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Continuous Profiling of Magnetotelluric Fields 

by 

Carlos Torres-Verdfn 

Abstract 

The magnetotelluric (MT) method of mapping ground electrical conductivity is 
traditionally based on measurements of the surface impedance at widely spaced stations to 

infer models of the subsurface through a suitable pseudo 1-0 inverse or with linearized 
least-squares inversion for 2- or 3-0 geoelectric media. It is well known that small near­
surface inhomogeneities can produce spatial discontinuities in the measured electric fields 
over a wide frequency range and may consequently bias the impedance on a very local 
scale. Inadequate station spacing effectively aliases the electric field measurements and 
results in distortions that cannot be removed in subsequent processing or modelling. In 
order to fully exploit the benefits of magnetotellurics in complex geological environments, 
closely spaced measurements must be used routinely. This thesis entertains an analysis of 
MT data taken along continuous profiles and is a first step that will allow more 
encompassing 2-0 sampling techniques to become viable in the years to come. 

The developments presented here are to a large extent motivated by the physical 
insight gained from low-contrast solutions to the forward MT problem. These solutions 
describe the relationship between a perturbation in the electrical conductivity of the 
subsurface and the ensuing perturbation of the MT response as the output of a linear 
system. Albeit strictly accurate in a limited subset of practical exploration problems, the 
linearized solutions allow one to pursue a model independent study of the response 
characteristics of MT data. In fact, these solutions yield simple expressions for 1-, 2-, and 
3-0 resistivity models which are here examined in progressive sequence. 

Over 1-0 media, study of the vertical resolution characteristics of MT data is 
pursued with a logarithmic parameterization of both frequency and depth which transforms 
the linear system equation into a simple convolutional formula Standard Fourier analysis is 
then used to establish that the largest vertical wavenumber of the subsurface resistivity 
distribution that in practice can be recovered from noisy data is approximately 3.5 
cycles/decade, which in turn implies that at most 7 or 8 frequency samples/decade are all 
that is needed to infer vertical variations of resistivity within the resolving power of 
magnetotellurics. Further, to evaluate the validity of the 1-0 linear system equations, 
inversion experiments are performed over resistivity profiles wherein the low-contrast 
assumption is not acceptable. These experiments yield consistent checks when resistivity 



contrasts are lower than 1: 10 and therefore indicate that albeit of limited practical use, the 

linearized solutions do embody the physics of magnetotellurics. 

The 1-D linear system concepts are extended to the study of 2-D MT data, electric 
and magnetic, in order to understand what properties of the subsurface resistivity 

distribution are borne by each field component. A major thrust of this section is the 
estimation of lateral resolution bounds with which features in the subsurface can be inferred 
from noisy data. It is found that, below the Nyquist wavenumber dictated by the sampling 

distance, the largest wavenumber that can be recovered with 1 % noise in the data is 
approximately the inverse of the Bostick depth of penetration. Also, a 2-D inversion 
procedure is introduced in the wavenumber domain which consists of a sequence of 1-D 
pseudo inverses performed for each wavenumber harmonic. Numerical experiments with 

this new method of inversion confirm that TM electric field data possess superior lateral 
resolution to TE electric field data, and that the former may be subject to instability and 
hence poor vertical resolution because of static effects. However, it is found that a natural 
way to stabilize the inversion of TM electric field data is to pre whiten them prior to 
inversion. When prewhitening is enforced in the inversion of TM data, the wavenumber­
domain inversion produces acceptable results when the resistivity contrasts are below 1: 10 

approximately. 

The linearized 3-D equations describe the surface electric response as the additive 
interplay of static and induction components. The induction component is sensitive to the 
increase of depth of penetration with a decrease in frequency, whereas the static component 
is not, and this causes the electric amplitude response to be biased by shallow geoelectric 
features. Wavenumber-domain solutions for MT fields over 3-D media suggest that the 
static component may be separated from the induction component by way of spatial filtering 
of the surface electric field. Application of this processing step to field data requires that 
electric dipoles be deployed end-to-end continuously along a profile of measurements. 

Such is the basis of Electromagnetic Array Profiling (EMAP), a subject discussed in a 
second part of this thesis. A data-adaptive spatial filtering procedure is developed for the 
suppression of frequency-dependent static effects which consists of lateral and frequency 
adjustment of the cutoff wavenumber properties of the TM prewhitening fllter elicited with 
the 2-D linearized inverse. Adaptive spatial filtering is tested on 2-0 subsurface resistivity 
models which include static effects and exhibit strong nonlinear response characteristics. A 

simple 1-0 Bostick pseudoinverse applied to the spatially filtered dat~ yields relatively 
accurate resistivity cross-sections in negligible CPU times. The feasibility of EMAP is 

demonstrated by three field examples which reveal with unprecedented clarity the errors 

that would have been generated had the interpretation been performed with single-station 

data. Also, the level of lateral detail achieved with the use of spatial flltering is consistent 

with the vertical and lateral resolution bounds imposed by the underlying diffusion 

equation. 
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Even though a single profile of tangential electric field measurements often leads to 
reliable cross-sections of 3-D geoelectric media, the studies presented here indicate that 
measurements of orthogonal electric and vertical magnetic fields are needed to recognize 
lateral induction effects in the measured tangential electric field data For instance, over 2-D 
ground, an EMAP line laid out at an angle with respect to strike can yield estimates of the 
TE and TM impedances provided that the field acquisition includes some measurements of 
the orthogonal electric field. However, the acquisition of orthogonal electric field data 
should be made in a way that does not incur on spatial aliasing problems and that permits 
one to suppress static effects. Procedures that can be used to infer induction and 
dimensionality parameters of the subsurface with the aid of spatial filtering are illustrated 
with a field example wherein electric field data gathered along intersecting lines is first 
filtered and then rotated to produce tensor impedances unbiased by static effects . 
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CHAPTER I 

INTRODUCTION 

1.1 Magnetotellurics 

Magnetotellurics is a geophysical technique that utilizes measurements of natural 

electric and magnetic fluctuations, typically in the frequency band from 0.001 to 20,000 

Hz, to infer electrical properties of the subsurface. At frequencies below approximately 

1 Hz, these fluctuations originate from interactions between streams of solar plasma and the 

outer envelopes of the ionosphere and magnetosphere. Above 1 Hz, useful electromagnetic 

(EM) energy is provided by electric thunderstorm activity taking place mainly about the 

equator and reaching other latitudes as propagation modes inside the earth-ionosphere 

cavity. There are two advantages in using these natural EM fluctuations for the sounding of 

the earth: their large energy levels (not yet artificially produced by man) and their wide 

frequency range. Both high energy levels and wide frequency range combine to allow, in 

principle, the probing of the subsurface anywhere from a few meters down to hundreds of 

kilometers. 

The fundamentals of magnetotellurics followed from independent scientific 

endeavors in the Soviet Union by A. Tikhonov (1950) and in France by L. Cagniard 

(1953), both in the context of layered earth models. Practical considerations make it 

feasible for magnetotellurics to assume a source of EM excitation in the form of plane 

waves impinging normally upon the surface of the earth. Tikhonov and Cagniard's early 

work showed that lowering the sounding frequency provides a selective deepening of the 

zone of response within the earth. This result is consistent with the skin depth effect that 

best describes the diffusion of EM waves in conductive media. 

Magnetotelluric (MT) soundings have been used in the past for the exploration of 

geothermal (Goldstein, 1988) and hydrocarbon (Orange, 1989) reservoirs. Other no less 

important applications of magnetotellurics include scientific studies aimed at defining the 

electrical properties of the eaI1h's lower crust and mantle (Wannamaker at al., 1989), and in 

earthquake monitoring and prediction studies (Honkura et al., 1976, and Honkura, 1978). 

A high-frequency, artificial-source version of magnetotellurics referred to as the 

Controlled-Source Audio-Magnetotelluric (CSAMT) method (Goldstein and Strangway, 
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1975), purports to use the same interpretation principles used in magnetotellurics, with the 

difference that a measurable amount of current is artificially injected into the ground to 

increase signal levels at high frequencies. The CSAMT method has been used with 

moderate success in the exploration of mineral deposits (Zonge et aI., 1986) and 

geothennal reservoirs (Goldstein, 1988). 

In the hydrocarbon industry, magnetotellurics has played an auxiliary exploration 

role in geological situations difficult, if not impossible, to approach with the seismic 

method (Orange, 1989.) Examples of these situations are sedimentary basins underlying a 

thick surface volcanic stratum and regions in which abrupt topographic relief make seismic 

methods impractical. In geothennal exploration, magnetotellurics finds itself in natural 

advantage over the seismic methods because the bulk electrical contrasts that exist in a 

geothennal reservoir are much larger than those of an elastic nature (Goldstein, 1988). 

High-frequency (from 1 to 20,000 Hz) applications of magnetotellurics are suited for the 

exploration of massive mineral deposits (Morrison et al., 1990). 

As the exploration for energy and mineral resources is directed toward more 

inaccessible and geologically complex regions in which conventional seismic techniques are 

expected to have little success, a more prominent role is anticipated for magnetotellurics. 

Also, growing interest in magnetotellurics can be expected because of its almost null 

environmental impact and relative ease of implementation in areas of difficult access. 

Nevertheless, even under favorable circumstances, because magnetotellurics obeys the 

physics of a diffusive EM process, its resolving power cannot compete with the wave­

equation attributes of the seismic method. Hence, in reconciliation with its limited 

resolution, it is important that the MT response be sampled adequately both in frequency 

and spatially. Only when this is done can interpretation prOCedures be used to optimally 

extract the characteristics of the subsurface resistivity distribution within the resolution 

bounds imposed by the underlying diffusion equation. Meeting the required sampling 

conditions has led to a great deal of instrumentation and theoretical work by the MT 

community, and this work has advanced the technique to a fairly mature state of 

development 

1.2 Interpretation of MT data and the static effect 

The relative simplicity with which MT data can be interpreted over one-dimensional 

(I-D) environments quickly disappears in the presence of lateral variations of subsurface 

.. 
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resistivity. Ways in which this data complexity can be dealt with have been the central 

subject of a myriad academic and practical MT studies (e.g. Vozoff, Ed., 1986.) 

Results embodied in Cagniard's (1953) MT exposition suggest that, over a non­

layered earth, lateral variations of the measured MT fields at high frequencies should reflect 

the lateral variations of near-surface resistivity, whereas lateral variations of the fields at 

lower frequencies should reflect the lateral variations in subsurface resistivity deeper in the 

earth. Put in Cagniard's own words: 

It ••• Consequently, one can layout the survey of a large sedimentary basin 
by performing at the start a small number of MT -soundings far removed 
from one another, but with a great depth of investigation. In the second 
step, one will intercalate stations closer together, and at these he will 
perform MT-soundings with a more moderate depth of penetration. Finally, 
the continuity between the stations will be assured either by soundings with 
a relatively small depth of investigation, or, once in a while, by simple, 
quick determinations of the apparent resistivity summarily evaluated through 
a very simplified analysis of the magneto-telluric data .. It 

Unfortunately, the situation is not nearly so simple: field and theoretical MT studies 

(see, for instance, Swift, 1967, Word et al., 1969, Berdichevsky and Dmitriev, 1976, and 

Berdichevsky et al., 1980) have shown that in geoelectric environments other than I-D, the 

low-frequency electric amplitude response from the subsurface can be dominated by the 

response from the shallowest resistivity anomalies. Since the electric response from the 

subsurface is the most prominent MT response (see section 1.3), this low-frequency 

sensitivity to near-surface geoelectric features (including abrupt topographic relief) is highly 

undesirable, and, because of its DC nature and partly in analogy with a similar problem 

faced by seismic exploration, it is usually referred to as the static effect by MT 

practitioners. The static effect arises at frequencies where the skin depth is larger than the 

size of the near-surface geoelectric features in the vicinity of the measurement point. Under 

these circumstances, the near-surface features exhibit electrostatic behavior, as though 

responding to a uniform DC electric field excitation, and their DC response is usually larger 

in magnitude than that of deeper subsurface structure responding inductively at the same 

frequency. 

Below the frequency where the DC distortion comes into play, the electric static 

effect can be described as the product of a real constant times the otherwise undistorted 

electric field (Berdichevsky and Dmitriev, 1976). Because of this, the phase of the 

frequency-domain complex ratio total electric field to primary magnetic field often suffers 

no appreciable static distortion. This important property has suggested the possibility of 
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avoiding the static effect altogether by inverting the lateral variations of impedance phase 

alone into subsurface resistivity estimates. However, previous studies in this area (Weidelt, 

1972, Boehl et al., 1977) show that, for instance, the interpretation of I-D subsurface 

resistivity variations solely from phase data is unique provided that an amplitude response 

level is known beforehand. With the presence of electric static effects, the desired 

amplitude level is uncertain. To further complicate matters, shallow 3-D geoeleCtric features 

may sometimes cause DC current channeling effects capable of deflecting the secondary 

electric field vector and hence produce a non-inductive distortion in impedance phase 

(Bahr, 1987, and Groom and Bailey, 1989). 

In the presence of static distortion, one may resort, in favorable situations, to 

auxiliary methods of interpretation to recover an undistorted amplitude level in the electrical 

response from the subsurface. One such situation occurs when both resistivity and depth to 

a spatially continuous feature in the geoelectric model are known from external information 

(Jones, 1988.) Other times, controlled-source EM methods can be used whenever the 

geometrical complexity of the surface resistivity does not introduce interpretation problems 

whose solution requires dense spatial sampling of the secondary magnetic fields (Andrieux 

and Wightman, 1984, Sternberg et al., 1988, and Pellerin and Hohmann, 1990.) Situations 

in which the electric static effect arises below some particular value of frequency rather than 

as a constant shift in logarithmic amplitude throughout the whole measured frequency 

range, are much more difficult to handle with auxiliary correction procedures than with MT 

data themselves. There exists another technique that even though offering only partial 

remedy to the static effect, sheds valuable insight to the physics of DC current channeling. 

This technique exploits the characteristics of the electric field sensor. 

In magnetotellurics, electric field sensors, or dipoles, consist of conductive wires 

laid on the ground with end points in contact with the earth such that, in response to electric 

currents flowing in the ground, a potential difference develops between the two electrodes. 

The measured potential difference, V, is in general expressed by the line integral 

irE · dt , (1.1) 

for which the path of integration, r~ extends along the conductive wires, the vector E is the 

electric field in the earth along the wire path, and di is the differential curve element 

tangential to r. The acquisition process described by equation (1.1) intrinsically averages, 

.. 
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i.e., low-pass filters the surface electric fields, thereby providing a measure of suppression 

to the contribution from the static effect local to the point of measurement 

To illustrate this situation, consider the two-dimensional (2-D) geoelectric model 

whose cross section is shown in Figure 1-1, with x- and y-axes oriented in directions 

perpendicular and parallel to strike, respectively. The model consists of a confined, 0.5 

n·m, outcropping rectangular block embedded in a two-layer earth in which the upper 

layer has a thickness of 4 km and a resistivity of 20 n.m, and the lower layer is a 1 n·m 

half-space. Figure 1-2 shows the apparent resistivity and impedance phase curves 

simulated at an observation point located in the middle of the outcropping conductor for 

both, TE (electric field parallel to strike) and TM (electric field perpendicular to strike) 

polarization modes. The synthesized frequency range is from 0.001 to 1,000 Hz, with 

calculations performed at 10 frequencies per decade and evenly spaced in logarithmic 

fashion. For the computation of the TM curves shown in Figure 1-2, numerical integration 

was used to replicate the electric response of a fmite-Iength electric dipole normal to strike 

and centered about the observation point. The dipole lengths considered are 100,500 and 

1,000 m. Also, for comparison, a 1-D response curve is plotted in Figure 1.2 for a medium 

in which the outcropping conductor has infinite lateral extent. Notice that lengthening the 

dipole in the strike direction does not have any consequence on the TE impedances because 

the electric field is constant in that direction; thus, the exercise described herein concerns 

only the TM impedances. 

At the highest frequency, both TE and I-D apparent resistivity curves in Figure 1-2 

asymptote to the resistivity of the surface conductor (0.5 n·m), whereas at the lowest 

frequency the same curves asymptote to the resistivity of the deep layer (1 nom). This 

behavior is consistent with the inverse relation between sounding frequency and depth of 

penetration described by Cagniard (1953) in his seminal publication. However, in the same 

figure, the TM 100-m apparent resistivity curve underestimates the resistivity of the 

conductive basement at the lowest frequency. A similar situation is not observed in the TE 

and TM impedance phase curves. The amplitude difference between both TE and TM 

apparent resistivity curves at the lowest frequencies in Figure 1-2 is a clear example of 

static shift, which in this case is conditioned by the DC response of the outcropping 

conductor. As the dipole length increases, the low-frequency split between the two curves 

decreases (in fact, at 1,000 m the split has practically disappeared.) At the high frequencies, 

however, dipole lengths of 500 and 1,000 m are too long to detect the outcropping 

conductor, thus causing a loss of lateral resolution. 
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In response to current channeling imposed by the outcropping conductor in Figure 

1-1, a proItle of the secondary surface electric field perpendicular to strike exhibits positive 

and negative values as one marches past the conductor. These electric field variations may 

be described as due to surface distributions of electric charge "sieved" along the lateral 

boundaries of the conductor as the conduction current forces its way through them. In the 

DC limit, Faraday's law shows that positive and negative secondary electric field variations 

will balance if averaged along a line drawn across the conductor and beyond points where 

the secondary electric field has negligible amplitude. The electric field value that remains 

from such a line average primarily contains the inductive response of geoelectric features 

buried below the conductor. This principle is illustrated in Figure 1-3. 

Even though it is advisable to use the longest possible dipoles in field surveys, this 

is not a general solution because the voltage difference measured with the longer dipole 

may itself have a static distortion caused by an even larger geoelectric feature in the 

subsurface. A measure of the averaging distance required to outweigh the local secondary 

DC electric field distortion is the adjustment distance (Ranganayaki and Madden, 1980.) 

For confined bodies, normally this distance is only a few times longer than the size of the 

body itself (Robertson, 1983), but it may be of tens of kilometers if the distortion is due to 

a semiinfinite slab, or an ocean-continent boundary, for instance (Mackie et al., 1988). 

Due to the frequency scaling property intrinsic to MT fields, geoelectric structures 

that at one frequency respond in an almost exclusively inductive fashion may be the source 

of static distortion at a lower frequency, with their DC effect superimposed on the inductive 

response of even deeper targets. Lacking a better name to describe this phenomenon, in this 

thesis the term static effect is used in a very broad sense to include frequency-dependent 

static distortion. Static effects may also affect the surface magnetic field response; however, 

in most practical cases the electric static effect is much more significant and definitely 

exhibits more lateral variability than the magnetic static effect (Wannamaker et al., 1984). 

1.3 Sampling requirements 

In magnetotellurics, spectral estimation techniques are used to obtain a frequency 

and space dependent, 2x2, surface impedance matrix, ~, linearly relating orthogonal 

electric and magnetic field values measured at the same point. Traditionally, inference of the 

electrical characteristics of the subsurface stems from samples of ~ made at a number of 

locations within the survey area. Often, this inference is aided by the measurement of a 
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tipper vector, T, linearly relating the vertical magnetic field with the two horizontal 

magnetic field components measured at the same point. For practical reasons, the 

interpretation of the frequency-dependent and time-invariant transfer functions Z and Tis 

almost always preferred to the direct interpretation of the" electric and magnetic fields: the 

random nature of both source strength and polarization makes it prohibitive to 

simultaneously record the electric and magnetic signals at all sounding locations within the 

survey area. 

From a fundamental viewpoint, however, the actual electric and magnetic field 

behavior is easier to understand than the local impedances and tipper vectors. By way of 

example, consider the subsurface resistiVity model shown in Figure 1-4. This example 

includes local 2-D features as well as a regional I-D background medium, the latter 

composed of exactly three layers. Two of the 2-D features outcrop to the surface of the 

model, and a third one is a buried block with square section. For reference, the x-axis is 

normal to strike and points to the right of the section, whereas the z-axis points downward. 

Figures 1-5 through I-S are profIles of the different electric and magnetic field components 

that describe the surface MT response along the direction normal to strike. All field 

quantities in these figures are displayed as ratios with respect to the corresponding I-D 

background field (Eo for the electric field components and Ho for the magnetic field 

components) at the frequencies of 1000, 0.1, and 0.001 Hz. The scale on the left-hand side 

of the electric field plots corresponds to the logarithmic amplitude of the electric field ratio, 

whereas on the right-hand side of the same plots the scale is linear phase. In contrast, the 

lateral amplitude variations of the magnetic fields are much smaller than those of the electric 

fields, and are thus best described along a linear axis and as real and imaginary parts 

instead of amplitude and phase components. Surface lateral variations of the TM-mode 

magnetic field component are constant in all cases (d'Erceville and Kunetz, 1962), and are 

thus omitted from this study. For reference, similar field plots for the case in which near­

surface conductors are not present in the model example are shown in Figures 1-9 through 

1-12. 

Several basic properties ofMT fields can be observed in Figures 1-3 through I-S. 

For instance, at 1000 Hz the lateral electric and magnetic field variations reflect the nature 

of the lateral variations of surface resistivity. However, the amplitude variations of both 

electric field components are much more prominent than those of the magnetic field 

components. Laterally, the TM electric field profile is discontinuous across the surface 

blocks. On the other hand, the TE electric field profile is smooth and, in fact, appears as a 
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low-pass filtered version of the TM profile. In both cases the phase profiles exhibit only 

slight variations. At 0.1 Hz, the TE electric field profile is mostly affected by the buried 

conductive block (cf. to Figure 1-10), whereas the TM electric field profile continues to 

show the same lateral discontinuities observed at 1000 Hz, although the discontinuity over 

the thicker surface conductor becomes more accentuated at the new frequency .. The lateral 

profile of TM impedance phase at 0.1 Hz, on the other hand, develops variations that 

suggest the influence of both the thicker surface conductor and the buried block (cf. Figure 

1-10). At the same frequency, the TE magnetic field components show their maximum 

amplitude (larger for the horizontal than for the vertical component) exactly over the buried 

conductive block, but this anomaly is also emphasized by the magnetic response of the 

thicker surface conductor (cf. Figure 1-10). Finally, at 0.001 Hz only the TM electric field 

component exhibits significant lateral amplitude variations (the phase variations of the same 

component are practically null at this frequency). The fact that all other field components 

show almost flat profiles indicate that their 2-D inductive range has virtually disappeared at 

this point in the frequency spectrum. 

In Figure 1-6, the persistency even at 0.00 1 Hz of lateral amplitude variations in the 

TM electric field response associated with the surface features is due to distortion of static 

nature. In contrast, the TE electric and magnetic field components have, using Fourier 

analysis jargon, a band-limited 2-D response along the frequency axis consistent with the 

depth of penetration of an inductive process. Because of these characteristics, in the 

presence of highly variable (laterally) and unknown surface and subsurface resistivity 

structure, the static effect dictates as short as possible spacings between adjacent electric 

field sampling locations. This ensures that lateral bounds for the discontinuities can be 

recognized and not misinterpreted as deeper geoelectric structure. Spatial sampling 

requirements for the measurement of the TE electric field are less severe because of the 

absence of a static component. The magnetic field components, on the other hand, exhibit 

much less significant lateral variations than either electric field component and are therefore 

less troublesome to sample. 

Over three-dimensional (3-D) geoelectric media the nature of the MT fields is more 

akin to that of 2-D TM fields (Swift, 1962, Wannamaker etal., 1984, and Torres-Verdin 

and Bostick, 1990a) although some amount of 2-D TE-type field behavior may be observed 

in regions with substantial current channeling. 

.. 
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1.4 Sampling techniques and model -recovery: the problem 

In most cases, economic limits impose a maximum number of MT stations that can 

be used for the exploration of a given target. A major task then consists of selecting 

sampling locations that as a set can maximize the amount of infonnation recovered about 

the characteristics of the subsurface. Ways in which this can be accomplished largely 

depend on the "expected" characteristics that can best describe the target. By way of 

example again, consider the Long Valley Caldera (Mammoth Lakes, California) work 

recounted by Park and Torres-Verdin (1988), where regular to good-quality data from 77 

MT stations scattered in an area of approximately 20x17 km, were used to ascertain the 

existence, and if so, the characteristics of magmatic bodies thought to underlie the volcanic 

sediments within the caldera. The Long Valley Caldera is a complex 3-D geoelectric 

environment, and in due respect the authors decided to use both a 3-D simulation code and 

all available complementary geophysical and geological data to carry out the interpretation. 

This strategy of interpretation shed some light on the general distribution of electrical 

conductivity within the caldera, but the spacing between adjacent stations was not short 

enough to eliminate dramatic sensitivity to 3-D surface features. Despite the larger than 

usual number of MT soundings available for the interpretation, such a near-surface 

sensitivity masked the evidence for massive magmatic bodies seated deep below the 

volcanic sediments. Had the data been acquired following the established Nyquist criterion 

for spatial sampling, much less uncertainty would have been introduced regarding the 

nature of near-surface effects and, consequently, more certainty about the surface response 

from deeply buried magmatic bodies. 

A data acquisition strategy that recognizes the need for continuous sampling of the 

electric field is known as Electromagnetic Array Profiling (EMAP) (Bostick, 1986, Torres­

Verdin and Bostick, 1990b, see also Chapters V and VI). In this technique, the surface 

electric field is sampled by deploying electric dipoles end-to-end continuously along a 

survey path. Electric field data acquired along the line of measurements are referred to the 

primary magnetic field components estimated within the survey area for subsequent 

processing and inversion. The field procedure used by EMAP not only reduces the 

likelihood of aliasing effects but also lends itself to spatial filtering of the measured electric 

field variations along the survey path in order to reduce distortions of static nature. 

Field procedures such as EMAP open a whole new window of opportunities for the 

processing and subsequent inversion of MT data into estimates of subsurface resistivity. 

Traditionally, the inversion ofMT data taken along a profile has been approached by model 
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parameterization schemes in which the subsurface is represented as a mesh of rectangular 

blocks. On the basis of this ,parameterization, a theoretical MT response is simulated 

numerically and the electrical resistivity of the blocks adjusted in an iterative fashion until a 

tolerable difference is found between the simulated and field data sets (Jupp and Vozoff, 

1977, Rodi et al., 1984, Sasaki, 1989, Madden and Mackie, 1989, Wannamaker et aI., 

1989b, Oldenburg and Ellis, 1990, deGroot-Hedlin and Constable, 1990, and Smith and 

Booker, 1990). Unfortunately, the forward problem involved in this approach, that of 

deriving the wave impedances for arbitrary distributions of subsurface resistivity, can be 

very complicated and may, at the least, require extensive numerical computations. Another 

normally unrecognized complication is that stiff model parameterizations can sometimes 

demand excessive lateral structure within the model in order for the data to be satisfied 

within the desired accuracy. Even though excessive lateral complexity in the inverted 

parameterized model may "best fit" the field data, the results may project a wrong idea of 

the resolution with which features in the surface can be resolved from MT data taken on the 

surface. An imposing, although often disregarded, complication in solving the inverse 

problem is the effect of excessive separation between sampling locations. Whenever the 

distance between measurement locations fails to properly describe the lateral extent of local 

variations of both electric and magnetic fields, there is a potential risk in interpreting their 

wavenumber harmonics beyond the Nyquist wavenumber as false geoelectric structure in 

the subsurface. 

A spatially continuous data set may lend itself not only to model parameterization­

type inversions, but also to fast and relatively accurate inversion procedures similar to those 

employed in seismic data interpretation under the name of migration and field continuation 

(Zhdanov and Frenkel, 1983, Lee et al., 1987, and Zhdanov, 1988, for instance), or, to 

use more modern terminology (although not for this reason more precise), seismic 

imaging. Despite the limitations involved in their approximate nature, these techniques 

share the common theme of being consistent with the resolving power implicit in the 

physics of the forward problem. 

Unfortunately, at least two decades of continued field and interpretation practices 

have demonstrated that a single MT station is not sufficient to provide a profile of electrical 

resistivity vs. depth. Seismological practices, by contrast, show an evolution process in 

which the necessity of dense spatial sampling (even vectorial) is amply recognized in any 

effort to provide an adequate image of the subsurface. Justifiable as it may sound, the 

excuse for magnetotellurics not to go in the same direction has been the underlying 
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assumption that, although lower in information content, a single MT station is inherently 

cheaper than a simple seismic survey in which, instead, a layout of many sensors is needed 

to unfold vertical information about the earth. Nowadays, however, with the emergence of 

a new front of electronic and computer technology, the economical excuse becomes less 

and less factual . 

The feasibility of more aggressive spatial sampling technique is best appreciated 

from few of the most recent accounts of MT case histories. For instance, Word et al. 

(1986), describe an EMAP field transect across the Rocky Mountains. Shoemaker et al., 

(1989), introduce a variant of the EMAP technique applied to a sedimentary basin project in 

Oregon, including calibration with well-log data. Takasugi et al. (1989) narrate the 

probably most comprehensive MT survey yet undertaken in which all electric and magnetic 

field components were measured over a 13x13 rectangular grid in the Hokkaido Island, 

Japan. Pelton and Furgerson (1989), describe dense MT sampling techniques referred to as 

swath MT and grid MT with an example from Railroad Valley, Nevada. Morrison et al. 

(1990), report a continuous MT profiling technique over a mineral prospect in Nevada. 

Warren and Srnka (1990) describe a multiple-line hydrocarbon survey over the volcanics of 

the Columbia River basalt plain, and fmally, Torres-Verdin and Bostick (199Oc) recount a 

three-line EMAP survey carried out over a geothermal reservoir in northern Honshu Island, 

Japan (see Chapter VI). 

1.5 Scope of work 

This thesis can be considered a collection of research works related to the general 

topic of MT profiling. The arrangement in which these works are presented reflects by no 

means a historical progression, but rather an effort to coherently mesh them together. 

However, a main thrust should be clear: the attempt to understand what are the 

characteristics of the surface MT response that determine how subsurface structure can be 

resolved beneath the profile of surface measurements. Even though this is pursued under 

the basis of a mathematical treatment, the pragmatic aspect of the problem is left as a central 

aspect of the exposition. Thus, in addition to establishing physical criteria as to how to 

sample and interpret MT data gathered in the field, at least two methods are presented for 

the fast interpretation of those data. 

Chapter II is an exposition of the mathematical work leading to the Born 

approximation of the surface electric and magnetic fields that result from exciting the earth 

with a normally incident plane wave. The results of this work have been the subject of 
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previous work by the author (Torres-Verdin, 1985, and Torres-Verdin and Bostick, 

1990a), and thus only a brief summary is presented including the latest findings on the 

subject. The objective is to layout the framework for the development of topics reported in 

subsequent chapters of the thesis. 

In Chapter ill, a Born, or linearized 1-D inversion method is introduced with the 

objective of understanding the vertical resolution bounds of data sampled in the frequency 

dimension. The work presented here parallels and expands that by Bostick et al. (1979). 

A linearized inversion procedure applicable to 2-D data sets is introduced in Chapter 

IV. The material presented here can be considered a natural extension of the ideas exposed 

in Chapter III. Complications pertinent to this case of analysis comprise one new 

coordinate variable as well as three more field quantities. The inversion is carried out in the 

wavenumber domain and special emphasis is given to the lateral resolution bounds with 

which geoelectric structure can be resolved when the inversion is performed on each of the 

field quantities involved or, else, on appropriate combinations of them. Synthetic tests of 

the inversion are presented as well as a field example. 

The elements of Electromagnetic Array Proflling (EMAP) are presented in Chapter 

V. Work related to EMAP actually comprised the earlier aspects covered in the course of 

the thesis research. However, having been involved in the initial development aspects of 

the technique, it is the author's opinion that the ideas put forth by EMAP can be best 

understood once the material covered in Chapters II, III, and IV has been thoroughly 

assimilated. Also, inasmuch as EMAP is a technique developed for and applicable to 3-D 

environments, it seems logical to present it following Chapter IV. . 

Chapter VI is an account of some of the properties of EMAP as applied to 2- and 

3-D environments. In particular, in two dimensions, a procedure is introduced whereby 

both TE and TM impedances can be estimated from a field configuration in which the 

survey traverse is oblique with respect to strike. Simulation and field data examples are 

used to examine the performance ofEMAP over 3-D environments. 

Finally, Chapter VII is a compendium of conclusions to the thesis work as well as 

an outline of suggested topics for further research. 
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Figure 1-5. TE-mode Eyelectric field component along the direction nonnal to strike for the model 
shown in Figure 1-4. Both amplitude and phase components are nonnalized with respect to the primary 
electric field, EO, associated with the I-D background medium. Profiles are shown at frequencies values of 
1000,0.1, and 0.001 Hz. 
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Figure 1-6. TM-mode Ex electric field component a10ng the direction norma1 to strike for the model 
shown in Figure 1-4. Both amplitude and phase components are normalized with respect to the primary 
electric field, EO, associated with the I-D background medium. Profiles are shown at frequencies va1ues of 
1000,0.1, and 0.001 Hz. 
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Figure 1-7. TE·mode Hx magnetic field component along the direction normal to strike for the model in 
Figure 1-4. Both real and imaginary components are normalized with respect to the primary magnetic field, 
Ro, associated with the 1-D background medium. Profiles are shown at frequencies values of 1000, 0.1, and 
0.001 Hz. 
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Figure 1-8. TE-mode Hz magnetic field component along the direCtion normal to strike for the modd 
shown in Figure 1-4. Both real and imaginary components are normalized with respect to the primary 
magnetic field. Ho. associated with the 1-D background medium. Profiles are shown for the frequencies of 
1000,0.1, and 0.001 Hz. 
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Figure 1·9. 1E-mode Eyelectric field component along the direction normal to strike for the model 
shown in Figure 1-4 assuming no surface conductors. Both amplitude and phase components are normalized 
with respect to the primary electric field. EO. associated with the 1-0 background medium. Profiles are 
shown at frequencies values of 1000. 0.1. and 0.001 Hz. 
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Figure 1-10. TM-mode Ex electric field component along the direction normal to strike for the model 
shown in Figure 1-4 assuming no surface conductors. Both amplitude and phase components are normalized 
with respect to the primary electric field. EO. associated with the 1-D background medium. Profiles are 
shown at frequencies values of 1000,0.1. and 0.001 Hz_ 
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Figure 1-11. TE-mode Hx magnetic field component along the direction normal to strike for the model in 
Figure 1-4 assuming no surface conductors. Both real and imaginary components are normalized with 
respect to the primary magnetic field. Ro. associated with the I-D background medium. Profiles are shown 
at frequencies values of 1000. 0.1. and 0.001 Hz. 
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CHAPTER II 

BORN APPROXIMATION OF THE SURFACE MT FIELDS 

2.1 Introduction 

The mathematical developments presented in this chapter originated with a Master's 

thesis (Torres-Verdin, 1985). Also, a more comprehensive presentation of the same subject 

has been recently accepted for publication (Torres-Verdin and Bostick, 1990a). Since the 

results from these two studies serve as a foundation for the material presented in 

subsequent chapters, a succinct version of them is included here. 

The Born approximation provides a mathematical model that is consistent with the 

qualitative characteristics of the surface MT fields over any type of geometrical complexity 

within the subsurface. Quantitatively, however, the assumptions implicit in the Born 

approximation restrict its numerical accuracy to those situations in which either the 

subsurface resistivity contrasts are small, or in which the scattered fields are only a small 

fraction of the primary field. Even though these restrictions may not always apply 

rigorously, the ensuing approximations may be used to test the MT method in 

inhomogeneous media and with an analysis that produces results as simple closed-form 

expressions. As detailed below, these expressions clearly show the characteristic response 

functions under inhomogeneous conditions. 

2.2 Integral formulation and first-order Born approximation 

The earth is described as a set of conductivity anomalies embedded in a 

homogeneous half-space of conductivity 0'0 and occupying the region ~O. The air space is 

modelled with a non-conductive half-space in the region z<O, and the source of excitation 

provides electromagnetic (EM) energy throughout the entire range of frequencies relevant to 

magnetotellurics. Each frequency component of the excitation is assumed to be in the form 

of a plane wave, linearly polarized and propagating vertically downward onto the surface of 

the earth at z=O. Cartesian axes are chosen with the x-axis pointing in the direction of 

polarization of the incident plane wave (Figure 2-1). Unit vectors in the x, y and z 

directions are identified as i, j and k, respectively. 



At any observation point in the earth, the total MT fields may be written as 

E = Eo +e, and 

H = Ho + h, 
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(2.1) 

(2.2) 

where the vectors Eo and Ho are primary electric and magnetic fields, respectively, 

associated with the propagation of the incident plane wave in the homogeneous half-space. 

The vector components e and h, on the other hand, designate secondary, or scattered 

fields. Similarly, the conductivity distribution in the earth may be expressed as 

0' = 0'0 + .10', 
(2.3) 

where .10' identifies departures in conductivity away from the homogeneous half-space. In 

equation (2.3), the spatial function .10' is arbitrary except for two restrictions. The first is 

that flO' be such that d is positive, and the second that .10' be absolutely integrable over the 

half-space z~. This last restriction insures the existence of the Fourier transform of .10', 

and allows the estimation of 0'0 from the spatial average of 0'. 

The link between the total fields E and H is determined by the source free Maxwell 

equations, written as 

v x E = -icoJ.1H, and 

V x H = O'E, 

(2.4) 

(2.5) 

in which i = Y-r, a time-harmonic variation of the form eicot is assumed, displacement 

currents are neglected, and the permeability J.1 is set to its free space value. A similar set of 

equations to that of (2.4) and (2.5) is satisfied by the primary electric and magnetic fields, 
except that 0' is replaced by 0'0. 

Equations (2.1) through (2.3) substituted into (2.4) and (2.5) yield 

V
2
e + 1C2e = icoJ.1AO'E, (2.6) 

where 1C is the propagation constant for the homogeneous half-space, given by 

1(2 = -icoJ.1O'o . (2.7) 

The inhomogeneous Helmholtz equation (2.6) may be cast in the integral form 

e(r) = ( G(r,ro) AO'(ro) E(ro) d'to J'to (2.8) 
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(Morse and Feshbach, 1953), where r=(x,y,z) is the observation point, and the volume 'to 

corresponds to the set of source points ro=(xo,yo,ZO) in the half-space ~O where L\o :¢: O. 

In equation (8) the function G. is the Green's tensor satisfying 

(2.9) 

and which also complies with the boundary conditions inherent to the homogeneous half­

space model; the function o(r) denotes the Dirac delta, and the symboll is the unity 

tensor. 

Within the homogeneous half-space, the primary fields are described by the pair 

Eo(zo) = Eo e-ilCZo i, and 
. ~ 

Ho(zo) = Ho e-1lCZo J, 

for which the ratio 

Eo = '4J( ro) = 1./ iOJ,l , 
Ho 00 

(2.10) 

(2.11) 

(2.12) 

corresponds to the surface plane-wave impedance looking down into the homogeneous 

half-space. 

First-order Born approximation of the Fredholm integral equation of the second 

kind (2.8) is obtained by substituting the total field E that appears under the integral sign in 

that equation by the incident field Eo (Morse and Feshbach, 1953.) This substitution yields 

j-th secondary electric field components expressed as 

ej(r) ,., f'to Gj(r,ro) L\o(ro) Eo e-ilCZo d'to , 
(2.13) 

j = x. y. z 

where the scalar function Gj, with units of electric field strength per dipole moment, 

describes the j-th component of the electric field vector due to an infinitesimal electric 

dipole. The latter is centered at ro and oriented parallel to the x-axis. 

Equation (2.13) is an accurate solution for the secondary electric field, e, within a 

medium in which 1L\01 « 00. Besides this limitation, the small departures L\o away from 
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the homogeneous earth model preserve the attribute of three-dimensionality in the 

subsurface conductivity distribution. 

Further simplification of equation (2.13) is done as follows. Introducing the 

variables Po and L\p, defined as 

Po = l, and, L\p = _1_ , 
(Jo L\(J 

(2.14) 

respectively, one can show that under the assumption that I L\(J I « (Jo, the approximation 

M _ L\p 
- --

(Jo Po 

holds true. Using this property, the ratio L\p/ Po is hereafter referred to as the normalized 

resistivity function, and assigned the symbol Pn , Le., 

L\p 
Pn=- . 

Po 
(2.15) 

Equation (2.13) may thus be rewritten as 

(2.16) 

where 

(2.17) 

In similar fashion, a Born approximation solutio~ for the secondary magnetic field, h, may 

be expressed as 

(2.18) 

where 

(2.19) 

and 

0- _ / 2 
- ~ coJl(Jo 

The variable 0 above is the skin depth of the homogeneous half-space at the particular 

frequency under consideration. In equation (2.19), the function L\j is analogous to OJ, 
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except that Aj describes the magnetic field components due to the x-oriented electric dipole, 

and has units of magnetic field strength per electric dipole moment 

Equations (2.16) and (2.18) express the secondary MT fields as weighted averages 

of the subsurface resistivity distribution. They are linear approximations to the forward MT 

problem in which a perturbation in subsurface resistivity translates to a perturbation of the 

surface MT fields. The main difference between the weighting functions, Ke and Kh, in 

equations (2.16) and (2.19) and their primitive electric and magnetic field forms, G and A, 

respectively, is an additional vertical attenuation factor, e-ilCZo, in the former. Furthermore, 

it is not difficult to show that, when the observation point is located on the surface, both Ke 
and Kh are space shift-invariant, namely, 

K(r ,ro) = K(r-ro) (z=O, z~O). 

Hence, in Cartesian coordinates equations (2.16) and (2.18) may be specialized to read as 

(2.20) 

(2.21) 

where the symbol "*" denotes 2-D convolution with respect to x and y. The functions 

K(x,y,ZO) in these last two equations can be thought of as depth-dependent horizontal MT 

"wavelets." At a given depth, ZO, the MT wavelets describe the source-coordinate variations 

of equations (2.17) and (2.19) when the observation point is flXed at the origin. 

Equations (2.20) and (2.21) may be transformed into the wavenumber domain with 

the Fourier transform pair 

1"{f(x,y)} = F(~,T)). = f f: f(x,y) e+ i(g.+llY) dx dy, and 

1"-1 {F(~,T))} = f(x,y) = _1_ f' (00 F(~,T)) e- i(g. + llY) d~ dT), 
(21t)2 1- 00 

to read as 



respectively, where 

Ej(~;Tl> = l' {ej (x,y,O)}, 

Hj(~,l1) = 1'{hix,y,O)}, 

P(~,l1,zo) = l' {Pn(x,y ,zo)}, and 

A(~,l1,zo) = l' {K(x,y ,zo)}. 
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(2.22) 

(2.23) 

The functions A above are the transfer functions for the linearized forward MT 

problem. Because of the important fact that these functions can be written as simple 

algebraic expressions, analysis of the forward MT problem can be done much more easily 

in the wavenumber domain than in the space domain. This objective is pursued in the 

following sections. 

2.3 The MT transfer functions 

Equations for the MT transfer functions Ae and Ah introduced in the previous 

section follow from the Cartesian plane-wave vector solutions of the electric and magnetic 

fields excited by a buried electric dipole. These solutions are derived in Appendix A 

(equations A.19 through A.24). 

