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M A J O R A R T I C L E

Genomic Epidemiology of Multidrug-Resistant
Mycobacterium tuberculosis During
Transcontinental Spread

Mireia Coscolla,1,2 Pennan M. Barry,3 John E. Oeltmann,6 Heather Koshinsky,4 Tambi Shaw,3 Martin Cilnis,3 Jamie Posey,6

Jordan Rose,5 Terry Weber,3 Viacheslav Y. Fofanov,4 Sebastien Gagneux,1,2 Midori Kato-Maeda,5 and John Z. Metcalfe5

1Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, and 2University of Basel, Switzerland; 3Division of Communicable
Disease Control, Center for Infectious Diseases, California Department of Public Health, Richmond, 4Eureka Genomics, Hercules, and 5Division of
Pulmonary and Critical Care Medicine, Francis J. Curry International Tuberculosis Center, San Francisco General Hospital, University of California; and
6Centers for Disease Control and Prevention, Atlanta, Georgia

The transcontinental spread of multidrug-resistant (MDR) tuberculosis is poorly characterized in molecular
epidemiologic studies. We used genomic sequencing to understand the establishment and dispersion of
MDR Mycobacterium tuberculosis within a group of immigrants to the United States. We used a genomic ep-
idemiology approach to study a genotypically matched (by spoligotype, IS6110 restriction fragment length poly-
morphism, and mycobacterial interspersed repetitive units–variable number of tandem repeat signature)
lineage 2/Beijing MDR strain implicated in an outbreak of tuberculosis among refugees in Thailand and con-
secutive cases within California. All 46 MDR M. tuberculosis genomes from both Thailand and California were
highly related, with a median difference of 10 single-nucleotide polymorphisms (SNPs). The Wat Tham Krabok
(WTK) strain is a new sequence type distinguished from all known Beijing strains by 55 SNPs and a genomic
deletion (Rv1267c) associated with increased fitness. Sequence data revealed a highly prevalent MDR strain that
included several closely related but distinct allelic variants within Thailand, rather than the occurrence of a sin-
gle outbreak. In California, sequencing data supported multiple independent introductions of WTK with sub-
sequent transmission and reactivation within the state, as well as a potential super spreader with a prolonged
infectious period. Twenty-seven drug resistance–conferring mutations and 4 putative compensatory mutations
were found within WTK strains. Genomic sequencing has substantial epidemiologic value in both low- and
high-burden settings in understanding transmission chains of highly prevalent MDR strains.

Keywords. Mycobacterium tuberculosis; drug resistance; genomics; epidemiology; EmbR.

Mycobacterium tuberculosis is an ancient human path-
ogen that continues to cause substantial morbidity and
mortality, in part due to an expanding global epidemic
of drug-resistant disease. In the United States, nearly
90% of multidrug-resistant (MDR) tuberculosis cases
occur among foreign-born individuals [1], although

the relative proportion occurring through reactivation
of latent MDR strains, direct importation of active dis-
ease, and domestic transmission and reactivation, is not
definitively known. Effective tuberculosis control strat-
egies depend upon understanding these parameters
among high-risk groups immigrating to the United
States [2].

Analysis of data from next-generation whole-genome
sequencing (WGS) allows detection of minute dif-
ferences in genetic diversity and has contributed
retrospectively to outbreak investigations [3–7] and
population-based studies [8] in high-income settings.
In the study of drug-resistant tuberculosis, WGS has
improved understanding of causal mechanisms of
drug resistance [9] and mutations compensatory for fit-
ness costs associated with drug resistance [10]. Yet,
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transcontinental molecular epidemiology of drug-resistant tu-
berculosis, including data from both high- and low-burden set-
tings, is poorly represented in existing molecular epidemiologic
studies of tuberculosis [11].

