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ABSTRACT

A novel tidal analysis package (red_tide) has been developed to characterize low-amplitude non-

phase-locked tidal energy and dominant tidal peaks in noisy, irregularly sampled, or gap-prone time

series. We recover tidal information by expanding conventional harmonic analysis to include prior

information and assumptions about the statistics of a process, such as the assumption of a spectrally

colored background, treated as non-tidal noise. This is implemented using Bayesian maximum

posterior estimation and assuming Gaussian prior distributions. We utilize a hierarchy of test cases,

including synthetic data and observations, to evaluate this method and its relevance to analysis

of data with a tidal component and an energetic non-tidal background. Analysis of synthetic test

cases shows that the methodology provides robust tidal estimates. When the background energy

spectrum is nearly spectrally white, red_tide results replicate results from ordinary least squares

(OLS) commonly used in other tidal packages. When background spectra are red (a spectral

slope of −2 or steeper), red_tide’s estimates represent a measurable improvement over OLS. The

approach highlights the presence of tidal variability and low-amplitude constituents in observations

by allowing arbitrarily configurable fitted frequencies and prior statistics that constrain solutions.

These techniques have been implemented in MATLAB in order to analyze tidal data with non-

phase-locked components and an energetic background that pose challenges to the commonly used

OLS approach.
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1. Introduction

Tides are a major driver of oceanic variability. They are forced by the gravitational effects of the

moon and sun and have a ubiquitous presence throughout the global ocean. The tide generating

potential was described harmonically by Sir George Howard Darwin in 1883 (Doodson and Lamb

1921) and was further developed by Doodson, with the Darwin symbols for tidal constituents

(e.g. O1 and M2) still in widespread use. The ubiquity of tides in oceanic data has motivated the

development of techniques for determining tidal parameters. Two types of methods are frequently

used to analyze tides: discrete Fourier transform-based methods and least squares-based harmonic

analysis. Discrete Fourier transform-based methods use the energy contained in discrete frequency

bands to diagnose the amplitude of tidal constituents. Least squares harmonic analysis has been

used for decades (Munk and Hasselman 1964; Zetler et al. 1965) to estimate the amplitude and

phase of tidal signals at known tidal frequencies.

Tidal signals can be separated into two components: the relatively predictable barotropic tide and

the more variable baroclinic tide (Ray and Mitchum 1996a). The predictability of the barotropic

tide is a consequence of its stable phase and amplitude due to its large scale, rapid propagation,

and the regularity of the astronomical forcing. Classical harmonic analysis at tidal constituent

frequencies is effective for analyzing time series of sea surface height or bottom pressure that are

dominated by the barotropic tide and are characterized by sharp, narrow peaks in the frequency

domain at tidal constituent frequencies. The interannual lunar nodal cycle (18.61 years) and lunar

perigee (8.85 years), which are not directly resolvable in typically short tidal records, cause tidal

modulations that affect the interpretation of tidal records (Haigh et al. 2011). The t_tide package,

for example, accounts for these cycles using nodal corrections (Pawlowicz et al. 2002). However,

other processes can modulate the tidal peaks.
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In the case of the baroclinic tide, which is more variable in amplitude and phase, propagation

through varying stratification or non-linear interaction with other waves leads to amplitude and/or

phase modulation via the transfer of energy to the internal wave continuum spectrum and a loss of

coherence with the astronomical forcing (Chiswell 2002; Rainville and Pinkel 2006). Interaction

with eddy fields, background currents, and the seasonal cycle in stratification all cause internal

tides to vary in time (Ray and Zaron 2011). This variability spreads the tidal energy across a band

of frequencies centered at the tidal forcing frequency, forming a tidal cusp (Munk et al. 1965);

the spreading of energy in the frequency domain can pose challenges to describing the predictable

tidal component. The component of tidal energy resulting from interaction with other processes in

the ocean appears has been referred to by different names in the literature, including the incoherent

tide (e.g. Eich et al. 2004), the non-stationary tide (e.g. Ray and Zaron 2011), and more recently

the non-phase-locked tide Zaron (2019). We have chosen the term "non-phase-locked" because it

is associated purely with tides and their generating potential, whereas the other terms overlap with

wave and statistics terminology. Nevertheless, these other terms are reasonable, as this component

of the tides is incoherent with astronomical forcing and is non-stationary in time.

Throughout this paper, model refers to the series of basis functions (harmonics) at frequencies

chosen to approximate (or to model) a given time series, while the coefficients of these harmonics

are referred to as model parameters. Solving for these parameters to find the best estimate of

the underlying tidal component of the observations is the goal of least squares tidal harmonic

analysis. The choice of basis functions is central to the technique, and the designation of these

functions as a model for observations follows standard least squares terminology (e.g. Wunsch

1996). Conventional least squares tidal harmonic analysis models a time series as a sum of

sinusoids at tidal frequencies, with amplitudes and phases optimized to best fit observations. This

contrasts with analysis via the discrete Fourier transform in several important ways: Fourier analysis

4
Accepted for publication in Journal of Atmospheric and Oceanic Technology. DOI 10.1175/JTECH-D-21-0034.1. Brought to you by UNIVERSITY OF CALIFORNIA San Diego - SIO LIBRARY 0219 SERIALS | Unauthenticated | Downloaded 05/11/22 05:52 PM UTC



requires evenly sampled time series and decomposes a signal into components at evenly spaced

frequencies determined by the record length and sample rate. The Fourier transform is periodic

at the record length ("fundamental") and is band-limited at the Nyquist frequency. Additionally,

the Fourier transform does not allow for a separate component of noise. Harmonic techniques for

analyzing tidal time series overcome these limitations of Fourier analysis. They allow for estimates

that do not exactly match all observations and that provide a unique solution in the presence of

noise and potential nonorthogonality between basis functions, for example when the frequencies

of basis sinusoids differ by less than the fundamental frequency. This is solved as an inverse

problem in which the fit is expected to differ from the observations by some residual. Data may

be irregularly spaced and fit to arbitrary basis functions, including sinusoids of any frequency,

unconstrained by periodicity over the record length and not band-limited by the sampling rate.

Additionally, harmonic analysis allows for a noise component with prior statistics, generally mean

and autocovariance. We denote the autocovariance and its matrix representation with the standard

terms "covariance" and "covariancematrix", respectively, as we do not discuss any cross-covariance

quantities for which such shorthand might be confusing.

At frequencies outside the tidal bands, ocean data tend to be spectrally red, with greater power at

lower frequencies (Munk et al. 1965). When finite duration records with steep spectra are analyzed,

high-amplitude low-frequency processes with periods that do not match the series length can alter

estimated spectral power at higher frequencies. Spectral leakage is problematic for characterizing

internal tides, especially in regions where mesoscale variability is much stronger than the internal

tide (Ray and Zaron 2016). Low-frequency variability, tidal cusps, and high-frequency noise must

all be accounted for either explicitly or as a residual term. In other words, total signal variability is

modeled as sinusoids at given frequencies added to a residual broadband background that has power

at all frequencies, which is characterized by a residual (or noise) covariance matrix. Our approach
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is to choose basis functions and prior statistical assumptions about the signal and noise components

(quantified in covariance matrices) that match the expected variability in the observations as well as

computational cost allows; such constraints bias the model parameters by reducing their variance,

which is appropriate when tidal constituents and related components are estimated from limited

sampled data with noise. We seek to avoid overfitting and we argue that this produces better results

than estimators obtained from methods that use less prior knowledge.

Least squares tidal harmonic analysis has drawbacks. Pawlowicz et al. (2002) identify some

challenges including record length requirements for distinguishing some tidal frequencies, the

lack of distinction between true tidal lines and background energy at tidal frequencies, and the

broadening of spectral lines from estuarine tidal responses and stratification-dependent internal

tides. Nevertheless, harmonic analysis has been widely adopted for tides because it is well-suited

for signals with a weak noise component relative to the tidal signal. Pawlowicz et al. (2002),

expanding upon earlier code for tidal harmonic analysis (Foreman 1977; Foreman and Henry

1989; Foreman et al. 2009) and employing MATLAB, created the widely-used t_tide package,

incorporatingmethods tomitigate known drawbacks to classical harmonic analysis. Thesemethods

include nodal corrections and inference of unresolvable constituents to account for the long record

lengths required for resolution under classical harmonic analysis, as well as three algorithms to

provide confidence intervals to account for non-tidal energy at tidal frequencies. Other authors

have expanded the t_tide procedure (Leffler and Jay 2009; Codiga 2011) or have modified it for

specific dynamical regimes, such as tides in the presence of river outflow (Matte et al. 2013).

The two-fold problemof accurately estimating tidal variabilitywith a component that is not phase-

locked to astronomical forcing in the presence of spectrally-colored noisewhileminimizing spectral

leakage has motivated us to develop a new tidal harmonic analysis package, red_tide, that accounts

for tidal cusps and red background spectra. The appendix provides information on the access
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of the package, which may be modified to accommodate individual needs. We do not presently

incorporate nodal corrections like those used in t_tide in order to emphasize features specific to our

method, though these corrections may be incorporated in a future version. The primary scientific

motivation for developing the package is to support a detailed level of tidal analysis of highly

variable baroclinic tides. For example, such tides are expected to be an important part of the signal

at spatial scales of O(10) kilometers to be measured by the upcoming Surface Water and Ocean

Topography (SWOT) swath altimeter, for which the interaction between internal tides and ocean

mesoscale variability requires the most accurate predictions possible (Chavanne and Klein 2010;

Ray and Zaron 2011). Analysis related to such an application is likely to focus on in-situ data and

ocean model output sampled at smaller time intervals than semi-diurnal tidal periods. Therefore

relevant test cases are presented here. Though harmonic analysis of tidal signals aliased in satellite

data has been performed on the phase-locked tide (Ray and Mitchum 1996b; Zhao et al. 2011),

this is not examined here. This method is compared with existing methods (ordinary least squares

and t_tide, which implements ordinary least squares) using synthetic and observational time series

to examine performance and practical limitations. The t_tide package requires fewer inputs and

produces matching results for lower computational cost when analyzing time series that do not

exhibit the complications that the red_tide method seeks to address. Therefore, our method does

not supplant existing tidal analysis packages except in specific regimes where it is advantageous.

Other tidal packages, including those that are built upon t_tide (e.g. Leffler and Jay 2009; Codiga

2011; Matte et al. 2013), are not examined in this study.

The rest of this study is divided into three sections. We begin by outlining the linear algebraic and

statistical methods that underpin our tidal analysis in Section 2. We then apply these methods to

synthetic time series, first by highlighting specific features of the method, including application to a

step function to demonstrate aliased signals (Section 3a), and then by analyzing tide-like synthetic
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series to show the effect of prior statistical assumptions on model parameters (Sections 3b-d). Two

examples of observational data follow in Section 4, with comparisons to t_tide. Finally, summary

and discussion follow in Section 5.

