights in 
each condition. b. Top: all flight paths that occurred across 10 consecutive days for one example bat, divided into 
successive lights-on, lights-off, and lights-on’ periods (ordered from left to right, respectively). Bottom: two routes 
that persisted across all conditions, clustered in red and blue. Number of flights for each route in each condition are 
indicated. c. 2D firing maps for the same three ROIs shown in (a), only considering the same spatial trajectories 
exhibited in both conditions. d. Change in X, Y and Z position over time and across lighting conditions for the two 
conserved routes taken in the lights-on and lights-off periods shown in (a). Shading represents 2x STD. e. Left: 
maximum intensity projection of the calcium activity in a single foraging session from one bat, separated by nine 
days, with a subset of tracked ROIs labeled with colored arrows. Mean ∆f/f0 calcium responses aligned to the same 
path in the lights-on (yellow) and lights-off (gray) conditions. Shading indicates standard deviation. f. Distribution 
of ROI tuning changes of 2D firing rate maps across the lights-on vs. lights-on’ conditions (teal), and lights-on vs. 
lights-off (gray) conditions are not significantly different (n = 178 fields, p > 0.05, two-tailed Wilcoxon Rank Sum 
Test). g. The correlation of 2D firing rate maps of simulated stable tuning fields is significantly different when 
comparing across the lights-on vs. lights-on’ conditions (teal), and lights-on vs. lights-off conditions (gray). Both are 
significantly different from shuffling the field identity (red). *** p < 0.001.  

 
3.6   Discussion 
 
By imaging neural activity from flying bats, we found that hippocampal spatial tuning for the same 
movements in a familiar environment is highly stable. Furthermore, most of the neurons that were 
reliably tracked over days remained active and spatially selective when bats flew the same 
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trajectories, suggesting a stable participation of individual neurons in representing spatial 
movements through a familiar environment, even after dramatic changes in sensory context. These 
findings support earlier electrophysiological studies in rats that posited a stable hippocampal code 
as a substrate for the stable spatial representation of a familiar environment1,2,14. However, our 
findings differ from imaging studies in head-restrained or freely moving mice over the past decade 
that showed large fractions of hippocampal neurons can change their responsiveness from one day 
to the next15–18. We hypothesize that these differences could arise from several sources. One 
possibility is that the stability of spatial representation varies between species, where mice may 
generally have a less stable hippocampal code. Indeed, electrophysiological studies in mice 
revealed drifting spatial representations even within a single foraging session68, whereas rats 
exhibit more stable spatial neural activity12. Yet, factors such as task engagement, goal-directed 
behavior and attentional demands have been shown to account for some of the observed 
differences68,69. On the other hand, it may be that the estimation of spatial tuning stability is 
impacted by movement repertoires exhibited by different species. For bats, flight can result in a 
highly structured, homogenous behavior. The spatiotemporal consistency of the bats’ flight 
allowed us to repeatedly sample the same behavior in a given location across time and cue 
conditions, which in turn enabled us to make straightforward, statistically rigorous comparisons 
between behavioral and neural variability. To this end, we have shown that relatively subtle 
changes in spatial movement patterns across days or contexts can lead to challenges in accurately 
assessing the stability of firing fields. A prediction arising from these findings is that a stable 
hippocampal code may be observed across species when neural tuning is assessed relative to a 
more structured navigational behaviour70,71  that allows simultaneous control over multiple factors 
that are known to modulate hippocampal activity such as position, velocity, movement direction 
and time64,65.  

The neurophysiological findings presented here support a model where the spatial 
representation of stable movement patterns through a familiar environment remains largely 
unchanged2,14. While such a stable neural code might facilitate the stable navigation behavior 
exhibited by Egyptian fruit bats54–57, a direct causal role of the bat hippocampus in aerial navigation 
remains to be demonstrated. Combined, our findings highlight the importance of using a 
comparative approach that leverages the specialized behaviors of different species to investigate 
how conserved circuits, such as the hippocampus, enable neural computations that subserve 
navigation and spatial memory40,72.   
 
Chapter 4: Conclusion   
 
The findings presented in this dissertation underscore the importance of mitigating sources of 
uncontrolled variance when interpreting neural data and demonstrate the advantages of 
leveraging spontaneous behavior to investigate the neural code that supports a particular species’ 
abilities. We found that the hippocampus discriminately represents individual non-conspecifics 
and conspecifics, using a joint code for allocentric position and context. Furthermore, the 
allocentric positional code for solo navigation was stable across days for repeated flight motifs. 
The immediate next step to deepen this line of work is to investigate whether the neural 
responses to conspecifics and non-conspecifics are flexibly or stably represented across days, 
and whether changes in the behavioral narrative between individuals in the environment shapes 
this representation over time.  
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Importantly, these two studies come with caveats and opportunities for empirical 
clarification. While the second study found that the hippocampal code was stable across days, it 
is unclear whether this stability would hold in tasks that demand more complicated and flexible 
navigation. Paradigms with larger spaces and changing barriers, which are commonly found in 
the rat literature on hippocampus, may provide a more convincing environment to test the 
stability of the code over time73. As a first step it would be valuable to investigate whether replay 
around barriers exists in the bat, considering the differences in locomotion and trajectory 
planning between the two species.  

The primary caveat of the first study is that the task structure explicitly encouraged the 
bats to attend to the positions and movement of non-conspecifics, but not necessarily the 
conspecifics. This may account for the discrepancy in the number of neurons encoding the 
position of the human compared to the number encoding the position of the other bat. Other 
studies have found greater numbers of place cells representing the position of conspecifics in 
tasks that encouraged attending to the other conspecific10,11. An alternative paradigm to test the 
influence of task structure on relative representation of conspecifics and non-conspecifics is to 
implement a teacher-learner paradigm, in which one bat has been trained on the relative 
probabilities of reward given by each non-conspecific, and the learner bat can optimize their 
reward accrual by copying the teacher bat’s flights. Using this paradigm along with high-density 
recording techniques, it may be possible to disentangle the neural representations of self 
trajectories (replay), conspecifics’ trajectories, and the non-conspecifics’ trajectories. This 
speculative ‘other-replay’ would reflect how temporal sequences of hippocampal neurons encode 
trajectories that other individuals (conspecifics and potentially non-conspecifics) execute74. 

From a computational perspective, this line of work may serve to test model predictions 
of how animals represent environments populated by members of other species. Models from the 
linear reinforcement learning literature, such as the successor representation and default 
representation, capture empirical properties of place cells and grid cells48,50,51,75, and could make 
predictions about how dynamic agents would be represented in the environment. One 
computationally motivated question would extend an established model of hippocampus which 
posits that action sequences are preferentially replayed according to how important they are for 
learning an action policy51. Can these action sequences include those executed by species with 
different body schemas? In other words, is the allocentric hippocampal representation of place 
and its associated replay sequences separable from the animal’s form of locomotion? Or are the 
allocentric code and replay sequences inherently tied to the motor actions that produced the 
action sequence? This question could be addressed using numerous cross-species experimental 
paradigms but would likely be most tractable using two animal models with similar resource 
needs and ecological niches. High-density recording methods and high-throughput preprocessing 
packages76 provide a tractable methodological platform for investigating both rate and temporal 
codes of cross-species representation in hippocampus. 

 An individual’s ability to negotiate ecosystems that are populated and influenced by 
many different species critically affects survival. And while our understanding of how the brain 
represents space and accomplishes navigation has matured over the past half a century, we have 
yet to define a singular model of the neural mechanisms that give rise to this incredible ability. 
Our hope is that using a combination of ethological behavior, unconventional animal models, 
and unique task paradigms can uncover key properties of the neural code and refine models for 
how the brain encodes the external world. 
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Chapter 5: Supplementary Materials and Methods   
 
5.1   Supplementary materials and methods for Chapter 2 
 
Subjects 
 
Neural data was collected from four adult female Egyptian fruits bats (Rousettus aegyptiacus; ~ 
110-130 g weight). All bats were housed in a humidity- and temperature-controlled room. 
Implanted bats were initially single housed in small cages, and subsequently, following recovery 
from surgery, co-housed in large cages. Lights in the housing room were maintained on a 12 h-
12 h reverse light cycle (lights off-lights on; 07:00-19:00). All experiments were performed at 
the same time of day during the bats’ awake hours (dark cycle). All experimental procedures 
were approved by the Institutional Animal Care and Use Committee of the University of 
California, Berkeley.  
 
Behavioral setup  

All experiments were performed in an acoustically, electrically and radio-frequency shielded 
room (5.6 m x 5.2 m x 2.5 m) with high precision lighting control61, under uniform illumination 
(luminance level 5 lux). To minimize acoustic reverberation and dampen noise from outside the 
room, the walls and ceiling of the flight room were covered with a thick layer of acoustic foam. 
A layer of acoustically absorbing black felt was placed on top of the acoustic foam, and on the 
floors, to prevent the bats from damaging the foam or the floors and provide additional acoustic 
dampening. A layer of black netting was placed on top of the felt on the walls for the bats to 
hang. In addition to the bats, two adult humans, one male and one female, were also present in 
the room during experiments. Both humans gave informed consent to participate in the 
experiment.  

The 3D spatial position of the bats and humans was recorded using a modified version of 
a commercial Real-Time-Location-System (RTLS, Ciholas Inc.), similar to that used 
previously32. The system was composed of mobile tags (DWTAG100) that were identified and 
localized at 100 Hz sampling rate by 16 static anchors (DWETH101) placed on the walls and 
ceiling of the room, providing reference locations for the system. Anchors and tags 
communicated through Ultra-Wideband pulses. An additional anchor (custom DWETH101) was 
used to record an external synchronization signal (see below). Each lightweight (~2.9 g) 
transceiver tag was powered with a LiPo battery (~15 g total). For bats, the transceiver tag was 
directly mounted on the neural implant. For humans, one tag was placed in the right lab coat 
pocket and one each on the left and right wrists, for a total of three tags per human 
(Supplementary Fig. 1). The system communicated with a computer outside the experiment room 
through UDP protocol and was configured and operated through a web-based user interface 
running on Ubuntu 18.04 Bionic. Data were recorded and saved with custom scripts in Python. 
The spatial resolution of the system was measured on a subset of the experimental sessions 
where one bat was simultaneously tracked with two recording systems: the RTLS and a precise 
marker-based motion capture system (Cortex Motion Analysis (6.2.13.1751); Matlab 2021a)32,62 . 
The spatial resolution on tracked bats and humans was in the range of 10-20 cm. Periodic clock 
pulses generated by a Master-9 device (A.M.P.I.) were used to create a timing signature that 
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served as a common frame of reference for all the recording systems (tracking and neural 
recordings).  

Four tripods were positioned around the room to demarcate the possible locations of the 
human experimenters. The tripods were all set to the same height and did not change positions 
across the entire experiment. Video of the room at all tripod locations and resting locations was 
acquired using IR cameras at 25FPS (Basler ace acA800-510um; Basler Pylon image acquisition 
software (6.2.0.8205)). Both humans wore the same standard personal protective equipment, 
which included a white laboratory coat, a blue hair bonnet, a blue surgical mask, blue gloves, 
blue shoe covers, clear protective glasses, and a protective yellow leather glove on the left hand. 
When standing at a tripod location, each human placed their left hand palm up on the tripod and 
used their right hand to dispense 0.3 ml of banana smoothie via wireless manually activated 
motorized feeder, when appropriate (Arduino Mega Rev3; Adafruit Motorshield 1438; Arduino 
IDE 1.8.19). Experimenter hand sizes and gloves were highly similar, which served as 
structurally and visually indistinguishable landing platforms for the bat. All bats were mildly 
food-restricted (> 90% of their baseline weight) before the task sessions. Prior to the start of the 
neural recording, the bats were introduced to the experimental setup, trained on the behavioral 
task described below, and were familiar with both experimenters.   
 
Behavioral Task 
Two experiments were performed in each recording session. In experiment #1 (~90-minute 
duration), bats were trained to freely fly to either human for reward. In experiment #2 (~30-
minute duration), bats hung in their preferred rest locations while the humans approached the 
bats to feed or handle them. Experiment #1 was composed of several 15-minute blocks. During 
each block, the experimenters picked a pair of tripod locations to stand at for five minutes, then 
swapped locations for the next five minutes, and returned to their original locations for the final 
five minutes of the block. The blocks were counterbalanced such that each human spent an equal 
amount of time at each tripod location over the course of the session. To control for potential 
glove-specific cues from the yellow “landing platform” gloves, the experimenters swapped 
yellow gloves every block. Each time the humans changed locations they walked radially 
inwards from their locations to the center of the room, and radially outwards to their new 
locations. If a bat happened to fly while the humans were walking, the humans paused their 
movement. The bats could freely fly to any tripod in the room, but they were only rewarded if 
they landed on the experimenter’s hand on the tripod. When a bat landed on an experimenter’s 
hand, a single reward was dispensed, and the next feed could only be triggered by the bat flying 
away and returning. If the second bat happened to land on the same experimenter before the first 
bat left, reward was dispensed only to the second bat. For two of the four bats, two additional 
tripod locations were available (six locations total) for the humans to stand at, and human #1 
gave 0.3 ml of reward, while human #2 gave 0.1 ml of reward. This difference in reward did not 
significantly impact the ratio of visits to each human (Supplementary Fig. 2b, Bat 3 and Bat 4). 
The ratio of the number of visits to human #1 versus human #2 was calculated for all sessions for 
all bats within an experimental paradigm (n = 20 sessions for the four-tripod paradigm and n = 
11 sessions for the six-tripod paradigm. Two-tailed t-test, p = 0.1).  