During 2004–2005, high MDR tuberculosis case rates among
refugees living at Wat Tham Krabok (WTK) in Thailand coin-
cided with the final major resettlement of Hmong peoples to the
United States [12]. Transcontinental importation and evidence
for domestic transmission of a lineage 2/Beijing MDRM. tuber-
culosis strain led to major changes in Centers for Disease
Control and Prevention (CDC) preimmigration tuberculosis
screening protocols [13]. We generated and analyzed WGS
data from M. tuberculosis genomes in both Thailand and the
United States to clarify importation and establishment of the
WTK strain within California.

METHODS

Study Population
Since the late 1970s, WTK (a Buddhist temple in Saraburi Prov-
ince, Thailand) has been home to Hmong refugees fleeing po-
litical persecution in Laos. Following recognition of high MDR
tuberculosis case rates among Hmong refugees seeking resettle-
ment and those recently resettled in the United States, a CDC-
coordinated outbreak investigation at WTK between April 2004
and July 2005 identified 272 tuberculosis cases among 15 455
refugees, with 24 of 57 culture-positive individuals (42%)
found to have MDR tuberculosis. Twenty isolates had identical
IS6110 restriction fragment length polymorphisms (IS6110-
RFLPs), spoligotyping results, and mycobacterial interspersed
repetitive units–variable numbers of tandem repeat (MIRU-
VNTR) signatures; of these, 15 (75%) had contact investigation
data [12], were available among CDC-banked specimens, and
were included in our analysis [12]. Documented exposure
among several patients who had MDR tuberculosis simultane-
ously, clustering of genotypes, concordant results of phenotypic
drug susceptibility tests, and a high prevalence of tuberculin re-
activity among household contacts were considered as evidence
supporting an MDR tuberculosis outbreak within the camp.

California (2010 population, 37.2 million) state law requires
reporting of all verified cases of tuberculosis (California Code of
Regulations Title 17 §2500) to the California Department of
Public Health (CDPH) Tuberculosis Registry. Routine genotyp-
ing of clinical M. tuberculosis isolates has occurred since 2004,
with cases prior to 2004 undergoing genotyping upon request
(eg, in the course of an outbreak investigation and for special
projects). MDR M. tuberculosis isolates in California with a
genotype matching that yielded by the WTK investigation in
Thailand (based on criteria described in the Conventional
Genotyping subsection, below) were identified by searching
genotyping results in the national and CDPH tuberculosis gen-
otyping database. Of 225 MDR tuberculosis cases diagnosed

during 2004–2010, 22 (10%) occurred among persons of
Hmong ethnicity. Five cases (23%) involved directly imported
active MDR tuberculosis (symptomatic, culture-positive within
1 month of US arrival) and occurred concurrently with the
Thailand outbreak. A systematic review of additional matching
isolates that were identified during outbreak investigations and
genotyped in California yielded 9 additional WTK MDR iso-
lates collected during 1995–2003. Additional information
from the epidemiologic investigation is available in the Supple-
mentary Materials. All protocols were approved by the Califor-
nia Health and Human Services Agency Committee for the
Protection of Human Subjects and the University of California,
San Francisco, Committee for the Protection of Human
Subjects.

Conventional Genotyping
Extraction of genomic DNA fromM. tuberculosis strains was per-
formed during the log-phase growth of strains on culture medi-
um. Spoligotyping, 24-locus MIRU-VNTR, and IS6110-RFLP
genotyping were performed using standardized protocols. Isolates
with an identical spoligotype (000000000003771), 24-locus
MIRU-VNTR signature, and IS6110-RFLP (21-band pattern,
±1 band) were considered matching; for 12 of 31 California iso-
lates (38%) and all Thai isolates, a 12-locus rather than 24-locus
MIRU-VNTR genotype was available.

Phenotypic Drug Susceptibility Testing
California state law (California Code of Regulations Title 17
§2505) requires submission of all M. tuberculosis isolates to
local public health laboratories and submission of all MDR
M. tuberculosis isolates to the California Department of Public
Health Microbial Diseases Laboratory (MDL). Tests for first-
and second-line antituberculosis drug susceptibilities were
performed at local laboratories or at the MDL, using the BAC-
TEC 460 (Becton Dickinson Diagnostic Instruments, Sparks,
Maryland), the MGIT 960 system (Becton Dickinson), or the
agar proportion method.

