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The Encoding of Speech Sounds in the Superior Temporal Gyrus

Han Gyol Yi1,*, Matthew K. Leonard1,*, and Edward F. Chang1,†

1Department of Neurological Surgery, University of California, San Francisco, 675 Nelson Rising 
Lane, San Francisco, CA 94158, USA

Summary

The human superior temporal gyrus (STG) is critical for extracting meaningful linguistic features 

from speech input. Local neural populations are tuned to acoustic-phonetic features of all 

consonants and vowels, and to dynamic cues for intonational pitch. These populations are 

embedded throughout broader functional zones that are sensitive to amplitude-based temporal 

cues. Beyond speech features, STG representations are strongly modulated by learned knowledge 

and perceptual goals. Currently, a major challenge is to understand how these features are 

integrated across space and time in the brain during natural speech comprehension. We present a 

theory that temporally-recurrent connections within STG generate context-dependent phonological 

representations, spanning longer temporal sequences relevant for coherent percepts of syllables, 

words, and phrases.
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Introduction

Speech is a unique form of communication that enables humans to convey an unlimited 

range of thoughts and ideas with a limited set of fundamental elements. Linguists have 

characterized the units and structures of speech sounds that make up the world’s spoken 

languages through a system known as phonology (Baudouin de Courtenay, 1972; De 

Saussure, 1879; Sapir, 1925). While phonology provides a useful description of the sound 

structure of speech, we have a strikingly incomplete understanding of its implementation in 

terms of neural computations in the human brain.

Here, we examine the nature of speech representation in the human superior temporal gyrus 

(STG), which sits at a functional and anatomical interface between lower-level auditory 
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structures and higher-level association areas that support abstract aspects of language. Injury 

of the mid-to-posterior part of the STG results in an array of profound deficits in speech 

comprehension (Wernicke, 1874, 1881), an observation that has led to the view that this 

region is an important locus for speech perception (Geschwind, 1970). However, it remains 

unclear why these deficits arise when these specific neural structures are damaged.

Converging evidence from non-invasive functional magnetic resonance imaging (fMRI; 

Binder et al., 2000; DeWitt & Rauschecker, 2012; Price, 2012; Scott, Blank, Rosen, & Wise, 

2000) and electro- and magneto-encephalography (E/MEG; Di Liberto, O’Sullivan, & Lalor, 

2015; Giraud & Poeppel, 2012; Gwilliams, Linzen, Poeppel, & Marantz, 2018; Sohoglu, 

Peelle, Carlyon, & Davis, 2012; Wöstmann, Fiedler, & Obleser, 2017) has implicated STG 

in various aspects of phonological processing. While these studies have helped shape 

important theories on the localization of speech and language function, they have also raised 

fundamental questions about the nature of phonological representation: What sound features 

are encoded in the STG? How do they correspond to both acoustic and linguistic 

descriptions of speech? What computational principles underlie the higher-order auditory 

processing that is necessary for extracting relevant structure and information from speech?

In this review, we focus on the emerging role of high-density intracranial neurophysiological 

recordings in humans to address these questions. The high spatial and temporal resolution of 

direct recordings has facilitated a deeper investigation of the nature of speech representation 

in the human cortex at the scale of millimeters and milliseconds. These methods have 

enabled the estimation of receptive fields at local sites as well as population ensemble 

activity at the rapid time scale of speech (Berezutskaya, Freudenburg, Güçlü, van Gerven, & 

Ramsey, 2017; Chan et al., 2013; Holdgraf et al., 2016; Nourski et al., 2012). Furthermore, 

they have made it possible to describe the selective encoding of speech sounds in the STG, 

accounting for critical phonological representations of consonants and vowels, as well as 

prosodic features, such as intonational and syllabic cues.

In the first sections, we review evidence that STG representations demonstrate properties of 

high-order auditory encoding, including invariance, non-linearity (Steinschneider, Volkov, 

Noh, Garell, & Howard III, 1999), and context-dependence. We also describe emerging 

evidence that STG neural population activity directly reflects the subjective experience of 

listeners, adjusting for the presence of noisy or ambiguous sounds (Gwilliams et al., 2018; 

Holdgraf et al., 2016). These computations may be critical for linking acoustic sensory input 

with deeply-learned knowledge about the structure of language to generate meaningful 

perceptual representations. In the last section, we consider one of the most substantial and 

important challenges in neurolinguistics: understanding how the brain binds a continuous 

acoustic signal into discrete and meaningful representations like words and phrases. 

Drawing on well-established mechanisms from sensory and perceptual neuroscience, we 

speculate that a simple and neurobiologically-plausible computational framework can 

explain how local, context-dependent representations in STG may be implemented as a 

function of time. In the context of the existing evidence, we suggest that STG may play a 

more substantial role in multiple aspects of speech perception than has been previously 

understood.
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Acoustic-Phonetic Features Provide a Framework for Phonological 

Encoding

The taxonomy of speech sounds

Speech sounds can be described in several different yet complementary ways, ranging from 

physical characteristics of sound to abstract categories and linguistic features (Figure 1). It is 

of great interest, therefore, not only which representations truly exist in the brain, but how 

each type of representation is implemented computationally. In this section, we briefly 

introduce some of these linguistic descriptions and how they relate to the acoustic properties 

of speech sounds.

At the most basic level, speech, like all sounds, consists of vibrations of air molecules at 

different amplitudes across time. For simple speech sounds, like the words “pin”, “fin”, and 

“fun”, the initial portion of each word (i.e., the first consonant) has relatively low amplitude 

and aperiodic structure, lasting approximately 100 ms. (Figure 1A). As these sound 

waveforms enter the ear, the cochlea decomposes them into time-frequency representations 

(Delgutte & Kiang, 1984; Shamma, 1985), as shown in the spectrograms in Figure 1B. Here, 

the differences among the initial portions of these words become clear: “pin” begins with a 

transient broadband noise with rapid onset (Figure 1B), which is produced by the release of 

a burst of air through the lips when they are opened (Figure 1C), while “fin” and “fun” begin 

with noise with relatively higher spectral frequencies with longer durations (Figure 1B), 

which is produced by generating a turbulence of aperiodic noise through a partial closure of 

the mouth (Figure 1C). The middle portions of each example word (i.e., the vowels) are 

characterized by relatively higher amplitude, periodic structure, and more sustained power in 

discrete frequency bands (Figure 1A–B). These frequency bands, known as formants, are 

generated by configuring the vocal tract into specific shapes that produce distinct sound 

resonance patterns. The vowel /I/ in ”pin” and “fin” has a larger distance between the first 

two formants compared to /ʌ/ in “fun” (Figure 1B), which reflect different positions of the 

tongue (Figure 1D).