Experiment #2 immediately followed experiment #1. During experiment #2, the humans 
stood together at the center of the room, and randomly took turns performing traverses along a 
fixed, arced path to either feed or handle the bats hanging at their preferred rest location. 
Handling consisted of a standard mild restraining grasp while the bats were hanging that lasted 
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the same amount of time as the reward delivery. All traverses were performed when both bats 
were hanging in the preferred rest location, and each human rewarded the same bat across all 
sessions (their ‘designated bat’). During each traverse, one experimenter walked from the center 
of the room in an arced path towards the bats, paused below the bats, fed their designated bat and 
handled the other bat, and walked an arced path back to the center of the room. A slight variant 
of this experimental paradigm was performed for two of the four bats, in which the humans 
waited at tripods instead of the center of the room, but still performed the same traverse from the 
center of the room to the bats, and back to the center of the room. In this variant the humans did 
not have a designated bat to handle/feed, and instead randomly chose which bat to reward each 
trial (n = 20 sessions for the designated-bat paradigm and n = 11 sessions for the random 
paradigm). 
 
Microdrive Implant Procedure  

Surgical procedures for electrophysiology implants were performed similarly to those described 
previously for Egyptian fruit bats32,62,77,78. A lightweight four-tetrode microdrive (Harlan 4 drive; 
Neuralynx, MT, USA) was implanted over the right hemisphere of each bat. Tetrodes were made 
from four strands of platinum-iridium wire (17.8 μm diameter, HML-insulated) and assembled as 
described previously. Each tetrode was loaded into a telescoping polyamide tube assembly inside 
the microdrive, and each tetrode was independently manipulable (~5 mm travel). 12-16 hours 
before surgery, the tips of the tetrodes were cut to the same length and plated with Gold Plating 
Solution (Neuralynx, MT, USA), bringing the impedance of individual wires down to 0.3-0.6 
MΩ. The surgical procedure was as follows. Anesthesia was induced with an injectable cocktail 
of ketamine, dexmedetomidine and midazolam. The bat was placed in a stereotaxic apparatus 
(Model 942; Kopf, CA, USA) where a continuous supply of oxygen was provided, and 
anesthesia was maintained by injection (~once/hour) of a cocktail of dexmedetomidine, 
midazolam and fentanyl. Depth of anesthesia was continuously monitored by reaction to a toe 
pinch test, and by measuring the bat’s breathing rate. Body temperature was measured with a 
rectal temperature probe and kept at approximately 35˚C with a regulated heating pad. After the 
proper anesthetic depth was reached, the skull was exposed and surrounding skin and tissue were 
retracted. The skull was then cleaned of any connective tissue and scored to improve adhesion 
and mechanical stability. A bone screw (19010-00; FST, CA, USA), with a short piece of 
stainless-steel wire (.008” coated; A-M Systems, WA, USA) soldered to the screw head, was 
inserted into the frontal plate of the skull and served as ground for the microdrive. Four shorter 
bone screws (M1.59 x 2 mm, stainless steel) were placed to further stabilize the implant. A 
circular craniotomy of 1.8 mm was made in the skull above the right hemisphere hippocampus 
CA1 at 5.4 mm anterior to the transverse sinus that runs between the posterior part of the cortex 
and the cerebellum and 3.7 mm lateral to the midline. The craniotomy was covered with a 
biocompatible elastomer (Kwik-Sil; World Precision Instruments, FL, USA) to protect the brain 
while the skull and the base of the screws were covered with a thin layer of bone cement (C&B 
Metabond; NY, USA). The Kwik-Sil was then removed to perform the durotomy and lower the 
microdrive, with tetrodes fully retracted, into the craniotomy. The microdrive was lowered to the 
surface of the brain to create a tight seal, and the remaining exposed part of the brain was 
covered with Kwik-Sil. Dental acrylic was applied in layers to secure the microdrive to the 
screws and the skull. A ground wire from the microdrive was connected to the wire from the 
ground screw, and the whole connection was embedded in the dental acrylic. Once the acrylic 
was dry, all four tetrodes were lowered to their initial positions, approximately 800 μm below the 
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cortical surface. To conclude the surgery, reversal agents were given to counteract the 
dexmedetomidine (Atipamezole) and midazolam (Flumazenil). After the bat woke fully from 
anesthesia an oral analgesic meloxicam (Metacam; Boehringer Ingelheim, Germany) was 
administered. After surgery, analgesics (three days) and antibiotics (seven days) were given daily 
until complete recovery. 
 
Electrophysiology data acquisition, pre-processing, and spike sorting 

After microdrive implantation, tetrodes were lowered in small increments every day over a 
period of 1-2 weeks, advancing towards the pyramidal layer of the dorsal hippocampus (CA1). 
The pyramidal cell layer was initially determined by the detection of high frequency “ripples” in 
the local field potential (LFP) signal, together with a transient (50-100 ms) increase in multi-unit 
activity. All tetrode adjustments were made while the bat was swaddled in a small fabric bag. 
Neural activity from the tetrodes was checked every day by connecting the bats’ microdrive to a 
wired recording system (Digital Lynx; Neuralynx, MT, USA) before and after experimental 
sessions. At the end of each session, one or more tetrodes were moved (20-160 μm) in order to 
sample a different group of neurons (upon tissue stabilization the following day). Tetrode 
movements were timed to ensure maximal time for stabilization of the tissue before the next 
day’s recordings. Tetrode positions were verified posthumously with histology (see below). To 
record neural activity while the bats were freely flying, we used a wireless neural data-logging 
system (‘neural-logger’; MouseLog16, vertical version, Deuteron Technologies Ltd., Israel) 
similar to that used previously32,62. The logger was housed in a custom 3D printed case, along 
with the RTLS tag and two LiPo batteries (one for the logger and one for the RTLS tag, minimal 
duration: 150 min) and connected to the electrical interface board of the microdrive at the 
beginning of each recording. Implanted bats used in the experiment weighed more than 110 g 
and could fly normally while equipped with the neural-loggers and RTLS tags, as expected from 
previous experiments using wireless recording systems32. Electrical signals from the four 
tetrodes (16 channels) were amplified (200x), bandpass filtered (1-7000 Hz), sampled 
continuously at a frequency of 31.25 kHz and stored on a SD-card memory on the logger, with a 
voltage resolution of 3.3 μV. Wireless communication between the neural-logger and a static 
transceiver ensured proper synchronization and allowed basic monitoring and configuration via 
software (Deuteron Technologies). At the end of the recording session, data from the loggers 
were extracted and saved. Spike sorting was done as described previously32,33,62. Briefly, 
recorded voltage traces were filtered (600-6000 Hz) and putative spikes were detected by 
thresholding (3 standard deviations) the filtered trace. Putative spike waveforms (32 samples, 
peak at the 8th sample) were fed into the cluster sorting software (SpikeSort 3D, Neuralynx, MT, 
USA). Manual sorting was performed using spike amplitude and energy as the main features. We 
quantified interneurons as units having a mean firing rate of > 5 Hz, and identified a total of 24 
interneurons. We found similar results between principal cells and interneurons. Specifically, 
70.8% (17 out of 24 putative interneurons) carried significant 2D spatial information during 
flight, 45.8% (11 out of 24 putative interneurons) modulated activity depending on the identity of 
the human landing target, and 29% (7 out of 24 putative interneurons) of units carried significant 
spatial information for the position of a human traversing the environment. Thus, the fractions of 
interneurons that carry significant 2D spatial information, are human modulated, and carry 
information about the position and identity of the human are representative of the fractions in the 
general unit population and similar to those found in the pyramidal unit population. 
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Histology  

At the end of the electrophysiology experiments, bats were given a lethal overdose of sodium 
pentobarbital and perfused transcardially with 200 ml phosphate buffered saline (0.025M, pH = 
7.4) followed by 200 ml of fixative (3.7% Formaldehyde in phosphate buffered saline). The 
microdrive and tetrodes were left in place throughout the perfusion process. Half an hour after 
the perfusion was complete the tetrodes were fully retracted, the microdrive was removed, and 
the brain was carefully dissected and stored in the fixative solution for 1-2 days. Following 
fixation, the brain was transferred to a 30% sucrose solution in PBS for 1-3 days. The brain was 
sliced into 40 μm coronal sections on a freezing stage using a microtome (HM450, Thermo 
Fisher Scientific). Following previously described procedures32 sections were then stained with 
DAPI, PCP4 and Iba1. Briefly, sections were permeabilized in PBS + 0.3% Triton-X (PBS-X) 
and incubated in a blocking solution (PBS-X + 10% donkey serum) for 2 hours. The sections 
were then incubated overnight at 4˚C with primary antibodies (goat anti-Iba1, 1:500 dilution, 
ab5076 Abcam; rabbit anti-PCP4, 1:500 dilution, HPA005792, Sigma). After primary incubation, 
the sections were washed in PBS-X and incubated for 120 minutes at room temperature with 
secondary antibodies (donkey anti-goat Alexa-647, 1:1000 dilution, Invitrogen A32849; donkey 
anti-rabbit Alexa-488, 1:1000 dilution, Invitrogen A-21206). DAPI (1:10,000 dilution, Thermo 
Fisher Scientific) was added in the last 10 minutes of secondary incubation. 
Sections were washed in PBS-X and cover-slipped using an aqueous mounting medium 
(ProLong Gold Antifade Mountant, Thermo Fisher Scientific). Fluorescent images of each 
section around the implant coordinates were acquired using an Axioscan Slide Scanner (Zeiss). 
The location of the tetrodes used for the analyses were visualized and localized to the dorsal 
hippocampal area CA1.  
 
Data Analysis 
All analyses were conducted using custom code in MATLAB (2022a, MathWorks). 
 
Processing of positional data during task 

Preprocessing of bat tracking data and basic analysis of positional features 
The positions of all bats recorded by the RTLS were smoothed using local quadratic regression 
(1 s window). For three out of the four bats, a velocity threshold of 0.5 ms-1 was used to segment 
a bat’s session into rest and flight epochs. The fourth bat was tracked exclusively with the 
marker-based motion capture system (Cortex Motion Analysis), and the same 0.5 ms-1 threshold 
was used to segment the bat’s session into rest and flight epochs. To ensure precise capture of 
flight initiation and landing, flight epochs were manually inspected and trimmed based on the 
convergence of velocity in x, y, and z directions to zero. Bats tended to rest in a handful of 
locations, almost exclusively in two upper corners of the room (Supplementary Fig. 14). While 
in their rest location bats did not typically crawl to different places on the wall. Epochs when the 
bats were confirmed to be stationary in a preferred rest location were isolated by using a velocity 
threshold of < 0.4 ms-1 and when positional data indicated the bat was < 200 cm from the 
centroid of a preferred rest location for that session.  
 
Preprocessing of human tracking data and basic analysis of positional features 
Positions of humans were tracked with three RTLS tracking tags, one positioned on the right 
hand (reward delivery hand), one positioned on the left hand (landing pedestal hand), and one in 
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the right lab coat pocket. Human traverses were identified as follows. A moving median filter (2 
s) was applied to the tracking data obtained from the tag in the coat pocket. The beginnings of 
traverse trials were defined as when the velocity of the human’s lab coat tag exceeded the 
defined threshold (0.4 ms-1), and the human was < 0.1 m from the traverse start position x, y 
coordinates. The end of traverse trials were defined as > 12 s after the start of a traverse trial, 
when the velocity of the human’s lab coat tag dipped below threshold (0.4 ms-1) and its distance 
was < 0.3m from the traverse start position x, y coordinates. Data from rare cases where humans 
paused mid-traverse and the velocity dipped below 0.2 ms-1 were discarded. Human velocity was 
calculated using positional data from the tag in the coat pocket, as it was unaffected by hand and 
arm acceleration and deceleration (Supplementary Fig. 6). All periods when the human was 
handling or administering reward were excluded from analysis and were identified as follows. 
The peaks of accelerometer movement from the tags on the right and left hands were used to 
identify putative reward initiations (when the humans raised their hands up to deliver reward 
from a syringe). Reward delivery and bat handling were further verified by manual inspection of 
video. Timestamps that marked the start/end of handling/reward epoch were buffered with an 
additional 100 positional samples to ensure no artifactual signal was included in the analysis of 
human traverses.  
 