Sequencing
Forty-six MDR strains (15 strains from Thailand, and 31
from California) were sequenced using HiSeq (Illumina;
Supplementary Table 1). Burrows-Wheeler Aligner v0.5.8c
(BWA) and SMALT (https://www.sanger.ac.uk/resources/
software/smalt/) were used to map Illumina reads from
these 46 genome sequences and 56 previously published
lineage 2 genomes (Supplementary Table 1 and Supplemen-
tary Table 2) against an inferred common ancestor of all
M. tuberculosis complex lineages. An inferred common
ancestor, rather than a previously sequenced strain (eg,
H37Rv), was used as reference to avoid recovering mutations
present only in the previously sequenced strain. The average
number of reads that covers each position in the reference
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genome ranged from 40× to 350× in different strains, with a
median of 110×. Only nonredundant single-nucleotide poly-
morphisms (SNPs) identified with BWA and SMALT map-
ping were retained. For each strain, we called SNPs with
Phred-scaled probability scores of >20, read depths lower
than double the average read depth of the genome, and a min-
imum of 5 reads. For filtering dense SNPs, a maximum of 2
SNPs were allowed within a window of size 10. Subclusters
of strains were taken to represent putative transmission chains
and were defined as genetically related M. tuberculosis isolates
(≤4 SNP difference and proximal phylogenetic relationship
according to our median joining network) from individuals
with presumed or likely epidemiologic contact. Drug resis-
tance–associated mutations identified in the Tuberculosis
Drug Resistance Mutation Database [14] were retrieved from
the SNP list (Table 1 and Supplementary Table 3). Drug resis-
tance–conferring mutations (DRMs) in rpoB are noted in the

text by use of Escherichia coli notation; compensatory muta-
tions were identified as nonsynonymous SNPs in rpoA or
rpoC (Supplementary Table 3).

Phylogenetic Analysis
To examine the genetic diversity of theWTK strain, we sequenced
and analyzed all 46 genomic sequences in conjunction with 56
widely diverse and geographically distributed lineage 2 strains se-
lected from a global database (Supplementary Figure 1, Supple-
mentary Table 1 and Supplementary Table 2). High-confidence
DRMs were excluded from the diversity and phylogenetic analy-
ses, since these are known to represent homoplastic events (ie, ste-
reotyped evolution under the common selection pressure of
antituberculosis medications).

Details about sequencing and phylogenetic analytic methods,
including full references, are specified in the Supplementary
Materials.

Table 1. Nonsynonymous Mutations According to Drug Resistance–Associated Locus

Drug Resistance
Phenotype

Locus
Namea

H37Rv
Locusa

Nucleotide
Positiona

Amino Acid
Changea

Reference
Base

Mutant
Base

Consequence
of SNP

DR-flq gyrA Rv0006 7581 D94N/D G R Nonsynonymous
DR-emb-inh iniA Rv0342 412 280 Q481H G T Nonsynonymous

DR-rif rpoB Rv0667 761 139 H445Db C G Nonsynonymous

DR-rif rpoB Rv0667 761 139 H445Yb C T Nonsynonymous
DR-rif rpoB Rv0667 761 140 H445Rb A G Nonsynonymous

DR-rif rpoB Rv0667 761 155 S450Lc C T Nonsynonymous

DR-sm rpsL Rv0682 781 687 K43R A G Nonsynonymous
DR-sm rrs MTB000019 1 473 246 . . . A G . . .

