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We present the first chiral effective theory derivation of the neutrinoless double-β decay nn → pp potential
induced by light Majorana neutrino exchange. The effective-field-theory framework has allowed us to identify and
parametrize short- and long-range contributions previously missed in the literature. These contributions cannot
be absorbed into parametrizations of the single-nucleon form factors. Starting from the quark and gluon level,
we perform the matching onto chiral effective field theory and subsequently onto the nuclear potential. To derive
the nuclear potential mediating neutrinoless double-β decay, the hard, soft, and potential neutrino modes must be
integrated out. This is performed through next-to-next-to-leading order in the chiral power counting, in both the
Weinberg and pionless schemes. At next-to-next-to-leading order, the amplitude receives additional contributions
from the exchange of ultrasoft neutrinos, which can be expressed in terms of nuclear matrix elements of the
weak current and excitation energies of the intermediate nucleus. These quantities also control the two-neutrino
double-β decay amplitude. Finally, we outline strategies to determine the low-energy constants that appear in the
potentials, by relating them to electromagnetic couplings and/or by matching to lattice QCD calculations.

DOI: 10.1103/PhysRevC.97.065501

I. INTRODUCTION

The observation of neutrinoless double-β decay (0νββ)
would be direct evidence of lepton number violation (LNV)
beyond the standard model (SM), demonstrating that neutrinos
are Majorana fermions [1], shedding light on the mechanism of
neutrino mass generation, and probing a key ingredient (LNV)
for generating the matter-antimatter asymmetry in the universe
via “leptogenesis” [2]. The current experimental limits on
the half-lives are quite impressive [3–10], at the level of
T1/2 > 5.3 × 1025 yr for 76Ge [10] and T1/2 > 1.07 × 1026

yr for 136Xe [3], with next-generation ton-scale experiments
aiming at two orders of magnitude sensitivity improvements.

By itself, the observation of 0νββ would not immediately
point to the underlying mechanism of LNV. In an effective
theory approach to new physics, LNV arises from �L = 2
operators of odd dimension, starting at dimension 5 [11–14].
As discussed in detail in Ref. [15], if the scale of lepton number
violation, �LNV, is in the range 1–100 TeV, short-distance
effects encoded in local operators of dimension 7 and 9 provide
contributions to 0νββ within reach of next-generation experi-
ments. However, whenever �LNV is much higher than the elec-
troweak scale, the only low-energy manifestation of this new
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physics is a Majorana mass for light neutrinos, encoded in a sin-
gle gauge-invariant dimension-5 operator [11], which induces
0νββ through light Majorana-neutrino exchange [16–18].

To interpret positive or null 0νββ results in the context of
this minimal extension of the SM (the three light Majorana
neutrinos paradigm), it is critical to have good control over
the relevant hadronic and nuclear matrix elements. Current
knowledge of these is somewhat unsatisfactory [19], as (i) few
of the current calculations are based on a modern effective
field theory (EFT) analysis, and (ii) various approaches lead
to estimates that differ by a factor of 2 to 3. In this paper
we present the first end-to-end EFT analysis of 0νββ induced
by light Majorana-neutrino exchange, describing the physics
from the scale �LNV all the way down to the nuclear energy
scale. The EFT framework has allowed us to identify long-
and short-range contributions to 0νββ previously missed in the
literature, that are, by power counting, as large as corrections
usually included. The main results of our work are expressions
for the leading and next-to-next-to-leading order (N2LO) chiral
potentials mediating 0νββ, and the amplitude induced by the
exchange of ultrasoft neutrinos, with momenta much smaller
than the Fermi momentum.

II. EFFECTIVE THEORY FRAMEWORK

The starting point of our analysis is the weak scale effective
Lagrangian, which we take to be the SM augmented by
Weinberg’s �L = 2 dimension-5 operator [11],

Leff = LSM +
{

uαβ

�LNV
εij εmnL

T α
i CLβ

m HjHn + H.c.

}
, (1)
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where uαβ is a 3 × 3 matrix, L = (νL eL)T is the left-handed
SU(2) lepton doublet, H is the Higgs doublet, α,β ∈ e,μ,τ ,
and i,j,m,n are SU(2) indices. This operator induces a
Majorana mass matrix for neutrinos, of the form mαβ =
−uαβ (v2/�LNV), where v = (

√
2GF )−1/2 � 246 GeV is the

Higgs vacuum expectation value; for �LNV � v this is the
well known “seesaw” relation.

Neglecting QED and weak neutral-current effects, the low-
energy effective Lagrangian at scale μ��χ∼1 GeV is given by

Leff = LQCD −
{

2
√

2GF Vud ūLγ μdL ēLγμνeL

+1

2
mββ νT

eLCνeL − CL OL + H.c.

}
. (2)

The second term in (2) represents the Fermi charged-current
weak interaction. The last two terms encode LNV through the
neutrino Majorana mass, given by mββ = ∑

i U
2
eimi in terms of

mass eigenstates and elements of the neutrino mixing matrix,
and a dimension-9 �L = 2 operator generated at the elec-
troweak threshold: OL = ēLec

L ūLγμdL ūLγ μdL, with ec
L =

CēT
L . Since CL = (8V 2

udG
2
F mββ)/M2

W × [1 + O(αs/π )], the
effect of the latter term on the 0νββ amplitude is suppressed
by (kF /MW )2 [where kF ∼ O(100) MeV is the typical Fermi
momentum of nucleons in a nucleus] compared to light-
neutrino exchange and can be safely neglected at this stage.

The interactions of Eq. (2) induce �L = 2 transitions (such
as π−π− → e−e−, nn → ppe−e−, 76Ge → 76Se e−e−,
136Xe → 136Ba e−e−, ...) through the nonlocal effective
action obtained by contracting the neutrino fields in the two
weak vertices,

S�L=2
eff = 8G2

F V 2
udmββ

2!

∫
d4x d4y S(x − y)ēL(x)γ μγ νec

L(y)

×T (ūLγμdL(x) ūLγμdL(y)), (3)

where

S(r) =
∫

d4q

(2π )4

e−iq·r

q2 + iε
(4)

is the scalar massless propagator. Computing matrix elements
of S�L=2

eff in hadronic and nuclear states is a notoriously
difficult task. The multiscale nature of the problem can be
seen more explicitly by going to the Fourier representation1

〈e1e2hf |S�L=2
eff |hi〉

= 8G2
F V 2

udmββ

2!