These descriptions of speech sounds are based entirely on the acoustic properties of the 

signal, which are perceived by listeners to be language-specific categories. To formalize 

these properties, linguists have developed the system of phonology, which describes both 

abstract categorical linguistic units, called phonemes, and a taxonomy of features that make 

up phonemes. Specifically, the words “pin”, “fin”, and “fun” are each made up of three 

phonemes, which are the minimally-contrastive units of meaning in speech (Figure 1E) 

(Chomsky & Halle, 1968; Jakobson, Fant, & Halle, 1951). This means that changing the 

phoneme /p/ to /f/ changes the meaning of the word in English (Figure 1E) (Baudouin de 

Courtenay, 1972; De Saussure, 1879; Sapir, 1925).

In phonology, phonemes can be decomposed into smaller, more elemental acoustic-phonetic 

features, which link abstract categorical phoneme representations to the underlying acoustic 

properties and articulatory gestures that generate them (Figure 1F). Acoustic-phonetic 

features are related to each other hierarchically, where different combinations of features 

compose a unique phoneme. Whereas each phoneme is mutually exclusive and only one can 
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exist at a given time as an abstract unit, features are combined in specific ways, overlapping 

in time. Each acoustic-phonetic feature describes a particular aspect of how the sound is 

produced, for example occluding airflow through the mouth (obstruent) for a relatively short 

time (plosive) without vibrating the vocal folds (voiceless) and having the place of occlusion 

be at the lips (bilabial). These features [obstruent + plosive + voiceless + bilabial] together 

describe the English phoneme /p/. Changing the plosive feature to the fricative feature, and 

the bilabial feature to the labio-dental feature changes the description to the phoneme /f/ 

(Figure 1F), demonstrating how relationships among acoustic-phonetic features create a 

flexible system for phonological representation.

For listeners, each representation from acoustic to linguistic features provides flexibility that 

allows for rapid and robust analysis of speech at multiple levels (Blumstein & Stevens, 1981; 

Hillenbrand, Getty, Clark, & Wheeler, 1995; Lisker, 1986; Stevens & Blumstein, 1981). 

Importantly, these levels of representation are not mutually exclusive from each other. For 

instance, in noisy listening situations where not all acoustic cues are available, listeners 

make perceptual errors that reflect the independent nature of acoustic-phonetic features 

(Miller & Nicely, 1955). At the same time, when the perceptual task involves making 

phoneme-level decisions, listeners clearly have access to the more abstract level of 

representation (McNeill & Lindig, 1973). Together, all of these descriptions reflect the 

physical, relational, and hierarchical structure of speech, which differ across languages in 

surface characteristics, but describe an intrinsic aspect of speech in all of the world’s 

languages (Clements, 1985; Keyser & Stevens, 1994; Lahiri & Reetz, 2010). Here, we argue 

that an important goal in speech neuroscience is to understand how the human brain supports 

each of these units across the auditory and speech hierarchy, and how those units are bound 

together into perceptually and cognitively relevant entities such as words and phrases.

The Encoding of Acoustic-Phonetic Features in STG

In this section, we describe how the human superior temporal gyrus (STG) supports 

phonological processing by implementing acoustic-phonetic feature detectors in local neural 

populations (Figure 2). The STG is generally considered to be a part of the high-order 

associative auditory cortex in the human brain (Howard et al., 2000; Moerel, De Martino, & 

Formisano, 2014; Schönwiesner & Zatorre, 2009), encoding sound features that are more 

complex and heterogeneous compared to earlier regions in the auditory hierarchy (Delgutte 

& Kiang, 1984; Escabí, Miller, Read, & Schreiner, 2003; Nourski et al., 2012; Shamma, 

1985; Steinschneider et al., 2014). Anatomically, STG is homologous to the non-human 

primate parabelt auditory cortex (Brewer & Barton, 2016; Hackett, Preuss, & Kaas, 2001; 

Kaas & Hackett, 2000; Petkov, Kayser, Augath, & Logothetis, 2006). Foundational work 

using electrocorticography (ECoG) has demonstrated that neural activity, particularly in the 

high-gamma range (~50-200 Hz) reflects evoked activity to sounds including speech in the 

STG (Crone, Boatman, Gordon, & Hao, 2001; Towle et al., 2008) .

Below, primarily based on insights from ECoG recordings, we argue that the encoding of 

acoustic-phonetic features arises from the cortical infrastructure for auditory processing that 

is neither entirely specific nor selective to speech (Mesgarani, David, Fritz, & Shamma, 

2008; Steinschneider, Nourski, & Fishman, 2013), but is nevertheless heavily specialized 
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and causal for speech perception. Rather than attempting to adjudicate the existence of 

speech-specific and abstract levels of linguistic representations in the brain, we focus on the 

nature of relevant computations performed on the acoustic speech signal within the STG.

Recent work has examined evoked neural responses to natural, continuous speech (Figure 2), 

and found activity that reflects the local encoding of acoustic-phonetic features in STG. 

Using electrocorticography (ECoG) in human epilepsy patients (Figure 2A), Mesgarani and 

colleagues showed that when neural activity is time-aligned to every individual phoneme in 

English (Figure 2B), there is clear selectivity for groups of phonemes at the scale of single 

electrodes. These groups correspond to acoustic-phonetic features, such as plosives, 

fricatives, and vowels (Figure 2C) (Mesgarani, Cheung, Johnson, & Chang, 2014). Notably, 

the relationships among responses to different speech sounds mirrors the hierarchy of 

acoustic-phonetic features, with obstruent/sonorant sounds constituting the main distinction, 

and other features like manner of articulation (e.g., plosive vs. fricative) and voicing 

showing more fine-grained separability (Clements, 1985; Keyser & Stevens, 1994; Lahiri & 

Reetz, 2010; Miller & Nicely, 1955). This work extends previous intracranial recording 

studies that found local encoding of English phonemes that were distinguished by both place 

of articulation (e.g., front vs. back) and voice-onset time (e.g., /b/ vs. /p/) (Steinschneider et 

al., 2011).