DR-ami tlyA Rv1694 1 918 207 G90S G A Nonsynonymous

DR-ami tlyA Rv1694 1 918 664 W242X G A Stop-gain
DR-inh katG Rv1908c 2 155 168 S315T C G Nonsynonymous

DR-pza pncA Rv2043c 2 288 778 V155G A C Nonsynonymous

DR-pza pncA Rv2043c 2 288 839 T135A T C Nonsynonymous
DR-pza pncA Rv2043c 2 289 040 W68R A G Nonsynonymous

DR-pza pncA Rv2043c 2 289 162 L27P A G Nonsynonymous

DR-pza pncA Rv2043c 2 289 228 I5T A G Nonsynonymous
DR-inh accD6 Rv2247 2 521 428 D229G A G Nonsynonymous

DR-emb manB Rv3264c 3 645 731 T83P T G Nonsynonymous

DR-emb embB Rv3795 4 247 429 M306L A C Nonsynonymous
DR-emb embB Rv3795 4 247 429 M306V A G Nonsynonymous

DR-emb embB Rv3795 4 247 431 M306I G A Nonsynonymous

DR-emb embB Rv3795 4 247 574 D354A A C Nonsynonymous
DR-emb embB Rv3795 4 247 646 A378E C A Nonsynonymous

DR-emb embB Rv3795 4 247 730 G406A G C Nonsynonymous

DR-emb . . . Rv3806c 4 269 387 D149E G T Nonsynonymous
DR-sm gidB Rv3919c 4 407 927 E92D T G Nonsynonymous

DR-emb embA prom IG3858 4 243 222 −11 C A . . .

Abbreviation: SNP, single-nucleotide polymorphism.
a Refer to the Mycobacterium tuberculosis H37Rv genome.
b Corresponds to H526 in Escherichia coli.
c Corresponds to S531 in Escherichia coli.
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Figure 1. A, Epidemiologic linkages of multidrug-resistant tuberculosis cases in California and Thailand. California cases (yellow) are represented by the approximate date of US entry (left whisker), infectious
period (box), and end of treatment (right whisker) or death (cross). Infectious periods were estimated as the interval from 3 months prior to symptom onset or abnormal chest radiograph through 2 weeks following
initiation of appropriate antimicrobial therapy [15]. Epidemiologic links are indicated as colored arrows (solid lines indicate known epidemiologic links, and dashed lines indicate possible epidemiologic links).
Twenty-nine patients for whom we had sequence data for the infecting strains are indicated in the y-axis. B, Median joining network. The relationships of 46 Wat Tham Krabok (WTK) isolates were determined
using 150 variable single-nucleotide polymorphisms (SNPs), excluding high-confidence drug resistance–associated mutations (Supplementary Table 3). Isolates and epidemiologic links are colored as described
for panel A. Inferred nodes (unsampled) are represented by black circles. Shading indicates the relative SNP difference with respect to the central node. Note that cases D and M and cases R1 and R2 are paired
longitudinal cases corresponding to 1 patient each.
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RESULTS

Genomic Epidemiologic Investigations
In total, we performed WGS and analysis of 46 genotypically
matched isolates from 15 patients in WTK and 29 patients (2
of whom had MDR tuberculosis twice) in California over a
22-year interval (Figure 1 and Supplementary Table 1). The over-
all MDR tuberculosis incidence at WTK for 2004–2005 was 15
cases per 100 000. In California, the overall MDR tuberculosis in-
cidence for 2004–2010 was 0.8 cases per 100 000 in the general
population and 3.4 cases per 100 000 in the California Hmong
population of 91 224 (in 2010). The median age of patients was
in Thailand (35 years; interquartile range [IQR], 23–57 years)
was similar to that in California (43 years; IQR, 20–66 years;
P = .4). Approximately one-third of patients (n = 9) died during
treatment in California, while mortality data were not available
for Thailand. Three of 15 patients (20%) in Thailand and 6 of
29 (21%) in California were known to have previously received
standard first-line tuberculosis treatment. Two individuals with
a MDR WTK strain in California were born in the United States,
one of whom was not of Hmong ethnicity. Among 7 individuals
within household or community subclusters, the median time to
reactivation following the end of the infectious period of an MDR
tuberculosis putative source case was 6.2 years (IQR, 3.8–7.4
years). Among 13 individuals not within a well-supported trans-
mission chain (genotypes of their isolates differed by >4 SNPs)
and with tuberculosis not diagnosed upon arrival, the median
time from US arrival to reactivation of MDR M. tuberculosis in-
fection was 8.5 years (IQR, 3.8–12.0 years). During the study pe-
riod in California, no tuberculosis due to a drug-susceptible WTK
strain occurred (among any ethnic group), and all MDR tubercu-
losis affecting persons of Hmong ethnicity was caused by a WTK
strain.