∫
d4x〈e1e2|ēL(x)ec

L(x)|0〉
∫

d4k

(2π )4

× gμν�̂++
μν (k,x)

k2 + iε
, (5)

�̂++
μν (k,x) =

∫
d4r eik·r 〈hf |T

(ūLγμdL(x + r/2) ūLγμdL(x − r/2))|hi〉. (6)

1To obtain (5) we have approximated ēL(x)γ μγ νec
L(y) �

ēL(x)γ μγ νec
L(x) = gμν ēL(x)ec

L(x), which amounts to neglecting the
difference in electron momenta, a safe assumption given that |p1 −
p2|/kF 
 1.

The amplitude (5) receives contributions from neutrino
virtualities ranging from the weak scale all the way down to
the IR scale of nuclear bound states. Roughly speaking, one can
identify three regions, whose contributions can be conveniently
described in terms of appropriate effective theories:

(i) A hard region with k2
E ≡ (k0)2 + k2 � �2

χ ∼
1 GeV2. This contribution is controlled by the
quark-level short-distance behavior of the correlator
(6). An operator product expansion analysis shows that
integrating out hard neutrinos and gluons generates a
local term in the effective action proportional to OL,
with Wilson coefficient

CL(�χ ) = 8G2
F V 2

udmββ

�2
χ

αs(�χ )

4π
. (7)

This short-distance component is currently missing in
all calculations of 0νββ, which start from the nucleon-
level realization of the weak currents in the correlator
(6). Within such approaches, the new effect can be
estimated by considering the hadronic realization of
OL, sensitive to pion-range and short-range nuclear
effects, that has been studied in the context of TeV
sources of LNV [20–24]. In what follows we adopt a
chiral EFT approach, and the effect of hard modes will
be encoded in local counterterms of the low-energy
effective chiral Lagrangian, transforming as OL under
the chiral group.2

(ii) A soft and potential region with k2
E ∼ k2

F < �2
χ . Here

the appropriate hadronic degrees of freedom are pions
and nucleons, described by chiral EFT. In analogy
with the strong and electroweak interactions in the
SM, integrating out pion degrees of freedom and neu-
trinos with soft (k0 ∼ |k| ∼ mπ ∼ kF ) and potential
(k0 ∼ k2

F /mN , |k| ∼ kF ) scaling of their 4-momenta
generates nucleon level �L = �I = 2 potentials that
mediate 0νββ between nuclear states.

(iii) Ultrasoft or “radiation” region, with neutrino momenta
scaling as k0 ∼ |k| 
 kF . Here the effective theory
contains as explicit degrees of freedom nucleons in-
teracting via appropriate potentials [see (ii) above],
electrons, and essentially massless neutrinos, whose
ultrasoft modes cannot be integrated out (similarly
to gauge fields in NRQED and NRQCD [28–30]).
These modes do not resolve the nuclear constituents,
and this part of the amplitude is sensitive to nuclear
excited states and transitions among them induced by
the electroweak currents.

Contributions to 0νββ from regions (ii) and (iii) are included
in all existing calculations albeit within certain approximations
and not fully in the spirit of EFT. In particular, we have

2Within lattice QCD, OL captures O(a2) discretization effects in
the calculation of the amplitude (5). OL would appear in Symanzik’s
action [25,26] with a prefactor scaling as O(αsa

2) near the continuum
limit. Similar contributions relevant to the case of two-neutrino
double-β decay (2νββ) have been discussed in Ref. [27].

065501-2
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identified corrections that cannot be parametrized through
the single-nucleon form factors. We next discuss the 0νββ
amplitude in the context of chiral EFT, in which the contri-
butions from region (i) are captured by local counterterms,
the contributions from region (ii) can be explicitly evaluated
and lead to appropriate potentials, and the contributions from
region (iii) can be displayed in terms of non-perturbative
nuclear matrix elements of the weak charged current and bound
state energies.

III. CHIRAL EFT AND 0νββ

We describe the low-energy realization of the GeV-scale
effective Lagrangian in Eq. (2) in the framework of chiral
perturbation theory (χPT) [31–34] and its generalization to
multinucleon systems, chiral EFT [35–37].

Chiral symmetry and its spontaneous and explicit breaking
strongly constrain the form of the interactions among nucleons
and pions. In the limit of vanishing quark masses, the χPT
Lagrangian is obtained by constructing all chiral-invariant
interactions between nucleons and pions. Pion interactions are
derivative, allowing for an expansion in p/�χ , where p is the
typical momentum scale in a process and �χ ∼ mN ∼ 1 GeV
is the intrinsic mass scale of QCD. One can order interactions
according to the chiral index � = d + n/2 − 2, where d
counts the number of derivatives and n counts the number of
nucleon fields [31,35]. Chiral symmetry is explicitly broken by
the quark masses and charges, and, in our case, by electroweak
and �L = 2 operators. However, the explicit breaking is small
and can be systematically included in the power counting by
considering mq ∼ m2

π ∼ p2. In the presence of lepton fields
we generalize the definition of chiral index to � = d + n/2 −
2 + ne, where ne denotes the number of charged leptons in
the interaction vertex. With this definition, the lowest order
0νββ transition operators have chiral index � = 0. For nuclear
physics applications, one has p ∼ kF ∼ mπ and the expansion
parameter is εχ = mπ/�χ . For 0νββ there are additional
infrared scales. The energy differences En − Ei of the bound
nuclear states have typical size O(5–10) MeV, to which we
assign the scaling k2

F /mN ∼ kF εχ . For the reaction Q value
and the electron energies E1,2 the scaling Q ∼ E1,2 ∼ kF ε2

χ ,
was found to work well in Ref. [15].