Special cases for the electric ~d magnetic field transfer functions appropriate for 

1- and 2-D earth models can be obtained from the expressions of the 3-D transfer functions 

with the substitutions ~=O and 11=0, or both. In a I-D earth, for instance, the resistivity of 

the subsurface is constant with respect to both x and y, and therefore contains only the DC 

wavenumber components ~=O and 11=0. Hence, the transfer functions that relate to this 

particular case are obtained by setting both ~=O and 11=0 in the 3-D transfer function 

equations. Over 2-D media, one may set ~=O if the resistivity of the subsurface is constant 

in the x-direction (E-parallel, or TE polarization mode), or 11=0 if the resistivity of the 

subsurface is constant in the y-direction (E-perpendicular, or TM polarization mode.) This 
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exercise yields the following equations for the electric transfer functions, Aex' over 1-, 2-, 

and 3-D geoelectric media: 

Aex I-D (co) 

Aex 2-D TM (co,~) 

Aex 3-D (co,~,11) 

where 

and, 

= iCO~(J'O (1) e-i (Ie + Ie) Zo 

IlC 

icoJ.1(J'o i~ ----=-_ ( ) e-i (~ + Ie)Zo 

i~ 1111 + i~ 

. ~2 
= ICOJ.1(J'O (1) e-i (~ + Ie) Zo + _~ e-i (~+ Ie) Zo 

i~ i~ 

. ~2 2(1 + R'{I ) 2 
ICOJ.1(J'o ~ + 11 2 . ~. = [ ]e-1 (~ + Ie)Zo + _~ e-1 (~ + Ie)Zo , 

i~ ~2 + 112 i~ 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

Tables 1 through 4 summarize the MT transfer functions operating over 1-, 2-, and 

3-D geoelectric media for the remaining electric and magnetic field components; as for the 

case of equations (2.24) through (2.27) above, the expressions in these tables have been 

written in forms that facilitate their term-to-term comparison. 

EARTH 

MODEL 

I-D 
and null 
2-D 

i COJ.1(J'o [ ~11 (1 - R'{I ) ] e-i (~+ Ie)Zo + ~11 e-i (~ + Ie)Zo 
3-D 

i~ ~2 + 112 2 i~ 

Table 2-1. Ey electric transfer function, Aey. 
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EARTH 

MODEL 

I-D 
and null 
2-D 

~1l l-R . - ~ iroJlcro [ ('II )] e-1 (~ + 1C)~ 3-D ~2 + 112 2 

Table 2-2. Hx magnetic transfer function, Ahx. 

EARTH 

MODEL 

I-D null 
trll ] e-i (~ + 1C)~ 2-D - ~ iroJlcro [ TE 

tTl I + i~ 

2-D TM null 

3-D - ~iroJlcro [ 112 (l-R,¥)] e-i(~+1C)~ 
~2 + 112 2 

Table 2-3. Hy magnetic transfer function, Ahy. 

EARTH 

MODEL 

I-D null 
yiroJlcro [ iTt ] e-i (~ + 1C)~ 

2-D TE tTll + i~ 

2-D TM null 

3-D viroJlcro [11 ( 1 + R,¥ 
~ 2 

) ] e-i (~ + 1C)~ 

Table 2-4. Hz magnetic transfer function, Ahz. 
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Close examination of equations (2.24) through (2.27) as well as of the equations in 

Tables 2-1 through 2-4 reveals that, qualitatively, all transfer functions are consistent with 

the properties of the MT fields known to hold over 1- and 2-D earths; e.g., (a) the surface 

vertical electric field is null, (b) no secondary field components are generated when the 

earth is I-D except for the electric field component in the x-direction, (c) no y- and 

x-component of the secondary electric and magnetic fields, respectively, arise over 2-D 

geoelectric media, and (d) the TM mode of propagation in a 2-D earth is not accompanied 

by a secondary surface magnetic field component. Also, an interesting correlation is 

pointed out between the electric transfer functions for 2-D TM and 3-D geoelectric media, 

for which the two additive terms involved in their expressions have similar properties. This 

correlation is consistent with the notion that the TM response of a 2-D earth is in some 

ways similar to that of a 3-D earth (Swift, 1967, and Wannamaker et al., 1984), and will 

be further studied in the following section. Sections 2.4 through 2.7 are devoted to a more 

in-depth analysis of the characteristics of the electric and magnetic transfer functions. 

2.4 The electric transfer functions 

Inspection of equations (2.24) and (2.25) shows similarities between the electric 

transfer functions for I-D and 2-D TE earths. The two transfer functions differ in that' 

certain factors that are constant in the I-D transfer function are functions of the 

wavenumber 11 in the TE transfer function. Specifically, the complex coefficient 

(2.28) 

in equation (2.25) does not approach zero with increasing values of the 11 wavenumber, 

and this dependence on 11 causes the TE electric response to have the characteristics of a 

low-pass wavenumber filter. Also, because of the exponential factor in equation (2.25), the 

cutoff wavenumber gets progressively lower with increasing depth, ZOo This means that the 

TE-mode electric field has a progressive loss of response, with respect to depth, to the 

spatial detail in the resistivity distribution that is contained in the large wavenumber 

components. Otherwise the behavior of the TE-mode transfer function is similar to that of 

the I-D earth; conventional interpretation procedures used with magnetotellurics are known 

to yield quite reasonable results in both cases, and neither case suffers from the electric 

static effect. Likewise, because of the low-pass filter characteristics of the 2-D TE transfer 
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functions, aliasing effects will be reduced when the electric field is sampled at recording 

locations spaced some distance apart from each other. 

Consider now both 2-D TE and TM electric transfer functions Aex. The flrst 

additive term of the sum in the TM transfer function is non-zero only for the case of time 

varying (0)>0) fields, and for this reason it is hereafter referred to as the induction 

component. This term has a form similar to that of the TE mode, except that evaluation of 

the complex coefficient, 

(2.29) 

in equation (2.27) yields r2(~,0)=1 for the TM mode, whereas for the TE mode r2 is 

rendered a function of T} (rl in equation 2.28). In addition, ~ is a function of ~ for the TM 

mode instead of T} as is the case for TE. It can also be shown that the amplitude of r2 is 

bounded such that 

(2.30) 

for -00 < ~ < +00 and -00 < T} < +00, implying that the amplitude difference between the two 

terms, r2(~'0) and r2(0,T}), is at most of a factor of 2. 

Amplitude curves for the electric response of both the TE mode and the induction 

component of the TM mode are plotted in Figure 2-2. The response curves in this figure 

have been normalized with respect to the amplitude of the I-D transfer function at the same 

depths of response, zo, and are plotted with respect to the normalized wavenumber 

'Ejv coJlO'Q. It can be seen that, like the TE-mode response, the TM induction response is 

characteristic of a low-pass mter with a depth dependent cutoff wavenumber. 

The second additive component in the TM-mode electric transfer function Aex has 

no counterpart in either the 2-D TE or the I-D responses. In allusion to the fact that this 

second additive component does not vanish in the DC limit (co~O), this component is 

hereafter referred to as the static component. Because of this second term, the 

TM-mode electric response from the subsurface may differ significantly from that of the TE 

mode. The difference in amplitude response between the two components depends on 
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specific values of frequency, co, and wavenumber, ~. To clarify this point, Figure 2-3 

shows amplitude response curves computed for the TM electric static component at 

different depths of response, ZO, and normalized with respect to the I-D amplitude response 

measured at the same depths; abscissas for the plots shown are normalized wavenumbers 

Ejv coJ..Lcro. The behavior for the TM electric static component evidenced by the curves in 

Figure 2-3 is that of a band-pass wavenumber filter with a double zero in its response at 

~=O. Decreasing values of depth of response, ZOo widen the pass band of the wavenumber 

fllter. In fact, at zo=O the TM static component becomes a perfect high-pass filter of the 

lateral variations of subsurface resistivity. Because the lateral variations of surface 

resistivity are normally rich in large wavenumber components, the high-pass fllter nature of 

the TM static component opens the possibility of significant aliasing effects if the electric 

field is undersampled in the measurement process. 

Equations (2.26) and (2.27) show similarities between the electric transfer 

functions for the 2-D TM and 3-D cases. Both transfer functions contain induction and 

static components in their expressions. Except for the complex factor r2(~;Tl), the induction 

component of the 3-D electric transfer function is symmetric in ~ and Tl, but the magnitude 

of the asymmetry is at most a factor of 2 by virtue of the inequality (2.30). The induction 

component of the 3-D electric transfer function is characteristic of a 2-D low-pass 

wavenumber filter for which the cutoff wavenumbers are determined by the depth of 

response: an increase in the depth of response causes a decrease in the cutoff' 

wavenumbers. The static component of the 3-D electric transfer function, on the other 

hand, is highly asymmetric in ~ and Tl. Significant response from this component, 

however, is developed only for the large ~ wavenumbers. 

When the coefficient r2(~,Tl) in equation (2.29) is unheeded, simple algebra shows 

that the amplitude ratio of the static component to the induction component of the 3-D 

electric function equals ~2/COJ..LcrO. This ratio indicates that relative to the induction 

component, the 3-D static component functions as a band-pass filter of the wavenumber 

harmonics of subsurface resistivity in the x-direction (the direction of primary electric-field 

polarization.) In contrast, the 3-D static component is a low-pass fllter with respect to the Tl 

wavenumber harmonics of subsurface resistivity. The directional wavenumber properties 

of the 3-D static component are illustrated in Figure 2-4, wherein 2-D surfaces describe the 

amplitude response of the static component of Aex (equation 2.27) normalized with respect 

to the I-D amplitude response for the depths of response, ZO, of 0 and 0.25 skin depths, 

and plotted as functions of the normalized wavenumbers Ejv coJ..Lcro and TlN coJ..Lcro . 
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In consistency with the characteristics of the static effect described in section 1.2, 
the static component of Aex causes no distortion in the frequency-domain phase response of 

the surface electric fields. However, non-inductive phase distortions in the electric response 
from the subsurface can be anticipated in 3-D geoelectric media by inspection of the Aey' or 

cross-coupling electric transfer function. This problem is discussed next 

2.5 The cross-coupling electric transfer function 

The electric transfer function Aey is similar to Aex in the sense that over 3-D media 

both transfer functions contain static and induction components in their response. 

However, unlike Aex' Aey exhibits symmetric dependence on the wavenumbers ~ and Tl in 

both its induction and static components. This property intuitively suggests that Aey is 

responsible for the cross-coupling between the secondary fields due to incident electric 

fields polarized in the x and y directions. Moreover, the wavenumber behavior of Aey 

shows that neither its static component nor its induction component exhibit sensitivity to the 

~=O and Tl=O wavenumber harmonics of the subsurface resistivity distribution. In other 

words, Aey is insensitive to the lateral average of subsurface resistivity that exists at any 

given depth in the subsurface. 

Another interesting observation about the DC limit (ro~O) response of Aey is that 

its static component can develop a larger amplitude response than the static component of 

• Aex when the subsurface resistivity distribution contains wavenumber harmonics in the 

neighborhood of Tl=±;. The availability of wavenumber harmonics in this region opens the 

possibility of lateral DC current channeling effects, which can cause deflection of the 

secondary electric field vector about the direction of primary electric-field polarization. This 

deflection of the electric field vector may lead to non-inductive distortion of the phase 

response between the secondary electric and primary magnetic fields; In some situations, 

this may even result in distortion of the otherwise minimum-phase property of the surface 

electric field response. 

The inductive and static components of Aey are shown in separate plots in Figure 

2-5. At a fixed depth of response, zo, of 0 skin depths, these plots describe amplitude 

response variations (normalized with respect to the 1-D electric response at the same depth) 

with respect to the normalized wavenumbers ~N ro~ao and Tl/Y ro~ao. Although the band­

pass characteristics of the transfer function Aey are not precisely the same as those of Aex' 
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methods used to suppress the surface static response of Aex can also be used to suppress 

the surface static response of Aey' as explained in section 2.7. 

2.6 The magnetic transfer functions 

Tables 2.2 through 2.4 show no static component in the magnetic transfer functions 

comparable to those of the 2-D TM or 3-D electric transfer functions. This remark is 

probably best understood with the aid of Figure 2-6, where the amplitude response of the 
TE magnetic transfer function, Ahy' is plotted with respect to the normalized wavenumber 

TtN coJlO'Q at various depths of response, ZOo where the values shown along the vertical axis 

have been normalized with respect to the 1-D electric amplitude response at the same 

depths. The response curves in Figure 2-6 are characteristic of a band-pass wavenumber 

filter (the plots are representative of the wavenumber properties for the remaining 2- and 

3-D magnetic transfer functions as well) for which the pass-band is progressively wider for 

decreasing values of the depth of response, ZOo 

The band-pass filter properties of the magnetic transfer functions open the 

possibility of surface magnetic field distortion by way of current channeling, not only 

inductive at high frequencies, but also in the DC limit (CO~O)l • However, because of the 

fact that the primary electric field at any depth is proportional to the product Zo(co)e- ilCZo 

(equations 2.10 and 2.12, and also reflected in the factor YicoJlO'o that appears in the 

magnetic transfer functions summarized in Tables 2.2 through 2.4), even on the surface of 

the earth (where the effect of the magnetic transfer functions is most emphasized), the 

amount of conduction current available for channeling will decrease in proportion to Vro for 

decreasing values of frequency (Wannamaker et al., 1984). With this reduction in the 

conduction current available for channeling, the only way to increase the surface magnetic 

field effect at decreasing values of frequency is by simultaneous attrition of the area where 

the conduction takes place; this rather pathological situation is not to be expected in practical 

field studies. Moreover, partly because of their lack of lateral surface discontinuities and 

partly because of their relatively smaller amplitude compared to the amplitude of the 

primary magnetic field, secondary surface magnetic field variations do not impose as stiff 

sampling requirements as their electric field counterparts do in the MT probing of the 

subsurface. 

1 DC surface magnetic field effects are a subject of interest to the magnetometric resistivity method. 
Edwards (1974), for instance, has studied the surface magnetic response of a DC current fllament buried in 
a conductive half-space. 
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An important property of the secondary surface magnetic fields variations also 

implicit in the Born approximation results is that they exhibit absolutely no sensitivity to the 

average value of subsurface resistivity. This can be demonstrated by substituting ~=11=O in 

the expressions for the 3-D magnetic transfer functions shown in Tables 2.2 through 2.4 

(in fact, the result of this substitution is already expressed as the I-D magnetic transfer 

function in each table.) The consequences of this property in any attempt to infer a cross­

section of subsurface resistivity exclusively from measurements of the surface magnetic 

field are discussed in detaii in Chapter IV. For the moment, it is stressed that the same 

property can be used to obtain an estimate of the primary magnetic field. 

The fact that the secondary surface magnetic field measurements have a perfectly 

null DC wavenumber harmonic indicates that their horizontal spatial average taken 

simultaneously in the x and y directions must approach zero for increasingly long averaging 

distances. In the limit, the outcome of such a horizontal average will be an estimate of the 

plane-wave primary magnetic field. This property suggests that when the magnetic field is 

sampled at a number of locations within the survey area, one may first estimate the primary 

magnetic field by areal spatial averaging of these measurements and then compute MT 

impedances solely reflecting the spatial variability of the electric field response from the 

subsurface. Such a procedure contrasts with the standard MT field method in which the 

local electric-to-magnetic field ratio (local wave impedance) is measured at all sampling 

locations. More specific techniques that can be used for the practical estimation of 

secondary-to-primary field ratios using the same principle are described in Chapters IV 

andV. 

2.7 Suppressing the electric static effect 

A foremost conclusion that stems from section 2.4 above is that the effect of the 

static component in the 2-D J'M and 3-D electric transfer functions can be reduced by 

inverting its wavenumber behavior, i.e., by spatially low-pass filtering the surface electric 

field Where this can be accomplished, the remaining low-pass characteristics of the electric 

transfer functions will cause the measured electric field components to contain contributions 

from subsurface resistivity variations that are averaged with respect to depth as well as both 

horizontal directions, x and y. Subject to the restrictions of the Born approximation, a 

bench mark for the cutoff wavenumber, ~c, required to suppress static effects may be 

determined from equations (2.26) and (2.27) as the value of ~ below which the induc~on 
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component in those expressions produces a larger surface amplitude response than the 

static component at the same frequency. Excluding the effects ofr2(~;rn, this occurs when 

2 COJ.! 
~ = COJ.!cro = - . 

Po 
(2.31) 

Cutoff wavenumbers below this critical value increase the suppression of the electric static 

component but decrease the lateral resolution of the induction component. Conversely, 

cutoff wavenumbers greater than this value produce just the opposite effect 

As emphasized in section 2.4, the induction component of the 3-D electric transfer 

function has the characteristics of a spatial low-pass filter for which the cutoff 

wavenumbers in orthogonal horizontal directions are inversely related to the depth of 

response. Because a low-pass filter is an averaging operator, it follows that the magnitude 

of the response derived from the induction component is determined by the distribution of 

local lateral averages of subsurface resistivity where the size of the region over which the 

resistivity is averaged increases with increasing depth. Furthermore, similarities between 

the induction component of the 3-, 2- and 1-D electric transfer functions suggest that the 

induction component responds to the lateral variations of subsurface resistivity much as if 

operating over a horizontally stratified medium with the resistivity at each depth level equal 

to a local lateral resistivity average taken at the same depth. This property suggests that, 

with their electric static component suppressed by way of spatial filtering, 2-D TM and 3-D 

surface electric field data can be interpreted using methods appropriate for the interpretation 

of I-D or 2-D TE (both inductive modes of surface electric response) electric field data. 

Thus, the resistivity Po in equation (2.31) should be interpreted as a local spatial 

average of the subsurface resistivity distribution at an effective depth of response 

determined by the operating frequency. To link the three parameters, frequency, co, average 

resistivity, Po, and effective depth of response, the right-hand side of equation (2.31) is 

now expressed in terms of the Bostick (1977) depth of penetration, ZB, namely, 

_1_= COJl 
ZB2 Po 

This equality suggests that the cutoff wavenumber of the fIlter required to reduce the effect 

of the static component on the surface electric response may be estimated from 

J: _ 1 ..,c - ZB ' 
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or, in general, from 

~ _ 1 
,:!c- CZB ' 

(2.32) 

where c is a real constant that can be arbitrarily adjusted to control the extent of the spatial 

filtering below (c<l) or above (c>l) that consistent with equation (2.31). 

As discussed in section 2.4, the high-pass characteristics of the electric static 

component almost exclusively operate on the ~ wavenumber harmonics of the subsurface 

resistivity distribution. Because of this, any filtering operation intended to suppress surface 

static effects must have directional properties in order to comply with the requirements 

suggested by equation (2.32). The easiest and most natural way to comply with such a 

requirement is to extend the directional spatial filtering performed by the electric field 

sensors themselves (see section 1.3) in a controlled fashion. 

For a preset filtering direction, it is essential that electric dipoles be deployed 

tangential to it. In so doing, there are two variables that control the sampling of the surface 

electric field response from the subsurface, and hence its subsequent inversion into an 

estimate of subsurface resistivity: one is the separation distance between adjacent dipoles 

and the other is the dipole length. The separation distance should be chosen in accordance 

to the well established sampling theorem so as to minimize aliasing effects (potentially 

damaging given the high-pass characteristics of the 3-D electric static component.) As for 

the dipole length, it should be remembered that although long dipoles may provide a useful 

amount of suppression of local static effects, excessively long dipoles may cause undesired 

lateral smoothing. A method that offers a good compromise between sampling distance and 

dipole length is the one in which electric dipoles are deployed end-to-end along the filtering 

path. This arrangement of electric dipoles has the important characteristic that the length of 

the electric field average at a given point can be increased with decreasing values of 

frequency as required for the application of equation (2.32). Both the implementation 

characteristics of such a survey technique as well as the practical evaluation of spatial 

filtering for the MT sounding of the subsurface are the central discussion matters in 

Chapters V and VI. 

.. 
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2.8 Summary 

First-order Born approximation of the MT scattering equations yields a linear 

solution for the relation between a perturbation in subsurface resistivity and the ensuing 

surface response. The linear system solutions derived from this approach apply only to 

cases of low resistivity contrasts, but do retain many of the characteristics of the forward 

and inverse MT problems as they can be applied to any geometrical complexity in 

subsurface. In fact, the linearized forward solutions yield a set of response equations that 

can be easily specialized to the cases of 1-, 2-, and 3-D subsurface resistivity distributions, 

. and which are consistent with all the qualitative properties of magnetotellurics that are 

known to hold over these environments. 

Wavenumber analysis of the linear system solutions suggests that the electric 

response from 2-D TM and 3-D geoelectric media can be described as the additive interplay 

of induction and static components. The induction component has a zero DC-limit 

response, and operates over the lateral variations of subsurface resistivity in the form of a 

low-pass wavenumber fIlter whose cutoff wavenumber decreases with decreasing values of 

frequency. These characteristics exemplify the response properties of the purely inductive 

2-D TE and 1-D transfer functions, and which imply a selective deepening of the zone of 

response with decreasing values of frequency. The static component, on the other hand, 

does not have a zero DC-limit response and operates over the lateral variations of 

subsurface resistivity in the form of band-pass wavenumber filter whose cutoff 

wavenumber increases with decreasing values of frequency. Because of these wavenumber 

properties, the static component may eventually outweigh the amplitude response derived 

from the induction component below some value of frequency, at which point the 

amplitude of the surface electric response will not truly reflect a selective deepening of the 

zone of response with decreasing values of frequency. This is a common and highly 

adverse situation in the exploration of the subsurface with the MT method 

Fortunately, the linear system analysis also suggests that a way to enhance the 

amplitude response of the depth-sensitive induction component over the amplitude response 

of the depth-insensitive static component is to spatially low-pass filter the surface electric 

field. The cutoff wavenumber of the filter required for this operation decreases with 

decreasing values of frequency and is therefore insensitive to the induction component. 

After filtering, the electric field variations can be subject to procedures suitable for the 

inversion of the inductive part of the MT response into a cross-section of subsurface 

resistivity . 



42 

The practical procedure suggested herein for the sampling of the electric field is the 

one in which electric dipoles are deployed end-to-end continuously along a curvilinear 

survey path. This arrangement of dipoles lends itself to a spatial filtering procedure 

whereby the length of the electric field average is increased with decreasing values of 

frequency. Although the suggested field procedure includes only the sampling of electric 

field data tangential to the line of measurements, the use of spatial filtering is consistent 

with the response characteristics of 3~D geoelectric media. It is envisioned that detailed 

exploration work over complicated 3-D targets may demand the deployment of electric 

dipole arrays in more than one direction. 

.. 
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Figure 2·1. Theoretical model: the earth is described as a homogeneous half·space with confined 
conductivity anomalies. Incident electromagnetic energy is in the form of normal plane waves polarized in 
the x-direction. 
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TE AND TM ELECTRIC INDUCTION RESPONSE 
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Figure 2-2. Amplitude response of the 2-D electric induction components. Solid and dashed curves 
describe the amplitude response of the TE and TM-induction transfer functions, respectively, evaluated at 
different depths of response, z00 The curves are normalized with respect to the I-D electric amplitude 
response calculated at the same depths of response, and are plotted with respect to the normalized 
wavenumber ,;N oollcro. 
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2-D TM ELECTRIC STATIC RESPONSE 
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Figure 2-3. Amplitude response of the TM-mode electric static component. Response curves are shown 
for various depths of response. ZOo normalized with respect to the 1-0 response at the same depths. and 

plotted with respect to the normalized wavenumber ;t"ro~cro . 
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Figure 2-4. Amplitude response of the 3-D electric static component. Response values are normalized with respect to the I-D response at the same depth and 
are plotted with respect to the normalized wavenumbers l;NroJ,1<1o and llNroJ,1<1o. Plots are shown for depth of response values, ZO' of 0.0, and 0.25 skin depths. 
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Figure 2-5. Amplitude response of the 3-D cross-coupling electric transfer function. Response values are normalized with respect to the I-D electric response at 
the same depth and are plotted with respect to the normalized wavenumbers ~lv'roJ.!CJo and lllv'roJ.!CJo. Separate plots are shown for both induction and static 
components at the depth of response. ZOo of 0.0 skin depths. ~ 
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TE SURFACE MAGNETIC RESPONSE 
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Figure 2·6. Amplitude response of theTE magnetic transfer function. Response curves are shown for 
various depths of response, zo' normalized with respect to the I-D electric response at the same depths, and 

are plotted with respect to the normalized wavenumber TlNrollcro . 
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CHAPTER ITI 

BORN INVERSION OF I-D MT DATA 

3.1 Introduction 

Inversion of 1-0 MT data has been a subject of extensive research, with 

contributions dating as far back as the curve matching techniques suggested by Cagniard 

(1953) in his seminal paper on magnetotellurics. The abundance of material related to this 

interesting topic is no mere coincidence: the situation in which a normally incident plane 

wave excites a stratified medium to date remains the simplest of all analytical problems for 

the EM probing of the subsurface. It is this simplicity that makes the 1-0 MT inverse 

problem amenable to a fairly large class of formulations, ranging from computer-intensive, 

nonlinear iterative techniques, to much simpler direct (although sometimes only 

approximate) procedures. Regardless of the method of solution, however, the common 

theme to all 1-0 MT inverse techniques is the problem of extracting a resistivity profile in 

the rather adverse situation of exponentially decreasing sensitivity with increasing depth. 

This chapter introduces a linearized solution for the inference of a profile of 

subsurface resistivity from surface electric field data gathered at a number of frequencies. 

The linearized inverse directly stems from the Born approximation solutions derived in 

Chapter II particularized for a medium in which the resistivity is solely a function of depth. 

In considering this rather simplified view to the inverse problem, however, the intention is 

not to devise a practical tool for the interpretation of MT data, but to shed light on the 

factors that control the vertical resolution characteristics of 1-0 MT data. 

The linearized 1-0 MT inverse problem is studied here by extensively exploring the 

properties of the associated weighting kernels. For this purpose, a change of variables is 

introduced whereby both frequency and depth are expressed as logarithmic quantities . 

Likewise, a modification of the data and model representations is used which is consistent 

with the expressions for the first-order Rytov approximation of the surface MT fields. It is 

shown that the logarithmic parameterization of both frequency and depth transforms the 

kernel of the linear system solution into a depth-shift invariant operator. With this property, 

the characteristics of the linear system are studied in the wavenumber domain, leading to 

simple formulas describing the wavenumber range along which noisy data can be mapped 
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into practically undistorted vertical variations of subsurface resistivity. Finally, numerically 

simulated data are used to test the linearized inverse solution in cases where the 

assumptions implicit in the Born approximation ax:e unjustified. The objective of these tests 

is to ascertain in a most pragmatic way the extent to which the linearized inverse is a useful 

tool for understanding the actual nonlinear inverse problem. In so doing, various practical 

f,2- and f,I-norm model estimation procedures are examined and their results contrasted 

against those obtained with a popular nonlinear estimation procedure. 

A study in some ways related to the objectives of this chapter has been reported by 

Bostick et al. (1979). Their work stemmed from direct linearization of the second-order 

nonlinear Ricatti equation governing the variations of EM wave impedance with respect to 

depth. In spite of a different starting point, however, Bostick et al. 's basic equations are 

equivalent to those serving as foundation to this chapter, not to mention some of their 

original concepts as well. Unfortunately, their work has been never formally written and 

their ideas remain largely unknown. Thus, in the measure to which this chapter represents 

an outgrowth of Bostick et al,'s work, care has been exercised to point out where ideas and 

concepts are borrowed from their work. 

Finally, the topics studied in this chapter are important for understanding the 

developments of Chapter N leading to the formulation of a Born inversion procedure 

applicable to 2-D MT data. 

3.2 The linearized forward problem 

Secondary surface magnetic field variation both laterally and with respect to 

frequency are constant over I-D media (Kaufman and Keller, 1981). This property of the 

surface MT response is consistent with the characteristics of the linearized magnetic transfer 

functions (Tables 2.2 and 2.3) derived in Chapter II, and indicates that the nature of the 

I-D vertical variations of subsurface resistivity can only be determined from the secondary 

frequency variations of the surface electric field. 

Following the notation introduced in Chapter II, the electric field, E, on the surface 

of a I-Dearth may be expressed as 

E(ro) = Eo(ro) + e(ro) , (3.1) 

where ro is the radian frequency, Eo is the primary electric field dictated by a homogeneous 

half-space of resistivity Po, and e is the secondary surface electric field that arises with 

.. 
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variations of subsurface resistivity away from the homogeneous half-space. Similarly, the 

resistivity, p, in the subsurface may be written as 

p(z) = po + ~p(z) , (3.2) 

where z is depth measured downward from the surface and ~p describes the vertical 

variations of subsurface resistivity away from the homogeneous half-space. 

In the presence of band limited and noisy surface measurements, the mapping of 

E(co) into p(z) is perforce non-unique (Bailey, 1970). In addition, the relationship between 

these two functions is in general nonlinear and thus difficult to analyze without specific 

knowledge of the subsurface. To ease the understanding of how E(co) maps into p(z), 

consider the test case in which the assumptions 

e(co) « Eo(co), or/and 

~p(z)« Po 
(3.3) 

(3.4) 

are met. For this situation, the relationship between e(co) and ~p(z) can be expressed as 

suggested by equations (2.20) and (2.24), namely, 

;!L<co) = yicoji/po Loo 

~p(zo) e-2zoYiroJl/po dzo . 
Be Po o 

(3.5) 

Customarily, surface electric field measurements made over 1-D media are 

disguised in the form of an impedance, Z(co), relating orthogonal electric and magnetic field 

values. Assuming that the electric field vector, E, points in the x-direction and that the 

magnetic field vector, H, points in the y-direction, the 1-D MT impedance can be expressed 

in terms of the secondary-to primary electric field ratio as 

Z(co) = E(co) = Be(co) + e(co) = Zo(co)[ 1 + e(co) ] 
R(co) Ro(co) Eo(co) , (3.6) 

where Zo(co) is the surface wave impedance associated with the reference homogeneous 

half-space (equation 2.12). 

Equation (3.5) can be rewritten in the more familiar notation of linear inverse 

problems (parker, 1977) as 



where 

d(co) = 10
00 

m(zo) f(co,ZO) dzo , 

d(co) = 2 :0 (co) 

m(z) = .1p(z) 
Po 

f( co,z) = 2 Y icoji/po e-2zY iOOJl/po 

are the data, 

is the model, and 

is the kernel. 
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(3.7) 

(3.8) 

(3.9) 

(3.10) 

In this notation, the factor 2 is arbitrarily introduced in the data and kernel definitions with 

the objective of rendering the real part of f( co,ZO) unimodular (see section 3.7). 

The kernel f(co,ZO) in equation (3.10) may be thought of as an adaptive operator 

that, at a given depth, z, locally averages the vertical model variations to produce the data 

measured at the frequency co. The vertical extent of the average performed by the kernel is 

adapted in response· to variations in both frequency, co, and depth, z. Analysis of the 

averaging characteristics of the kernel is best done if both model and data variables are 

expressed in forms that truly express the vertical resolution characteristics of 

magnetotellurics; this objective is pursued in sections 3.3,3.4, and 3.5 below. 

3.3 Linearized forward problem under the first-order Rytov approximation 

Often, practical MT exploration problems call for exponential representations of 

both data and resistivity variations in the form 

E(co) = e«l>(oo) = e«l>«oo) + 8«1>(00) , and 

p(z) = e'l'(z) = e'l'o+ 8'1'(Z) , 

(3.11) 

(3.12) 

where <t> and 'V are auxiliary complex and scalar functions, respectively. This 

representation for E(co) and p(z) invisions both functions as logarithmic oscillations about 

their average logarithmic values. In fact, because the two functions occur over such large 

amplitude ranges they are both customarily plotted with a logarithmic scale (see Figures 1.4 

and 1.5), for which a description in the form of equation (3.11) and (3.12) is best suited. 

.. 
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Exponential function representations such as those of equations (3.11) and (3.12) 

lend themselves to a recursive series expansion known as the Rytov series. This 

representation is in some ways similar to the additive Born series expansion for which first­

order terms were derived in Chapter II. Studies of the relationship between the terms in 

both expansions have been presented in the solution of wave propagation problems (Sancer 

and Varvatsis, 1970, and Mano, 1971). A simple relation between the ftrst-order terms 

involved in both series expansions for the MT problem can be obtained in the following 

way. With the equivalences 

e~«ro) = Eo(co) , and 
e'i'O = Po , 

as well as the assumptions that 1~'I'I«""ol and 1~<I>I«I<I>ol, substitute the right-hand side of 

equations (3.11) and (3.12) into equations (3.1) and (3.2), to get 

t}CO) = ~<I>(co) = ~ln E(co) , and 

~p(z) 
-- = ~",(z) = ~ln p(z) . 

Po 

These expressions suggest modified data and model representations for the linearized 1-D 

MT forward problem in the form 

d(co) = Mn E2(co) = Mn IE(co)12 + i arg[2~~~)], and 

m(z) = ~ln p(z), 

(3.13) 

(3.14) 

respectively, where the assumption is implied that E(co) is never zero, a fact perfectly 

justifted by the minimum-phase property of 1-D MT data (Kunetz, 1972, and Weidelt, 

1972). Notice that the model deftnition in equation (3.14) has the advantage of naturally 

enforcing the positivity of p(z) in any attempt to solve for m(z) via equation (3.7). 

It becomes evident that under the first-order Rytov approximation both the data and 

the model possess different expressions compared to those of the first-order Born 

approximation. However, the kernel for the linear system equations is exactly the same in 

both situations. The physical signiftcance attached to d(co) under the first-order Rytov 

approximation is explored in the following section. 
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3.4 Relationship between the ratio e/Eo and apparent resistivity and 
impedance phase data under the first-order Rytov approximation 

Once again, consider the 1-D MT impedance, Z(ro), defined in equation (3.6), 

although this time expressed in the additive form 

Z(ro) = 20 (ro) + AZ(ro) , 

where AZ(ro) is the perturbation of surface wave impedance reflecting the variations .1p(z) 

of p(z) about Po. Disregarding second-order terms of AZ(ro), the square of Z(ro) can be 

approximated with the expression 

2 2 AZ(co) 
Z (ro) = Zo(ro) [1 + 2 2o(ro)] . 

Taking the complex logarithm on both sides of this last identity and retaining only the first­

order terms in AZ( ro) for the expression within brackets yields 

Collecting real and imaginary components results in the two identities 

In IZ(ro)12 = In 12o(ro)12 + Real[2~i:~]' and 

2arg[Z(ro)] = 2arg[2o(ro)] + Imag[2~i:~]. 

c 

Adding -In(ro~) to both sides of the first identity and substituting the exact expressions for 

12o(ro)1 and arg[2o(ro)] (equation 2.12) yields 

In PA(ro) = In Po + Real[2~i:~]' and (3.15) 

2arg[Z(ro)] = 1t + Imag[2AZ(ro)] 
2 2o(ro) , 

(3.16) 

where PA(ro) is the 1-D apparent resistivity function (Cagniard, 1953). Now, from 

equation (3.6) it becomes clear that 



.. 

in which case, by simple inspection of equations (3.15) and (3.16), one fmally obtains 

Re3.I[2:
0 

(co)] = ~ln PA(CO), and 

Imag[2:
o 

(co)] = 2arg[Z(co)] - ~ . 

(3.17) 

(3.18) 
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These are simple expressions that relate both apparent resistivity and impedance phase with 

the real and imaginary parts of d(co). As detailed in section 3.11, equation (3.17) also 

provides a simple means to estimate the background resistivity, Po, directly from appareilt 

resistivity data. 

3.5 Reparameterization and convolutional response 

Because of the very large frequency range over which electric and magnetic field 

measurements are made, MT signals are normally processed to yield frequency samples 

evenly distributed in logarithmic fashion. Both the reason and repercussion of a sampling 

procedure of this nature as to the way in which vertical variations of subsurface resistivity 

can be resolved from the data is best understood if both model and data variables are 

expressed in equivalent forms. A way to accomplish this is by writing both skin depth, 0, 
and depth, z, in terms of exponential variables; more precisely, let 

o = V 2po = e-V and 
coJ.! ' 

Z = e-u, 

such that, 

v = -In 0 = In Vro + In V J.! and 
2po' 

u = -In z 

(3.19a) 

(3.20a) 

(3.19b) 

(3.20b) 

(Bostick et al. 1979.) Equation (3.19b) above is a double transfonnation that links the two 

variables, background resistivity and frequency, to map the original frequency samples into 

the same natural log depth axis that is used to describe the vertical variations of subsurface 

resistivity (equation 3.20b). 

Substitution of equations (3.19a) and (3.20a) into equation (3.5) gives rise to a 

well-known convolutional representation form, i.e., 



where 

d(v) = 1: m(u) f(v-u) du , 

f(u ) = g(u) + i h(u), 

g(u) = [ cos(2eU) + sin(2eU)] 2eu-2eu, and 

h(u) = [ cos(2eU) - sin(2eu)] 2eu-2eu• 

(3.21) 

(3.22) 

(3.23) 

(3.24) 
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Thus, under the logarithmic parameterization of 0 and z, the new kernel, f(u), in equation 

(3.21) adopts the properties of a depth-shift invariant operator. In a way, the simplicity of 

equation (3.21) suggests that the logarithmic scale for both the sampling of the data and the 

inference of the model are an optimal combination to deal with the exponential decay that 
the kernel f(ro,z) (equation 3.5) experiences with increasing depth. Smith and Booker 

(1988) in their own nonlinear study advocate a parameterization of this nature because they 

show it works as a natural "prewhitening" process of the observational errors. The function 

f(u) defined in equations (3.22) through (3.24) is the impulse response (or Green's 

function) for the 1-0 MT forward problem and, borrowing the terminology used in linear­

system theory, can be meritoriously referred to as the 1-0 MT wavelet (Bostick et al., 

1979). 

Figure 3-1 shows both real and imaginary components of the reversed 1-0 MT 

wavelet, f( -u), plotted as a function of -u, such that depth actually increases to the right of 

the plot. The reversed wavelet is shifted over the resistivity model at increasing values of 

depth to produce the data measured at decreasing values of frequency. The resulting 

apparent resistivity and phase curves (real and imaginary components of the data under the 

Rytov approximation) thus appear as smooth versions of the original resistivity profile after 

the wavelet has been shifted through it (Figure 3-2). A study of the smoothing 

characteristics of the 1-0 MT wavelet is carried out in section 3.8 with the aid of the 

Fourier transform. 

3.6 Causality and minimum phase 

For the seemingly unrealistic, although theoretically appealing situation in which the 

linearized data have been gathered at all points along the logarithmic frequency axis, their 

real and imaginary components remain linear combinations of each other. This linear 

dependence is due to the linearity in turn exhibited by the real and imaginary parts of the 

.. 
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1-D MT kernel themselves In fact, both components are related by the Hilbert transform, 

defined as 

i
+ OO 

h(u) =.1 g(uo) duo, and 
7t uo-u 

- 00 

(3.25) 

i
+ OO 

g(u) = - .1 h(uo) duo 
7t Uo - U 

- 00 

(3.26) 

(Bracewell, 1965). 

To demonstrate that equations (3.25) and (3.26) hold true for the linearized 1-D MT 

forward problem, consider the auxiliary integral, 11(0)), defined as 

I ( ) -1+ 00 e+i2eUO eUo - 2eUO d 
1 U - =------""---"--- uo. 

Uo - u 
- 00 

The Cauchy principal value ofI1(u) can be found by closed contour integration in the upper 

half of the complex plane. For this purpose, the contour of integration is chosen to contain 

both the real axis and a semicircle of infinite radius. Given that the complex function, 

vanishes for 

w = Rcos e + isin e; R~ 00, and 0 < e < 7t , 

it can be shown that the contribution from the integral taken along the infinite semicircle 

reduces to zero. Along the real axis, on the other hand, the path of integration can be drawn 

such that the singular point u=uo is not contained within the region enclosed by the contour 

of integration. Thus, with no other singularities to take care of, the Cauchy principal value 

of 11 (u) is -i7t times the residue of the integrand at u=uo (Marsden, 1973), whereupon, 

Similarly, a second auxiliary integral, 
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J
+OO 

e-i2eUO eUO - 2eUO 
12(U) = Uo _ u dUO 

- 00 

is solved with the aid of a closed contour drawn in the lower half of the complex plane. The 

Cauchy principal value of 12(U) is now +i7t times the residue of the integrand at u=uo, i.e, 

By combining the results for 11(U) and h(u) above one fmds the expressions 

J
+OO 

cos(2eUO) eUO - 2eUO du 
Uo - u 0 

- 00 

= - 7tsin(2eU) , and 

J
+OO 

sin(2eUo) eUo - 2eUO du 
Uo - u 0 

- 00 

= 7tcos(2eU) . 

These last two formulas are now used in the substitution of equations (3.23) and (3.24) 

into equations (3.25) and (3.26) to finally showing that, in effect, both g(u) and h(u) are 

analytic components of each other. 

The Hilbert transform relation that exists between g(u) and h(u) is consistent with 

the property of causality inherent to the electrical response of a I-D earth upon normal 

plane-wave excitation (Kunetz, 1972, and Weidelt, 1972). In the case of the first-order 

Rytov approximation, equations (3.25) and (3.26) directly enforce the even more 

specialized minimum-phase property of the response. Boehl et al. (1977) have 

advantageously used this minimum-phase property in the interpretation of noisy and biased 

apparent resistivity data. 

Even though both real and imaginary components of the data are related by a causal 

linear transformation, there are properties of the subsurface resistivity variations that cannot 

be recovered by the imaginary component alone. This is shown in sections 3.7 and 3.8 

below. 

3.7 Depth of penetration in a homogeneous half-space 

When operating over a homogeneous perturbation of subsurface resistivity, the 

electrical response from the subsurface obtained via equation (3.21) is determined by the 

.. 
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DC values of the real and imaginary components of the I-D MT wavelet Direct integration 

of the right-hand side of equations (3.23) and (3.24) reveals that such DC values are given 

by 

1
+00 

_ 00 g(u) du = 1, and 

1
+00 

_ 00 h(u) du = O. 

In plain words, these results indicate that only the real component of the data is sensitive to 

the average value of subsurface resistivity. Also, notice that the unimodularity of g(u) 

comes as a consequence of the factor 2 arbitrarily introduced in the definitions for the data 

and kernel functions in equations (3.8) and (3.10), respectively. 

Because of the fact that h(u) has a zero DC value, the imaginary part of the electrical 

response is useless in helping establish a difference among all homogeneous distributions 

of subsurface resistivity and, therefore, cannot be used in an independent determination of 

depth of penetration. For this purpose, attention is focused solely on the real component of 

the data. 

Consider now the integrated response function, I( -u), defmed as 

1-
u 

I(-u) = _ 00 g(-uo) duo = 1 - e-2e-
u 
cos (2e-U) • 

Inspection of this last expression reveals that I(-u)~O for u~-oo, whereas I(-u)~1 for 

u~+oo. The way in which I( -u) asymptotes the value of 1 determines the depth range 

down from the surface where most of the weighting exercised by g( -u) takes place. This is 

illustrated in Figure 3-3, where the integrated responses of the real and imaginary 

components of the I-D MT wavelet are plotted with respect to -u, Le., with depth 

increasing to the right of the plot. 