Genome sequencing resolved the WTK cluster defined by
conventional genotyping into several subclusters (≤4 SNP dif-
ference, proximal phylogenetic relationships, and epidemiolo-
gic linkages) in both California and Thailand (Figure 1). In
Thailand, only 3 of 12 cases (25%) regarded as epidemiologi-
cally linked in transmission chains were confirmed by genome
sequencing. Moreover, we observed multiple branch points in
the network, consistent with several closely related but distinct
allelic variants (ie, a highly prevalent strain), rather than evidence
of a single outbreak characterized by short genetic distances rep-
resenting recent chains of transmission (eg, well-characterized
in our study by the B-D-H-L-N group in California). The pres-
ence of a highly prevalent strain was further supported by mul-
tiple distinct combinations of DRMs, indicating drug resistance
acquired independently on multiple occasions, rather than
transmission of 1 drug-resistant strain from patient to patient
(Figure 2).

In California, genomic data supported a single case (patient
E) whose isolate occupied the central node in the WTK network

within California. Patient E arrived in the United States in the
mid-1980s; received a diagnosis of cavitary, smear-positive
MDR tuberculosis 2 years later; withdrew from treatment with-
in a year; and had sputum smear-positive MDR tuberculosis
diagnosed at death, 10 years later, indicating a potentially pro-
longed infectious period. Seven cases (A, C, F, G, O, Q, and X)
were contemporaneous with case E, and all had isolates that
shared similar genotypes (≤4 SNP difference), suggesting that
these cases may be in a chain of transmission. However, contact
investigations could identify definitive epidemiologic links only
among a subset of cases (O and X) that were extended family or
household contacts (Figure 1). Interestingly, the isolate from
patient 17 (who had MDR tuberculosis diagnosed in Thailand
and had not been in contact with patient E for >15 years) co-
occupied the central node of the network with a nearly identical
genotype. Epidemiological data integrated with the genomic
network also demonstrated multiple independent importation
events from Thailand with reactivation and transmission within
the state. Patients I, S, P, Y, and R arrived in the United States
following the death of patient E and likely represent indepen-
dent importation events. Patients D and R1 had a second
episode (M and R2, respectively) of MDR tuberculosis, the for-
mer considered reinfection and the latter considered relapse
following incomplete treatment. Public health contact investiga-
tion activities at the time of the most recent Hmong resettle-
ment (2004) also documented an MDR tuberculosis outbreak.
This outbreak involved two neighboring households and pre-
sumed transmission to a US-born person in a school setting.
Genomic data demonstrated only minor differences in SNPs
(≤4) between the isolate from patient B (the index case) and
those from subsequent cases (H, L, M, and N) in this transmis-
sion chain. Overall, genomic data supported all known links
(100%; 10 of 10) and 78% of possible links (7 of 9). In addition,
7 other links (AA-BB, E-A, E-C, E-F, E-G, E-Q, and I-W-Y)
were suggested by genomic data but were not supported epide-
miologically. Of note, directionality according to WGS violated
the temporal sequence of linked cases within 2 subclusters (eg,
J-F and B-L); this could be explained by the presence of missing
cases (eg, in subcluster J-F, 3 additional nongenotyped cases oc-
curred in the same family), timing of transmission relative to
specimen collection, or mixed infection with multiple strains.

Phylogeny
WTK isolates from both Thailand and California were closely
related (fixation index, 0.027) with a median of 10 SNPs
(range, 0–20 SNPs) differentiating strains (Supplementary Fig-
ure 1 and Table 2). In a sensitivity analysis, the fixation index
did not significantly differ according to whether the 5 imported
MDR tuberculosis cases were considered in the California or
Thailand group. Moreover, the California strains showed a higher
genetic diversification, compared with the Thai strains (π [±SD],
0.07 ± 0.005 vs 0.05 ± 0.005), suggesting multiple importation
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events followed by the establishment and evolution of multiple
WTK clones within California. This is further supported by the
temporal appearance of the WTK strain in California and the
finding that certain combinations of DRMs and compensatory
mutations (eg, identical sets of embB resistance–conferring mu-
tations) mapped exclusively to particular subclusters of the net-
work (Figure 2).