Our building blocks are the pion field u =
exp [iπ · τ/(2F0)] (where F0 is the pion decay constant in the
chiral limit, and Fπ = 92.2 MeV) and the nucleon doublet
N = (p n)T , transforming as u → LuK†(π ) = K(π )uR†
and N → K(π )N under the SU(2)L × SU(2)R chiral group
[38,39]. The effective Lagrangian of Eq. (2) maps onto the
following operators with zero chiral index:

L(0)
π = F 2

0

4
Tr[uμuμ + u†χu† + uχ †u],

(8a)
uμ = −i[u†(∂μ − ilμ)u − u∂μu†],

L(0)
πN = iN̄vμ(∂μ + �μ)N + g0

AN̄SμuμN,
(8b)

�μ = 1

2
[u†(∂μ − ilμ)u + u∂μu†],

L(0)
NN = −CS

2
N̄NN̄N − CT

2
N̄σNN̄σN, (8c)

where χ = 2B × diag(mu,md ) [with B(μ = 2 GeV) �
2.8 GeV], lμ = −2

√
2GF Vudτ

+ ēLγμνL + H.c., CS,T =
O(F0

−2), and g0
A is the LO contribution to the nucleon axial

coupling which is measured to be gA = 1.2723(23) [40].
Tree-level diagrams involving the above interactions and
Majorana neutrino exchange generate �L = 2 amplitudes
such as π−π− → ee and nn → ppee, scaling as O(G2

F mββ).
At the one-loop level UV divergences appear which require
the introduction of �L = �I = 2 local operators with chiral
index � = 2. We find three independent structures with the
correct transformation properties:

L(2)
�L=2 =

{
5

12
F 4

0 gππ
ν L

μ
21L21 μ

+ g0
AF 2

0 gπN
ν N̄Sμu†τ+uN Tr(uμu†τ+u)

+ gNN
ν (N̄u†τ+uN )(N̄u†τ+uN )

}
κ ēLCēT

L + H.c.

=
[

5

6
F 2

0 gππ
ν ∂μπ−∂μπ− +

√
2g0

AF0g
πN
ν p̄Sμn ∂μπ−

+ gNN
ν p̄n p̄n

]
κ ēLCēT

L + · · · ,

κ = 2G2
F V 2

udmββ

(4πF0)2
. (9)

Here Lμ = uuμu†, the dots stand for terms involving more
than two pions, and three a priori unknown O(1) low-energy
constants (LECs) appear: gππ

ν , gπN
ν , and gNN

ν .
In the mesonic and single-nucleon sector of the theory, all

momenta and energies are typically ∼ p, and the perturbative
expansion of the χPT Lagrangian and power counting of
loops [31] implies that the scattering amplitudes can also
be expanded in p/�χ . For systems with two or more nu-
cleons the energy scale p2/2mN becomes relevant and the
corresponding amplitudes do not have a homogeneous scaling
in p. Therefore, the perturbative expansion of interactions
does not guarantee a perturbative expansion of the amplitudes
[35,36]. Indeed, the so-called “reducible” diagrams (in which
the intermediate state consists purely of propagating nucleons)
are enhanced by factors of mN/p with respect to the χPT
power counting and need to be resummed. On the other hand,
loop diagrams whose intermediate states contain interacting
nucleons and pions—“irreducible”—follow the χPT power
counting [35,36]. Reducible diagrams are then obtained by
patching together irreducible diagrams with intermediate states
consisting of A free-nucleon propagators. This is equivalent to
solving the Schrödinger equation with a potential V defined by
the sum of irreducible diagrams. For external perturbations,
such as electroweak currents and �L = 2 interactions, one
can similarly identify irreducible contributions that admit an
expansion in p/�χ [41].

While the scaling of irreducible loop diagrams is unam-
biguous, the power counting for four-nucleon operators has
been the object of much debate in the literature [41–43]. In the
Weinberg power counting [35,36], the scaling is determined
by naive dimensional analysis, and the lowest order four-
nucleon operators in the strong and �L = 2 sectors are given,
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respectively, by CS,T ∼ O(F−2
0 ) in Eq. (8c) and gNN

ν ∼ O(1) in
Eq. (9). While phenomenologically successful [44], the Wein-
berg power counting is not fully consistent. Inconsistencies
appear in some channels, such as the 1S0 channel, where the
cutoff dependence of the solution of the Lippman-Schwinger
equation cannot be absorbed by the counterterms that appear
at lowest order [42,43]. Various solutions to this problem have
been proposed, including treating pion exchange in perturba-
tion theory (perturbative pion or “KSW” scheme [42,45,46]),
expanding the nuclear forces around the chiral limit [47], or,
for processes at low enough energy, integrating out pions and
working in the pionless EFT [41,48]. In Sec. III A, we will
discuss 0νββ in the Weinberg power counting, and we will
extend the treatment to the pionless EFT in Section III B.

Finally, matching the chiral EFT framework to many-
body quantum mechanics, one obtains the following nuclear
Hamiltonian appropriate for calculating 0νββ amplitudes:

Heff = H0 +
√

2GF Vud

A∑
n=1

(gV δμ0 − gAδμiσ (n)i)τ (n)+

× ēLγμνL(xn) + 2G2
F V 2

ud mββ ēLCēT
L Vν. (10)

The first term (H0) encodes the strong interaction. In the
Weinberg counting, the leading-order strong potential is given
by one-pion exchange plus the contact terms CS,T [35,36],
which in momentum space reads (q is the momentum conjugate
to xab ≡ xa − xb)

Vstrong,0 = 1

2

∑
a �=b

(
− g2

A

4F 2
π

σ (a) · q σ (b) · q
q2 + m2

π

τ (a) · τ (b)

+CS + CT σ (a) · σ (b)

)
. (11)

Here and in the following, we replace the LO couplings and
decay constants by their physical values, g0

A → gA, F0 → Fπ ,
etc., which can be consistently done to the order we are working
in the chiral expansion.

The second term in (10) is the usual charged-current weak
interaction. From now on, we set gV = 1, neglecting small
isospin-breaking corrections. Note that light Majorana neutri-
nos and electrons with ultrasoft momenta are active degrees of
freedom in the low-energy theory.

The third term in (10) directly mediates �L = 2 ampli-
tudes, and we discuss it next.

A. The �L = �I = 2 potential

The potential Vν encodes physics from hard scales [the
counterterms of Eq. (9)] as well as soft scales, obtained by
integrating out pions and Majorana neutrinos with soft and
potential scaling of their 4-momenta. In practice Vν is given
by the sum of “irreducible” diagrams mediating nn → ppee in
chiral EFT. As discussed above, Vν admits a chiral expansion:

Vν =
∑
a �=b

(
V

(a,b)
ν,0 + V

(a,b)
ν,2 + · · · ). (12)

The LO neutrino potential is obtained by tree-level neutrino
exchange, which involves the single-nucleon currents (see

FIG. 1. Diagram contributing to the leading-order neutrino poten-
tial. Double and single lines denote, respectively, nucleons and lepton
fields. The black square denotes an insertion of the neutrino Majorana
mass, while the gray circle denotes the SM weak charged-current
interaction.

