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Abstract

Biomolecular condensates are essential in various cellular processes, and their mis-regulation 

has been demonstrated to underlie disease. Small molecules that modulate condensate stability 

and material properties offer promising therapeutic approaches, but mechanistic insights into 

their interactions with condensates remain largely lacking. We employ a multiscale approach 

to enable long-time, equilibrated all-atom simulations of various condensate-ligand systems. 

Systematic characterization of the ligand binding poses reveals that condensates can form diverse 

and heterogeneous chemical environments with one or multiple chains to bind small molecules. 

Unlike traditional protein-ligand interactions, these chemical environments are dominated by 

non-specific hydrophobic interactions. Nevertheless, the chemical environments feature unique 

amino acid compositions and physicochemical properties that favor certain small molecules 

over others, resulting in varied ligand partitioning coefficients within condensates. Notably, 

different condensates share similar sets of chemical environments but at different populations. 

This population shift drives ligand selectivity towards specific condensates. Our approach can 

enhance the interpretation of experimental screening data and may assist in the rational design of 

small molecules targeting specific condensates.
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Introduction

Biomolecular condensates are membrane-less organelles that play critical roles in organizing 

the intracellular environment, facilitating the spatial and temporal regulation of biochemical 

processes.1–4 Their formation is driven by multivalent interactions among specific proteins 

and nucleic acids, leading to the establishment of dynamic and reversible assemblies.5–11 

These condensates can rapidly form and dissolve in response to cellular signals or changes 

in the cellular environment, allowing cells to adapt to various physiological conditions 

efficiently.12–14

Dysregulation of condensates can lead to various diseases, sparking interest in discovering 

molecules that target them for new therapeutic approaches.15–19 Changes in the formation 

or dissolution of these condensates can contribute to pathological conditions such as 

neurodegenerative diseases, cancers, and genetic disorders.16,18,20–25 Developing chemical 

probes and therapeutics that can modify the properties of condensates offers a promising 

strategy for studying and potentially treating these conditions. Small molecules may help 

restore normal cellular functions in diseases where condensate localization, dynamics, and 

material properties are altered.14,16,19,26,27

Initial progress has been made toward understanding the interactions between condensates 

and ligands, with several groups conducting large-scale screening studies.19,28–30 These 

studies quantify the fraction of small molecules inside the condensate versus those outside, 

referred to as partition coefficients, using various techniques. Several trends emerge across 

the library of molecules investigated. Small molecule mass spectrometry experiments have 

led to the discovery that lipids and small molecule drugs can concentrate in condensates, 

as a result of their hydrophobic character.29,30 Fluorescent probe partitioning experiments 

explored using microscopy have uncovered differences in the chemical environments 

of condensates that could be predictive of small molecule partitioning behavior in live 

cells.14,28 Insights into the atomistic interactions driving small molecule partitioning could 

help understand the reported results and guide the rational design of molecules that could 

interact with condensate.

Protein-ligand interactions have been extensively studied, primarily focusing on single 

folded proteins.31–34 However, the unique properties of condensates may result in 

interactions with ligands that differ from established paradigms. Notably, many proteins 

that form condensates are disordered, lacking the well-folded regions necessary for creating 

binding pockets to facilitate specific interactions.11,15,35,36 Additionally, condensates consist 

of multiple chains, raising the question of whether cross-chain interactions contribute to 

ligand binding differently than in single chains. Molecular dynamics (MD) simulations, 

which have been instrumental in identifying key factors for ligand binding affinity and in 

the rational design of small molecules targeting single proteins,33,37,38 can also be applied to 

study condensate-ligand interactions.