The first point, -u, where I(-u) becomes 1 is -u=0.242 (0.780). For comparison, 

the Bostick depth of penetration (Bostick, 1977) in the homogeneous half-space coincides 

with the point -u=O.346 (0.710). Beyond the value -u=O.242, toward the positive portion 

of the -u axis, the function I(-u) continuously oscillates about 1, with the oscillations 

progressively smaller for increasing values of -u. This oscillatory behavior of I( -u) 

indicates that, for given frequency, or v value, the surface electric response is insensitive to 

any half-space buried below the critical point v-u=0.242. Although the result obtained here 
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is consistent with the results reported in his study, Spies (1989) examines more 

conservative estimates of the depth of penetration in an effort to account for practical noise 

levels in the measured data. As shown below, the effect that noisy measurements have in 

the estimation of a resistivity model is probably best understood in the vertical wavenumber 

domain. 

3.8 Vertical harmonic behavior 

Owing to the depth-shift invariance property of the 1-0 MT wavelet, the 

characteristics of the linearized response can be easily studied in the Fourier domain. To 

this effect, detIne the Fourier transform pair of f(u) as 

1
+00 

F(A) = 1'{f(u)} = -00 f(u) e+i21tAU du, and (3.27) 

1
+00 

f(u) = l' -1 {F(A)} = _ 00 F(A) e-i21tAU dA, (3.28) 

where the variable A is the linear vertical wavenumber. Thus, in the Fourier transform 

domain, equation (3.21) takes on the multiplicative form 

O(A) = M(A) F(A) , 

where, 

O(A) = 1'{d(v)}. and 
M(A) = 1'{m(u)}. 

(3.29) 

In order to obtain the Fourier transform of the 1-0 MT wavelet, fIrst substitute equation 

(3.23) into equation (3.27) together with the change of variable cp = 2eu• The result is 

G(A) = l' {g(u)} = 2-i21tA 10
00 

( coscp + sincp ) <pi 21tAe-cp dcp .-

Further substitution of Euler's formulas for sine and cosine into this last expression plus a 

few algebraic steps yields 

G(A) = 2-1 - i21tA {(I - i) 10
00 

<pi 21tA e-cp(1 - i) dcp + (1 + i) 10
00 

<pi ~1tA e-cp(1 + i) dcp} . 
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The integrals involved in this last expression can be solved in tenns of the complex-valued 

gamma function, r. Using the integral fonnula 

(00 tV- 1 e-Jlt dt = _1 rev) 
Jo Jlv 

[Real Jl>O, Real v>O] 

(Abramowitz and Stegun, 1972,6.1.1), one fmally obtains 

G(A) = 2-i31tA. COSh~) r(1 +i21tA) . (3.30) 

Similarly, the Fourier transfonn, H(A), of the imaginary part of the I-D MT wavelet, h(u), 

takes on the fonn 

H(A) = _i2-i31tA. sinh et~A) r(1 +i21tA) . 

Amplitude values of both G and H can be computed with use of the identity 

Ir(1 +i21tA)1 2= r(1 +i21tA) r(1-i21tA) = 21t2A 
sinh (21t2 A) 

(Abramowitz and Stegun, 1972,6.1.31). 

(3.31) 

The low-pass filter nature of both G and H is illustrated in Figure 3-4 with plots of 

amplitude response versus linear wavenumber, A. In these plots, the upper scale consists 

of wavenumber values in the units of cycles/decade. Such units are particularly useful in 

magnetotellurics since the sampling interval with which data are acquired in the frequency 

axis is normally a submultiple of a loglO decade. Notice that, in agreement with the depth­

domain analysis carried out in section 3.7, H(A) annihilates the DC wavenumber harmonic 

of the vertical variations of subsurface resistivity. 

3.9 Model deconvolution and vertical resolution 

In the wavenumber domain, a simple algebraic step is all that is required to estimate 

a resistivity model from the data via equation (3.29), namely, 

M(A) = _1_. D(A), 
F(A) 

(3.32) 
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provided that IF(A)I¢{) for all values of A. However, the asymptotic decay of IF(A)I (Figure 

3-4), together with the potentially damaging presence of noise in the data, render the above 

equation unstable in any practical attempt to recover M(A). To understand this problem, 

assume that the data are contaminated with additive noise whose Fourier transform is 

denoted as N(A). Thus, in the wavenumber domain the measured data, D(A), can be 

written as 

D(A) = D(A) + N(A) . (3.33) 

Resorting to the basic tenet of linearity, one can obtain a model estimate, M(A), from the 

noisy data by way of the expression 

M(A) = SeA) D(A), (3.34) 

in which the transfer function SeA) is deliberately introduced to describe the way in which 

noise in the data projects into a distortion of the true model solution, M(A). The way in 

which the true model solution is modified in response to the presence of noise in the data is 

determined by the characteristics of both F(A) and N(A). Unfortunately, in practical 

applications only a few of the characteristics of the noise, N(A), are known a priori, and, 

consequently, the estimation of M(A) from noisy data is rendered non-unique. 

A common procedure to solve the model estimation problem is the one for which 

the difference between M(A) and M(A) is minimized in a least-squares, or f2-norm sense. 

To this end, consider a stationary, zero-mean model, M(A) (if the mean of the model is not 

zero one subtracts the mean from it prior to performing this analysis). Likewise, assume 

that the noise in the measurements is stationary, has zero mean and is uncorrelated with the 

model. Hence, the least-squares, or Wiener estimate of SeA) is 

2 
SeA) = _1_ IF(A)I. , 

F(A) IF(A)12 + NSR2(A) 
(3.35) 

where NSR(A) is the function that describes the noise-to-signal ratio, expressed as 

NSR(A) = IN(A) I 
IM(A) I 

(3.36) 

.. 
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(see, for instance, Papoulis, 1965, and Franklin, 1970). With this solution for S(I •. ), a 

measure of the difference between M(A) and M(A) is obtained by substituting equations 

(3.32), (3.33), and (3.35) into equation (3.34), i.e., 

(3.37) 

Equations (3.32) and (3.34) reduce to equivalent expressions when NSR(A)=O. It 

is remarked also that the definition of the noise-to-signal ratio in equation (3.36), which 

considers the model variations as signal, tacitly assumes that IM(A)I¢O for all values of A. 

This assumption has a practical reason: it allows one to study the resolving power of the 

linear system solution embodied in equation (3.34) when the model is potentially capable of 

exciting all wavenumber hmmonics in the surface electric field response. 

In equation (3.37), the ratio 

is normally referred to as the resolution window. The latter function is a zero-phase low­

pass filter that describes the distortion of model harmonics in the presence of noise; the 

larger the value of NSR(A) the lower the cutoff wavenumber of R(A). 

Within the assumption of stationarity, the Wiener estimate of S(A) is indeed the best 

estimate when the noise, N(A), is white and is described by a Gaussian probability 

distribution (Menke, 1984). To understand the resolution characteristics of the 1-D MT 

wavelet, consider a "white" model, m(u), with variance s2, and hence described in terms of 

the Dirac delta function, 8(u), as s28(u). Assume also that the noise is white and is 

described by a Gaussian probability distribution of zero mean and variance equal to n2. 

Under these conditions, the function NSR(A) (equation 3.36) is constant and equal to 

NSR(A) = ~ . 

Figure 3-5 shows the "white" model amplitude response, D(A), of the linear system 

described by F(A) upon excitation of a unity-variance model, 8(u). This figure also shows 

a white noise amplitude response, N(A), with a 10% standard deviation. Graphically, it is 

easy to understand for this particular situation that, beyond approximately 1.5 

cycles/decade, the noise response has completely flooded the natural signal level from the 



64 

subsurface. For a given noise-to-signal ratio, the maximum wavenumber hannonic that can 

be recovered from the subsurface without distortion is described in the plots of resolution 

window, R(A) shown in Figure 3-6, for both real and imaginary components of the data. 

Even in computer simulated data, when the only likely sources of noise are 

accumulated 32-bit computer roundoff errors, a noise-to-signal ratio of approximately 10-4 

remains a good minimum bound. For this situation, Figure 3-6 indicates that 3.5 

cycles/decade is the maximum wavenumber with which the model, M(A), can be recovered 

without significant harmonic distortion. Assuming that this wavenumber is the actual 

Nyquist wavenumber with which the data have been sampled along a 10glO frequency axis, 

it becomes apparent that 7 or 8 frequency samples per decade should be the maximum 

necessary to optimally recover the vertical variations of subsurface resistivity (other sources 

of noise in the data actually bring this minimum number of samples per decade to a lower 

value.) Inverse simulation studies carried out with single-precision arithmetic on a 32-bit 

computer show that a more practical lower bound for noise-to-signal ratio is approximately 

0.01 (sections 3.12 and 3.13), for which the optimal number of frequency samples per 

decade is in the neighborhood of 5. 

In the sections below, deconvolution examples are presented to illustrate the 

characteristics of, and problems faced by practicall-D MT inverse problem formulations. 

The objective of those examples is to ascertain whether the linear system representation 

discussed above has any practical use in situations where the assumptions of small 

secondary resistivity and electric field variations are clearly unjustified. Likewise, in the 

simple framework of the linearized forward solution, procedures are examined whereby the 

inversion of a resistivity profile is affected by the choice of model functional, smoothing 

parameters and, ultimately, model norm. 

Even though deconvoliItion procedures in the wavenumber domain can be used in 

practical inversion problems, often depth-domain procedures offer a greater degree of 

flexibility, as is shown below. 

3.10 Model deconvolution in practice 

Inversion procedures for the estimation of the model, m(u), from the data, d(u), for 

which the relationship is of a linear nature have been amply studied in the context of 

geophysical applications (see, for instance, the excellent tutorial paper by Oldenburg, 

1984.) For the particular case in which the kernel is shift invariant, such as that of the 

.. 
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linearized forward MT problem, Treitel and Lines (1982), have explored the relationship 

between the Wiener deconvolution and Backus and Gilbert (1967, 1968, 1970) model 

estimation procedures. 

The approach taken here for the model estimation is equivalent to the constrained 

Wiener inverse solution described by Treitel and Lines (1982). For this purpose, equation 

(3.21) is discretized in the form 

N 

L m(Uj)g(Vi - Uj) .1Uj for 1~ i ~ M 
j=l 

N 
L m(Uj)h(Vi - Uj) .1Uj for M+l~ i ~ 2M 
j=l 

Using the abbreviated notation, 

di = d(vi), 

mj = m(uj), and 

f 
.. _ { g(Vi - Uj) .1Uj for 1~ i ~ M 
IJ -

h(Vi - Uj) .1Uj for M+ 1~ i ~ 2M 

a simple matrix notation for the discrete linear forward problem is 

d=Fm, 

where " 

fIN ) f2N . . 
fMN 

(3.38) 

For simplicity, and without sacrifice of generality, here attention is paid to the well­

posed inverse problem in which the number of frequency samples is exactly the same as the 

number of model unknowns, i.e., M=N. Likewise, it is assumed that the data are evenly 

sampled and that there are not missing data between the first and the last samples. The 
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variable .1u is thus independent of the column index in equation (3.38). Finally, even 

though in practice the data are seldom sampled continuously with respect to frequency, the 

linearity between real and imaginary components predicted by the Hilbert transform pair in 

equations (3.25) and (3.26) still holds to a large extent. For this reason, the model 

estimation procedures examined in this chapter are based solely on the real component of 

the data. Model inference from the imaginary component of the data alone is not studied 

because, as it was shown in sections 3.7 and 3.8, such data are unable to resolve the DC 

component of the resistivity profile. To circumvent this difficulty one could think of a 

procedure whereby the DC component of the resistivity proflle would be extracted from the 

real component of the data and the remaining vertical wavenumber harmonics inferred from 

the imaginary component alone. However, the advantages and disadvantages of such a 

procedure are not explored in this thesis. 

Consider now the practical situation in which the measured data, a, are 
contaminated with additive noise, n, i.e., 

d=d+n. (3.39) 

An estimate of the model, m, can be found from the noisy data with use of the linear 

equation 

m=-S.d, (3.40) 

where the inverse operator S describes the way in which noise in the measured data is 

projected into the estimated model solution. Once again, a solution for S. may be found by 

minimizing the least-squares difference between m and m, written as 

r(m) =<ID -m) T (m - m), (3.41) 

where the superscript T is used to symbolize matrix transpose. The minimization of this 

model functional is the basis of the Wiener or stochastic inverse (Franklin, 1970, and Aki 

and Richards, 1980), in which both model and noise vectors are assumed realizations of a 

stochastic process. In this vein, assume also that both the model and the noise are 

uncorrelated and have zero means (if their means are not zero then they are subtracted prior 

to performing this analysis.) With these assumptions, equations (3.38) through (3.40) 

substituted into equation (3.41) yield a set of normal equations for the entries of S. whose 

final solution is 

.. 
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where 

are the model and noise covariance matrices, respectively (Aki and Richards, 1980). For 

the case in which both the model and the noise are white Gaussian processes with zero 

means and standard deviations equal to s2 and n2, respectively, their covariance matrices 

can be written as 

respectively, where I is the identity matrix. Under these assumptions, the solution for S 

above can be specialized to read as 

(3.42) 

where 

is the autocorrelation matrix of the linear system, symmetric and Toeplitz (the latter 

characteristic being a result of the shift -invariance property of the 1-D MT wavelet); also, 

nsr =!l s 

is the noise-to-signal ratio. Incidentally, the solution for S. in equation (3.42) is the space­

domain equivalent of the wavenumber domain inverse fIlter S(A) derived in section 3.9. 

Alternatively, a solution for the operator S introduced in equation (3.40) can be 

found by casting the model functional, r(m), in the fonn of data residuals, i.e., 

- T-r(m) =(d - cD (d - .d) , (3.43) 

together with the condition that this model functional be minimized in conjunction with the 

model energy constraint that 

remain constant An augmented model functional for this situation can be written as 
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r(m) =<d -d)T <d -d) + a (mTm - c) , (3.44) 

where a, the Lagrange multiplier, becomes a new variable sought after in the minimization 

process leading to the model estimate. Treitel and Lines (1982) have shown that the critical 

model value for which this augmented model functional is minimized is identical to that 

derived from the Wiener inverse (equations 3.41 and 3.42). The physical significance 

attached to the Lagrange multiplier, a, in equation (3.44), however, is best understood 

with the use of the noise-to-signal ratio concept of the Wiener inverse formulation. 

An interesting modification to the model functional in equation (3.44) is the one for 

which the first derivative of the model is minimized concomitantly with the minimization of 

the data residuals, namely, 

N 
- T- ~ r(m) =(d - d) (d - d) + a£" (mi - mi-l) . (3.45) 

i=2 

The model estimate that results from the minimization of this new model functional is 

where Q is the frrst-order difference matrix, written in expanded form as 

000···00 
-1 1 0 .. · 0 0 

Q= 0-11 .. ·00 
. .. . 
o 0 0 .. · 1 0 
o 0 0··· -1 1 NxN 

(3.46) 

In equation (3.46), the Lagrange multiplier, a, controls the degree of smoothness in the 

inferred model solution. A small value of a produces a highly oscillatory model solution; 

conversely, a large value of a produces a smooth model solution. Even though their 

solution includes an optimal search for the Lagrange multiplier, a, whereby the data 

residuals are kept as close as possible to a preset data misfit value, Constable et al. (1987) 

have applied this modification of the Wiener inverse solution under their own denomination 

of Occam's inverse. Similar model functionals can be formulated in like manner for the 

minimization of higher-order model derivatives. 

Minimization of model functionals such as those written in equations (3.44) and 

(3.45) can also be done via quadratic programming techniques (Lawson and Hanson, 
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1974, and Gill et al., 1981). The advantage of quadratic programing is that model range 

constraints, known a priori from sources of information other than the measured data 

themselves, can be enforced in the minimization of the model functional. In section 3.14 

examples are shown that illustrate the effect of adding this type of model range constraints 

to the minimization of the model functional. Also, section 3.15 illustrates the use of an 

alternative iI-norm model functional. 

3.11 Estimation of the background resistivity 

Application of the inverse procedures described in the previous two sections 

assumes that the background resistivity is known beforehand. Within the assumption of 

linearity, accurate knowledge of the background resistivity is important to reduce shifting 

errors in the mapping whereby measurements made along the 10glO frequency axis are 

transported into the 10glO depth scale describing the inverted resistivity profile. This 

mapping is governed by equation (3. 19b). 

Assuming again that the model can be described as the realization of an ergodic 

stochastic process, the background resistivity can be thought of as the expected value of 

this stochastic process. Accordingly, because of the linear relationship between the model 

and the data also assumed in the analysis above, the average value of the data (Le., its zero­

lag autocorrelation value) should reflect the expected model value. With this idea in mind, 

substitute the value of Real(2elEo) given by equation (3.17) into equations (3.21) and 

(3.15) and express both frequency and depth in terms of the logarithmic variables v (for 

any given background resistivity) and u, respectively, to get 

In PA(V) = In Po + i: AIn p(u) f(v-u) du . 

Integrating both sides of this expression with respect to v from -00 to +00 yields 

(+L (+ 00 1+ 00 

L ~ 00 (2l JL In (PA(V» dv) = In (Po) + J 00 [_ 00 AIn p(u) f(v-u) du ] dv . 

Finally, interchanging the order of integration on the right-hand side integral, and assuming 

that AInp(u) has zero mean, one obtains 

(3.47) 
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where the bar over the logarithmic apparent resistivity is used to denote expected value. In 

short, equation (3.47) indicates that the background resistivity is the expected value of 

apparent resistivity taken over a logarithmic frequency axis. 

Needless to say, an error in the estimated background resistivity, Po, will be 

responsible for a change in the v-value range with which the data are projected onto the 
logarithmic depth scale that is used in the inversion of p(z). The way in which an error in 

the estimated background resistivity distorts the logarithmic depth scale is best expressed 
by the derivative of v with respect to In(po). From equation (3.19b), this derivative is 

found to be 

dV _ 1 

dIn Po 2 

Thus, as a result of a small perturbations of In(po), the ensuing perturbation of the v value 

is given by 

This approximation indicates that a perturbation in the background resistivity will merely 

cause a shift of the data along the logarithmic depth scale. A positive perturbation of Po will 

uniformly shift the depth scale deeper in the subsurface; conversely, a negative perturbation 
in Po will uniformly bring the logarithmic depth scale closer to the surface. 

3.12 Example of inversion with the Born approximation of the data 

The standard synthetic example analyzed here is the one described along with its 

MT response in Figure 3-2. This model corresponds to the layered example used in the 

nonlinear inversion study of Oldenburg (1979), although here the resistivity profile plotted 

on a loglO depth scale has been shifted to the next higher decade to reflect a relatively more 

practical exploration situation. The MT response plotted in Figure 3-2 was numerically 

simulated with an exact I-D transmission line algorithm, including 10 frequency samples 

per decade in the band from 0.0005 to 1,000 Hz (a total of 64 samples). For the Born 

approximation of the data, the function d(ro) in equation (3.7) is constructed from the 

simulated impedances with the formula 

Z(ro) 
d(ro) = Real [2

Zo
(ro)] - 2 

.. 

• 



.. 

.. 

71 

(see equation 3.6). The value for background resistivity used henceforth in this chapter is 

4.0 O·m; this value is approximately equal to the average of the fluctuations of logarithmic 

apparent resistivity along the logarithmic frequency axis within the simulated frequency 

range . 

Plots of the inverted resistivity profiles are shown in Figure 3-7. The algorithm 

employed for the inversion is the constrained Wiener deconvolution governed by equations 

(3.41) and (3.42), including results for three values of noise-to-signal ratio, i.e., 0.01, 

0.1, and 1. Also, for comparison, the Bostick (1977) pseudoinverse is included in the 

same figure. As evidenced by these results, a high noise-to-signal ratio translate to smooth 

resistivity profiles, whereas a low noise-to-signal ratio produces a more oscillatory 

behavior in the inverted profile. Noise-to-signal ratios lower than those considered in 

Figure 3-7 (0.001, for instance) are tested here because their associated resistivity profiles 

undergo very unrealistic oscillations. In fact, from the simulation studies related in this 

chapter, it appears that a noise-ta-signal ration of 0.01 is the lowest feasible value when the 

synthetic data are calculated on a 32-bit single-precision machine. 

Besides the model oscillations controlled by the noise-to-signal ratio, the excessive 

undershoot near the first downward step of the layered model is a prominent feature 

exhibited by the three inverted resistivity profiles. The nature of this undershoot will 

become clearer when results are presented in the following section using the Rytov 

approximation of the data. In advance, however, it is noted that such a situation occurs at 

points where the data exhibit the most sensitivity to a change in subsurface resistivity, that 

is to say, about low-resistivity variations. A decrease in subsurface resistivity is the easiest 

way to render the assumption of small secondary-to-primary field ratios inappropriate. On 

the other hand, the resistivity contrasts considered in this example by no means adhere to 

the low-contrast assumption that is the basis of the linearized inverse. The fact that this 

assumption is not as stiff an operation requirement is to a large extent due to the use of the 

logarithmic model representation (equation 3.14). 

Figure 3-7 also shows that resistivity profiles inverted with- a noise-to:.signal ratio 

below 1.0 display slightly more vertical resolution than the profile inverted with the Bostick 

pseudoinverse. However, the asymptotic nature of the Bostick pseudoinverse is better 

suited to account for the abrupt termination of the data at 0.0005 Hz than the Born 

inversion procedure, which at the same point develops a highly oscillatory behavior. 
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3.13 Example of inversion with the Rytov approximation of the data 

Consider now the expression for the data under the fIrst-order Rytov approximation 

of the 1-D MT response, given by 

Z(ro) 
d(ro) = 21n 'Zo(ro) , 

(equations 3.8 and 3.13). With the simulated results described in the previous section as 

input data, Figure 3-8 shows the resistivity profIles inverted via the constrained Wiener 

inverse for values of noise-to-signal ratio of 0.0 1, 0.1, and 1. 

Inspection of the results shown in Figures 3-7 and 3-8 reveals that even at the 

lowest noise-to-signal ratio, the resistivity profIle inverted with the Rytov representation of 

the data is more stable and closer to the true model than the one inverted with the Born 

representation of the data. Of interest is also the fact that in the two methods resistive 

anomalies are better resolved than conductive ones, albeit for the model example studied 

here the former anomalies exhibit much larger contrasts than the latter. This situation is 

explained by recalling that the measured surface MT data is less sensitive to high-resistivity 

variations than to low-resistivity variations, in which case the linearized inverse works 

under much favorable circumstances over resistive than over conductive variations of 

subsurface resistivity. 

Noise-to-signal ratios above 0.01 show almost no trace of the thin (keeping in mind 

the logarithmic nature of the depth scale, of course) conductive layer buried at a depth of 

700 m in the model plot of Figure 3-8. 

Additional inversion examples that illustrate the discrepancies between the Born and 

Rytov representations of the data are shown in Appendix B. In the following sections, the 

estimation of a vertical profIle of subsurface resistivity is approached with slightly different 

model functionals. 

3.14 Model range constraints 

Model range constraints are but a class of a priori information that is sometimes 

available regarding the nature of the model sought after. These constraints originate from 

sources of information other than the data themselves (at least the data supported by the 

physical system related to the inversion.) For instance, suppose that prior to inverting for 

" 
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the model whose MT response is shown in Figure 3-2, it is known that all resistivity values 

fall above 1 n-m. Starting with equation (3.2), this constraint can be cast in the fonn 

6p(z) 1 
-->-

Po Po 

Enforcing this inequality in the minimization of the model functional is best done if instead 

of the logarithmic fonnula (3.12), the resistivity proftle is written in algebraic fonn in terms 

of the ratio 6p/po, namely 

6p(z) 
p(z) = Po(l + --). 

Po 

For the case in which the desired resistivity profile has a preset upper bound, a more stable 

algebraic expression for the resistivity p(z) is 

p(z) = po 
1 _ 6p(z) 

Po 

For instance, if the resistivity profile shown in Figure 3-2 is known not to take on 

values above 100 n-m a model range constraint may be enforced with the inequality 

6p(z) < Po _ 1. 
Po 100 

Figures 3-9 and 3-10 show the results of inverting the synthetic data described in 

Figure 3-2 with the model range constraints that p(z»l n-m, and p(z)<100 n-m, 

respectively, assuming the three standard values of noise-to-signal ratio of 0.01, 0.1, and 

1. The results shown where obtained with the quadratic programming algorithm of the 

HARWELL FORTRAN library (subroutine VE04A, Hopper, 1979) in conjunction with 

the Rytov representation of the data . 

In Figure 3-9, the lower bound model constraint causes the inversion to be overly 

sensitive to the low-resistivity variations, and for which the data actually exhibit the largest 

response. This sensitivity is somewhat queUed only when the noise-to-signal ratio is larger 

than 0.1, but when this is done the inverted resistivity profile shows no added benefit from 

the inclusion of the model range constraint. However, in other situations, such as those 

shown in Appendix B, this type of model range constraint may prove useful to reduce the 
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sidelobe activity, or Gibb's phenomenon, that is often characteristic of the standard 

frnorm minimization procedures. 

On the other hand, the use of an upper bound model constraint for the inversion of 

the same data shows more interesting features in the estimated resistivity proflle. For this 

new case, high-resistivity variations become more emphasized than their low-resistivity 

counterparts. However, in like manner as with the lower bound model constraint, equal 

values of noise-to-signal ratios cause much more variable resistivity proflles than with the 

enforcement of no constraints at all. Also, even though some sidelobe activity is 

successfully diminished with the use of the upper bound constraint (especially near low­

resistivity layers), the inverted resistivity profiles do not descended to quite as low a 

resistivity value over conductive layers as the proflles for the unconstrained case do. More 

examples that illustrates the advantages and disadvantages of using model range constraints 

in conjunction with the minimization of the model functional in equation (3.44) are shown 

in Appendix B. 

3.15 Constrained ii-norm deconvolution 

To evaluate the effects of different measures of length and size in the estimation of a 

subsurface resistivity proflle, consider now the iI-norm model functional 

N 

rem) = lid -pm II + <XL Imi - mi-ll , 
i=2 

where the double vertical bar, II, is used to denote il norm, i.e., 

N 
11m II = I, Imil, 

i = 1 

(3.48) 

and <x is a prewhitening parameter (or Lagrange multiplier). The model functional in 

equation (3.48) can be compared, at least in principle, to the i2-norm functional described 

by equation (3.44). However, because of the poor smoothing characteristics of the 

£1 norm, the simultaneous minimization of the first-order model differences (first 

derivative) is more appropriate in this case than the model energy constraint used 

previously with the i2-norm (in which case equation 3.48 is akin to equation 3.45.) 

The minimization of an iI-norm model functional that includes an iI-norm model 

energy constraint is more appropriate for the inference of a model characterized by a 
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sequence of spikes (Taylor et al., 1979). In magnetotellurics, this type of minimization 

fmds a natural application for the D+ inverse formulation advanced by Parker (1980), and 

Parker and Whaler (1981). Hybrid formulations of the model functional may include an fl­

norm minimization of the data residuals subject to the constraint that the f2-norm of the 

model remains constant in the process (Gill et al., 1981). The fl-norm minimization of the 

data residuals can be used to deal with model estimation problems in which the data have 

been contaminated with non-Gaussian noise. In fact, this type of minimization is ideal for 

the case in which the noise in the data is described by an exponential probability 

distribution (Menke, 1984). 

In practice, however, the minimization of the model functional expressed in 

equation (3.48) entails much more elaborate and time consuming procedures than the use of 

an f2-norm model functional does. This minimization is customarily approached using 

linear programming techniques (Claerbout and Muir, 1973). The procedure used in this 

section for the estimation of p(z) via equation (3.48) makes use of the algorithm devised by 

Barrodale and Roberts (1973) whereby the first-order model difference constraint is 

included via an augmented transformation matrix. 

Figure 3-11 shows the resistivity profiles inverted by minimization of the model 
functional in equation (3.48) with the three standard values of smoothing parameter ex (and 

for this reason termed the noise-to-signal ratio as in the case of the f2-norm minimization) 

of 0.01,0.1, and 1. For the minimization, both the model and the data were expressed as 

dictated by their first-order Rytov representations. In Figure 3-11, the blocky nature of the 

inverted profiles is intrinsic to the f I norm itself when used in conjunction with the first­

difference model norm, and should not be viewed as a natural way to extend the 

wavenumber range that can be obtained with the f2 norm. In fact, it is precisely where the 

f2-norm results fail to provide the high wavenumber harmonics necessary to recover sharp 

boundaries in the subsurface resistivity, that the fl-norm profiles contract or expand their 

blocky nature . 

Even though for the model example analyzed in this chapter the resistivity profiles 

inverted with the fl-norm model functional do not show dramatic differences with respect 

to the profIles inverted with the f2-norm, often the use of the fl-norm minimization scheme 

justifies its higher operational in extreme noise conditions. 
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3.16 Nonlinear inversion (does it provide a larger wavenumber content?) 

For completeness, consider now the nonlinear inverse procedure put forth by 

Constable et al. (1987) under the name of Occam's inversion in reference to its objective to 

find the simplest (smoothest) possible model solution that satisfies the data within a 

prescribed data misfit value. Constable et al. minimize the model functional described by 

equation (3.45) at every linear step of their nonlinear algorithm. In so doing, they choose 
the lowest value of Lagrange multiplier, ex, that can accommodate the prescribed data misfit 

value (the X2 error). The smaller the X2 error, the lower the value of ex, and hence the more 

oscillatory the estimated model solution. Conversely, the larger the X2 error, the larger the 

value of ex and the smoother the model solution. 

However, Constable et al.'s (1987) approach becomes rather unstable when, 

instead of the first derivative, one opts to minimize the f2-norm of the model. This 
instability could be somewhat reduced if, in addition to the X2 error, a cutoff value for ex 

were prescribed as well in their algorithm (such as the model energy constraint of the 

Wiener inverse). Nevertheless, in the absence of a better way to compare the linearized 

inversion results with those of a similar nonlinear method, the comparison is here done 

with Constable et al. 's algorithm. In support for this exercise, however, it may be added 

that resistivity profiles inverted with the linearized equations and a first-derivative model 

functional (equation 3.45) show practically no difference with respect to the profiles 

inverted using the model energy constraint (equation 3.44). 

In the implementation of Constable et al.'s (1987) algorithm, the model was 

parameterized with a sequence of uniformly distributed layer thicknesses (in logarithmic 

fashion). Locations for the layers were obtained with the mapping of frequency values into 

logarithmic depths dictated by equation (3.19b) and assuming a background resistivity of 
4 a-m, and the layers remained fixed thereafter throughout the inversion. The number of 

layers was the same as the number of frequency samples and the inversion was carried out 

using both apparent resistivity and impedance phase data (this is twice the actual number of 

data used in the linearized inverse solutions studied above.) 

With 10 linear iterations, the results of the inversion are shown in Figure 3-12 for 

the prescribed data misfit, or rms values of 1, 1.5, and 2. The rms misfit value is 'defined 

as 

.. 

.. 
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where di and di are the measured and simulated data, respectively, and Si is the standard 

deviation of the measured data (assumed unity for all data samples here). In contrast, the 

linearized Rytov inversion in Figure 3-8 has an rms value of approximately 1 at a 

noise-to-signal ratio of 0.01. 

The profiles inverted with the nonlinear procedure are in excellent agreement with 

the true model for rms data misfit values below 1.5. In fact, at a noise-to-signal ratio of 

0.1, the Rytov inversion results correlate well with the profile inverted in nonlinear fashion 

at an rms value of 1.5. However, the nonlinear inversion has done a much better job in: 

(1) adjusting the lateral locations of the various layers, (2) contracting the resistivity profile 

about low-resistivity variations, and (3) expanding the resistivity profile within high 

resistivity variations in the layered model. These three interesting features, together with the 

physical construct of the I-D MT wavelet, permit one to visualize the way in which a 

nonlinear inverse works: within low-resistivity variations, the wavelet contracts because in 

these zones the average resistivity is lower than the background (or global average) 

resistivity; within high resistivity variations, on the other hand, the wavelet expands 

because in their immediate vicinity the average resistivity is larger than the average. A 

contraction of the wavelet signifies a larger wavenumber content, whereas an expansion of 

it produces a narrower wavenumber content. Also, because of the localized nature of these 

averages, the exact mapping location for the frequency samples along the logarithmic depth 
scale is determined by the local and not global average of p(z). This explains why the 

inverted variations of subsurface resistivity are better positioned with the nonlinear inverse 

than with the the linearized inverse. 

The degree to which the wavenumber content in the inverted resistivity profile is 

different from that of the linearized inverse is determined by the presence and number of 

low-resistivity zones in the subsurface. These low-resistivity zones are more prone to cause 

a violation of the assumptions implicit in the linearized inverse than high-resistivity zones 

are. However, over and above a noise-to-signal ratio of 0.01, the characteristics of the 

resolution windows in Figure 3-6 should not significantly depart from those of a practical 

nonlinear situation . 

3.17 Discussion and concluding remarks 

The inversion examples related in the previous sections indicate that the Rytov 

expression for both data and model functions significantly outperforms their alternative 

Born expression. This conclusion is more evident in situations where the frequency-
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domain MT data exhibits the largest amplitude variations, that is to say, in response to 

conductive features in the subsurface. 

Use of the Rytov approximation generates acceptable linear inverse solutions in the 

presence of resistivity contrasts of at most 20:1 approximately. However, given the 

logarithmic depth scale which is natural to magnetotellurics, a large decrease in resistivity at 

a particular depth can only have a significant surface response if the depth range where this 

variation occurs has a large logarithmic thickness (the thickness itself may be large but 

unless the logarithmic thickness is large compared to its logarithmic depth there will be a 

measurable surface response). Hence, even highly conductive zones can be unheeded in the 

surface MT response depending on their depths of burial. Conversely, in response to 

resistive features, the Rytov approximation yields an acceptable inverse solution for 

resistivity contrasts of up to 1:100 approximately. Again, the reason why the linearized 

inverse works better over resistive than over conductive zones is directly related to the fact 

that MT data are more sensitive to the latter. Because of this, the requirement that secondary 

electric fields be small compared to the primary field implicit in the Born approximation is 

more appropriate over resistive than over conductive zones, thus the difference in 

performance. In fact there are situations wherein the linearized inverse outperforms the 

Bostick (1977) pseudoinverse. 

The inclusion of positivity constraints in the least-squares model functional 

somewhat extends the wavenumber range of the inferred resistivity profile, and this is 

especially noticeable as a reduction of sidelobe, or Gibb's phenomenon activity. However, 

in order to warrant a stable inverse solution, the use of this type of constraints requires 

larger noise-to-signal ratios (or Lagrange multiplier values) than for the case in which no 

model range constraints are enforced in the minimization process. Also, the use of an 

.el-norm model functional remains an attractive procedure for the inversion of resistivity 

profIles from data contaminated with non-Gaussian noise. This type of minimization is also 

suitable for the recovery of sparse delta-like conductance profIles such as those of the 

D+ inverse of Parker (1980) and Parker and Whaler (1981). 

Despite the aforementioned positive characteristics of the linearized inverse, it 

should be pointed out that in situations where the logarithmic thicknesses are both large an 

sparse and the resistivity contrasts are large, this approximate procedure may easily break 

down. A more practical idea that seems worth exploring as a natural outgrowth of the 

developments presented in this chapter is the iterative Rytov inversion. For this situation, 

either the resistivity profile is continuously updated by fixed point iteration of the electric 

.. 
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fields in the subsurface or, at every step of the iteration a new resistivity profile is linearly 

inverted and then updated to minimize the differences between the observed and 

numerically simulated data. Albeit in a different context, these two procedures have been 

successfully used under the name of iterative and distorted Born inversion methods, 

respectively, by Habashi and Mittra (1987). Finally, the linearized inverse procedures 

studied in this chapter may be easily adapted to be used with the exact nonlinear 

formulation put forth by G6mez-Treviiio (1987), in which the model functionals are 

expressed in terms of the resistivity distribution rather than in terms of a perturbation of it. 
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Figure 3-3. Integrated responses of the real and imaginary parts of the 1-D Mr wavelet. The depth range 
for the integration is from -00 to -u. 
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Figure 3·4. Amplitude response of the real and imaginary parts of the 1-D MT wavelet (0 and H, 
respectively) plotted with respect to the linear vertical wavenumber, A. 
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Figure 3-5. The data and the noise in the vertical wavenumber domain: the data are the amplitude 
response output of the 1-D MT wavelet to a unity-variance "white" model. The noise, on the other hand, is 
characterized as a O.Ol-variance, zero-mean, and Gaussian-distributed white stochastic process. 
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Figure 3-6. Wavenumber resolution windows, R(A), for the I-D MT linear inverse problem at various 
noise-to-signal ratios. 
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Figure 3-7. Resistivity profiles inverted from the data shown in Figure 3-2 using the constrained Wiener 
method. The data were input into the inversion with their expression for the frrst-order Born approximation 
considering three values of noise-to-signal ratio, i.e., 0.01, 0.1, and 1. 

.. 



.. 

E 
I 

C -
~ 
I:: 10' > 
~ 
U5 w 
a: 

TRUE AND INVERTED 1-D RESISTIVITY PRORLES 
Constrained Wiener Inverse, Rytov Approximation 

Po = 4.0 {}-m 

• nsr - 0.01 

o nsr - 0.1 

• nsr - 1.0 

Bostick 

True 

10
3 

1cr' ~~~~~~--~~~~~--r-rT~~r--'-'~~m 1cr' 
10' 1cT 103 10

4 
10& 

DEPTH (m) 

87 

Figure 3-8. Resistivity profiles inverted from the data shown in Figure 3-2 using the constrained Wiener 
method. The data were input into the inversion with their expression for the first-order Rytov 
approximation considering three values of noise-to-signal ratio, i.e., 0.0 I, 0.1, and 1. 
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Figure 3-9. Resistivity profiles inverted from the data shown in Figure 3-2 using the constrained Wiener 
method. The data were input into the inversion with their expression for the first-order Rytov 
approximation. In addition. the model range constraint that p(z» 1 nom was enforced in the inversion 
considering three values of noise-to-signal ratio. i.e .• 0.01,0.1, and 1. 
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Figure 3-10. Resistivity profiles inverted from the data shown in Figure 3-2 using the constrained 
Wiener method. The data were input into the inversion with their expression for the first-order Rytov 
approximation. In addition, the model range constraint that p(z)<I00 n·m was enforced in the inversion 
considering three values of noise-to-signal ratio, i.e., 0.01,0.1, and 1. 
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Figure 3-11. Resistivity profiles inverted from the data shown in Figure 3-2 using the constrained £1-
nonn method. The data were input into the inversion with their expression for the first-order Rytov 
approximation considering three values of noise-to-signal ratio (or smoothing parameter), i.e., 0.01, 0.1, 
and!. 
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Figure 3-12. Resistivity profiles inverted from the data shown in Figure 3-2 using the constrained 
nonlinear procedure of Constable et al. (1987). A first-derivative, least-squares model functional was 
minimized after 10 linear iterations. Results are shown for three different values of the prescribed rms data 
misfit error, i.e., 1, 1.5, and 2. 



CHAPTER IV 

BORN INVERSION OF 2-D MT DATA 

4.1 Introduction 

The last few years have seen a revived interest in the development of procedures for 

the inversion of 2-D MT data. By and large, this interest has been propelled by the advent 

of powerful and compact computer resources that can cope in a more or less economic 

fashion with the severe memory and time demands exacted by practical exploration 

situations. A second and perhaps more dramatic factor has been the recent introduction of 

field procedures wherein the sampling distance is short enough to reduce a large degree of 

the uncertainty caused by otherwise unheeded near-surface scatterers. In consequence, new 

methods of inversion also face the need to deal with amounts of data never thought of 

before. Fast simulation procedures are required that can be repeatedly performed in 

conjunction with nonlinear iterative inversion techniques within reasonable CPU times 

(see, for instance, Smith and Booker, 1990). Stabilization procedures are also needed that 

can guarantee the extraction of subsurface geoelectric features within the lateral and vertical 

resolution bounds imposed by the underlying diffusion equation in the presence of noise. 

The success of this second important aspect of the 2-D MT inverse problem is largely 

determined by the general understanding one can have of the frequency- and space-domain 

properties of surface electric and magnetic fields. This is the main thrust of this chapter: to 

shed light to the controlling factors that cause the surface MT fields to respond to lateral and 

vertical variations of subsurface resistivity, and to advantageously use these factors in an 

attempt to invert 2-D MT data. 

The material presented in this chapter in some ways stems from the I-D linearized 

inverse formulation described in Chapter Ill. A 2-D geoelectric model is assumed in which 

both lateral and vertical variations of resistivity are described as small perturbations about a 

constant value. This simplifying assumption causes the relationship between a perturbation 

of subsurface resistivity and the ensuing surface field perturbation to.be expressed as the 

output of a linear system. Accordingly, since the MT excitation of a 2-D earth can be 

decoupled into two independent modes of propagation, TE (electric field parallel to strike) 

and TM (magnetic field parallel to strike), the way in which geoelectric features can be 

.. 



• 

.. 

93 

recognized in the subsurface bears a one-to-one relationship with the type of electric or 

magnetic field quantity used in the inversion. Thus, the analysis presented here is aimed at 

understanding what specific information of the subsurface resistivity distribution is borne 

by each field component, and how this information can be used to invert a cross-section of 

subsurface resistivity under the pragmatic assumption that the measured data are corrupted 

with noise . 

Because of its algebraic simplicity, the linearized 2-D MT forward problem is 

approached in the lateral wavenumber domain. Further, as with the 1-D linear problem, a 

logarithmic parameterization of frequency and depth is implemented in the wavenumber­

domain equations. Both data and model variables are expressed with their Rytov 

(logarithmic) expressions for the inversion of electric field data. For the inversion of 

magnetic field data, given their relatively low dynamic range, a Born (algebraic) data 

representation is more appropriate. The drawback of inverting surface magnetic field data is 

that they are not sensitive to the 1-D background, and hence magnetic field measurements 

must be complemented with electric field data if the former are to be transformed into a 

cross-section of subsurface resistivity. In the same context, it is shown that all three surface 

TE electric and magnetic field components are linearly related to each other, implying that 

from a purely theoretical standpoint, it is unnecessary that all three components be 

measured at exactly the same points. 

A practical limitation imposed by an inversion procedure wherein input data are 

field values rather than standard MT impedances, is that the former have to be somehow 

estimated prior to inversion. Thus, a field procedure is introduced here whereby secondary 

electric and magnetic field variations about a constant background can be estimated from 

measurements of auxiliary base impedances and magnetic transfer functions. The suggested 

field procedure requires that the magnetic field be constantly monitored at a fixed station 

(the magnetic base station) while electric and magnetic field data are being acquired at 

sampling locations along the survey line. 

A central objective pursued with the wavenumber-domain formulation advanced 

herein is the estimation of the lateral wavenumber content of the lateral subsurface 

resistivity variations that can be recovered from noisy data. It is shown that, in direct 

consequence of the underlying diffusion equation, the inferred lateral wavenumber content 

diminishes with decreasing values of frequency, i.e., with increasing values of the depth of 

burial. In fact, the wavenumber-domain analysis predicts that, with 1 % noise in the data, 

the maximum wavenumber that can be recovered is approximately equal to the reciprocal of 
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the Bostick depth of penetration. It is also shown that this wavenumber bound is consistent 

with the stability criterion that is required for the inversion of TM electric field data. 

A fmal topic presented here concerns the details of a practical inversion procedure. 

This procedure is implemented directly in the wavenumber domain and consists of repeated 

1-D inversion at each wavenumber followed by inverse Fourier transformation of the 

inverted wavenumber-domain model. It is emphasized that a data prewhitening, or spatial 

filtering step is a natural way to guarantee stability in the inversion of TM electric field data. 