Fig. 1). In momentum space one finds [15]

V
(a,b)
ν,0 = τ (a)+τ (b)+ 1

q2

{
1 − g2

A

×
[
σ (a) · σ (b) − σ (a) · q σ (b) · q

2m2
π + q2(

q2 + m2
π

)2

]}
. (13)

Analogously to the strong-interaction case, the neutrino po-
tential Vν depends only on the momentum scale q ∼ kF and
not on infrared scales such as the excitation energies of the
intermediate odd-odd nucleus in 0νββ, often approximated by
their average Ē − 1/2(Ei + Ef ). Note that the commonly used
neutrino potential [16,19] reduces to Vν,0 when Ē − 1/2(Ei +
Ef ) is set to zero.

At N2LO in the Weinberg power counting, several new
contributions arise. These consist of (a) corrections to single-
nucleon currents, which are often included in the literature via
momentum-dependent form factors, and (b) genuine N2LO
two-body effects, such as loop corrections to Fig. 1, which
induce the short-range neutrino potential Vν,2 that has never
been considered in the literature. Note that two-nucleon effects
in the weak currents [49,50], which induce three-nucleon
potentials in Eq. (12), start contributing to 0νββ at N3LO, once
one takes into account that S · v = 0 and v · q � O(k2

F /mN ).
Including N2LO corrections to the single-nucleon currents,

the potential V
(a,b)
ν,0 is modified as

V
(a,b)
ν,0 = τ (a)+τ (b)+ 1

q2
g2

A{hF (q2)/g2
A − σ (a) · σ (b) hGT(q2)

−S(ab) hT (q2)}, (14)

where we have introduced the tensor operator S(ab) =
−(3 σ (a) · q σ (b) · q − q2σ (a) · σ (b))/q2. The functions hF ,
hGT, and hT are expressed in terms of the isovector vector,
axial, induced pseudoscalar, and magnetic nucleon form fac-
tors as [19]

hF (q2) = g2
V (q2) ,

hGT(q2) = g2
A(q2) + gP (q2) gA(q2)

q2

3mN

+ g2
P (q2)

q4

12m2
N

+ g2
M (q2)

q2

6g2
Am2

N

,

065501-4
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hT (q2) = −gP (q2) gA(q2)
q2

3mN

−g2
P (q2)

q4

12m2
N

+ g2
M (q2)

q2

12g2
Am2

N

. (15)

In the literature, the dipole parametrization of the vector and
axial form factors is often used,

gV (q2) =
(

1 + q2

�2
V

)−2

, gA(q2) =
(

1 + q2

�2
A

)−2

, (16)

with vector and axial masses �V = 850 MeV and �A =
1040 MeV. The magnetic and induced pseudoscalar form
factors are then assumed to be given by

gM (q2) = (1 + κ1)gV (q2), gP (q2) = −2mNgA(q2)

q2 + m2
π

, (17)

where κ1 = 3.7 is the nucleon isovector anomalous magnetic
moment. Expanding Eqs. (16) and (17) for small |q|, one
recovers the LO and, for gA(q2), the N2LO χPT expressions
of the nucleon form factors. In the case of gV , gP , and gM ,
the N2LO χPT results, given for example in Ref. [51], deviate
from Eqs. (16) and (17). However, any parametrization that
satisfactorily describes the observed nucleon form factors can
be used in the neutrino potential (14).

The potential Vν,2 is induced by one-loop diagrams with a
virtual neutrino and pions contributing to nn → ppee, built out
of the leading interactions of Eqs. (8). They can be separated
into three classes, involving the ππ → ee (Fig. 2, upper
panel), n → pπ+ee (Fig. 2, lower panel), and nn → ppee
(Fig. 3) effective vertices. Note that for diagrams such as
Fig. 3(A) or 3(D) we include only the two-nucleon irreducible
component. We regulate the loops dimensionally, with scale μ,
and subtract the divergences according to the MS scheme. The
UV divergences are absorbed by the counterterms of Eq. (9),
which cancel the μ dependence of the loops and also provide
finite contributions.

FIG. 2. Loop diagrams contributing to an effective ππe−e−

vertex (upper panel), and to an effective npπe−e− vertex (lower
panel). Pions are denoted by dashed lines, the remaining notation
is as in Fig. 1. The diagrams give rise to corrections to the �L = 2
potential when the pions are connected to external nucleon lines.

FIG. 3. Loop diagrams contributing to an effective npnpe−e−

vertex.

Vν can be thought of as the matching coefficient between
the chiral EFT and the low-energy nuclear EFT described by
Eq. (10), containing nonlocal potentials and ultrasoft neutrino
modes. The matching is achieved by subtracting the low-
energy theory diagrams depicted in Fig. 4, involving ultrasoft
neutrino exchange and insertions of the LO strong and �L = 2
potentials, from the chiral EFT diagrams of Figs. 2 and 3. Since
the two EFTs have the same IR behavior, the IR divergences,
stemming from diagrams (M) of Fig. 2 and (A), (B) of Fig. 3,
cancel in the matching. We have checked this by regulating
the IR divergences with a neutrino mass. Moreover, ultrasoft
neutrino loops in Fig. 4 contain UV divergences, which we deal
with in dimensional regularization and MS subtraction, with
renormalization scale μus. Thus the matching leads to a term in
the potential V

(a,b)
ν,2 that depends logarithmically on μus. As we

show in Sec. III C below, the dependence on μus cancels once
one includes the ultrasoft contribution to the 0νββ amplitude.