We conduct long-timescale atomistic MD simulations to reveal the chemical environments 

within protein condensates that facilitate the partitioning of ligand molecules. A multiscale 

approach was used to equilibrate protein-protein contacts in three models of cellular 
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condensates modeled by homotypic protein condensates: transcriptional (MED1), granular 

component of the nucleolus (NPM1), and constitutive heterochromatin (HP1α), which 

have been previously characterized experimentally.19,39–42 We introduce protein-ligand 

interaction fingerprints to systematically characterize the variety of binding poses observed 

in the atomistic simulations. Low-dimensional embeddings of these interaction fingerprints 

revealed multiple clusters of chemical environments for ligand binding. These environments 

feature nonspecific interactions, often enriched with hydrophobic residues from both the 

same and different protein chains, highlighting the significant role of ligand hydrophobicity 

in determining partition coefficients. Notably, the simulations identified specific chemical 

groups in ligand molecules that contribute to these interactions. Ligands enriched with these 

groups were found to partition more effectively in protein condensates compared to those 

without them. Microenvironments with similar chemical compositions were found across 

the three protein condensates, indicating common features. However, significant shifts in the 

population of these chemical environments were observed, contributing to the selectivity of 

ligands targeting specific condensates.

Results

Multiscale simulations produce consistent protein interactions across resolutions

Computer simulations have been instrumental in characterizing the detailed structural 

organization of condensates and linking their stability and material properties to sequence 

features.43–54 These simulations often employ coarse-grained models due to their superior 

computational efficiency, which is essential for ensuring the equilibration of complex, 

manychain systems.44,46,48,55 However, coarse-grained models lack the atomistic details 

necessary to capture the interactions and solvation environment critical for ligand binding.

To obtain equilibrium configurations of condensates with well-relaxed inter-chain contacts 

while preserving atomistic details of protein-ligand interactions, we employed a multiscale 

approach.56–58 As described in the Methods section and illustrated in Figure 1A, this 

approach involves three steps that gradually increase the model resolution. We began with 

an α-carbon-only protein model, MOFF,44,59 that facilitates large-scale conformational 

changes. Next, we transitioned to an explicit solvent coarse-grained model with the 

MARTINI force fields to relax the solvation environment around proteins.60 Finally, we 

employed an explicit solvent all-atom model with the CHARMM36m force field61 for 

accurate descriptions of protein-ligand interactions.

We employed a multiscale approach to construct all-atom models for three distinct 

condensates, each composed of full-length proteins: HP1α, NPM1, or the MED1 

fragment containing residues 600 to 1581. These condensates have been extensively 

characterized in previous experimental studies.19,39–42 To optimize computational resources 

for characterizing the chemical environment within the condensate interior, our simulations 

were restricted to the dense phase. Unlike slab simulations, we did not include the co-

existing dilute phase. Simulations at different resolutions produced consistent interchain 

contact patterns among various amino acids (Figures 1B and S1–S3). R2 values between 

the MOFF or MARTINI and all-atom simulation results are above 0.75 for all proteins. 

We also repeated the simulation protocol for HP1α three times, each time selecting 
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different configurations produced by MOFF simulations to initialize the higher-resolution 

simulations. The resulting three all-atom simulations yielded similar statistics for amino 

acid contacts (Figure S4). These results support the multiscale approach’s ability to produce 

equilibrated, atomistic condensate organizations.

Interaction fingerprints reveal the chemical and dynamical nature of condensate-ligand 
interactions

Using the atomistic configurations derived from multiscale simulations, we conducted 

additional two-microsecond explicit solvent atomistic MD simulations to investigate the 

interactions between protein condensates and small molecules. We focused on three types 

of small molecules: Mitoxantrone, Daunorubicin, and Proflavine, which have been shown 

to differentially partition in the three condensate systems.28 For HP1α condensates, we 

also simulated a more hydrophilic molecule, Citicoline. A total of 10 simulations were 

performed, each corresponding to a specific condensate-ligand combination, resulting in a 

cumulative simulation time of 20 microseconds.