Encoding of acoustic-phonetic features in the STG has also been observed in recent 

functional neuroimaging studies using voxel-wise modeling (Arsenault & Buchsbaum, 2015; 

de Heer, Huth, Griffiths, Gallant, & Theunissen, 2017). It is likely that these results reflect 

sensitivity to complex spectrotemporal tuning that is characteristic of higher-order sensory/

perceptual cortex (King & Nelken, 2009; Sharpee, 2016). Spectrotemporal receptive fields 

for ECoG electrodes tuned to specific acoustic-phonetic features closely mirror the acoustic 

properties of their preferred speech sounds, including relatively complex multi-peak spectral 

tuning (Figure 2D). For vowels in particular, STG does not show encoding of narrow-band 

frequencies, but rather appears to exhibit properties of spectral integration, with tuning to 

specific distributions of peaks of acoustic frequency resonance of formants (Figure 1B, 2D) 

which distinguish different vowels (Hillenbrand et al., 1995; Peterson & Barney, 1952).

At a linguistic level, individual phonemes are described by combinations of acoustic-

phonetic features, reflecting different aspects of the same underlying acoustic signal (Figure 

1). Indeed, there is evidence for nonlinear encoding of acoustic input across neural 

populations population that encode acoustic-phonetic features, which corresponds to 

categorical phoneme percepts (Chang et al., 2010; Evans & Davis, 2015; Formisano, De 

Martino, Bonte, & Goebel, 2008; Lee, Turkeltaub, Granger, & Raizada, 2012). Thus, we do 

not consider these different and complementary descriptions of speech to be mutually 

exclusive; neural populations that encode one description (e.g., acoustic-phonetic features at 

local sites) may also contribute to neural codes for other descriptions (e.g., phonemes at the 

population level).

Other higher-order spectral features of the speech signal that convey important aspects of 

meaning are also encoded locally in STG. For instance, all spoken languages utilize 

intonational prosody, in which vocal pitch is varied to indicate a question or a statement, or 
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to emphasize words (Cutler, Dahan, & Van Donselaar, 1997; Shattuck-Hufnagel & Turk, 

1996). Intonational prosody thus communicates meaning along a distinct information 

channel, and recent work has found that it is encoded in STG neural populations that are 

sensitive to speaker-normalized pitch. This encoding for pitch-related prosody appears at 

discrete sites in the STG, which are spatially intermixed with, but functionally independent 

from those that encode traditional acoustic-phonetic features for consonants and vowels 

(Tang, Hamilton, & Chang, 2017). Neural populations that encode absolute pitch were also 

observed in STG, though they were substantially less common than speaker-normalized 

pitch populations, and did not appear to contribute to intonational prosody. Absolute pitch 

encoding has been observed in other studies of human primary auditory cortex (Griffiths et 

al., 2010) as well as in non-human auditory cortical regions (Bizley, Walker, Silverman, 

King, & Schnupp, 2009; Steinschneider, Reser, Fishman, Schroeder, & Arezzo, 1998; 

Walker, Bizley, King, & Schnupp, 2011), but it remains unclear how these neural codes 

contribute to speech processing beyond encoding information like speaker identity.

Lesion and direct electrical stimulation studies have established a causal role for STG neural 

populations in speech perception. Damage to the left superior temporal area gray matter 

results in a striking “receptive” language disorder, known as Wernicke’s aphasia (Bates et 

al., 2003; Blumstein, Baker, & Goodglass, 1977; Geschwind, 1970; Robson, Keidel, Ralph, 

& Sage, 2012; Wernicke, 1874, 1881). Similarly, electrical stimulation to left, but not right, 

posterior STG causes acute interference of speech perception, as well as induces 

phonological processing deficits, such as paraphasic errors, during verbal repetition 

(Boatman, 2004; Boatman, Lesser, & Gordon, 1995; Corina et al., 2010; Leonard, Cai, 

Babiak, Ren, & Chang, 2016; Roux et al., 2015). While these results are consistent with the 

notion that STG has an important role in speech perception at a phonological level, they also 

raise interesting and unresolved questions about whether there are distinct roles of neural 

activity in left versus right STG. In addition, these studies do not address the functional 

connectivity of speech and language networks, which may also explain some of these 

deficits (Mesulam, Thompson, Weintraub, & Rogalski, 2015).

Even though the above findings demonstrate precisely localized encoding for distinct 

acoustic-phonetic features in STG, there is no apparent spatial clustering for acoustic-

phonetic feature categories within individuals, nor is there a conserved map across 

individuals (c.f., Arsenault & Buchsbaum, 2015). Even in the few rare opportunities where it 

has been possible to study single neurons in human STG in response to speech, firing rates 

were consistent with tuning to complex spectrotemporal patterns and acoustic-phonetic 

features, but were highly diverse across neighboring cells (Chan et al., 2013; Creutzfeldt, 

Ojemann, & Lettich, 1989; Engel, Moll, Fried, & Ojemann, 2005). The complexity of STG 

responses is in stark contrast with those of the tonotopically organized lemniscal auditory 

pathway, which reflects the spatial gradients for frequency information originating in the 

cochlea (Delgutte & Kiang, 1984; Escabí et al., 2003; Shamma, 1985), including the human 

primary auditory cortex, where single neurons show narrow frequency tuning (Bitterman, 

Mukamel, Malach, Fried, & Nelken, 2008).
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Encoding of Temporal Landmarks Parcellates the STG

Recent work has demonstrated that STG is parcellated into broader distinct regions that 

encode important temporal landmarks in the speech signal. Specifically, posterior STG is 

sensitive to speech onset following a period of silence (Figure 3B), while middle-to-anterior 

STG may track ongoing changes in the amplitude envelope of continuous sound (Figure 

3C). This spatial organization across the STG explains the largest proportion of variance in 

speech responses, and is highly conserved across individuals, unlike for encoding of 

acoustic-phonetic feature detectors (Hamilton, Edwards, & Chang, 2018), suggesting that 

the encoding of amplitude-based cues is a critical function of the STG.

The posterior STG is highly responsive to sound onsets following at least 200 ms of silence, 

which contrasts with anterior-middle STG, which is more responsive during ongoing speech 

(Hamilton et al., 2018) (Figure 3D). This organization has been observed using data-driven, 

unsupervised clustering approaches without explicit constraints on spatial organization. 