We found that the WTK strain was separated from all other
lineage 2 strains sequenced to date and was defined by 55 speci-
fic SNPs present in all WTK isolates but absent in other lineage
2 strains (Supplementary Figure 1 and Table 2). Fourteen of
these SNPs were found in intergenic regions, and 41 were found
in coding regions, 24 (59%) of which were nonsynonymous
(Table 2). Additionally, one intergenic SNP (between Rv0278c
and Rv0279c) was homoplastic. All strains harbored genomic
deletions previously described to be associated with lineage
2 strains (RD105, RD207, RD181, RD149, and RD152) [17],
although only WTK strains harbored an additional deletion
affecting the genetic locus Rv1267c.

Drug Resistance and Compensatory Mutations
High-confidence DRMs corroborated phenotypic drug-
susceptibility test results, indicating resistance to isoniazid
(katG S315T), rifampin (rpoBH526D/Y/R and S531L in 1 subset
each), ethambutol (embB [A378E in all and M306L/V/I, D354A,
and G406A in 1 subset each); Rv3806c D149E]), and streptomy-
cin (rpsLK43R) were found (Table 1 and Supplementary Tables 1
and 3) [14]. An identical katGmutation in conjunction with dif-
fering rpoB mutations indicates that a progenitor of the WTK
strain was likely isoniazid resistant but not MDR. Additional pyr-
azinamide (pncA) and capreomycin (tlyA) DRMs were present in
subsets of isolates. Following misdiagnosis and known fluoro-
quinolone exposure, patient X was found to have extensively
drug-resistant tuberculosis with an isolate demonstrating hetero-
resistance to fluoroquinolones (both wild type and mutation
gyrA D94N were detected). Four possible compensatory muta-
tions in rpoC (Supplementary Table 3) were found in strains
with rpoB S531L:V775M (patients 6, W, and I), F831L (patient
X), W484G (patient 7), and P309S (patients F and J; Figure 2). In

Figure 2. Median joining network with mapping of drug-resistance mutations. The relationships of 46 Wat Tham Krabok (WTK) isolates were determined
using 150 variable single-nucleotide polymorphisms (SNPs), as described in Figure 1B. Isolates are coded according to embB (fill color) and rpoB (border
color) mutation; other drug resistance and putative compensatory mutations are indicated in branches. Note that strains with matching drug resistance and/
or compensatory mutations are clustered together. Shading indicates the relative SNP difference with respect to the central node.
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contrast, only a single rpoC mutation (S561P in patient 17, sub-
clusters A-U and AA-BB) was associated with rpoB H526R.

In addition to 26 high-confidence DRMs (Table 1 and Supple-
mentary Table 3), the WTK strain harbored 17 nonsynonymous
or intergenic mutations recently proposed to be associated with
multidrug resistance [18]. However, most of these mutations (12
of 17) have been previously identified as phylogenetic markers (6
SNPs are associated with lineage 2, 4 SNPs are associated with
sublineage 2, and 2 SNPs are associated with lineages 2, 3, and
4) [16] and are therefore unlikely to have a causal association
with drug resistance. Of the 5 remaining mutations, 1 each was
distributed among 5 WTK strains, indicating a nonessential role
in the propagation of the WTK strain.

DISCUSSION

We used next-generation sequencing data to delineate the lon-
gitudinal clonal expansion of a lineage 2/Beijing MDR strain of
M. tuberculosis among persons of Hmong ethnicity emigrating

from a Southeast Asian setting with a high burden of MDR tu-
berculosis to the United States. We found that the domestic
MDR tuberculosis rate among Hmong persons was >3 times
that of the general population in California, a situation facilitat-
ed by poverty and social isolation following resettlement in the
United States [19, 20]. Genomic data provided evidence against
what was previously thought to be an MDR tuberculosis out-
break in Thailand, indicated a central role for specific individ-
uals in the establishment of the WTK strain in California, and
confirmed multiple importation and subsequent reactivation
events over a 22-year period.