Since we are interested in potentials that mediate 0+ → 0+
nuclear transitions, we only need the parity-even contributions
that arise from two insertions of the vector current (VV) or axial
current (AA), and we write the N2LO two-body potentials as

V
(a,b)
ν,2 = τ (a)+τ (b)+

×
(
V (a,b)

V V + V (a,b)
AA + Ṽ (a,b)

AA ln
m2

π

μ2
us

+ V (a,b)
CT

)
. (18)

FIG. 4. Diagrams in the low-energy nuclear EFT contributing to
the matching at N2LO. The gray circle denotes an insertion of the LO
strong potential of Eq. (11). The gray box denotes an insertion of the
LO �L = 2 potential Vν,0. The remaining notation is as in Fig. 1.
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For the contribution of two vector currents, we find

V (a,b)
V V = − g2

A

(4πFπ )2

σ (a) · q σ (b) · q
m2

π

{
2(1 − q̂)2

q̂2(1 + q̂)
ln (1 + q̂) − 2

q̂
+ 7 − 3q̂Lπ

(1 + q̂)2
+ Lπ

1 + q̂

}
, (19)

where q̂ = −q2/m2
π and Lπ = ln μ2

m2
π

. This form agrees with Ref. [52], where the virtual photon corrections to the one-pion
exchange potential were calculated. For the axial component we find

V (a,b)
AA = g2

A

(4πFπ )2

σ (a) · q σ (b) · q
m2

π

{
g2

A

1 + q̂
(Lπ − 4) + 1

(1 + q̂)2

}

+1(a) × 1(b)

(4πFπ )2

{
−3

4

(
1 − g2

A

)2
Lπ + g4

Af4(q̂) + g2
Af2(q̂) + f0(q̂) + 24g2

AF 2
πCT {Lπ + 1}

}
, (20)

Ṽ (a,b)
AA = 2

g4
A

(4πFπ )2

σ (a) · q σ (b) · q + q2 1(a) × 1(b)

q2 + m2
π

− g2
A

(4π )2
48CT 1(a) × 1(b), (21)

where

f0(q̂) = −1 + 8q̂

6q̂
+ (1 + q̂)(1 + 8q̂ + q̂2)

6q̂2
ln(1 + q̂) − 1

24
(4 + q̂)(5 + 2q̂)g(q̂), (22)

f2(q̂) = 1 + 8q̂

3q̂
+ (1 + q̂)2(−1 + 5q̂)

3q̂2
ln(1 + q̂) − 1

12
(40 + 47q̂ + 10q̂2)g(q̂), (23)

f4(q̂) = −1

6

(
20 + 1

q̂
− 12

4 + q̂

)
− −1 + 14q̂ + 78q̂2 + 62q̂3 + 23q̂4

6q̂2(1 + q̂)
ln(1 + q̂)

+ 1

24(4 + q̂)
(640 + 912q̂ + 375q̂2 + 46q̂3)g(q̂), (24)

and the loop function g(q̂) is

g(q̂) = 4√
q̂(4 + q̂)

arctanh

(√
q̂

4 + q̂

)
. (25)

Finally, the counterterm potential reads

V (a,b)
CT = g2

A

(4πFπ )2

σ (a) · q σ (b) · q
m2

π

[
5

6
gππ

ν

q̂

(1 + q̂)2
− gπN

ν

1

1 + q̂

]
− 2gNN

ν

(4πFπ )2
1(a) × 1(b). (26)

The μ dependence of gππ
ν , gπN

ν , and gNN
ν cancels the μ dependence of Lπ in Eqs. (19) and (20). We will discuss strategies to

estimate the finite parts of the LECs in Sec. III D below.

B. The �L = �I = 2 potential in the pionless EFT

The previous discussion assumed the Weinberg power
counting, that, while phenomenologically successful [44],
is not formally consistent [42,43]. Few-body systems and
processes characterized by scales p 
 mπ can be studied in
pionless EFT, a low-energy EFT in which pion degrees of
freedom are integrated out [41,48]. For physical pion masses,
pionless EFT converges very well for the A = 2,3 systems,
and works satisfactorily well for up to A = 6 [53]. While
the application of this EFT to nuclei with A > 6 needs to be
studied in more detail, it is interesting to extend the framework
developed in the previous section to pionless EFT, especially
in the light of a possible matching to lattice calculations of
0νββ matrix elements performed at heavy pion masses. A
similar matching between lattice and pionless EFT for strong
interaction and electroweak processes has been carried out in
Refs. [27,54–59]. While the lattice QCD calculations relevant
for 2νββ were performed at a single lattice spacing of a ∼
0.145 fm and at mπ ∼ 806 MeV [27,59], they represent the first

step for the field and are very promising. We are optimistic that
in the near future lattice calculations of electroweak processes
and 0νββ in the two nucleon system will reach control over all
lattice systematics, as recently achieved for the nucleon axial
coupling gA [60–63].

Pionless EFT describes physics at the scale p smaller
than the cutoff of the theory �/π ∼ mπ . For power counting
purposes, we introduce the scale ℵ ∼ p 
 �/π . The leading-
order Lagrangian is given by Eq. (8c), and the fine tuning of the
S-wave nucleon-nucleon scattering lengths is accounted for by
assigning the coefficients CS,T the scaling

CS,T = O
(

4π

mNℵ
)

. (27)

Using dimensional regularization with power divergence sub-
traction (PDS) [46], at the scale μ the couplings CS,T can be
expressed in terms of the spin-singlet 1S0 and spin-triplet 3S1
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FIG. 5. Contributions to the �L = 2 nn → ppe−e− scattering
amplitude in the pionless EFT. At leading order, the two neutrons
(protons) in the initial (final) state have to be dressed by insertions
of Cs .

scattering lengths as and at according to

Cs = CS − 3CT = 4π

mN (a−1
s − μ)

,

(28)

Ct = CT + CS = 4π

mN (a−1
t − μ)

,

where a−1
s ∼ −8.3 MeV, a−1

t = 36 MeV. Higher-order op-
erators involve additional derivatives and are related to ad-
ditional parameters (effective range, shape parameter, ...) of
the effective-range expansion. Note that in pionless EFT the
three-body nucleon force is a leading-order effect [41].