Notably, onset responses are found not only for intelligible speech, but also for unintelligible 

speech as well as for non-speech sounds, suggesting that they may reflect a fundamental 

auditory computation. In the context of speech, onset responses provide a robust way to 

detect important acoustic temporal landmarks in continuous speech like phrase and sentence 

boundaries, which often mark meaningful changes in topics, speakers, and tone shifts in 

natural conversations (Figure 3B).

In addition to studies focused on auditory perception, this functional parcellation between 

posterior and anterior STG has also been observed in other contexts. Recent ECoG work has 

shown that posterior STG integrates multimodal input from audiovisual speech in a distinct 

manner from the anterior STG (Ozker, Schepers, Magnotti, Yoshor, & Beauchamp, 2017; 

Ozker, Yoshor, & Beauchamp, 2018). Additionally, during speech production, responses in a 

focal region of posterior STG are suppressed at the onset of speech, compared to passively 

listening to the same sounds (Chang, Niziolek, Knight, Nagarajan, & Houde, 2013). This 

phenomenon is distinguished from neural activity directly associated with auditory feedback 

used for control of ongoing vocalization, which is observed throughout the middle STG 

(Chang et al., 2013) and in Heschl’s gyrus (Behroozmand & Larson, 2011; Behroozmand et 

al., 2016). Thus, these results suggest that sensitivity to temporal context may provide 

sensorimotor predictions relevant for vocal control, where the posterior STG shows the most 

pronounced speaking-induced suppression at onset of vocalization, while middle STG shows 

enhancement for altered feedback pertubations during ongoing vocalizations.

Neural populations in mid-anterior STG, in contrast, show more heterogeneous and 

sustained physiological responses to speech compared to posterior STG (Hamilton et al., 

2018). While the specific functional roles of this region are less clear, there is extensive 

evidence from non-invasive methods that neural activity in human auditory regions is 

correlated with fluctuations in the amplitude envelope of the speech signal (Ahissar et al., 

2001; Ding, Chatterjee, & Simon, 2014; Doelling, Arnal, Ghitza, & Poeppel, 2014; 

Kubanek, Brunner, Gunduz, Poeppel, & Schalk, 2013; Liégeois-Chauvel, Lorenzi, 

Trébuchon, Régis, & Chauvel, 2004; Nourski et al., 2009; Overath, Zhang, Sanes, & 

Poeppel, 2012). It is possible that the sustained responses in mid-anterior STG, which is 

Yi et al. Page 7

Neuron. Author manuscript; available in PMC 2020 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



observed when averaging activity across many sentences (Hamilton et al., 2018), may reflect 

the encoding of envelope-based cues at the single trial level. Across nearly all the world’s 

languages, the amplitude envelope provides important syllable-level temporal cues (e.g., 

syllabic nuclei; Figure 3C) (Blevins & Goldsmith, 1995; Byrd, 1996; Zec, 1995). 

Perceptually, amplitude envelope plays a critical role in comprehension and intelligibility of 

spoken sentences (Drullman, Festen, & Plomp, 1994b, 1994a; Rosen, 1992; Shannon, Zeng, 

Kamath, Wygonski, & Ekelid, 1995). Based on long-standing theories that have postulated 

that amplitude events signal key temporal landmarks for spectral analysis of the speech 

signal (Chistovich & Lublinskaya, 1979; Stevens, 2002), we suggest that the amplitude 

envelope may be encoded as a discrete landmark feature. Neural populations that are tuned 

to detect this feature provide a temporal frame for organizing the rapid stream of alternating 

consonants and vowels in natural speech, which are analyzed in local STG populations that 

are tuned to specific spectral acoustic-phonetic features (Figure 3D).

Currently, the specific neural code for amplitude envelope information has not been firmly 

established. While there is evidence that the human auditory cortex activity entrains to the 

continuous amplitude envelope (Gross et al., 2013; Peelle & Davis, 2012), there is also data 

suggesting that encoding is based on a sparser cue (Doelling et al., 2014). In particular, 

animal neurophysiology has found neurons throughout the mammalian auditory pathway 

including cortex that are tuned specifically to the rate of change in the amplitude envelope 

(Fishbach, Nelken, & Yeshurun, 2001; Heil, 1997, 2004). This topic remains under active 

investigation, including ongoing efforts using ECoG in humans to examine the extent to 

which neural populations in human STG respond to sparse, amplitude-based temporal cues 

of continuous speech (Oganian & Chang, 2018).

Although much remains to be characterized regarding the functional parcellation of STG, 

the broad spatial organization of posterior onset and mid-anterior amplitude cues aligns with 

previous observations of spatial tuning to different temporal and spectral acoustic 

modulation rates (Hullett, Hamilton, Mesgarani, Schreiner, & Chang, 2016; Santoro et al., 

2014; Schönwiesner & Zatorre, 2009). Specifically, posterior STG has been shown to prefer 

high temporal modulation (Hullett et al., 2016), which is consistent with the rapid increase 

in the amplitude associated with onsets of speech sounds (Hamilton et al., 2018). In contrast, 

the middle-to-anterior STG prefers high spectral modulation (Hullett et al., 2016), which is 

characteristic of vowel sounds (Elliott & Theunissen, 2009; Versnel & Shamma, 1998), the 

timing for which is strongly correlated with the temporal envelope in natural speech 

(Hermes, 1990; Zec, 1995). We propose that the broad spatial organization for temporal cues 

may be crucial for the encoding of phonological information in STG, where these cues serve 

as temporal landmarks for organizing and binding spectral content across time, such as into 

syllables, words, or phrases (Figure 3A). Furthermore, the embedding of acoustic-phonetic 

detectors throughout STG allows for local processing of highly dynamic complex acoustic 

input (Figure 3D). Together, this organization may suggest that acoustic-phonetic feature 

representations in the posterior zone are modulated by phrase onsets, and acoustic-phonetic 

feature representations in the middle-to-anterior zone are modulated by the syllabic context. 

Thus, temporal landmarks can provide an intrinsic mechanism for tracking time, and 

therefore the order of phonological units. For example, /m/ at the beginning of the word 

“mom” could be differentiated from the final /m/ in part due to the temporal context 
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provided by the detection of the temporal landmark for the vowel nucleus. If true, this would 

suggest that STG represents context-dependent speech input across multiple perceptually 

relevant timescales.

Temporal Binding and Lexical Representation

Up to this point, we have described how STG neural populations encode instantaneous 

representations of spectral and temporal features. A crucial question is the extent to which 

these acoustic representations are integrated on longer timescales to reflect more abstract 

linguistic information like words and sequences of words that make up phrases (Figure 3A). 