The condensate systems consist of numerous protein copies, creating a wide variety 

of local chemical environments. To comprehensively characterize all potential chemical 

environments that could accommodate small molecules, we introduced 80 copies of each 

small molecule into the condensate system for simulations. The presence of multiple small 

molecules enabled the exploration of potential binding poses in parallel, rather than relying 

on the slower diffusion process of individual small molecules.

To systematically characterize the numerous binding environments identified in simulations, 

we adopted the chemical interaction fingerprint concept, commonly used for encoding 

protein-ligand interactions.62–66 As detailed in the Methods section and illustrated in Figure 

2A, these fingerprints represent each binding pose with a binary vector that annotates 

the sets of amino acids contacting the ligand molecule and the types of interactions 

formed. Consequently, the fingerprints capture both structural and chemical information 

of the binding pose. To simplify fingerprint representation, we consolidated amino acids 

from different chains. When preserving the residue index of each amino acid during 

this consolidation, we refer to the resulting vector as index-based fingerprints. However, 

unless otherwise specified, we further group amino acids of the same type together without 

preserving the residue indices to facilitate transferable analyses across proteins.

The statistics of interaction fingerprints revealed the diversity of small molecule binding 

poses. For example, we calculated the probability distribution of the total number of 

interactions, determined as a direct sum of the fingerprint vector, formed between each 

Mitoxantrone molecule and the HP1α condensate. As shown in Figure 2B, the number of 

interactions in the binding poses varies widely. The average number of amino acids involved 

in ligand binding is approximately five (Figure S6). This diversity in binding poses supports 

the non-specific nature of condensate-ligand interactions. Analyses of other systems yield 

similar results (Figures S5 and S6). Furthermore, the statistical similarity between the first 

and second halves of the trajectories supports the convergence of the simulations (Figures S7 

and S8).
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To elucidate the dynamic nature of condensate-ligand interactions, we computed a similarity 

matrix for each ligand molecule. The matrix’s two dimensions correspond to simulation 

time, with each element representing the Tanimoto similarity (Eq. 2 in the Methods section) 

between the index-based fingerprints of a ligand’s binding pose at two distinct time points. 

The similarity values range from 0, indicating no overlap between two binding poses, to 

1, indicating identical binding poses (see Methods for details). Figure 2C provides two 

examples of such similarity matrices. When the ligand interacts with multiple distinct 

binding sites, high similarity values appear during the time it occupies each site, forming 

a domain along the diagonal in the corresponding matrix (Figure 2C, left). Off-diagonal 

elements, representing similarity values for fingerprints in different binding sites, are low. In 

contrast, if a ligand remains stably bound to a single site, the similarity matrix displays high 

values throughout (Figure 2C, right).

The average of the similarity matrix indicates the number of binding poses explored by the 

ligand, particularly when compared with theoretical values estimated for ligands binding at 

exactly n sites during the simulation (see Supporting Information for details). As shown in 

Figure 2D, for most ligands, the similarity matrix average is lower than the theoretical value 

calculated for n = 10. This suggests that ligand molecules dynamically explore numerous 

distinct binding environments within the condensate. Similar conclusions can be drawn from 

analyses of other condensate-ligand systems (Figure S10).

Chemical environments are created from single and multichain interactions

While protein-ligand interactions have been extensively studied,31–34 condensates, which 

are assemblies of interacting proteins and nucleic acids, exhibit emergent properties distinct 

from a single biopolymer. Understanding the role of cross-chain contacts in small molecule 

partitioning could be crucial for differentiating condensate-drug interactions from those 

occurring in single proteins. We again focus our analysis on the HP1α condensate, with 

results for other systems provided in the Supporting Information (Figures S11–S13).