Place fields and spatial information 

Spatial information in 2D during self-motion  
For the analysis of spatial firing fields across all flights, we considered only active cells (n = 259 
from four bats), with a minimum firing rate of 0.2 Hz, a minimum of 12 flights, and a minimum 
of five flights with at least 5 spikes. We focused on the spatial firing in the x, y plane (parallel to 
the ground), where most of the positional variance was concentrated. To compute 2D spatial 
firing-rate maps, we projected all positions during flight onto the x, y plane and calculated 
occupancy-normalized firing rates as follows. We binned the 2D area of the room into spatial 
bins of a fixed size (0.15 x 0.15 m2), calculated the time spent in each bin (occupancy), and 
counted the number of spikes (spike-count) in each bin. We smoothed both the spike-count map 
and occupancy map with a Gaussian kernel (σ = 1.5 bins) and calculated their ratio, bin by bin, 
thus obtaining the firing rate per bin. Spatial bins in which the bat spent < 150 ms were 
invalidated (white pixels in rate maps; e.g. Supplementary Fig. 4c), unless surrounded by at least 
one valid bin. Spatial information per spike79 was calculated by summing across all valid bins: 
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Where pi is the probability of being in bin i, λi is the firing rate in the same bin and λ is the 
average firing rate across all bins. Cells were classified as significantly spatially informative via 
a shuffling procedure. We compared the empirical value of the spatial information to 
a spike-shuffled distribution, which was generated by randomly shifting the timestamps of the 
cell’s spike-train circularly relative to behavior (after removing rest epochs), and used to 
calculate shuffled spatial information. The shuffle procedure was repeated 1000 times for each 
neuron. Significant place cells were defined as active neurons for which the empirical value of 
the spatial information exceeded the upper 95% confidence interval of its shuffled distribution. 
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Spatial information in 1D during self-motion (trajectories) 
Many flights that the bats execute are idiosyncratic, repeated paths that emerge as the animal 
explores the room (Fig. 1b). We took advantage of this behavior and calculated spatial firing 
maps along tightly confined repeated trajectories. Flights were clustered into trajectories by 
using an analogous approach to that described previously31,32,62. Briefly, all trajectories were 
spatially down sampled to seven points per flight (first and last points corresponded to the 
takeoff and landing positions, respectively). The euclidean distance between down-sampled 
flights was used as a measure of flight similarity, and similar flights were clustered together via 
agglomerative hierarchical clustering. The linkage distance was set between 1.2 m and 1.4 m for 
each session, after manual inspection of trajectories. 1D spatial firing fields were calculated for 
each trajectory and neuron with at least seven flights, a minimum of four flights with spikes, and 
a minimum of 15 spikes across all flights (n = 247 cells from four bats). To compute the 1D-
fields we used a similar procedure to the one for 2D maps, except applied in only one dimension 
as follows. Flights of each analyzable trajectory were rescaled and binned between takeoff and 
landing such that each bin’s edges were defined by the distance from takeoff along the flight 
trajectory (bin size = 0.15 m). The amount of time spent in each bin was calculated (1D 
occupancy map), and the number of spikes in each bin were counted (1D spike-map). The 1D 
occupancy maps and 1D spike-maps were smoothed with a Gaussian window (7 samples), and 
spatial information was calculated across 1D-bins as described above. Similarly to what was 
described for the 2D rate maps, a shuffling procedure was used to assess the significance of the 
spatial information of each 1D-field. The shuffle distribution of spatial information values was 
constructed as follows. Each flight in the trajectory was rescaled (as above), the spike train was 
randomly circularly shifted relative to rescaled position, and the final shuffled spike-map was 
obtained by counting the number of spikes in each bin across all circularly shifted flights (as 
above). This shuffled spike-map was smoothed with a Gaussian window (7 samples), and the 
bin-by-bin ratio of the shuffled spike-map and 1D occupancy map produced the shuffled rate 
map. This shuffle was repeated 1000 times, and the resulting spatial information values built the 
distribution to which the empirical spatial information value was compared. Significant 1D-fields 
were defined as those for which the empirical value of the spatial information exceeded the 
upper 95% confidence interval of its shuffled distribution, after applying Bonferroni correction 
for the number of trajectories examined for that neuron. Stability of 1D-fields within a session 
(Supplementary Fig. 4) was measured by splitting each path into even and odd flights (trials), 
separately calculating 1D-fields on each half (Supplementary Fig. 4a), and calculating the 
Spearman correlation between corresponding halves (Supplementary Fig. 4b). Stability of 1D 
fields within a session across human landing targets was measured by splitting each path into 
flights to experimenter #1 and flights to experimenter #2, separately calculating 1D-fields on 
each set of flights (Supplementary Fig. 7a), and calculating the Spearman correlation between 
corresponding sets (Supplementary Fig. 7b). 
 
Correlation of flights within and across human landing targets  
To quantify the similarity of flights of a given trajectory within and across human landing 
targets, we calculated the Pearson correlation between pairs of flights from trajectories by 
concatenating x, y, and z coordinates (Fig. 1c). For every trajectory that had at least four repeated 
flights to each human, we calculated the intra-human and inter-human trajectory correlation as 
follows. To get the intra-human trajectory correlations we calculated the Pearson correlation of 
each flight of a given trajectory and human landing target to each other flight of that trajectory 
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and same human landing target. Correlations from all the human landing target and trajectory 
combinations were then pooled together. To get the inter-human trajectory correlations we 
calculated the Pearson correlation of each flight of a given trajectory and human landing target to 
each other flight of that trajectory to the other human landing target. Correlations from all 
trajectories were then pooled together.  
 
Correlation of traverses between and across humans 
To quantify the similarity of human traverses, we calculated the Pearson correlation between the 
concatenated x and y coordinates of pairs of traverses (Fig. 2c). To obtain a measure of similarity 
between traverses executed by one human, we calculated the Pearson correlation of all traverses 
one human performed to all other traverses that same human performed. To quantify the 
similarity of traverses across humans we calculated the Pearson correlation of each traverse one 
human performed to each other traverse that the other human performed. We quantified the 
similarity of the velocity profiles across humans by calculating the Pearson correlation of the 
velocity profiles (concatenated x, y, and z velocity) for one human’s traverses to the velocity 
profiles of the other human’s traverses (Supplementary Fig. 15).  
 
Effect of the experimenter identity on firing modulation of hippocampal neurons in flying bats 
To quantify if a neuron was significantly modulated by the identity of the human at the 
landing/takeoff location we calculated the difference in mean firing rate of flights that 
ended/started in the same location, but with different humans standing at that location. Inspection 
of the peak-normalized sorted plot of 1D place fields suggested that peak activity clustered 
around takeoff and landing (Supplementary Fig. 4a), so we chose a 2 s window at takeoff (-1.75 to 
+0.25 s) or at landing (-0.25 to + 1.75 s) to calculate the mean difference in firing rate. To 
determine if a cell was significantly modulated by the identity of the human landing target at a 
given landing location, we performed a permutation test as follows (this process was then done 
for all takeoff locations). For each landing location that had at least four trials to each human, 15 
spikes across all trials in the landing time window, and at least four flights with spikes in the 
landing time window, we calculated the difference in mean firing rates obtained in the landing 
time window to each human. We then constructed a shuffled distribution of mean firing rate 
differences by shuffling the label of which human was the landing target for each trial, and 
taking the difference in mean firing rates of two subsets of the shuffled-label data with equal 
sizes to the empirical data. The shuffling was performed 1000 times, or for as many permutations 
as the number of trials per human permitted (maximum permissible permutation test resolution 
for inclusion was p = 0.02). Neurons were significantly modulated by the human landing target if 
the empirical value of the difference in mean firing rates exceeded the upper 95% confidence 
interval of the shuffled distribution, Bonferroni corrected for the number of landing/takeoff 
locations examined. For the analysis where we explicitly excluded any flights where the other 
bat in the room was present at landing, we performed the same procedure as above but only for 
landing locations where the inclusion criterion was met after excluding all trials when the other 
bat was at the landing location. The other bat was classified as present at a landing location if the 
Euclidean distance of the other bat’s position to the coordinates of the tripod at that location was 
< 200 cm and the bat’s velocity dipped below the flight detection threshold (0.4 ms-1). 
 
Effect of the presence of the other conspecific at landing on firing rate during flight 
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To quantify if a neuron was significantly modulated by the presence of the other conspecific at 
the landing location, we used a permutation test as was done above for the human landing target. 
We calculated the difference in mean firing rate in the window at landing (-0.25 to +1.75 s 
aligned to landing) between flights to the same locations where the other conspecific was either 
present or absent. We compared this empirical value to a shuffled distribution obtained by 
permutation test, shuffling the labels of whether the conspecific was absent or present at landing. 
Neurons were significantly modulated by the presence of the conspecific at landing if the 
empirical value of the difference in mean firing rates exceeded the upper 95% confidence 
interval of the shuffled distribution, after applying Bonferroni correction for the number of 
landing locations examined for that neuron. We classified the other bat as present at a landing 
location in the same manner as described above. 

Spatial information for the position of the other bat in the room during recorded bat rest 
To assess whether neurons carried significant spatial information about the position of the other 
bat in the room, we calculated the spatial information of 1D rate maps using the neural data of 
the stationary recorded bat and the 1D occupancy maps of trajectories (linearized and binned, 
described above) executed by the conspecific. We clustered the flights of the conspecific into 
trajectories using the agglomerative hierarchical clustering method (see above). We then 
excluded any flights from analysis where the recording bat was not in a preferred resting 
location. The recording bat was confirmed to be in a preferred rest location if velocity was below 
a threshold of 0.4 ms-1 and the Euclidean distance of the bat to the centroid of the preferred 
resting location was < 200 cm. Preferred resting locations were determined by k-means 
clustering all positional data where the velocity threshold dipped below 0.4 ms-1 and taking the 
centroids of the resulting clusters. Spatial firing was calculated for each conspecific trajectory 
and recording bat neuron where there were at least 7 flights, a minimum of four flights with 
spikes, and a minimum of 15 spikes across all flights (n = 130 cells from four bats). We 
computed the 1D rate maps in the same manner as the self-motion 1D trajectories above and 
applied a Bonferroni correction for the number of trajectories examined for that neuron. 
Significance of spatial information was assessed by comparing the empirical value to a shuffled 
distribution. The shuffled distribution was constructed in the same manner as above described for 
the shuffled distribution of the 1D rate maps.  
 
Spatial information for human position during human movement and recorded bat rest 
To assess whether neurons carried significant spatial information about the position of the 
humans in the room, we performed an analysis similar to the one for assessing 2D spatial 
information described above. First, we asked if neurons from the stationary recorded bat carried 
significant spatial information for the position of any human during the stereotyped traverse to 
and away from the bats hanging in a preferred rest location. During experiment #2 only one 
human was ever moving at a time, and we included all times where a human was moving, but 
was not handling or administering reward (see above for how human traverses were defined). 
We also excluded any times when the recorded bat was not in the preferred resting location (see 
above for how a bat was determined to be at a preferred resting location). Rate maps were 
calculated from the human 2D occupancy map and recorded bat spike data. Only sessions with at 
least six human traverses, at least four traverses with spikes, and at least 15 spikes over all 
traverses were included in the analysis. We projected all human positional data onto the x, y 
plane, binned the positional samples into 0.15 x 0.15 m2 bins, and calculated the amount of time 
spent in each bin (occupancy map). We then counted the number of spikes from the recorded bat 
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that occurred in each bin to obtain the spike-map. We smoothed both the spike-map and 
occupancy map with a Gaussian kernel (σ = 1.5 bins) and calculated their ratio, bin by bin, thus 
obtaining the firing rate per bin. Spatial bins where the human spent < 1 s were invalidated 
(white bin in rate maps), unless surrounded by at least one valid bin. Spatial information was 
calculated from the 2D firing rate map and compared to a shuffled distribution. The shuffled 
distribution was obtained by circularly shifting the spike train of the recorded bat relative to 
human movement (with periods between traverses removed), counting the number of spikes in 
each spatial bin (shuffled spike-map), computing the bin-by-bin ratio of the shuffled spike-map 
to the 2D occupancy map (shuffled rate-map), and calculating the spatial information from that 
shuffled 2D rate map. Neurons carried significant spatial information for human movement if the 
empirical value of the spatial information exceeded the upper 95% confidence interval of its 
shuffled distribution. To assess spatial information for each human’s movement independently, 
we performed the same analysis as above but with occupancy maps for traverses of either 
experimenter #1, or experimenter #2, Bonferroni corrected for the number of experimenters 
examined per neuron (Fig. 2e). Only traverses with at least six trials for a given human, at least 
four trials with spikes, and 15 spikes total across all traverses were included in the analysis. For 
all neurons that carried significant spatial information for just one human, we compared the 
normalized spatial information for the human for which spatial information was significant 
(preferred human) to the normalized spatial information of the other human (non-preferred 
human) (Wilcoxon signed rank test, n = 43 neurons, p = 1.1 x 10-8; Fig. 2f). Normalized spatial 
information is the empirical spatial information divided by the mean of the spatial information 
values calculated from spike shuffled trials80. Then, for each neuron we compared the 
normalized spatial information value to the normalized spatial information value calculated from 
the rate map that excluded all epochs where the other conspecific was flying (Wilcoxon signed 
rank test; n = 43 neurons, p = 0.44; Supplementary Fig. 16b). Flight epochs were determined 
using the method described above for identifying periods of flight in the bats.  
 
