
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Model Reduction and Iterative LQR for Control of High-Dimensional Nonlinear Systems

Permalink
https://escholarship.org/uc/item/39b4z63z

Author
Huang, Yizhe

Publication Date
2020

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/39b4z63z
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Model Reduction and Iterative LQR for Control of High-Dimensional Nonlinear Systems

A thesis submitted in partial satisfaction of the
requirements for the degree of Master of Science

in

Computer Science

by

Yizhe Huang

Committee in charge:

Professor Boris Kramer, Chair
Professor Chung Kuan Cheng, Co-Chair
Professor Sicun Gao

2020

Copyright

Yizhe Huang, 2020

All rights reserved.

The thesis of Yizhe Huang is approved, and it is acceptable in quality and

form for publication on microfilm and electronically:

Co-Chair

Chair

University of California San Diego

2020

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Figures . v

Abstract of the Thesis . 1

Chapter 1 Introduction . 3
1.1 Motivation . 3
1.2 Related Work . 5

1.2.1 ILQR . 5
1.2.2 Model Reduction . 7
1.2.3 Control of Burgers’ Equation . 8

1.3 Contribution . 9

Chapter 2 Iterative Linear Quadratic Regulator . 11
2.1 Nonlinear Control Problem . 11
2.2 The ILQR Algorithm . 12

2.2.1 Computational Cost of ILQR . 17
2.3 Linear Case . 17
2.4 Quadratic Case . 19

2.4.1 Linear System with Quadratic Control . 19
2.4.2 Quadratic System with Linear Control . 20

Chapter 3 System-Theoretic Model Reduction . 22
3.1 Balanced Truncation . 23
3.2 LQG-Balanced Truncation . 26

Chapter 4 Numerical Experiments . 28
4.1 Inverted Pendulum . 28
4.2 2-Link Arm . 30
4.3 Burgers’ Equation . 31

4.3.1 Reduced-Order Models . 33
4.3.2 Comparison of ROMs in Open-Loop Setting 34
4.3.3 Comparison of ROMs When Used for Closed-Loop Systems 35

Chapter 5 Conclusion . 40

Bibliography . 42

iv

LIST OF FIGURES

Figure 4.1. Controlled state x1 and control u given by ILQR on inverted pendulum 29

Figure 4.2. Controlled state x1 and control u1 given by ILQR on 2-link arm 31

Figure 4.3. Normalized singular values of L>R . 34

Figure 4.4. Normalized difference between the outputs of FOM and ROMs
‖y−yr‖2
‖y‖2 . Note that only odd number between 1 and 25 are used as

dimensions of ROMs. 35

Figure 4.5. Open-loop simulation of FOM for Burgers equation with input u
(i)
k =

0.1 sin(itk) . 36

Figure 4.6. Open-loop simulation of ROM with input u
(i)
k = 0.1 sin(itk), with

state projected back to FOM space . 37

Figure 4.7. ROM cost vs number of iterations in the ILQR algorithm. FOM cost
on the final control included as reference . 38

Figure 4.8. Norm of outputs ‖y‖2 in the closed-loop system of FOM, with the
controller given by ILQR computed using the two nonlinear ROMs . 38

Figure 4.9. Norm of controls ‖u‖2 given by ILQR computed using the two non-
linear ROMs . 39

v

ABSTRACT OF THE THESIS

Model Reduction and Iterative LQR for Control of High-Dimensional Nonlinear Systems

by

Yizhe Huang

Master of Science in Computer Science

University of California San Diego, 2020

Professor Boris Kramer, Chair
Professor Chung Kuan Cheng, Co-Chair

The control of high-dimensional nonlinear systems remains a challenge in control

theory. We propose a framework to design controllers for high-dimensional nonlinear sys-

tems. The controller is designed by the use of the iterative linear quadratic regulator

(ILQR) algorithm, an algorithm that computes control by iteratively applying the linear

quadratic control (LQR) algorithm on the local linearizations of the system at each time

step. The high dimensionality is addressed by model reduction, which constructs reduced-

order models (ROMs) that approximate the dynamics of the original full-order models

(FOMs). We apply balanced truncation (BT), a system-theoretic, trajectory-independent

1

model reduction technique for open-loop systems, and its extension for closed-loop sys-

tems, linear quadratic Gaussian balanced truncation (LQG-BT). Numerical experiments

of this framework are performed on an 1D Burgers’ equation, where the performances of

ROMs of different orders, as well as the choice between BT and LQG-BT, are compared

and discussed. We find that the ILQR algorithm produces good control on ROMs con-

structed either by BT or LQG-BT. While BT outperforms LQG-BT in terms of accuracy

in open-loop simulations, LQG-BT results in better control in the closed-loop system

when combined with ILQR.