2. Methods

The basic framework of weighted least squares estimation used in red_tide is outlined in a number

of references (e.g. Wunsch 1996; Menke 2018). Here we provide a review of this framework,

formulated for tidal harmonic analysis of records with arbitrarily structured noise, with notation

following that of Ide et al. (1997) with a few modifications. Note that tidally-driven components

of a time series are considered "signal" while non-tidal processes are referred to as "noise" for the

purpose of distinguishing them in the context of harmonic analysis. These so-called noise terms

may include instrument error as well as non-tidal processes in the ocean, such as submesoscale

eddies and the internal wave continuum.

A zero-mean, discretely sampled ocean time series written as a column vector y of length # is

modeled as the sum of sinusoids of tidal and non-tidal frequencies

y =Hx+ r, (1)

where H is an # by 2" regressor matrix (i.e. the model basis functions), x are the 2" model

parameters, and r represents the #-element residual time series. The columns of H are sines and

cosines of prescribed frequencies, l<, for < = 1,2, ... " , such that equation (1) can be expressed

as

y =
"∑
<=1

(
0< sin(l<t) + 1< cos(l<t)

)
+ r,

x = [01, 11, 02, 12, ..., 0" , 1"]T

t = [C1, C2, ..., C# ]T

(2)
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The unknown model parameters x are estimated by x̂ such that the trace of 〈(x̂−x) (x̂−x)T〉, the

expected value of the sum of the squares of the model parameter errors, is minimized. This is

done by calculating x̂ as the Bayesian maximum a posteriori (MAP) estimate, by requiring that x

and r have independent Gaussian distributions which satisfy the conditions under which the MAP

estimate gives x̂ (Van Trees 2001). By Bayes’ theorem, the posterior probability distribution of x

given observations y is proportional to the product of the prior probability distribution of x and the

likelihood of y given x:

P(x|y) = P(x)P(y|x)
P(y) . (3)

Given the assumptions of Gaussian statistics and a linear model:

P(x|y) ∝ exp
(
−xTP−1x

)
exp

(
−(y−Hx)TR−1(y−Hx)

)
. (4)

The denominator P(y) is not a function of x and therefore can be omitted, since it is not relevant to

the optimization. The matrices R = 〈rrT〉 (size # by #) and P = 〈xxT〉 (size 2" by 2") are the

covariance matrices of r and x respectively (P is thus a hyperparameter of the Gaussian prior for

x). This expression as well as its logarithm,

ln (P(x|y)) = −xTP−1x− (y−Hx)TR−1(y−Hx) + constant, (5)

are at a maximum for some value x = x̂. Since the posterior probability P(x|y) follows a Gaussian

distribution, its mean (the Bayes estimator) equals its mode (the MAP estimator) and can therefore

be solved as a maximization problem (Van Trees 2001). At the mode, the partial derivative of

equation (5) with respect to x vanishes:

0 =
m

mx
ln (%(x|y))

����
x=x̂

= −2P−1x̂+2HTR−1y−2HTR−1Hx̂. (6)
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The vector x̂ contains the most probable model parameters given observations y, and solving for

x̂ gives the most probable solution to equation (1):

x̂ =
(
HTR−1H+P−1

)−1
HTR−1y. (7)

An equivalent expression via the matrix inversion lemma (e.g. Wunsch 1996) is not used here but

appears in the appendix.

The posterior covariance matrix of the difference between the estimated and true model param-

eters is

〈(x− x̂) (x− x̂)T〉 =
(
HTR−1H+P−1

)−1
. (8)

In red_tide, model parameters x are assumed to have a Gaussian probability distribution function

(PDF) resulting from the Gaussian distributions of the prior and likelihood function. Therefore, the

posterior PDF of G<, the <-th element of x, is a Gaussian with a mean given by the <-th element

of x̂ from equation (7) and variance given by the <-th element of the diagonal of the matrix in

equation (8).

If xwas not expected to have a Gaussian distribution, a different expression for x̂would need to be

derived by similar Bayesian principles starting from equation (3), which is beyond the scope of this

study. Quantities defined as nonlinear functions of Gaussian-distributed quantities, however, may

have non-Gaussian distributions that can be estimated. In this paper, plotted uncertainty bounds for

derived quantities are estimated using a Monte Carlo approach, based on an ensemble population

of x with the posterior Gaussian PDF. This approach is implemented due to its flexibility and

simplicity compared with analytical solutions, which are not always in closed form, or with more

complicated approximations such as piecewise linear discretization of PDFs (e.g. Lourens and van

Geer 2016). The tidal amplitude is one such quantity, where �̂< =
√
0̂2< + 1̂2< is an estimator of

the true amplitude �<, which follows a noncentral j distribution when the standard deviations of
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0< and 1< are equal (f0< = f1< = f<). Similarly, the tidal phase q̂< is an estimator for the true

phase shift q<, defined by tan (q<) = −1</0<, whose statistics are also not Gaussian. Whenever

uncertainty bounds are given for quantities derived from the Bayesian methods outlined above

or for quantities that are functions of them, we refer to them as credible intervals in accordance

with Bayesian terminology for the interval in which an estimated parameter lies with the stated

probability (Lee 1997). These are analogous to confidence intervals, the uncertainty bounds

on quantities derived from frequentist methods. Because Pawlowicz et al. (2002) uses the term

confidence intervals, and because t_tide is not derived using a Bayesian framework, we refer to

t_tide output and other non-Bayesian quantities as having confidence intervals when comparing it

to red_tide output and its credible intervals.

Because y ismodeled as the sumof sinusoids and a noise component, its expected power spectrum

(yy( 5 ) may be interpolated to fitted frequencies and used to construct P. This approach, however,

results in doubly counting energy, as r contributes to the variance of y at all frequencies, including

frequencies modeled by Hx. Because the energy of a tidal peak and cusp are typically much higher

than the background noise and may in fact be underestimated in (yy( 5 ) due to peak-broadening

from spectral averaging, the double counting of energy will be small around most prominent tidal

peaks. For cases where tidal signals are comparable in energy to r at tidal frequencies, P can be

reduced by the appropriate amount. In sections 3c and 3d, the correct partition of energy into

P versus R is possible because we have perfect knowledge of the underlying synthetic processes.

For real data for which we lack perfect knowledge, such as those in section 4, the approach we

use for convenience is to assume wide-sense stationary noise so that we can obtain the residual

spectrum (rr( 5 ) from the Fourier transform of any column of R. We then subtract it from (yy( 5 )

to construct P in order to obtain a more accurate partition of signal versus noise energy. We also

assume throughout that y is a wide-sense stationary time series; this means that the elements of x
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are assumed to be uncorrelated and therefore that P is diagonal throughout (see Bendat and Piersol

(2010) for nonstationary data analysis and double frequency spectra, the continuous analogue to a

non-diagonal P).

Values along the main diagonal of R represent the expected variance of the misfits between fitted

time series and observations. Off-diagonal elements indicate the covariance at lagged times, with

values farther off the main diagonal corresponding to larger time lags. Beyond some time lag, the

covariance may be approximated as zero if long-period energy is sufficiently small or explicitly

represented in H. This approximation is useful, as it limits the memory requirement for large R.

A diagonal R is a special case of this, with non-zero elements only along its main diagonal. This

corresponds to an assumption of zero lagged noise correlation or equivalently an assumption of

spectrally white noise. This approximation is often made for computational efficiency, as R = f2I

can be replaced in equation (7) with the constant f2, which is estimated as f2 = 〈rTr〉/# . In cases

where the residual r may be better approximated as non-white noise, other procedures can be used

to construct a non-diagonal R, including those described in section 2b and the appendix. In the

examples that follow, we assume that all residuals have the same variance. This assumption of

stationarity corresponds to constant elements along the diagonals of R, i.e. a Toeplitz matrix.

Time series with a nonstationary residual r, for example due to time-varying instrumental noise,

may have their residual covariance approximated by a non-Toeplitz matrix R in order to reduce the

impact of the affected segments on the calculation of x̂. Additionally, observational gaps have a

non-trivial effect when treating background noise as correlated. The matrix R is also not Toeplitz

in this case, though for the direct inversion of relatively small R, this does not seem to impact

performance. Computation may be reduced when analyzing multiple time series if each time series

y= can be analyzed with the same H, R, and P such that all terms in equation (7) before y are

evaluated once and multiplied by each y=.
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a. Relation to Least Squares

Ordinary least squares (OLS) has the same form as weighted least squares ifR =f2I and P−1→ 0

(Wunsch 1996), and is used in the t_tide package (Pawlowicz et al. 2002). OLS seeks to minimize

(y−Hx)T(y−Hx), the misfit between the fitted time series and observations. In this case, the

solution is

x̂OLS =
(
HTH

)−1
HTy. (9)

Observation error is assumed to be white noise, and OLS places no constraint on the magnitude

of the components of x̂OLS. Steep, non-constant background spectra would need to be modeled

by including more parameters within this framework, which may be impractical. Without using a

probabilistic framework, in order to constrain the magnitude of the model parameters x̂ to avoid

overfitting, the quantity to be minimized is often written as (y−Hx)T(y−Hx) + xTWxx, where

Wx is a matrix that weights the relative importance of minimizing model parameter magnitude

over misfit. This technique is called ridge regression and reduces overfitting at the expense of bias

(Wunsch 1996). The resulting least squares equation is said to be regularized:

x̂TLS =
(
HTH+Wx

)−1
HTy. (10)

Similarly, the misfit r may be weighted by the matrix Wr such that (y−Hx)TWr(y−Hx) +xTWxx

is minimized, with the corresponding weighted regularized least squares equation

x̂WTLS =
(
HTWrH+Wx

)−1
HTWry. (11)

This is equivalent to equation (7) whenWx = P−1 andWr = R−1, though the derivation of that solu-

tion is distinct from these least squares approaches (see section 3.6.2 of Wunsch 1996, for details).

A weighted least squares estimate (not regularized) is used in the UTide package (Codiga 2011),

which implements an iteratively reweighted robust fit corresponding to equation (11) with Wx = 0
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and Wr as a diagonal weighting matrix that de-emphasizes outliers and is updated iteratively, the

details of which are beyond the scope of this study.

b. Power Law Noise

Away from energetic processes at tidal, seasonal, and inertial frequencies, spectra ( of ocean

time series tend to follow a power law of the form ( ∝ 5 W, where W ≤ 0 is the spectral slope and

the negative value indicates more energy at lower frequencies (Agnew 1992). For computational

efficiency in problems with many observations, we can assume wide-sense stationary noise and

construct the residual covariancematrixR as a sparse, symmetric Toeplitzmatrixwith the diagonals

calculated from the Fourier transform of ( ∝ 5 W per the Wiener-Khinchin theorem, truncated at a

user-defined time lag. Users of red_tide have the option of multiplying the covariance by a window

function in order to reduce the spectral ringing that results from an abrupt drop to zero in the

frequency domain. A low-amplitude white spectrum (spectral slope of 0) may also be added to

account for observational error, such that the spectrum of r has a noise floor at all frequencies.