Conjunctive code for space and experimenter identity during self-motion 
To quantify the extent to which neurons significantly modulated their activity during flight 
depending on the human landing target at multiple different locations in the room, we first 
identified which neurons had at least four locations with enough flights to/from each human to 
be analyzed. We then counted the number of locations for which each neuron significantly 
modulated its activity depending on the identity of the human (Fig. 1g). Then, to quantify how 
factors of human identity and location contributed to the firing rate of a neuron at landing, we 
used a simple linear model to predict the mean firing rate around landing by using three 
predictors: a non-ordinal categorical variable encoding the identity of the human at landing, a 
non-ordinal categorial variable encoding the landing location, and their interaction term (lmfit 
Matlab; Supplementary Fig. 9a). The landing location categorical variable is the assigned number 
of the tripod the bat landed at. This was determined by calculating the Euclidean distance of the 
bat’s position at the end of each rewarded flight to every possible tripod landing location (1-4) 
and taking the tripod with the minimum distance. Model comparison was performed to identify, 
for each neuron, which variables significantly improved the prediction of firing rate upon landing 
(anova Matlab, significance threshold p < 0.05). This model allowed us to disambiguate a purely 
additive coding for human and location from a conjunctive coding of human and location. In 
total 134 neurons were modeled, and 7 neurons were not included in further analysis because 
there were no significant variables that improved prediction of firing rate at landing (n = 127 
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neurons). Each neuron was classified as ‘additive’, ‘conjunctive’, ‘human only’, or ‘location 
only’. ‘Additive’ neurons had significant Human and Location variables, but not significant 
interaction terms. ‘Conjunctive’ neurons had significant Human and/or Location terms, as well 
as a significant interaction term. ‘Human only’ neurons had a significant Human term, but not 
significant Location or interaction terms. ‘Location only’ neurons had a significant Location 
term, but not significant Human or interaction terms. We then compared these results to those 
obtained via permutation test classifying a neuron as modulated by the human identity upon 
takeoff/landing (see above; Supplementary Fig. 9b).  
 
Effect of the reward quantity on unit modulation at landing 
To examine whether there was a global effect of reward quantity on neural responses around 
landing on different human targets, we calculated the peak firing rate change around landing, the 
mean firing rate change immediately upon landing (0 to +1.75 landing at 0), and the Spearman 
correlation between average firing rates to different human landing targets for a given unit and 
landing location (Supplementary Fig. 13). Peak firing rate change was calculated by dividing the 
peak firing rate in the same window as used previously (-0.25 to +1.75 around landing) by that 
unit’s baseline firing rate. Mean firing rate change was calculated by dividing the mean firing 
rate in the window immediately after landing by that unit’s baseline firing rate. We used the 
same inclusion criteria as in previous analyses, including only units x landing locations x humans 
with at least four flights with spikes and at least 15 spikes across all flights.  

Remapping analysis 
 
Remapping on specific trajectories 
We calculated the correlation, distance between peaks, and remapping scores for the 1D 
linearized rate maps of a given trajectory to different human landing targets (Supplementary Fig. 
6). For a pair (trajectory x unit) to be included in the analysis it had to meet the same criteria as 
for examining 1D spatial information above (at least four flights with spikes, at least 15 spikes 
across all flights), and had to carry significant 1D spatial information. Linearized rate maps were 
computed in the same manner as described for calculating 1D spatial information above. The 
correlation was the Pearson correlation between 1D rate maps to different human landing targets. 
The distance between peaks was the distance between maximum values of the linearized rate 
maps. The remapping score was calculated as follows81: for a given unit and trajectory we 
obtained the mean firing rates during the 1D linearized rate maps to different human landing 
targets; the score was defined as the unsigned difference between those rates, divided by their 
sum. A score of 0 indicates no rate change, while a score of 1 indicates that one rate value 
dominates the other. The empirical distributions of the correlation, distance between peaks, and 
remapping scores were compared to their respective null distributions, which were constructed as 
follows. The null correlations were calculated by taking the Pearson correlation between 1D 
linearized rate maps of non-paired units (one per unit) for a given trajectory to different human 
landing targets. The null distance between peaks measure was calculated by taking the distance 
between maximum values of the linearized rate maps of non-paired units for a given trajectory to 
different human landing targets. The null remapping score was calculated by shuffling the human 
landing target labels between flights of a given trajectory and calculating the rate maps for paired 
units across the trial-shuffled rate maps. It is important to note that the remapping score null 
distribution represents no rate remapping, as the trials are randomly chosen across human 
landing targets. On the contrary, the correlation and distance between peaks null distributions 
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represent global remapping, as they compare the rate maps of non-paired units (random 
movement of place fields). If the spatial profile of the responses to different experimenters is 
much more similar (high correlation, low distance between peaks) than those predicted by global 
remapping, this suggests the absence of global remapping. If the difference in firing rates 
(remapping score) is significantly higher than predicted by the null hypothesis, this suggests a 
phenomenon resembling rate remapping. 
 
Remapping on 2D rate maps between contexts 
Classical remapping analyses compare the rate maps across contexts in an experiment. In the 
present study humans stood at alternating locations in the room for extended periods of time, 
creating “contexts” where the humans were standing in a given configuration (i.e. context 1 is 
experimenter #1 at location A and experimenter #2 at location B, while context 2 is experimenter 
#1 at location B and experimenter #2 at location A; Supplementary Fig. 6). To compute 
remapping metrics across these contexts, we defined a context as all the occupancy and spikes 
that occurred when the humans were standing in a given configuration in the room. If there were 
multiple contexts in which sufficient flights and spikes occurred, the top two contexts with the 
most occupancy were used. For a pair (unit x contexts) to be included, the fraction of pixels 
shared between the two contexts’ rate maps had to be at least 0.3, there had to be at least 20 
spikes total within a context, and the unit had to carry significant spatial information. The 2D 
rate maps for each context were computed as described above in the section detailing 2D rate 
map calculation. The correlation, distance between rate map centroids, and remapping scores 
were then computed between rate maps. The remapping score was calculated similarly to the 1D 
case, dividing the unsigned difference in mean firing rates of the 2D rate maps by their sum. The 
center of mass movement was the euclidean distance between the center of mass of each rate 
map, as identified by the Matlab regionprops function. The correlation was simply the Pearson 
correlation between rate maps. The null distributions for correlation and center of mass 
movement were constructed similarly to the 1D case, by taking the correlation or distance 
between centers of mass between two rate maps of non-paired units (one per unit) from each 
context. The null distribution for the remapping score was also constructed similarly to the 1D 
case: a random subset of flights from each context was used to construct the rate maps and the 
remapping score was computed across trial-shuffled maps for paired units. As explained for the 
remapping analysis on specific trajectories, the remapping score null distribution represents no 
rate remapping, whereas the correlation and distance between peaks null distributions represent 
the presence of global remapping. 
 
Temporal stability of human modulated units  
To determine if the modulation associated with the human landing target was present from the 
first trial or emerged as the session progressed, we calculated the correlation between mean 
firing rates of the first and second halves of flights along each 1D linearized trajectory to a given 
human (Supplementary Fig. 8). This distribution of correlations was compared to a null 
distribution constructed from the correlation between randomly chosen subsets of flights from 
that trajectory and human. The null represents what would be expected if the modulation were 
present from the first trial and did not evolve over time. 
 
Statistical Analysis 
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No formal methods were applied to predetermine sample sizes and adopted sample sizes were 
similar to those used by similar studies. No randomization of experimental sessions was 
performed and no blinding to experimental conditions was implemented during the analysis. All 
statistical comparisons were performed using nonparametric tests (Permutation test, Wilcoxon 
signed rank test, Kolmogorov-Smirnov, or bootstrap tests) unless otherwise stated. The tests 
were two-tailed. Where appropriate, adjustments for multiple comparisons were performed using 
the Bonferroni correction. 

 
5.2   Supplementary materials and methods for Chapter 3 
 
Subjects, experimental design, and behavioral tasks 
 
Imaging data were collected from the hippocampal dorsal CA1 area of n = 7 adult (2-3 years old) 
male, laboratory born Egyptian fruit bats (Rousettus aegyptiacus; ~ 160 gr weight) engaged in 
aerial spatial foraging61. Prior to the experiments, bats were housed in a large, environmentally 
enriched colony room where they were able to fly freely and socialize. Bats were naive to the 
experimental flight room prior to the start of flight experiment training61. When not in the flight 
room, experimental animals were socially housed in cages (31 cm x 36 cm x 45 cm or 47 cm x 77 
cm x 93 cm) in a separate communal housing room. The lights in the housing room were 
maintained on a 12-hour reverse light cycle (lights on/lights off; 7 am/7 pm). All flight experiments 
were performed at the same time of day during their awake hours (dark cycle). All experimental 
procedures were approved by the Institutional Animal Care and Use Committee of the University 
of California, Berkeley.  

All experiments were performed in an acoustically, electrically and RF- shielded room (5.6 m 
x 5.2 m x 2.5 m) with high precision lighting control61. The flight room walls and ceiling were 
covered with black acoustic foam to dampen noise from outside of the experimental room and 
reduce acoustic reverberation. An additional layer of acoustically absorbing black felt was used 
to protect the acoustic foam from being damaged by the bats while maintaining the intended 
acoustic environment61,62. The flight room floor was also covered with the same acoustically 
absorbing black felt. The 3D spatial position of the bat was tracked at millimeter resolution using 
16 motion capture cameras (Raptor-12HS) distributed across the ceiling (Motion Analysis, CA), 
as described previously61. Each camera tracked six to eight reflective markers that were attached 
to the wireless microscope cover carried by the bat and the video was sampled at a frame rate of 
120 Hz. The 3D position of the marker set was computed and saved using a proprietary 
commercially available software specifically designed for the motion tracking hardware (Cortex-
64; Motion Analysis, CA). Marker positions were processed with custom-written Matlab 
(MathWorks, MA) functions as previously described61. Finally, the resulting tracking data was 
smoothed by 10 samples (83ms). Calibration of the video tracking system was done daily (using 
the calibration wand and by placing 14 reflective markers on the same reference places) prior to 
each recording session in order to assure reliable reconstruction accuracy of 3D position and day-
to-day registration of the coordinate system.  

 
Foraging experiment 

 
The foraging experiment consisted of three sessions: pre-behavioral rest (5 min), foraging (~ 50 
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min), and post-behavioral rest (5 min). For all experiments, bats were food restricted to no less 
than 80% of their baseline body weight to motivate their foraging behavior during the experiments. 
Neural activity was imaged continuously during all sessions and the bat remained in the flight 
room for the entire duration of the experiment. During the pre-behavioral rest session, the bat was 
kept in a small cage (25 cm x 32 cm x 46 cm) within an opaque enclosure (40 cm x 46 cm x 65 
cm) inside the flight room. After the pre-behavioral rest session, the bat was taken out of the 
enclosure, released from the cage and allowed to forage freely from the feeders. This was followed 
by the post-behavioral rest session, which was performed in the same manner as the pre-behavioral 
rest session. 

Details of the basic behavioral experimental setup have been described previously61. Four 
automated feeders were placed on the wall at one end of the room, with two on each side of the 
wall (Fig. 3d). Two of the feeders (one each on the far sides of the wall) were active during the 
behavioral sessions (Fig. 3d). Each feeder had an infrared beam break sensor to detect when a bat 
landed on the feeder and a motor driven reward system that administered a pureed fruit (~ 0.3 
ml/reward). The feeders were all independently controlled by an Arduino (Uno Rev3) and Adafruit 
Motorshield (1438; Adafruit, NY) interfaced with a computer placed outside of the experimental 
room. Positional tracking (Motion analysis, CA) was used to monitor crossings of a virtual 2D 
boundary four meters away from the feeders. The bat was required to fly across the virtual 
boundary in order to bait the feeders. Once the bat received reward at a feeder, that feeder was 
deactivated to encourage the bat to cross the invisible boundary and re-bait the feeders. Bats could 
return to any feeder after re-baiting. Our dataset was collected when bats were experienced in 
flying for reward in the flight room (after at least five to ten foraging sessions in this environment) 
and had begun to reliably and spontaneously fly repeated flights. On average, bats flew 76 + 20 
flights per session, which yielded a total of 4,731 flights. 73.4% of all flights (3,472 of 4,731) 
occurred along repeated flight paths. 

 
Lights-on vs. lights-off foraging experiment 
 
Two of the seven bats also participated in the lights-on:lights-off:lights-on’ foraging experiment. 
These experiments were similar to those described above but consisted of five sessions: pre-
behavioral rest (5 min), lights-on foraging (20 min), lights-off foraging (20 min), lights-on 
foraging’ (20 min) and post-behavioral rest (5 min). Egyptian fruit bats can alternate between two 
sensory modalities that enable high resolution distal sensing: echolocation when flying in the 
dark82–84 and vision when navigating in light85,86. Calcium responses were recorded continuously 
and the bat remained in the flight room throughout the entire experiment without disruption from 
the experimenters. As described above, the bat was kept in a small cage (25 cm x 32 cm x 46 cm) 
within an opaque enclosure (40 cm x 46 cm x 65 cm) inside the flight room during all the pre- and 
post-behavioral sessions. After the pre-behavioral rest session, the bat was released into the room 
to begin the self-directed foraging task with the room light panels turned on (4.95 + 0.07 lux; mean 
+ SD; measured at the floor level in the center of the room using ILT-1700 illuminance meter; 
International Light, MA). Automated lighting was controlled using arrays of ceiling-mounted 
LEDs (5% Lumos; C3 Lighting, CA) with a timer (Q Light Controller+) that turned off the lights 
(0.08 + 0.02 lux; mean + SD; residual light from the near-IR [750 nm peak] positional tracking 
system) for the lights-off portion of the experiments and turned them back on to the same lighting 
levels for the second iteration of the lights-on portion of the session.  
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Microscope design 
 
We used a custom miniature microscope (miniscope) made of 3D printed material (black resin; 
Formlabs, MA) (Fig 3a)60 similar to previously described designs15,87–89. This microscope is open 
source and the design files, part numbers and software are publicly available: 
https://github.com/gardner-lab/FinchScope and https://github.com/gardner-lab/video-capture. In 
brief, a blue LED produced excitation light (470 nm peak; LUXEON Rebel). A drum lens (#45-
549; Edmund Optics) collected the LED emission, which passed through an excitation filter (3.5 
mm X 4 mm x 1 mm, ET470/40x; Chroma), deflected off a dichroic mirror (4 mm x 6 mm x 1 
mm, T495lpxr; Chroma) and entered the imaging pathway via a ~ 0.25 pitch gradient refractive 
index (GRIN) objective lens (GT-IFRL-200; GRINTech, Germany). Fluorescence from the sample 
returned through the objective, the dichroic, an emission filter (4 mm x 4 mm x 1 mm, ET525/50m; 
Chroma) and an achromatic doublet lens (#45-207; Edmund Optics) that focused the image onto 
an analog CMOS sensor with 640 × 480 pixels (MB001; 3rd Eye CCTV). The frame rate of the 
camera was 30 Hz and the field of view was approximately 700 μm along the diagonal axis. Video 
was broadcast at ~ 2.37 GHz via a wireless transmitter (TX24019, 100 mW). The entire system 
was powered with a lightweight consumer grade 3.7 V, 300 mAh Lithium Polymer (LiPo) battery, 
which provided stable recording for over an hour at average imaging LED intensities (< 100 µW 
post-objective power). The NTSC video and a synchronization signal were both digitized through 
a USB frame grabber. Custom software written in the Swift programming language running on the 
macOS operating system (version 10.10) leveraged native AVFoundation frameworks to 
communicate with the USB frame grabber and capture the synchronized analog video stream. The 
video and sync signals were written to disk in MPEG-4 container files. The video was encoded at 
full resolution using either H.264 or lossless MJPEG Open DML codecs and the sync signal was 
encoded using the AAC codec with a 48 kHz sampling rate. 
 