To determine whether small molecules interact with a single or multiple chains during 

binding, we introduced the concept of single-chain dominance for each small molecule, fSCD, 

defined as,

fSCD = max N1, …, Nm

i = 1
m Ni

(1)

where m is the number of protein chains interacting with the small molecule, and Ni is the 

number of interactions between the small molecule and the i-th chain. This metric quantifies 

the maximum fraction of interactions in a binding pose originating from a single chain. By 

definition, fSCD ranges from 0 to 1, reaching 1 if the small molecule interacts exclusively 

with one protein chain. We further determined the probability distribution of fSCD using 

binding poses from simulations. As shown in Figure 3A, a significant fraction of the binding 

poses have a non-unity fSCD, indicating the involvement of multiple protein chains in small 

molecule interactions.
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The presence of both single and multiple chain environments prompted us to examine 

the types of interactions they offer for ligand binding. We performed Uniform Manifold 

Approximation and Projection (UMAP) embedding analysis to project the high-dimensional 

interaction fingerprints onto two variables, UMAP1 and UMAP2, which we refer to as 

UMAP embeddings. As detailed in the Methods section, UMAP is a dimension reduction 

technique that finds a low-dimensional projection of the data that best preserves their 

topological structure.67 The UMAP embeddings succeeded in partitioning the interaction 

fingerprints into several clusters (Figure 3D). We observed a significant overlap between the 

fingerprints from a single protein and those involving multiple chains. This observation is 

robust across different small molecules and condensates (Figure S12). Thus, while amino 

acids from different protein chains can come together to bind small molecules, the chemical 

environments they offer are similar to those found in individual proteins.

The similarity in binding environments can be inferred from the contact maps between 

amino acids from the same and different chains (Figure 3B). The two maps show a 

significant correlation, with a R2 value of 0.82 (Figure 3C). Consequently, the scaffold for 

condensate-ligand binding shares a similar amino acid composition, regardless of whether 

it is formed by a single protein chain or multiple chains, resulting in comparable chemical 

environments and interaction fingerprints.

Multiple chemical environments contribute to ligand partitioning

The interaction fingerprints enable a systematic analysis of the chemical nature of 

the binding between small molecules and condensates. To this end, we computed the 

fraction of different types of interactions detected. As shown in Figures 4A and S14, 

non-specific interactions, such as hydrophobic interactions and van der Waals contacts, are 

important for interactions between the ligands and proteins considered. Furthermore, as 

the ligands become more hydrophobic, as measured by their log P (the logarithm of the 

partition coefficient of a molecule between octanol and water), the fraction of hydrophobic 

interactions increases.

To further distinguish among various small molecules, we utilized UMAP to project their 

interaction fingerprints detected in the HP1α condensate onto two dimensions (Figure 

4B and S15). Similar results for other condensate-ligand systems are provided in Figures 

S16 and S17. The embeddings segregate the fingerprints into minimally overlapping 

clusters, each containing unique combinations of amino acids for ligand binding. Figure 4C 

demonstrates that while clusters 1 and 4 are enriched with either hydrophilic or hydrophobic 

residues, clusters 2 and 3 comprise a mixture of both residue types.

We found that all four molecules are present in most clusters, albeit in varying proportions. 

The lack of clear separation among the small molecules aligns with the dominance of 

non-specific interactions provided by condensates for binding. The shift in the population 

of binding environments is most evident in the separate scatter plots for each drug, with 

the fingerprints colored by the fraction of hydrophobic interactions (Figure 4D). Most 

fingerprints for the hydrophilic molecule Citicoline are located around cluster 1. In contrast, 

fingerprints for the hydrophobic molecule Proflavine are concentrated around cluster 4.
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Thus, condensates offer heterogeneous chemical environments for non-specific ligand 

binding. Depending on their hydrophobicity, the small molecules preferentially engage with 

subsets of chemical environments that provide favorable interactions. The importance of 

drug hydrophobicity in condensate binding is consistent with previous findings on its role in 

predicting partitioning coefficients.29,68

Simulations identify small molecule fragments contributing to condensate partitioning

In addition to the condensate chemical environments, the atomistic simulations also revealed 

the chemical groups of small molecules that interact with amino acids forming such 

environments (Figure 5A). While the chemical properties of these fragments varied among 

the small molecules, they shared some common moieties (e.g., amines, π-systems, and 

carbonyl groups) that are expected to drive noncovalent interactions with proteins (Figure 

5A). These fragments provide direct predictions that can be tested against experimental 

screening data: small molecules enriched in these moieties are expected to partition more 

effectively in condensates than those lacking them.