Contact investigations aim to identify cases of active and latent
M. tuberculosis infection among contacts in order to institute
effective preventive therapy. This effort has been supplemented
byM. tuberculosis genotyping based on mobile and repetitive ge-
netic elements for >2 decades. However, conventional genotyping
techniques examine <1% of the M. tuberculosis genome and are
often insufficiently specific in outbreak situations, owing to a rate
of change (the so-called molecular clock) that is slower than the
rate of ongoing transmission and pathogenesis [21]. In contrast,
WGS provides high-resolution molecular mapping ofM. tubercu-
losis that can identify short-term transmission events, even in the
context of highly prevalent strains.

In our study, genomic data were decisive in resolving a puta-
tive MDR tuberculosis outbreak in Thailand into multiple alle-
lic variants of a highly prevalent strain. Despite extensive
contact among cases and identical conventional genotypes
[12], most cases were not related within recent transmission
chains. Strains from lineage 2 (the East Asian lineage, which in-
cludes the Beijing family of strains) are associated with an in-
creased risk of drug resistance [22–24] and have been found
to account for the majority of MDR tuberculosis cases in mono-
phyletic fashion in other settings [8]. In California, a setting
with a lower tuberculosis burden examined over a longer inter-
val, conventional genotyping was sufficient to distinguish the
WTK strain from other MDR strains and to discern relatedness
to the 2004 investigation in Thailand. High-resolution molecu-
lar techniques were necessary, however, to resolve short-term
transmission chains, distinguish relapse from reinfection, and
identify the central role of a potential super spreader in trans-
mitting the WTK strain within California.

Interrogation of the complete M. tuberculosis genome is also
advantageous in that it may identify genetic markers that ex-
plain phenotypic consequences. We identified a deletion of
Rv1267c (EmbR) within the WTK strain that may simultane-
ously directly confer ethambutol resistance through mutations
in the kinase-interacting domain of EmbR [25, 26] and alter
the ability of the host to mount an efficient immune response
through functional changes in the ratio of lipoarabinomannan
(LAM) to lipomannan (LM) [26, 27]. The LAM/LM ratio has
been associated with mycobacterial virulence, phagosome mat-
uration, [28] apoptosis [29], and interferon signaling [30] in

Table 2. Nonsynonymous Mutations Present in all Wat Tham
Krabok (WTK) Strains but Not Present in Other Lineage 2 Strains
From the Global Collection

Reference
Base

Mutant
Base Locusa

Amino
Acid

Changea
Genomic
Positiona

Locus
Namea

C G Rv0132c A212P 160 149 fgd2

C G Rv0592 P464R 691 891 mce2D
A G Rv0614 I168V 709 857 . . .

G C Rv0663 R290P 757 005 atsD

C G Rv1166 T402R 1 297 356 lpqW
T C Rv1524 F66L 1 718 921 . . .

G T Rv1643 A123S 1 853 550 rplT

G C Rv1784 A140P 2 021 051 . . .
C T Rv1785c A58T 2 024 457 cyp143

C G Rv1813c A124P 2 055 743 . . .

T C Rv1871c N71S 2 121 673 . . .
T C Rv2520c N74S 2 837 395 . . .

C G Rv2571c A212P 2 895 327 . . .

A G Rv2601 I72V 2 928 601 speE
G A Rv2700 R24Q 3 015 273 . . .

A G Rv2702 K197E 3 017 446 ppgK

C G Rv2763c D70H 3 073 402 dfrA
G A Rv2834c T269I 3 140 509 ugpE

C G Rv3201c V399L 3 575 842 . . .

G A Rv3308 G233D 3 695 561 pmmB
G A Rv3415c A16V 3 834 475 . . .