Surgical Procedure  
 
General surgical and anesthesia procedures were similar to those previously described for Egyptian 
fruit bats33,62 and the GRIN lens implant procedure was adopted from work in rodents89,90. 
Analgesics were given for three days after surgery and antibiotics were given for one week after 
surgery. 

Anesthesia for all procedures was induced with a subcutaneous injection cocktail of ketamine, 
dexmedetomidine and midazolam. The bat was then placed in a stereotax (Model 942; Kopf, CA) 
where the level of anesthesia was monitored by toe pinch reflex and breathing rate. A rectal probe 
measured the bat’s body temperature continuously and a heating pad was used to maintain the bat’s 
body temperature stable at ~ 34.5 ℃. Anesthesia was maintained throughout surgery by successive 
injections (roughly once per hour) of an anesthesia maintenance cocktail consisting of 
dexmedetomidine, midazolam and fentanyl. Lactated Ringer’s solution was subcutaneously 
administered to maintain hydration. 

While the bat was under anesthesia, the skull was exposed and cleaned, and the surrounding 
skin and tissue was retracted. The coordinates above dorsal CA1 (dCA1) were measured on the 
outside of the skull from a common reference point at the confluence of sinus. A circular 
craniotomy (1.2 mm diameter) was made through the skull over the left hemisphere. The center of 
the craniotomy was positioned 5.8 mm anterior to the transverse sinus that runs between the 
posterior part of the cortex and the cerebellum, and 2.8 mm lateral to the midline. The brain surface 

https://github.com/gardner-lab/FinchScope
https://github.com/gardner-lab/video-capture
https://github.com/gardner-lab/video-capture
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was exposed but the dura was left intact. A NanoFil syringe (36 GA beveled needle; WPI, FL) was 
attached to the stereotax and slowly lowered into the dorsal CA1. After waiting for three minutes, 
1.2 μL of pAAV9.hSyn.GCaMP6f.WPRE.SV40 was injected (titer 1.40e+13, Lot# 100837; 
V20744; Addgene, MA) at a rate of 4 nl/sec using a microinjection pump (UMP3; WPI, FL). 
Genetic expression driven by the hSYN promoter has been shown to express in both excitatory 
and inhibitory neural cell types in the mammalian hippocampus91. Five to ten minutes after 
completing the injection, the needle was slowly retracted out of the brain. The craniotomy was 
then filled with a biocompatible elastomer (Kwik-Sil; WPI, FL) and the tissue was closed with 
sutures.  

One week after the injection, the bat was placed under anesthesia using the same procedures 
for the lens implantation procedure. The skin was retracted in the same manner as the injection 
surgery to re-expose the craniotomy and the biocompatible elastomer was removed from 
craniotomy. A GRIN lens (1 mm diameter x 9 mm height, 0.5 pitch; 1050-002177; Inscopix, CA) 
was placed inside the same craniotomy directly dorsal to CA1. The surface of the skull was 
carefully cleaned and scored to facilitate cement bonding to the skull. Three bone screws (19010-
00; FST, CA) were inserted into the skull to provide anchor points for the cement. A thin layer of 
bone cement (C&B Metabond; Parkell, NY) was applied onto the surface of the skull and around 
the base of the bone screws. Kwik-Sil was then removed from the craniotomy to expose the brain 
surface. The cortex above dorsal CA1 was aspirated using a vacuum pump attached to a 30 GA 
blunt needle. Ice cold sterile lactated ringer solution along with pressure from an absorbable 
sponge (Gelfoam; Pfizer, NY) was applied to the brain to prevent bleeding during the aspiration. 
Aspiration continued slowly until the parallel fibers of the hippocampal oriens were visually 
identified. The relay GRIN lens was held by a custom-built 3D printed lens holder attached to a 
vacuum pump. The lens was slowly lowered and positioned dorsal to the CA1 region of the 
hippocampus (~ 2.5 mm below the surface of the brain). After implanting the lens, Kwik-Sil was 
applied to the base of the craniotomy to protect the brain at the interface of the lens and the skull. 
Carbon powder was mixed with dental acrylic to create an opaque black acrylic that was applied 
around the surface of the skull and above the bone screws to hold the implanted lens in place. The 
top of the GRIN lens was covered with Kwik-Sil elastomer and a small plastic cap to protect it 
from mechanical damage while the bat recovered. 

Two to three weeks after lens implantation, the miniaturized microscope was aligned with the 
GRIN lens. While under anesthesia, the Kwik-Sil elastomer protection was removed from the relay 
lens and the surface of the lens was cleaned with 70% ethanol. A cable from the imaging DAQ 
was attached above the CMOS to control the LED power and stream video data, which was 
acquired using custom video capture software (https://github.com/gardner-lab/video-capture)60. 
The miniscope was attached to a stereotax arm using a custom CNC machined clamp and moved 
above the implanted relay lens to find the best field of view with the maximal number of 
fluorescent cells visible. In order to account for the settling of the dental acrylic after drying, the 
miniscope was raised approximately 50 µm above the ideal focal plane before anchoring it above 
the relay lens with the dental acrylic. A custom 3D printed protective housing case was optically 
glued (Flow-It ALC; Pentron, CA) onto the 3D printed protective base cone. One to three days 
after attachment, the miniscope was focused to an optimal field of view (by rotating the CMOS 
along the threaded exterior of the microscope body) and secured to the protective case with a thick 
layer of optical glue to prevent any further movement for the rest of the experiment. 
 
Histology 
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At the end of the experiment, bats were administered an overdose of pentobarbital and perfused 
transcardially using a flush of 250 ml of phosphate buffered saline (PBS, pH 7.4) spiked with 0.5 
ml heparin (1,000 USP units/ml) followed by 250 ml of fixative (3.7% formaldehyde in PBS). The 
brain was carefully removed and post-fixed overnight in the same fixative. To avoid over-fixation, 
the brain was moved after 24 hours from the fixative into a 30% sucrose solution for 
cryoprotection. After approximately two days, or once the brain had sunk to the bottom of the 
solution, 40 µm coronal sections were made using a microtome (HM450; Thermo Fisher Scientific, 
MA) with a freezing stage. The sections were floated in PBS, stained for DAPI ([1:10,000]; 
Thermo Fisher Scientific, MA) and cover-slipped with aqueous mounting medium (ProLong Gold 
Antifade Mountant; Thermo Fisher Scientific, MA). Fluorescent images of each section 
surrounding the implant were taken using an Axioscan Slide Scanner (Zeiss, Germany). 
Subsequently, these images were used to identify GCaMP6f-labeled cells and verify lens implant 
location above dCA1.  
 
Data analysis  
 
All analyses were conducted using custom code in Matlab (MathWorks, MA), which can be 
found online: https://github.com/WALIII/ImBat. 
 
Flight segregation and behavioral analysis 
Position coordinate vectors (X, Y and Z of the center of mass of the markers on the head) for each 
bat were concatenated across sessions and flight was identified via a velocity threshold of 0.2 m/s. 
As in other bat species, many flights followed along the same paths92. Similar flight paths were 
typically traversed in only one direction. Flights were clustered into paths via agglomerative 
hierarchical clustering, where flight trajectories were downsampled to six points per flight (first 
and last points corresponded to the take-off and landing positions, respectively). Intermediate 
points were calculated through spline interpolation. 18-dimensional (6 x 3D) vectors representing 
different flights were clustered into ‘paths’ according to their Euclidean distance using the linkage 
and cluster functions in Matlab. The linkage distance was set to 1.2 m after manual inspection of 
flight groupings and we enforced a minimum of three flights per cluster across all sessions. All of 
the remaining flights that did not belong to a path cluster were considered ‘unique,’ which 
accounted for 26.6% (1,259 of 4,731) of all flights. Flight tuning stability was determined by taking 
all flights from the same path and comparing the mean 1D correlation of the X, Y and Z positions, 
aligned to takeoff, to their respective mean path on the first session.  
 
Artifact rejection, motion correction 
Raw video frames from the wireless microscope were acquired at 30 frames per second and then 
spatially downsampled by a factor of two. Wireless transmission artifacts impacted individual 
frames and were detected by taking the standard deviation of the detrended time series vector of 
the median intensity of all pixels on the boundary (first and last rows and columns) of each frame. 
Values that exceeded 2x SD were treated as dropped frames, which comprised <0.01% of all 
frames. Data was then motion corrected using subpixel image registration93 and temporally median 
filtered by four frames. Periodic clock pulses generated by a Master-9 device (A.M.P.I; Israel) 
were used to create a timing signature that served as a common frame of reference for the flight 
tracking system and the microscope recording software in order to align and synchronize the 

https://github.com/WALIII/ImBat
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motion tracking and the imaging systems offline60,62. 
 
Region of interest segmentation and multi-day alignment 
Region of interest (ROI) identification, segmentation and alignment across days was performed 
similarly to previously published approaches15,17,88,94–96 and are therefore briefly described below. 
To detect regions of interest corresponding to putative neurons, we used an adaptation of a 
constrained non-negative matrix factorization approach designed for single photon calcium 
imaging data (CNMF-E)95,96. This approach identifies, detrends and removes an estimate of the 
local fluctuating background from each ROI. The following parameters were used for all bats on 
all days: mean subtracted 2D gaussian smoothing kernel (gSig) = 8 µm, maximum soma diameter 
(gSiz) = 34 µm, minimum pixel-to-noise ratio for seeding a neuron (PNR) = 2.5, minimum local 
correlation = 0.85. A ring model was used to estimate a background signal for each neuron 
(ring_radius = 46 µm). Calcium traces were deconvolved using an autoregressive model (OASIS) 
with order p = 1 and using the ‘constrained’ method, which gives a frame-resolution (33 ms at 30 
fps) timing estimation of the underlying spiking-related burst event94,97. Finally, identified ROIs 
were manually inspected to remove duplicates and inappropriate merges. 

ROI alignment across days was performed using a combination of statistically driven and 
supervised approaches. Tracking confidence can be influenced by a number of factors such as 
damage or replacement of the microscope, experimenter refocusing or slow drift of the field of 
view (FOV) associated with day-to-day brain movement. Given the possibility that 
methodologically driven tracking instability can be conflated with biologically driven tuning 
instability, we only considered adjacent sessions where manual inspection indicated that the 
imaging plane was highly stable. This involved evaluating the consistency of anatomical features 
such as blood vessels, as well as static persistent features with high fluorescence background such 
as neuropil. After this assessment is satisfied, we then evaluate the sharpness and consistency of 
the constellation of cells in a max projection image for blurriness or lateral displacement which 
also serve to indicate a change in imaging focal plane. 

 Once stable adjacent FOVs were manually verified, CNMF-E identified ROI spatial footprints 
were aligned across days using a previously published algorithm (CellReg)96. After rigid 
registration of ROI masks across days, this approach uses a combination of spatial correlation of 
ROI spatial footprints and the distance between ROI centroids to build a distribution of potentially 
same or different cell pairs within a radius of 10 µm. These cell pairs do not need to be on adjacent 
days. We further restricted our analysis to CNMF-E identified ROIs that could be unambiguously 
identified in at least two independent, but not necessarily consecutive, sessions in order to further 
guarantee that cells we could not confidently track were not attributed to biological tuning 
instability. This restriction criteria almost exclusively removed ambiguous ROIs that were either 
very low signal to noise (SNR) or at the very edges of the field of view. Nevertheless, cells that 
fired extremely rarely (i.e., in only a few sessions out of the whole experiment) were still included 
and assessed in our analysis. 