More generally, how does STG contribute to the representation of phonological sequences? 

In this section, we describe evidence for a computational role of the STG in encoding 

sequences as holistic units. We propose that the STG integrates representations of acoustic-

phonetic features (e.g., /∫/ - /ɑ/ - /p/), taking into account the temporal context provided by 

amplitude-based prosodic cues, and learned knowledge about the statistics and structure of 

the language, into a more abstract, holistic unit of a word (e.g., “shop”). Specifically, we 

hypothesize that the types of recurrent computations that have been observed throughout the 

brain for other perceptual and cognitive tasks (Mante, Sussillo, Shenoy, & Newsome, 2013; 

W. Phillips, Clark, & Silverstein, 2015; Sussillo & Abbott, 2009; Wang, Narain, Hosseini, & 

Jazayeri, 2018) may be implemented in STG through the laminar or cross-cortical 

organization of the cortex to generate context-sensitive representations of both lexical and 

sub-lexical information.

STG Computes Representations of Perceptual Experience

STG plays a crucial role in interpreting auditory input to generate perceptual representations. 

Mounting evidence has shown that acoustic-phonetic representations in the STG are strongly 

influenced by multiple forms of context. These include not only the temporal context cues 

provided by amplitude-based events of the acoustic envelope (Figure 3B,C), but also those 

that are not physically part of the sound. Broadly, this means that activity in these neural 

populations reflects information beyond an instantaneous sensory representation of 

acoustics. Rather, speech encoding in STG reflects multiple sources of knowledge about 

speech and language, ultimately generating representations of the listener’s subjective 

perception.

For instance, when the input to STG is a set of words that differ in a single sound (e.g., 

“faster” /fæstr/ vs. “factor” /fæktr/; Figure 4A), neural populations that are tuned to the 

specific acoustic-phonetic features encode this difference (Figure 4B). However, neural 

networks within STG – and possibly in other brain regions – also contain information other 

than the signal acoustics that guide perception. There are many sources of context that 

modulate speech-evoked STG responses, including both learned knowledge about language 

structure and task-related goals like attention. For example, learned language-specific 

statistics such as phoneme sequences (phonotactics; Furl et al., 2011; Leonard, Bouchard, 

Tang, & Chang, 2015; Yaron, Hershenhoren, & Nelken, 2012) and the predictability of sub-

lexical units based on lexical statistics (e.g., word frequency and cohort density; Cibelli, 

Leonard, Johnson, & Chang, 2015; Davis, Johnsrude, Hervais-Adelman, Taylor, & 
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McGettigan, 2005) exert strong effects on STG neural populations that show tuning to 

acoustic-phonetic features.

In addition, domain-general cognitive factors like selective attention in the context of 

multiple concurrent speakers (cocktail party phenomenon; Ding & Simon, 2012; Golumbic 

et al., 2013; Mesgarani & Chang, 2012) or target detection (Chang et al., 2011; Nourski, 

Steinschneider, Oya, Kawasaki, & Howard III, 2015; Nourski, Steinschneider, Rhone, & 

Howard III, 2017) can have effects on neural activity like changing overall gain or signal-to-

noise of evoked responses (Figure 4B). Moreover, sources of contextual modulation for 

speech in STG extend beyond the auditory modality, such as in the case of multisensory 

integration (Ozker et al., 2017, 2018; Rhone et al., 2016).

Computationally, integration of many of these sources of context can be implemented by 

mechanisms that facilitate the rapid transformation of sensory input into perceptual 

representations, including predictive coding (e.g., forward transition probabilities for 

prediction) (Blank & Davis, 2016; Friston, 2005; Kiebel, Von Kriegstein, Daunizeau, & 

Friston, 2009; Yildiz, von Kriegstein, & Kiebel, 2013) and Hebbian learning processes for 

object recognition (Dan & Poo, 2004). We hypothesize that these mechanisms constitute a 

fundamental part of the neural circuitry involved in high-level auditory processing, 

embedded in the networks that process the physical properties of speech, and therefore 

resulting in an integrated representation (Figure 4B). Crucially, this kind of learned 

information about the statistical structure of speech and language can provide a strong 

foundation for binding input into perceptually coherent and meaningful units like words 

(Figure 4C) (Brent & Cartwright, 1996; McQueen, 1998; Saffran, Newport, & Aslin, 1996), 

which may not be as readily identifiable using amplitude-based temporal landmarks as are 

syllables or phrases (Figure 3A–C).

This integrated representation of acoustic-phonetic, temporal landmark, and contextual 

features allows some remarkable capabilities. Recent studies indicate that these neural 

populations rapidly and dynamically change their activity depending on the listener’s 

perceptual experience, influenced by the predictability of longer-timescale phonological, 

lexical, and semantic knowledge (Blank, Spangenberg, & Davis, 2018; Holdgraf et al., 2016; 

Khoshkhoo, Leonard, Mesgarani, & Chang, 2018). For example, when part of a word is 

completely masked by noise (Figure 4A, bottom), listeners report hearing the full word as if 

the missing sound were present (Grossberg & Kazerounian, 2011; Warren, 1970). Even 

when told that a sound is missing, listeners have trouble reporting the identity and timing of 

the noise, suggesting that its percept was “restored” (Samuel, 1987). A recent ECoG study 

demonstrated that this ambiguous input is rapidly transformed to generate the listener’s 

perceptual experience by activating the appropriately-tuned STG neural populations in real-

time (Figure 4A–C) (Leonard, Baud, et al., 2016). These results strongly suggest that 

contextual sources of linguistic knowledge and expectation influence up-stream 

representations of sound (McClelland & Elman, 1986), allowing listeners to recover from 

noisy environments and interruptions almost instantaneously. Similarly, whereas some 

neural populations in human primary auditory cortex are not sensitive to the intelligibility of 

speech as reported by listeners, neural populations throughout the lateral STG show stronger 
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responses to intelligible sounds (Nourski et al., 2019), further demonstrating that the STG 

represents perceptual, rather than purely sensory, experience (Figure 4C).