This residual spectrum is not altered within fitted tidal frequency bands due to the impossibility of

distinguishing tidal and non-tidal energy at the same frequency, which results in model parameter

uncertainty. For the typical case of tides that are much more energetic than the background,

this effect is small, while in cases where tidal constituents have low energy or a broadband cusp

of interest, the relatively larger uncertainty estimates on model parameters reflect the fact that

non-tidal variance is comparable to tidal variance. The approximation of the residual time series

following some modified spectral power law with W < 0 will hereafter be referred to as a red noise

assumption, even when W is not exactly −2. In addition to the special cases considered above, the

noise can exhibit more complicated structure that allows R to be tractable while still representing

some forms of red noise, for example noise as an autoregressive process (see Appendix).
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3. Application of Red_Tide to Illustrative Cases

In order to compare the performance of red_tide to other widely-used fitting procedures, we lay

out several illustrative examples of its application to synthetic and physical data. Before more

complicated cases are examined, it is worth reviewing a simplified case of tidal harmonic analysis

that typifies the separate treatment of signal and noise and demonstrates the consequences of using

an incomplete model. A typical ocean time series will have many tidal constituents present, with

longer records better able to differentiate nearby frequencies. Because harmonic methods model

the data using sinusoids of prescribed tidal frequencies, energy at unmodeled frequencies will

remain in the residual time series. Figure 1 depicts the results of modeling a bottom pressure

record (examined in greater detail in section 4a) at only two tidal frequencies: the principal lunar

semidiurnal (M2) and the principal solar semidiurnal (S2). Figure 1A, with the interval in gray

expanded in panel B, illustrates the misfit between the complicated data and the simple model that

arises due to substantial residual energy at unmodeled frequencies. In the frequency domain (figure

1C), this is evident by the energetic tidal lines at frequencies that are not included in H. For a data

set with well-defined tidal lines with energy much greater than that of the background, conventional

harmonic analysis like that employed by t_tide is well-suited to addressing this issue by simply

including more tidal constituents. The red_tide package is designed for more complicated cases

for which single tidal constituents are insufficient as well as cases where non-tidal variance is

comparable to tidal variance.

a. Model Coefficient Covariance, the Gibbs Phenomenon, and Periodicity

One challenge to harmonic analysis stems from the accurate representation of model coefficient

covariance matrix P = 〈xxT〉. Before further examining realistic cases, we start with a familiar

example that demonstrates the effect of the covariance on computedmodel coefficients for a discrete
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step function. Modeling the step as a finite set of sinusoids leads to the Gibbs phenomenon, the

tendency of the partial sum of a Fourier series to overshoot in the neighborhood of a discontinuity

of the modeled function (Hewitt and Hewitt 1979). This phenomenon persists even with the

addition of more terms in the partial sum, though the magnitude is reduced. While a discretely

sampled time series may be fit well at observation points, band-limited Fourier coefficients do not

adequately fit the step function between sampling times. The step function and resulting Gibbs

phenomenon serve as a simple but extreme example of a situation present in real data: a process

with variance at unmodeled frequencies has a prior that does not adequately describe the process.

The variance of a step function is distributed across all frequencies (see equation (12) below), but

when it is sampled coarsely and reconstructed as a band-limited process, some variance is aliased

and the true underlying process is poorly reconstructed despite good agreement at observation

times. Therefore, we incorporate assumptions and prior knowledge of a process, including cases

in which there are fewer data than parameters that are suspected to be worth estimating.

Another challenge stemming from the limitations of finite sampling and fitting is the inherent

periodicity of solutions when a finite record is modeled as the sum of periodic functions; this is not a

problem for tidal processes, which have periodsmuch shorter than those of typical observations, but

it will affect estimates for explicitly modeled low-frequency processes that may also be of interest.

To demonstrate the effect of the estimator on both of these related issues (Gibbs phenomenon and

artificial periodicity), we analyze a finite, uniformly sampled record of a step function using the

method described in Section 2.

Because the step function, here represented continuously by the sign (signum) function, has an

analytic Fourier transform, the expected model parameter covariance matrix Pstep = 〈xstepxTstep〉may
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be constructed from the absolute value squared of the Fourier transform:

Hstep(C) = sgn(C − C0) =



−1, C < C0

0, C = C0

1, C > C0

|F {sgn(C − C0)} ( 5 ) |2 =
1

c2 5 2
, (12)

where H(C) is the underlying continuous time series to be analyzed after discrete sampling, sgn(C−

C0) is the sign function with jump discontinuity at C0 and F {·}( 5 ) denotes the Fourier transform

operation to the frequency domain. The square of the Fourier transform of this function is

proportional to frequency−2, therefore it has a spectral slope of −2 .

In the example, a step function of record length ) is sampled symmetrically about the jump

discontinuity at 1000 evenly-spaced times such that all Fourier frequencies, from the fundamental

frequency Δ 5 = 1/) to the Nyquist frequency 5Ny, could be computed. Different choices of basis

functions and model parameter covariance are used to evaluate the sensitivity of red_tide output

to these inputs. If the model includes only frequencies greater than or equal to Δ 5 , spaced at

increments of Δ 5 , then the model will have a fundamental periodicity of ) , the record length,

because this is the longest period represented in the model. To reduce this effect, we incorporate

frequencies less than the fundamental frequency intoH, starting atΔ 5 /2 and increasing by intervals

of Δ 5 /2. This extends the model periodicity to 2) , twice the record length (Figure 2A), and also

reduces Gibbs-like behavior at the beginning and end of the fitted time series.

Separately, we examine the effects of different model parameter covariance matrices on the be-

havior of the fitted time series near a jump discontinuity. Two choices for the model parameter

covariance matrix 〈xxT〉 are tested: (1) an assumption that the covariance is constant at all frequen-

cies (a spectrally white process), and (2) an assumption that its power spectrum is proportional
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to 5 −2 (a spectrally red process representing the true spectrum in equation (12)). Two sets of

basis functions are used: one that is comprised of sinusoids at the Nyquist frequency 5Ny and

lower, and one that is comprised of sinusoids at frequency 2 5Ny and lower. Both basis sets are

spaced in frequency by Δ 5 = 1/) . Discretely sampled sinusoids of frequencies greater than 5Ny are

indistinguishable from sinusoids at the frequencies lower than 5Ny to which they are aliased. The

larger but linearly dependent bases set is used in order to demonstrate the effect that P in equation

(7) has in constraining an underdetermined system; in this case, describing the behavior of a time

series near a step discontinuity at times between the sampling interval requires that frequencies

greater than 5Ny be represented, constrained by the expected spectral power of the signal. The

residuals are assumed to be uncorrelated (white noise), and the expected residual variance can

be calculated from the total spectral power at frequencies above the highest-frequency basis. The

expected fraction of residual variance is calculated from the integral of the true spectrum over

frequencies not explicitly modeled:

var(r)
var(y) =

∫ ∞
5high

5 −2d 5∫ ∞
5low

5 −2d 5
=
5low
5high

, (13)

where 5low and 5high are the lowest and highest frequencies in H. Frequencies less than 5low are

not included in the integral due to the singularity of 5 −2 at 5 = 0 and the approximation of very

low-frequency variance as a mean and trend. The total residual variance in this case is small, and

hence the impact of the residual covariance matrix is expected to be negligible and is not examined

in this example. The effects of different assumptions of residual covariance are examined later

with data for which these effects are noticeable. Both fitted time series in figure 2A, periodic on )

and on 2) , incorporate a covariance matrix P constructed from a spectrum proportional to 5 −2.

Near the jump discontinuity, there are two basis choices that we will consider: distinguishable

basis sinusoids up to the Nyquist frequency and indistinguishable sinusoids up to twice the Nyquist
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frequency, which are aliased for 5 > 5Ny. We also consider two choices for model parameter

covariance: a constant value and a covariance proportional to the known spectral power of the

data. Together, these form four regimes that can demonstrate the effects of basis choice and

model parameter covariance on the resulting fitted approximations to the same step data. The OLS

approach models the step function as a series of sinusoids up to the Nyquist frequency with no

assumptions about the model parameter covariance. This results in the Gibbs phenomenon near the

jump discontinuity (Figure 2B). This result is nearly identical to the partial sum of the Fourier series

for this function (not shown), with a slight difference due to least squares’ allowance of non-zero r.

Using the same basis functions but making the assumption that the main diagonal of the parameter

covariance matrix P corresponds to a spectral slope of −2 as does the true spectrum, the red_tide

procedure reduces the Gibbs phenomenon at the expense of greater misfit in the immediate vicinity

of the jump discontinuity (Figure 2C).

The Gibbs phenomenon may be reduced by including additional frequencies. Sinusoids at

frequencies greater than the Nyquist frequency will be aliased, however, so the effect of the model

parameter covariance is more pronounced than in the former examples. Figure 2D shows the

result of fitting a finite record to indistinguishable (resolved and aliased) frequencies while naively

assuming a spectrally white process. Without the regularization provided by a sufficiently accurate

P, the duplicate bases in H render it rank deficient and therefore the interpolated fitted time series

is unrealistically large in amplitude at unobserved times. Modeling aliased frequencies with the

assumption of an accurate (spectrally red) covariance, however, results in a fit that has further

reduced the Gibbs phenomenon while also reducing the misfit at sampled times immediately

before and after the jump discontinuity (Figure 2E). This approach (regularizing according to

prior statistics) yields the smallest root-mean-square error of the four regimes, both at observation

times and at the interpolated higher temporal resolution (Table 1). Though the solution in panel
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E does not pass through the observations like those in panels B and D, it nevertheless is the best

representation of the underlying sampled process due to its reduction of the Gibbs phenomenon,

despite fitting to the same data. Note that the accuracy of these interpolations is only quantifiable

here due to knowledge of the true underlying function from which the data are perfectly drawn,

which is not possible with real observations.

These refinements to the standard OLS approach demonstrate three advantages of the methods

used in red_tide. First, the use of a fundamental frequency lower than that suggested by the record

length reduces the effect of periodicity imposed by the model on the solution by lengthening the

time scale of this periodicity. Second, the choice of model parameter covariance matrix P impacts

the solution: a choice of P that is more representative of the true behavior of the data reduces

the magnitude of the Gibbs phenomenon. Third, frequencies inaccessible to a discrete Fourier

transform may be included to more realistically account for variance. The ambiguity of aliased

frequencies (those exceeding the Nyquist frequency but at which variance is present) is reduced by

using an accurate P. We do not examine aliased signals elsewhere in this study.

b. Synthetic Time Series

Real ocean time series are substantially more complicated than the idealized step function

above, with variance distributed across a range of frequencies, driven by a variety of physical

processes. In order to simulate data with tidally-driven components, we generate synthetic time

series from smooth spectra of predefined slope (the continuum), with sharp peaks in frequency

space that simulate tides. In this way, we can exactly control and separate the signal and noise

components. In order to simulate tidal cusps, we consider a modulation of the tidal amplitude

following the description of amplitude-modulated baroclinic tides off Hawai’i by Chiswell (2002).