The leading �L = 2 potential in the pionless EFT has the
form

V
(a,b)
ν,0 = τ (a)+τ (b)+

{
1

q2

(
g2

V − g2
Aσ (a) · σ (b)

)

− 2gNN
ν

(4πF0)2
1(a) × 1(b)

}
. (29)

The first term comes from long-range neutrino exchange, as
in Eq. (13), with the difference that the contributions of the
induced pseudoscalar form factor are subleading. In addition,
the scaling of the nucleon-nucleon coupling gNN

ν , introduced
in Eq. (9), is modified. This coupling connects two S waves
and thus is enhanced in the pionless theory [41], scaling as

gNN
ν = O

(
�2

χ

ℵ2

)
. (30)

This scaling can be understood by studying the scattering
amplitude for two neutrons to turn into two protons with the
emission of two zero-momentum electrons. At leading order
in the pionless EFT, the scattering amplitude in the 1S0 channel
receives contributions from the diagrams in Fig. 5, where the
two neutrons and two protons in the initial and final states are
dressed by bubble diagrams with insertions of the leading order
contact interaction Cs . These contributions to the amplitude
have the schematic form

A(nn(1S0) → pp(1S0))

∼ G2
F mββ

{(
T

Cs(μ)

)2((
mNCs(μ)

4π

)2

× (
1 + 3g2

A

)
I2 − 2gNN

ν

(4πF0)2

)
+ · · ·

}
, (31)

where T is the leading-order, strong-interaction scattering
amplitude in the 1S0 channel, which is scale independent,
and the dots in Eq. (31) denote additional scale-independent
contributions. I2 is the dimensionless two-loop integral that ap-
pears in the first diagram of Fig. 5. The loop is logarithmically
divergent in d = 4, giving, in the PDS scheme,

I2 = 1

2
ln

μ2

16γ 2
+ 1

2
, γ 2 = −mN

(
E − P2

4mN

)
, (32)

where E is the energy of the two neutrons in the initial state,
and P the center-of-mass momentum. This is the same UV di-
vergence that appears in Coulomb corrections to proton-proton
scattering [64]. The amplitude (31) can be made independent
of the renormalization scale μ by rescaling

gNN
ν (μ) = (4πF0)2

(
mNCs(μ)

4π

)2

g̃NN
ν (μ), (33)

where g̃NN
ν = O(1) and satisfies

d

d ln μ
g̃NN

ν = 1 + 3g2
A

2
. (34)

Equation (33), together with (28), confirms the power-counting
expectation of Eq. (30).

Beyond leading order in the pionless EFT there appears
a single four-nucleon operator contributing to Vν,2 at N2LO,
which is conveniently expressed in terms of the 1S0 projectors

P
(1S0)
± ,

L = gNN
ν, 2κ ēLCēT

L{(NT ←→∇ 2P
(1S0)
+ N )(NT P

(1S0)
− N )†

+ (NT P
(1S0)
+ N )(NT ←→∇ 2P

(1S0)
− N )†} + H.c., (35)

with P
(1S0)
± = (iσ2)(iτ2τ±)/2

√
2, and κ given in Eq. (9). The

LEC gNN
ν, 2 scales as

gNN
ν, 2 = O

(
�2

χ

ℵ2�2
/π

)
. (36)

Operators connecting two neutrons and two protons in the P
waves are not enhanced by ℵ−2, and appear at even higher
order.

Additional corrections to the potential Vν,0 arise from loop
diagrams 3(N) and 3(O). These diagrams are scaleless and
vanish in dimensional regularization. If the infrared divergence
is regulated by a neutrino mass mν , the mν dependence is
canceled by the diagrams in Fig. 4, and one obtains

V
(a,b)
ν,loops = −τ (a)+τ (b)+ (1(a) × 1(b))

48g2
ACT

(4π )2
ln

μ2

μ2
us

. (37)

The μ dependence in (37) is reabsorbed by a subleading term
in gNN

ν . Equation (37) shows that it is always possible to
choose μus so that the correction to the potential vanishes,
and the effect of diagrams 3(N) and 3(O) is all encoded in the
ultrasoft contribution. Note that the loop (37) and the ultrasoft
amplitude are suppressed by p/(4πmN ) ∼ (p/�/π ) × 1/(4π )2

with respect to the LO, and are thus smaller than corrections
from Eq. (35), scaling as p2/�2

/π .
The relevance of the ultrasoft region can be also understood

diagrammatically. Indeed, while diagram 3(O) is suppressed
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FIG. 6. The ultrasoft contribution to 0νββ amplitude. The thick
shaded lines represent nuclear bound states. The remaining notation
is as in Fig. 1.

with respect to the LO, diagrams with an arbitrary number of
insertions of Cs and Ct between the emission and absorption
of the neutrino are not suppressed with respect to 3(O). These
diagrams need to be resummed, and correspond to building
up the intermediate states. They are captured by the ultrasoft
contribution discussed in Sec. III C below.

C. The 0νββ amplitude

Starting from the nuclear Hamiltonian of Eq. (10), one
calculates the full 0νββ amplitude as the sum of two contribu-
tions,3

Tf i = −Tlept × ((Vν,0)f i + (Vν,2)f i) + Tusoft, (38)

where we defined Tlept = 4G2
F V 2

udmββūL(pe1)CūT
L(pe2). The

first term represents a single insertion of the �L = �I = 2
potential [third term in Eq. (10)]. On the other hand Tusoft

arises from double insertions of the weak interaction [second
term in Eq. (10)], which involves the exchange of ultrasoft
Majorana neutrinos, with four-momenta scaling as k0 ∼ |k| 

kF . The diagram contributing to Tusoft is given in Fig. 6, and
its expression is

Tusoft = −Tlept

4

∑
n

∫
dd−1k

(2π )d−1

1

|k|

×
[ 〈f |Jμ|n〉〈n|Jμ|i〉
|k| + E2 + En − Ei − iη

+ 〈f |Jμ|n〉〈n|Jμ|i〉
|k| + E1 + En − Ei − iη

]
. (39)

Here Jμ ≡ Vμ(x = 0) − Aμ(x = 0) = ∑
i τ (i)+ (δμ0 −

gAδμkσ
(i)
k ) δ(3)(xi) is the lowest-order nuclear weak current

and |n〉 represent a complete set of nuclear states (eigenstates
of H0) with 3-momentum ±k + (1/2)(pi + pf ) [the ± refer
to the first and second terms in Eq. (39), respectively]. The
quantum numbers of Jμ imply that, for given 0+ even-even
initial and final states, |n〉 spans the set of eigenstates of the
intermediate odd-odd nucleus. Since we are in the ultrasoft

3The amplitude Tf i is related to the S-matrix element by Sf i =
i(2π )4 δ(4)(pf − pi) Tf i . Moreover (Vν)f i is defined by 〈f |Vν |i〉 =
(2π )3δ(3)(pf − pi) × (Vν)f i , where we have pulled out the 3-
momentum delta function arising from integration over the center-
of-mass variables that describe the overall motion of |i〉 and |f 〉.
(Vν)f i is related to the standard matrix element used in the 0νββ

literature [19] by (Vν)f i = −(g2
A/(4πRA))(MGT + MT − MF /g2

A),
with RA = 1.2A1/3 fm.

regime, we expand 〈f |Jμ|n〉〈n|Jμ|i〉 in k and keep only the
k = 0 term, noting that finite momentum terms would produce
upon integration additional positive powers of the IR scale
E1,2 + En − Ei , and therefore additional suppression.