In physical terms, this data processing step can be understood as a way to suppress the 

non-inductive response from the subsurface. Synthetic examples are used to test the 

proposed inversion procedure mainly with the intent of ascertaining whether the 2-D 

forward linear equations have any bearing on realistic situations in which the resistivity 

contrasts are significant. These examples also prove helpful to corroborate the lateral and 

vertical resolution properties of each surface field component, electric or magnetic, and in 

general of magnetotellurics. The wavenumber-domain inversion is also tested on tangential 

field data acquired along a continuous transect over a geothermal target in northern 

California. 

4.2 The 2-D linear forward problem 

Assume a right-hand Cartesian coordinate frame with its origin on the surface, its 

x-axis normal to strike, and its z-axis pointing down into the 2-D earth (Figure 4-1). The 

surface electric and magnetic field variations can thus be described with the equations 

Ex(x,co) = Eo(co) + ex(x,co), 

Ey(x,co) = Eo(co) + ey(x,co), 

Hx(x,co) = Ho(co) + hx(x,co), and 

Hz(x,co) = hz(x,co), 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

where Eo and Ho are primary electric and magnetic fields, respectively, related to a 
homogeneous half-space of resistivity Po, and e and h are secondary electric and magnetic 

field, respectively, that arise with lateral and vertical variations of subsurface resistivity 

away from the homogeneous half-space. The By, Hx, and Hz fields are associated with TE 

propagation in the 2-D earth, whereas the Ex component is associated with TM 

propagation. Only the TM magnetic field, Hy, is constant with respect to both frequency 

and position regardless of the subsurface resistivity distribution (d'Erceville and Kunetz, 
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1962), and for this reason such component is not expressed here in terms of secondary 

field variations. 

Similarly, the resistivity distribution in the subsurface, p, may be written as 

p(x,Z) = Po + ~p(x,z), (4.5) 

where the scalar function ~P describes the lateral and vertical variations of subsurface 

resistivity away from the homogeneous half-space. A vertical variation of ~P causes only 

frequency variations of the ex and ey fields. On the other hand, a lateral variation of ~P 

causes both frequency and lateral variations of all secondary fields. 

In general, the mapping of ~p(x,z) into frequency and space variations of the 

secondary fields -the 2-D MT forward problem- is nonlinear and hence highly dependent 

on the specific characteristics of this function. A model-independent analysis of the physics 

underJyingthe mapping of ~p(x,z) into surface field variations can only be made in light of 

certain assumptions. The specific assumptions made here about ~p(x,z) and the secondary 

surface fields for which this function is responsible are: 

e(x,m) « Eo(m), 

h(x,ro) « Ho(m), or/and 

~p(x,z) « Po. 

(4.6) 

(4.7) 

(4.8) 

These inequalities cause the relationship between the secondary surface fields and the 

function ~p(x,z) to be expressed as suggested by equations (2.20) and (2.21), namely, 

e(x,co) -iOO 

V( ) ~p(x,zo) d d 
Eo(ro) - ~~ x,zo,m * Po zo, an 

o 
(4.9) 

h(x,m) -iOO 

K (' ) ~p(x,zo) dz 
Ho(m) - h x,zo,m * Po 0, 

o 
(4.10) 

where the symbol "*" indicates convolution with respect to x, and the kernel functions Ke 
and Kh are defined by equations (2.17) and (2.19), respectively. Equations (4.9) and 

(4.10) are simple linear expressions for the 2-D MT forward problem, such that the 

underlying physics for the mapping of ~p(x,z) into secondary surface fields is fully 
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contained in the mathematical properties of the kernels. Notice that when the inequality 

(4.8) is satisfied the inequalities (4.6) and (4.7) are also satisfied, but the opposite is not 

always true because in some cases a large value of ~p(x,z) may not significantly affect the 

secondary surface field response. The fact that the integration involved in equations (4.9) 

and (4.10) is only performed in the vertical direction indicates that the local MT response 

from the subsurface is largely determined by the characteristics of ~p(x,z) below the 

observation point. 

Even though explicit formulas for the space-domain kernels Ke and % exist, in this 

chapter the algebraic simplicity of their wavenumber-domain expressions is used with the 

intent to expose the physics of the 2-D MT forward problem in the clearest possible way. 

4.3 The 2-D linear forward problem in the wavenumber domain 

Following the convention introduced in Chapter IT for the forward and inverse 

Fourier transforms, the lateral Fourier transform pair is here dermed as 

F(k) = r (f(x)} = i: f(x) e+_i21tkx dx, and 

f(x) = r-1 
{F(k)} = i: F(k) e- i21tkx dk, 

where k is the linear wavenumber in the x direction. Thus, in the lateral wavenumber 

domain, equations (4.9) and (4.10) can be written in the general form 

D(k,co) =10
00 

M(k,zo) A(k,zo,co) dzo, 

where 

D(k,co) = 

r{2~~ (x,co)} TM mode 

r{2~ (x,co)} TE mode 

r{2~~ (x,co)} TE mode 

r{2~~ (x,co)} TE mode 

M(k,z) = r {~ P (x,z) } 
Po 

(4.11) 

are the data, (4.12) 

is the model, and (4.13) 

.. 

.. 
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(ex TE mode) 

2(i~ - 21t Ikl) e-i(~ + lC)Z (ey TE mode) 
A(k,z,oo) = is the kernel. (4.14) 

i(1 + i)o 21tlkl (i~ - 21t Ikl) e-i(~ + lC)Z (hx TE mode) 

(1 + i)o 21tk (i~ - 21t Ikl) e-i(~ + lC)Z (hz TE mode) 

The wavenumber-domain kernels in equation (4.14) are the MT transfer functions 

introduced in section 2.3, and the functions ~ and K in their expressions are given by 

K(oo) = 1 - i , 
o 

where 0 is skin depth, i.e., 

0(00) = V 2po . 
ooJ! 

(4.15) 

(4.16) 

(4.17) 

It is also noted that the factor 2 that has been arbitrarily included in the data and kernel 

definitions above serves for the same unimodularity purposes discussed in Chapter ill in 

connection with the I-D MT wavelet 

The expressions included in equation (4.14) can be further simplified with the aid 

of equations (4.15) through (4.17). First, define 

y(k,co) = A 21tk , (4.18) 

and introduce the function 

A(y) = a(y) - ib(y) = ...; 1 - if , (4.19) 

where a(y) and b(y) are real and positive functions. Simple trigonometry shows that 

() ~";1+i'+1 d ay 2 ,an (4.20) 

(4.21) 



98 

Substitution of equations (4.18) and (4.19) together with (4.15) into equation (4.14) yields 

the following simplified form for the 2-D wavenumber domain kernel 

where 

A(k,z,ro) = W(y) 2(1 +i) e-[(l+a('Y)+b('Y» + i(l+a('Y)-b('Y»]z/o, 
o 

-Vl- if 
-V 1 - if -Y-flyl 

W(y) = 
[-VI -if -Y-flyl] (Y-flyl) 

[-V 1 - if - Y-flyl] (i Y-f y) 

ex TM mode 

ey TE mode 

hx TE mode 

hz TE mode 

Finally, substitution of equation (4.23) into equation (4.11) yields 

(4.22) 

(4.23) 

D(k,ro) = W(y) (00 M(k,ZO) 2(I+i) e-{[l+a('Y)+b('Y)] + i[l+a('Y)-b('Y)]}z%dzo. (4.24) 

)0 0 

Notice that the definition of the function y(k,ro) in equation (4.18) suggests that the 

wavenumber and frequency dependency of the A transfer functions (equation 4.14) is 

jointly assimilated in the product ok rather than by independent algebraic terms. As shown 

in a subsequent section, this property of the transfer functions becomes an important 

consideration in the study of the lateral resolution characteristics of 2-D MT data. 

Incidentally, the ratio o/-fi, in the definition of y is equal to the Bostick (1977) depth of 

penetration in the homogeneous background. In equation (4.24), W(y) is independent of 

the variable u and this is why it can be taken outside of the integral. This depth-independent 

function plays the role of a wavenumber prefIlter whose properties are set by the particular 

field quantity in use. A detailed study of both the prefilter and the integrand of equation 

(4.24) is reserved for the following sections. 

4.4 Logarithmic parameterization and pseudo-convolutional response 

Using the logarithmic variables v and u introduced in Chapter ill, equations (3.19) 

and (3.20), in place of 0 and Zo in equation (4.24), respectively, gives rise to 
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(+ 00 

D(k,v) =W(Y)Joo M(k,u) 2(I+i) e V-u - [(l+a+b)+ i(l+a-b)]eV-Udu . 

Further algebraic manipulation leads to the more familiar form 

where 

(+ 00 

D(k,v) = W(y) 1- 00 M(k,u) F(y,v-u)du, 

F(y,u) = G(y,u) + i H(y,u), 

G(y,u) = {cos[(1 +a-b)eU] + sin[(1 +a-b)eU]} 2eu-(1+a+b)e
U
, and 

H(y,u) = {cos[(l +a-b)eU] - sin[(l +a-b)eU]} 2eu-(1+a+b)e
u

• 

(4.25) 

(4.26) 

(4.27) 

(4.28) 
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The functions G and H above are intimately related to the real and imaginary 

components of the I-D kernel, respectively (see equations 3.22 through 3.24). In fact, it is 

trivial to show that equation (4.25) reduces to equation (3.21) under the substitution k=O 

for both TE and TM electric fields. The same substitution yields a null result when 

specialized for the TE magnetic fields. However, the main difference between the I-D 

kernel, feu), and the 2-D wavenumber domain kernel, F(y,u), is that the latter is no longer 

depth-shift invariant. Because of this, the function F(y,u) is hereafter referred to as the 2·D 

MT pseudowavelet. The relationship between the I-D MT wavelet and the 2-D MT 

pseudowavelet is explored next. 

4.5 l·D factorization of the 2·D MT pseudowavelet 

Equations (4.27) and (4.28) can be factored in such way that one of the factors is 

the I-D depth-shift invariant kernel, feu), defined by equation (3.22). To this end, express 

cos[(1+a-b)eU] = cos(2eU)cos[(a-b-l)eU] - sin(2eU)sin[(a-b-l)eU], 

sin[(1+a-b)eU] = sin(2eU)cos[(a-b-l)eU] + cos(2eU)sin[(a-b-l)eU], and 

and substitute into equations (4.27) and (4.28) to get 

F(y,u) = feu) Q(y,u), (4.29) 

where 

Q(y,u) = e-[(a+b-l) + j(a-b-l)eu
• (4.30) 
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The 2-D factor, Q(y,u), defmed above is governed by independent expressions of u and v 

rather than by their difference, v-u, alone as the functions a and b are determined by v but 

not by u (see equations 4.20 and 4.21); in other words, as opposed to feu), Q(y,u) is not 

depth-shift invariant. Notice that F(y,u) and feu) reduce to equivalent expressions when 

k=O (the DC wavenumber), whereas for large values of k, F(y,u) ~ feu) e-fiyeu . This 

indicates that the 2-D factor Q is an exponential damping term whose effect is emphasized 

by either increasing the wavenumber, k, or by decreasing the frequency, co. In essence, the 

exponential damping inflicted by Q upon f in equation (4.29) translates to a progressive 

loss of sensitivity to lateral features in the subsurface with increasing values of y. 

Figure 4-2 shows both real and imaginary components of the reversed 2-D MT 

pseudowavelet, F(y,-u), plotted with respect to -u. Four different panels are included in the 

same figure for an equal number of y values of 1, 2, 4, and 6. Clearly, in relation to the 

I-D MT wavelet plotted in Figure 3-1, the 2-D MT is subject to severe attenuation when the 

y variable is larger than 1. 

Aside from the lateral resolution characteristics of the 2-D MT pseudowavelet, the 

lateral resolution of MT data is to some extent dictated by the prefilter W(y) defined in 

equation (4.23). Ways in which the choice of field data affects the characteristics of the 

prefIlter are studied next 

4.6 The wavenumber prefilter 

From equation (4.23) one can show that W(y)~l for lyI~O with the use ofTE and 

TM electric field data. On the other hand, W(y)~O as lyI~O with the use of TE magnetic 

field data. This DC wavenumber behavior of the magnetic prefilter is consistent with the 

known fact that the surface magnetic fields are insensitive to the I-D background medium 

(see also section 2.6). Also interesting is the behavior of W(y) for large values of y. For the 

TE electric field, IW(y)1 monotonically decreases as 1J(..J21y1) with increasing values of y, 

and this causes the prefilter to have the characteristics of a low-pass wavenumber filter. 

Conversely, the amplitude of the TM prefilter increases as lyl/..J2 with increasing values of 

y, and this causes W(y) to have the characteristics of a high-pass wavenumber amplifier. 

The high-pass nature of the TM prefilter may significantly emphasize the response of local 

near-surface variations of resistivity (rich in large wavenumber harmonics) over the 

response of deeper and usually smoother lateral variations of subsurface resistivity. Such is 

precisely the action of the electric static component studied in Chapter II. In equation 

or 
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(4.23), however, the effects of both TM electric static and induction components are 

combined in a single expression. 

Finally, besides their single-zero at ')'=0, both TE magnetic prefilters are all-pass 

wavenumber filters with a constant amplitude response of 1/2, and hence their effect over 

the subsurface resistivity distribution is that of a 1/2 flat gain attenuator. Figures 4-3 " 

through 4-5 are amplitude response plots of the TM electric and TE electric and magnetic 

prefilters, W(y). Notice that because the sole difference between the hx and hz prefilters is 

that the hz prefilter is asymmetrical about ')'=0, a single amplitude plot suffices to display the 

characteristics of the TE magnetic prefIlters. 

Another important property of the TE prefilters, electric and magnetic, is that they 

are related by simple linear formulas. This can be shown directly by inspection of the 

expressions included in equation (4.23), from which it can be established that 

where 

W(Y)hx = -Y-f U(y) Y W(Y)ey, and 

W(Y)hz = i U(y) W(Y)hx, 

U( ) _ {-I ify<O 
'Y - 1 ify>O' 

(4.31) 

(4.32) 

(4.33) 

Because the remaining factors of the 2-D MT forward linear system (equation 4.25) are the 

same for all field components, the preceding formulas convey a spatial linear dependence 

among the three TE field components. Equation (4.32), for instance, indicates that the 

horizontal and vertical magnetic field components are Hilbert transforms of each other in 

the space domain (Bracewell, 1965). The relationship between the electric and horizontal 

magnetic field components in equation (4.31), on the other hand, points to the fact that the 

horizontal magnetic field component can be obtained by high-pass wavenumber filtering of 

the electric field component, where the filter is a single-pole linear ramp. Conversely, 

except for its DC wavenumber harmonic, the electric field component can be obtained by 

low-pass wavenumber fIltering of the horizontal magnetic field component. A proof that the 

linear dependence among TE fields expressed by equations (4.31) and (4.32) remains valid 

even beyond the domain of the Born approximation solutions is included in Appendix C. 
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4.7 Vertical harmonic behavior of the 2·D MT pseudowavelet 

Both the 2-D MT pseudowavelet and the wavenumber prefilter are responsible for 

the attenuation of the lateral wavenumber spectrum of the surface electric and magnetic 
fields. This loss of lateral response is primarily controlled by the y variable. Even though 

the properties of the prefilter are set by the particular type of field component, a field­

independent study of lateral resolution properties of 2-D MT data can be performed by 

examination of the 2-D pseudowavelet. Following the vertical wavenumber analysis 

presented in section 3.8, the objective here is to derive a vertical wavenumber expression of 
the 2-D MT pseudowavelet, F(y,u), and to explore how this expression becomes affected 

by specific values of the y variable. Strictly speaking, the vertical wavenumber study 

carried out in connection with the I-D linear inverse problem was made possible by the 

depth-shift invariance of the I-D MT wavelet. As shown earlier, the 2-D MT 

pseudowavelet does not share the same property and therefore the vertical wavenumber 

analysis is not valid in a formal sense. To circumvent this difficulty, the approximation is 

made here that the variable y is simply a constant that conditions the characteristics of the 

otherwise depth-shift invariant wavelet. Even under this approximation, the ensuing 

vertical wavenumber expression sheds considerable insight to the vertical resolution 

characteristics of 2-D MT data. 

The Fourier transform pair for the u (-log(depth» ~ A (vertical wavenumber) 

transformation is given by equations (3.27) and (3.28). Using those equations, define the 

vertical wavenumber-domain functions G(y,A), H(y,A), and F(y,A) as 

G(y,A) = l' (G(y,u)}, 

H(y,A) = l' (H(y,u)}, and 

F(y,A) = G(y,A) + i H(y,A), . (4.34) 

where the functions G and H are the real and imaginary components of the 2-D MT 

pseudowavelet, respectively. 

To obtain the vertical Fourier transform of the 2-D MT pseudowavelet, F(y,u), first 

substitute equation (4.27) into equation (3.27) together with the change of variable 

cp = (1 +a-b)ell
• The result is 

G(y,A) = 2. (00 ( coscp + sincp ) <pi 21tA. e-cp(l+a+b)/(l+a-b) dcp . 
(1 +a-b)1 +l21tA. Jo , 

• 
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Making use of the same algebraic steps detailed in section 3.8 as well as of the integral 

expression for the complex gamma function, r, yields the explicit formula 

G(y,A) = r(1 +i21tA) { 1 - i + 1 + i }. (4.35) 
[(l+a+b) - i (l+a_b)]1+i21tA. [(l+a+b) + i (l+a_b)]1+i21tA. 

Similarly, the vertical Fourier transform, H(y,A), of the imaginary part of the 2-D MT 

pseudowavelet takes on the form 

H(y,A) = r(l +i21tA) { 1 + i + 1 - i }. (4.36) 
[(l+a+b) - i (1+a-b)]1+i21tA. [(l+a+b) + i (l+a_b)]1+i21tA. 

In the DC wavenumber limit, y=O, whereupon a=I, and b=O. Substitution of these 

values for a and b into equations (4.35) and (4.36) leads to vertical wavenumber-domain 

expressions that are identical to those of the I-D MT wavelet (equations 3.30 and 3.31, 

respectively). On the other hand, large values of y cause the a and b functions to be both 

equal to y/{2, and this dictates that the G and H functions monotonically decrease in 

amplitude as l/({2Iy1) for large y values. Figure 4-6 shows amplitude response curves of 

both functions G and H plotted against the linear vertical wavenumber, A, for yvalues of 1, 

2, 4, and 6. The four panels displayed in this figure are analogous to the one shown in 

Figure 3-4 in connection with the I-D MT wavelet. An interesting remark concerning the 

characteristics of the function Ii is that, contrary to what occurs with the I-D MT wavelet, 

its A=O wavenumber harmonic (the vertical DC response) does not vanish so long y is not 

zero. 

Clearly, the vertical low-pass filter nature of the 2-D MT pseudowavelet severely 

constrains the recovery of lateral detail in the subsurface resistivity distribution. This is felt 

most dramatically in situations where the measured data are corrupted with noise. A way to 

ascertain the largest lateral wavenumber that can be recovered of the subsurface resistivity 

distribution from noisy data is outlined below. 

4.8 Vertical resolution of lateral structure in the presence of noise 

Following the Wiener deconvolution procedure introduced in section 3.9, under the 

assumption of a "white" model, M(k,u), both with respect to u (-log(depth» and x (lateral 

distance), the lateral resolution properties of the pseudowavelet can be described with the 

aid of the spectral resolution window relating the true model with the estimated model in the 
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-presence of noise. Accordingly, let M(k,A) and M(k,A) denote the zero-mean true and 

estimated model solutions in the vertical wavenumber domain, respectively, and let 

NSR(k,A) = IN(k,A)1 
1M (k,A)I 

(4.37) 

describe the noise-to-signal ratio inherent to the measured data The function N(k,A) in this 

last expression embodies the spectral characteristics of the zero-mean noise process that 

additively contaminates the data. In the present analysis, N(k,A) is further assumed to be 

uncorrelated with the model. Disregarding the effect of the prefilter, W(y), in equation -(4.25), the f2-norm, or Wiener model estimate, M(k,A), can be written in terms of the true 

model, M(k,A), with the formula 

-M(k,A) = R(y,A). M(k,A), (4.38) 

where 

(4.39) 

is the resolution window. As emphasized in section 3.9, the resolution window is a zero­

phase low-pass filter that describes the distortion of vertical model harmonics in the 

presence of noise; the larger the value of NSR(k,A) the lower the cutoff wavenumber of 

R(y,A). 

The simplest way that exists to quantify the lateral harmonic distortion incurred on 

in the estimation of M(k,A) from noisy measurements is to consider both the model and the 

noise to be realizations of a "white" Gaussian stochastic process, in which case the noise­

to-signal ratio defined in equation (4.37) takes on the constant value of 

NSR(k A) =n , s ' 

where n and s are the standard deviations of the noise and the model, respectively. Plots of 

the resolution window, R(y,A) with respect to A are shown in Figure 4-7 for different 

combinations of noise-to-signal ratio and y values. In each panel of this figure a 

noise-to-signal ratio is fixed while values of y are varied. The vertical wavenumber values, 

A, are described in cycles/decade so that the resolution curves are in effect comparable to 

those shown in Figure 3-6 for the I-D MT wavelet. Clearly, the largest vertical 
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wavenumber harmonic that can be recovered from the model is highly dependent on the 

assumed noise-to-signal ratio. For instance, at a noise-to signal ratio of 0.01 the maximum 

value of 'Y that guarantees no vertical harmonic distortion in the inferred model is between 6 

and 8 (at y=8, even the A=O harmonic is slightly distorted). For the same value of noise-to­

signal ratio, however, a 'Y value of 1 allows the recovery of A harmonics of at most 

1.5 cycles/decade. Larger values of noise-to-signal ratio cause more significant distortion 

effects on the A harmonics . 

In practice, the largest lateral wavenumber, k, that can be inferred from the 

subsurface resistivity distribution is determined by the distance between contiguous field 

sampling locations. This largest k value is the Nyquist wavenumber, given by 

kN=_I- , 
2Ax 

where dx is the sampling distance. In conventional MT profiling surveys, dx varies 

anywhere from 0.5 to 10 km, so that kN varies from 1 to 0.05 km-l. With continuous 

electric field sampling techniques such as EMAP, the Nyquist wavenumber is inversely 

proportional to twice the length of the dipole. In fact, for this type of surveys the maximum 

lateral wavenumber is also conditioned by the length of the dipole (see section 5.2), but 

since the dipole length is at most equal to the sampling distance, the Nyquist wavenumber 

will still remain the largest wavenumber that can be accounted for. Below such an upper 

bound, Figure 4-7 shows that the largest wavenumber harmonic that can have a measurable 

effect is dictated by both the noise-to signal ratio inherent to the data and the particular 'Y 

value. Given that 'Y is directly proportional to the Bostick depth of penetration, it follows 

that the largest lateral wavenumber harmonic of the subsurface resistivity distribution that 

can have a recognizable effect on the frequency-domain data (reflected on the A variable) is 

inversely proportional to the depth of penetration. 

In summary, the largest lateral wavenumber, kmax, that can be recovered from the 
subsurface resistivity distribution at the frequency co is given by the expression 

where 
'Ymax 

k('Ymax) = -2 - , and 
1t ZB 

(4.40) 

(4.41) 

ZB is the Bostick (1977) depth of penetration in the homogeneous background. At a 

noise-to-signal ratio of 0.01, Figure 4-4 shows that 'Ymax ... 6.0, in which case kmax ... l/zB. 
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To understand the practical meaning of this result, consider the 2-D synthetic model 

whose cross-section perpendicular to strike is shown in Figure 4-8. The model consists of 

a single 5 n·m rectangular block with lateral and vertical dimensions of 2 km x 600 m, 

respectively, and which is buried at a depth of 400 m. A homogeneous 80 n·m half-space 

is the background medium. Figure 4-9 is a wavenumber-domain amplitude response plot of 

TM secondary electric field response across strike. The response has been normalized with 
respect to the primary electric field, Eo(co), and multiplied by 2 as required by equation 

(4.12). Simulated field values are shown at 10 Hz, which is the point in the frequency 

spectrum where the buried block develops a maximum inductive response. Also, and 

merely for comparison, a normalized wavenumber-domain plot of the 2 km-wide block is 

shown with a dashed line in the same figure. Inspection of the data amplitude response 

curve in Figure 4-5 shows that the largest lateral wavenumber for which there would be 

appreciable surface response at a noise-to-signal ratio of 1 % is approximately 2.3 km-I. On 

the other hand, at 10Hz, the Bostick depth of penetration computed from the actual 

apparent resistivity data is approximately equal to 400 m. Assuming that the value 

Ymax :; 6 is adequate for the hypothetical 1 % noise-to-signal ratio (which is probably 

slightly optimistic given the unavoidable numerical errors incurred on the simulation of the 

electric and magnetic fields), equation (4.41) yields a kmax value equal to 2.5 km-I, which 

is in reasonable agreement with the upper bound determined by visual inspection of the 

amplitude response curve. Similar wavenumber-domain plots for the remaining TE electric 

and magnetic fields are shown in Figures 4-10 through 4-12. Notice that these plots indeed 

evidence the fact that the TE electric wavenumber response has a shorter operating band 

than the TM response, and that in effect the TE magnetic field response has a null at k=O 

When the effect of the wavenumber prefilter, W(y), is included in equation (4.39), 

the actual value of kmax below that predicted by equation (4.41) is determined by the cutoff 
characteristics of W(y). For instance, knowing that W(y) is a low-pass filter for the TE 

electric field and a high-pass filter for the TM electric field, one can intuitively understand 

why the lateral resolution characteristics of TM electric field data are superior to those of TE 

electric field data. The following sections are devoted to integrating the lateral wavenumber 

characteristics of both the prefllter and the 2-D MT pseudowavelet into a practical procedure 

to invert surface MT data. 
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4.9 Prewhitening of the TM electric field data 

Assuming that W(y)::t{J, equation (4.25) can be modified to read as 

f
+OO 

D(k,v) • W~y) = _ 00 M(k,u) F(y,v-u)du . (4.42) 

The multiplication involved in the left-hand side member of this new expression can be 

thought of as a data "prewhitening" step. The prewhitening operator, llW(y), is a 

wavenumber filter whose cutoff wavenumber is controlled by both the background 

resistivity, Po, and the frequency, 0). Notice that when TE electric fields are the data the 

prefilter is a low-pass wavenumber filter, and hence the data prewhitening step becomes an 

inherently unstable process. On the other hand, owing to the fact that the TE magnetic 

prefilter has a null at k=O, prewhitening of magnetic field data will become unstable in the 

neighborhood of such wavenumber. 

The only case for which the multiplication on the left-hand side of equation (4.42) 

is rendered stable for all wavenumber values is when the data are TM electric fields. This is 

so because for such data W(y) is a high-pass filter. To clarify this important point, consider 

the amplitude response curve of the inverse TM prefilter, llW(y), shown in Figure 4-13. 

The curve in this figure illustrates an essential low-pass wavenumber behavior. In fact, it 

can be shown that the cutoff wavenumber of the llW(y) filter decreases as 1I(-v21y1) for 

increasing values of y. Purely in terms of frequency, the cutoff wavenumber of 1!W(y) 

decreases as fro for decreasing values of 0). It is also emphasized that because the 2-D MT 

pseudowavelet, F(y,u), exhibits exactly the same 1/(-v2Iy1) decay for large values of y, the 

prewhitening of TM electric field data as indicated by equation (4.42), will not unbalance 

the lateral resolution characteristics on either side of the linear system equation. 

The preceding analysis reveals that prewhitening of TM electric field data is a 

desirable processing step to help stabilize the inversion of equation (4.25). For the 

inversion of TE electric and magnetic field data, however, the stabilization seems more 

natural if the prefilter, W(y), is absorbed in the low-pass wavenumber properties of the 2-D 

MT pseudowavelet, F(y,u). Practical details involved in the subsequent inversion of 

prewhitened and non-prewhitened data are discussed below. 
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4.10 Model estimation in practice 

Attention is now shifted to the problem of how lateral and frequency variations in 

the data can be inverted into a cross-section of subsurface resistivity with the linearized 

inverse. The procedure studied here is based on the discretization of the linear integral 

equation (4.25) for the TE electric and magnetic fields and of equation (4.42) for the TM 

electric field. 

In consideration to the prewhitening step described in the previous section, one can 

rewrite equation (4.25) as 

'" 1+ 00 

D(k,v) = _ 00 M(k,u) K(y,v-u) du , (4.43) 

where 

'" D(k,v) 
D(k,v) = w(y) ,and 

K(y,v-u) = F(y,v-u) 

for TM electric field data, and 

'" D(k,v) = D(k,v), and 

K(y,v-u) = W(y) F(y,v-u) 

for TE electric and magnetic field data. In general, the wavenumber-domain model, 

M(k,u), is complex-valued and can thus be expressed as 

M(k,u) = MR(k,u) + i MI(k,u). (4.44) 

Likewise, the kernel K(y,v-u) in the integrand of equation (4.43) can be written as 

K(y,v-u) = KR(y,V-U) + i KI(y,V-U). (4.45) 

The product M(k,u)K(y,v-u) in the integrand of equation (4.43) can then be expressed in 

the expanded form 

MK = KR [MR + i Mi] + i KI [MR + i Mi]. 

" 
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In view of the fact that the real and imaginary components of F(y, v-u) are linearly related 1, 

and so are the real and imaginary components of W(y), the imaginary part of the product 

MK above provides only redundant information to that furnished by its real complement. In 

addition, when rO, the function KI(Y.V-U) is identical to zero for all field components, in 

which case only the function KR(Y,V-U) can be used to estimate the DC wavenumber 

harmonic of M(k,u). Notice also that because the complex-valued kernel K(y,v-u) is 

symmetric with respect to y, when only the real part of the space-domain data, e/Eo, or 

h/Ho, is used for inversion (see equations 4.9 and 4.10), the imaginary kernel, KI(Y,V-U), 

becomes unnecessary. The only case for which K(y,v-u) is asymmetric with respect to y is 

when the linear equation (4.43) is specialized for the vertical magnetic field. Therefore, if 

only the real part of the space-domain hz/Ho data is used for inversion, use of the real 

kernel, KR(y,V-U) becomes unnecessary. 

With the use of only the real part of the kernel K(y,v-u), equation (4.47) can be 

separated into two independent expressions involving the real and imaginary parts of the 

model, namely, 

'" (+ 00 
Real[D(k,v)] =1-00 MR(k,u) KR(y,V-U) du , and (4.46) 

'" . (+ 00 
Imag[D(k,v)] =1-00 MI(k,u) KR(y,V-U) duo (4.47) 

To solve for MR and MI from the discretized versions of equations (4.46) and 

(4.47), respectively, one can resort, for instance, to any of the l2-norm estimation 

procedures discussed in section 3.10. The advantage here is that the autocorrelation matrix 

of the kernel KR(y,V-U) is the same for both equations. This is indeed a useful property 

considering that, as was found with the simulation studies of Chapter ill, most of the 

computer time involved in the estimation of the model is spent in assembling such a matrix. 

The disadvantage, though, is that contrary to what occurred with the I-D MT wavelet, the 

2-D MT pseudowavelet is not depth-shift invariant and hence the new autocorrelation 

matrix is no longer Toeplitz. In consequence, the inversion of the autocorrelation matrix 

(plus the prewhitening diagonal matrix) for the discretized versions of equations (4.46) and 

1 A proof of this linear dependence can be done following the same analytical steps used in Chapter ill to 
prove the linear dependence between the real and imaginary components of the I-D MT wavelet (section 
3.7) 
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(4.47) cannot be carried out with simple Levinson recursions as it was done in Chapter III 

(Robinson and Treitel, 1980). 

The specific procedure chosen here to estimate both MR and MI from equations 

(4.46) and (4.47), respectively, is the constrained Wiener inverse described in Chapter III 

(equations 3.44 and 3.42). With single inversions performed at each wavenumber between 

o and the Nyquist wavenumber, kN, the inverted real and imaginary model harmonics can 

then be inverse Fourier transformed to recover the space-domain version of the model, 

m(x,z). In addition, the inversion of magnetic field data should rely on an estimate of the 

DC wavenumber harmonic of the model. The latter can be derived from electric field data , 

It was shown in Chapter III that the Rytov representation for both model and data 

variables is a good combination to use in the inversion of electric field data. The reason for 

this is that the electric field response often exhibits large oscillations (laterally and also with 

respect to frequency) about and average value. For the case of the magnetic field response, 

however, the developments included in Chapter II show that the magnetic field ratio H/Ho 
exhibits only minor lateral oscillations in the presence of lateral variations of subsurface 

resistivity. Specifically, the horizontal magnetic field ratio, HxIHo,laterally oscillates about 

I, whereas the vertical magnetic field ratio, HJHo, oscillates about O. These properties 

intuitively suggest that the Born representation of the data is better suited than the Rytov 

representation in dealing with magnetic fields. The Rytov representation for the model is 

still the most appropriate choice in dealing" with either electric or magnetic field data. 

Examples that illustrate the performance of the linearized 2-D inverse are presented in a 

subsequent section. For the moment, attention is focused on two important preliminary 

details: (1) the estimation of secondary-to-primary field ratios from impedances and 

magnetic transfer functions, and (2) the estimation of a background resistivity value. 

4.11 Field procedure for the estimation of secondary electric and 'magnetic 
field variations 

The linear model estimation procedures discussed thus fat rely on specific values 

for the secondary-to-primary field ratios. In contrast, owing to the fact that MT signals do 

not behave as stationary processes whereas wave impedances do, conventional MT 

sampling procedures are based on the measurement of wave impedances instead of actual 

field quantities. The problem of calculating secondary electric and magnetic fields solely· 

arising from MT backscattering from the earth has been contemplated before. In particular, 

Berdichevsky and Zhdanov (1984) studied a separation of the external (source) and internal 

" 
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(backscattering from the earth) parts of the EM field based on the Stratton-Chu integration 

formulas (these formulas are similar to .those of the Green's theorem on a closed surface; 

see for instance, Harrington, 1961). Their separation procedure, however, can be used 

only when conventional MT impedances are densely sampled over the surface of the earth . 

A field procedure that can be used to overcome the need for densely sampled MT 

impedances in the estimation of secondary electric and magnetic field variations away from 

those of a homogeneous 1-D background is depicted in Figure 4-14. As shown there, a 

magnetic base station is deployed at a locality within the survey area which is kept fixed at 

times when electric and magnetic field data are acquired at different points along the survey 

line. Base impedances are calculated as the ratio between the total electric field measured 

along the sUlVey line and the magnetic field measured at the base station. To show how the 

base impedances can yield estimates of the secondary-to-primary field ratios, assume a 

coordinate frame as described in Figure 4-1, and let H~(ro) and H~(ro) denote the x and y 

magnetic field components, respectively, measured at the base station. Likewise, let Ex(ro) 

and Ey(ro) designate the TM and TE electric fields, respectively, measured at a given point 

along the line the survey line, and for the sake of simplicity assume that the latter is laid out 

normal to strike. Thus, the TM and TE base impedances are given by the formulas 

z..... () - Ex(ro) d TMro - B ,an 
Hy(ro) 

(4.48) 

..... z ( ) _ Ey(ro) 
rrEC1)-- , 

H~(ro) 
(4.49) 

respectively, with the x-dependency of all quantities tacitly implied. Similarly, horizontal 

and vertical magnetic transfer functions relating the TE magnetic fields measured along the 

line of measurements with the H~(ro) field measured at the base station are given by the 

formulas 

T ( ) - Hx(ro) d xro - ,an 
H~(ro) 

(4.50) 

(4.51) 

respectively. 
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For the TM mode, the Hy field is spatially constant, and H~(ro) is equal to the 

primary magnetic field, Ho(ro). For the TE mode, however, the Hy field is not spatially 

constant, but since its DC wavenumber is null, the primary magnetic field in the same 

direction can be estimated from the spatial average of the magnetic transfer functions T x 

along the line of measurements (see section 2.6). 

where 

From equations (4.1) and (4.2) it then follows that 

'" 
ex(ro) = ZTM(ro) _ 1 and 
Eo(ro) Zo(ro) , 

ey(ro) = Zrn(ro) _ 1, 
Eo(ro) Zo(ro) Tx(ro) 

Zo(ro) = viroJlPo, 

(4.52) 

(4.53) 

and Tx(ro) is the spatial average of Tx(ro) along the survey line. Therefore, with knowledge 

of the background resistivity, Po, equations (4.52) and (4.53) can be used to estimate the 

secondary-to-primary electric field ratios from the measured TM and TE base impedances, 

ZTM(ro) , and ZTE(ro), respectively, and the magnetic transfer functions, Tx(ro). In like 

fashion, the secondary-to-primary TE magnetic field ratios can be calculated from the 

expressions 

hz(ro) _ Tz(ro) 
Ho(ro) - Tx(ro) 

(4.54) 

(4.55) 

which, incidentally, do not imply knowledge of the background resistivity. A procedure 

that can be used for the estimation of the background resistivity, Po, directly from the 

measured electric field data is presented next. 

4.12 Estimation of the background resistivity 

For the 2-D linearized inversion, accurate knowledge of the background resistivity 

is important not only to reduce shifting errors in the 10glO depth scale but also to adjust the 

.. 

~. 
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cutoff wavenumber characteristics of the prefilter. The procedure described here for the 

estimation of the background resistivity stems from the same principles used with the 

linearized I-D inversion. Assuming that the model can be described as the realization of an 

ergodic stochastic process in both x and z directions, the background resistivity can be 

thought of as the expected value of this stochastic process. In consequence, because of the 

linear relationship between the model and the data in equations (4.9) and (4.10), the 

average value of the data should reflect the expected model value. However, because the 

spatial average of magnetic field data tends to zero, the background resistivity can only be 

estimated from electric field data. 

To express the electric field data in a fonn that conveys information about the lateral 

and vertical variations of subsurface resistivity, consider the modified impedance, Z, 

defined as 

- E(x,co) 
Z(x,co) = Ho(co) , 

where Ho(co) is the primary magnetic field associated with the homogeneous half-space 

whose resistivity is sought after. For the TM mode the modified impedance, Z, is identical 

to the TM impedance, whereas for the TE mode, it is given by 

'" 
Z( ) = ZTE(X,CO) x,co , 

Tx(co) 

where 2m and Tx are the base impedance and average magnetic transfer function, 

respectively, calculated by means of the field procedure described in section 4.11. An 

apparent resistivity function, P A, can then be defmed from the modified impedances as 

PA(X,CO) = _1-IZ(x,co)12 

COil 

(Cagniard, 1953). The resistivity of the homogeneous background can then be estimated 
from 

Po"" eln (PA[x,ln(ro)]), (4.56) 

where the bar over the logarithmic apparent resistivity is used to denote expected value with 

respect to both x and log(co). This equation is completely analogous to that derived for the 

I-D linearized forward problem, except that the new expected value considers an addition 

lateral average of the data. The sensitivity of the depth mapping functional to a change in 
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the estimated background resistivity has been studied in section '3.11. For the 2-D 

linearized forward problem, a change in the estimated background resistivity will also 

"untune" the cutoff wavenumber characteristics of the prefIlter. A large value of Po will 

cause excessive lateral smoothing by the prefilter, whereas a small value of Po will be 

responsible for insufficient prewhitening which in turn can be the source of vertical 

conductive leakage in the inverted resistivity section. 

4.13 Synthetic examples of inversion 

In summary, the linearized 2-D MT inverse problem can be approached according 

to the following steps: 

(1) Estimate the background resistivity (see section 4.12), 

(2) Estimate the secondary-to-primary field ratios to be inverted (see section 4.11); 

use Rytov and Born representations for electric and magnetic field ratios, 

respectively (see section 3.3), 

(3) Fourier transform the estimated field ratios with respect to lateral location, 

frequency by frequency (one may opt to Fourier transform only the real part of 

the estimated field ratios), 

(4) If inverting TM electric field data, prewhiten the wavenumber domain ratios 

obtained with step 3 (see section 4.9), 

(5) Perform pseudo 1-D inverses at each wavenumber for both real and imaginary 

components of the wavenumber-domain model (see section 4.10); the model 

should be expressed with its Rytov representation formula (see section 3.3), 

(6) If inverting magnetic field data, estimate the DC wavenumber harmonic of the 

model from electric field data,and 

(7) Inverse Fourier transform the estimated real and imaginary wavenumber 

components of the model. The result is an estimate of the cross-section of 

subsurface resistivity. 

The subsections below contain a suite of synthetic examples that attest to both 

advantages and shortcomings of the linearized 2-D procedure itemized in the steps above. It 

is pointed out that the intent of these exercises is simply to ascertain whether the lateral and 

vertical resolution properties studied in the previous sections are valid in situations where 

the assumptions underlying the Born approximation are violated. The synthetic data were 

simulated with the finite-element code of Wannamaker et al. (1987), and the frequency 

range was from 0.001 to 1000 Hz, including 10 frequency samples per decade. In all field 

.. 
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simulations, the standard station separation of 100m was assumed, and this same distance 

was used to replicate the dipole responses of TM electric field data. A radix-8 fast Fourier 

transform algorithm (Bergland and Dolan, 1979) was used to carry out the forward and 

inverse Fourier transforms involved in steps 3 and 7 above. Finally, the pseudo I-D 

inverses of step 5 were solved with the constrained Wiener inverse procedure introduced in 

section 3.10, which was implemented with a simple matrix inversion algorithm specialized 

for symmetric and positive-definite matrices (HARWELL FORTRAN library, subroutine 

MA22A, Hopper, 1979). A noise-to-signal ratio of 0.08 was assumed in all the examples 

presented here, as it was found that this value not only was in agreement with the numerical 

accuracy of the simulated data but also prevented excessive vertical and lateral oscillations 

in all of the inverted models. Owing to the fact that all three surface TE electric and 

magnetic field components are linearly related (see Appendix 3), the linearized inverse is 

tested here only on electric field data. 

4.13.1 A single buried block 

A description of the resistivity model using a logarithmic depth scale is included in 

Figure 4-15a. Both the relatively low resistivity contrast of the single-block scatterer as 

well as its intermediate-range depth of burial, constitute favorable conditions for the 

linearized inverse. Plots of the inverted resistivity sections are shown in Figures 4-15 and 

4-16 for the TM and TE electric field components, respectively. The results shown were 

inverted from 60 frequency samples simulated at each one of a total of 61 sounding 

locations, so that in effect the traverse length is 6 km. To conform to the total number of 

spatial sampling locations required by the fast Fourier transform, the first and last data 

points along the traverse were extended symmetrically outside the lateral limits of the 

assumed survey traverse. This generated a total of 128 spatial sampling locations and thus 

65 wavenumber harmonics were independently inverted before performing the final inverse 

Fourier transformation leading to the model estimate. 