In addition, we performed a manual annotation of ROIs from the full session maximum 
projections. This serves as an alternative approach to evaluating neural activity per session in a 
way that is independent of the deconvolution ability of CNMF-E or CellReg’s registration accuracy 
across days. Given that our viral expression is sparse, our data contains numerous examples of 
well isolated, high SNR neurons within a region of 50 – 100 µm2. We can leverage this sparsity to 
independently estimate the proportion of cells that are unambiguously transient from one day to 
the next (i.e., where ROI tracking was abruptly lost or gained over an adjacent session, due to a 
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complete loss or gain of both flight tuning and spontaneous activity). This analysis is predicated 
on the fact that cells that are most easily and unambiguously identified on any day should occur 
equally likely to drop in/out compared to low SNR cells (which are more susceptible to 
methodological issues). Considering a subset of 36 flight sessions with the clearest maximum 
intensity projections, we were able to identify only a few rare examples of drop-in/out in high SNR 
ROIs over a single day relative to nearby ROIs (Supplementary Fig. 23). Specifically, out of 1,038 
hand labeled, clearly identified regions of interest, we found that the majority (97.4%; 1,011/1,038) 
corresponded to a set of unique pairs that were clearly visible on adjacent sessions. Of the 
remaining 2.6%, we find that 1.15% (12/1,038) visibly ‘drop-in’ and 0.87% (9/1,038) visibly 
‘drop-out’ from one session to the next, and an additional 0.57% (6/1,038) are ‘transient’ (i.e., they 
are not active on the proceeding or following session). This finding is consistent with previous 
studies in mice which find that most cells in the hippocampus are active on most days and neural 
tracking is predominantly limited by imaging plane instability rather than by previously active 
cells falling completely silent17. Likewise, the majority of our tracking loss across days occurs 
when the sharpness and intensity of a well-isolated ROI slowly fades over time, which is best 
explained by residual day-to-day plane instability. We estimated the discrete tracking loss (from 
the initial identification to the point where an ROI can no longer be detected or confidently 
matched on an adjacent session) to be about 2% of CNMF-E identified ROIs per day under ideal 
conditions where there is no noticeable change in the stability in the imaging plane (Supplementary 
Fig. 22a). Our final imaging data set consisted of 63 daily sessions from seven bats (9 + 3 sessions 
per bat), with 562 unique regions of interest (i.e., ROIs that we believe to be independent and 
confidently tracked for at least one session). The numbers of unique ROIs imaged from each of 
the seven bats were 101, 187, 20, 70, 39, 101 and 44 (see Supplementary Fig. 22a-b for tracking 
statistics of ROIs used in this dataset). In the two bats tested in the alternating lights-on vs lights-
off foraging experiment, a total of 131 unique ROIs (59 and 72 ROIs from bat #1 and bat #2, 
respectively) were imaged across 2,313 total flights (mean of ~ 152 and 79 flights/day, 
respectively) for 10 consecutive days each. 

 
Region of interest significance and stability 
Significance of flight path tuning for each ROI was determined by comparing the 1D Spatial 
Information (‘inferred spikes’/sec) of the mean path-aligned deconvolved neural activity for any 
paths with at least 10 flights. Flight-aligned neural activity was concatenated across sessions in 
which ROIs were reliably detected and aligned. To calculate spatial information, we used the 
following equation derived from mutual information33,79  
 

           𝑆𝐼 = ∑ 𝑝!(𝑟! 𝑟⁄ )! 𝑙𝑜𝑔"(𝑟! 𝑟⁄ ) 
 
where pi is the probability of the animal to be in the ith time-bin (relative to flight takeoff) and ri is 
the ‘deconvolved’ firing rate of the neuron in the ith voxel. Here, r is the average firing rate 
computed as:  

𝑟 = ∑ 𝑝!𝑟!!   
 

Significance was determined by comparing the observed SI value to a shuffled distribution (1000 
shuffles per ROI), which was computed by circularly shifting the burst event time by a random 
amount for each path-aligned flight. To calculate significance during flight, we circularly shuffled 
only the periods of flight. Bonferroni correction was used for each neuron based on the total 
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number of flight paths considered in order to correct for multiple comparisons. An ROI was 
considered ‘flight-tuned’ if its activity contained significantly more information than chance (p < 
0.05 after correcting for multiple comparisons) during flight for any of the three most common 
flight paths. For all significantly tuned ROIs, tuning stability across days was determined by taking 
the Pearson correlation of the mean flight-aligned ROI ∆f/f0 time series either across days (e.g., 
Fig. 4b) or across lights-on and lights-off conditions.  

To calculate neural variability (e.g., Supplementary Fig. 24a-b), we first obtained the 
peak of the mean, flight path-aligned, deconvolved time series for all significantly flight tuned 
ROIs. To account for multiple firing fields per flight path, in this analysis we also considered 
peaks during flight that were separated by at least one second and had a prominence that 
exceeded 1.5x SD (standard deviation of the mean time series over the entire session). We then 
took the distribution of intensity values at these peak times across all flight-aligned, smoothed 
(by three frames, i.e., ~ 100 ms), deconvolved neural activity traces for the three most common 
flight paths, as long as they contained at least ten flights on any given session. Finally, we 
calculated the coefficient of variation (CoV) of this distribution. To calculate flight position 
variability, we took the X, Y, and Z positional coordinates at the peak times identified in the 
neural time series, and then computed the Euclidian distance to the mean X, Y, and Z coordinate 
for the corresponding flight path. Next, we compared neural activity variability (normalized CoV 
of neural activity over flights) to flight variability (i.e., the mean Euclidian distance of the points 
in space when a neuron was active, relative to the mean flight path) for every firing field and 
flight path pair.  

Some flight paths are composed of behavior that is more variable from flight to flight. We 
reasoned that tuning fields would appear to be less stable for flight paths with greater behavioral 
variability because of a decrease in spatial specificity and repeatability from flight to flight, 
which will compromise our ability to measure the tuning fields. For ROIs that were significantly 
tuned to more than one flight path, we compared the difference in the distributions of ROI 
stability for the firing field for more vs. less variable flights, using the same process and logic 
described above.  

 
Analysis of positional tuning at overlapping flight segments and goal-vector tuning  
To further assess positional tuning of hippocampal neurons, we compared ROI tuning for pairs of 
flight paths with similar velocity profiles and durations that were either overlapping or non-
overlapping in space (Supplementary Fig. 20a-g). 1D tuning profiles for each ROI were 
constructed by taking the mean of the deconvolved activity trace for each ROI aligned to takeoff 
for each flight path. Correlation scores were then calculated by taking the Pearson correlation of 
these ROI tuning profiles across either spatially similar flight paths (that are partially spatially 
overlapping) or spatially dissimilar flight paths (that are non-spatially overlapping). We then also 
calculated within flight-path tuning similarity by comparing the ROI tuning profiles between 
even/odd trials of a given flight path. Further, we re-calculated all correlation scores after 
restricting comparisons to the spatially overlapping portions of the two most similar flights 
(portions in which the within flight path positional variability is equal or greater than the across 
flight path variability).  

To assess vectorial goal tuning of hippocampal neurons63, we analyzed angle and distance 
tuning along different flight trajectories (Supplementary Fig. 21). 1D tuning profiles for each 
ROI were made by binning the deconvolved activity trace relative to either the distance to the 
goal location (using 50 cm bins) or by the angle between an animals’ heading and the goal (using 
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18 degree bins) for each flight path and normalizing relative to their occurrence in behavior. 
These 1D distance and angle tuning profiles were then compared across flight paths by taking 
their pairwise Pearson correlation. Comparisons were made between (1) flight path pairs that 
terminated in the same goal location but did not overlap in space, as well as between (2) flight 
path pairs with highly similar trajectories where one path did not terminate in the same goal 
location. Suitable flight behavior for this analysis could be found in a subset of our dataset (334 
ROI across 12 flight paths n = 4 bats). To create a null distribution for comparison, we re-
computed the pairwise correlation scores after shuffling ROI identity.  

The bat’s position co-varies with angle and distance relative to the goal location during 
flight behavior which can lead to egocentric tuning misattribution (e.g., goal-vector tuning). 
Therefore, we considered what percentage of ROIs have similar, statistically significant distance 
tuning across different, non-spatially overlapping flight paths that end in the same goal location. 
First, a shuffled distribution was created for each ROI by rigidly time-shifting deconvolved 
neural activity during flight in a circular manner and recalculating goal-distance tuning. This 
procedure was repeated 10,000 times to create a null distribution for each ROI. We first 
identified a subset of ROIs where the peak of their distance tuning curves exceeded the 95th 
percentile compared to shuffle for both non-overlapping flight paths. ROIs were then deemed 
‘significantly tuned’ if their tuning was also similar across flight paths (i.e., no statistical 
difference in tuning profiles via Wilcoxon Rank Sum test p > 0.05). Taking this approach, we 
found that 4.1% (14/335) of ROIs were significantly tuned to distance across different 
trajectories. We further did the same analysis for angle tuning and found that 3.9% of the ROIs 
(13/335) had the same tuning across different trajectories. Finally, we assessed the stability 
across days of this small subset of significantly tuned angle or distance to goal neurons and 
found no differences with the stability of the larger population (p > 0.5 Wilcoxon Rank Sum).  

 
Decoding analysis 
We devised a constrained naïve Bayesian decoder98 to predict the flight path membership from 
neural activity, using the fitcnb function in Matlab (Supplementary Fig. 20h-i). A classifier was 
trained for each bat by taking the peak height and time of the deconvolved neural activity for all 
ROIs relative to takeoff. We only considered data from flight paths that contained at least 10 flights 
on any given session to avoid biases due to low samples (approximately five to six flight clusters 
per bat, for a total of n = 40 flight path clusters across all animals (n = 7)). We then predicted the 
flight path membership for all flight trajectories, relative to their actual groupings (i.e., ground 
truth). Decoding accuracy was determined using 10-fold cross validation by withholding flights 
randomly both within and across sessions.  
 
2D rate map calculations and firing fields simulations  
2D (X,Y) rate map projections were computed by binning the deconvolved firing rates for each 
ROI during flight periods in 10 x 10 cm2 bins and collapsing across the Z dimension. We 
additionally calculated a 2D occupancy map of the time spent in each of these bins. Bins with an 
occupancy of three or less frames of imaging data (i.e., < 120 ms) were removed from both the 
rate and occupancy maps. Both rate and occupancy maps were then smoothed by Gaussian 
kernel with a radius of 1.5 bins. Next each firing rate map was divided by its corresponding 
occupancy map to create a normalized 2D rate map28. Finally, we calculated the 2D correlation 
of these rate maps across days and conditions. 

Firing fields were simulated in a flight room sized space, with tuning characteristics that 
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were empirically derived from both our calcium imaging dataset and previously published 
literature of hippocampal tuning in bats33. Specifically, we used a field size between 700 – 1,300 
cm3 and a low spontaneous event probability that increases exponentially within the field. Fields 
were uniformly distributed in 3D space33,62 and 50% were randomly given an azimuthal direction 
tuning between 90 – 180 degrees. These simulated firing fields are always present but will only 
be revealed if a field’s pre-determined tuning criteria (place + heading) is met. This gives us an 
estimate of the detection limitations of traditional rate map analysis (binning spikes in 2D and 
normalizing by occupancy) given certain statistics of behavior. The behavioral data on each day 
were used to generate a surrogate dataset of 10,000 estimated tuning fields (obtained by 
convolving the bat’s trajectories with the latent fields) and we then compared these simulated 
fields across days in the same manner as described above. 2D rate maps were constructed as 
described above, allowing us to calculate the 2D correlation of these simulated rate maps across 
days and conditions. For our simulated dataset, in order to exclude unobservable fields that 
would not be revealed by flight behavior (e.g., in an untraveled corner of the environment), 
comparisons were only made for simulated fields that had a total of 2.5x more simulated spikes 
than chance on at least one day. Our simulations were repeated 10,000 times to generate a 
distribution for comparison. 

Statistical analysis 
No formal methods were used to predetermine sample sizes; chosen sample sizes were similar to 
those used in the field. No randomization of experimental sessions was performed and no 
blinding to experimental conditions was implemented during the analysis. All statistical 
comparisons were performed using nonparametric tests (Wilcoxon Rank Sum test, Wilcoxon 
signed rank test, bootstrap, or randomization tests). Named tests were two-tailed unless 
otherwise stated. Where appropriate, multiple comparisons were controlled using Holm-
Bonferroni step-down procedure.  
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Chapter 5: Supplementary Figures   
 
5.1   Supplementary figures for Chapter 2 
 

Supplementary Figure 1 

 
Supplementary Fig. 1 | Real-Time-Location-System for tracking the positions of bats and humans, and 
behavioral stability 
a. Schematic of the Real-Time-Location-System. A set of static anchors communicate with a wireless tag (red dots) 
for 3D position localization. A total of eight tags are used in the experiment: one tag per bat, two tags are attached to 
the wrists of the two humans, and one tag is carried in each of the humans’ right coat pockets. b. Example flight 
executed by a bat (top) and example traverse executed by a human (bottom) tracked with the RTLS system (Chapter 
2 Supplementary Methods). For the human, a projection on the floor is also shown.  
 