Evaluating the loop integral in dimensional regularization
with MS subtraction, we find

Tusoft(μus)

= Tlept × 1

8π2

∑
n

〈f |Jμ|n〉〈n|Jμ|i〉

×
{

(E2 + En − Ei)

(
ln

μus

2(E2 + En − Ei)
+ 1

)

+ (E1 + En − Ei)

(
ln

μus

2(E1 + En − Ei)
+ 1

)}
,

(40)

The UV divergence and the associated logarithmic dependence
on μus are reabsorbed by the term in the potential proportional
to Ṽ (a,b)

AA . To verify this, using the completeness relation for
the eigenstates of H0 we write the term proportional to ln μus

in (40) as a double commutator [29] and evaluate it using the
lowest order chiral potential in H0, finding

dTusoft

d ln μus
= −Tlept × 1

8π2
〈f |[Jμ,[Jμ,H0]]|i〉

= Tlept × 1

8π2
〈f |[A,[A,H0]]|i〉

= −2 Tlept ×
∑
a,b

〈f |τ (a)+τ (b)+ Ṽ (a,b)
AA |i〉,

(41a)

−Tlept
d(Vν,2)f i

d ln μus
= +2Tlept ×

∑
a,b

〈f |τ (a)+τ (b)+ Ṽ (a,b)
AA |i〉,

(41b)

with Ṽ (a,b)
AA given in (21). The μus independence of the total

amplitude implied by Eqs. (41) is a non-trivial consistency
check for our calculation and allows us to pick a convenient
scale, such as μus = mπ , which eliminates the contribution
of ṼAA. Moreover, the cancellation implies that Tusoft has the
same chiral scaling as (V (a,b)

ν,2 )f i , and is thus two orders down

compared to the leading contribution (V (a,b)
ν,0 )f i . This suppres-

sion can also be seen by directly comparing the scaling of
Tusoft and (Vν,0)f i . In fact, (Vν,0)f i ∼ 1/(4πRA) ∼ kF /(4π ),4

which leads to Tusoft/T0 ∼ ∑
n(E1,2 + En − Ei)/(4πkF ) ×

〈f |Jμ|n〉〈n|Jμ|i〉. Note that the dimensionless transition ma-
trix elements 〈f |Jμ|n〉〈n|Jμ|i〉 also control the 2νββ decay
amplitude, through a different En-dependent weighted sum
[19]. The overlap matrix elements quickly die out for En −
Ei > 10 MeV, as borne out in several explicit calculations us-
ing different many-body methods [65–67]. Therefore, recalling
the scaling En − Ei ∼ k2

F /mN we recover Tusoft/T0 ∼ ε2
χ .

4This follows by taking matrix elements of Vν,0(rab) ∝ 1/(4πrab)
between nuclear states normalized to unity.
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In summary, in the chiral EFT framework one expects the
following hierarchy of contributions to the 0νββ amplitude of
Eq. (38):

(1) The leading contribution is given by T0 = −Tlept ×
(Vν,0)f i with Vν,0 given in Eqs. (12) and (13). This
leading term is not sensitive to the intermediate states
of the odd-odd nucleus. Vν,0 corresponds to the stan-
dard neutrino potential [19] evaluated at Ē − 1/2(Ei +
Ef ) → 0.

(2) A commonly included (but incomplete) N2LO contri-
bution is obtained by inserting momentum dependent
form factors in (13), as shown in Eq. (14) and the
subsequent discussion.

(3) The new N2LO contribution is given by T2 =
−Tlept × (Vν,2)f i(μus = mπ ) + Tusoft, with Vν,2 given
in Eqs. (12), (18) and Tusoft(μus) from Eq. (40). With the
choice of renormalization scale μus = mπ , ṼAA drops
out of the calculation. Note that Tusoft requires the same
nuclear structure input needed in 2νββ calculations,
namely 〈f |Jμ|n〉〈n|Jμ|i〉 and the excited energy levels
of the intermediate nucleus (En).

(4) In the pionless EFT one should use (Vν,0)f i from (29)
and (Vν,2)f i from Eq. (35). Further suppressed contri-
butions arise from (37) and Tusoft(μus) in Eq. (40). Note
that (Vν,loops)f i in Eq. (37) drops out when choosing
μus = μ with μ ∼ O(mπ ).

We suggest that many-body calculations be organized
according to this hierarchy, with the aim of (i) comparing
results of various methods order by order in chiral EFT and
(ii) checking to what degree the chiral counting is respected in
large nuclei.

Finally, note that in evaluating (Vν,2)f i in chiral EFT and
pionless EFT [and (Vν,0)f i in pionless EFT], one encounters a
priori unknown counterterms, which can be estimated in naive
dimensional analysis. In the next section we discuss how to go
beyond this rough estimate.

D. Estimating the low energy constants

Chiral EFT. Interestingly, ππ and πN interactions similar
to those in Eq. (9) are encountered when considering electro-
magnetic corrections to meson-meson and meson-nucleon in-
teractions [68–72]. In the electromagnetic case, these operators
arise from two insertions of the electromagnetic interaction,
which involves the exchange of hard photons. In the case
considered here, the operators are generated by the exchange
of hard neutrinos. However, the neutrino propagator and weak
vertices combine to give, up to a factor, a massless gauge
boson propagator in Feynman gauge [see Eqs. (3) and (5)].
This formal analogy can be exploited to relate the LECs
needed for 0νββ (two insertions of the τ+ weak current)
to the LECs associated with the �I = 2 component of the
product of two electromagnetic currents, that belongs to the
5L × 1R irreducible representation of the chiral SU(2) group.
Based on this observation, we have identified the operators
of Refs. [68–72] that correspond to gππ

ν and gπN
ν . Explicitly,

the relation between our couplings renormalized in the MS
scheme and those of, e.g., Ref. [70] (which are in the modified

MS scheme commonly employed in χPT [73]), is given by

gππ
ν = −48

5
(4π )2

(
κr

3 + 3

8(4π )2

)
,

gπN
ν = (4πFπ )2

(
gr

4 + gr
5

gA

− 1 − g2
A

(4πF )2

)
. (42)