By the convolution theorem, multiplying (modulating) the tidal component in the time domain by
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a function is equivalent to convolving the Fourier transform of the tidal component with that of the

modulating function in the frequency domain. For example, a purely sinusoidal high-frequency

tide cos(l) C +q) may be multiplied by an amplitude envelope �(C) such that:

[(C) = �(C) cos(l) C +q), (14)

the Fourier transform of which is

F {[(C)}(l) = F {�(C)}(l) ⊗ F {cos(l) C +q)}(l)

= �̃(l) ⊗
(
e−8qX(l−l) ) + e8qX(l+l) )

) √c

2
,

(15)

where F {·}(l) is the Fourier transform to angular frequency (l) domain, �̃(l) is the Fourier

transform of �(C), and ⊗ denotes convolution. The constant
√
c/2 is a matter of convention such

that the inverse Fourier transform is symmetric with the forward transform.

To generate the synthetic time series used in this study, a spectrally-red modulating function is

used to simulate the cusps observed around tidal lines in the spectra of tidally-dominated ocean

time series, and a random phase is assigned at each frequency before an inverse Fourier transform

is applied to produce a synthetic time series with known spectral power. Samples from a red

background are added to the time series to simulate broadband non-tidal ocean variability. Figure

3 shows an example of three synthetic spectra (upper panel) and corresponding hourly time series

computed with random phase and truncated at 500 hours (bottom panel). The top panel also shows

the power spectrum of observations in gray for comparison (these are discussed in Section 4a).

The phase at each frequency is identical for each time series, so only the spectral power differs.

All three have peaks of equal magnitude at the M2 frequency. The red background spectrum is

proportional to 1/l2 while the modulating spectrum is proportional to 1/(l2 +l20), where l0 is a

small frequency introduced to eliminate the singularity atl = 0. In the red-background time series,

there is more variability at low frequencies as in the real ocean, while the modulated one imitates
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the interaction of the tide with low-frequency processes. The time series with the spectrally white

background has comparatively more power at super-tidal frequencies, which is evident in the time

domain from the short time-scale noise that is less noticeable in the data with a red background.

The data displayed are sampled hourly to be consistent with the choice of the Nyquist frequency,

while the length of the time series is set by the choice of the fundamental frequency.

c. Effect of Noise Covariance on Amplitude, Phase, and Uncertainty

The estimated amplitude and phase of the tidal constituents are affected by the spectrum used

to construct R, also referred to here as the noise covariance or residual covariance. At each

frequency represented in H, the data are represented twice: explicitly in the frequency domain as

model parameters (x̂) and implicitly in the residual (r̂) in the time domain, which has energy at all

frequencies in general. Here, "explicit" versus "implicit" refers to whether energy is described by

the model sines and cosines or by a residual time series with the fitted tides removed. Choosing the

residual covariance matrix R to approximate the true covariance of the non-tidal component of the

data improves the accuracy of the estimated coefficients. This is important because geophysical

time series generally do not have flat spectra but rather spectra that decrease with increasing

frequency. For example, if data with a red noise term ((noise ∝ 5 −2, like the red and blue curves

in Figure 3) were modeled using a spectrally white R (equivalent to the black curve), the variance

would be treated disproportionately as signal at low frequencies (where the true noise is actually

more energetic than what is given by R) and disproportionately as noise at high frequencies (where

the true noise is actually less energetic than what is given by R). This is the case even if the

spectrum corresponding to R has the same total energy as the true background.

Here we analyze a 1001-point synthetic record sampled hourly. If there is a low-amplitude,

high-frequency signal present in the data, a high assumed noise level at that frequency would
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limit the detection of that constituent, as shown by the large blue intervals in Figure 4A at 5 > 2

cpd. A colored spectrum that matches the frequency dependence of the true noise component is

an improvement over the simpler assumption of an uncorrelated (spectrally flat) white noise that

does not match the true noise component. The former gives a relatively constant ratio of assumed

spectrum to true spectrum across frequencies, while the latter gives a frequency-dependent ratio.

This results in the variance of Hx being overrepresented at low frequencies, because the noise

covariance is too low, and underrepresented at high frequencies, because the noise covariance is

too high. Because variance is represented twice at modeled frequencies, the covariance matrices

R and P serve as constraints on the partition of energy between Hx and r (recall that R represent

covariance in time of a wide-sense stationary noise component and therefore has power at all

frequencies, including those to which data are fitted).

Figure 4 shows the effects of these constraints in the frequency domain ("model space"): as

described in section 3b and illustrated in Figure 3, a synthetic time series is constructed by adding

a random background process with a spectral slope of -2 to a modulated semidiurnal (M2) tidal

process. In Figure 4A, the total spectrum (solid black) and its tidal component (signal, dashed

black) and background (noise, dotted black) are plotted along with red_tide squared amplitude

estimates (0̂2 + 1̂2) calculated using a spectrally white noise covariance (blue), an approximate red

noise covariance (red), and a "true" red noise covariance that matches the spectral power of the

noise component (orange). All assume the same model parameter covariance matrix P constructed

from the true tidal spectrum, not the total spectral density. Shading indicates 90% credible intervals

of amplitude. These intervals are calculated using Monte Carlo sampling from a 10,000-member

population obeying the posterior error of x̂ (equation (8)) to infer the distribution of �̂. Figure 4B

shows again the spectrum of the non-tidal (noise) component of the time series (dotted black line),

the spectra corresponding to the noise covariance matrices (solid lines), and the posterior spectra
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of the residual time series (connected dots) calculated usingWelch’s method for spectral estimation

(overlapping windowed segments of length one fifth that of the record). For each noise covariance,

the total noise energy is approximately 42% of the total signal energy integrated from 5 = Δ 5 to

5Ny. This matches the true noise-to-signal ratio. Both red noise analyses (red and orange lines

in Figure 4B), which more closely approximate the true noise component, result in more accurate

amplitude estimates at low frequencies where the signal-to-noise ratio is low (red or orange lines

vs black dashed line in Figure 4A at frequencies less than 0.2 cpd), and greater precision at higher

frequencies, where the signal-to-noise ratio is high. The calculated spectra of the residual time

series are lower for increasingly accurate noise spectra, indicating that more variance is allocated

to the model parameters.

Figure 5 compares the performance of the algorithm for both amplitude and phase under these

three noise regimes. The ratio of median estimated amplitude (0̂2+ 1̂2) to the true signal amplitude

is displayed in Figure 5A, which shows that all configurations produce accurate estimates near the

tidal peak (2 cpd). At frequencies higher than about 5 cpd, the assumed variance of noise and

model parameters are similar in magnitude (Figure 4B). In this frequency range, the amplitude

ratios assuming red noise in Figure 5A show high variability with average values closer to one,

indicating that they are less biased than the white-noise assumption, which is always greater than

1 for 5 >0.5 cpd, but also less precise, because the amplitudes under the red noise assumption

vary more above and below 1. Amplitude uncertainty is measured by the standard deviation of

the estimated distribution of modeled amplitude, normalized by the true amplitude of the tidal

component (Fig. 5B). The standard deviations of the amplitudes are smaller for the red noise

assumptions than for the white noise assumption for all frequencies, and especially near the tidal

peak and its cusp. The assumption of full, unapproximated red noise (orange dots in Fig. 5B)

gives the lowest standard deviation. For the phase, all methods give comparable estimates (Fig.
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5C). At higher frequencies, both red noise results are more precise than the white noise result.

The uncertainty of the phase (Fig. 5D), here measured by the standard deviation of the estimated

distribution of the centered phase, is lower near the tidal cusp and at higher frequencies for the red

noise results. The standard deviation is lower for the white noise result at frequencies lower than

0.4 cpd, but this implies unreasonable precision, as suggested by the inaccurate phase estimates at

these frequencies in panel C resulting from a signal-to-noise ratio of less than 1; the corresponding

precision is too high to be reasonable for such inaccurate estimates. At these low frequencies, the

standard deviation of phase for the red noise analyses approaches c/
√
3, indicated by the horizontal

dotted line, which is the standard deviation of a uniform distribution on the interval (−c, c). This

is expected for the phase of a low-amplitude signal in the presence of energetic noise that renders

that signal’s phase unrecoverable. At frequencies higher than the tidal cusp, the standard deviation

of phase from the white noise analysis approaches this value because it assumes that noise is more

energetic than the signal, while the red noise assumptions give results with lower variability, with

the full red noise assumption giving the lowest variability.

The lessons learned from the idealized case of a short record with a tidal cusp and red noise

also hold for a more complicated and realistic case in which a long record with a proportionately

finer frequency resolution is modeled only at frequencies in limited bands. In Figures 4 and 5, all

resolvable frequencies are modeled to illustrate the effect of noise representation on the partition

of variance into signal and noise. In practice, however, tidal time series may be several years

long, and so the number of data, and hence the number of resolvable frequencies, can be large

enough such that modeling all frequencies explicitly is computationally prohibitive. Furthermore,

in such cases the residual covariance matrix R cannot be practically constructed at all possible

time lags, necessitating instead an approximation like that discussed earlier (truncated, in sparse

form, and windowed to reduce spectral ringing). Figure 6 shows results analogous to those in
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Figure 4 for an hourly-sampled seven-year-long synthetic time series. In this case, only limited

frequency bands are modeled, with the rest of the total variance accounted for by the residual. An

accurate model parameter covariance enforces realistic amplitudes and uncertainty on the model

parameters by setting a signal-to-noise ratio that approximates the true ratio of tidal energy to

non-tidal energy as a function of frequency and not only the total, frequency-integrated ratio.