2

Chapter 1

Introduction

In this chapter we first introduce the motivation for our work in Section 1.1. We

then review the works related to the ILQR algorithm, model reduction, and control of

Burgers’ equation in Section 1.2. Finally, we summarize our contribution in this work in

Section 1.3.

1.1 Motivation

Systems in science and engineering are inherently nonlinear, and their control and

operation remains at the heart of modern computational science and engineering. Control

theory provides us with a framework to design a controller, which applies a control input

to a system to drive it to the desired target state. The performance of the controller is

evaluated by a cost function, which usually consists of the distance between the system

state and the target state, as well as the energy cost of the control input. A good controller

drives the system state close to target using a low (or potentially optimal) energy for the

control.

A well-studied class of control problems exists for linear time-invariant (LTI) sys-

tems, in which the derivative of the system state with respect to time (or, in the discrete-

time case, the next system state) depends linearly on the current state and control input.

Feedback control algorithms such as the linear quadratic regulator (LQR) and the linear

3

quadratic Gaussian regulator (LQG) provide optimal solutions, which can be computed

with reasonable computational effort even for large-scale systems. However, systems in

real life are usually nonlinear, and controlling these systems requires case-by-case develop-

ment of control strategies, often only works locally, and requires much more computational

effort than in the linear case. One obvious approach is to find linear approximations to

these systems and apply techniques like LQR, but depending on the extent of the nonlin-

earity, the control found may be very far from optimal. Therefore to get a good control

on these systems we have to adopt fully nonlinear controllers, which are often more costly

in computational power.

Many systems in engineering are modeled with systems of a few degrees of freedom,

such as in classical robotics where position and velocity are used for all rigid components,

or in six-DOF airplane models, and others. The computational cost of the algorithm is

usually not a concern when dealing with these problems. However, certain problems can

have a very high number of dimensions, even on the scale of millions. Those problems are

typical when dealing with discretized partial differential equations (PDEs). For example,

if we want to represent the temperature of a plate, where space is continuous, we can use

a spatial discretization technique to convert a PDE into a large-scale system of ordinary

differential equations (ODEs). Then the temperature evaluated on each of the grid nodes

becomes a state of the discretized system. The finer we discretize the spatial variable, the

more accurate the simulation is, but at the same time, we have to solve a problem of a

larger dimension. On those large systems, the computational cost is a concern, especially

on controllers that depend on real-time sensor input.

To address these two problems, which means to design a controller for high-

dimensional nonlinear systems, we propose to use a combination of model reduction and

the ILQR algorithm. ILQR is a nonlinear controller that works well on low-dimensional

nonlinear systems with a quadratic cost function. We detail our contributions in the next

section.

4

1.2 Related Work

We discuss related work on the ILQR algorithm in Section 1.2.1, on model reduc-

tion techniques in Section 1.2.2 and on controlling Burgers’ equation in Section 1.2.3.

1.2.1 ILQR

The LQR algorithm is a classic and well-known algorithm in the theory of optimal

control. It provides an automatic way of finding the state-feedback controller. It also plays

an important role in solving the related LQG problem, where the system is influenced by

a white Gaussian noise in addition to the control input, and the goal is to minimize the

expected cost.

However, real-life control problems often do not fit this setting, since the system

might not be linear, and the cost function might not be quadratic. The condition for

the system equation to be linear and for the cost to be quadratic is fairly strong and

often violated in real-life systems. The control engineer may choose to find the linear and

quadratic approximation to the system and then apply the LQR algorithm, but in the

case of highly nonlinear systems the controller found will likely be far from optimal.