Supplementary Figure 2 

 

Supplementary Fig. 2 | Stability and reproducibility of bat flight behavior. 
a. Distribution of the total number of flights executed by each bat over all analyzable recording sessions (n = 31 
sessions). Box centers indicate the median number of flights, box bounds indicate 25th and 75th percentiles, error 
bars extend to minima and maxima. b. Average number of flights to human #1 (green) and human #2 (blue) for each 
bat over all analyzable recording sessions (n = 31 sessions). Error bars indicate standard deviation. c. Pearson 
correlation of the velocity profiles (concatenated x, y, and z velocity) between all pairs of flights of the same 
trajectory with sufficient flights to each human, across all analyzable sessions and bats (n = 37,521 flight pairs).  
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Supplementary Figure 3 

 

Supplementary Fig. 3 | Distribution of mean firing rates for putative interneurons v.s. principal units.  
A total of 24 putative interneurons were identified based on a threshold of > 5Hz mean firing rate over the course of 
the session. Blue boxplot indicates median firing rates (log scale) of interneurons (n = 24). Red boxplot indicates 
median firing rates (log scale) of putative principal cells (n = 251). Box bounds indicate 25th and 75th percentiles, 
error bars indicate minima and maxima, outliers indicated with a cross. Single asterisk indicates significant 
difference in firing rates between putative interneurons and principal cells by two-sided Wilcoxon rank sum test (p = 
1.7 x 10-16).  
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Supplementary Figure 4 

 

Supplementary Fig. 4 | Stability and selectivity of firing fields. 
a. Left: Peak-normalized 1D rate maps for all spatially significant neurons x trajectories (even trials) sorted by peak 
activity over time (n = 343 neurons x trajectories). Right: 1D rate maps of all spatially significant neurons x 
trajectories (odd trials), sorted according to the even trials. b. Distribution of Spearman correlations between pairs of 
1D rate maps constructed from even and odd trials, for each neuron x trajectory (n = 343 neuron x trajectory pairs). 
c. Representative 2D rate maps of significantly spatially selective neurons. Peak firing rate is indicated.  

 
 
 
 
 

  



 

 43 

Supplementary Figure 5 

 

Supplementary Fig. 5 | Representative examples of trial-to-trial variability in the firing of spatially selective 
neurons. 
a. Three example units. Same units as in Fig. 1d. First row shows 2D rate map constructed from all flights that share 
the same landing/takeoff location. Peak firing rate indicated. b. Raster plots (top) and PSTH (bottom) for all flights 
of that landing/takeoff location, aligned to landing (left), takeoff (middle), and takeoff (right) (red dotted line) and 
sorted by time of execution in the session. Shaded area of PSTH indicates standard error of the mean.  
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Supplementary Figure 6 

 

Supplementary Fig. 6 | Rate remapping on 1D and 2D rate maps. 
a. Example flights along a single trajectory, during a single session, to experimenter #1 (shown in green; dot 
indicates mean human position during included flights) and experimenter #2 (shown in blue). b. Distribution of 
Pearson correlations between 1D linearized rate maps of trajectories to different human landing targets (n = 219 
neurons x trajectories). Significant difference between empirical (red) and null (grey) distributions (p = 6.0 x 10-30, 
two-sided Wilcoxon signed rank test). c. Distribution of distance between peaks of 1D linearized rate maps of 
trajectories to different human landing targets (same neurons x trajectories as in subpanel ‘b’). Significant difference 
between empirical (red) and null (grey) distributions (p = 1.2 x 10-15, two-sided Wilcoxon signed rank test). d. 
Distribution of remapping scores for 1D linearized rate maps of trajectories to different human landing targets (same 
units x trajectories as in subpanel ‘b’). Significant difference between empirical (red) and null (grey) distributions (p 
= 0.002, two-sided Wilcoxon signed rank test). e. Example session of flights included in 2D rate maps for classical 
rate remapping analysis (included are all flights in a given context (Chapter 2 Supplementary Methods)). f. 
Distribution of Pearson correlations between 2D rate maps of different contexts (n = 162 neurons x contexts). 
Significant difference between empirical (red) and null (grey) distributions (p = 5.0 x 10-8, two-sided Wilcoxon 
signed rank test). g. Distribution of center of mass movements between rate maps of different contexts for same 
units as in subpanel ‘f’. Significant difference between empirical (red) and null (grey) distributions (p = 4.7 x 10-5, 
two-sided Wilcoxon signed rank test). h. Distribution of remapping scores between rate maps of different contexts 
for same units as in subpanel ‘f’. No significant difference between empirical (red) and null (grey) distributions (p = 
0.056, two-sided Wilcoxon signed rank test).  
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Supplementary Figure 7 

 

Supplementary Fig. 7 | Stability of place fields across human landing targets. 
a. Left: Peak-normalized 1D rate maps for all spatially significant neurons x trajectories (trials to human landing 
target #1) sorted by peak activity over time (n = 219 neurons x trajectories). Right: 1D rate maps of all spatially 
significant neurons x trajectories (trials to human landing target #2), sorted according to the order of trials to human 
landing target #1. b. Distribution of Spearman correlations between pairs of 1D rate maps constructed from trials 
to human landing target #1 and #2, for each unit x trajectory (n = 219 neuron x trajectory pairs).  

Supplementary Figure 8 

 

Supplementary Fig. 8 | Distribution of correlations between first and second halves of trajectories to each 
human. 
Distribution of correlations between 1D linearized mean firing rates for first and second halves of a given trajectory 
to a given human (purple) versus the null (grey) (n = 527 analyzable neurons x trajectories). No significant 
difference between empirical and null distributions (p = 0.37, two-sample Kolmogorov-Smirnov test).  
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Supplementary Figure 9 

 

Supplementary Fig. 9 | Linear model predicting firing rate at landing based on human identity, location and 
their interaction. 
a. Schematic of the linear model using one non-ordinal categorical variable for human identity, one non-ordinal 
categorical variable for landing location, and their interaction term (Chapter 2 Supplementary Methods). The grey 
circles with numbers represent possible locations, the red dotted line indicates landing, the purple boxes indicate the 
period used to calculate the firing rate, and the cartoon neural traces and corresponding plus and minus signs 
illustrate the difference in neural modulation that results from a strictly additive code versus a conjunctive code 
(Chapter 2 Supplementary Methods). In this cartoon example the neuron is modulated differently at the intersection 
of Human A and Location 4 than would be expected in an additive code. For brevity only one example experimenter 
(Human A) is included in this example. b. Model comparison was performed to determine if a given variable 
significantly (model comparison using anova test; p < 0.05) improved the prediction of a neuron’s firing rate at 
landing (Chapter 2 Supplementary Methods). Neurons classified as ‘additive’ had significant Human and Location 
terms in model comparison, but not significant interaction terms. ‘Conjunctive’ neurons had significant Human 
and/or Location terms, as well as a significant interaction term. ‘Human only’ neurons had a significant Human 
term, but not significant Location or interaction terms. ‘Location only’ neurons had a significant Location term, but 
not significant Human or interaction terms. These categories of neurons were then split according to whether they 
modulated their activity depending on the human at takeoff/landing (via permutation test, Chapter 2 Supplementary 
Methods). Bar plot shows the split in the fraction of neurons for each category (n = 127 neurons). Note the fractions 
of additive, conjunctive, and human-only neurons that were also classified as modulated by the human (via 
permutation test) are larger than the fractions that were not modulated, and there are no neurons in the location-only 
category that were also classified as modulated by the human (via permutation test).  
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Supplementary Figure 10 

 

Supplementary Fig. 10 | Units properties for human-responsive v.s. non-human-responsive units. 
a. Distribution of mean firing rates (log scale) of human responsive units (blue) (n = 117) and non-human- 
responsive units (grey) (n = 158). Significant difference between two distributions (p = 0.02, two-sample 
Kolmogorov-Smirnov test). b. Distribution of burst index of human responsive units and non-human-responsive 
units. No significant difference between the two distributions (p = 0.47, two-sample Kolmogorov-Smirnov test).  

 
Supplementary Figure 11 

 

Supplementary Fig. 11 | Firing rate modulation during flight by the presence of another other bat at the 
landing location. 
Shown are raster plots and PSTHs’ for three example units that modulate (or not) their activity depending on 
whether there is another bat present at the landing target, aligned to landing (red dotted line). Colored rows on the 
raster plots indicate on which flights the other bat was present (orange) or absent (grey) at the landing target. 
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Colored lines on the PSTH plots indicate which PSTH was calculated from flights that landed on another 
conspecific (orange) or not (grey). Shaded lines indicate standard error of the mean.  

 
Supplementary Figure 12 

 

Supplementary Fig. 12 | Modulation of firing by human identity in the absence of another bat at the landing 
target. 
Top row shows 2D rate maps of three example units that modulate their activity on flights to the same location but 
different humans. No flights included here had another bat present at landing. Second and third rows show raster 
plots and PSTH plots of the above units. Colored rows on the raster plots indicate which flights landed on human #1 
(green) versus human #2 (blue). Colored lines on PSTH plots indicate which PSTH was calculated from flights that 
landed on human #1 (green) versus human #2 (blue). Shaded areas indicate standard error of the mean.  
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Supplementary Figure 13 

 

Supplementary Fig. 13 | Firing rate properties with unequal reward quantities. 
a. (top) Distribution of peak firing rates in 2 s interval around landing for all analyzable neurons x landing locations 
in experiment #1, variant #2 – where different humans were stationary and provided different quantities of reward 
(Chapter 2 Supplementary Methods; n = 284 analyzable neurons x landing locations). No significant difference in 
distributions of peak firing rate change between high reward and low reward landings (p = 0.94, two-sided 
Wilcoxon signed rank test). (bottom) Same as the top but only including the neurons that were human-modulated (n 
= 111 neurons x landing locations). No significant difference in distributions of peak firing rate change between the 
different amounts of reward (p = 0.77, two-sided Wilcoxon signed rank test). b. (top) Spearman correlation between 
average firing rates around landing at high versus low reward locations for all analyzable neurons x landing 
locations, same as in subpanel ‘a’. (bottom) Same as the top but only including the neurons that were human-
modulated, same as in the bottom of subpanel ‘a’. c. (top) Grand average firing rate changes after landing (around 
reward consumption) at high versus low reward locations (0 to +1.75 s, landing is 0). Shaded region indicates 
standard error. (bottom) Same as the top but only including the units that were human-modulated, same as in the 
bottom of subpanel ‘a’. Note that different rewards quantities by different experimenters were only provided on a 
subset of experiment #1 (humans are stationary while bats are flying) yet the modulation by human identity was 
observed irrespective of whether both humans provided different or similar reward quantities.  
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Supplementary Figure 14 

 

Supplementary Fig. 14 | Distribution of bats’ rest locations during human traversals. 
a. Mean proportion of total roost time each bat spent at self-selected rest locations during experiment #2 (human 
movement while bats were stationary), ordered from most preferred rest location to least preferred rest location. 
Shown are top three rest locations for each bat across all analyzable sessions (n = 31 sessions), which explain an 
average of 84% of the roost time. Error bars indicate standard deviation. b. Left: occupancy (color bar) of one bat's 
roosting locations across all sessions (n = 8 sessions) of experiment #2, smoothed with gaussian kernel (σ = 1.5 
bins). Right: occupancy of one bat’s roosting locations across a single example session of experiment #2, smoothed 
with gaussian kernel (σ = 1.5 bins). 

 
 

Supplementary Figure 15 

 

Supplementary Fig. 15 | Correlation of velocity profile for all human traverses.  
Correlation of the velocity profile between all traverses of the same human (blue), and between all traverses across 
different humans (orange), for all sessions (n = 15 sessions; n = 5,904 traverse pairs within human, n = 5,829 
traverse pairs across humans).  
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Supplementary Figure 16 

 

Supplementary Fig. 16 | Neurons with significant spatial information for human position and identity, 
excluding all bouts when the other bat was flying. 
a. 2D rate maps of the same example neurons shown in Fig. 2d but excluding all times when the other bat 
was flying. b. For all neurons that carried significant spatial information for just one human, we compared 
the normalized spatial information (Chapter 2 Supplementary Methods) for the ‘preferred’ human (for which spatial 
information was significant) before (left) and after (right) removing all epochs when the conspecific bat was flying. 
Note that there was no significant difference (n.s.) between these two conditions (n = 43 neurons, two-sided 
Wilcoxon signed rank test, p = 0.44). Box plots indicate median normalized spatial information, box bounds indicate 
25th and 75th percentiles, error bars extend to minima and maxima. Violin plots show kernel density estimation.  
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5.2   Supplementary figures for Chapter 3 
  

Supplementary Figure 17 

 
Supplementary Fig. 17 | The automated, human-free, flight room.  
a Panoramic perspective of the automated flight room showing the feeders, adjustable ceiling lights, foam walls and 
motion tracking cameras. b. View towards one of the interior walls of the flight room. Motion tracking camera is 
indicated. c. View of the feeders. Note that the ceiling lights (white squares) and tracking system are visible on the 
ceiling for all images. The ceiling lights were set to specific illumination levels during the flight experiments 
(Chapter 3 Supplementary Methods) and are shown here at maximum brightness level for visualization purposes.  
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Supplementary Figure 18 

 
 

Supplementary Fig. 18 | Imaged hippocampal neurons are spatially selective and collectively span the 
available environment.   
a. 14 simultaneously recorded ROIs during a single free-foraging session from one bat. Red dots represent estimated 
burst events superimposed on the flight trajectories (gray; Chapter 3 Supplementary Methods). The size of each dot 
indicates the relative size of the deconvolved burst event per imaging frame (per 33 ms bin; Chapter 3 
Supplementary Methods). b-c. Firing density is not increased around the virtual boundary and the spatial activity 
recorded across neurons spans the available environment.  b. Example spatial firing density for one animal. The 
virtual boundary that bats had to cross in order to rebait reward feeders is indicted by a dashed line. c. Spatial firing 
density of deconvolved neural activity (i.e., ‘spikes’) for all animals (n = 7). Reward locations are indicated. Images 
in b-c are displayed from a top-down (XY) perspective. There was no significant difference in firing density within 
1m of this boundary vs. other locations in the room (p > 0.5 for all bats, two-tailed Wilcoxon Rank Sum). 
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Supplementary Figure 19 

 
Supplementary Fig. 19 | Spatial behavior and hippocampal neural tuning along structured flight paths.  
a-b. Flights predominantly occur along a few highly repeated paths. a. After an initial period of exploration, a few 
common flight paths dominate the distribution of trajectories during the free-foraging session (n = 63 sessions from 
7 bats). Blue and black lines are the mean proportion of flights over time for the three most common flight paths and 
the unique flight paths, respectively. Shading is 95% confidence interval around the mean. 73% of all recorded 
flights (3,472/4,731 flights from 7 bats) occur along repeated flight paths, 54% are flown across the three most 
common routes (1,877/3,472 flights from 7 bats) and 70% are in the top five most common routes (2,429/3,472 
flights from 7 bats). b. Percentage of the top three flight paths and all other flights in each session across all animals, 
with the mean and SEM indicated. Each point is the prevalence of the top three flight paths on each session in which 
they occur. Points are jittered to ease visualization. c. Percentage of significantly tuned ROIs for all bats (n = 7; 
Chapter 3 Supplementary Methods). Each dot represents a single animal, the red line represents the mean for all 
seven bats, boxes are first and third quartiles and bars represent maximum and minimum across all bats. d. 
Percentage of ROIs with one or more fields per flight path (Chapter 3 Supplementary Methods).  
 