Analysis of the screening data in Kilgore et al.28 revealed that several interaction fragments 

derived from Mitoxantrone, Daunorubicin, and Proflavine were identifiable in certain 

chemical probes (Figure 5B). Comparing the partition ratios of probes containing one of 

these interaction fragments for specific condensates (MED1, NPM1, HP1α) with those 

lacking the fragment showed that partitioning behavior was influenced by its presence 

(Figure 5B). For instance, chiral secondary alcohols were equally incorporated and weakly 

associated with partitioning. Secondary amines adjacent to a π-system had minimal impact 

on the partition ratio in MED1 condensates but were more influential in NPM1 and 

HP1α condensates. Aromatic secondary amines were less likely to concentrate in MED1 

condensates but had a significant impact in NPM1 and HP1α condensates. These results 

further support the idea that chemical environments in condensates enable selective small 

molecule partitioning and MD simulation can help guide the discovery of molecules that 

favor them.

Population shift in chemical environments contributes to differential ligand partitioning

Having revealed the heterogeneous chemical environments individual condensates harbor 

to accommodate small molecules, we next examined the distinctions of these interactions 

across different condensates for the same molecule.

We applied UMAP to analyze interaction fingerprints formed between Mitoxantrone and the 

three different protein condensates. Similar to those presented in Figure 4, the embeddings 

successfully identified the heterogeneous environments within condensates, with visible 

clusters of interaction fingerprints shown in Figure 6A. Notably, the scatter plots of the 

binding modes from the three condensates exhibit significant overlap. Analyses of the other 

two molecules produced similar results (Figures S18 and S19). Thus, small molecules can 

concentrate in similar chemical environments found in different condensates. The amino 

acid composition in different clusters is highly conserved across the three condensates 

(Figure 6B).
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Although the interaction fingerprints from various condensates exhibit considerable overlap, 

their relative distribution within the embedding space differs markedly. To examine these 

quantitative differences, we plotted the probability densities of interaction fingerprints 

in Figure 6C. The peaks of the distributions (yellow) are located at distinct positions. 

Furthermore, we found that the frequency of amino acids in the binding poses correlates 

with the frequency computed directly from the protein sequence (Figure S20). Therefore, 

while condensates share similar chemical environments to accommodate small molecules, 

they fine-tune the relative population with amino acid composition.

The above observations enhance our understanding of experimental data regarding the 

correlation of small molecule partitioning coefficients in different protein condensates. 

Given the similar chemical environments of various protein condensates, small molecules 

that are favored in one are likely to partition in others. However, variations in the 

relative distribution of chemical environments lead to quantitative differences in partition 

coefficients across condensates.

Conclusions and Discussion

In this study, we employed a multiscale simulation approach to investigate condensate-

ligand interactions at atomic resolution. We also introduced a quantitative metric, the 

interaction fingerprint, to systematically characterize the chemical and structural features 

of the chemical environment for ligand binding. Analysis of these fingerprints revealed that 

different condensates utilize remarkably similar chemical environments for ligand binding, 

explaining the correlation of small molecule partitioning coefficients across condensates. 

However, these microenvironments are quite heterogeneous, comprising diverse binding 

pockets formed by distinct amino acid groups. Variations in the distribution of these pockets 

contribute to condensates’ preference for specific ligand molecules, resulting in the observed 

ligand selectivity.