This corresponds to the red curve in Figure 6. The blue curve corresponds to an assumption

of white noise: though the total frequency-integrated signal-to-noise ratio is the same for both

estimates, the white noise assumption over-represents the variance of the non-tidal component in

the semi-diurnal band (around 2 cpd), giving larger credible intervals resulting from the unnecessary

uncertainty introduced by overestimating the non-tidal variance. Though the red noise covariance

is a windowed, truncated approximation of the true non-tidal covariance, its spectrum (dotted red)

closely matches the true underlying spectrum of non-tidal variability (dashed black). With only 500

frequencies modeled out of the over 60,000 that are fully resolvable, the reconstructed time series

accounts for more than 45% of the total variance and estimates tidal and off-tidal amplitudes within

error. This shows that modeling all resolvable frequencies directly in x̂ is not only computationally

impractical but also unnecessary, even for data with substantial non-tidal energy like those in

Figure 4.

d. Effect of Noise Covariance and Record Length on Constituent Estimates

In order to evaluate the impact of the choice of noise covariance and record length on estimated

tidal coefficients, we ran ten Monte Carlo experiments. These ten experiments used varying

combinations of tidal energy (two regimes) and background structure (five regimes), which are

described below. The six runs with more negative spectral slopes (W = −3,−2.5,−2, corresponding

to panels A-C and F-H in Figures 7 and 8) used 10,000 sample time series, while the four runs
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with less negative spectral slopes (W = −1.5,−1, corresponding to panels D, E, I, and J) used

50,000 sample time series to obtain stable results. Each time series had 24,000 hourly samples

but was only analyzed up to 1500 hours in order to investigate the effect of record length on

estimated parameters, with the exception of the W = −1 case, which was analyzed up to 5000 hours

in order to examine convergence at longer record lengths. Three tidal constituents typically seen

in observations (K1, M2, and S2) are added onto a synthetic noise background. Analysis for only

the M2 constituent is shown, as other tidal constituents are qualitatively similar. Only phase varies

from one time series to another within a run, with signal and noise amplitude constant for all

ensemble members. The phase is varied by randomly selecting from a uniform distribution on

the interval [0,2c), and is varied separately for the noise and signal components. Two quantities

derived from model parameters are examined to determine the impact of noise covariance and

record length: the bias of tidal amplitude estimates as a measure of accuracy, and the variance of

model parameters (harmonic coefficients) about the true values as a measure of precision.

The observed bias of estimated tidal amplitude �̂ is affected by the variance of the tide relative to

the background time series, the record length, and the choice of noise covariance. Figure 7 shows

the mean ratio of the estimated M2 constituent amplitude to true amplitude across the ten Monte

Carlo experiments:

Amplitude Ratio =

〈√
0̂2 + 1̂2

〉
√
02 + 12

, (16)

where brackets indicate averaging across Monte Carlo simulations, 0 and 1 are respectively the

sine and cosine coefficients of the tidal constituent in question (hereM2), and hats denote estimates.

Note that 0 and 1 vary with each Monte Carlo simulation, but the sum of their squares does not,

hence
√
02 + 12 can be pulled out of the brackets. The amplitude ratio is a measure of the accuracy

of tidal harmonic estimates in terms of a simple quantity of physical relevance, tidal amplitude.
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Each panel shows this quantity as a function of the assumed noise spectral slope and record length.

The panels are organized with steep spectral slopes at the top and successively flatter spectral slopes

below. The left column (A-E) represents a strong tide case meant to simulate bottom pressure,

with tidal spectral power 100 times that of the noise background at tidal frequencies, and the right

column (F-J) shows a weak tide case meant to simulate tidal velocities or baroclinic tides, with tidal

spectral power 10 times that of the local background. A perfect tidal amplitude estimate would

have a normalized value of 1, and cases for which the interquartile range of simulations do not

include 1 are hatched in Figure 7, as they do not provide accurate estimates of the tidal amplitude.

Records with steeper spectral slope background processes (Figure 7 A-B, F-G) have less accurately

estimated amplitudes than those with less steep background spectral slope (Figure 7 D-E, I-J), while

the latter required moreMonte Carlo simulations to show convergence to a record length-dependent

amplitude accuracy. Additionally, records with less spectrally-steep backgrounds are less sensitive

to the choice of noise covariance. In all cases, the use of a noise spectral background that matches

the spectral structure of the data yields a more accurate estimate of amplitude than the use of a

noise spectral background with a substantially different slope. These results are in agreement with

the expectation that a more energetic and structured background process is best described by a

residual component with a covariance matrix R constructed from an appropriate power spectrum.

Amplitude estimates also improve with increasing record length, though this effect is smaller than

the effect of the noise covariance.

Estimated amplitudes are comparably accurate and in some cases more accurate for spectral

slopes less than (steeper than) the true slope when compared to the amplitude accuracy when

using the true slope to construct R. This is, however, a small effect that appears to diminish with

increasing record length. For example, in Figure 7 E and J, an assumed spectral slope of -1.5

achieves more accurate results than the true slope of -1, which gives lower amplitude ratios, an
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effect that is stronger at shorter record lengths. This may be due to the bias of the estimators

0̂ and 1̂: the squared error of 0̂ and 1̂ are minimized in the least squares procedure and these

estimators are biased low due to regularization (Hoerl and Kennard 1970; Wunsch 1996). The

reduction of parameter error at the expense of added bias inherent to this method is evident in

the difference between amplitudes estimated from OLS (noise slope "None") and the regularized

methods. In particular, the use of a white noise covariance (noise slope 0) differs from OLS only

by its inclusion of the regularizing term P (noise slope of 0 means that R is a scaled identity matrix

that can be treated as a constant and would be canceled out if P were 0). OLS overestimates tidal

amplitudes consistently while the regularization of the otherwise identical white noise approach

typically underestimates tidal amplitudes except for the case of strong tides and a spectrally steep

background (Figure 7 A-B) for which such a white noise assumption is not suitable.

Model parameters x̂ = [0̂1, 1̂1, 0̂2, 1̂2...] are estimators for the true parameters x and, like am-

plitude �̂ derived from them, better estimate truth with increasing record length, a more accurate

noise covariance, and a higher signal-to-noise ratio. As a measure of precision of these parameter

estimates, we calculate their variance about the true mean, normalized by the true amplitude:

Normalized Parameter Variance =
1

2
√
02 + 12

(〈
(0̂− 0)2

〉
+
〈
(1̂− 1)2

〉)
. (17)

The base-10 logarithm of this quantity is shown in Figure 8 in order to better compare results

across orders of magnitude. Due to the random phase, the statistics of sine and cosine coefficients

are identical, constrained by 02 + 12 = �2, where � is constant across all Monte Carlo simulations.

Therefore, both 0̂ and 1̂ are used in calculating the normalized parameter variance, effectively

doubling the number of realizations.

As with amplitude, when the random background has a more negative spectral slope, estimates

of tidal coefficients are more sensitive to noise covariance choice (Figure 8 A-B, F-G) than
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they are when the background has a less negative spectral slope (Figure 8 D-E, I-J). Unlike

amplitude, coefficients are primarily sensitive to record length when the background noise is

relatively unstructured, with increasing sensitivity to the choice of noise covariance as the true

noise spectrum becomes steeper. This can be seen in the gradient of the normalized parameter

variance in each panel: in panels A-B and F-G, where W is more negative, the variance decreases

for more accurate noise slopes, whereas in panels D-E and I-J, where W is less negative, the

variance decreases more strongly with increasing record length. Filled dots are placed at elements

corresponding to the lowest value (highest precision) in their respective rows. For all simulations

with a background process of spectral slope W ≥ −2 (less steep), precision is highest for the noise

assumption that matches the true spectral slope. For W < −2 (steeper), this is also the case for

sufficiently long records, and for short records it is still better to match the noise spectrum than to

use OLS.

In almost all cases, using equation (7) (with P and R) instead of equation (9) (OLS without

an explicit noise assumption, labeled "none" in the rightmost column of every panel in Figures 7

and 8) resulted in more accurate estimates for � (ratios closer to 1 in Figure 7) and more precise

estimates for x (lower parameter variance in Figure 8), at least for the cases examined here in which

tidal energy is 10 to 100 times greater than that of noise at the same frequency. The OLS approach,

which is widely implemented in tidal harmonic analysis, was comparable to the red_tide approach

for W = −1.5 and W = −1, indicating that it is most suitable for tidal analysis of data with a spectral

background that is nearly white. Data with steeper background spectra benefit from treating the

residual r as a spectrally red process by way of the covariance matrix R.
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4. Application to Oceanographic Data

a. Bottom Pressure

The methods implemented in red_tide seek to address several potential issues that can arise when

harmonically analyzing real tidal time series, each of which are presented in isolation in section

3 by using synthetic data. The first demonstration of red_tide on observations uses a bottom

pressure record, a data set with low background noise where record length is sufficient and non-

phase-locked energy is much weaker than the phase-locked tide. Bottom pressure measurements

from the NOAA Deep-ocean Assessment and Reporting of Tsunamis (DART) (NOAA, 2005) are

dominated by the largely coherent barotropic tide. The time series examined here originates from

site 51406 (8.48◦S, 125.03◦W) and spans 3 years and 6 months of observations, from February

12, 2011 to September 6, 2014. Many tidal constituents of amplitudes spanning several orders of

magnitude are present in this record, as seen by tidal lines in Figure 9. Pressure measurements have

a significantly lower noise level than coastal surface height gauges and have accurate harmonic

constituents even over short records (Le Provost 2001). Bottom pressure is therefore useful for

evaluating the accuracy of harmonic decomposition in the regime of tidally-dominated, low noise

observations, which typically do not pose major problems when calculating constituents. Hourly

averaging of 15-second sampled data further suppresses noise and instrumental artifacts, such as

digitization, and does not alias major constituents.

The power spectrum of the bottom pressure time series (Figure 9) exhibits many prominent

peaks, of which 22 are singled out for analysis. These 22 frequency bands together account for

more than 99% of the time series’ variance; therefore both the white noise assumption (not shown)

and red noise assumption produce essentially identical results. Figure 10 shows the output from

red_tide using only the red noise assumption for R with spectral slope W = −3/2 alongside t_tide
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output. Where t_tide models only tidal frequencies associated with astronomical parameters, this

analysis includes those same frequencies and 30 additional frequencies per constituent in a band of

10 year−1 centered on that tidal frequency in order to capture modulation at annual and semiannual

cycles and cusp-like spreading of peaks. These harmonic amplitudes are spaced atΔ 5 = 1/3 year−1,

a frequency step smaller (and hence of higher resolution) than that of the power spectrum, which

is coarser in resolution due to segmenting. This corresponds to a 3-year period, shorter than the

record length of 3 years and 206.5 days in order to ensure the resolution of annually periodic

modulation of the main tidal constituents, regardless of the exact record length. The amplitudes

are normalized to have units of spectral power for comparison. The results of analysis by t_tide are

also normalized and plotted with 90% confidence intervals (the t_tide code that defaults to 95%

confidence intervals is modified).

The tidal amplitudes given by t_tide largely match the red_tide results for high-amplitude con-

stituents and fall within credible intervals at low-amplitude constituents, while providing analysis

at more frequencies. Focusing on a single cluster of constituents shows this more clearly (Figure

11). The semidiurnal band, centered about the energetic M2 constituent, contains several other

well-resolved tidal constituents (Darwin symbols 2"N2, `2, N2, a2, _2, L2, S2, and K2) that re-

sult from the complicated gravitational tidal forcing potential, many of which are not resolvable

when using segmenting methods or are not exactly mapped by a simple Fourier transform, which

would result in spectral leakage. Additionally, the energy of the cusps is explicitly modeled, with

intervals that reflect the uncertainty associated with a realistic noise level that is a function of fre-

quency, which becomes important for these low amplitude components. The characteristics of the

non-phase-locked component of the tides can therefore be diagnosed from these cusps. The high

signal-to-noise ratio at energetic constituents, on the other hand, means that the noise level is less

important at these frequencies, hence the OLS approach of t_tide works well for these constituents.
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b. High-Frequency Radar

Like OLS, the red_tide package effectively models data with weak noise and tidal constituents

that are highly coherent with astronomical forcing. The data regime for which red_tide is designed

includes higher levels of structured noise and tidal energy that cannot be predominantly described

by a small number of frequencies. Surface currents, which are driven by wind, tides, eddies, and

mean flow, fall under this category.