Together, these findings illustrate that computations associated with feature detection and 

temporal/contextual integration occur at least partially within STG. While there may also be 

a role for top-down modulation from other regions in the speech and language network for 

many of these findings (Cope et al., 2017; Obleser & Kotz, 2009; Obleser, Wise, Dresner, & 

Scott, 2007; Park, Ince, Schyns, Thut, & Gross, 2015; Sohoglu et al., 2012), they 

nevertheless demonstrate the highly contextual nature of acoustic-phonetic representations 

themselves in STG. Here, we argue that evoked STG activity closely reflects subjective 

perceptual experience, resulting from the integration of sensory inputs and the internal 

dynamics governed by the task demands.

Implementational Challenges for Existing Models of Phonological Sequence Encoding

Thus far, we have described evidence which demonstrates that multiple sources of 

information are encoded in STG, often within the same local population. In particular, the 

presence of context-dependent perceptual representations suggests that various speech 

features may be dynamically integrated across time. Below, we describe how the existing 

neuroanatomical models account for temporal integration and binding processes that are 

central to speech perception. We then speculate on how simple and commonly-used 

recurrent computations can alternatively provide a parsimonious explanation for several 

lines of existing research. The primary goal of describing these hypotheses is to address 

three key questions that have remained unanswered for decades: (1) Do instantaneous 

responses to acoustic-phonetic features also contain information about sequential order 

(Dehaene, Meyniel, Wacongne, Wang, & Pallier, 2015)? (2) How are the hierarchical units 

of phonology encoded as meaningful, perceptual chunks that unfold over longer timescales 

(Figure 1; Figure 5A)? (3) What is the computational implementation that allows the speech 

system to parse an acoustic signal that changes rapidly and is ephemeral (Christiansen & 

Chater, 2016)? In the absence of work that has directly tackled this set of questions in speech 

neuroscience, we draw from diverse fields of research to propose a model of temporal 

sequencing and binding for speech in the brain (Figure 5).

The classical neuroanatomical model of speech processing posits a hierarchical organization 

where acoustic-phonetic features detected in the STG are combined by a separate brain 

region that tracks the specific order of acoustic-phonetic activity (Figure 5B) to give rise to 

longer units such as words (Hickok & Poeppel, 2007). According to this view, the STG acts 

as a spectrotemporal feature detector with relatively short temporal integration windows, 

where its individual neural populations respond preferentially to their preferred combination 

of acoustic features in specific temporal contexts defined by temporal landmark events 

(Figure 5C–D). For example, groups of STG populations that prefer unvoiced fricatives (/

∫/), low-back vowels (/ɑ/), and bilabial unvoiced plosives (/p/) could be bound together into 

the word “shop” by a neural population with a longer temporal integration window, which 

also tags the activity of each feature detector with sequential order information (Figure 5E–

F). This sequential neural population activity across time is therefore what determines the 

larger unit of representation, such as words, which can then be associated with meaning.
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Under this hypothesis, the processing of time and sequential order is both computationally 

and spatially independent from the processing of the constituent features of the input 

(Dehaene et al., 2015; Hickok & Poeppel, 2007). There is evidence for specialized temporal 

processing circuits in the brain (Paton & Buonomano, 2018), which can precisely track cues 

that are important for some phonological category distinctions, like the relative time between 

the closure of the lips and the subsequent release of air that distinguishes /b/ and /p/, referred 

to as voice-onset time (Klatt, 1975). It is unclear, however, what computations are used to 

combine the separate input feature detection and temporal sequence information into 

perceptually relevant representations, particularly in a highly dynamic stimulus like speech.

Moreover, for a given sequence to be properly understood, the order of its elements must be 

tracked. For example, the instantaneous acoustic-phonetic elements of the words “shop” and 

“posh” (/∫/ - /ɑ/ - /p/ and /p/ - /ɑ/ - /∫/) are nearly identical and are primarily distinguished 

by the order of the elements. Classic models of speech perception attempt to solve this 

problem in part by relying on reduplication of network states across each time step of 

processing (McClelland & Elman, 1986), which is biologically implausible. Computational 

models of phonological working memory have further proposed specialized time/context 

units that represent the abstract sequence order (Baddeley, 1992; Burgess & Hitch, 1999; 

Cogan et al., 2017). While these models theoretically allow the order of each phonological 

unit to be tagged (e.g., /∫/1 - /ɑ/2 - /p/3 vs. /p/1 - /ɑ/2 - /∫/3) (Figure 5G), they have primarily 

been evaluated at the level of word or non-word sequences or lists, rather than sub-lexical 

sequences. Furthermore, these implementations are generally unable to explain listeners’ 

ability to understand sequences with highly variable sequence lengths, including contextual 

cues necessitated by common phenomena such as homophony.

In our view, a model of speech perception requires accounting for these computational issues 

associated with temporal integration and sequencing. At its core, such a model must address 

the fact that speech is not a purely linear, feedforward process of sequential phonetic, 

phonemic, or lexical identification. Specifically, perceiving and comprehending speech 

requires binding multiple sources of information into a coherent representation (W. A. 

Phillips & Singer, 1997). Some of this binding process may be accounted for by cues which 

are present in the acoustic signal, such as coarticulation, where speech sounds are produced 

differently depending on the sounds that precede and follow them (Diehl, Lotto, & Holt, 

2004). However, others exist only in the internal representations of the listener, including 

temporal and linguistic context (Leonard & Chang, 2014). In the final section, we speculate 

that understanding the neural basis of speech perception requires a computational framework 

that incorporates all of these different sources, as none of them alone can explain the 

perceptual experience of comprehending spoken input.

Recurrence as a Potential Mechanism for Sequencing and Binding in Speech

In this section, we hypothesize that temporally-recurrent computations within high-order 

auditory cortex may provide a neurobiological basis for temporal binding and integration of 

speech. Based on extensive work from other sensory domains (Douglas & Martin, 2007; 

Larkum, 2013; W. Phillips et al., 2015; Xing, Yeh, Burns, & Shapley, 2012), we hypothesize 

that recurrent connections across auditory cortical layers allow cortical columns to respond 
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to incoming sensory input in a manner that is modulated by preceding activity from other 

columns, which have different stimulus tuning properties (Figure 5H). Computationally, 

recurrent connections provide a mechanism for representing temporally-dependent 

sequences, where the representation at time t is inextricably a function of past 

representations of input at times t − 1, t − 2, …, t − n (Jordan, 1986) (Figure 5I). This 

principle has been implemented in multilayer neural network models, where the hidden 

layers contain representations of the input that are influenced by the identity, predictability, 

and temporal separation of preceding input (Elman, 1990).