The background resistivity was estimated directly from the electric field data as 
suggested in section 4.12 and this was 45 n-m. Both resistivity sections obtained from the 

inversion of the TE and TM electric field data are in good agreement with the true model 

section. In fact, the resistivity recovered in the central portion of the block is only slightly 

lower than the actual value of 5 n-m. Most interesting is the difference in lateral resolution 

in these two cases. The model cross-section inverted from the TM electric field data is 

laterally concentrated whereas the TE electric section shows a significant amount of "lateral 
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conductive leakage." Conversely, vertically, the TE electric section is more concentrated 

than the TM section, which in this sense is affected by "vertical conductive leakage." The 

latter effect is no doubt the result of unsuppressed static distortion caused by the conductive 

block at frequencies below its inductive range. The TE electric field response is not affected 

by static distortion but in exchange does not possess the lateral resolving power that the 1M 

response does. Notice also that the vertical positioning of the conductive block is in both 

cases only slightly shifted downward with respect to the true model. A lower background 

resistivity could reduce this downward shift in the vertical scale in exchange for a larger 

amount of unsuppressed vertical conductive leakage in the 1M section. As a parenthetical 

note, the computation time incurred on the inversion of each one of the resistivity sections 

was approximately 24 minutes on a Sun Spark 1 + workstation. 

4.13.2 A single buried block and a conductive basement 

The model is described in Figure 4-17a. A single 2-D scatterer is buried in a 1-D 

background composed of an upper resistive layer and a conductive basement. Lateral and 

vertical dimensions of the conductive block are 1.6 km x 700 m, respectively. The 

objective of this example is to evaluate the performance of the linearized inverse in a 

situation where the concept of a constant vertical background is not applicable. The 

estimated background resistivity from the DC lateral and vertical wavenumber harmonics of 

the data is 20 gem, and a total of 61 electric field sampling locations were assumed along 

the survey line. 

Figures 4-17b and 4-18b are plots of the resistivity cross-sections inverted from the 

TM and TE electric field data, respectively. Laterally, the inverted resistivity cross-sections 

show the resolution characteristics expressed in the single-block model example examined 

in section 4.13.2 above. The TE section exhibits lateral conductive leakage whereas the TM 

section is subject to some amount of vertical conductive leakage. In consequence, the 1-D 

background is slightly better resolved with TE than with TM data. 

4.13.3 A vertical fault and a conductive basement 

The vertical fault model is particularly interesting because it allows one to easily 

appreciate the loss of lateral resolution with respect to depth in both TE and TM electric 

field data. Figure 4-19a details the geometrical characteristics of this test case. The fault 

extends from the surface down to a depth of 3 km, at which point the model is terminated 

with a conductive basement. In contrast with the examples presented in the previous two 

.. 
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sections, the concept of background resistivity here loses its meaning both laterally and 

vertically because there is no predominant geoelectric feature in the model in either 

direction. An average of the electric field data yields for this test case a background 
resistivity of 130 Oem. Figures 4-19b and 4-20b display the inverted resistivity cross-

sections for the TM and TE electric field data, respectively. Data simulated at a total number 

of 61 sampling locations were used to produce the results shown. In the inverted TE 

section, the vertical fault appears much smoother, laterally, than in the TM section. 

However, despite the difference in lateral smoothness with which the vertical fault is 

resolved in each case, the results cast no doubt that the degree of smoothness increases 
with depth. In addition to the fact that a background resistivity of 130 O-m is more 

appropriate on the right-hand side of the vertical fault, the difference in lateral conductive 

leakage between the two sections evidently causes a discrepancy as to how, vertically, the 

conductive basement is resolved in each case. 

4.13.4 A semiinfinite buried slab and a surface inhomogeneity 

As shown in the Figure 4-21a, perhaps the most interesting feature of this example 

is the 500 m-wide and 100 m-thick surface conductor located exactly in the middle of the 

geoelectric cross-section. In addition, a 300 m-thick semiinfinite horizontal slab has been 

included on the right-hand side of the section at a depth of 1.4 km. Despite its reduced 

thickness, the semiinfinite nature of this second feature produces a 1'M electric field 

distortion whose influence on the surface can be felt several kilometers away from the 

leftmost sampling location (+3 km.) By contrast, the same feature causes a more localized 

distortion on the surface TE response. On the other hand, the resistive basement provides a 

large enough contrast to prevent the vertical smearing of the conductive slab. 

In order to optimize the function of the TM prewhitening filter in suppressing the 

expected static distortion by the surface conductor, the background resistivity for this 

example was deliberately made equal to the resistivity of its surrounding layer, that is to 

say, 100 Oem. Figures 4-21a and 4-22b are plots of the resistivity cross-section inverted 

from the TE and TM electric field data, respectively. Both sections provide indication of all 

of the features included in the original geoelectrical model but there are clear differences 

between them. For instance, laterally, the horizontal slab is smoother in the TM section 

than in the TE section. Likewise, vertically, the same feature is more concentrated in the 

TM section than in the TE section. The surface conductor, on the other hand, is much better 

resolved vertically in the TE section that in the TE section. Vertical conductive leakage 
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caused by the same conductor on the TM section spreads out to longer distances with 

increasing values of depth to eventually blend with the lateral conductive imprint of the 

buried slab. 

4.13.5 Symmetric resistive and conductive blocks 

This test case is a modified version of the two-block calibration model used by 

Smith and Booker (1990) and Oldenburg and Ellis (1990) in their own inversion studies.· 

Separated by a distance Of 3 km, the two blocks have the same geometrical dimensions 

(1.5 km x 1.5 km) and are buried at a common depth of 1.5 km. Also, both blocks share 

the same resistivity contrast with the surrounding layer. A conductive basement at a depth 

of 10 km incorporates an additional vertical contrast of the same magnitude into the model. 

The characteristics of this example permit one to compare the resolution properties of both 

TM and TE electric field responses in a perfectly symmetric geometrical model that contains 

resistive as well as conductive 2-D features. 

Figures 4-22 and 4-23 display the true and inverted resistivity resistivity cross­

sections derived from the TM and TE electric fields, respectively. The traverse length 

assumed for the simulated data was 12 km and, with use of a sampling distance of 100 m, 

the total number of stations input to the inversion was 121. The first and last data points 

were extended laterally outward to complete a total of 256 points, each including 61 

frequencies. Approximately 40 minutes of CPU time were spent to produce each of the 

inverted resistivity cross-section in a Sun Spark 1+ workstation. 

At a noise-to-signal ratio of 0.08 and an estimated background resistivity of 40 

gem, the resistivity cross-section inverted from the TM electric fields evidences both 

resistive and conductive blocks. At the same time, the conductive basement is almost 

perfectly recovered. Laterally, the conductive block appears less localized than the resistive 

block, but the resistivity value recovered for the latter is less accurate than the one 

recovered for the former. In contrast, the resistivity cross-section inverted from the TE 

electric fields not only has unheeded the resistive block, but also show the conductive block 

as a highly smeared feature. The difference in the perfonnance of the linearized inverse for 

the two electric field modes can be traced back to the MT response characteristics of each 

mode. In fact, the reason why the resistive block has a negligible imprint on the TE section 

compared to that of the conductive block is that the fonner causes a reduction of conduction 

current as opposed to the increase of current introduced by the conductive block. On the 

other hand, the TM-mode conduction current exhibits vertical distortion patterns directed 
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both away from the resistive block and toward the conductive block. Even though the 

outward current deflection effect introduced by the resistive block is much less pronounced 

than the channeling effect imposed by the conductive block, the surface response in the fIrst 

case is large enough to cause a measurable anomaly in the surface electric field 

4.14 Field example of inversion 

During the Summer of 1990, an expedition crew formed by staff and students of 

both Engineering Geoscience, U.C. Berkeley, and Lawrence Berkeley Laboratory, 

embarked upon an unconventional MT survey for the exploration of the Surprise Valley 

Geothermal prospect in northern California A location map including the description of the 

field procedure as well as of the survey parameters employed in such geophysical 

adventure are included in Figure 4-24. The project was financed by both Trans-Pacific 

Geothermal Co. and the Department of Energy. Both a detailed geological description and a 

historical semblance of the geothermal activity in Surprise Valley are reserved for a later 

section in Chapter V. For the moment, just a brief description is presented insofar as what 

the data mean in terms of the linearized inverse procedure introduced in the previous 

sections of this chapter. 

A 4.2 km-Iong electric field transect was laid out perpendicular to the predominant 

geologic strike as inferred from the available geological and geophysical data. This transect 

consisted of 100 m tangential electric dipoles placed end-to-end along the total survey 

length. Additionally, orthogonal electric dipoles and pairs of induction coils were 

positioned at regular spacings. To comply with the requirements of the field procedure 

suggested in section 4.11 above, a magnetic base station was situated approximately 3.5 

km away from the transect. This magnetic station served also as a remote site for noise 

reduction purposes. The electric field data recorded at each one of the tangential dipoles 

were referred to the synchronous magnetic fIelds acquired at the magnetic base station and 

this procedure yielded TM-like base impedances for subsequent inversion (see sections 

4.11 and the more general discussion of this topic in section 5.3). Lateral magnetic field 

variations measured along the transect were found negligible for all practical purposes, 

whereupon the magnetic field measured at the base station was assumed an unbiased 

sample of the background magnetic field in the area. Apparent resistivity and phase 

pseudosections for the calculated TM-like base impedances are shown in Figure 5-23. The 

topographic profIle included in those figures shows a maximum altitude gain of 400 m 

toward the west end of the transect. 
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Notwithstanding that the inverse procedure introduced in this chapter does not 

account for variations in topography along the line of measurements, the objective of this 

section is to evaluate the performance, and possibly the shortcomings, of the underlying 

assumption of linearity made here for the MT response. Figure 4-25a shows the inverted 

resistivity section derived from the Surprise Valley TM-like base impedances using a 
background resistivity of 6 n·m and a noise-to-signal ratio of 0.2, which is in fact a 

slightly higher value than the actual noise-to-signal ratio estimated independently from the 

electric and magnetic field measurements. For comparison, a resistivity section inverted 

from the same data is shown in a contiguous figure. The latter section was derived using a 

data-adaptive spatial filtering procedure which allows for lateral and frequency variations of 

the cutoff wavenumber characteristic of the prewhitening filter discussed in section 4.9 

above. Subsequently, a 1-D Bostick (1977) pseudoinverse was applied to the filtered base 

impedances and the results were "stitched" together to yield the resistivity cross-section 

shown in Figure 4-25b. Additionally, an elevation correction was applied to the inverted 

resistivity profile to account for the topographic variations along the transect. A thorough , 

description of all of these processing and inversion steps are main subjects of discussion in 

Chapter V; the results shown here are advanced merely to establish a measure of 

comparison. 

Even though there exist marked differences between the two inverted resistivity 

sections shown in Figure 4-25, there are also common features that correlate well. For 

instance, the prominent resistor on the right-hand side of the sections shows the same 

upward dip in both cases. This resistor is found in both the apparent resistivity and 

impedance phase pseudosections of Figure 5-23. Below the resistor, the presence of a 

conductive layer can be expected by inspection of the phase pseudosection. In 

Figure 4-25b, however, the same layer is somewhat blurred partly because of the 

approximate nature of the Bostick pseudoinverse, although indeed the tendency of the 

section is toward a conductive feature at depth. The most significant discrepancy between 

the resistivity sections, however, occurs at the shallowest depths, where the resistivity 

distribution is highly conductive and for this reason causes a large surface electric field 

response which the linearized inverse is simply unable to account for. This is why toward 

the right-hand side of section obtained with the linearized inverse the resistivity distribution 

exhibits a drastic and highly unnatural downward dip toward the sedimentary valley. That 

this behavior is in effect unnatural can be explained by recalling the deficiency of the 1-D 

linearized inverse introduced in Chapter ill to recover large conductive segments in the 

vertical resistivity profiles. In contrast, the Bostick pseudoinverse provides a much better 
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resistivity estimate in the same situation. Ways in which the lateral variations of topography 

may be responsible for some of the differences between the two sections at their upper 

right-hand comers are actually more difficult to understand, but there is no doubt that some 

distortion is introduced thereby. 

4.15 Discussion and concluding remarks 

The synthetic examples above show that the resolution properties inherent in the 

linearized 2-D inverse hold even in situations where the low resistivity contrast assumption 

is not valid. As in the case of the I-D linearized inverse, the parameter that effectively 

controls the validity of the linearized inverse is the amplitude of the secondary-to-primary 

field ratio fed into the inversion. Regardless of the resistivity contrast, lateral dimensions 

and depth of burial of the MT scatterer(s), a low secondary-to-primary field response ratio 

justifies the use of the inversion. In fact, this is why, for instance, the linearized inverse 

performed especially well at recovering resistive features and buried conductors. It should 

also be pointed out that the merit of the linearized inverse resides in using Rytov and Born 

representations for the electric and magnetic field data, respectively, which are the most 

appropriate data parameterization schemes in either case. Needless to say, the merits of the 

linearized inverse should not be judged entirely by its practical promise. The Surprise 

Valley field example, for instance, is but one of a great many situations where the linearized 

inverse may support only marginal credence to the assumption of a low-contrast electric 

field response. Instead, the analytical results and numerical experiments presented in this 

chapter indicate that the importance of the linearized inverse is that it provides valuable 

insight on the many details that can make a more practical inverse method truly successful. 

Foremost among these details is the use of a "prewhitening" operator in the 

inversion of TM electric field data. This operator spatially low-pass fIlters the data without 

sacrificing their lateral resolution, and it also turns out to be a natural way to stabilize the 

inversion. As a useful corollary, it can be stated that the relative success with which the 

prewhitening operator can be used in the inversion of TM data will be determined by the 

separation distance between contiguous measurements. Short sampling intetvals will allow 

an optimal application of the low-pass wavenumber fIlter and will also improve the stability 

of the inversion. In plain physical terms, the prewhitening operator helps remove the 

frequency dependent static effects mentioned in Chapter II. Thus, in the presence of near­

surface inhomogeneities, the success of the inversion will be largely determined by the 

accuracy with which the prewhitening operator can be adjusted in response to lateral 



122 

changes in the near-surface resistivity distribution. A large near-surface effect demands a 

low cutoff wavenumber from the prewhitening operator. Conversely, in the absence of 

near-surface effects, the low-pass wavenumber filter should not suppress valuable lateral 

information in the surface response. It was shown that one of the characteristics of the 

prewhitening filter is that its cutoff wavenumber decreases with decreasing values of 

frequency. However, because the linearized inverse assumes a constant background 

resistivity, no lateral adjustments of its cutoff wavenumber can be made to suppress lateral 

variations in the intensity of static effects. A way to enforce prewhitening with lateral 

sensitivity to static effects will be discussed in Chapter V. 

As for the remaining TE electric and magnetic field data (including the prewhitened 

TM electric field data), the linearized inverse formulation indicates that their sensitivity to 

laterally varying features in the subsurface decreases with increasing depths of burial. More 

specifically, it was found that the largest lateral wavenumber harmonic in the subsurface 

that can be detected at a given frequency is inversely proportional to the corresponding 

Bostick depth of penetration. This reduction of lateral resolution with depth is actually more 

severe on the TE electric and magnetic fields than on the TM electric field, as can be seen in 

the synthetic examples presented here. Also, it was shown that only electric field data can 

resolve the DC wavenumber harmonic of the subsurface resistivity distribution, and that for 

this very reason magnetic field data are insufficient to extract specific values of resistivity 

and depth. Therefore, any inverse scheme that contemplates the use of magnetic field data 

should not overlook the need for adequately sampled electric fields. The linearized inverse 

also shows that the TE electric and magnetic fields are linearly related to each other 

(actually, this property holds even in nonlinear environments), thus implying that over a 

strictly 2-D earth one does not need to continuously sample all three TE components to 

infer a cross-section of subsurface resistivity. However, as shown in Chapter VI, more 

realistic exploration situations call for measurements of the magnetic field to recognize 3-D 

induction effects along the line of measurements. 

From the properties of the linearized inverse one could think of an actual nonlinear 

method of inversion as one that continuously adjusts the lateral and vertical changes in 

background resistivity to position the resistivity and depth estimates in more precise 

locations than with the use of a constant background resistivity. In the inversion of TM 

electric field data, these adjustments include lateral and frequency changes in the cutoff 

wavenumber properties of the prewhitening operator that in turn result in better vertical 

positioning of the inverted resistivity values. A decrease in the average background 
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resistivity increases the cutoff wavenumber of the prewhitening operator and this also shifts 

the estimated resistivity values to shallower depths. Exactly the opposite effect occurs when 

the local background resistivity is larger than its assumed global value. 

The wavenumber inversion presented in this chapter could also be approached 

directly in the space domain. In retrospect, the choice of a wavenumber-domain method 

over a space-domain formulation was made because of the algebraic simplicity of the 

former. One of the stronger disadvantages of the wavenumber formulation is that model 

constraints are very difficult, if not impossible, to incorporate in the numerical solution. On 

the other hand, the role of the prewhitening operator is much easier to understand in the 

wavenumber domain than in the space domain. Thus, it appears that the space-domain 

formulation could offer a great deal of flexibility provided that the prewhitening step is 

accounted for. Notably, the role of the prewhitening operator has been unrecognized in all 

of the parametric nonlinear inverse formulations reported so far in the literature. 

A 3-D version of the ideas developed in this chapter seems a natural way to 

continue the line of research into linearized solutions to the MT inverse problem. Even 

though some of the concepts dealing with this subject have already been touched upon in 

Chapter IT, detailed work remains to be done on specific characteristics that can make 

practical inverse methods tractable. A wavenumber inversion, for instance, could be 

formulated in terms of the 2-D Fourier transform of the model, at which point stability 

criteria could be investigated in view of the lateral characteristics of the MT response. 

Evidently, the practicality of a 3-D inverse solution will be highly determined by the 

availability of 2-D surface data. This is by itself a major undertaking that perhaps will only 

become feasible in the future. For the moment, the remaining chapters of this thesis 

concentrate on the study and interpretation of 2- and 3-D properties of the MT response that 

could be sampled along a continuous line of electric field measurements such as the 

Surprise Valley transect introduced in section 4.14 . 
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Figure 4-1. Cartesian coordinate frame for the 2-D forward and inverse MT problems. 
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2-D TM ELECTRIC PRERLTER 

Amplitude Response 

Figure 4-3. Amplitude response of the TM electric field prefilter plotted with respect to the y variable 
(y=21tkzB. where k is the lateral linear wavenumber and ZB is the Bostick depth of penetration in the 
homogeneous background at a given frequency.) 
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Figure 4-4. Amplitude response of the TE electric field prefllter ploUed with respect to the 'Y variable 
(y.=21tkzB, where k is the lateral linear wavenumber and zB is the Bostick depth of penetration in the 
homogeneous background at a given frequency.) 
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2-D TE MAGNETIC PREALTER 

Amplitude Response 

Figure 4-5. Amplitude response of the TE magnetic field prefilter plotted with respect to the 'Y variable 
('Y=21tkzB, where k is the lateral linear wavenumber and zB is the Bostick depth of penetration in the 
homogeneous background at a given frequency.) 
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Figure 4-8. Cross-section perpendicular to strike ofa rectangular conductor buried in a homogeneous 
background. Figures 4-9 through 4-12 are lateral wavenumber-domain plots of the MT response simulated 
for this model at 10 Hz. 
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Figure 4-9. Amplitude response plot of the secondary-tocprimary TM electric field ratio at 10 Hz for the 
single conductor model of Figure 4-8. For comparison, a normalized amplitude plot of the lateral Fourier 
transform of the conductive block is shown as well. 
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Figure 4-10. Amplitude response plot of the secondary-to-primary TE electric field ratio at 10 Hz for the 
single conductor model of Figure 4-8. For comparison, a normalized amplitude plot of the lateral Fourier 
transform of the conductive block is shown as well. 
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Figure 4-11. Amplitude response plot of the secondary-to-primary TE horizontal magnetic field ratio at 
10 Hz for the single conductor model of Figure 4-8. For comparison. a normalized amplitude plot of the 
lateral Fourier transfonn of the conductive block is shown as well. 
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Figure 4-12. Amplitude response plot of the secondary-to-primary TE vertical magnetic field ratio at 10 
Hz for the single conductor model of Figure 4-8. For comparison, a normalized amplitude plot of the lateral 
Fourier transfonn of the conductive block is shown as well. 
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2-D TM PREWHITENING ALTER 

Amplitude Response 

i' 

Figure 4-13. Amplitude response of the TM electric field "prewhitening" filter plotted with respect to the 
'Y variable (),=21tkzB. where k is the lateral linear wavenumber and ZB is the Bostick depth of penetration in 
the homogeneous background at a given frequency.) 
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Figure 4-15. A single conductive block buried in a homogeneous background. (a) is the resistivity 
section across strike, and (b) is the resistivity section inverted from the TM electric field data. A total of 61 
stations and 60 frequencies were used in the inversion. Both station separation and dipole length were made 
constant and equal to 100 m. The assumed noise-to-signal ratio was 0.08. 



(a) 

ld 
-3 

] 
:c 103 

t 
w 
0 

(b) 

-2 -, 0 2 

RYTOV INVERSION OF ey/EO: RESISTIVITY SECTION 
Sampling Interval'" 100.0 m, Dipole Length.... 100.0 m 

No. of freqs .... 61, Po - 45 O-m, NSR -0.08 
-2 -, 0 , 2 

-2 ~ 0 , 2 

HORIZONTAL LOCATION (km) 

142 

3
1d 

60 

10' 
10 

4 

O-m 

60 

10 

4 

O-m 
3 

Figure 4-16. A single conductive block buried in a homogeneous background. (a) is the resistivity 
section across strike, and (b) is the resistivity section inverted from the 1E electric field data (cf. Figure 4-
ISb). A total of 61 stations and 60 frequencies were used in the inversion. Stations were spaced at 100 m 
intervals, and the assumed noise-to-signal ratio was 0.08. 



• 

(a) 

ld 
-3 

(b) 
-3 

ld 

-2 -1 o 2 

-2 -1 o 2 

RYTOV INVERSION OF ex/EO: RESISTIVITY SECTION 
Sampling Interval = 100.0 m, Dipole Length Ie 100.0 m 

No. of freqs. == 60, Po = 20 O-m, NSR ==0.08 
-2 -1 0 1 2 

-2 ~ 0 1 2 
HORIZONTAL LOCATION (km) 

143 

3 
ld 

60 

10
3 10 

O-m 
3 

60 

10
3 10 

O-m 
3 

Figure 4-17. A single buried block and a conductive basement. (a) is the resistivity section across strike, 
and (b) is the resistivity section inverted from the TM electric field data. A total of 61 stations and 61 
frequencies were used in the inversion. Both station separation and dipole length were made constant and 
equal to 100 m. The assumed noise-to-signal ratio was 0.08. 
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Figure 4-18. A single buried block and a conductive basement. (a) is the resistivity section across strike, 
and (b) is the resistivity section inverted from the TE electric field data (cf. Figure 4-19b). A total of 61 
stations and 61 frequencies were used in the inversion. Stations were spaced at 100 m intervals, and the 
assumed noise-to-signal ratio was 0.08. 
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Figure 4-19. A vertical fault and a conductive basement. (a) is the resistivity section across strike, and 
(b) is the resistivity section inverted from the TM electric field data. A total of 61 stations and 61 
frequencies were used in the inversion. Both station separation and dipole length were made constant and 
equal to 100 m. The assumed noise-to-signal ratio was 0.08. 
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Figure 4-20. A vertical fault and a conductive basement. (a) is the resistivity section across strike, and 
(b) is the resistivity section inverted from the TE electric field data (cf. Figure 4-23b). A total of 61 
stations and 61 frequencies were used in the inversion. Stations were spaced at 100 m intervals, and the 
assumed noise-to-signal ratio was 0.08. 
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Figure 4-21. A semiinfinite buried slab and a surface inhomogeneity. (a) is the resistivity section across 
strike, and (b) is the resistivity section inverted from the TM electric field data. A total of 61 stations and 
61 frequencies were used in the inversion. Both station separation and dipole length were made constant and 
equal to 100 m. The assumed noise-to-signal ratio was 0.08. 
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Figure 4-22. A semiinfinite buried slab and a surface inhomogeneity. (a) is the resistivity section across 
strike, and (b) is the resistivity section inverted from the TE electric field data (cf. Figure 4-27b). A total of 
61 stations and 61 frequencies were used in the inversion. Stations were spaced at 100 m intervals, and the 
assumed noise-to-signal ratio was 0.08. 
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Figure 4-23. Symmetric conductive and resistive blocks. (a) is the resistivity section across strike, and 
(b) is the resistivity section inverted from the TM electric field data. A total of 121 stations and 61 
frequencies were used in the inversion. Both station separation and dipole length were made constant and 
equal to 100 m. The assumed noise-to-signal ratio was 0.08. 
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Figure 4-24. Symmetric conductive and resistive blocks. (a) is the resistivity section across strike, and 
(b) is the resistivity section inverted from the TE electric field data (cf. Figure 4-27b). A total of 121 
stations and 61 frequencies were used in the inversion. Stations were spaced at 100 m intervals, and the 
assumed noise-to-signal ratio was 0.08. 
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CHAPTER V 

ELECTROMAGNETIC ARRAY PROFILING (EMAP) 

Electromagnetic Array Profiling (EMAP) was conceived by Prof. Francis X. 

Bostick following extensive field, experimental, and theoretical MT research work carried 

out prior to 1980 by the Electromagnetics Research Laboratory (ERL) of The University of 

Texas at Austin. The first and earliest accounts of the technique can be traced back to 

various ERL internal reports (circa 1981) which, to the regret of the MT community, were 

never disclosed in the form of refereed publications. Prof. Bostick also described the 

seminal ideas about EMAP at a dozen or so informal talks presented to industrial and 

academic research groups in the USA. Some of the projects, and lecture discussions from 

the stimulating period of time during which EMAP underwent its initial phases of 

development have also been recorded by Dr. Bostick's graduate students in the form of 

Master's and Ph.D. theses. For instance, in dealing with lateral distortion effects due to 

2- and 3-D thin sheets, Robertson (1983) tested the concept of spatial filtering on his 

numerically simulated data. A more general discussion of the subject of spatial fIltering was 

presented by Torres-Verdin (1985) with a study of the Born approximation solutions for 

the surface MT fields, the mathematical expressions for which rest as the theoretical 

foundations of EMAP. More recently, Williams (1988) described the results of a test 

survey in the overthrust geological province of Wind River, Wyoming, and Booker (1988) 

advanced a practical method to quantify the effect that noisy electric and magnetic data have 

on the estimation of spatially filtered impedances. Bostick (1986) himself gave the first 

conference presentation on EMAP. 

The topics presented in this chapter summarize some of the research contributions 

that, in close collaboration with Prof. Francis Bostick, the author has made to the use and 

understanding of EMAP. The presentation is centered on basic principles and ideas which 

are tested and expanded in light of 2-D models of subsurface resistivity, particularly with 

regards to the practical implementation of spatial filtering, a subject already introduced in 

Chapter IV. In addition, field data examples are presented that show both the feasibility and 

advantage of of using a continuous line of electric field measurements to sense the MT 

response of the subsurface. Analysis of procedures for the sounding of 2-D media with 
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oblique survey traverses, as well as the testing of EMAP over 3-D environments is left as 

main subjects of research in Chapter VI. 

5.1 Introduction 

EMAP is an adaptation of magnetotellurics in which a novel field procedure was 

designed to accomplish two objectives: (1) to overcome spatial aliasing effects associated 

with the sampling of the surface electric field, and (2) to deploy electric dipoles in such way 

that the recorded electric field data could be subject to an extended version of the spatial 

filtering exercised by an individual dipole. 

In consideration to common 2- and 3-D electric static distortion, the first objective 

of EMAP is crucial to insure a successful geoelectric interpretation of the subsurface 

regardless of how the data are subsequently inverted into a cross-section of subsurface 

resistivity. Fulfillment of the second design objective of EMAP, however, immediately 

renders the collected data amenable to a method of interpretation whereby the static 

component of the surface electric response is separated from its inductive complement prior 

to inversion. This separation is achieved by progressive lengthening of the distance along 

which the electric field is spatially averaged at decreasing values of frequency. With the 

static component conveniently reduced, the filtered electric field data can be inverted into a 

cross-section of subsurface resistivity with relatively simple, efficient, and stable 

procedures similar to those used to invert 1-D or 2-D TE electric field data. 

The developments presented in Chapter IV show that spatial filtering, or 

prewhitening, of surface electric field data is a definite element, explicit or implicit, in any 

procedure that is used to invert TM electric field data into a cross·section of subsurface 

resistivity. With this notion in mind, it becomes readily apparent that the closer the spacing 

between adjacent sampling locations the better the way in which the implicit low-pass 

filtering step will be performed by the inversion method. 

However, the need for spatial low-pass filtering of the surface TM data is not as 

easy to detect and understand in the numerical labyrinths that arise with a nonlinear 

parametric method of inversion. This kind of inversion is attractive to the MT interpreter 

mainly because it does not place requirements on the way the data have to be sampled 

(either with respect to frequency or spatially) to estimate a cross-section of subsurface 

resistivity. The criterion that drives such methods is the production of a model that 

reproduces the measured data within an acceptable misfit error. Clearly, when one 
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considers all of the effects that an unrecognized electric static distortion may have on the 

inferred depths and resistivities, the satisfaction of a prescribed data misfit error becomes a 

moot criterion to judge the inversion of poorly sampled electric field data. 

At first, it might appear that the EMAP spatial flitering process exacerbates the 

severe loss of lateral detail that is already present in the data because of the diffusive nature 

of the surface MT response. This is a valid argument only in the absence of static effects. 

As shown graphically in section 1.3, even though lateral channeling of the conduction 

current may sometimes provide a very wide lateral wavenumber content at frequencies for 

which the depth of penetration is consistent with the region of current flow, the same 

wavenumber harmonics persist at lower frequencies, and hence are no longer representative 

of current flow taking place deeper in the earth. The aim of spatial filtering is simply to 

remove the wavenumber harmonics associated with conduction current at depths shallower 

than the effective depth of penetration at a particular frequency. Since the surface response 

of the depth-sensitive induction component is already governed by a low-pass filtering 

process, spatial filtering of the surface electric field will be harmless if the cutoff 

wavenumber of the applied fliter is kept outside the operational band of the induction 

component. The critical step of spatial filtering is to ascertain this cutoff wavenumber from 

direct inspection of the data 

With the declared objective of employing spatial filtering for the interpretation of 

EMAP electric field data, this chapter begins with a description of the elements and 

operational characteristics of the technique. A central part of the exposition is the 

introduction of a data-adaptive spatial flitering technique whereby the cutoff wavenumber 

of the applied filter is varied along the survey path in response to changes in both local 

average resistivity and frequency. Application of this flitering technique shows encouraging 

results in the interpretation of data derived numerically from 2-D models possessing 

different degrees of structural complexity. Results are also shown for the application of 

EMAP at two different field locations. In the first example, a traverse of electric field data 

from the northern Basin and Range geological province of Nevada are visibly affected by 

frequency dependent static distortion. The second example describes a survey traverse for 

the geothermal evaluation of Surprise Valley, California where, even though surface static 

effects offered no serious difficulty, the continuous sampling of electric field data proved 

indispensable to detect important lateral variations in the electrical properties of the 

subsurface. 
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5.2 Sampling distance and the electric dipole as an alias protection filter 

Consider a field procedure in which the potential difference measurements are 

uniformly separated along a straight line path and where the same separation, L, is used 

between the two electrodes at each measurement location. Assume that this path extends in 

the x direction with the electrodes in contact with the ground at the locations xj±L/2 

(1~j~), and that the connecting wires follow the straight line paths between the 

electrodes. The configuration for such an electric field array is shown in Figure 5-1. 

Under the assumed conditions, the potential difference, Vj, measured at the j-th 

electric dipole along the electric field array can be written as 

i
Xj + L/2 

Vj = Ex(x) dx. 
Xj - L/2 

Thus, an estimate, EXj, of the electric field in the neighborhood of the sounding location, 

Xj' is readily obtained with the ratio 

- Vj 
Exj =y' 

~r, alternatively, from 

where g(x) is the so-called "box-car" or rectangular function, defmed as 

_ {L ,.Ixl ~~ 
g(x) - L . 

0, Ixl>I 

The electric field estimates, EXj' above are discrete and uniformly spaced samples of the 

continuous function Ex(x) described by 

1
+00 

Ex(x) =. _ 00 g(xo-x) Ex(xo) dxo, 

or, in compact notation, by 

(5.1) 
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where the symbol "*" indicates convolution. With the spatial Fourier transfonn of Ex(x) 

defined as 

1
+ 00 

Ex(~) = f' {Ex(x)} = _ 00 EX<x) e+i9t dx, 

equation (5.1) can be written in the wavenumber domain as 

(5.2) 

where 

Ex(~) = f'{EX<x)}, and 

Sa(~), the sampling function, is a low-pass filter with its frrst crossover at ~=±21tIL, and is 

detennined from the expression 

i
+ 00 sin(~L) 

Sa(~) = f' {g(x)} = g(x) e+i9t dx = 2 
-00 ~L 

2 

As evidenced by equation (5.2), the sampling function plays the role of an alias 

protection filter in the measurement process whereby samples, EXj, of the function Ex(x) 

are obtained at different locations along the electric field array. Since the Exj series of 

estimates consists of direct samples of the function Ex(x), the only control on the degree of 

alias protection in the measurement process is through adjustments of the spacing, L, 

between measurement electrodes, and of the sampling interval, XrXj_l> between adjacent 

sounding sites. The smaller the sampling interval the higher is the Nyquist wavenumber; 

the larger the value of L the lower the cutoff wavenumber of the sampling function. 

Although a lower cutoff wavenumber for the sampling function goes with better alias 

protection, it was shown in section 1.2 that this also may cause a loss of lateral resolution 

at high frequencies where the objective is to sense geoelectric features smaller than a dipole 

length. A standard dipole length should be comparable with the shallowest depth of 

penetration at the highest frequency. The electric field array, on the other hand, should be 

long enough to allow the suppression of static effects due to geoelectric structure of size 

comparable to the depth of penetration at the lowest frequency. Economic conditions are 

usually a key factor in determining both the length of the dipole and the distance covered by 

the electric field array. The practicalities involved in the gathering of electric and magnetic 

field data along and about the electric field array are discussed below. 



158 

5.3 EMAP field procedure 

Estimating a profile of subsurface resistivity beneath a line of surface measurements 

may require closely spaced electric and magnetic field sampling locations, not only along 

the proftle but also laterally away from it. When the survey path coincides with the x-axis, 

for instance, the frequency domain relationship between the tangential electric field, Ex, and 

the horizontal magnetic field components, Hx and Hy' measured at the same point along the 

path is 

Ex(x,co) = Zxx(x,co) Hx(x,ro) + Zxy(x,ro) Hy(x,ro), (5.3) 

where co is the radian frequency, x is the coordinate of the observation point, and the Zxx 

and Zxy terms are downward looking conventional MT impedances. These impedances are 

functions of the 3-D subsurface resistivity distribution and are time invariant. 

As emphasized earlier, the modification of equation (5.3) related to EMAP allows 

one to perform spatial filtering of the tangential electric field component, Ex, along the 

survey path. Also, in contrast to conventional magnetotellurics, with the EMAP field 

procedure electric field measurements are not referred to the local magnetic field, but rather 

to the primary plane-wave magnetic field within the survey area. The latter is estimated by 

spatial areal averaging of the magnetic field measurements taken along and about the survey 

line (see section 2.6). 

The first constraint imposed by a field procedure that requires processing and 

interpretation of MT fields rather than of impedances is that, because of their random 

source mechanisms, all electric and magnetic field signals have to be synchronously 

acquired. When the survey line consists of a great many sampling locations, the 

requirement of synchronization among all of the field measurements may place- excessive 

demands even on the most powerful MT data acquisition systems. A procedure to 

overcome this practical limitation consists in recording the magnetic signals at a fixed base 

station during the same times signals are recorded at any of the field measurement 

locations. 

In the frequency domain, the relationship between the magnetic field components, 

Hx and Hy, measured at a base site located at (xB,YB), and the Ex field component 

measured along the survey path can be written with the linear relation 

(5.4) 

.. 
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where the terms Zxx and ZXy in this last equation, henceforth referred to as base 

impedances are not conventional MT impedances, but do exhibit the same time invariance 

property. In similar fashion, the relationship between the magnetic field components Hx 

and Hy measured at a survey point, (x,y), and the magnetic field components measured at 

the base site is expressed by the set of linear equations 

Hx(x,ro) = Txx(x,y,ro) Hx(XB,YB,ro) + Txy(x,y,ro) Hy(XB,YB,ro), and 

Hy(x,ro) = Tyx(x,y,ro) Hx(XB,YB,ro) + Tyy(x,y,ro) Hy(XBSB,ro), 

(5.5) 

(5.6) 

where the terms T xx, T xy, T yx, and T yy are time invariant magnetic transfer functions. 

With the use of equations (5.4) through (5.6), basic operations on the electric and 

magnetic fields such as spatial filtering and areal averaging can be performed on the 

estimated base impedances and magnetic transfer functions. The procedure suggested for 

the practical synchronization of field measurements embodied in equations (5.4) through 

(5.6) is essentially a generalization of the method described in section 4.11 as an 

intermediate step for the computation of secondary electric and magnetic field variations. 

Finally, the EMAP modification of equation (5.3) relates the estimated primary 

magnetic field components, Hx, and Hy, with the measurements of Ex made along the 

survey path, and is written as 

(5.7) 

Because of their relation to the EMAP field procedure, the impedances Zxx and Zxy in 

equation (5.7) are henceforth referred to as the EMAP impedances. It is remarked that 

Zxx and Zxy can have different properties than the conventional and base impedances 

defined in equations (5.3) and (5.4), respectively, especially when the surface magnetic 

field exhibits appreciable local amplitude variations either along the survey path or at the 

base station . 

Figure 5-2 depicts the characteristics of the EMAP field procedure. A simple 

modification of the field configuration shown in that figure would involve the measurement 

of the orthogonal electric field component, By, at selected locations along the survey path. 

If available, these measurements may be used to estimate, for instance, the dimensionality 

of the underlying resistivity distribution with standard procedures (Vozoff, Ed., 1986). 

However, the use of a single dipole perpendicular to the electric field array may prove 
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insufficient either to overcome aliasing effects or to reduce static distortion that can 

significantly bias the estimated parameters of dimensionality. Additionally, vertical 

magnetic field measurements can be acquired at selected locations along the survey path to 

ascertain the sensitivity of the electric field array to induction processes in the subsurface 

taking place laterally away from the path. These two options are discussed in more detail in 

Chapter VI. A procedure to carry out spatial filtering of the tangential electric field 

measurements made along the survey path is discussed next 

5.4 A data-adaptive spatial filtering procedure 

Individual dipole responses measured along the electric field array may be 

combined to produce a wavenumber flltered output A first choice for a low-pass spatial 

filter that can be synthesized from the electric field array is a Hanning window or "cosine 

bell." For one thing, the Hanning window has better roll-off characteristics in the 

wavenumber domain than the box-car function related to an individual dipole response. 

Moreover, because of its spatial symmetry the Hanning window has a purely real 

wavenumber response. 

A Hanning window, hex), of width W and centered about the origin is described by 

the formula 

{ 

..L (1 + cos21tx), Ixl ~ W 
h(x)= W W *' 

0, Ixl >2 
(5.8) 

or, in the wavenumber domain, by 

sine W;) W; 
H(;) = 2 [1 - 0.5 2 

W; W; 
T T+ 1t 

W; 
_ 0.5 2 ] . 

W; _ .. --1t 
2 

(5.9) 

From this last expression it can be easily shown that the roll-off of H(;) falls as 

l/(W;)3 for large values of ;, and that its 3dB amplitude cutoff point is approximately 

located at ;=4.521W. However, given the discrete characteristics of the electric field array, 

the continuous Hanning window given by equation (5.8) may at best be approximated as a 

"staircase" representation. This idea is graphically illustrated in Figure 5-3. 

.. 
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Assuming that the electric field array is deployed along a straight line, and that the 

electric dipoles have all the same length, the discrete Hanning window, h(X,Xk), 

synthesized from the electric field array about the point X=Xk may be written as 

M 
, h(X,Xk) = L f3 j g(Xj-x) 

j=l 

k = 1, ... , M, 

where M is the total number of dipoles in the arrayl . 

(5.10) 

The coefficients f3j in equation (5.10) describe the way in which dipole responses 

adjacent to the sounding site X=Xk are weighed to emulate the shape of a Hanning window. 

For a given window width, W, and center point, Xk, these weights can be adjusted so that 

the difference between the continuous Hanning window, h(X-Xk), and the synthesized 

version of it, h(X,Xk), is minimized in a least-squares sense. The difference, 'If, between 

these two windows is a function of position along the array, and is written as 

(5.11) 

where the Lagrange multiplier, (x, is introduced to enforce the unimodularity of h(x,x0 in 

the minimization of 'lfk. 

To minimize the functional 'lfk defined by equation (5.11), substitute equation 

(5.10) into equation (5.11) and differentiate with respect to (X and all f3j's. The resulting set 

of normal equations has the simple solutions 

L
Xj + L/2 

f3j = . h(x-x0 dx 
Xj - L/2 

M 

(L f3j = 1), 
j=l 

(5.12) 

It then follows that, for given window width, W, the coefficients f3j given by equation 

(5.12) will be zero whenever 

Xj !5: Xk - 'i -~, or (5.13) 

x ·> Xk+ W +L 
J - 2 2' (5.14) 

1 Consideration of both curvilinear paths and variable dipole lengths entails only slight modifications to the 
developments presented in this section. 
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This implies that the actual minimum and maximum indexes for the summations in 

equations'(5.11) and (5.12) are the largest and smallest values of j that satisfy the 

inequalities (5.13) and (5.14), respectively. Equations (5.10) an (5.12) provide a useful 
"" treatment for the special situation in which the center point, Xk, of h(x,x0 is close to, or 

coincident with, an end of the survey traverse. 

Even though a window width value is presupposed above for the derivation of the 
J3j coefficients, the selection of this parameter is critical to the filtering operation. The value 

of W can be adjusted if a cutoff wavenumber is specified beforehand. A useful choice of 

cutoff wavenumber, ~c, for the low-pass filter is the one for which, at a particular 

frequency, the amplitude of the electric induction component no longer dominates over the 

amplitude of the static component. For a subsurface resistivity distribution described by 

small lateral and vertical resistivity variations about an average value, this cutoff 

wavenumber is frequency dependent and inversely proportional to the Bostick (1977) depth 

of penetration, ZB, i.e., 

(5.15) 

(see section 2.7). At a given frequency, co, the Bostick depth of penetration is an estimate 

of the depth down· to which the inductive response from the subsurface develops a 

maximum effect on the measured surface electric field. Over 1-D geoelectric media this 

depth of response can be estimated directly from the apparent resistivity curve (Bostick, 
1977). However, in the presence of static effects the estimation of zB from apparent 

resistivity data may suffer an appreciable bias. To reduce this bias, prior to computing zB, 

the EMAP wave ~pedance Zxy defined in equation (5.7) may be low-pass filtered with a 

bootstrapping value of window width2• Subsequently, a Bostick depth of penetration is 

computed for the fIltered impedance with the formula 

(5.16) 

(Bostick, 1977), where 

2 When the only sample of the magnetic field is acquired at the base station, the base impedance, ZXy, can 

be used in place of Zxy to perfonn spatial filtering. 
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M 
Zxy(Xk,CO) = L ~j Zxy(Xk,CO), 

j = 1 

and the ~j coefficients are computed from equation (S.12) . 
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(S.17) 

The important fact about equation (S.16) is that different widths, W, for the discrete 

Hanning window change the value of the depth of penetration, zB' To clarify this important 

point by way of an example, consider the 2-0 model shown in Figure S-4, redrawn from 

Figure 1-1 to include the location of an extra sounding location. In the new figure, Site No. 