Observations of surface currents are obtained from a high-frequency radar network (HFRnet,

see Terrill et al. 2006). The California Current System (CCS), a region that is well-sampled by this

network (Roarty et al. 2019), is used to evaluate the harmonic decomposition technique. Radial

velocities measured by antenna stations are mapped to a Cartesian grid of zonal and meridional

velocities using a least squares fit (Ohlmann et al. 2007). Surface currents are driven by a wide

range of dynamics: direct wind forcing, near-inertial motions, interannual variability of the local

current system, and tides, including tidal currents and the surface expression of internal tides.

This contrasts with bottom pressure, which is dominated by tides, with many more prominent tidal

frequencies than appear in surface currents.

Figure 12 shows the averaged rotary power spectrum (spectral power partitioned by rotational

polarization) over the grid points in a region of the CCS ranging from 33.7561◦N to 38.1252◦N out

to approximately 100 km from the coast (for the formulation of rotary spectra, see Gonella 1972).

This formulation is convenient for visualizing the spectral power of surface currents due to the

polarized flow resulting from near-inertial oscillations, which at these latitudes occur at frequencies

between 1.12 to 1.26 cycles per day. Tidal peaks in HFR surface currents are pronounced and are

comparable to or greater than the energy in the inertial and low-frequency (<0.4 cpd) bands. These

spectra are calculated using Welch’s method, and the error bar denotes the ratio of high to low
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estimates for the power spectrum for a confidence level of 95%; this ratio is constant on logarithmic

axes and does not vary with frequency. It is calculated from a chi-squared distribution for degrees

of freedom equal to twice the number of windowed segments whose periodograms are averaged

to calculate the spectrum (e.g. Bendat and Piersol 2010), divided by 9 from the assumption that

neighboring sites are correlated.

An hourly-sampled, 9 year and 3 month-long (January 1, 2012 to April 1, 2021) HFR surface

current time series from 35.5361◦N, 121.1776◦W, roughly 7 kilometers off the coast of San Luis

Obispo County, California, is analyzed in four frequency bands: low frequency (0.00732 cpd and

less), S1 solar diurnal (1 cpd), M2 lunar semidiurnal (1.932 cpd), and S2 solar semidiurnal (2

cpd). These frequency bands, shown in Figure 13A, account for roughly a fifth of the variance

of the time series for both zonal velocity D and meridional velocity E. Therefore, 80% of the

variance is included in the residual time series. Harmonic coefficients from red_tide are calculated

using a model parameter covariance built from the domain-averaged power spectrum (solid black

line) from 1191 grid points at latitudes ranging from 33.7561◦N to 38.1252◦N, out to about 100

kilometers offshore. The individual power spectrum calculated from the analyzed time series

is shown in gray for comparison: smoothed peaks due to low frequency resolution and spectral

leakage due to sampling and windowing result in an individual time series’ spectrum that does

not capture features that the least squares approaches can. The noise (residual) spectrum has a

constant spectral slope of -1 and a corresponding covariance truncated at 300 hours lag, resulting

in modest spectral ringing (dashed line). Amplitudes given by red_tide are calculated as half

the sum of the sine- and cosine-coefficients squared, 12 (0
2 + 12), and are shown in red with 90%

credible intervals, while equivalent amplitudes and 90% confidence intervals given by t_tide are

shown in blue. Filled blue circles are constituents that t_tide considers "significant", where the

amplitude is greater than the amplitude error (Pawlowicz et al. 2002), while hollow circles are not
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considered significant. Only results for D are shown, as results for E are qualitatively similar; the

full 2-dimensional character of time series in this region is shown in Figure 12 to illustrate the

frequency-dependent polarization of surface currents, which may be modeled with red_tide. The

calculation of rotary coefficients from red_tide output for D and E is straightforward, though results

are not shown.

Aswith bottompressure, harmonic decomposition reveals sharp peaks at tidal frequencies that are

not resolved in power spectra with lower frequency resolution due to averaging over time intervals

shorter than the record length. Because the choice of basis functions for red_tide is arbitrary,

the fundamental frequency of the data set does not necessarily limit the spacing of modeled

frequencies, though in practice the tolerance of basis nonorthogonality and resulting uncertainty

will limit the choice of frequencies. The high noise level in these data results in large uncertainty

at frequencies around tidal peaks as in Figure 13B, as indicated by shaded intervals. Despite this,

annual modulation of the surface current is evident by the second and third most energetic peaks

in the M2 band appearing at 5"2 ± 5annual, indicated by vertical dashed lines. The output of t_tide

is also able to discern these modulation peaks, though it does not examine broadband modulation.

5. Summary and Discussion

The methods outlined here and implemented in red_tide are intended to provide best estimates of

tidal amplitudes for data with red background spectra and significant tidal cusps. Red_tide incorpo-

rates a red noise covariance and includes additional frequencies beyond those of the astronomical

forcing to accommodate data with highly energetic and correlated non-tidal components, a weak

tidal signal relative to non-tidal processes, or a modulated tidal component with energy distributed

across a band of frequencies. Short records, for which long-period variance appears trend-like, also

benefit from these methods because variance at fitted frequencies is allocated to model parameters
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according to prior statistical assumptions. The spectrally colored noise covariance is constructed

to approximate the spectral properties of the non-tidal component of the data, and may be truncated

and represented as a sparse matrix for computational efficiency with a window function applied to

off-diagonal elements to suppress spectral artifacts that result from truncation. On the other hand,

highly coherent tidal records with well-defined peaks and small cusps, such as bottom pressure, are

well described by OLS, as the background noise is orders of magnitude lower in amplitude than

the tidal signal.

These methods also address time series for which the choice of model covariance impacts results.

We demonstrate this with a step function, a simple case that exhibits an extreme mismatch between

the fit and the data when an inappropriate model parameter covariance is used, resulting in the

well-known Gibbs phenomenon. We have found that when fitting a discrete step function across

resolvable frequencies, the assumption of a realistic covariance reduces the magnitude of the Gibbs

phenomenon near the jump discontinuity when compared to an assumption of constant covariance

matrix 〈xxT〉 = f2x I, and prevents dramatic overshoot when fitting to frequencies greater than the

Nyquist frequency, which would otherwise be aliased (Figure 2 B-E).

The accuracy and precision ofmodel parameters, given explicitly as a posterior covariancematrix,

are impacted by the choice of residual (noise) covariance. Spectrally colored time series may have

a residual background that varies over orders of magnitude across tidal bands, necessitating an

appropriate noise covariancematrix if all constituents are to be estimated optimally. When the user-

specified residual spectral power is significantly lower than the total spectral power of the time series,

red_tide allocates more variance to the model parameters. If the energy of the non-tidal component

is well understood, variance can be realistically allocated between the estimated signal Hx̂ and

noise r̂ at the same frequencies. Estimating tidal amplitudes can be computationally expensive

for long records (O(105) or more data) because of the memory requirements for constructing
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and multiplying large matrices. In these cases, we have identified strategies for approximating

the covariance matrix in order to reduce computational requirements, including truncating and

windowing the matrix in sparse form.

In summary, red_tide was designed to estimate tidal coefficients while incorporating prior as-

sumptions that accurately account for the spectral structure of underlying noise and allow flexibility

in the choice of modeled frequencies, which is important for data with a modulated, non-phase-

locked tidal component. Longer records and less strongly correlated noise benefit less from this

flexibility. Ordinary least squares is comparatively less suited to computing tidal harmonics from

data with spectrally colored noise, especially red noise with a steep spectral slope. The code is

available for use and modification, the details of which are in the appendix.
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APPENDIX

a. Downloading red_tide

The red_tide package is available for download as a GitHub repository at https://github.

com/lkach/red_tide and in archived form (see Data Availability Statement). This package is

written in the MATLAB language, but translation to other programming languages is welcome

and encouraged. It has also been designed to work in the free software GNU Octave language and

Octave-specific instructions are provided with the software release. Input for red_tide is flexible,

with several options and default settings.

b. Noise as an Autoregressive Process

The residual time series r̂ = y−Hx̂ will have a power spectrum that is similar to that of y, except

in the bands of modeled frequencies. With the energetic tidal components removed, a spectrally-

red residual can be modeled as an autoregressive process AR(?), where order ? is the maximum

number of time steps for which the system has memory (von Storch and Zwiers 2003):

AC = U0 +
?∑
:=1

U:AC−: + nC , (A1)

represents an order-? AR process A at time C with a white noise component n . The AR parameters

U: can be estimated from the Yule-Walker equations (e.g. von Storch and Zwiers, 2003). From

these, the spectral density of A can be estimated by

(̂rr( 5 ) =
f̂2n����1−∑?

ℓ=1 Ûℓe−2c8ℓ 5
����2 , (A2)

where hats indicate estimates of a true value, 5 is frequency, and f2n is the variance of the white

noise n . The spectrum of the AR-modeled residual time series can be used as an estimate of the
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spectrum of underlying non-tidal, non-wind-driven intrinsic variability in the ocean. If (̂rr( 5 )

accurately models the spectrum of y at frequencies outside those in H and assuming white noise

n , the coefficients {Û: } may be used to construct R for a second iteration of fitting using this new

estimate for the noise covariance matrix. This can be done by taking the inverse Fourier transform

of (̂rr( 5 ), which is the covariance of r via the Wiener-Khinchin theorem. R is then constructed

from the covariance as outlined in section .

c. Alternative Form of Equation 7

An alternative equation that solves for x̂ can be achieved using the matrix inversion lemma (e.g.