Following this principle, a neural population that responds preferentially to acoustic features 

that define unvoiced bilabial plosives (e.g., /p/) is represented differently depending on the 

content of preceding speech, which may simultaneously provide acoustic, phonetic, lexical, 

semantic, prosodic, and many other sources of context. This means that the representation of 

speech sounds in the network is intrinsically context-dependent, such that /p//ɑ/ is 

fundamentally different from /p//I/, where the subscript denotes the input or sequence of 

inputs that preceded the sound currently being heard. Thus, the way in which the speech 

system represents /p/ is fundamentally distinct depending on whether it occurs in the word 

“shop” or “ship” (Figure 5J). This is true at an acoustic level (Diehl et al., 2004), but it is 

also true at an algorithmic/representational level (Marr, 1982), and is based on the 

experience and statistical structure of the input training data to the network. Thus, at their 

core, recurrent computations provide a means for compact, efficient, and local 

representations of sequences at multiple behaviorally-relevant time scales, which constitute a 

central trait of time-evolving signals like speech.

It is well-established that the laminar structure of the cortex provides the structural capacity 

for implementing precisely these kinds of recurrent computations that may be central to 

temporal binding and integration. In the auditory cortex, anatomical connectivity is 

characterized by extensive recurrent connections across the superficial and deep cortical 

layers (Barbour & Callaway, 2008; Mitani et al., 1985). These recurrent connections form 

the foundation of local microcircuits that represent sounds as functional units (Atencio & 

Schreiner, 2016; Sakata & Harris, 2009; See, Atencio, Sohal, & Schreiner, 2018), in which 

superficial layers exhibit substantially more fine-tuned, flexible, and complex receptive field 

properties relative to their deeper counterparts which receive direct input from the thalamus 

(Francis, Elgueda, Englitz, Fritz, & Shamma, 2018; Guo et al., 2012; Li et al., 2014; 

O’Connell, Barczak, Schroeder, & Lakatos, 2014; Winkowski & Kanold, 2013). While little 

is currently known about the functional implications of such circuitry for speech processing 

in human STG, recent advances in high-resolution, non-invasive neuroimaging have begun 

to allow characterization of interlaminar variability in acoustic feature representation in the 

human auditory cortex (Moerel, De Martino, Uğurbil, Formisano, & Yacoub, 2018; Moerel, 

De Martino, Uğurbil, Yacoub, & Formisano, 2019; Wu, Chu, Lin, Kuo, & Lin, 2018).

Crucially, recurrence allows this context dependence to exert effects over arbitrarily long 

timescales, allowing this basic computation to explain temporal binding at multiple levels of 

linguistic representation, including syllables, words, and phrases (Figure 3A). By 

representing the current input as a function of preceding input with an unknown but 

measurable temporal decay, neural populations that explicitly represent context-dependent 

Yi et al. Page 13

Neuron. Author manuscript; available in PMC 2020 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



acoustic-phonetic information may provide a mechanism for local representation of 

phonological sequences.

This mechanism also provides a way for multiple sources of context to influence and define 

the phonological sequence. Recurrent connections are capable of creating a context-

dependent representation via many types of structure in the training data. This includes 

sequence statistics like phonotactic probability, syllable sequence probability, and lexical 

cohort statistics, for which there is evidence of neural encoding (Cibelli et al., 2015; Leonard 

et al., 2015). It may also encompass important physical dependencies in the input, like 

coarticulation (Diehl et al., 2004), which provides smooth trajectories through acoustic 

space across time, and which may be important cues in the neural encoding of speech 

feature sequences. Notably, many of these sources of context are also used to predict 

upcoming input, generating neural representations of speech that have context-dependence 

for both past and future input. Recurrent models have also provided useful insights in other 

domains related to cortical processing, demonstrating that contextual-dependence is a 

fundamental part of neuronal function during complex cognitive behaviors (Mante et al., 

2013; Sussillo & Abbott, 2009; Wang et al., 2018).

At the neuronal population level, temporal context itself is an integral part of the 

representation. The activity of each neural unit does not represent an output from a static 

response function (Figure 5C), but a dynamic response to the past and present activity of 

other neural units (Figure 5I) (Blank & Davis, 2016; Gwilliams et al., 2018; Yildiz, 

Mesgarani, & Deneve, 2016). Neural representation of a given acoustic-phonetic feature 

cannot be adequately understood separate from the surrounding temporal context, but should 

rather be considered as a reflection of an ongoing process to parse the continuous speech 

input (Yildiz et al., 2016). In this sense, STG sensitivity to temporal landmarks (e.g., sound 

onsets and amplitude envelope) (Hamilton et al., 2018) and learned linguistic knowledge 

(Leonard, Baud, Sjerps, & Chang, 2016; Leonard et al., 2015) reflect different sources of 

context, which are inextricably linked to the sequence of temporally evolving featural 

representations. For instance, detecting a temporal landmark like a phrase or vowel onset 

(the syllabic nucleus in most languages) could initiate the processing of the surrounding 

acoustic-phonetic feature input to push neural activity to a distinct part of the neural state-

space, compared to when the same acoustic-phonetic feature occurs in a different temporal 

context (Figure 5J). Indeed, local encoding of acoustic-phonetic features in STG was 

observed most clearly once speaker, temporal and coarticulatory contexts were averaged out 

(Mesgarani et al., 2014), or when a limited set of stimuli were used (Arsenault & 

Buchsbaum, 2015). In this view, acoustic-phonetic representations devoid of any context 

may not have any meaning or realization in speech perception.

In summary, we hypothesize that recurrence as implemented by the laminar structure of 

cortex provides plausible answers to the key questions outlined in the beginning of this 

section: (1) What has been previously described as instantaneous feature representations are 

in fact temporally context-dependent representations reflecting the longer phonological 

sequences in which they occur; (2) Different putative phonological units like syllables, 

words, and phrases emerge from the binding and integration of input across time and 

differently-tuned neural populations, possibly locally within STG; and (3) Temporal 
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recurrence provides a simple and local computational mechanism for these kinds of context-

dependent representations.