The similarity in chemical environments across condensates arises from the shared driving 

forces that contribute to condensate organization. Previous studies have shown that most 

condensates rely on hydrophobic, electrostatic, and cation-π interactions to mediate contacts 

between disordered protein chains.5–10,69 These interactions promote interchain contacts 

with similar amino acid compositions across condensates. Since small molecules only 

passively interact with the preformed protein-interaction network by different chains, they 

encounter similar chemical environments for binding.

Insights from our study may inform the future development of small molecules that 

selectively partition into specific condensates. In particular, by leveraging the differences in 

populations within heterogeneous environments, it is possible to engineer ligand molecules 

that incorporate multiple chemical groups. One of these groups could be designed to 

specifically target the most populous environment associated with the condensate of interest, 

while the other groups would be tailored to exhibit minimal interaction with the predominant 

environments found in other condensates. Such bivalent or multivalent interactions could 

enhance the selectivity of ligand molecules for specific condensates.
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In addition to this intuitive optimization, combining our dense phase simulations with 

calculations in the dilute phase allows for determining the partitioning coefficient by 

comparing the relative binding strengths between the two phases.70 Moreover, it may 

be feasible to quantitatively connect the interaction fingerprints introduced in this study 

with experimentally determined partition coefficients through machine learning approaches. 

Establishing this connection could facilitate the rapid screening of small molecules.

Methods

Multiscale simulations

We employed a multiscale approach to prepare equilibrated configurations of protein 

condensates to investigate ligand binding environments. Initially, we used coarse-grained 

simulations with MOFF, a one-bead-per-amino-acid force field, which balances interactions 

for both folded and disordered proteins.44 Simulations were initialized by randomly placing 

protein molecules, 10 for HP1α dimers, 14 for NPM1, and 4 for MED1, in a cubic box of 

100 nm × 100 nm × 100 nm. The process began with energy minimization followed by 0.1 

μs constant pressure and constant temperature (NPT) simulations at 150 K and 1 bar, using a 

10 fs timestep. This resulted in the compression of the simulation boxes to a final size of 15 

× 15 × 15 nm3. The box size was chosen to achieve a protein mass density of approximately 

130 mg/mL, consistent with previous studies of protein condensates.44,47,48,71 Subsequent 

energy minimizations were followed by 0.1 μs constant volume and constant temperature 

(NVT) simulations, with a 10 fs timestep. During the NVT simulation, the temperature 

was gradually increased from 150 K to 300 K using the GROMACS72 simulated annealing 

protocol. Finally, NVT simulations were conducted at 300 K for 2 μs with a 10 fs timestep.

Following these simulations, we used the MARTINI force field,73 which includes explicit 

representations for water molecules and ions, and higher resolution representations for 

proteins based on a four heavy atoms to one coarse-grain bead mapping strategy. The final 

frames from the MOFF simulations were converted to atomic structures using REMO,74 and 

then coarse-grained using Martinize2.75 The MARTINI protein condensates were solvated 

with coarse-grained water molecules and NaCl ions at a concentration of 150 mM, achieving 

a box size of 15 × 15 × 15 nm3. MARTINI simulations began with energy minimization, 

followed by NVT equilibration at 313.15 K for 5 ns with a 10 fs timestep, and NPT 

equilibration at 313.15 K and 1 bar for 10 ns with a 20 fs timestep. NPT production 

simulations were then conducted at 313.15 K and 1 bar for 0.6 μs with a 20 fs timestep.

Condensate structures from the final frames of the MARTINI simulations were converted 

to atomic structures using the Backward tool76 for simulations with the CHARMM36m 

force field. The protein condensates were solvated with CHARMM-modified TIP3P water 

and 150 mM NaCl to achieve a box size of 15 × 15 × 15 nm3. Before introducing drug 

molecules, we equilibrated the protein-only system with a 125 ps NVT simulation at 313.15 

K using a 2 fs timestep, followed by a 125 ps NPT simulation at 313.15 K and 1 bar with a 

2 fs timestep. We then conducted a 500 ns NPT simulation at 313.15 K and 1 bar with a 4 fs 

timestep.
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After equilibration, 80 small-molecule drugs were inserted into the system by randomly 

replacing solvent molecules using the GROMACS insert-molecules tool, achieving a 

concentration of approximately 40 mM. Force fields for these molecules were generated 

using CGenFF.77,78 We performed 2 μs NPT simulations at 313.15 K and 1 bar with a 4 

fs timestep to probe protein-ligand interactions. For all atomistic simulations with a 4 fs 

timestep, bond constraints were applied using the LINCS algorithm,79 and the hydrogen 

mass repartitioning method80 was used.