Wunsch 1996):

x̂ = PHT
(
HPHT +R

)−1
y. (A3)

In practice, tidal records usually contain many more data points # than frequencies " that are of

interest to model. Therefore the data-space inversion (equation (7)) is used in red_tide because

HTR−1H has lower computation and memory requirements (4"2 elements) than HPHT (#2 ele-

ments). The # ×# residual covariance matrix inverse, R−1, that appears in equation (7) does not

need to be computed explicitly when using efficient linear system solution algorithms for matrix

inversion, which instead directly calculate HTR−1, which is 2" ×# . Further, a sparse represen-

tation of R minimizes memory requirements in equation (7) compared to the more challenging

requirements of the dense # ×# matrix in equation (A3).

d. Non-dimensionalization

The assumption of uncorrelated noise is physically unrealistic when modeling processes with a

correlated, energetic noise component, which would be better represented by a more complicated

R. For example, Coles et al. (2011) use a non-diagonal matrix expression for R, the efficient

39
Accepted for publication in Journal of Atmospheric and Oceanic Technology. DOI 10.1175/JTECH-D-21-0034.1. Brought to you by UNIVERSITY OF CALIFORNIA San Diego - SIO LIBRARY 0219 SERIALS | Unauthenticated | Downloaded 05/11/22 05:52 PM UTC



inversion of which is outlined here. The computational resources to directly invert a non-diagonal

R are too high to be practical: R is # ×# , where # is the length of y, which is much longer than x

in practice. Though red_tide uses MATLAB’s default linear equation solving method, a Cholesky

lower triangle factorization of the residual covariance matrix R = 〈rrT〉 may also be used. The

residual covariance can be factored as R =R1/2RT/2, where R1/2 is lower triangular with the inverse

R-1/2 used as a (non-unique) whitening transform:

yw = R-1/2y, rw = R-1/2r, Hw = R-1/2H. (A4)

Noting that RT/2R−1R1/2 = I, these can be substituted into equation (7), which simplifies to

x̂ =
(
Hw

THw +P−1
)−1

HT
wyw. (A5)

The choice of R, and thus R−1/2, relies on accurately estimating the residual covariance. This

may be done by examining the calculated data covariance matrix yyT or equivalently the power

spectrum (yy and estimating 〈rrT〉.

Analogously, the model parameter covariance matrix P can be expressed as P = P1/2PT/2. Define

H′ = R−1/2HP1/2 such that equation (A5) can be written as

x̂ = P1/2
(
H′TH′+ I

)−1
H′Tyw. (A6)

This is equivalent in form to the regularized least squares problem with a left-multiplied factor of

P1/2 that allows x̂ to retain units of y.

References

Agnew, D. C., 1992: The time-domain behavior of power-law noises. Geophysical Research

Letters, 19 (4), 333–336, doi:10.1029/91GL02832.

Bendat, J., and A. Piersol, 2010: Random Data, chap. 12, 417–472. John Wiley & Sons, Ltd,

doi:10.1002/9781118032428, ISBN:9781118032428.

40
Accepted for publication in Journal of Atmospheric and Oceanic Technology. DOI 10.1175/JTECH-D-21-0034.1. Brought to you by UNIVERSITY OF CALIFORNIA San Diego - SIO LIBRARY 0219 SERIALS | Unauthenticated | Downloaded 05/11/22 05:52 PM UTC



Chavanne, C. P., and P. Klein, 2010: Can oceanic submesoscale processes be observedwith satellite

altimetry? Geophysical Research Letters, 37 (22), doi:10.1029/2010GL045057.

Chiswell, S. M., 2002: Energy Levels, Phase, and AmplitudeModulation of the Baroclinic Tide off

Hawaii. Journal of Physical Oceanography, 32 (9), 2640–2651, doi:10.1175/1520-0485(2002)

032<2640:ELPAAM>2.0.CO;2.

Codiga, D. L., 2011: Unified tidal analysis and prediction using the UTide matlab functions. Tech.

rep., Graduate School of Oceanography, University of Rhode Island, Narragansett, RI. URL

ftp://www.po.gso.uri.edu/pub/downloads/codiga/pubs/2011Codiga-UTide-Report.pdf, 59pp.

Coles, W., G. Hobbs, D. J. Champion, R. N. Manchester, and J. P. W. Verbiest, 2011: Pulsar timing

analysis in the presence of correlated noise.Monthly Notices of the Royal Astronomical Society,

418 (1), 561–570, doi:10.1111/j.1365-2966.2011.19505.x.

Doodson, A. T., and H. Lamb, 1921: The harmonic development of the tide-generating potential.

Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and

Physical Character, 100 (704), 305–329, doi:10.1098/rspa.1921.0088.

Eich, M. L., M. A. Merrifield, and M. H. Alford, 2004: Structure and variability of semidiurnal

internal tides in Mamala Bay, Hawaii. Journal of Geophysical Research: Oceans, 109 (C5),

doi:https://doi.org/10.1029/2003JC002049.

Foreman, M. G. G., 1977: Manual for tidal heights analysis and prediction. PacificMarine Science

Rep. 77-10. Patricia Bay, Sidney, BC, Canada, Institute of Ocean Sciences, (2004 revision).

Foreman, M. G. G., J. Y. Cherniawsky, and V. A. Ballantyne, 2009: Versatile harmonic tidal

analysis: Improvements and applications. Journal of Atmospheric and Oceanic Technology,

26 (4), 806–817, doi:10.1175/2008JTECHO615.1.

41
Accepted for publication in Journal of Atmospheric and Oceanic Technology. DOI 10.1175/JTECH-D-21-0034.1. Brought to you by UNIVERSITY OF CALIFORNIA San Diego - SIO LIBRARY 0219 SERIALS | Unauthenticated | Downloaded 05/11/22 05:52 PM UTC



Foreman, M. G. G., and R. F. Henry, 1989: The harmonic analysis of tidal model time series.

Advances in Water Resources, 12, 109–120, doi:10.1016/0309-1708(89)90017-1.

Gonella, J., 1972: A rotary-component method for analysing meteorological and oceanographic

vector time series. Deep Sea Research and Oceanographic Abstracts, 19 (12), 833 – 846,

doi:10.1016/0011-7471(72)90002-2.

Haigh, I. D., M. Eliot, and C. Pattiaratchi, 2011: Global influences of the 18.61 year nodal cycle

and 8.85 year cycle of lunar perigee on high tidal levels. Journal of Geophysical Research:

Oceans, 116 (C6), doi:10.1029/2010JC006645.

Hewitt, E., and R. E. Hewitt, 1979: The Gibbs-Wilbraham phenomenon: An episode in Fourier

analysis. Archive for History of Exact Sciences, 21 (2), 129–160, doi:10.1007/BF00330404.

Hoerl, A. E., and R. W. Kennard, 1970: Ridge regression: Biased estimation for nonorthogonal

problems. Technometrics, 12 (1), 55–67, doi:10.1080/00401706.1970.10488634.

Ide, K., P. Courtier, M. Ghil, and A. C. Lorenc, 1997: Unified notation for data assimilation :

Operational, sequential and variational. Journal of the Meteorological Society of Japan. Ser. II,

75 (1B), 181–189, doi:10.2151/jmsj1965.75.1B_181.

Le Provost, C., 2001: Chapter 6 ocean tides. Satellite Altimetry and Earth Sciences, L.-L. Fu,

and A. Cazenave, Eds., International Geophysics, Vol. 69, Academic Press, 267 – 303, doi:

10.1016/S0074-6142(01)80151-0.

Lee, P. M., 1997: Bayesian statistics : an introduction. 2nd ed., Arnold, London, ISBN: 0-471-

19481-6.

42
Accepted for publication in Journal of Atmospheric and Oceanic Technology. DOI 10.1175/JTECH-D-21-0034.1. Brought to you by UNIVERSITY OF CALIFORNIA San Diego - SIO LIBRARY 0219 SERIALS | Unauthenticated | Downloaded 05/11/22 05:52 PM UTC



Leffler, K. E., and D. A. Jay, 2009: Enhancing tidal harmonic analysis: Robust (hybrid L1/L2)

solutions. Continental Shelf Research, 29 (1), 78 – 88, doi:10.1016/j.csr.2008.04.011, physics

of Estuaries and Coastal Seas: Papers from the PECS 2006 Conference.

Lourens, A., and F. C. van Geer, 2016: Uncertainty propagation of arbitrary probability density

functions applied to upscaling of transmissivities. Stochastic Environmental Research and Risk

Assessment, 30 (1), 237–249, doi:10.1007/s00477-015-1075-8.

Matte, P., D. A. Jay, and E. D. Zaron, 2013: Adaptation of classical tidal harmonic analysis

to nonstationary tides, with application to river tides. Journal of Atmospheric and Oceanic

Technology, 30 (3), 569–589, doi:10.1175/JTECH-D-12-00016.1.

Menke, W., 2018: Geophysical data analysis : discrete inverse theory. Fourth edition ed., Elsevier

Ltd., London, United Kingdom.

Munk, W., and K. Hasselman, 1964: Super-resolution of tides. Studies on Oceanograhy, 339–334,

(Hidaka volume).

Munk, W. H., B. Zetler, and G. W. Groves, 1965: Tidal cusps. Geophysical Journal of the Royal

Astronomical Society, 10 (2), 211–219.

National Oceanic and Atmospheric Administration, 2005: Deep-Ocean Assessment and Reporting

of Tsunamis (DART(R)). NOAA National Centers for Environmental Information, accessed:

2021-03-21, doi:10.7289/V5F18WNS.

Ohlmann, C., P. White, L. Washburn, B. Emery, E. Terrill, and M. Otero, 2007: Interpreta-

tion of coastal HF radar–derived surface currents with high-resolution drifter data. Journal of

Atmospheric and Oceanic Technology, 24 (4), 666–680, doi:10.1175/JTECH1998.1.

43
Accepted for publication in Journal of Atmospheric and Oceanic Technology. DOI 10.1175/JTECH-D-21-0034.1. Brought to you by UNIVERSITY OF CALIFORNIA San Diego - SIO LIBRARY 0219 SERIALS | Unauthenticated | Downloaded 05/11/22 05:52 PM UTC



Pawlowicz, R., R. Beardsley, and S. Lentz, 2002: Classical tidal harmonic analysis including

error estimates in MATLAB using T_TIDE. Computers & Geosciences, 28 (8), 929–937, doi:

10.1016/S0098-3004(02)00013-4.

Rainville, L., and R. Pinkel, 2006: Propagation of low-mode internal waves through the ocean.

Journal of Physical Oceanography, 36 (6), 1220 – 1236, doi:10.1175/JPO2889.1.

Ray, R. D., and G. T. Mitchum, 1996a: Surface manifestation of internal tides generated near

Hawaii. Geophysical Research Letters, 23 (16), 2101–2104, doi:10.1029/96GL02050.

Ray, R. D., and G. T. Mitchum, 1996b: Surface manifestation of internal tides generated near

Hawaii. Geophysical Research Letters, 23 (16), 2101–2104, doi:10.1029/96GL02050.

Ray, R. D., and E. D. Zaron, 2011: Non-stationary internal tides observed with satellite altimetry.

Geophysical Research Letters, 38 (17), doi:10.1029/2011GL048617.

Ray, R. D., and E. D. Zaron, 2016: M2 internal tides and their observed wavenumber

spectra from satellite altimetry. Journal of Physical Oceanography, 46 (1), 3–22, doi:

10.1175/JPO-D-15-0065.1.

Roarty, H., and Coauthors, 2019: The global high frequency radar network. Frontiers in Marine

Science, 6, 164, doi:10.3389/fmars.2019.00164.

Terrill, E., and Coauthors, 2006: Data management and real-time distribution in the HF-radar

national network. OCEANS 2006, 1–6, doi:10.1109/OCEANS.2006.306883.