Concluding Remarks

For nearly 150 years, the STG has been viewed as an important hub for speech and language 

in the brain (Geschwind, 1970; Wernicke, 1874, 1881). Modern advances in neuroscience 

and linguistics (Poeppel, Idsardi, & Van Wassenhove, 2008) have allowed significant 

progress to be made in characterizing the neural computations involved in transforming 

continuous acoustic signals into language-specific phonological codes. While the various 

contributions of STG to speech processing have been largely characterized separately, it is 

possible that their combined function is what gives rise to the ultimate perceptual experience 

of comprehending speech. The next several years will yield a more comprehensive and 

cohesive view, not only of the STG, but of speech and language networks more broadly.
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Figure 1. Speech sounds can be described in multiple complementary ways.
For example, the English words pin, fin, and fun are characterized according to several 

different but related descriptions, ranging from physical acoustic features to abstract 

linguistic features. (A) The acoustic waveforms of show a broad distinction between low 

amplitude and aperiodic features (consonants), and high amplitude and strong periodic 

features (vowels). (B) Spectrogram representations of these words show how each sound is 

characterized by different spectrotemporal patterns of acoustic energy. (C) Articulatory 

descriptions of these sounds characterize acoustic-phonetic features. Plosives are produced 
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by initially blocking the airflow (gray), then releasing air through the mouth (black), 

generating a short broadband burst in the spectrogram. Fricatives are produced by partially 

occluding the passage of air in the mouth, generating a longer-duration, high-frequency 

broadband noise in the spectrogram. These two features are examples of obstruents. (D) 

High-front vowels are produced by moving the tongue to the top and front of the mouth, 

creating a resonance cavity that generates relatively low first formant and high second 

formant values. In contrast, low-back vowels show the reverse pattern. These two features 

are examples of sonorants. (E) Each of the example words can also be characterized as a set 

of successive abstract phonemes: /pIn/, /fIn/, and /fʌn/. (F) Multiple features are combined to 

describe unique phonemes. Here, obstruent, plosive, unvoiced, and labial features are 

combined to describe the English phoneme /p/. Changing the plosive feature to fricative, and 

the bilabial feature to labio-dental describes the phoneme /f/ (not all possible features are 

shown for simplicity).
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Figure 2. Local encoding of acoustic-phonetic features in human superior temporal gyrus (STG).
Using direct electrocorticography (ECoG), neural responses to speech can be measured with 

concurrently high spatial and temporal resolution. These data reveal the encoding of 

acoustic-phonetic features in local populations during speech perception. (A) ECoG 

electrodes over human STG (outlined in black) show robust evoked responses to distinct 

sounds during listening to (B) naturally-spoken sentences. (C) Each electrode shows 

selective responses to groups of phonemes, corresponding to acoustic-phonetic features. (D) 

Electrodes sensitive to specific acoustic-phonetic features (e.g., fricative or low-back 

vowels) have spectrotemporal receptive fields that strongly resemble the average acoustic 

spectrograms of sounds characterized by those features (adapted from Mesgarani et al., 

2014).
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Figure 3. STG is parcellated into two major zones that track temporal landmarks relevant for 
speech processing.
Broad regions encoding temporal landmarks have acoustic-phonetic feature detectors 

embedded in them, facilitating temporal context-dependent speech representations. (A) 

Speech can be characterized by multiple temporal/linguistic scales ranging from features to 

syllables to words to phrases. (B) Onsets from silence cue prosodic phrase boundaries. (C) 

Amplitude envelope change dynamics are a major source of acoustic variability, and peaks 

in the rate of change correspond to syllabic nuclei. (D) STG is characterized by a global 

spatial organization for temporal landmarks. Posterior STG tracks onsets following a period 

of silence that is 200 ms or longer, while middle-to-anterior STG has more sustained 

responses that may track peaks in the rate of amplitude envelope change. Neural populations 

in both regions are tuned to acoustic-phonetic features, suggesting that STG integrates 

temporal landmarks and instantaneous phonetic units.
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Figure 4. STG combines acoustic-phonetic tuning with various sources of context to compute 
perceptual representations of speech.
(A) Example words and their acoustic spectrograms that differ in a single phoneme/acoustic-

phonetic feature (/s/ vs. /k/), and a stimulus with masking noise (/#/) completely replacing 

the middle sound. (B) Stimulus encoding involves detecting acoustic-phonetic features with 

tuned neural populations (e.g., fricative populations respond to /s/ and plosive populations 

respond to /k/). This response is embedded in both local and distributed representations of 

context (orange texture), including sensitivity to language-level sequence statistics 

(phonotactics), lexical statistics like word frequency, and attention to particular speakers. In 

the case of the ambiguous sound, STG neural populations “restore” the missing phoneme by 

activating the appropriate acoustic-phonetic tuned population in real-time, possibly using a 

combination of these multiple sources of context. (C) The output of STG population activity 

reflects the perceptual experience of the listener. Specifically, STG activity encodes the 

percept of the phonological sequence, in this case the whole words “faster” or “factor”. In 

the case of ambiguous input (A; bottom), these percepts do not directly correspond to the 

input acoustic signal.
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Figure 5. Computational implementations of temporal sequencing and binding in speech cortex.
(A) How does the brain bind instantaneous acoustic-phonetic features (e.g., /∫/, /ɑ/, and /p/) 

into perceptually coherent sequences (e.g., “shop”)? (B) A dedicated temporal integrator 

receives feature representations from STG. (C) Distinct STG populations (recorded with 

different electrodes: e1, e2, etc.) detect acoustic-phonetic features from the acoustic input 

(D) by generating spatially and temporally independent neural responses. (E) Detected 

features are passed to a separate mechanism that tracks temporal order and is capable of 

temporal integration. (F) The temporal integrator/sequencer has a relatively long temporal 

Yi et al. Page 29

Neuron. Author manuscript; available in PMC 2020 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



window, and is thus able to bind multiple feature inputs across time. (G) The sequence 

representation contains markers of temporal order (e.g., /∫/1 /ɑ/2, and /p/3). (H-J) An 

alternative framework has context-dependent acoustic-phonetic feature representations that 

arise from temporally recurrent connections. (H) The laminar organization of human cortex 

provides a means for input and output connections across layers and columns to implement 

temporal recurrence, where input to layer IV is contextually-modulated by prior output from 

supragranular layers and thalamic inputs. (I) Unfolded across time, the neural representation 

of the input is a function of the past state of the network via temporally-recurrent 

connections among feature detectors. (J) At the population level, the representation across 

time of the sequence shop (/∫ɑp/) is distinguishable from that of ship (/∫Ip/) not only based 

on the instantaneous responses to the vowels (/ɑ/ vs. /I/), but also from the context-

modulated responses to the final consonants (/p//ɑ/ vs. /p//I/; i.e., /p/ does not occupy a single 

point in the state-space).
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