Our results for the anomalous dimensions of these couplings
are in agreement with Ref. [68],

dgππ
ν

d ln μ
= −36

5
,

dgπN
ν

d ln μ
= −2

(
1 − g2

A

)
. (43)

At present the LEC gπN
ν remains undetermined, while sev-

eral estimates exist for gππ
ν [72,74]. For example, Ref. [72]

finds in Feynman gauge κr
3 (μ = mρ) = 2.7 × 10−3, which

corresponds to gππ
ν (μ = mρ) = −7.6. We expect this estimate

to be accurate at the 30–50% level, as it relies on a large-
NC inspired resonance saturation of the correlators. Finally,
electromagnetic counterterms in the two nucleon sector have
been classified in Ref. [75], but as far as we know no estimate
of the finite parts exist, which would give us a handle on gNN

ν .
A first-principles evaluation of gππ

ν , gπN
ν , gNN

ν based on
lattice QCD is also possible. gππ

ν and gπN
ν can be deter-

mined by computing the S-matrix elements for the processes
π−π− → ee and n → pπ+ee on the lattice and matching
to the corresponding chiral EFT expressions. On the lattice
side, one needs to compute matrix elements of the nonlocal
effective action in Eq. (3) between appropriate external states.
As discussed above, the calculation is formally very similar
(modulo the Lorentz and isospin structure of the currents)
to the one required to compute virtual photon corrections
to hadronic processes. Techniques being developed in that
context [76,77] might prove useful for 0νββ. On the EFT side,
one needs to compute full S-matrix elements, not potentials.
As an illustration, and because the ππ matrix element would
probably be the first to be tested on the lattice, we report the
N2LO S-matrix result for π−(q)π−(−q) → ee, with q2 = m2

π :

Tπ−π−→ee

= Tlept2 F 2
π

[
1 + m2

π

(4πFπ )2

(
6 + 3 ln

μ2

m2
π

+ 5

6
gππ

ν (μ)

)]
.

(44)

The S-matrix element for n → pπ+ee cannot be readily
extracted from our matching calculation, because we used
off-shell “potential” pions in the external legs of Fig. 2 (bottom
panel).

Similarly, gNN
ν can be determined by matching the lattice

calculation of nn → ppee to the chiral EFT one, with a
few caveats: (i) the chiral EFT S-matrix elements require a
nonperturbative calculation, which we have not performed.
(ii) Matching at N2LO requires subtracting the ultrasoft con-
tribution for the specific channel nn → ppee. In principle, all
the ingredients (En and 〈pp|Jμ|pn〉〈np|Jμ|nn〉) to evaluate
Tusoft can be computed in lattice QCD, and a first step in
this direction has been made in Ref. [27,59] in the context
of the pionless EFT. (iii) Finally, one needs to subtract the
contributions from gππ

ν and gπN
ν , or alternatively extract these

from the mπ dependence of the lattice nn → ppee amplitude.
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Pionless EFT. To determine the LO (N2LO) couplings gNN
ν

(gNN
ν,2 ), one would have to match a lattice QCD calculation of the

�L = 2 nn → ppee scattering amplitude to a full LO (N2LO)
calculation of the same amplitude in the pionless EFT (or the
analogous amplitude for the 0νββ decay of the bound nn state,
relevant for heavy pion lattices [59]). While obtaining the LO
(N2LO) nn → ppee amplitude in pionless EFT is beyond the
scope of this work, we note that part of the LO amplitude is
given in Eq. (31). We also note that in performing the matching
up to N2LO one can ignore the contribution from the ultrasoft
amplitude, which in pionless EFT contributes beyond N2LO
(see the discussion in Sec. III B). Should one need to evaluate
Tusoft, the input quantities En and 〈pp|Jμ|pn〉〈np|Jμ|nn〉 can
be computed on the lattice [27,59].

IV. CONCLUSIONS

We have presented the first comprehensive effective the-
ory analysis of 0νββ induced by light Majorana-neutrino
exchange, describing the physics from the scale �LNV all the
way down to the nuclear energy scale. The full 0νββ amplitude
receives contributions from hard, soft, potential, and ultrasoft
neutrino virtualities. Starting from the quark-level descrip-
tion, we have performed the matching to chiral EFT. In this
context, contributions from hard modes are captured by local
counterterms, while the contributions from soft and potential
modes can be explicitly evaluated and lead to appropriate
nuclear potentials—insensitive to properties of intermediate
nuclear states—for which we have derived LO and N2LO
expressions [see Eqs. (12), (13), (18)]. We have identified new
contributions that cannot be captured by parametrizations of
single nucleon form factors and by power-counting arguments
are as large as terms usually included in the 0νββ amplitude.
The contributions from ultrasoft modes appear at N2LO and
can be displayed in terms of nuclear matrix elements of the
weak current and excitation energies of the intermediate odd-
odd nuclei, that also control the 2νββ amplitude [see Eq. (40)].

In Sec. III D we discuss strategies to determine the low-
energy constants (LECs) that appear in the potentials. We have
worked out a connection to the electromagnetic LECs encoding
the effect of hard virtual photons in hadronic processes, that
can be obtained from model estimates, lattice QCD, and, at
least in principle, from data. We have also discussed a strategy
to match directly to �Iz = 2 hadronic amplitudes that could
be calculated in lattice QCD.

While the bulk of our discussion is based on the Weinberg
version of chiral EFT, in Sec. III B we also present the potential
in pionless EFT to LO and N2LO. We plan to study the

consistency of the Weinberg power counting for 0νββ decay
in future work.

In Sec. III C we discuss the hierarchy of chiral EFT contribu-
tions to the “master formula” for the 0νββ amplitude, Eq. (38),
describing their relation (when applicable) to the standard
treatment of 0νββ matrix elements in the literature. We
advocate that many-body calculations with existing methods
[78–89], as well as with methods under development [90],
should be organized according to the EFT power counting
scheme, isolating LO, N2LO, and ultrasoft contributions.
Ideally, the neutrino potential derived here should be used
with nuclear wavefunctions also based on chiral EFT and com-
puted at next-to-leading order, or higher. This is particularly
important when evaluating short range potentials. Benchmark
calculations of double-β matrix elements of light nuclei [91]
will help quantify the impact of the new N2LO potential and
ultimately assess the validity of the chiral framework.
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