1 is centered within the surface conductor, whereas Site No.2 is located over the resistor 

and 2S0 m away from Site No.1. The filtered TM apparent resistivity and impedance phase 

curves associated with Site No.1 are shown in Figure S-S. Both of these curves are 

plotted as functions of the Hanning-window width for a symmetric and discrete window 

centered about the sounding location and synthesized from l00-m dipole responses at three 

different frequencies, namely, 0.01, 1, and 100 Hz. For comparison, the apparent 

resistivity panel in Figure S-S also shows 1-0 apparent resistivity values (constant with 

respect to window width) at the same three frequencies assuming that the outcropping 

conductor in Figure S-4 is a layer rather than a block. 

As evidenced from Figure S-S, the magnitude of the filtered electric field at 

Site No. 1 can vary considerably with the width of Hanning window used to perform the 

spatial averaging (i.e., with the cutoff wavenumber of the applied filter). At 0.01 Hz, for 

instance, immediately after the window is wide enough to encompass electric field 

variations outside the conductor, the filtered apparent resistivity develops "an asymptotic 

behavior toward the 1-0 response value at the same frequency. Within the conductor, the 

filtered apparent resistivity is only slightly sensitive to the window width used in the 

averaging. At the highest frequency, however, excessively large values of W take the 

apparent resistivity curve far away from the 1-0 response curve at the same frequency, 

hence causing oversmoothing of the electric response . 

A criterion to choose a window width value that is consistent with the wavenumber 

content of the electric induction component stems from equation (S.IS). This inequality can 

be made an equality in the following ~ay: 

~c(Xk,CO) = c l co)' ZB Xk, 
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where c is an arbitrary real constant (see also section 2.7). The cutoff wavenumber, ~c, 

above is inversely proportional to the window width, W, so that one can write 

(5.18) 

To find the appropriate window width, W, that satisfies equation (5.18) for a prescribed 

value of c, one tracks amplitude response curves similar to those shown in Figure 5-5 

along the window-width axis until ,the equality is satisfied within an acceptable tolerance 

level. This search can be done numerically in a number of ways, none of which entails 

significant computer times. In fact, a repeated sequence of window-width adaptations for 

as many dipoles and frequencies there are along the electric field array may take no more 

than a few seconds. A procedure that has proved very efficient for the adaptation of W 

along the electric field array is a simple fixed-point iteration of equation (5.18). 

Several other points concerning the solution of equation (5.18) deserve special 

mention. First, the real constant, c, in that equation plays the role of a window-width 

expansion factor that must be input to the filter adaptation process to control the roll-off 

characteristics of the applied Hanning window. In adjusting c, it should be remembered 

that lateral detail in the Zxy impedance function is lost when W increases very rapidly. This 

means that the smallest acceptable value for c is the most desirable. Experience shows that 

in most practical cases 1~ c ~ 4 is an appropriate range. Second, the reason why only the 

Zxy impedance is used in driving the filter adaptation process is that, even though the cross­

coupling wave impedance, Zxx, may sometimes undergo large amplitude variations, this 

term is insensitive to the zero wavenumber harmonic of the lateiaI variations of subsurface 

resistivity (section 2.5), meaning that spatial filtering of Zxx will consistently approach zero 

for increasing values of W. However, when the' survey traverse is not a straight line both 

wave impedances, Zxx and Zxy must be fiitered prior to rotation in the direction 

perpendicular to the effective direction of the electric field array. This point will be further 

clarified in Chapter VI. Finally, when the values ofZxy are obtained from noisy electric and 

magnetic field data, the weights of the discrete Hanning window might include an 

additional factor inversely proportional to the standard deviation of the weighted 

impedances. Even though noise considerations are important in the analysis of the filter 

adaptation process described herein, further discussion of this aspect of the problem is 

deliberately omitted to concentrate on the general concept of spatial filtering. 

.. 
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5.5 Stability of the adaptive filtering process 

The adaptation process described in the previous section does not enforce an 

explicit relation between window width values adapted at consecutive values of frequency. 

Unfortunately, this may sometimes lead to abrupt changes in window width from one 

frequency to another and hence reflect similar changes in the amplitude of the filtered 

impedance. Commonly, one encounters this situation when, as for the case of Site No.1 in 

Figure 5-4, the Hanning window is centered within a surface conductor. In such cases, as 

shown in Figure 5-5, so long as the window is contained within the conductor, a change of 

W produces no appreciable change in the estimated depth of penetration. In fact, depending 

on the width of the surface conductor, the depth of penetration may remain smaller than a 

dipole length at a number of the highest frequencies. Both the shallower than usual depth of 

penetration and the insensitivity of the filtered impedance to a change in window width are 

due to the lateral current channeling imposed by the surface conductor. Only when the 

frequency is low enough to force the Hanning window outside of the conductor does the 

fIltered impedance develop a significant change. 

To understand this situation, Figures 5-6a and 5-6b show the apparent resistivity 

and impedance phase curves, plotted with respect to frequency, of the TM (Zxy) 

impedances filtered at Site No.1 and Site No.2, respectively, of Figure 5-4 .. These curves 

were obtained with the adaptive filtering procedure described in the previous section 

assuming a 3 kIn-long traverse, laid out normal to strike and with contiguous dipoles 

deployed at 100m intervals. The value of filter constant, c, used in the adaptation was 2. In 

Figure 5-6a, the discontinuity of the fIltered apparent resistivity curve at about 4 Hz is due 

to a sudden expansion of the window once the depth of penetration is large enough to force 

the Hanning window outside of the conductor. By contrast, at Site No.2, Figure 5-6b 

displays continuous filtered apparent resistivity and impedance phase curves obtained with 

exactly the same field parameters used in the derivation of the curves at Site No. 1. The 

discontinuous character of the apparent resistivity curve at Site No.1 is further clarified 

with the aid of Figure 5-7, wherein the values of Hanning window width adapted at both 

sites are plotted against frequency. This figure shows that above 40 Hz the window width 

adapted at Site No.1 remains constant and equal to a dipole length, whereas at Site No.2 

the adapted window width exhibits a firm monotonic increase with decreasing values of 

frequency. At 40 Hz, the window-width curve at Site No.1 finally reaches the critical point 

where the depth of penetration exceeds its stagnated value of 100 m, and slowly -almost 

linearly- increases to about 300 m at 4 Hz. It is at this point where the change in depth of 
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penetration is so drastic that the new window increases by a factor of 4, giving the 

discontinuity in the apparent resistivity curve shown in Figure 5-6a. 

A way to control the rate of increase of window width, W, with decreasing 

frequency, co, is as follows: starting with equation (5.18) together with substitution from 

equation (5.16), one can show that the rate of increase of logarithmic window width with a 

logarithmic decrement in frequency is given by 

dIn W(x,co) 
d In co 

d In I Zxy (x,co) I = -l. 
dIn ro 

This last equation places a bound on the decay rate of In(W), such that 

-1 < dIn W(x,co) ~ 0 . 
- dlnco 

(5.19) 

In particular, over a homogeneous half-space the decay rate of In(W) with respect to 

In(co) is constant and equal to -1/2 3. The only case that prevents the decay of In(W) with 

increasing frequency is the one in which Zxy responds to a perfect conductor, otherwise 

In(W) cannot remain constant with respect to frequency. Hence, equation (5.19) may be 

used to impose bounds on the rate of decay of In(W) as frequency increases to improve the 

performance of the filter adaptation process governed by equation (5.18). 

A second and more specialized method that gives good results in most cases 

consists in first running an unconstrained window adaptation for all frequencies at a given 

site. The curve of In(W) vs. In(ro) that results from this adaptation is then examined to 

check for a discontinuity. If the check is positive then the discontinuity is corrected for by 

linearly increasing the In(W) values with respect to -In(co) starting with the highest 

frequency until intersecting the unconstrained window-width curve. Yet another method 

exists which, although only applicable to strictly 2-D data, is quite interesting because of its 

physical implications. This consists of adapting the window width on the TE impedances 

(which incidentally are not affected by adaptive spatial filtering applied as proposed by 

. equation 5.18). The values of W adapted this way are in the final step used to fIlter the TM 

impedances. 

Figure 5-8 shows the variations of window width with respect to frequency that 

describe the performance of the constrained adaptive filtering procedure at Site No. 1 and at 

3 This result is consistent with the properties of the TM prewhitening fIlter dermed in section 4.9. 
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Site No.2. Both curves are smooth and compare reasonably well with each other. The 

respective fIltered apparent resistivity and impedance phase cwves, shown in Figures 5-9a 

and 5-9b, are also smooth and continuous. In fact, the plots in Figures 5-6b and 5-9b 

reveal no change in the fIltered impedance at Site No.2 once the window growth constraint 

has been included in the adaptive filtering process. The difference between the plots in 

Figures 5-6a and 5-9a, however, is remarkable, with the new apparent'resistivity curve 

showing a much closer agreement with both TE and I-D curves. Notice also that the 

fIltered apparent resistivity curve at Site No.2 is actually in better agreement with the I-D 

curve than with the TE curve. An important observation is that in all cases the impedance 

phase curve is only slightly modified by the fIltering process. 

Assuming adequate electric field sampling conditions, the adaptive filtering 

procedure described above can in most cases be adjusted to render a smooth 2-D fIltered 

apparent resistivity curve. Over 3-D media, however, deflection and turn-around of the 

conduction current (see section 2.5) can sometimes lead to abrupt variations in depth of 

penetration whereby, regardless of the way in which the window width is allowed to grow, 

the filtered apparent resistivity will develop irregular frequency variations. This situation 

should not handicap the subsequent estimation of depths and resistivities, because, after all, 

the filtered apparent resistivity and impedance phase curves as shown, for instance, in 

Figures 5-9a and 5-9b are not MT impedances in the strict sense of the word 

5.6 The nature of the filtered impedances 

That the filtered impedances are not "real" MT impedances can be shown by simple 

inspection of the filtered apparent resistivity and phase curves shown in Figures 5-9a and 

5-9b. In spite of the fact that these curves were derived by linear combination of 2-D TM 

impedances, certainly the resulting apparent resistivity and impedance phase do not relate to 

each other by the otherwise minimum-phase property that in the frequency domain is 

characteristic of 2-D TM impedances. 

This apparently conflicting situation originates from the use of different filtering 

lengths at different frequencies. Had the filtering length being kept constant at all 

frequencies, no doubt the curves in Figures 5-9a and 5-9b would have exhibited minimum­

phase characteristics, just as 2-D TM impedances are naturally minimum-phase when either 

simulated or acquired in the field with a fixed dipole length. Over 3-D media, however, the 

minimum-phase property cannot be taken for granted, especially in the presence of 

deflection and turn-around conduction current effects. Rather than being interpreted as MT 
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impedances with standard properties, each filtered impedance should be thought of as a set 

of as many filtered impedances as there are frequency samples in the Fourier analysis. Each 

member of this set of impedances is characterized by: (1) the window width (or length), W, 

with which it has been filtered, and (2) the frequency, co, at which W was adapted. For the· 

purposes of a display of filtered impedances vs. frequency (such as the ones shown in 

Figures 5-9a and 5-9b), however, each member of the impedance set is sampled only at the 

frequency, co, for which it is identified. Below, the spatial filtering and subsequent 

inversion of 2-D TM impedances is tested over more complex synthetic models of 

subsurface resistivity. 

5.7 Synthetic examples 

The basic computations for the spatial filtering procedure described in the previous 

sections are complete when the filtered impedances, ZxY' have been obtained for the 

complete set of frequencies. These impedances may then be used to estimate a profIle of the 

subsurface resistivity distribution beneath the survey path with techniques designed for the 

inversion of the inductive part of the surface electric field response (section 2.7), such as 

those used in the interpretation of I-D or 2-D TE electric field data. 

To test the performance of spatial adaptive filtering in the simplified inversion of 

surface electric field data, three synthetic 2-D models have been chosen. An actual 3-D MT 

response bears a great deal of similarity with the TM response of a 2-D earth.(Swift, 1967, 

Wannamaker et al., 1984, and sections 2.3 and 2.4 of this thesis), meaning that applying 

the principles of spatial filtering to TM electric field data gathered over 2-D geoelectric 

media should be indicative of its performance over 3-D environments. 

When a 2-D earth is excited by a vertically incident plane wave with TM 

polarization, the surface horizontal magnetic field is spatially constant (d'Erceville and 

Kunetz, 1962). Thus, if the EMAPtraverse is laid out normal to strike the TM impedances 

are equivalent to any of the conventional, base, or EMAP impedances, ZxY' Zxy, and ZxY' 

respectively, defined in section 5.3, and hence amenable to spatial filtering of the surface 

electric field without modification. In addition, for the examples below these impedances 

are computed from electric dipole responses simulated by direct integration of the surface 

electric field. The frequency range of the simulated measurements is from 0.001 to 1,000 

Hz and the sampling rate is 5 frequencies per decade. Finally, the survey traverse is kept at 

.. 
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a constant length of 4 km and includes 40 contiguous electric dipoles spaced at 100 m 

intervals. 

5.7.1 Geologic Noise 

The first model is shown in Figure 5-lOa. It corresponds to a two-layer sequence in 
which the upper layer has a resistivity of 80 gem, and the lower layer is a 5 gem half-space 

4 km below the surface. Geologic noise is introduced in the upper layer with a sequence of 

20 equal-width (200 m) contiguous blocks of variable thickness. The resistivity of the 
overburden blocks varies from 2 to 400 gem, and their thickness varies from 4 to 50 m. 

Both resistivity and thickness for each block were chosen with a Gaussian random number 
generator. Last but not least, a 1 gem conductive block is buried within the upper layer at a 

depth of 400 m, and with lateral and vertical dimensions of 2000 and 700 m, respectively. 

Figures 5-10b and 5-10c are the 1M apparent resistivity and phase pseudosections, 

respectively, numerically simulated for the described model. The wide range of values 

included in the apparent resistivity pseudosection in Figure 5-lOb evidences a surface 

electric field whose amplitude is dominated by the amplitude response of the overburden at 

nearly all frequencies. By contrast, lateral and frequency variations of impedance phase are 

only slightly affected by the overburden, and the phase pseudosection in a rough way 

reveals the various features contained in Figure 5-10a. 

A suite of inverted resistivity sections derived by adaptive spatial filtering of the 

simulated TM impedances are shown in Figures 5-lla, 5-llb, and 5-11c, for filter 

constant values, c, of 2,3, and 4, respectively. The filtered impedances were transformed 

into resistivity vs. depth profiles via the Bostick pseudoinverse (Bostick, 1977). 

Accordingly, the variable nature of the near-surface values in the resistivity sections reflect 

the lateral variations at the shallowest depth of penetration (inverted at the highest 

frequency) along the profile. Comparison of the·three inverted resistivity sections reveals 

that, even though increasing the value of filter constant, c, translates to better control of the 

electric static effects, excessively large values cause a loss of lateral detail in the inverted 

resistivity section. For what appears to be an optimal value for the filter constant, c=3, the 

associated apparent resistivity pseudosection is shown in Figure 5-12. This pseudosection 

offers a much different view of the surface electric response than the apparent resistivity 

pseudosection in Figure 5-lOb. The computation time required for the spatial filtering and 

inversion steps involved in the derivation of the sections in Figure 5-11 was approximately 

9 seconds in a Sun Spark 1 + workstation. 



170 

Finally, to appreciate the effect that the electric response from the overburden has in 

the detection of both the conductive block and the basement, Figure 5-13a displays an 

inverted resistivity section obtained by spatial low-pass filtering (filter constant, c, of value 

3) and subsequent Bostick inversion of the TM impedances generated from the model in 

Figure 5-10a without the random surface overburden. This resistivity section defines 

within acceptable tolerance margins the geometrical characteristics of the conductive block, 

and the inverted depths and resistivities compare well with the actual values displayed in 

Figure 5-10a. 

The result of a last filtering and inversion exercise for this model is shown in Figure 

5-13b. This resistivity section was derived from TM impedances simulated for the model of 

Figure 5-10a except that the resistivity of the overburden was made constant and equal to 

10 n·m while its thickness remained variable. As for the case of Figures 5-11b and 5-13a, 

the value of filter constant, c, used in the derivation of the section in Figure 5-13b is 3. 

This is an interesting situation because, given that the surface conductor is wider than the 

buried rectangular block, one might think that suppressing the static effects in the former 

would entail such a filtering length that oversmoothing of the inductive signature from the 

block would be at risk. However, results are satisfactory and compare well with the model 

section shown in Figure 5-10a. 

5.7.2 Topographic distortion and elevation correction 

The second test model is shown in Figure 5-14a together with its simulated TM 

apparent resistivity and phase pseudosections displayed in Figures 5-14b and 5-14c, 

respectively. In this model, electric static distortion is introduced by way of abrupt 

topographic relief modelled as a quasi-periodic triangular interface between the air and a 

200 n·m stratum. Each of the triangles that conform the surface relief has a base length of 

400 m and a slope of 30°. Also, a 10 n·m semiinfinite slab with thickness of 3.6 km is 

buried at a depth of 400 m to simulate a subsurface fault. The model is terminated below 

the fault with a 1 n·m half-space buried at a depth of 4 km. Finally, notice that since the 

dipoles are laid out tangentially to the air-earth interface, some of them are actually longer 

than the otherwise standard horizontal length of 100 m. 

Electric static effects due to topography are inferred by the strong vertical banding 

in the apparent resistivity pseudosection (Figure 5-14b), which in turn obscures the electric 

response of the remaining features in the model. The impedance phase pseudosection, on 

the other hand, shows no similar banding and does give an indicati<;m of both the fault and 
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the conductive basement. Adaptive spatial filtering with a filter constant, c, of value 3, and 

subsequent Bostick inversion of the simulated TM impedances produces the resistivity 

section shown in Figure 5-16a. Because in Figure 5-14a depths are measured with respect 

to an elevation datum placed at z::{), the depths of penetration displayed in the resistivity 

section have been corrected for the vertical offset of each station along the profile. 

A more efficient and physically intuitive elevation correction than the simple 

compensation of dipole elevations is proposed in Figure 5-15. For this correction, an 

effective elevation for each dipole along the profile is computed by averaging the local and 

adjacent site elevations with exactly the same discrete Hanning window used to filter the 

EMAP impedances. Since the width of the window is a function of frequency and so is the 

depth of penetration, it becomes clear that the elevation correction will be frequency 

dependent as well. Figure 5-16b shows the inverted resistivity section obtained using this 

correction procedure. As a result, the vertical irregularities with which the upper boundary 

of the subsurface fault was inverted in Figure 5-16a have been almost completely 

eliminated. 

The inverted resistivity section shown in Figure 5-16b exemplifies an important 

aspect of the buried contact problem whereby the recovered fault boundary has a 

progressive loss of high lateral wavenumber components with increasing depth. This 

situation is in agreement with the lateral wavenumber bounds for the Born inversion 

process discussed in Chapter IV. 

5.7.3 Unaccounted adjustment distance 

A third and last synthetic model is shown in Figure 5-17a. The I-D background for 
this model consists of a 100 n·m upper layer and a 1,000 n·m basement buried 3 km 

below the surface. Features of 2-D nature are introduced by way of two 1 n·m semiinfmite 

rectangular slabs located within the upper layer of the I-D background. Buried at depth of 

900 m, the first slab has a thickness of 400 m and extends to the right of the section. The 

second slab has a thickness of 100 m and outcrops on the left-hand side of the section. No 

horizontal overlap exists between the two slabs and their respective terminations are 500 m 

apart. The unconfined nature of both 2-D features make this model a particularly interesting 

case of analysis 

Figures 5-17band 5-17c are the simulated TM apparent resistivity and impedance 

phase pseudosections, respectively. The values of apparent resistivity on the left-hand side 
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of Figure 5-17b are dominated by· the electric static response of the outcropping slab. On 

the right-hand side of the pseudosection, however, electric static distortion comes into play 

only below 0.1 Hz and once the depth of penetration has surpassed the depth of the buried 

slab. This distortion somewhat dominates the inductive amplitude response of the resistive 

basement. By contrast, the different response components of the geoelectric model are 

grossly visible in the impedance phase pseudosection shown in Figure 5-17c. 

Figure 5-18 displays the resistivity section derived by adaptive spatial filtering and 

subsequent Bostick inversion of the TM impedances using a filter constant, c, of value 1.5. 

In contrast with the previous two examples, a low value of c is here more appropriate given 

the absence of surface static effects on the right-hand side of the section. The inverted 

resistivity section shows with some clarity the various structural features in the model. 

However, close examination of the inferred resistivities reveals a slightly overestimated 

value for the basement. Overestimated resistivity values at depth come as a consequence of 

using a maximum filter length that has fallen short to account for the adjustment distances 

of the surface electric distortion introduced by the semiinfinite slabs (Ranganayaki and 

Madden, 1980). 

5.8 White Pine County field example 

During the SUmmer of 1984, the Geomagnetics Research Laboratory of the 

University at Texas at Austin conducted an EMAP field study in White Pine County, 

Nevada, approximately 20 miles southeast from the city of Eureka. The location map is 

shown in Figure 5-19 . 

. The White Pine CO. survey consisted of 84 electric dipoles, each 244 m (800') 

long, and deployed end-to-end continuously along a 20.25 km-Iong traverse oriented 

approximately parallel to the azimuth NI49°lO'S. The traverse was laid out transversely to 

the Pancake Range, bordering on its northwest end with the Little Smoky Valley and with 

the Railroad Valley on its southeast end. The objective of the experiment was to test the 

EMAP field and interpretation procedures over a complicated geological setting. A single 

magnetic base station was deployed and data were collected at 37 different "frequencies in 

the interval from 0.0015 to 488 Hz. Simultaneous measurements of electric field signals 

were made at 6 contiguous dipole locations on a daily basis. 

Figure 5-20a is the apparent resistivity pseudo section of the Zxy base impedances 

measured along the traverse. For reference, the topographic profile is shown in the upper 

.. 
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panel with elevations measured in meters above the sea level (m ASL). The presence of 

various local electric static effects is quite evident along the traverse, and except for a 

persistent resistive zone between 0.01 and 10 Hz, the apparent resistivity pseudosection 

shows little clue to the electric response of other geoelectric features in the subsurface. An 

important observation is that the most resistive stripe at spans 71 and 72 coincides with 

outcropping dacites (references for the local and regional geology are Nolan et al., 1974, 

Stewart, 1978 and 1980, and, Hamilton, 1988, among others.) The phase impedance 

pseudo section shown in Figure 5-20b, on the other hand, grossly reveals a wide 

intermediate resistive zone, a conductive basement, and other less prominent local features. 

Finally, adaptive spatial filtering (filter constant, c, equal to 3) and subsequent Bostick 

inversion of the Zxy base impedances produce the resistivity section shown in Figure 5-21. 

The depths of penetration in this section are referred to an elevation datum placed at 1700 m 

ASL. It is remarked that even though the White Pine CO. traverse is not precisely straight, 

the departures from such condition do not cause an appreciable change in the results shown 

in Figure 5-21. 

The inverted resistivity section in Figure 5-21 shows two separate resistive 

features, very likely of intrusive nature. One of these features, on the right-hand side of the 

section, actually outcrops between the dipole spans 71 and 72, and extends down to a 

depth of approximately 7 km. The second resistive feature, on the left-hand side of the 

section, does not outcrop and is buried at a depth of approximately 1 km. Both of these 

features are embedded in what is suggested as the geoelectric expression of the complex 

sedimentary sequence typical of the area, for which a conductive basement becomes visible 

at approximately 30 km below the datum. Given the fact that the survey traverse did not 

include enough ground, laterally, of the two sedimentary sequences bordering the area of 

study, the depth and resistivity values inverted for the conductive basement may not be 

properly resolved in Figure 5-21. In spite of this, however, both numbers appear to be in 

agreement with values reported from other sources of investigation in the northern Basin 

and Range area (see, for instance, Wannamaker, 1983.) Without additional geophysical 

and geological data along the section, more detailed comments on the geological 

consistency of Figure 5-21 are not ventured here. Sensitivity analysis via numerical 

simulation seems an attractive procedure to quantify both lateral and vertical resolution 

bounds with which the various geoelectric features in the inverted resistivity section can be 

resolved from the measured Zxy base impedances. 
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The White Pine CO. survey shows with striking clarity that only when electric field 

data have been gathered in continuous form does one come to understand the adverse 

effects that long distances between sampling locations may have on the estimation of a 

cross-section of subsurface resistivity. 

5.9 Surprise Valley field example 

Details of this field example have been presented in Chapter IV. The objective here 

is to reexamine the resolution characteristics of the data with the adaptive spatial filtering 

procedure discussed in sections 5.4 through 5.6. A map describing the location of the 

survey line is replotted in Figure 5-22. The Surprise Valley survey was carried out with the 

participation of students and faculty of the Engineering Geoscience Group of the University 

of California, Berkeley, and staff of Lawrence Berkeley Laboratory. Funding was 

provided by both Trans-Pacific Geothermal Co. and the Department of Energy. The intent 

of the experiment was to ascertain the geoelectric structure of a region with extensive 

history of surface geothermal activity. 

Surprise Valley, California, is located exactly on the western boundary of the Basin 

and Range geological province of the western USA. Structurally, the valley is an extended 

N-S graben limited to the west by the Warner Mountain Range and to the right by Hays 

Canyon Range. The Warner Mountain Range lies within the well-studied Warner Plateau, 

and originated from the continuous accumulation of lava flows of basaltic composition. 

Subsequently its strata were subjected to compressional forces that resulted in a westward 

tilt of 15° to 20°. The normal faulting processes that gave rise to Surprise Valley are the 

result of episodic crustal extension effects that continue to this day in the western Basin and 

Range province. Tertiary volcanics are the main components of the sedimentary sequence 

in Surprise Valley, although a conspicuous accumulation of quaternary conglomerates 

reaches a maximum thickness of approximately 4 km toward the center of the Valley. 

For the MT evaluation of Surprise Valley, a survey line was oriented 

perpendicularly to the predominant geologic strike (approximately in the W-E direction.) A 

total of 43 contiguous and collinear dipoles were deployed along the line at a constant 

interval of 100m. In addition, 200 m orthogonal dipoles and pairs of induction coils were 

disposed at regular intervals to aid in the estimation of dimensionality of the underlying 

subsurface resistivity distribution. All electric and magnetic field signals measured along 

the survey line were referred to a fixed magnetic base station whose location is indicated in 

the lower right-hand corner of Figure 5-22. Even though apparent resistivity and 
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impedance phase curves for the orthogonal dipoles are not shown here, these revealed no 

significant lateral response variations except in the proximity of 'the Warner Range. 

Likewise, the recorded magnetic field variations along the line compared remarkably well 

with the magnetic variations recorded at the base station, and from this observation it was 

concluded that former could be neglected for all practical purposes. Finally, the geoelectric 

strike estimated at the orthogonal dipole locations confrrmed that the line was in effect 

aligned almost perpendicularly to the dominant regional strike . 

Electric and magnetic field data were collected at 45 frequencies, uniformly 

distributed at a rate of 10 samples per decade within the interval from 0.003 to 100 Hz. 

Apparent resistivity and phase pseudosections describing the Surprise Valley Zxy base 

impedances are displayed in Figures 5-23a and 5-23b, respectively. The longer than usual 

vertical axis in these plots was chosen so that the inverted resistivity sections could be 

described with a 1: 1 horizontal to vertical length scale. Both pseudosections reveal 

negligible surface static distortion on the Zxy impedances, especially when compared 

against the level of surface distortion effects exhibited by the White Pine CO. field 

impedances. However, enough lateral response variations are exposed in the 

pseudosections to call for a continuous reconnaissance of the surface electric response. 

Figures 5-24a, 5-24b, and 5-25a show the inverted resistivity sections obtained by 

adaptive spatial filtering and subsequent Bostick inversion of the Zxy base impedances 

using filter constant values of 1, 1.5, and 0.5, respectively. The linear axis representation 

for depth used in these plots is not intended to reflect the true vertical resolution 

characteristics of the field data, and is simply used to facilitate the geological interpretation 

of the results. For this same reason both horizontal and vertical axes are displayed with the 

same scale. In fact, an upper bound of 5 km for the depth scale is consistent with the depth 

range expected to optimally describe the lateral variations of subsurface resistivity 

considering that the survey traverse is only 4.2 km long. Finally, the estimated depths 

shown in Figures 5-24a, 5-24b, and 5-25a are measured below the 1300 m ASL elevation 

datum, which, incidentally, coincides with the lower limit of the elevation panel displayed 

in those figures. 

The filtering exercise with different filter constants, c, illustrates in a practical way 

how the optimal selection of this parameter is crucial to understanding the lateral resolution 

bounds with which the data can be interpreted. First of all, the values of the fIlter constant, 

c, used for the Surprise Valley traverse are smaller than those used with the White Pine 

CO. traverse because of the comparatively smaller surface static effects in the former. One 
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can see that for a f'llter constant value of 1.5, lateral detail in the inverted resistivity section 

has been practically 'eliminated, whereas for a value of f'llter constant below 0.5, electric 

static effects persist in the inverted resistivity section. To further clarify this last situation, 

Figure 5-25b shows the resistivity section derived by direct 1-D Bostick inversion·of the 

unfiltered base impedances. This figure illustrates the extreme case wherein electric static 

effects are completely unaccounted for in the estimation of a cross-section of subsurface 

resistivity. 

Exhaustive tests with different filter constants indicate that for the Surprise Valley 

data the critical region of c lies somewhere within 0.8 and 1. An optimal selection of filter 

constant in this range would require either additional geophysical and geological 

information or extensive numerical simulation work, or both. A criterion to be met when 

selecting c is that the inverted resistivity section be in qualitative agreement with the lateral 

and vertical variations of impedance phase. More specifically, the impedance phase 

pseudosection in Figure 5-23b indicates that the resistor on the left-hand side of the section 

has a limited vertical extent and that a conductive basement lies at the bottom of the section. 

Both of these features are adequately represented in the inverted resistivity section obtained 

with a f'llter constant of value 1 (Figure 5-24b), although the conductive basement becomes 

visible only when the depth axis is extended down to at least 10 km below the datum. For 

this purpose, a complementary resistivity section is displayed in Figure 5-26, wherein 

depths are measured with a logarithmic axis and down to 20 km. The depth and resistivity 

values shown in Figure 5-26 for this conductor are only approximate estimates in light of 

the fact that the estimated depth has already superseded the length of the traverse. 

On purely geologic grounds, the resistive feature visible on the left-hand side of the 

inverted resis,tivity section (Figure 5-24b) is consistent with the geometrical characteristics 

of the well-studied upper block of the Hot Springs Fault. Both surface geology and gravity 

data indicate that the latter is a normal fault and that it has an estimated vertical displacement 

of approximately 4 km (Hedel, 1981). The geoelectric imprint of a second normal fault is 

recognized between dipole locations 8 and 10. This corresponds to the Front-Range Fault, 

which delineates the geological boundary between the Warner Mountain Range (or more 

globally the Warner Plateau) and the Surprise Valley graben (Tsvi Meidav, Trans-Pacific 

Geothermal Co., personal communication). Both the Hot Springs Fault and the Front­

Range' Fault are the principal members of a general stair-step fault pattern that best 

describes the structural boundary of the Surprise Valley graben. The Hot Springs Fault 

appears to be the ascending conduit for the thermal fluids which feed the hot springs 
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located between dipole locations 20 and 22. Although the subsurface heating mechanism is 

not clearly understood, the water source. for those fluids is most probably the Warner 

Mountain Range itself. 

This brief geologic outline of the Surprise Valley region appears to be in qualitative 

agreement with the geoelectric features represented in Figure 5-24b. In particular, the 

sloping character of the resistive block on the left-hand side of this figure lends credence to 

normal nature of the Surprise Valley fault system. Also, the westward tilt exhibited by the 

Warner Mountain Range appears properly represented over the same portion of the inverted 

geoelectric section. From the basis of these results, the Surprise Valley field example 

shows that even in the absence of significant surface static effects, continuous sampling of 

the electric field extracts the maximum amount of lateral information from the subsurface 

resistivity distribution. 

S.10 Discussion and concluding remarks 

The synthetic and field data examples described in the previous show the 

importance of using contiguous electric dipoles for sampling the electric response from the 

subsurface. Both field examples indicate the need for much closer spacings between electric 

field sampling locations that has been used conventionally. In addition, the studies in this 

chapter indicate when electric field data have been acquired continuously along the survey 

line, spatial filtering of the tangential electric field component proves an efficient means to 

reduce the static component of the response. Further, a simple inversion of the inductive 

component that remains after spatial filtering provides a relatively accurate cross-section of 

subsurface resistivity. 

In connection with the prewhitening operator described in section 4.9, adaptive 

spatial filtering can be understood as a method to continuously update, laterally and 

vertically, the variations of local background resistivity along the traverse. The lower the 

sounding frequency, the larger the depth of penetration and the longer the distance along 

which the subsurface resistivity is averaged. Needless to say, the nature of these averages 

is intimately related to the diffusive mode in which the MT fields propagate in the 

subsurface. 

The crucial step of spatial filtering is to determine whether, at a given frequency, the 

induction component no longer dominates over the static component. Over low-contrast 

subsurface resistivity models, this occurs when the cutoff wavenumber of the low-pass 
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futer is inversely proportional to the Bostick depth of penetration in the homogeneous 

background (section 2.7). This is the nominal ~utoff wavenumber. However, because the 

Bostick depth of penetration can be biased by static effects, spatial filtering has to be tried 

with different cutoff wavenumbers until one is found which is in effect inversely 

proportional to the depth of penetration of the filtered impedance. The suppression of 

stronger than usual static distortion necessitates of a cutoff wavenumber even smaller than 

the reciprocal of the Bostick depth of penetration. This criterion remains consistent with the 

wavenumber bounds derived in Chapter IV for the maximum wavenumber that can be 

recovered from the subsurface resistivity distribution for a given frequency (or depth of 

penetration). 

The factor by which the nominal cutoff wavenumber of the low-pass fIlter is further 

reduced has been referred here to as the filter constant. Normally, the selection of an 

optimal filter constant requires the trial of several of them until, from inspection of the 

inverted resistivity sections, it is judged that all static effects have been properly accounted 

for. In the presence of frequency-dependent static effects, a low value of the filter constant 

may be appropriate for shallow depths of penetration, whereas for the inversion of deeper 

subsurface resistivity variations the required filter constant may be progressively increased 

to its maximum value. A limit to the lateral extent of this filtering process is set by the 

length of the traverse: even if data have been acquired at frequencies for which the depth of 

penetration may be larger than the traverse length, there will be no certainty that the inverted 

depths and resistivities have not suffered from a bias effect due to unaccounted for static 

distortion. 

Although the filter used in the synthetic and field examples above was 

parameterized as a discrete Hanning window, it appears that so long as both the cutoff 

wavenumber and the roll-off of the fIlter are carefully adjusted, different discrete filters may 

be designed to perform the spatial filtering of the electric field data. The Hanning window 

is attractive because it is symmetric and has simple properties. Filters with more 

sophisticated and even asymmetrical shapes may introduce bias of their own on the filtered 

sections unless they' are chosen to deal with specific characteristics of the data. Sasaki 

(1989), following a seemingly independent study of the sensitivity of dipole and Hanning 

window responses for the suppression of static effects advocated the use of a simple 

Hanning window. 

Also, in spite of the fact shown in Chapter IV that filtering (prewhitening) of 

electric field data can be done in the wavenumber domain, filtering in the space domain 
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offers much greater flexibility~ An important advantage of space-domain flltering over 

wavenumber-domain flltering is that it is much easier to compensate for edge effects with 

the former. For instance, the Wiener filtering procedure introduced in section 5.4 for the 

discretization of a Hanning window, takes into account edge effects in a most natural way. 

Moreover, wavenumber-domain filtering is only appropriate when the characteristics of the 

fllter remain the same for all the sites along the electric field array, otherwise repeated 

Fourier transformations will be necessary to perform flltering for as many variations of 

filter characteristics there are along the electric field array. 

Jones et al. (1989) have reported a study based on their interpretation of the 

"conventional" EMAP filtering. They mistakenly assumed that in the EMAP spatial filtering 

procedure the width of the Hanning window is determined as the inverse of a depth of 

penetration value estimated from the unflltered impedances. Because of this, they showed 

the EMAP spatial filtering may, in the presence of static effects, lead to oversmoothing of 

valuable information in the electric field data. To "avoid" this situation, they proposed 

instead to perform the filtering step in the wavenumber domain such that the frequency­

wavenumber properties of the filter could be tailored not to oversmooth valuable response 

characteristics that are known a priori from the subsurface. With so many flawed 

assumptions about the EMAP spatial filtering procedure in Jones et al.'s (1989) study, any 

explanatory note here is probably unnecessary. The only comment that seems pertinent, 

though, is that with an appropriate choice of filter constant, the adaptive spatial flltering 

process described in section 5.4 can be made to respect specific portions of the 

wavenumber-frequency spectrum of the unfiltered data, and thus minimize undesired 

smoothing. 

An important note regarding the way in which the filtered impedances can be 

inverted into a cross-section of subsurface resistivity is that, even though a simple I-D 

Bostick inversion may yield relatively accurate results, this is neither the only nor the 

optimal procedure available. Indeed, more sophisticated procedures of I-D inversion may 

be used with each one of the filtered EMAP impedances. In so doing, however, it must be 

remembered that the standard curves of flltered apparent resistivity and impedance phase 

(such as those shown, for instance, in Figures 5-6 and 5-9) do not obey the basic 

properties of conventional MT impedances (see section 5.6). Because of this, the use of a 

nonlinear procedure to carry out the I-D inversions becomes much more elaborate than the 

use of a straightforward frequency-by-frequency method such as the Bostick 

pseudoinverse. 
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At a given point along the electric field array, the modified 1-0 inverse of the 

filtered impedance would be done more or less in the following way. First, at the highest 

frequency a window width is adapted with the aid of equation (5.18), such that all 

remaining frequency samples are filtered with the same window. An exact 1-0 inverse is 

then applied to the impedance flitered this way, and only that portion of the inverted 

resistivity proflie is retained for which the depth is shallower or comparable to the product 

cW, where c is the filter constant and W is the window width. Second, the same spatial 

filtering is performed except that now the window width is increased to its next higher 

value. The new filtered impedance is then 1-0 inverted such that, once again, only that 

portion of the inverted resistivity proflie is retained for which the depth of penetration is 

comparable to the new cW product. Furthermore, the retained portion of the inverted 

resistivity proflie should not overlap with the portion derived in the previous filtering­

inversion step. This sequence of steps are repeated until all remaining values of W have 

been processed. Clearly, an inversion method with these characteristics exacts a much 

greater toll in computer time than the Bostick pseudoinverse. However, it can be used at 

only certain points along the survey traverse (for instance, in the neighborhood of well­

logging locations) and even some window-width values can be omitted from the analysis to 

simplify the computations. 

A next step of sophistication in carrying out the inversion of EMAP impedances 

consists in performing nonlinear iterative 2-0 TM inversions where the simulated data are 

spatially filtered at each iteration and then contrasted against the filtered field impedances 

until an appropriate match is attained. Both, 1-0 and 2-0 nonlinear procedures for the 

inversion of EMAP impedances remain as challenging tasks for future developments in the 

interpretation of continuously acquired MT data. 
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Figure 5·6. Apparent resistivity and impedance phase curves of the spatially filtered TM impedance at 
Site No.1 (a) and Site No.2 (b) (Figure 5-4) obtained using an unconstrained adaptive filter. Spatial 
fIltering was carried out assuming a 3 kIn long traverse composed of uniform and contiguous 100m electric 
dipoles. A filter constant, c, of value 2 was used to produce the results shown. Also, plots of the TE, TM 
(100 m dipole length) aJ'Id I·D responses are displayed for comparison. The I·D curves describe the response 
of a medium in which for (a) the surface conductor of Figure 5-4 has infmite lateral extent, whereas for (b) 
the surface conductor is not included. 
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Figure 5-7. Curves of Hanning-window width adapted with the unconstrained spatial filtering procedure at 
Site No.1 and Site No.2. The values of window width shown were used to produce the apparent resistivity 
and impedance phase curves of Figure 5-6 . 
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Figure 5-11. Geoelectric sections derived by spatial low-pass filtering and subsequent Bostick inversion 
of the TM impedances d~scribed in Figures 5-lOb and 5-IOc. The (a), (b), and (c) sections correspond to 
filter constants, c, of values 2,3, and 4, respectively .. 
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Figure 5-12. Apparent resistivity pseudosection of the spatially filtered TM impedance for the geologic 
noise model described in Figure 5-lOa. A filter constant, c, of value 3 was used to produce the 
pseudosection. 
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Figure 5-13. Geoelectric sections derived by spatial low-pass filtering and subsequent Bostick inversion 
of the TM impedances simulated for the model described in Figure 5-lOa, except that in (a) no surface 
overburden was present, and in (b) the overburden was set to have the same thickness variations as in 
Figure 5-10a and a constant resistivity of 10 nom. Both sections were obtained with the use of a filter 
constant, c, of value 3 (cf. to Figure 5-11b). 
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Figure 5-16. Geoelectric sections derived by spatial low-pass filtering and subsequent Bostick inversion 
of the TM impedances described in Figures 5-14b and 5-14c. Both sections were obtained with the use of a 
filter constant, c, of value 3. However, in (a) an elevation correction was applied by direct compensation of 
the dipole elevations, whereas in (b) the dipole elevations were compensated with use of the spatial 
fIltering procedure described in Figure 5-15. 
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Figure 5-17. Model for the study of adjustment distance effects. (a) is the model plot, and (b) and (c) 
are the simulated TM apparent resistivity and phase pseudosections, respectively. 
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Figure 5-18. Geoelectric section derived by spatial low-pass filtering and subsequent Bostick inversion of 
the TM impedances described in Figures 5-17b and 5-17c. The section was obtained with the use of a filter 
constant, c, of value 1.5. 
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Figure 5·19. Location map of the White Pine CO. test survey. The traverse included 84 contiguous 
electric dipoles (spans) with a common length of 244 m (800'). A single magnetic base station was 
deployed and data werecollected at 37 different frequencies, evenly distributed logarithmically in the band 
from 0.0015 to 488 Hz. 
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Figure 5-20. Apparent resistivity and phase pseudosections, (a), and (b), respectively; of the Zxy base 
impedances measured along the White Pine CO. traverse. For reference, the topographic profile is shown in 
the upper panel with elevations given in meters above the sea level (m ASL). 
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Figure 5-21. Geoelectric section derived by spatial low-pass filtering and subsequent Bostick inversion of 
the Zxy base impedances measured along the White Pine CO. traverse. The section was obtained with the 
use of a filter constant, c, of value 3. Depths are measured in meters below an elevation datum placed at 
1700 m ASL. 
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Figure 5-22. Location map of the Surprise Valley test survey. The traverse included 43 contiguous electric dipoles (spans) with a common length of 100 m. 
Orthogonal electric dipoles and pairs of induction coils were deployed at regular intervals along the traverse as well. The magnetic base station is shown in the tv 
lower right-hand comer of the map. Data were collected at 45 different frequencies, evenly distributed logarithmically in the band from 0.003 to 100 Hz. S 
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Figure 5·23. Apparent resistivity and phase pseudosections, (a), and (b), respectively, of the Zxy base impedances measured along the Surprise Valley 
traverse. For reference, the topographic profIle is shown in the upper panel with elevations given in meters above the sea level (m ASL). 
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Figure 5-24. Geoelectric sections derived by spatial low-pass filtering and subsequent Bostick inversion of the Zxy base impedances measured along the 
Surprise Valley traverse. (a) is the section obtained with a filter constant, c, of value 1, whereas (b) was obtained with a value of c equal to 1.5. Depths are tv 

measured in meters below an elevation datum placed at 1300 m ASL. ~ 
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Figure 5·25. Geoelectric sections derived by spatial low-pass filtering and subsequent Bostick inversion of the Zxy base impedances measured along the 
Surprise Valley traverse. (a) is the section obtained with a filler constant, c, of value 0.5, whereas (b) was obtained with a value of c equal to 0, that is to say, tv 

without spatial filtering. Depths are measured in meters below an elevation datum placed at 1300 m ASL. s:; 
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Figure 5-26. Geoelectric section derived by spatial low-pass filtering and subsequent Bostick inversion of 
the Zxy base impedances measured along the Surprise Valley traverse. The section was obtained with a 
filter constant, c, of value 1. Depths are displayed with a logarithmic axis from 500 to 20,000 m below the 
elevation datum placed at 1300 m ASL. 
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CHAPTER VI 

PROPERTIES OF EMAP IN 2- AND 3-D ENVIRONMENTS 

6.1 Introduction 

In Chapter V, methods used for the acquisition, spatial filtering, and subsequent 

inversion of EMAP impedances were tested on 2-D synthetic models assuming a line of 

measurements taken normal to strike. This chapter considers a more complicated field 

situation for the same methods, including both the case of a survey traverse oblique to 

strike and the presence of confined 3-D scatterers. Specifically, over 2-D media, it is 

shown that both TE and TM impedances can be approximated from the base impedances, 

Zxx and Zxy, when the survey traverse is laid out at an angle with respect to strike. 