      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 55 

Supplementary Figure 20 

 
Supplementary Fig. 20 | Neural tuning is distinct for different trajectories but is highly similar in overlapping 
portions.   
a. 2D projection (top-down view) of the mean flight path for the three most common flight paths for one bat. Note 
that the green and red trajectories are highly overlapping compared to the blue trajectory. b. Mean velocity profile 
for the same top three flight paths, with colors corresponding to those in (a). c. Distribution of correlation scores 
(shown here as 1-r for ease of comparison to Fig. 6 in the main text) for all ROIs, relative to the red flight path. The 
red distribution is calculated by comparing even/odd flights of the red flight path shown in (a). d. Same as (c) but 
only for the timeframe in which red and green flights overlap in space. e. Additional examples of overlapping flight 
paths. Overlapping paths are colored black and non-overlapping paths are gray. Overlapping regions are colored red. 
f. The black distribution is calculated by comparing neural tuning relative to even/odd flights that comprise a flight 
path; the blue distribution is the comparison of neural tuning across distinct flight paths that partially overlap in 
some segments. The gray distribution compares neural tuning across flight paths that are similar in duration but do 
not overlap in space. g. Same as (f) but only comparing neural activity for the timeframe in which similar flight 
paths overlap in space. The red distribution is the comparison of neural tuning during the overlapping portions of 
distinct flight paths and the gray distribution is a time matched control for trajectories that do not overlap in space. 
For (g-f), the black distribution is calculated by comparing neural tuning relative to even/odd flights that comprise a 
flight path; and red indicates a comparison of overlapping portions of distinct flight paths. h-i. Different flight paths 
can be accurately decoded using neural activity. h. Prediction accuracy for two bats (left and right confusion 
matrixes, respectively) where each class is a flight cluster. The percent accuracy and the number of classified flights 
is listed within each block (Chapter 3 Supplementary Methods). i. Decoder prediction accuracy for all bats and all 
flight paths with n > 10 flights. Points are jittered for ease of visualization.  
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Supplementary Figure 21 

 
Supplementary Fig. 21 | Neural tuning is better explained by spatial rather than goal-vector tuning.  
a. Example of the analysis approach. Shown is a 2D projection (top-down view) of the mean flight paths for three 
flights of one bat. In this example, ROI distance and angle tuning for the gray flight path can be directly 
compared to a dissimilar flight path that terminates at the same goal location (in red, where shared angle/distance 
tuning is expected in the case of goal-vector tuning63) and to a similar flight path that ends in a different goal 
location (in blue, where goal-vector tuning is not expected, but shared angle/distance tuning might artefactually 
result from an overlap in spatial position). b. Distribution of correlation scores (shown here as 1-r for ease of 
comparison to Fig. 6 in the main text) for all ROIs binned by distance to goal (Chapter 3 Supplementary 
Methods) between pairs of similar flights (in blue) or pairs of dissimilar, goal terminating flight paths (in red). c. 
Same as (b) but binned by angle to the goal location. For (b-c), neural tuning is significantly more similar across 
pairs of overlapping flight paths (distance: p = 1.4 x 10-5  two-tailed Wilcoxon Rank Sum; angle: p = 1.6 x 10-5 
two-tailed Wilcoxon Rank Sum); for dissimilar paths towards the same goal location, both goal and distance 
tuning distributions are not significantly different from what would be expected by chance (performing the same 
comparison after shuffling ROI identity, p > 0.05 two-tailed Wilcoxon Rank Sum). The percent of ROIs that have 
the same significant tuning across two non-spatially overlapping flights to the same goal location is 4.1% (14/335 
ROIs) for distance and 3.9% (13/335 ROIs) for angle (Chapter 3 Supplementary Methods). Therefore, we did not 
observe pronounced goal-vector tuning independent of spatial position. This differs from a previous report in 
CA1 of flying bats63 and could be due to increased false positive rates related to uncontrolled behavioral 
covariates in agreement with a recent report. (Carpenter, 2021 
[https://www.abstractsonline.com/pp8/#!/10485/presentation/22193]).  
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Supplementary Figure 22 

 
Supplementary Fig. 22 | Tuning stability for neurons tracked over days.   
a. The fraction of ROIs that can be confidently tracked, under ideal conditions (no experimenter refocusing or 
noticeably large change in field of view) as a function of days. Each dot represents the fraction of ROIs tracked for 
all bats. Tracking loss occurred at a rate of about 2% of ROIs per day (linear fit, R2 = 0.67, p = 3x10-4). Dotted lines 
indicate 95% coefficient confidence intervals of the linear regression line in red. b. The cumulative distribution 
function (CDF) of unique ROIs that were included in the analysis, considering that some bats were tracked over 
longer intervals than others. c. Tracking contiguity showing the number of session gaps that exist between 
confidently tracked and aligned unique ROIs across days. d. Replotting the data in main text Fig. 4b, showing all 
underlying data points as a scatterplot. Error bars are 99% confidence intervals of the mean. Points are jittered for 
ease of visualization. Note that the number of ROI/flight-pair comparisons over days is decreasing (n = 914, 635, 
490, 367, 208, 167, 117, 92, 45, 11). e. Tuning stability plot/histogram of all points in panel d (n = 3046 possible 
ROI/flight path pairs). Note the lack of a pronounced second peak where tuning stability equals 0, as would be 
expected if a prominent subset of neurons were to lose or gain tuning. f. Scatterplot distribution of ROI correlations 
compared to day ‘1’ for the subset of consecutively tracked, flight path aligned ROIs (n = 360 ROIs). Green box 
indicates the distribution median. g. Histogram of correlation values for all points in panel (f). Note the lack of a 
pronounced second peak where tuning stability equals 0, as would be expected if a prominent subset of neurons 
were to lose or gain tuning. h. Distributions of the mean ROI peak times relative to the first day for all points in 
panel (f), separated by day (colors). i-j. CA1 tuning persists despite a multi-day gap in flight path behavior. i. The 
dominant three flight paths are colored in red, green and blue. Note the five-day interval between sessions with 
green flight paths. j. Six example ROI timeseries aligned to the green flight path on day 1 (dark green) and day 6 
(light green). Shading is the standard deviation of the mean fluorescent time series. Note the high similarity in the 
ROIs’ timeseries that persists after a multi-day gap during which this flight path was not flown.  
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Supplementary Figure 23 

 
Supplementary Fig. 23 | Examples of abrupt, possibly biologically-driven, changes in neural participation 
over days.   
Maximum intensity projections of adjacent flight sessions that show several compelling examples of sharp in focus 
ROIs that could be unambiguously identified on one day but are clearly absent in the proceeding or following 
imaging session. Several of these examples are less likely to be a result of a slow change in imaging plane across 
days, which explains the majority of our tracking loss (i.e., a slow change of ROI sharpness and intensity over 
consecutive sessions, as may be seen in some panels). Examples of abrupt changes in neural participation are sparse; 
panels a-d show different examples with panel (a) being the most obvious example found in our data set. Blue 
markers identify ROIs that are easily tracked on adjacent sessions. Red circles indicate an ROI that putatively 
‘drops-out’ and green circles indicate an ROI that putatively ‘drops-in.’ Note that this phenomenon is uncommon 
and shown here to demonstrate the conservative approach: only 2.6% of clearly isolated ROIs identified on any 
given day show this effect (Chapter 3 Supplementary Methods).  
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Supplementary Figure 24 

 
Supplementary Fig. 24 | ROI tuning stability and flight consistency.    
a. Flight-to-flight consistency varies along the phase of flight (representative example for all ROIs tuned to the flight 
path shown in Fig 5a-b). Red dotted lines indicate takeoff and landing times. Each point represents a significantly 
tuned ROI’s stability (i.e., one minus the normalized coefficient of variation [CV]) at the flight phase it is tuned to 
(determined by the peak of the mean flight-aligned deconvolved activity trace). The solid blue line is the running 
average of all points. b. Flight variability as a function of flight phase, sampled on the same interval as in (a). Flight 
variability was highest in the middle of the flight and lowest during the takeoff and landing. Y-axis units are the 
mean Euclidean distance of all individual flights from the center of the mean flight path. The blue dotted line is the 
same as the blue solid line from (a), normalized from 0-1. c. More structured behavior in freely flying bats results in 
the estimation of a more stable CA1 hippocampal responses over days. Longitudinal stability of hippocampal neural 
responses when considering either the most common structured flight path (i.e., the flight path comprised of the 
largest number of flights, in red) and all non-repeated (i.e., unstructured) flights in the same session (in blue) for n = 
7 bats. Correlation is computed for 2D rate-maps relative to the first day of the experiment. Thin lines are different 
bats/flight paths and thick lines are the average across animals. Error bars represent 95% confidence intervals of the 
mean.  
 
     Supplementary Figure 25 

 
Supplementary Fig. 25 | Apparent sensory-based remapping when considering all flight trajectories before 
controlling for flight behavior variability across lights-on and lights-off conditions.   
Shown is the distribution of 2D rate map correlation scores for all ROIs when considering all flight paths between 
either the two lights-on sessions (teal) or lights-on vs. lights-off conditions (gray). These distributions are 
significantly different (n = 178 ROIs, p = 7.04 x 10-55, two-tailed Wilcoxon Rank Sum test). 
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Supplementary Figure 26 

 
Supplementary Fig. 26 | Similarities and differences in flight behavior between the lights-on vs. lights-off cue 
conditions.   
a. Aggregated flight paths that occurred across 10 consecutive days of experiments for one example bat, divided into 
successive lights-on, lights-off and lights-on’ periods (ordered from left to right). Colored are the top four flight 
paths that persisted across both conditions. The red and blue flight paths occurred predominantly in lights-on and 
lights-on’ sessions. The green and magenta paths occurred predominantly in the lights-off condition. b. Distribution 
of the occurrence of the four most prevalent flight paths, colored according to (a), during different phases of the 
experiment across lights-on and lights-off sessions. Flight preference changed dramatically during each period. c. 
Aggregated flight paths across 10 consecutive days for one representative bat divided into chronological thirds of 
each session where light levels were held constant. Shown are the top three clustered flight paths in red, blue and 
green. d. Distribution of the occurrence of the four most prevalent flight paths (colors) during different phases of the 
experiment across each third of 10 sessions. e. Proportion of unique (i.e., unstructured) flight paths increases on 
average in the lights-off cue condition (dark) compared to when the lights are kept on for the duration of the session. 
The blue line indicates the mean relative proportion of unique flights flown in the lights-on/off experiment. The dark 
gray line is the mean proportion of unstructured flights for bats where the light is kept on for the duration of the 
experiment. Shading for both plots represent 95% confidence intervals of the mean. f. The mean number of flights 
per minute is not significantly different in the light or dark conditions (p > 0.05 two-tailed Wilcoxon Rank Sum 
Test, n= 80 and 40 binned minutes in the lights-on and lights-off periods respectively). g. Flight duration as function 
of cue condition. Flight duration is significantly longer in the lights-off condition, (p = 0.0038, two-tailed Wilcoxon 
Rank Sum Test) although the effect size is small (i.e., the distributions are highly overlapping; n = 1567 and 746 
flights in the lights-on and lights-off periods respectively). h-i. Across-day and across-condition behavioral stability 
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for the lights-on vs lights-off experiments. h. Average correlation of repeated paths relative to day one for each bat 
(n = 5 flight paths). Each color indicates a different flight path. Bars indicate 95% confidence intervals of the mean 
correlation on each day. i. Correlation values of shared flights to the mean of their flight path in the first lights-on 
period. Flights along the same path were not significantly different between the light and dark cue condition (p = 
0.21 two-tailed Wilcoxon Rank Sum Test n = 268, 150, 267 flights for lights-on, lights-off and lights-on conditions 
respectively). 
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