All simulations were performed using GROMACS,72 with additional simulation details 

provided in the Supporting Information. System visualization and analysis were conducted 

with Mol∗,81 MDAnalysis,82 and MDTraj.83

Construction of condensate-ligand interaction fingerprints

We utilize the Structural Interaction Fingerprint (SIFt) methodology as outlined in 

previous studies62 to characterize condensate-ligand interactions via the Python library 

ProLIF.66 Initially, we construct an interaction matrix M with dimensions N × L for a 

given condensate-ligand conformation. Here, N = 6 represents the number of interaction 

types considered, which include Hydrophobic, HBDonor, HBAcceptor, PiCation, 

PiStacking, and VdWContact. The parameter L = n × l where l denotes the number 

of amino acids in a protein chain, and n indicates the number of proteins in the condensate. 

Each element Mi, j in the matrix is binary (1 or 0), indicating the presence or absence of the 

i-th interaction type between the ligand and the j-th residue.

We reduce the dimensionality of the interaction matrix by summing the columns 

corresponding to different protein chains but sharing the same sequence location, producing 

a matrix Mindex with dimensions 6 × l. Additionally, we define another matrix, MAA, with 

dimensions 6 × 20 by merging all columns of the same amino acid type and applying the 

same summation rule.

The interaction fingerprints are defined by flattening the matrices Mindex and MAA into vectors. 

These vectors are then binarized, resulting in index-based or residue type-based interaction 

fingerprints, respectively. Detailed information on the construction of these fingerprints is 

provided in the Supporting Information.

Calculation of similarity matrices based on index-based fingerprints

We defined the similarity between two interaction fingerprints, fpi and fpj, as

si, j = all bits fpi ∧ fpj

all bits fpi ∨ fpj
.

(2)

The operators ∧ and ∨ represent the bitwise AND and OR operations between binary 

fingerprints, respectively. The above definition is often referred as Tanimoto similarity 

for binary vectors. For each ligand molecule in a simulation system, we compute a 
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similarity matrix in which each element represents the similarity between condensate-ligand 

conformations at two distinct simulation snapshots.

UMAP analysis on residue type-based fingerprints

We employed UMAP for dimensionality reduction of interaction fingerprints. Specifically, 

dimensionality reduction was performed on amino acid type-based interaction fingerprints 

using Python library umap-learn.67 The Jaccard distance, calculated as 1 minus the 

Tanimoto similarity, was used to quantify the distance between pairs of interaction 

fingerprints. Default values were maintained for the remaining UMAP hyperparameters.

Identification of small molecule interaction fragments

For a frame collected from each simulation, the location on a small molecule drug and 

the amino acid residues it interacted with in that frame was binned and counted. The sites 

contacted by protein molecules on a small molecule were summed and histograms were 

computed to identify locations with the highest probability of interacting with MED1, 

HP1α, or NPM1 proteins in each simulation yielding atoms central to each contact. 