G T Rv3447c S1233R 3 864 540 . . .

G C Rv3596c L473V 4 039 288 clpC1
T C Rv3735 F87S 4 186 348 . . .

Data are from [16].
a Refer to the Mycobacterium tuberculosis H37Rv genome.
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macrophages and with interleukin 12 cytokine secretion by
dendritic cells, all of which result in increased fitness [31].

Previous work in several bacteria, including M. tuberculosis
complex, has shown that mutations in rpoC can compensate
for the fitness defects associated with mutations in rpoB that
confer resistance to rifampin [10, 32, 33]. In M. tuberculosis,
these rpoC mutations have been strongly associated with the
rpoB S531L mutation, which is the most frequent mutation in
rifampin-resistant clinical strains [10] and associated with a
minor fitness defect inM. tuberculosis [34].Hence, many differ-
ent rpoC mutations seem to be able to compensate for the fit-
ness defect associated with rpoB S531L. Our study supports this
view, since 4 of 5 rpoC mutations that we identified were found
in strains carrying rpoB S531L. Interestingly, an alternate rpoC
mutation (S561P) was strongly associated with rpoB H526R.
rpoB H526R has been shown to have a much greater fitness
cost than rpoB S531L [34]. The fact that we found only a single
rpoC mutation linked to rpoB H526R suggests that compensa-
tion is somehow restricted in mutants carrying rpoB H526R,
perhaps because the deleterious effect on fitness is stronger
and therefore more difficult to compensate. More work is need-
ed however to confirm this hypothesis.

Positive selection in strains exhibiting increasing levels of
drug resistancemap almost entirely to drug resistance–associated
genes, and for drug-resistant M. tuberculosis (as in other mi-
crobes) [35], the molecular antibiogram (ie, the collection of
detected DRMs) has been used to corroborate other genotypic
information in inferring chains of transmission [36]. In our
study, embB resistance–conferring mutations were strikingly
congruent within network subclusters. However, our study
was not powered to examine the utility of DRMs as phylogenet-
ic markers, and homoplasy would likely be a limiting factor for
analyses undertaken on a broader scale [37].

Our study has potential limitations. First, estimates of clus-
tering are typically based on a nonrandom sample of cases in
a given community, and inference of transmission chains is
subject to the same limitations as conventional genotyping
with regard to sampling fraction and cluster size [21]. In Thai-
land, and prior to 2004 in California, there was incomplete sam-
pling of the population base. Thus, missed isolates identical to
or highly similar to that infecting the putative super spreader
(patient E) might have provided an alternate explanation for
some of the transmission of the WTK strain in California. Sec-
ond, information on epidemiologic links was abstracted retro-
spectively. Although detailed contact investigation data were
often available, in particular for California cases, collecting addi-
tional information prospectively was not feasible. Thus, some
epidemiologic linkages and subsequent relationships between
patients might be missed, including the identification of alternate
source cases. Third, we avoided application of strict SNP cut
points in inferring direct transmission. Accurate estimation of
transmission trees relevant to public health practice will continue

to require a context of conventional epidemiologic information
and a nuanced approach to SNP differences. This approach
must account for within-person genetic variability (ie, pathogen
variability during the same tuberculosis episode) and between-
person genetic variability (ie, pathogen variability during se-
quential transmission events) due to microevolution [38],
mixed-strain infection [39], and heteroresistance [40]. Further,
because SNP variability is heterogeneous in tempo across the
full genome [41], accurate measurement of a molecular clock
will require calibration of SNP changes to the gene regions
they occupy.

In conclusion, WGS has epidemiologic added value in low-
and high-burden settings and aids our understanding of the
transcontinental dispersion and transmission of MDR M. tuber-
culosis. Used in real time, WGS may have alerted public health
authorities to the presence of missing cases in chains of ongoing
transmission or unknown sites of transmission in both Thailand
and California. However, overall improvements to tuberculosis
control or patient-important outcomes, along with questions of
cost-benefit in low-burden settings, remain to be determined.
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