Van Trees, H. L., 2001: Detection, Estimation, and Modulation Theory, Part I: Detection, Es-

timation, and Linear Modulation Theory, chap. 2, 54–63. John Wiley & Sons, Inc., ISBNs:

0-471-09517-6 (Paperback); 0-471-22108-2 (Electronic).

44
Accepted for publication in Journal of Atmospheric and Oceanic Technology. DOI 10.1175/JTECH-D-21-0034.1. Brought to you by UNIVERSITY OF CALIFORNIA San Diego - SIO LIBRARY 0219 SERIALS | Unauthenticated | Downloaded 05/11/22 05:52 PM UTC



von Storch, H., and F. W. Zwiers, 2003: Statistical Analysis in Climate Research. Cambridge

University Press, ISBN: 0-521-45071-3.

Wunsch, C., 1996: The Ocean Circulation Inverse Problem. Cambridge University Press, ISBN:

0-521-48090-6.

Zaron, E. D., 2019: Predictability of non-phase-locked baroclinic tides in the Caribbean Sea.

Ocean Science, 15 (5), 1287–1305, doi:10.5194/os-15-1287-2019.

Zetler, B. D., M. D. Schuldt, R. W. Whipple, and S. D. Hicks, 1965: Harmonic analysis of tides

from data randomly spaced in time. Journal of Geophysical Research, 70 (12), 2805–2811.

Zhao, Z., M. H. Alford, J. Girton, T. M. S. Johnston, and G. Carter, 2011: Internal tides around

the Hawaiian Ridge estimated from multisatellite altimetry. Journal of Geophysical Research:

Oceans, 116 (C12), doi:10.1029/2011JC007045.

45
Accepted for publication in Journal of Atmospheric and Oceanic Technology. DOI 10.1175/JTECH-D-21-0034.1. Brought to you by UNIVERSITY OF CALIFORNIA San Diego - SIO LIBRARY 0219 SERIALS | Unauthenticated | Downloaded 05/11/22 05:52 PM UTC



LIST OF TABLES
Table 1. Root-mean-square error for the four step function analyses shown in Figure

2(B-E). RMSE is calculated at observation times (top row) and at a set of times
sampled at 100 times the observational resolution (bottom row). . . . . . . 47

46
Accepted for publication in Journal of Atmospheric and Oceanic Technology. DOI 10.1175/JTECH-D-21-0034.1. Brought to you by UNIVERSITY OF CALIFORNIA San Diego - SIO LIBRARY 0219 SERIALS | Unauthenticated | Downloaded 05/11/22 05:52 PM UTC



Table 1. Root-mean-square error for the four step function analyses shown in Figure 2(B-E). RMSE is

calculated at observation times (top row) and at a set of times sampled at 100 times the observational resolution

(bottom row).

White P

5max = 5Ny

True P

5max = 5Ny

White P

5max = 2 5Ny

True P

5max = 2 5Ny

RMSE at observation times 0.0080 0.0084 0.0122 0.0038

RMSE of interpolated time series 0.0211 0.0201 0.5014 0.0171
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Fig. 1. A simplified example of tidal harmonic analysis on bottom pressure data (3.5 year record at 8.48◦S,

125.03◦W, DART array site 51406, further analyzed in section 4a). (A) A segment of the longer time series

that was analyzed (black) and the resulting fit (red) to only two tidal constituent frequencies: M2 and S2. (B)

A closeup of the time series over the gray interval in (A). (C) The power spectrum of the time series and the

magnitude of the harmonic coefficients.
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Fig. 2. Step function discretely-sampled at 1000 points. (A) Full record modeled with orthogonal sinusoids

(blue dashed) and with non-orthogonal sinusoids corresponding to a record twice as long (red solid). The gray

shaded region indicates the range of data that are fit, outside of which the time series is extrapolated. (B) Close

view of discontinuity and red_tide output given spectrally white (incorrect) model parameter covariance, P, only

modeling up to the Nyquist frequency 5Ny. (C) Discontinuity and output using true P, only modeling up to 5Ny.

(D) Same as panel B but including model frequencies above 5Ny up to 2 5Ny. (E) Same as panel C but including

model frequencies above 5Ny up to 2 5Ny. The residual is treated as white (uncorrelated) noise in all panels, with

minimal contribution to the total variance (0.2% for the blue dashed curve in panel A, 0.1% for the red curve in

panel A, 0.1% for panels B-C, and 0.05% for panels D-E).
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Fig. 3. (top) Example of idealized power spectra with a single constituent, here M2, with the computed

power spectrum of the bottom pressure record from Figure 1 included for comparison, and (bottom) segments of

corresponding time series computed from the power spectra with random phase at each frequency (500 hourly

synthetic data points). All three spectra share the same tidal peak magnitude, and all three time series share the

same phase across frequencies.
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Fig. 4. (A) Synthetic true spectra (noise and signal) and harmonic amplitudes calculated using red_tide,

and (B) assumed and calculated noise spectra. Shading indicates 90% credible intervals of amplitude, with

thick lines indicating median amplitude based on the estimated distribution of coefficients. All quantities are

scaled to spectral density units for comparison. The true spectra are used to construct the noise and signal

components of the time series (1001 hourly data points) from which harmonic amplitudes are calculated. The

noise spectra in (B) indicate the Fourier transforms of the residual covariance matrix R used in each application

of the red_tide procedure. All noise spectra used to construct R have the same variance, which approximates

the 42% contribution of true noise variance to the true total variance. The residual spectra are calculated using

Welch’s method with a Hanning window and 9 overlapping segments. The tidal peak is at the M2 frequency and

is convolved with a spectrum of slope -2 in order to simulate real tidal modulation that leads to tidal cusps.
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Fig. 5. For the same time series and analyses in Figure 4, (A) model amplitude fraction of truth, (B) standard

deviation of the normalized amplitude, (C) phase difference between the true phase and the model estimates, and

(D) standard deviation of the estimated phase after being centered on the interval (−c, c).
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Fig. 6. Synthetic spectrum, harmonic amplitudes calculated from corresponding time series (7 years sampled

hourly) using red_tide (scaled to spectral density units), and spectra used to construct R, shown (A) in the range

of frequencies typically relevant to tidal harmonic analysis, and (B) at a close view about the M2 constituent

frequency. Shading indicates 90% credible intervals of amplitude. Dashed colored lines indicate the Fourier

transforms of the residual covariance matrix R used in each estimation. Both of these noise spectra assume the

same total signal to noise variance ratio of 1.

56
Accepted for publication in Journal of Atmospheric and Oceanic Technology. DOI 10.1175/JTECH-D-21-0034.1. Brought to you by UNIVERSITY OF CALIFORNIA San Diego - SIO LIBRARY 0219 SERIALS | Unauthenticated | Downloaded 05/11/22 05:52 PM UTC



Fig. 7. Mean ratios of M2 harmonic amplitudes to true amplitudes using red_tide and ordinary least squares.

Panels (A-E) correspond to time series with tidal spectral power density 100 times greater than that of the random

background process at the M2 frequency. Panels (F-J) correspond to time series with tidal spectral power density

10 times greater than that of the random background process at M2. The random background process to which

tides are added has a spectral slope indicated by W. Time series have 24,000 hourly samples but are only analyzed

up to 1500 hours, except for W = −1, which was also analyzed at 5000 hours. Each plot corresponds to # Monte

Carlo simulations with constant spectra and random phase, where # = 10,000 for W ≤ −2 and # = 50,000 for

W > −2. The spectral slope of the noise term used in red_tide (horizontal axis) and the length of the record

(vertical axis) are varied, with noise slope "none" corresponding to the OLS solution. Color bars are centered

at unity and scale differently across panels for clarity. Hatched cells indicate combinations of record length and

assumed noise spectral slope that resulted in the value 1 (estimated amplitude equal to true amplitude) falling

outside the interquartile range for the 10,000 or 50,000 member ensemble.
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Fig. 8. Log10 of normalized model parameter variance for the M2 constituent calculated from the same

artificial data described in Figure 7 with the same figure layout. Filled dots indicate the minimum value of its

row, and color bars scale differently across panels for clarity.
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Fig. 9. Power spectrum of bottom pressure from site 51406 (8.48◦S, 125.03◦W), part of the DART array.

Higher harmonics of the tidal frequencies are present at resolved frequencies higher than roughly 4 cpd (not

shown). Vertical dashed gray lines denote prominent tidal constituents, which are the dominant sources of

variance in bottom pressure time series. This time series of length 3 years and 6 months (Feb. 12, 2011 to

Sept. 6, 2014), sampled every 15 seconds, is averaged over 1 hour intervals, with the power spectrum estimated

using Welch’s method. The 95% confidence intervals are indicated by the error bar in the lower right, plotted at

frequency 4.25 cpd. This corresponds to a ratio valid at all magnitudes of spectral density.
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Fig. 10. Diagonal of model parameter covariance matrix (linear interpolated power spectrum, black solid line),

harmonic amplitudes calculated in red_tide using a red noise covariance (spectral slope = -3/2 to empirically

match observed spectrum), and results using t_tide. Shading indicates 90% credible intervals. Select diurnal

and semidiurnal tidal frequencies are indicated by dashed gray vertical lines. The t_tide amplitudes are from

constituents automatically chosen by the package, with amplitudes considered by t_tide to be "significant" filled

in, otherwise unfilled, and with 90% confidence bars. All values are in units of spectral density in order to

compare quantities defined on different frequency intervals.
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Fig. 11. Results from Figure 10 focused on the semidiurnal band. Prominent tidal constituent frequencies,

including those not resolved in the power spectrum, are indicated by vertical dotted lines and labeled according

to their conventional Darwin symbols.
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Fig. 12. Rotary power spectrum of surface current u from HFR stations along the central California coast,

regionally averaged over 1191 grid points. Time series of length 9 years and 3 months with at least 50% data

coverage are sampled hourly. Dashed gray lines denote, in order of increasing frequency, the O1, S1, M2, and

S2 constituents, while the gray band denotes the range of inertial frequencies across the latitudes spanned by the

data. Higher harmonics of the tidal frequencies are present at resolved frequencies higher than those shown.

The 95% confidence ratio is indicated by the error bar in the lower right, plotted at frequency 4.25 cpd. This

corresponds to a ratio valid at all magnitudes of spectral density.
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Fig. 13. Harmonic amplitudes (normalized to units of the power spectrum) of a high-frequency radar time

series (zonal component D), with the time series power spectrum (DD and domain-averaged power spectrum (used

in P) shown for comparison. Model coefficient uncertainty (90% credible interval) is represented by shaded

intervals. The covariance used to build R is truncated at 300 hours time lag and is built from a spectrum of

spectral slope -1 (dotted line). Amplitudes from t_tide, both significant and non-significant, are included for

comparison. (B) Close-up of the M2 band centered at the principal lunar semidiurnal frequency. The vertical

dashed lines on either side of the central M2 line are spaced by the annual frequency
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