Estimation of the geoelectric strike direction requires only one additional orthogonal electric 

dipole. However, with the occurrence of local 3-D static distortion, estimation of the 

regional strike, if any, is best done with an orthogonal line of contiguous electric field 

measurements. 

Over 3-D media, the synthetic EMAP model study presented here is aimed at 

evaluating the performance of spatial filtering over buried and surface scatterers; attention is 

paid to the cases where the line of measurements is either perpendicular or oblique with 

respect to the principal geometrical axis of the scat~erer. A critical point of this task is the 

study of EMAP responses when the survey traverse is offset from the 3-D scatterers. For 

instance, it is shown that measurements of the vertical magnetic field could be used to 

recognize the presence of lateral induction effects on the in-line electric field However, the 

suppression of electric static effects by way of spatial filtering is primarily controlled by the 

adjustment distance of the 3-D scatterer regardless of how the latter is transected by the line 

of measurements. 

This chapter also includes a case history based on a three-line EMAP survey carried 

out over the Sengan geothermal prospect in Japan. Tangential electric field data gathered 

along the three lines reveal a highly 3-D subsurface resistivity distribution. The objective 

here is to use the electric response measured at the intersection points between pairs of lines 

to estimate the geoelectric strike as a function of frequency. In so doing, spatial filtering is 

applied to the electric field measurements along each intersecting survey line to suppress 
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3-D static effects prior to the rotation of conventional MT impedances. It is shown that 

unsuppressed static effects may cause a significant bias not only on the induction strike but 

also on other MT parameters of dimensionality. As corollary to these studies, a simple 

technique is proposed for the acquisition of conventional MT impedances that can be used 

to minimize electric static effects in the estimation of induction and dimensionality 

parameters. 

6.2 Properties of EMAP in 2·D environments 

In an effort to improve the exploration 'potential of EMAP over 2- and 3-D 

geoelectric media, Sigal (1989) recently advanced a similar field procedure wherein, as 

shown in Figure 6-1, the contiguous electric dipoles are deployed in a "zig-zag" pattern; he 

did so seeking to obtain continuous estimates of all tensor impedance components along the 

line of measurements. Particularly, Sigal (1989) remarks that because EMAP measures 

only one electric field component, the standard field procedure (Figure 5-2) cannot yield 

estimates of the TE and TM impedances when the survey is performed in 2-D 

environments. The developments below, however, demonstrate that so long as the line of 

measurements is oblique with respect to strike, both TE and TM impedances can be 

estimated from measurements of the tangential electric field components without having to 

"zig-zag" the survey path. 

For simplicity, assume that the EMAP traverse coincides with the x-Cartesian axis 

(Figure 6-2). In the frequency domain, the relationships between the electric and magnetic 

field components measured along the survey line with the magnetic fields measured at the 

magnetic base station may be written as 

" B " B Ex = ZxxHx + ZxyHy , 

Hx = TxxH~ + TxyH~, and 

Hy =TyxH~ + TyyH~, 

(6.1) . 

(6.2) 

(6.3) 

where H~ and H~ are the x and y magnetic field components, respectively, measured at the 

base station, Ex is the tangential electric field, and Hx and Hy are the local magnetic fields. 

The notation Zxx and Zxy is used to designate base impedances (equation 5.4), and the 

terms Txx, Txy, Tyx, and Tyy are magnetic transfer functions (equations 5.5 and 5.6). 
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The standard defmition of MT impedance components, Zxx and ZxY' on the other 

hand, follows from the linear relationship 

(6.4) 

It is pointed out that in the EMAP field procedure the magnetic field needs not be measured 

at as many locations as the electric field. Typically, the lateral magnetic field variations are 

not as significant as the lateral variations of the electric field, and thus one can rely on much 

longer sampling distances to intercalate the pointwise variations of magnetic field along the 

survey traverse. With an interpolation scheme of this nature, local magnetic transfer 

functions can in turn be computed in the form suggested by equations (6.2) and (6.3) from 

the base magnetic fields. In this respect, substitution of equations (6.2) and (6.3) into 

equation (6.1) together with comparison with equation (6.4) yields explicit relations 

between the base and conventional impedances, namely, 

where 

Formulas relating EMAP (equation 5.7) and conventional impedances can be derived in 

similar fashion. The remaining elements of the impedance tensor, namely, Zyx, and Zyy, 
can only be calculated if the orthogonal electric field component, Ey, is measured as well. 

However, if at any given point along the line of measurements only one dipole is used to 

measure Ey there will be no guarantee that this measurement will not be spatially aliased. 

Sigal's (1989) zig-zag electric field path does yield continuous estimates of Ey , but, as 

intuitively seen from Figure 6-1, once the spatial ftltering length required to suppress static 

effects is a few times longer than a dipole length, the effective direction for ftltering will no 

longer be the y-axis. In fact, the longer the ftltering distance the ~ore parallel to the x-axis 

the effective direction for fIltering becomes. On the other hand, rotation of the electric field 

measurements into mutually orthogonal directions prior to performing spatial ftltering may 

project existing 3-D static effects in a rather adverse way (see sections 6.2.1 and 6.5 

below). 
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Suppose for the moment that the subsurface consists of only 2-D variations of 

resistivity. For this situation, Figure 6-2 illustrates both a line of measurements laid out at 

an angle, e, with respect to strike, and a Cartesian coordinate frame with its x'- and y'-axes 

in the directions parallel and perpendicular to strike, respectively. In the x'-y' coordinate 

frame, the E~ and E~ electric field components are described. by the uncoupled linear 

equations 

E~ = ZrMHy, and 

~=-ZTEHx, 

where the complex variables ZTE and ZrM are the TE and TM impedances, respectively, 

that characterize the geoelectric properties of the underlying 2-D medium. By 

counterclockwise rotation of the electric and magnetic field components E~, H~, and H~, 

respectively, into the x-y Cartesian coordinate frame, one obtains the expressions 

Zxx = (ZTE - ZTM)sinecos8, and 

Zxy = ZTEsin2e - ZTMcos28 

(6.5) 

(6.6) 

relating the TE and TM impedances with the Zxx and Zxy tensor impedance components 

measured with the x-y Cartesian coordinate frame. These expressions can only be 

implemented in practice when 8 is known. 

Equations (6.5) and (6.6) above indicate that whenever 8 is neither 0° nor 90° one 

can solve for both TE and TM impedances from measurements of Zxx and Zxy acquired 

along the oblique traverse. If e=oo then Zxx=O and Zxy=ZTM; if 8=90° then Zxx=O and 

Zxy=ZTE. Explicit relations for both Zrn and ZTM in tenns of the Zxx and Zxy impedances 

are 

ZTE = Zxxcot8 + Zxy, and 

ZTM = -Zxxtan8 + Zxy. 

(6.7) 

(6.8) 

For the common situation in which the magnetic field is sampled at only the base 

site, the TE impedances estimated via equation (6.7) will reflect only the lateral variations 

of TE electric field. Likewise, if the TE impedances are estimated from the Zxx and Zxy 

EMAP impedances, these will reflect variations of the ratio between the electric field -E~, 

and the primary magnetic field, H~x- On the other hand, usage of either local, base, or 



,. 

• 

... 

.. ' 

211 

primary magnetic field components does not modify the nature of the TM impedances. The 

mixture of both TE- and TM-like electric field responses that explains in general the Zxy 

(either base or EMAP) traverse impedances proves useful to understand how spatial 

filtering works when the line of measurements is oblique with respect to strike. 

By way of example, consider the geoelectric cross-section shown in Figure 6-3a. 

This corresponds to a 2-D vertical fault model projected at a 45° angle with respect to strike 
(the projection angle, e, defined as illustrated in Figure 6-2). The vertical fault separates 

rectangular blocks with resistivities of 100 and 1,000 n-m on the left- and right-hand sides 

of the section, respectively, and is terminated on the surface with a 10,000 n-m symmetric 

block (vertical and lateral dimensions of 100 and 500 m, respectively). At depth, the fault is 

underlain by a 10 n-m half-space buried 3 km below the surface. Figures 6-3b and 6-3c 

are the cross-sections of subsurface resistivity derived by Bostick inversion of the TE and 

spatially fIltered (fIlter constant, c, equal to 3) TM impedances, respectively. Both TE and 

TM impedances were estimated from the Zxy EMAP impedances using the formulas (6.7) 

and (6.8) and assuming primary magnetic field components instead of a laterally varying 

surface magnetic field. In tum, Zxy EMAP impedances along the survey traverse were 

simulated from the responses of 100 m-Iong contiguous electric dipoles. Because of the 

45° angle projection in the model section (Figure 6-3a), the traverse length used for spatial 

filtering was made 2 km longer than the standard normal-to-strike length of 4 km. The 

numerical simulations were performed in the frequency band from 0.001 to 1,000 Hz, at a 

rate of 5 samples per decade. Resistivity cross-sections derived directly from the Zxy 

EMAP impedances via spatial fIltering and subsequent Bostick inversion are shown in 

Figures 6-4b and 6-4c in association to fIlter constant values, c, of 2 and 3, respectively. 

The lateral resolution characteristics described in Chapter IV for both TE and TM 

impedance are well exemplified in Figures 6-3b and 6-3c. For instance, the progressive 

loss of high wavenumber harmonics with respect to depth is evidenced by the smoothness 

with which the vertical fault boundary has been recovered in each case. This loss of 

wavenumber harmonics is much more pronounced for the TE electric field than for the TM 

electric field. However, the TE electric field response exhibits better vertical resolution 

characteristics (the conductive basement is better resolved in this case) than the TM electric 

field. In contrast, the sections derived from the Zxy impedances are somewhat smoother 

laterally than the section derived from the estimated TM impedances, but do show a flatter 

basement. The difference in lateral behavior between the Zxy and TM resistivity sections is 

due to the superposition of TE electric field variations in the Zxy impedances, which even 
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though has acted in detriment of the high wavenumber harmonics, it has improved the 

vertical resolution characteristics of the section (increasing the value of fIlter constant, c, 

smooths the Zxy section laterally, but does not translate to a more severe loss of vertical 

resolution.) 

A second model example is shown in Figure 6-5a; this is a projected version of the 

geologic noise model studied in section 5.7.1. The survey traverse is laid out at a 45° angle 

with respect to strike, and consists of 100 m-long contiguous electric dipoles deployed 

along a total distance of 6 km. From these dipoles, Zxy impedances were simulated in the 

same frequency range and with the same sampling interval as in the previous example. 

Resistivity cross-sections derived by spatial filtering and subsequent Bostick inversion of 

the TM and Zxy impedances are shown in Figures 6-5b and 6-5c, respectively. In both 

cases, the spatial filter was adapted with a filter constant, c, of value 3. Barring the 

difference in traverse length (the effective length normal to strike is about the same), the 

inverted TM resistivity section compares well with the resistivity section shown in Figure 

5-11 b, and which was derived directly from the simulated TM impedances measured 

perpendicularly to the strike. On the other hand, even though the Zxy impedances have 

yielded a laterally smoother resistivity section than the estimated TM impedances, the 

former have been superior in resolving the conductive basement Likewise, the vertical gap 

between the most conductive block of the surface overburden and the buried rectangular 

block is better resolved in the ZXy section than in the TM section. Finally, as a parenthetical 

note, Figures 6-6b and 6-6c show the apparent resistivity and phase pseudosections, 

respectively, of the Zxx cross-coupling impedances. As evidenced by these figures, even 

though both amplitude arid phase may attain large values at some points, the 

pseudosections reveal a somewhat randomly distributed electric field response. In fact, this 

randomness helps explain why spatial filtering of the cross-coupling component 

consistently approaches zero for progressively longer averaging distances (see section 2.5), 

and thus why only the Zxy impedance is used to drive the adaptive spatial filtering 

procedure described in section 5.4. 

Because adaptive spatial fIltering is relatively harmless to the TE (purely inductive) 

electric field response, filtering performed on the Zxy impedances will suppress only the 

static component of the TM electric field response. In this regard, equation (6.6) shows that 

the influence of TE electric field effects on the filtered ZXy impedances will increase with 

increasing values of the angle, e, between the survey traverse and the normal-to-strike 

... 
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direction. Values of a over 45° cause the Zxy impedances to contain a larger proportion of 

the TE impedances than of the TM impedances. Conversely, values of a lower than 45° 

cause just the opposite effect. Thus, spatial filtering and subsequent inversion of the Zxy 

impedances may be thought of as a joint inversion of both TE and TM impedances when 

the survey traverse is laid out at an angle with respect to strike. A 45° traverse is the break 

even point where both TE and TM impedances are equally weighed in the inversion 

process. The tradeoff incurred on with the use of an oblique traverse, however, is an 

increase in survey length, the latter proportional to tan(a). A field procedure that can be 

implemented for the estimation of a is discussed below. 

6.2.1 Estimation of the strike angle 

The preceding analyses show that estimation of both TE and TM impedances from 

the Zxx and Zxy traverse impedances can only be accomplished if the strike angle, a, is 

known beforehand. This estimation requires measurements of the electric field orthogonal 

to the line of measurements. In 2-D environments, only one orthogonal dipole is needed to 
calculate a (Figure 6-2). Orthogonal and tangential electric field data acquired at the same 

control point can be assembled into a standard MT tensor, which in turn can be analyzed 

with standard techniques to yield an estimate of strike angle (see, for instance, Vozoff, 

1972). In addition, vertical magnetic field data may be acquired at the same point to 

properly discriminate between the strike and normal-to-strike directions. 

Even though a number of practical situations exist where the bulk MT response of 

the subsurface can be considered 2-D in a regional scale, often near-surface resistivity 

anomalies cause enough electric static distortion to severely bias the estimation of the 

regional strike angle by conventional techniques (see Groom and Bailey, 1989, for an 

excellent analysis of this topic) To circumvent this difficulty on the interpretation of 

conventional MT impedances, Groom and Bailey (1989) propose an ad-hoc matrix 

factorization for the 2x2 impedance tensor that can unravel regional strike directions in the 

presence of 3-D electric static distortion. However, because of the short electric field 

sampling distances that are normally used to acquire conventional MT impedances, Groom 

and Bailey's (1989) matrix factorization method is of limited use precisely where it would 

be most valuable. 

The procedure suggested here for the estimation of a regional 2-D strike angle under 

3-D electric static distortion is illustrated in Figure 6-7. This consists of the deployment of 
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an additional line of electric dipoles (a mini-EMAP line) perpendicular to the main line of 

measurements. Data acquired from these dipoles are amenable to the spatial filtering 

procedures described in Chapter V for the suppression of static distortion; the longer the 

orthogonal traverse the more efficiently the static distortion can be suppressed over a wider 

frequency range. However, when economic conditions severely constrain the deployment 

of a string of electric dipoles, ,one can be opt for the deployment of a single but longer 

dipole at regular spacings along the traverse (see the Surprise Valley field example in 

section 5.9). The disadvantage of a single longer dipole over a string of them is that the 

former may sometimes miss valuable information about the inductive response at the 

highest frequencies. 

Upon applying spatial filtering both along the mini-EMAP line and along the main 

survey traverse, the regional geOelectric strike angle, e, can be estimated at the intersection 

point (or points), and the TE and TM impedances computed from equations (6.7) and (6.8) 

at the remaining points along the line of measurements. In principle, spatial filtering along 

the mini-EMAP line should yield a depth of penetration comparable to that obtained with 

spatial rlltering performed along the main survey traverse at the same frequency. This 

specialized form of spatial filtering along orthogonal directions is tested with a field 

example in section 6.5. 

The location for the orthogonal mini-EMAP traverse (or long orthogonal dipole) 

should not be arbitrary, especially when the influence of 2-D geoelectric features is 

confined to only some portions of the survey traverse. For best results, the orthogonal 

mini-EMAP line should be deployed at a point (or points) where lateral induction effects are 

most conspicuous. Such points can be determined by inspection of the Zxx cross-coupling 

impedance. Barring the presence of 3-D electric static distortion, large lateral variations of 

Zxx are indicative of induction current oriented at an angle with respect to the survey 

traverse. It is at points where this occurs that the location of the mini-EMAP line (or longer 

orthogonal dipole) is most appropriate. 

6.3 EMAP simulation in 3-D environments 

Use of EMAP for the sounding of 3-D geoelectric media involves a few practical 

considerations, some of which are simple extensions of the ideas discussed above in 

reference to the sampling of 2-D surface electric field responses. In contrast, however, 

depending on their relative dimensions and depth of burial, confined 3-D scatterers often 

provide a weaker inductive MT response than 2-D scatterers with the same cross-section. 
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Moreover, over 3-D media there is always the possibility not only of transecting confined 

3-D scatterers at an arbitrary angle but also of sensing their static and inductive electric 

responses without having transected them at all. The simulation study presented in this 

section is aimed primarily at examining the performance of EMAP in these l~st two 

situations. To this end, surface electric and magnetic field data were synthesized with the 

3-D integral equation code of Wannamaker (1990) which, among other things, allows for 

outcropping scatterers. The standard frequency range from 0.001 to 1,000 Hz is 

considered, and includes 5 frequency samples per decade. Only straight survey traverses 

are studied and the convention adopted is that the x-axis coincides with the survey traverse 

and that the z-axis points downward into the earth. In all cases, Zxy EMAP impedances are 

computed from the responses of 100 m dipoles (simulated by numerical integration of the 

tangential electric fields) deployed end-to-end along the traverses. The model examples 

consist of (1) a simple buried 3-D scatterer and, (2) a combination of both surface and 

buried 3-D scatterers. 

6.3.1 A simple 3-D scatterer in a I-D background 

Both a plan view and a cross-section of the first model example are shown in 

Figure 6-8. The I-D background of this model is composed of a 250 n-m upper layer and 

a 1 n-m basement, the latter buried 4 km below the surface. A single 3-D scatterer is 

introduced in the form of a 1 n-m rectangular block buried at a depth of 100 m and with 

lateral dimensions of 700 m x 700 m and thickness of 300 m. The two survey traverses 

considered for the EMAP simulation are described in the plan view of Figure 6-8: Line 1 

transects the 3-D scatterer directly above it, and Line 2 is offset 200 m away from it. Both 

lines have a common length of 3 km. 

Apparent resistivity and phase pseudosections describing the simulated Zxy 

impedances along Line 1 are shown in Figures 6-9b and 6-9c, respectively. In Figure 6-9b, 

the static effect introduced by the buried 3-D scatterer on the inductive I-D background 

response is evident in the central portion of the pseudosection. Along Line 2, the 

corresponding apparent resistivity and phase pseudosections of the Zxy impedances are 

displayed in Figures 6-lOb and 6-lOc, respectively. Even though the model cross-section 

along Line 2 does not transect the 3-D scatterer, the Zxy apparent resistivity pseudosection 

in Figure 6-10b shows electric static effects superimposed on the inductive signature of the 

conductive basement. In contrast, the impedance phase pseudosection along the same line 
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shows significant lateral variations only at the highest frequencies, which can only be 

explained by the offset 3-D scatterer. 

Resistivity cross-sections derived by spatial filtering and subsequent Bostick 

inversion of the simulated Zxy impedances along Line 1 and Line 2 are shown in 

Figure-s 6-11b and 6-11c, respectively. Both sections were obtained with the use of a fllter 

constant, c, of value 2. In Figure 6-11 b, the lateral variations of the shallowest depth of 

penetration are determined by the underlying resistivity profiles, and this is why even at the 

highest frequency (shallowest depth of penetration) the buried 3-D scatterer gives the 

impression of a surface feature. In general, however, the section compares well with the 

adjoining model cross-section (Figure 6-11a). Along Line 2, spatial filtering proved 

successful in suppressing the electric static effect from the buried 3-D block and 

superimposed on the inductive signature of the conductive basement. However, even after 

spatial filtering has been performed, the relative proximity of the buried 3-D scatterer has 

left a clear imprint on the inverted resistivity section shown in Figure 6-11 b. Because the 

inductive signature of the 3-D scatterer is also visible in the impedance phase 

pseudosection, it is impossible to ascertain whether the scatterer is offset from the survey 

traverse without additional in-line field measurements. Deployment of an orthogonal dipole 

may be helpful in resolving this situation, but as emphasized in section 6.2 above, it may 

also be dangerous under complex static distortion if precautions are not taken to minimize 

spatial aliasing. A more viable alternative consists of making measurements of the vertical 

magnetic field at regular intervals along the survey traverse, as described below. 

The magnetic field measurements, Hz, made along the survey traverse can be 

written in terms of the primary magnetic field components, Hox and Hoy, with the linear 

relation 

~ ~ 

Hz = KzxHox + KzyHoy, (6.9) 

where the terms Kzx and Kzy are modified tipper transfer functions1• The functions Kzy 

and Kzx are mostly governed by inductive effects from conduction current parallel and 

perpendicular to the line of measurements, respectively. The combined lateral and 

frequency behavior of both tipper transfer functions provides indication of subsurface 

induction current either oriented at an angle with respect to the traverse or offset from it. 

For instance, along Line 2 of Figure 6-8, Figures 6-12b and 6-12c show the 

1 Vozoff (1972) has presented a similar linear expression with tipper components that relate the local 
horizontal and vertical magnetic fields. 

• 
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pseudosections of the real part of the tipper transfer functions Kzy and Kzx, respectively. 

Even though both pseudosections exemplify lower than practical tipper values, the 

prevalent positive response of the real component of Kzy together with the negligible 

response values of the real part of Kzx are indicative of an inductive scatterer located to the 

left side of the traverse, as is in fact the case . 

As stressed in in section 2.6, the secondary magnetic fields measured on the surface 

are much less sensitive to near-surface scatterers than the secondary electric fields are, and 

for this reason the gathering of vertical magnetic field data becomes an attractive procedure 

to ascertain induction effects that cannot be evaluated from tangential electric field 

measurements alone. However, in the presence of multiple scatterers, both laterally and at 

depth, care must be exercised to interpret the tipper measurements. In the most difficult 

cases the deployment of an additional line of measurements cannot be avoided. 

6.3.2 Surface and buried 3-D scatterers in a I-D background 

A slightly different version of the previous example is described in Figures 6-13 

and 6-14. Several degrees of complexity can be recognized in this new model regarding 

both the subsurface resistivity structure and the way in which the survey traverse is laid out 

with respect to the predominant current channeling paths in the 3-D scatterers. 

The I-D model background consists of a two-layer sequence in which the upper 

layer has a resistivity of 80 n-m and the lower layer is a 1,000 n-m half-space buried at a 

depth of 3.5 km. Surface resistivity anomalies are introduced in the model by way of three 

elongated rectangular blocks, two of which have a resistivity of 5 n-m, lateral dimensions 

of 800 m x 200 m and thickness of 50 m. The third surface block has a resistivity of 

500 n-m, lateral dimensions of 500 m x 2 km, thickness of 250 m and, most importantly, 

is oriented perpendicularly to the remaining surface blocks. A single buried 3-D rectangular 

scatterer is located in the upper layer of the 1-D background at a depth of 700 m. This last 

block has lateral dimensions of 2 km x 1 km and thickness of lkm. The three survey 

traverses considered for the simulation study have a common length of 4 km. 

A cross-section of subsurface resistivity along Line 1 is shown in Figure 6-15a. 

The corresponding apparent resistivity and phase pseudosections describing the simulated 

Zxy impedances along the same line are shown in Figures 6-15b and 6-15c, respectively. 

Similarly, model sections and impedance pseudosections for Line 2 and Line 3 are shown 

in Figures 6-16 and 6-17, respectively. This set of plots reveals rather interesting electric 
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static distortion effects. In particuhir, lateral deflection patterns in the distribution of surface 

conduction current are evidenced in the apparent resistivity pseudosections for Line 2 and 

Line 3. In contrast, the corresponding impedance phase pseudosections exhibit the same 

effects only at the highest frequencies. Also, static distortion effects caused by surface 

scatterers adjacent but not intersected by the survey traverse are visible in the apparent 

resistivity pseudosections simulated along Line 1 and Line 2. 

Resistivity sections derived by spatial fIltering and subsequent Bostick inversion of 

the Zxy impedances over Line 1, Line 2, and Line 3 are shown in Figures 6-18, 6-19, and 

6-20, respectively. For comparison, each of these figures includes also a resistivity section 

derived from Zxy impedances simulated without near-surface scatterers. The values of fIlter 

constant, c, used in the futering step were adjusted to minimize lateral smoothing of the 

inductive signature derived from the buried rectangular block. Because of this, in some of 

the sections the ruter constant is larger with the presence of near-surface static effects than 

without them (either 2 or 1, respectively). 

Even though along Line 1 the inverted resistivity section (Figures 6-18b) provides 

good indication to the lateral extent of the buried conductive block, its vertical boundaries 

are somewhat obscured by the resistive block directly above it. Also, the surface 

conductive slabs have caused a slight vertical distortion in the section, but the most 

interesting effect is located at their end points, where the lateral deflection of surface current 

(lateral current channeling) has produced the impression of a resistive feature. Without 

near-surface static effects (Figure 6-18c), the buried block is well determined both laterally 

and vertically, except that the resistivity recovered for this feature is approximately 10 times 

higher than its actual value. This discrepancy seems excessive especially when compared, 

for instance, against the resistivity value one would recover under similar circumstances for 

the case of a 2-D scatterer with the same cross-section. However, because in fact the 

induction response of a confined 3-D scatterer can be several times smaller than the 

response of a 2-D body with the same cross-section (the controlling parameters are depth of 

burial and strike length of the 3-D scatterer), the vertical resolution characteristics are not 

the same in both cases. An approximate I-D inversion technique such as the Bostick (1977) 

pseudoinverse is particularly sensitive to this situation. 

The inverted resistivity section for Line 2 (Figures 6-19b) shows lateral induction 

effects introduced by both resistive and conductive surface slabs at the shallowest depths, 

but still provides good indication of the buried rectangular block across the section. 
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However, as in the case of Line 1, the resistivity inferred for this feature is about 10 times 

higher than its actual value. Also, because of the fact that the scattering section of the buried 

block along Line 2 is smaller than its scattering section along Line 1, the same block 

appears slightly smoother laterally in Figure 6-19b than in Figure 6-18b. This situation is 

even clearer in the resistivity section inverted without the presence of surface static 

distortion (Figure 6-19c) . 

Along Line 3, the inverted resistivity section (Figure 6-20b) shows at the 

shallowest depths the presence of both the surface resistive block and an unexpected 

resistive anomaly. The latter anomaly is spurious and originates from the lateral deflection 

of conduction current that exists in the vicinity of the conductive slab. In effect, on the 

surface most of the conduction current is being channeled along the principal geometrical 

axis of the slab so that, slightly away from it, the absence of conduction current is 

equivalent to the presence of a resistive feature at the same point, thus the spurious 

anomaly. Another important feature of the resistivity section shown in Figure 6-20b is the 

excessive lateral smoothness with which the buried block has been recovered (especially 

when compared against the profiles that for the same block were recovered along Line 1 

and Line 2.) This situation is somewhat analogous to the 2-D test cases of section 6.2, 

where it was found that if the traverse is laid out oblique to strike then a proportion of the 

TE electric field response is automatically absorbed by the Zxy impedances. In similar 

fashion, in addition to the predominant TM-like induction component measured along 

Line 1 and Line 2, along Line 3 the Zxy impedances bear a significant proportion of the 

TE-like induction component due to induction current parallel to the principal geometrical 

axis of the buried block. Because of the inherent lateral smoothness of this TE-like 

inductive response, the resistivity section derived from the Zxy impedances along Line 3 

develops what is termed "lateral conductive leakage" at depth (see also Figure 6-20c). 

However, exactly as described in section 6.2 above, with approximate knowledge of the 

main geometrical axis of the causative scatterer, this smoothness may be somewhat reduced 

by decoupling the TM-like response in the Zxy impedances prior to spatial fIltering. 

6.4 Discussion of simulation results 

The 2- and 3-D synthetic model examples analyzed above indicate that spatial 

filtering of the surface electric field is an efficient procedure for the suppression of static 

effects even when the traverse is laid out at an angle with respect to the predominant 

geoelectric strike. Over 3-D media, spatial filtering is also adequate for reducing electric 
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static effects due to resistivity anomalies offset from the survey traverse. That the latter 

conclusion is correct can be intuitively demonstrated with the aid of Figure 6-21. In this 

figure, a closed contour of integration, r, for the line integral 

that describes spatial filtering applied to the electric field, E, is laid out over a surface 3-D 

scatterer responsible for static distortion. The contour r is closed below the surface with a 

semicircle of infinite radius such that the contribution from this segment portion of the 

contour becomes negligible for all practical purposes. In the DC limit, regardless of the 

way in which the contour is drawn on the surface (even in curvilinear fashion), Faraday's 

law shows that the electric field integral will vanish provided that the integration path has its 

end points outside the area of secondary field distortion. This simple physical construct 

indicates that suppression of 3-p electric static effects by way of spatial filtering does not 

require that the traverse be laid out directly over the causative body. The most important 

requirement, though, is that the traverse be long enough to include the spatial region of 

secondary electric static distortion. 

It was also seen from the synthetic model examples above that inversion of the 

electric induction component remaining after spatial filtering yields a relatively accurate 

cross-section of subsurface resistivity. However, several points should be made clear 

regarding this procedure of inversion. It was found that spatial filtering and subsequent 

inversion of the Zxy traverse impedances may sometimes lead to appreciable lateral 

smoothing ("lateral conductive leakage") of the resistivity section when the traverse is laid 

out at an angle with respect to the predominant geoelectric strike. This situation, far from 

expressing a detrimental characteristic of spatial filtering, is related to the obliqueness of the 

?,averse. More specifically, an oblique traverse introduces some amount of TE-like 

induction response on the Zxy impedances calculated from the tangential electric fields. 

Because the TE-like electric r~sponse varies more smoothly, laterally, than the TM-like 

response measured along a transect perpendicular to a principal strike direction, the 

induction component of Zxy remaining from spatial filtering will lead to a laterally smooth 

resistivity cross-section. Moreover, it should be recalled that the induction response of a 

buried 3-D scatterer with finite strike length is not as prominent as the induction response 

of a buried 2-D scatterer with the same cross-section. For this reason, the vertical 

resolution characteristics of the electric induction component are in general superior in 2-D 

media. 

.. 
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Lastly, inasmuch as spatial filtering is insensitive to the electric induction 

component, the spatially filtered impedances may retain the induction response of 3-D 

scatterers located laterally away from the survey traverse. Recognizing such lateral 

induction effects can be accomplished in various ways. It was stressed here that because 

the vertical magnetic field is affected by DC current channeling only in very pathological 

situations, measurements of this component may be interpreted to diagnose those 

situations. Pursuing similar objectives with the use of orthogonal dipoles, or sequence of 

orthogonal dipoles is explored below with a field example. 

6.S Sengan field example 

The Sengan exploration project was one of the most promising targets of a large 

research and development effort undertaken by the government of Japan to assess the 

geothermal potential of that country. The area of study is located in the border between the 

Akita and Iwate Prefectures of Honshu Island, as indicated in the location map shown in 

Figure 6-22. Previous reconnaissance studies in this region suggested an active geothermal 

zone at a depth of approximately 2 km; geological and geophysical studies almost 

immediately followed (see, for instance, Uchida et al., 1987, and Uchida, 1990). Use of 

seismic methods turned out to be impractical because of access problems, abrupt 

topographic relief and complicated surface geology. Thus, initially, MT and DC resistivity 

soundings were acquired at scattered locations in the area to understand basic properties of 

the andesite-rhyolite volcanic sediments underlying the quaternary surface deposits (mainly 

breccias and volcanic agglomerates) that exist in the proximity of the Hachimantai volcano. 

However, the subsequent interpretation of those data yielded inconclusive results mainly 

because of complicated 3-D response effects. 

It was at this point that in early 1988 the New Energy and Industrial Technology 

Development Organization (NEDO) of Japan, decided to finance the exploration of the 

Sengan geothermal project with the EMAP technique. This decision was partly made with 

the intent to ascertain whether EMAP was a viable technique for the exploration of other 

similarly complicated geothermal targets in Japan. The survey was contracted to the 

Japanese exploration company Marc-Rand Co., which in tum deferred the field data 

acquisition portion of the project to the now defunct US company Advanced Energy 

Technology . 

The Sengan EMAP project consisted of three survey traverses, hereafter referred to 

as Line A, Line B, and Line C, laterally extending over the most significant portion of the 
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geothermal reservoir as it was known from geological and geophysical data. A description 

of the survey parameters involved in the exploration of each line can be found in the table 

insert of Figure 6-22. Because of severe topography (Line A and Line B actually transect 

the Hachimantai volcano) and technical problems with the mobilization of equipment, a 

variable dipole was used along each line and, as can be seen from Figure 6-22, the electric 

field lines could not be laid out in straight lines. Locations of the magnetic base station and 

additional MT sites are indicated in Figure 6-22 as well. Tangential electric field data along 

Line B and Line C were gathered in the frequency band from 0.01 to 250 Hz at a rate of 7 

samples per decade. Along Line A, the frequency range of the measurements extended only 

from 0.06 to 250 Hz. Because of the curvilinear nature of the EMAP lines in the Sengan 
" project, the procedures described in Chapter V for the spatial fIltering of the Zxy traverse 

impedances require of some additional processing steps. These are summarized in the 

following lines. 

In the frequency domain, the relationship between the tangential electric field, Et. 

measured at a given point along the electric field array, and the magnetic field components, 

H~ and H~, measured at the base station is expressed by the linear equation 

where the terms Ztx and Zty are in-line impedances. In this last equation, the orientation of 

electric field component, Et. in general does not coincide with the orientation of either of 

the magnetic field components H~ and H~. The relation between the base impedances, Zxx, 
" and Zxy, and the in-line impedances, Ztx and Zty , can be obtained by projecting t~e 

magnetic field components H~ and H~ in directions parallel and perpendicular to each 

dipole along the electric field array. This procedure is illustrated in Figure 6-23, where the 

Cartesian coordinate frame x'-y' is used to describe the local orientation of each dipole 

(with the x'-axis parallel to the dipole direction), and the x-y coordinate frame is used to 

describe the magnetic field measurements acquired at the base station. With the rotation 

angle, <1>, between the two coordinate frames defined positive in the azimuthal direction 

(clockwise rotation), the relationship between the two sets of impedances is given by 

" Zxx = Ztxcos<l> + Ztysin<l>, and 

Zxy = -Ztxsin<l> + Ztycos<l>~ 

(6.9) 

(6.10) 
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Apparent resistivity and phase pseudosections of the Sengan base impedances, ZxY' 

computed with equations (6.9) and (6.10) are shown in Figures 6-24, 6-25, and 6-26 

along Line A, Line B, and Line C, respectively. A separate upper panel in these figures 

describes the corresponding topographic profile with elevations given in meters above the 

sea level (m ASL). The presence of significant static distortion is evidenced by localized 

vertical banding in the three apparent resistivity pseudosections. 

In carrying out spatial filtering and inversion of the Zxy base impedances, however, 

the latter should be computed from equations (6.9) and (6.10) only after spatial filtering of 

the in-line impedances has been performed. Spatial filtering is done using a slightly 

modified version of the adaptive spatial filtering procedure described in section 5.4. 

Acc~rdingly, along the curvilinear traverse both in-line impedances, Zor. and Zty are first 

filtered (here the main difference with the procedure described in section 5.4 is that both 

in-line impedances are f1ltered instead of simply the principal impedance component along a 

straight traverse) with a bootstrapping in-line filtering length, W. Upon filtering, an 

equivalent straight direction for the curvilinear electric field average (the integral JEodi) is 

estimated with a weighed average of the individual dipole responses included in the filtering 

length, W. This direction yields the rotation angle, cp, that is needed to compute the 

effective impedances, Zxx and Zxy, with the use of equations (6.9) and (6.10). An effective 

Bostick depth of penetration, ZB, computed from the impedance Zxy is then multiplied by 

the filter constant, c, and the resulting product compared against the flltering length, W. 

This filtering length is then varied until a match with the product CZB is found within the 

prescribed tolerance. The procedure is repeated at as many array locations and frequencies 

there are along each EMAP line. 

Figure 6-27 through 6-29 show the inverted resistivity sections derived by spatial 
"... 

filtering and subsequent Bostick inversion of the Zxy impedances along each line of the 

Sengan project. These impedances were obtained with the aforementioned spatial flltering 

and rotation procedure using a filter constant, c, of value 2. The resistivity sections 

compare well at their intersection points in spite of the fact that spatial filtering was 

performed independently along each one of them. An interesting feature shown in the three 

resistivity sections is a resistive uplift buried at a depth of approximately 1 km below the 

elevation datum (placed at 700 m ASL). Previous studies in the area have identified this 

resistive feature with a granitic intrusion. On the other hand, the prominent shallow 
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conductor in the three sections corresponds to the geoelectric expression of welded rhyolitic 

tuff and to a less extent of breccias and volcanic agglomerates, and on plan view correlates 

well with the limits of the Hachimantai volcano. 

Even though a detailed geoelectric interpretation of the Sengan EMAP data goes 

beyond the scope of this thesis; pseudosections and resistivity sections along the three lines 

show a complicated 3-D subsurface resistivity distribution. Attention is focused instead on 

whether spatial filtering can aid in determining unbiased MT parameters of geometrical 

dimensionality in the presence of elec~c static,distortion at the intersection points between 

lines. To this end, a comparison is made below between MT induction strike angles 

estimated with and without the use of spatial fIltering at the intersection points between Line 

A and Line B, and between Line A and Line C. 

Simulation studies aimed at understanding the effect of electric static distortion on' 

the estimation of dimensionality parameters have been reported before. For instance, 

Groom and Bailey (1989) simulated 3-D static distortion with an anomalous surface 

hemisphere embedded in a 2-D background medium. Park and Livelybrooks (1989), on the 

other hand, showed that the use of the popular impedance tensor determinant, although 

rotationally invariant, could be highly sensitive to 3-D static effects and thus lead to 

erroneous interpretations of the subsurface. However, field data studies dealing with the 

same problems have been scant or at best inconclusive because of insufficient control on 

the geoelectric characteristics of the underlying subsurface structure. The resistivity 

sections derived for the Sengan project do provide enough knowledge of the underlying 

resistivity structure to make this an attractive study. 

Figures 6-30a and 6-30b show the estimated strike direction at the Line A-Line B 

(AB) and Line A-Line C (AC) intersection points, respectively. In each figure, separate 

plots describe the frequency variations of the estimated rotation angle before and after 

adaptive spatial filtering of the in-line impedances along each intersecting line. Strike 

directions in these plots are measured with their true North azimuth. The full 2x2 MT 

tensors at the AB and AC points were assembled with the electric field components 

measured at the same points and the magnetic fields measured at the base station. In so 

doing, the measured electric fields were first projected to thex-y Cartesian coordinate frame 

at the base station. With this MT tensor, the strike angle was determined as the rotation 

direction which minimized the sum of the squares of the off-diagonal entries, Zxy and Zyx 
(Stodt, 1981). For the case of the filtered results, adaptive spatial filtering was performed 

.. 
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prior to rotation of the electric field measurements to avoid "leakage" of static effects in the 

projected components. 

The estimated strike angles shown in Figures 6-30a and 6-30b all lie within the 

second quadrant (or fourth quadrant, depending on the measuring convention), and both 

fIltered and unfIltered curves exhibit differences of at most 30°. At the AC intersection 

point, the difference between the two curves is largest at the highest frequencies. However, 

the most remarkable difference between the filtered and unfiltered curves appears at the 

lowest frequencies, where the estimated strike angles for the unfIltered curves at the AB 

and AC points smoothly asymptote 150°. In fact both of these curves overlap at 

frequencies below 10 Hz. On the other hand, even though the fIltered curves seem both to 

asymptote 120° instead of 150° at the lowest frequencies, they do not overlap. As a matter 

of fact, both of the fIltered curves suggest that the underlying resistivity distribution has no 

predominant strike direction. In contrast, without additional knowledge of the underlying 

resistivity structure, simple inspection of the unfIltered curves would lead one to believe 

that the ground is essentially 2-D below 10 Hz, an inconsistent result considering the 3-D 

character of the subsurface revealed by the three electric field lines. 

This simple example averts the potential danger of estimating MT parameters of 

induction from single-dipole measurements where conditions are not created to minimize 

spatial aliasing and suppress static effects. 

6.6 Conclusions and recommendations 

The 2- and 3-D evaluation studies presented in this chapter demonstrate that the 

EMAP field procedure is suitable for the exploration of complicated geoelectric 

environments. However, because the study of 3-D structures demands, in general, the 

profiling of MT fields in more than one direction, precautions should be taken to recognize 

3-D induction effects in the tangential electric fields acquired along a single traverse. 

Additional, field components should be measured along the traverse whenever possible. For 

instance, it was shown that the acquisition of vertical magnetic field data helps ascertain the 

presence of induction processes taking place laterally away from the traverse. Also, the 

deployment of orthogonal dipoles at certain locations allows one to estimate parameters of 

dimensionality that might, among other things, shed light to induction current flowing at an 

angle with respect to the line of measurements. However, because the acquisition of electric 

field data requires closely spaced sampling locations both to avert and suppress static 

effects, deployment of orthogonal dipoles with the required sampling conditions at all 
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locations may not be practical from an economic point of view. The studies presented in 

this chapter suggest that the orthogonal electric field could instead be sampled at a few 

points along the survey line either with a long electric dipole, or better, with a string of 

them. A mini-traverse of orthogonal dipoles not only minimizes spatial aliasing problems, 

but also lends itself to the use of adaptive spatial filtering to suppress static effects without 

excessive smoothing of the induction component at the highest frequencies. 