These atoms were then used to construct the interaction fragments (Figure 5A) using the 

Chem.FindAtomEnvironmentOfRadiusN function implemented in RDKit84 with a radius 

of 2 around each atom site. These interaction fragments could then be used to perform a 

substructure search using the HasSubstructMatch as implemented in RDKit in order to 

identify chemical probes present in Kilgore et al.28, that either had (+) or did not have (−) 

the indicated chemical moiety.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Multiscale approach enables explicit solvent all-atom simulations of biomolecular 
condensates with equilibrated configurations.
(A) Illustration of the multiscale simulation protocol that gradually increases the model 

resolution for the HP1α condensate. (B) Contact probability maps for amino acids from 

different HP1α protein chains, computed from simulations at various resolutions, exhibit 

consistent patterns.
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Figure 2: Chemical interaction fingerprints facilitate the analysis of condensate-ligand 
interactions.
(A) The diagram depicts the calculation of two types of interaction fingerprints using a 

simplified example. In this instance, a ligand molecule engages in two types of interactions 

(represented by dashed and dotted lines) with a 5-mer peptide. The 5-mer consists of 

three types of amino acids, indicated by purple, pink, and blue circles. In the index-based 

fingerprints (top middle panel), we define a vector whose length corresponds to the number 

of amino acids in the peptide for each interaction type. Each element in the vector counts 

the specific interactions formed between the ligand and each amino acid. For the amino 

acid type-based fingerprints (bottom middle panel), interactions formed with the same 

amino acid type are grouped together. The multiple vectors presented in the middle panel 

are subsequently flattened into a one-dimensional binary vector, following a procedure 

outlined in the Supporting Information, to define the final interaction fingerprints. (B) 

Probability distribution of the total number of interactions detected in all binding poses 

uncovered from simulations of the HP1α condensate with Mitoxantrone. Representative 

configurations depicting condensate-ligand binding with a small and large number of 

interactions are shown on the side. (C) Representative similarity matrices of fingerprints 

along the simulation trajectory, corresponding to a dynamic ligand traversing through 

multiple binding sites (left) and a stably bound ligand (right). (D) Probability distribution of 
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the average of similarity matrices for different Mitoxantrone molecules. The vertical lines 

denote theoretical lower limits of this average for a ligand exploring n unique binding poses.
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Figure 3: Amino acids from single or multiple protein chains form scaffolds with similar 
chemical environments for ligand binding.
Results are obtained from simulations of the HP1α-Mitoxantrone system. (A) Probability 

distribution of the single chain dominance. (B) Contact maps between amino acids from 

different (left) and the same (right) chain. (C) Correlation between the intra- and inter-chain 

amino acid contacts. The red line represents a linear fit to the data. (D) Scatter plot of 

the interaction fingerprints on the two-dimensional UMAP embeddings. Binding poses with 

single and multiple chains are shown in pink and blue, respectively.
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Figure 4: Condensates provide heterogeneous chemical environments for non-specific ligand 
binding.
Results from the HP1α condensate are shown as examples. (A) Frequency of various 

interactions detected in the binding pose between HP1α and different small molecules. 

(B) Scatter plot of the interaction fingerprints for the four small molecules in the 

HP1α condensate on the two-dimensional UMAP embeddings. (C) Amino acid frequency 

determined from the interaction fingerprints that fall into the four regions with distinct 

UMAP embeddings shown in part B. (D) Scatter plot of the same UMAP embeddings as 

in part B but shown separately for different small molecules. Interaction fingerprints are 

color-coded according to their fraction of hydrophobic interactions.

Wang et al. Page 21

J Chem Theory Comput. Author manuscript; available in PMC 2024 December 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5: MD simulations identify small molecule interaction fragments that facilitate 
condensate partitioning.
(A) Interacting fragments of small molecules identified from atomistic simulations. (B) 

Experimental partitioning ratios of drugs with (+)/without (−) fragments in panel A.
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Figure 6: Mitoxantrone identifies similar chemical environments for contact across three protein 
condensates.
(A) Scatter plot of the interaction fingerprints for Mitoxantrone in the three condensates. 

(B) Amino acid frequency determined from the interaction fingerprints that fall into the four 

regions with distinct UMAP embeddings shown in part A. (C) Probability density profile of 

the interaction fingerprints for Mitoxantrone in the three condensates.
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