Under very special circumstances, when only one MT station is all that is needed 

for reconnaissance purposes rather than for detailed exploration work, the developments 

presented in this chapter suggest that the deployment of a "cross" of electric dipoles may be 

an adequate field procedure; this is shown in Figure 6-31. The number of dipoles 

positioned a.1:ong each line of the cross will be determined by the channel capabilities of the 

data acquisition system in use, excluding two channels that are necessary to measure the 

horizontal magnetic field. If desired, an additional channel could be used to measure the 

vertical magnetic component. This field configuration allows one to recognize and suppress 

static effects to at least a depth of penetration comparable with the length of each line of the 

cross. It may also be used to calibrate the survey parameters (for instance, dipole length, 

traverse length and frequency range) that are needed to study the underlying resistivity 

structure prior to embarking upon detailed work along a continuous survey line. 

Regarding the length of the survey traverse, it was emphasized above that (1) it 

should be comparable with the depth of penetration at the lowest frequency to allow 

adequate suppression of static effects, and (2) it should be consistent with the adjustment 

distance of the 2- or/and 3-D scatterers (see sections 5.7.3 and 6.4). In connection with this 

second requirement, there have been important studies to assess distortion effects caused 

by large-scale induction current processes. Among these studies, Mackie et al. (1989), and 

more recently, Madden and Mackie (1990) have shown, for instance, that coast effects may 

cause a significant low-frequency induction bias even at points located tens of kilometers 

away from the ocean-continent boundary (vertical anisotropy of the crust). The same 

studies indicate that, within sedimentary basins, so long as the sounding frequency is low 

enough to cause the depth of penetration to be larger that the lateral and vertical dimensions 

of the basin, local induction effects fall-off and crustal anisotropy becomes a dominant 

factor in the inductive response from the subsurface. Both of these studies recommend that 

2- or/and 3-D numerical simulation be used to assess regional distortion effects in the 

measured data and hopefully to correct for them before engaging into detailed interpretation 

tasks. To this end, they recommend that all available geological and geophysical 
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infonnation be compiled and fed into a preliminary synthetic model. A similar conclusion 

has been recently advanced by Singer (1991). 

Recognizing regional distortion effects in the measured data is critical to the success 

of EMAP for crustal and in general for deep sounding studies. Long survey traverses are 

necessary for the suppression of static effects at frequencies for which the zone of inductive 

response is tens of kilometers deep. In addition, lateral distortion effects of dimensions 

comparable with the length of the traverse (for instance, ocean-continent boundary effects, 

and the exotic channeling of currents flowing around sedimentary basins) should be 

evaluated either with complementary electric and magnetic field measurements (for 

instance, with the use of long electric dipole "crosses" such as those described in 

Figure 6-31) or with 2- and 3-D numerical simulation studies or with both. It should be 

emphasized, however, that because in most cases numerical simulation cannot reproduce all 

of the features that are needed to accurately evaluate regional distortion effects, the results 

obtained this way should be examined with great care. They will be, at best, a fIrst-order 

approximation to the intricate regional distribution of subsurface resistivity. The lack of 

adequately sampled MT data cannot be replaced in any endeavor to understand the 

geoelectrical properties of the earth's crust. 
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Figure 6-2. EMAP survey traverse laid out over 2-D ground at an angle, a, with respect to strike. A 
single orthogonal dipole is used for the estimation of a . 
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(Figure 6-3a). (b) and (c) are the geoelectric sections derived by spatial filtering and subsequent Bostick 
inversion of the Zxy EMAP impedances using filter constant values of 2 and 3, respectively. 
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Figure 6-7. Graphical description of the suggested field procedure for the estimation of a regional 2-D 
strike angle, e, under 3-D electric static distortion. 
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Figure 6·8. Plan view and transverse section of a simple 3·D scatterer buried in a I-D background 
(3-D model No. I). Line 1 and Line 2 are EMAP survey traverses. The vertical scale has been slightly 
distorted. 
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Figure 6·13. Plan view of a geoelectric model with surface and buried 3-D scatterers embedded in a 1-0 background (3-D model No.2). The accompanying 
transverse section is shown in Figure 6-14. Line 1, Line 2, and Line 3 are EMAP survey traverses. 
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Figure 6·14. Generalized transverse section of 3·D model No.2 (Figure 6-13). The vertical scale has been 
slightly distorted. 
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Figure 6-17. (a) Cross~section of 3-D model No.2 (Figure 6-13) along Line 3. (b) and (c) are the 
apparent resistivity and phase pseudosections. respectively. of the Zxy EMAP impedances. 
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Figure 6-18. Geoelectric sections derived by spatial filtering and subsequent Bostick inversion of the 
simulated Zxy EMAP impedances along Line 1 of 3-D model No.2 (Figure 6-14). (b) and (c) are the 
inverted resistivity resistivity sections with and without surface 3-D scatterers, respectively. The model 
cross-section along Line 1 is shown for comparison in (a). Filter constants, c, of value 2 and 1 were used 
to obtain the resistivity sections in (b) and (c), respectively. 
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Figure 6-19. Geoelectric sections derived by spatial filtering and subsequent Bostick inversion of the 
simulated Zxy EMAP impedances along Line 2 of 3-D model No.2 (Figure 6-15). (b) and (c) are the 
inverted resistivity resistivity sections with and without surface 3-D scatterers, respectively. The model 
cross-section along Line 2 is shown for comparison in (a). A filter constant, c, of value 1 was used to 
obtain both inverted resistivity sections. 
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Figure 6-20. Geoelectric sections derived by spatial filtering and subsequent Bostick inversion of the 
simulated Zxy EMAP impedances along Line 3 of 3-D model No.2 (Figure 6-16). (b) and (c) are the 
inverted resistivity resistivity sections with and without surface 3-D scatterers, respectively. The model 
cross-section along Line 3 is shown for comparison in (a). A filter constant, c, of value 1 was used to 
obtain both inverted resistivity sections. 
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Figure 6-21. Diagram describing the way in which the closed-line integral fE·dl is evaluated over the 
surface (the survey traverse), and along a semicircle of infinite radius, to suppress static effects. In the DC 
limit, regardless of the integration path the surface integral will vanish if its end points coincide with 
locations where the secondary electric field distortion is negligible. 
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Figure 6-22. Location map of the Sengan EMAP project. Lines A, B, and C are the survey traverses. Field parameters along each line are detailed in the table N 

insert. Also, locations are shown for the magnetic ba<;e station, conventional MT sites, and drill-holes. ~ 
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Figure 6-23. Graphical description of the procedure that is used to transform the measured in-line 
impedances into base impedances along a curvilinear EMAP traverse: the magnetic fields measured at the 
base site are rotated in the directions parallel and perpendicular to each one of the electric dipoles. 
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Figure 6-24. Apparent resistivity and phase pseudosections, (a), and (b), respectively, of the Zxy base 
impedances measured along Line A of the Sengan EMAP project (Figure 6-20). For reference, the 
topographic profile is shown in the upper panel of both pseudosections with elevations given in meters 
above the sea level (m ASL). 
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Figure 6-25. Apparent resistivity and phase pseudosections, (a), and (b), respectively, of the Zxy base 
impedances measured along Line B of the Sengan EMAP project (Figure 6-20). For reference, the 
topographic profile is shown in the upper panel of both pseudosections with elevations given in meters 
above the sea level (m ASL). 
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Figure 6-26. Apparent resistivity and phase pseudosections, (a), and (b), respectively, of the Zxy base 
impedances measured along Line C of the Sengan EMAP project (Figure 6-20). For reference, the 
topographic profile is shown in the upper panel of both pseudosections with elevations given in meters 
above the sea level (m ASL). 
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Figure 6-27. Geoelectric section derived by spatial filtering and subsequent Bostick inversion of the Zxy 
base impedances measured along Line A of the Sengan EMAP project (Figure 6-20). The section was 
obtained with the use of a filter constant, c, of value 2. Depths are measured in meters below an elevation 
datum placed at 700 m ASL. 
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Figure 6.28. Geoelectric section derived by spatial low-pass filtering and subsequent Bostick inversion of the Zxy base impedances measured along Line B of 
the Sengan EMAP project (Figure 6-21). The section was obtained with the use of a filter constant, c, of value 2. Depths are measured in meters below an tv 

elevation datum placed at 700 m ASL. ~ 
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Figure 6-29. Geoelectric section derived by spatial low-pass flltering and subsequent Bostick inversion of 
the Zxy base impedances measured along Line C of the Sengan EMAP project (Figure 6-22). The section 
was obtained with the use of a filter constant, c, of value 2. Depths are measured in meters below an 
elevation datum placed at 700 m ASL. 
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Figure 6-30. Induction strike angles, a, estimated from MT impedance tensors assembled at the two line 
intersections of the Sengan EMAP project (Figure 6-20). (a) and (b) are plots of strike ar.gle (measured as 
true North azimuths) with respect to frequency estimated at the Line A-Line B and Line A-Line C 
intersections, respectively, with and without spatial filtering along each intersecting line. 
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Figure 6·31. Diagram showing the suggested field procedure for the estimation of conventional MT 
. impedances in the presence of electric static distortion: a "cross" of electric dipoles is used to reduce spatial 
aliasing and ultimately to suppress static effects by increasing the length of the electric field average with 
decreasing values of frequency. All electric dipole measurements are referred to a common magnetic station, 
which may also include a verticaImagnetic field sensor. 
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CHAPTER VII 

SUMMARY 

Se miente mas de la cuenta por lalta de lantas(a 
Tambien la verdad se inventa 

Antonio Machado 

The acquisition of MT data should be approached from the perspective of the well 

established sampling theorem. In essence, the recovery of lateral resistivity variations in the 

subsurface requires the sampling distance to be in accord with the spatial characteristics of 

the signal, that is to say of the electric of magnetic surface field response. It has been 

shown in practical applications of magnetotellurics that lateral electric field variations can be 

substantial along relatively short distances; in fact, lateral discontinuities in the surface 

electric field are not uncommon. Conversely, the lateral magnetic field variations are never 

discontinuous and in general are characterized by smooth and small oscillations about the 

primary magnetic field. These properties indicate that inference of lateral variations in the 

subsurface resistivity distribution requires much shorter sampling distances for electric 

than for magnetic fields. Unfortunately, magnetic field variations alone are not sufficient to 

uniquely determine the lateral and vertical characteristics of the subsurface resistivity 

distribution. The measurement of electric field variations cannot be avoided if one is 

interested in recovering specific values of depth and resistivity for the geoelectric features 

whose MT response can be discerned on the surface. Thus, a natural question to ask is, 

how short should the sampling distance be to guarantee optimal recovery of the lateral 

resistivity variations both laterally and at depth? The answer to this question lies precisely 

in the well known sampling theorem for signals, which states that the maximum lateral 

wavelength that can be truly recovered from the sampled signal is equal to one-half the 

sampling distance. Of course, when nothing is known a priori of the signal that is being 

sampled, it is appropriate to use as short as possible a constant sampling distance. With 

respect to frequency, and ultimately with respect to depth, the diffusive nature of the MT 

response dictates that the depth of response increases with decreasing values of the 

sounding frequency. This implies that, to guarantee the recovery of a laterally varying 

geoelectric feature in the subsurface, one needs to select a specific value of frequency or 
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range of frequencies for which the effective depth of response secures a measurable EM 

backscattering effect 

The major difficulty in sampling electric field signals is that their amplitude 

response can be significantly affected by shallow and spatially localized geoelectric 

features. In consequence, the measured electric field amplitude at decreasing values of 

frequency often does not bear a one-to-one relationship with geoelectric features buried at 

increasing depths of response. This unfortunate phenomenon has been referred to as the 

static effect in allusion to its DC nature. In contrast, barring the occurrence of certain 

complex 3-D current distortion effects, the electric phase response does reflect the EM 

backscattering of features buried at increasing depths when one lowers the sounding 

frequency. Because of this, the phase response is in effect purely inductive. However, in 

keeping with the principle of constant nastiness, the electric amplitude response is needed 

to determine lateral and vertical resistivity variations because the phase response does not 

define them uniquely. Thus, in summary, lateral measurements of the electric field 

response should be made in a way that guarantees both adequate sampling of the large 

amplitude variations and recognition of static effects. Strictly speaking, over structurally 

complex 3-D environments, the electric field sampling procedure required to satisfy the 

requirements of the sampling theorem entails the deployment of sounding stations not only 

along a survey line, but over a surface grid. However, without losing sight of the 3-D and 

tensor nature of the surface MT response, this thesis followed a practical historical 

progression of magnetotellurics and concentrated on the 1- and 2-D aspects of the problem. 

In- spite· of the fact that a linear model for the MT response is incomplete for the 

accurate description of EM scattering in practical exploration situations, it allows one to 

perform a model-independent study of the vertical and lateral resolution characteristics of 

the technique, particularly in connection with the continuous profiling of MT fields. 

Over 1-D media, a simple logarithmic parameterization of both frequency and depth 

of the linearized solutions yields a convolutional model response relationship between the 

vertical variations of subsurface resistivity and the measured electric field data. This 

suggests that the logarithmic depth scale is natural for the diffusive MT response, and that 

the logarithmic sampling that is normally used with respect to frequency is consistent with 

the resolving power. A Wiener estimation procedure to map frequency variations of the 

. electric field into resistivity variations along the logarithmic dep~ scale reveals that the use 

of more than 8 frequency samples per decade is unnecessary considering the resolving 

power of noisy MT data. Numerical experiments with the I-D linearized inverse suggest 
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that the Rytov (logarithmic) parameterization of the electric field data is superior to the Born 

(algebraic) parameterization. In general, it can be stated that the linear system equations 

hold not only when the resistivity contrasts are small, but also when, regardless of the 

magnitude of the resistivity contrast, when the frequency variations of the electric field 

response are small. Because numerical experiments with the linearized I-D inverse produce 

reasonable results in cases where the assumption of linearity is not valid, one can conclude 

that the physical insights gained from this simplified method of solution are not too far 

from reality. The linearized inverse could be easily extended to a nonlinear method of 

inversion in which the inverted model is continually updated either by way of a Born series 

or by iterative checks between the data and the simulated results. 

When the linearized MT forward problem is specialized for 2-D subsurface 

resistivity distributions, it becomes evident that the resolution with which one can estimate 

lateral and vertical variations of subsurface resistivity is determined by the particular electric 

or magnetic field quantity fed to the inversion process. Moreover, a wavenumber-domain 

formulation of the 2-D linear inverse problem shares a few of the characteristics of the I-D 

linearized inverse, and for this reason the latter can be used as a benchmark in lateral 

resolution studies of 2-D MT data. An ad hoc factorization of the wavenumber-domain 

linear equations reveals that a vertical response kernel is common to all the TM and TE field 

components. This kernel exhibits an exponential loss of response to the lateral detail in the 
subsurface with increasing values of the product y=21tkzB, where k is the linear 

wavenumber, and ZB is the Bostick depth of penetration at a given frequency. The 

distinction among the various TM and TE field components is defined by a wavenumber 

prefilter which operates on the lateral variations of subsurface resistivity and whose cutoff 

characteristics are essentially controlled by the sounding frequency. For the TE magnetic 

field components, the prefilter produces a null in the surface response at the DC 

wavenumber. On the other hand, the prefilteris a low-pass filter for TE electric field data 

and a high-pass fIlter for TM electric field data. The high-pass filter nature of the TM 

electric prefilter is related to the way in which the static effect is impressed on the electric 

field component. In contrast, the TE electric field component is purely inductive and hence 

is devoid of static effects, thus the low-pass fIlter nature of its associated prefilter. A 

significant consequence of the high-pass filter nature of the TM prefilter is that stability in 

the inversion of TM electric field data can be naturally achieved by allowing the prefilter to 

operate on the data instead of on the lateral variations of subsurface resistivity. When this is 

done, the prefilter behaves as a stable low-pass filter of the measured TM electric fields. 

The resulting operation is thus equivalent to a data prewhitening step in which the cutoff 
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wavenumber of the prewhitening operator decreases with decreasing values of frequency. 

Compared to the TE prefllter, however, the TM prewhitening filter has a slightly wider 

wavenumber band, and it is for this reason that TM electric field data possess better lateral 

resolution characteristics than TE electric field data. With regard to the magnetic field data, 

the null of the magnetic prefilter at k=O causes these components to be insensitive to the 

I-D background of the subsurface resistivity distribution. Furthermore, the relationship 

between the TE electric and magnetic prefilters indicate that all surface TE field components 

are linearly related with respect to position. 

The 2-D linearized inverse predicts that, below the Nyquist wavenumber dictated by 

the sampling distance, and at a 1 % noise-to-signal ratio in the measured MT data, the 

maximum wavenumber that can be recovered from the lateral variations of subsurface 

resistivity distribution is approximately the inverse of the Bostick (1977) depth of 

penetration. This result permits one to perform simple approximate calculations to estimate 

the lateral resolution that can be expected from an MT survey aimed at determining the 

geometrical characteristics of a given target Numerical experiments with the 2-D linearized 

inverse corroborate that the underlying physical principles hold even when the low-contrast 

assumption is violated, and are in agreement with the expected lateral and vertical resolution 

characteristics of both TM and TE electric field data. The inversion algorithm developed in 

this thesis consists of a sequence of pseudo I-D inverses at each lateral wavenumber to 

estimate the real and imaginary wavenumber harmonics of the 2-D subsurface resistivity 

distribution. Inverse Fourier transformation is subsequently used to derive a model estimate 

in the space domain. A space-domain formulation can be the subject of future research 

efforts with special attention to the role of the TM prewhitening operator in the new 

domain. Likewise, an iterative Born inversion procedure could be used to continually 

. update the lateral and vertical changes of the backgroun~ resistivity which was assumed 

constant in the linearized inverse formulation. 

Electromagnetic Array Profiling (EMAP) is one MT profiling technique where the 

requirements stipulated by the sampling theorem in the measurement of lateral electric field 

variations are satisfied. The EMAP field procedure consists of the deployment of electric 

dipoles end-to-end along the survey line. This configuration also enables one to perform 

spatial flltering on the measured electric field variations in a controlled fashion. In fact, the 

use of spatial flltering can be seen as a practical way to incorporate the role of the TM 

prewhitening fllter over geoelectric media where the assumption of a constant background 

resistivity is simply out of the question. Moreover, analysis of the 3-D equations derived 

.. 

.. 
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under the assumption of a linear MT response elicits a similar prewhitening wavenumber 

fIlter to be used with electric field data collected on a grid. Such equations indicate that if 

spatial filtering is to be applied to suppress 3-D static effects, this has to be performed in a 

directional fashion. In plain physical terms, spatial fIltering over 3-D geoelectric media 

reflects the action of the JEodl integral inherent to the acquisition characteristics of an 

individual electric dipole. In so doing, frequency dependent static effects in the electric 

response are reduced and the remaining electric component may be interpreted with 

procedures suitable for a purely inductive MT response. The way in which spatial filtering 

of the tangential electric field is performed essentially consists of simultaneous lateral and 

vertical calibration of the cutoff characteristics of the prewhitening filter. This is done 

directly in the space domain via a nonlinear fixed-point iteration procedure wherein the 

width of the applied window is varied until the filtered electric field produces an estimate of 

the depth of response which is a multiple of the window width. The constant that linearly 

relates the width of the filtering window with the depth of penetration estimated from the 

filtered electric field can be judiciously chosen to control the degree of lateral smoothing 

inflicted upon the original data to reduce static effects. In fact, over homogeneous media, 

the adaptive calibration of the low-pass filter produces an identical filter response to that of 

the TM prewhitening filter derived from the 2-D linearized inverse. A possible avenue for 

future research in connection with the optimization of the prewhitening filter consists of a 

recursive double sequence of both spatial filtering and I-D localized inversion. This thesis 

exploited a simplified view of such an inversion method by using a Bostick (1977) 

pseudoinverse to map the ftltered results into depth and resistivity estimates along the line 

of measurements. 

In practice, spatial ftltering of the electric field requires that all the measurements be 

synchronously acquired. Knowing the random source characteristics of MT data, this is a 

rather strong demand on a field procedure that may potentially consist of tens or even 

hundreds of electric field dipoles. A way to circumvent such a difficulty consists in the 

deployment of a fixed base magnetic field station while electric and magnetic field 

measurements are acquired along the survey line. The in-line electric field measurements 

referred to the fixed magnetic base station yield stationary impedances that can be used in 

place of actual electric field values to carry out the spatial ftltering step. A further refmement 

to this field procedure consists in performing an areal average of the magnetic field 

measurements acquired within the survey area to estimate the primary magnetic field. 

Because the magnetic field is insensitive to the I-D background, its areal average will tend 
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to represent the constant primary magnetic field for a large enough number of magnetic 

field sensors adequately disposed along and about the survey line. The estimated primary 

magnetic field can then be used to normalize the in-line base impedances such that the latter 

exclusively reflect the lateral variations of the secondary electric field away from the I-D 

background response. 

A collection of 2-D simulation examples which includes strong surface static effects 

as well as highly nonlinear response characteristics, yields a very encouraging evaluation 

for the adaptive spatial filtering of electric field data. Further, the feasibility of EMAP is 

attested to by three field examples over geological environments where lateral variations in 

the geoelectric response simply cannot be discounted. These are prime examples of actual 

exploration situations where only after electric field data have been gathered in continuous 

fashion does one come to fully appreciate the extent to which unheeded static effects can 

bias the subsequent geoelectric interpretation when the sampling distance is of the order of 

kilometers. Needless to say, electric field data acquired in continuous fashion does not 

exclusively lead to a method of inversion where spatial filtering is enforced. Any of the 

parametric nonlinear inversion algorithms reported elsewhere in the EM geophysical 

literature may be used on these data. 

Ever since EMAP came to light, much unnecessary emphasis has been placed on 

the limitations of the technique for imaging practical 3-D geoelectric media or even over 2-D 

media when the survey line might be oblique to strike. It was found here that, over 2-D 

media, the tangential electric field measurements can yield estimates of both TE and TM 

impedances provided that the survey line is oblique with respect to strike. To estimate these 

two impedances, it is necessary that the strike angle be known beforehand. This can be 

accomplished by deploying an orthogonal dipole at a single point along the survey line. 

Use of EMAP over geoelectric environments where there is a prevalent 2-D induction strike 

at depth but in which there are also 3-D surface scatterers, may call for a small-scale 

version of an EMAP line in the orthogonal direction in order to satisfy the requirements of 

the sampling theorem and to be able to suppress possible static effects. The suggestion 

made in this thesis is that instead of acquiring data with orthogonal electric dipoles at 

exactly the same locations where tangential electric field data are gathered, one can use 

either much longer dipoles or, better, strings of them, perpendicular to the main survey line 

with lateral spacings equal to a few times the sampling distance used to measure the 

tangential electric field. The collection of well sampled (here "well" means with satisfaction 

of the sampling theorem and with static effects previously suppres~ed) orthogonal electric 

" 
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field data helps considerably in· ascertaining whether the tangential electric fields measured 

along the survey line are affected by the induction response of either offset scatterers or 

geoelectric features whose principal geometrical axis is oblique to the survey line. 

Alternatively, because the vertical magnetic field is distorted by static effects only in very 

pathological situations, measurements of this component along the survey line can serve to 

indicate the presence of such induction effects at a much lower operational cost 

On the other hand, the use of spatial filtering (or data prewhitening) to suppress 

static effects on 3-D synthetic electric field data and also on 2-D electric field data sampled 

obliquely with respect to strike, yields very encouraging results. A simple Bostick 

inversion carried out on the induction electric component that remains after fIltering yields a 

relatively accurate resistivity cross-section below the line of measurements. The only case 

that deserves special mention is the one in which the survey line crosses the principal 

geometrical axis of the inductive scatterer at an angle. In this case, the tangential electric 

field measurements are a "blend" of both TE-like and TM-like induction response 

components. Given that the lateral TE electric field response is much smoother than the TM 

electric field response, the degree of lateral smoothness in the inversion will depend on the 

proportion of the TE-like response that has "leaked" into the tangential electric field 

measurements. The larger the angle between the survey traverse and the principal 

geometrical axis of the scatterer, the larger the proportion of TE-like response, and 

therefore the smoother the inverted resistivity section. Because the TE and TM electric field 

responses often bear different pieces of information regarding the nature of the vertical and 

lateral variations of subsurface resistivity, it is recommended that, whenever applicable and 

possible, the two mode responses be separated and subsequently interpreted in independent 

ways. A joint interpretation of both mode responses may be pursued after individual 

inversions have been obtained. 

Estimation of dimensionality parameters and regional strike angles can be biased by 

3-D static effects. It was shown that, with the use of orthogonal lines of electric dipoles, 

static effects can be suppressed prior to performing estimation of MT parameters from 

tensor impedances. In fact when the use of a continuous line of electric field measurements 

is impossible because of economic limits, an option is to deploy a "cross" of electric 

dipoles with a maximum number of dipoles determined by the capabilities of the acquisition 

system. Alternatively, such a cross can be used to calibrate both the frequency range and 

the dipole length to be used along a continuous line of measurements before embarking 

upon the full-scale operation. 
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Clearly, in an EMAP survey the depth of penetration that can be achieved without 

bias due to static effects is proportional to the length of the p-averse. This may seem a 

serious practical requirement if the technique is to be applied in crustal studies, where the 

desired depths of penetration are of the order of 50 km or more. Furthermore, as 

emphasized by Mackie at al. (1988), and Madden and Mackie (1990), at those depths of 

response one cannot discount current distortion effects of a regional scale such as ocean­

continent boundaries, large sedimentary basins, and mountain ranges. In most of these 

situations, it would be extremely difficult to deploy a continuous electric field line, even 

when dipoles could be made as long as perhaps 1 km. It should be reiterated, however, that 

the need for closely spaced electric field measurements is not a whim but simply an effort to 

satisfy the requirements imposed by the sampling theorem, and this becomes more 

important when, in addition to recognizing anomalous conductive zones in the crust, one is 

interested in determining specific values of resistivity and depth of such features. A field 

procedure that seems a good compromise between deploying a very long line of electric 

dipoles (that perhaps has to cross cultural-noise areas, heavily trafficked roads, rivers and 

high mountain passes), or positioning a dozen or so single MT stations at 10 km intervals, 

consists of first carrying out a calibration survey with one or more continuous lines of 

dipoles from which somewhat accurate knowledge of the background crustal geoelectric 

structure could be obtained with some interpretation procedure that also minimizes static 

distortion effects (spatial fIltering is but one of such procedures) and can ascertain 3-D 

induction effects along the line(s) of measurements. Subsequently, single MT stations or 

dipole-crosses of MT stations could be deployed at larger spacings and tied in with the 

. measurements inferred from the calibration survey. In so doing, particular attention should 

be paid to the lateral variations of impedance phase, which are only in extreme cases subject 

to static distortion. With the lateral variations of impedance phase, and to some extent of 

apparent resistivity, referred to the calibrated resistivity section, one could "strip out" local 

distortion effects and derive approximate values for both resistivity and depth below the 

single MT site useful at a crustal sounding scale. Numerical simulation of somewhat well 

determined regional distortion effects, such as ocean-continent boundaries, could be done 

prior and after the survey to ascertain their influence on the measurements acquired both 

along the continuous calibration(s) line and also at isolated MT sites. 

.. 
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APPENDIX A 

A PLANE-WAVE DECOMPOSITION FOR THE EM FIELDS 
EXCITED BY A BURIED ELECTRIC DIPOLE 

A.I Introduction 

This appendix is divided into two mutually related sections. First, a plane-wave 

decomposition is obtained that describes the EM fields radiated by an electric dipole in an 

unbounded conductive medium. Second, the expressions for the homogeneous plane-wave 

expansion are generalized for the case in which the same dipole is buried within a 

homogeneous half-space and the observation point lies on the interface between the 

conductive half-space and perfectly insulating air. The latter problem has been dealt with by 

Wait, 1961, Moore and Blair, 1961, Banos, 1966, and Bannister and Han, 1968, among 

others. However, in solving the same problem the approach presented here is best suited 

for the derivation of the MT transfer functions introduced in Chapter ll. 

A.2 Plane-wave decomposition of the electric dipole fields in a 
homogeneous medium 

For convenience, the electric dipole is oriented in the x-direction and is centered at 

the origin; the z-axis points downward (Figure A-I) Two distinct media are considered in 

this problem: Medium 1 is above the x-y plane and medium 2 below; in both media the 

conductivity is constant and equal to 0'0' 

The differential equation satisfied by the electric field is analogous to equation 
(2.9), and reads as 

V~(r) + 1(2 E(r) = iOlIl o(r) i , (A.l) 

where 1(2 = -iOlIlO'o, and r = x i + y 1 + z k . 

A solution for the electric field E in equation (A. 1) and its associated magnetic field, 

H, is now pursued via two transverse vector potentials following the principles of the L-M­

N decomposition described by Morse and Feshbach (1953), namely, let 



E j= E jM + E jN , and 

H j = H jM + H jN, 
j = 1,2 

(A.2) 

(A.3) 

276 

where the subscript j identifies the medium in which field observations are made, and the 

subscripts M and N denote transverse, or solenoidal (divergenceless) fields derived from a 

vector potential. The use of a longitudinal (curl-free) component in equations (A.2) and 

(A.3) is not required because both Ej and H j are divergenceless and satisfy the 

homogeneous Helmholtz equation. Electric and magnetic fields related to the transverse 

vector potentials are constructed from the relations 

EM = Vx'Pk, and 

HN=VxQk, 

(A.4) 

(A.S) 

where 'II and Q are scalar potentials satisfying the homogeneous Helmholtz equation, 

V
2
('P,Q) + x:2('P,Q) = O. 

The M and N electric and magnetic fields, EM and HN, respectively, are coupled with their 

magnetic and electric field counterparts described by equations (A.4) and (A.S) via 

Maxwell's equations, i.e., 

(A.6) 

1 " HM=--. -VxVx'PMk. 
lCJ)Jl. 

(A.7) 

Here, solutions for the potentials 'II and Q are chosen in the form of Cartesian 

scalar plane-wave functions, expressed as 

Qj = QOj e- i k • r, 

j = 1,2 

(A.8) 

(A.9) 

where 'II 0 and Q o are complex constants, and 1C = ; i + 11 j + ~ k is the propagation 

vector, with 

;2+ 112+ ~2= x:2 , (A. 10) 

.. 



.. 

such that the wavenumber ~ is explicitly written as 

~ = ±~ }\.2_ ~2 _ Tl2 • (A.ll) 
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The sign opted for in equation (A.ll) is the one that yields positive real and negative 

imaginary parts for ~, so that both of the solutions (A.8) and (A.9) remain finite as the 

observation point, r, recedes away from the dipole . 

A closed-form solution for the total electric field vector in equation (A.I) is written 

in terms of the Cartesian plane-wave vector components as 

In similar fashion, 

H(r) = _1_ f' (+ 00 H(~,Tl) e- i 1C. r d~ dTl. 
(21t) 2 J 00 

(A. 12) 

Thus, in solving for both E(r) and H(r), the derivations below are aimed at finding a 

solution for the plane-wave vector harmonics E(~,Tl) and H(~,Tl) contained in their integral 

representation form. 

Substitution of equations (A.8) and (A.9) into equations (A.4) through (A.7) and 

finally into (A.2) and (A.3) yields the following expressions for the EM fields in media I 

and 2: 
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Finally,matching the required electric and magnetic field boundary conditions on the plane 

z=O, where the surface current density is expressed as K s(i;,ll) = (1) i, gives way to the 

following coefficients for the Cartesian plane-wave functions: 

(A. 13) 

(A. 14) 

Equations (A.13) and (A.14) substituted into equations (A.8) and (A.9) constitute the 

solution for the Cartesian vector wave functions describing the EM perturbation of an 

electric dipole in an unbounded conducting medium. 

A 0 3 Plane-wave decomposition of the fields due to an electric dipole buried 
in a half-space 

The electric dipole is now located at the point (O,O,ZO), as indicated in Figure A-2. 

There are three separate vertical domains for this problem: medium 1 is the insulating half­

space z<O, medium 2 is the region O::;;z~o of the conductive half-space directly above the 

dipole, and medium 3 is the space, z>zo, below the dipole. Boundary conditions on the 

half-space interface are accounted for by introducing both primary and reflected plane wave 

fields in media 1 and 2, as well as transmitted fields in medium 1. Let 

'P2 = 'Po e-i~Zo e-ilC2° r, and 

02 = 00 e-i~ e-ilC2• r 

describe the Cartesian scalar wave potentials associated with the primary electric and 

magnetic fields in medium 2. Likewise, the scalar wave potentials associated with the 

plane-wave fields reflected downward from the air-earth interface can be written as 

'Pi = R,¥'Po e-i~zo e-ikr" r, and 

1""\' _ R 1""\ e-i ~Zo e-ilC'" r 
:'~2 - QUO 2 , 

where Ry and RQ are the Fresnel reflection coefficients of the air-earth interface, and the 

propagation vectors le2 and lei point upward and downward, respectively. The fields 

'.' 

.. 
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transmitted into the insulating half-space, on the other hand, are derived from the scalar 

potentials 

'PI = T'I''Po e-i~lZo e-ik1o r, and 
n 1 = Tono e-i~lZo e-ik1 or, 

. where T'I' and To are the Fresnel transmission coefficients associated with the air-earth 

interface. The wavenumber ~1 in these last expressions satisfies the dispersion relation in 

the insulating half-space, namely, ~2 + ,,2+ ~i = 0, in which case, 

where the negative sign is preferred to render both scalar wave functions 'P 1 and nl finite 

as the observation point recedes away from the interface into the insulating half-space. 

Substitution of the above scalar potentials into equations (A.2) through (A. 7) yields 

the following solution for the Cartesian plane-wave vector functions in medium 2: 

E2 = [-i1l(1+ R'I'e-i2~Z)'P2 + ~~ (1 - Roe-i2~Z)n2]i + 
cro 

[i~(1+ R'I' e-i2~Z)'P2 + ~~ (1 - Roe-i2~)n2]j + 

~2 +,,2 ..... 
cro (1 + Roe-i2~z)n2 k, and 

H2 = [-.~~ (1 - R'I'e-i2~Z)'P2 - i,,(1+ Roe-i2~)n2]i + 
lCOJ.l 

[ ."~ (1 - R'I'e-i2~Z)'P2 + i~ (1+ Roe-i2~)n2li -
lIDJ.! 

22· 
~ .+" (1 + R~-i2~)'PO k . 

lIDJ.! 

In medium 1, on the other hand, the plane-wave vector functions are given by 

El = (-i"T'I''P2 + ~~l Tonv i + 
crl 

"~l ,,~2 + ,,2 ..... 
(i~T'I''P2+-Ton2)j+· TOn2k], and 

crl crl 

HI = (_~~lT'I''P2 - i"Ton2) i + 
lCOJ.l 
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The required continuity of the tangential electric and magnetic fields on the half­

space interface (z=O) decouples the field solutions related to each of the scalar potentials 'P 

and n. Thence, solutions for the Fresnel reflection and transmission coefficients are 

R'P = ~ - ~1 = ~ + i-V ~2 + T\2 

~ + ~1 ~ - i-V ~2 + T\2 
Rn = -1 , 
T'P = 1 + R'P , and 
Tn= 1 +Rn=O. 

(A.15) 

(A. 16) 
(A. 17) 
(A.18) 

With these solutions, the Cartesian plane-wave vector components for the EM fields on the 

half-space boundary (z=O) are finally written as 

. ):2 2(1 + R'P ) 2 
lCOf..1 ~ + T\ ): 

Ex(~,T\,CO) = { --- [ 2 2 ] - -~- }e-i~zo , 
i~ ~ + T\2 i~cro 

(A.19) 

(A.20) 

Ez =0, (A.21) 

(A.22) 

(A.23) 

(A.24) 

Equations (A.19) through (A.24) can be modified to describe plane-wave vector 

components in connection with an electric dipole shifted from the z-axis at the location 
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(xQ,YO,zo). The solution comes directly from the shifting property of the Fourier transform 

(A.12), namely, 

E(x,y/xO,yo) = ~ f1+ 00 E(~,T\/O,O) (e- i;xo e- il1Yo) e- i;X e- i l1Y d~dT\, 
(21t) - 00 

(A.25) 

where the vector E(~,T\/O,O) is the plane-wave vector component for the electric field of an 

electric dipole buried at a depth zo below the origin (equations A.19 through A.21). The 

vector E(x,y/xo,yo), on the other hand, is the total electric field related to the offset dipole. 

For an obseIVation point (x,y) fixed at the origin, equation (A.25) also yields the Fourier 

transform, with respect to the source-point coordinates, Xo and Yo, of the total electric field 

vector E(O,O/xo,yo), namely, 

In summary, when the obseIVation point is fixed at the origin and the dipole is moved 

laterally, the Fourier transform that describes field response values with respect to dipole 

location can be obtained by reflection about the point (~=O,T\=O) of the expressions (A. 19) 

through (A.24). The wavenumber expressions that result from this operation are the MT 

transfer functions introduced in Chapter II . 
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Figure A-I. First source configuration for the plane-wave expansion: an infinitesimal electric dipole is 
placed at the origin of an unbounded homogeneous conductive medium. The dipole is polarized in the x­
direction. 
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Figure A-2. Second source configuration for the plane-wave expansion: the electric dipole of Figure A-I 
is now immersed in a conductive half-space at the location (O,O,ZO). 

0, 

• 



... 

... 

lit 

~' 

APPENDIX B 

ADDIDONAL EXAMPLES OF I-D BORN INVERSION 

B.1 Description 

This appendix contains additional examples that illustrate the perfonnance of the 

linearized I-D inversion procedures studied in Chapter Ill. In all cases, data have been 

numerically simulated for 64 frequency samples, evenly distributed in logarithmic fashion 

and spanning the interval from 0.0005 to 1,000 Hz. The figures are self-explanatory, and 

their format follows all of the plotting conventions established in Chapter ill. 
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Figure B-1. A study of contrast effects over a resistive step: Rytov inversion. 
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Figure B·l (continued). A study of contrast effects over a resistive step: Rytov 
inversion. 
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Figure B·2. A study of contrast effects over a conductive step: Rytov inversion. 
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Figure B-2 (continued). A study of contrast effects over a conductive step: Rytov 
inversion. 
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Figure B·3. A resistive anomaly: (a) Born inversion, (b) Rytov inversion, and (c) Rytov 
inversion with a lower-bound model range constraint. 
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Figure B-3 (continued). A resistive anomaly: (a) Born inversion, (b) Rytov inversion, 
and (c) Rytov inversion with a lower-bound model range constraint. 
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(b) 

Figure B-4. A conductive anomaly: (a) Born inversion, (b) Rytov inversion, and (c) 
Rytov inversion with an upper-bound model range constraint. 
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(c) 

Figure B-4 (continued). A conductive anomaly: (a) Born inversion, (b) Rytov 
inversion, and (c) Rytov inversion with an upper-bound model range constraint. 
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Figure B-S. Resistive and conductive anomalies combined: Born inversion. 
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Figure B-6. Resistive and conductive anomalies combined: Rytov inversion. 
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Figure B-7. Smith and Booker's (1988) model example and Rytov inversion. 
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APPENDIX C 

LATERAL LINEAR DEPENDENCE AMONG THE SURFACE 
2-D TE FIELDS 

C.I Introduction 

The purpose of this appendix is to demonstrate that the linear dependence among all 

three surface TE fields embodied in the Born approximation is applicable to any 2-D 

resistivity distribution within the earth. To this end, wavenumber solutions for the surface 

electric and magnetic fields are derived directly from Maxwell's equations. It is shown that 

these expressions exhibit the claimed linear relationships. 

C.2 Maxwell's equations and linear dependence 

Assuming a right-hand Cartesian coordinate frame in which the x axis is normal to 

strike and the z axis is positioned on the surface and points downward (Figure 4-1), the 

governing Maxwell's equations for the TE mode are 

aEy(x,z,co) 
ax 

aEy(x,z,co) 
az 

= -icoJ..L Hz(x,z,co), 

= icoJ..L Hx(x,z,co), and 

aHx(x,z,co) aHz(x,z,co) _ ( ) E ( ) 
az - ax - a x,z y x,z,CO , 

(C.1) 

(C.2) 

(C.3) 

where the usual eic.ot time dependency is assumed and a=l/p. Dividing equation (C.1) 

through by Eo(co) and Ho(co), the surface electric and magnetic fields associated with a 

homogeneous half-space of resistivity po, respectively, and subsequently transforming the 

field ratios into the wavenumber domain yields 

~ 2k-Hz(k,co) = -Zo(co) ~ Ey(k,co), 
coJ..L 

(CA) 

where 

H (k 0 ) = 1'{Hz(x,O,CO)} 
z "co Ho(co)' 



E (k ° ) = 1"{Ey(x,O,CO)}" 
y "CO Eo(co) , 

2o(CO) is the surface wave impedance of the homogeneous half-space, given by 

Zo(CO) = - Eo(co) = - Yl'T""ic.o-J.1-p-o 
Ho(co) 

296 

(C.5) 

(equation 2.12), and k is the linear wavenumber in the x direction. The defmition of the 

spatial Fourier transform with respect to x, identified with the operator 1", is as described in 

section 4.3. Substitution of equation (C.5) into (C.4) and further algebraic simplification 

leads to the expression 

(C.6) 

where the variable yis defined in equation (4.19). 

To obtain a similar wavenumber-domain expression between the surface magnetic 

field components Hx and Hy , consider the solution of equation (C.3) in the air, where 

cr(x,z)=O and the dispersion relation is given by 

(C.7) 

where ~ is the complementary wavenumber that determines the Laplacian fall-off of the 

fields away from the surface into the the air. Dividing equation (C.3) through by Ho(co) and 

specializing the exponential solution for Hz(x,z,co) on the surface, yields the wavenumber­

domain expression 

(C.8) 

where 

H~ (k ) = <r{Hx(x,co)} 
x ,co .£ Ho(co) . 

Substitution of the explicit value for ~ derived from equation (C.7) into equation (C.8) 

leads to 

(C.9) 

where U(y) is the sign function defined by equation (4.37). This last expression is 

equivalent to the space-domain Hilbert transform relations 

,.. 
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1
+00 

H ( ° ) 
-1. Hz(xo,O,CO) dx d 

x x, ,co - 7t Xo _ x 0 , an 
- 00 

1
+00 

H (x ° co) = 1. Hx(xo,O,CO) dx 
z" 7t Xo-X 0 

- 00 

(Bracewell, 1965), which indicate that the surface solutions for both Hx and Hz are spatial 

analytic components of each other. 

Hence, the developments above demonstrate that the spatial linear dependence 

among the TE field components found with the Born approximation equations is extensive 

to all situations. In practice, this linear dependency should be taken into account, for 

instance, when devising procedures to concomitantly invert a combination of two or three 

of the components into a cross-section of subsurface resistivity. Even though the addition 

of data makes the inverse problem more overdetermined, the linear dependency exhibited 

by some of the data may bias performance parameters such as the goodness of fit 

In a different context, because the electric field component is related to the magnetic 

field components by the single-pole high-pass wavenumber filter 1/,,{, the estimation of 

magnetic field data from electric field data across strike is a very unstable operation even 

with continuously sampled data. On the other hand, even though the estimation of electric 

field data from magnetic field data requires a stable low-pass wavenumber filtering 

operation, this process will not yield the DC wavenumber harmonic because as 

demonstrated in section 2.6, the magnetic field data are insensitive to such harmonic. 
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