In 2004, the authors in [13] developed the ILQR algorithm that extends LQR

by relaxing one of its conditions. The ILQR algorithm, in contrast to standard LQR,

does not require the system equation to be linear, though it still assumes quadratic cost

function. The core idea of ILQR is that instead of deriving a fixed linearization of the

nonlinear dynamics beforehand, we can compute the local linear approximation by Jaco-

bian whenever needed, which means that the linear approximation will be different at

different points on the trajectory. These local linearizations are then used in a modified

LQR algorithm to find the nominally optimal controller and the corresponding nominal

trajectory. The next iteration would then use the new trajectory to recompute the local

linearizations and repeat the process, resulting in the iterative nature of ILQR. While the

5

algorithm is not guaranteed to converge to the optimal control, on most systems the cost

of the given solution decreases across iterations and eventually converges.

The ILQR algorithm significantly extends the range of application of LQR meth-

ods, as it can be applied to highly nonlinear systems and the constraint of quadratic cost

is often satisfied when the cost is energy-related, which is common in physical systems.

In [27] ILQR is applied to an 11-dimensional, highly nonlinear dynamic model for a single

quadrotor UAV with a cable-suspended heavy rigid body. The authors in [30] apply ILQR

to lower limb exoskeleton and compares its performance with adaptive PD controllers.

The authors in [31] uses ILQR to control two quadrotors carrying one cable-suspended

payload. However, despite the apparent range of applications, these systems are similar

in that the models are usually low-dimensional, not exceeding 11 dimensions. As the

running time of each iteration in ILQR increases quadratically regarding the number of

dimensions, ILQR lost computationally tractability on high-dimensional systems.

There are also efforts to extend ILQR to other scenarios. An iterative LQG method

is developed in [18] and is very similar to the ILQR algorithm. The authors in [23] extend

ILQR to systems with nonquadratic cost and apply it to differential-drive robots and

quadrotor helicopters in environments with obstacles. The authors in [34] propose a way

of learning local linearization of dynamics from image inputs and tests it on problems like

planar system (navigation), inverted pendulum, and cart-pole balancing. In addition, [33]

proposes constrained iterative LQR to handle the constraints in ILQR and applies it to

on-road autonomous driving motion planning. However, while these extensions further

expand the range of problems that ILQR can be applied to, none of these extensions

address the problem that ILQR is not computationally tractable on high-dimensional

systems. To the authors’ knowledge, ILQR has not been used in the context of high-

dimensional semi-discretized PDE systems to date.

6

1.2.2 Model Reduction

Large-scale dynamical systems are ubiquitous in control theory, as many problems

of practical interest are large-scale. To study a PDE, we often perform space discretiza-

tion to transform it into an ODE, with each point in space becomes a state dimension.

Accurate semi-discretized PDEs then lead to large-scale ODEs. As these large-scale prob-

lems are often too computationally costly to study, model reduction techniques are often

employed. Model reduction is a category of techniques to construct ROMs that are good

approximations to the original FOM. See [15, 25, 32] for an overview of model reduction.

Model reduction is appealing, as it offers the possibility to perform analysis and optimiza-

tion with the ROM, and then apply those findings to the FOM, along with suitable error

analysis. In the setting of control theory, this means that we are interested in computing

the control input using the ROM, and then use the same input to control the original

system.

The most popular model reduction technique for open-loop nonlinear systems is

the proper orthogonal decomposition (POD) method [6], which is an extension of the

principal component analysis method in statistics. It aims to project the high-dimensional

variables into low-dimensional spaces while retaining most of the variations. It has the

desired property of minimizing the average squared distance between the original data and

the reduced linear representation. POD is a Galerkin-projection-based model reduction

technique which has been widely useful in control theory despite its delicate dependence

on the training data, for example in [8, 11, 16, 17, 22, 24, 28, 29].

System-theoretic model reduction provides an alternative to POD, as it does not

rely on trajectory data from the model, and instead only uses the system representation

(matrices). One of the most popular system-theoretic model reduction technique for

open-loop control systems is the BT method [2]. It differs from the generic POD method

that it is specifically designed for reducing LTI systems in control theory. Its goal is to

7

transform and truncate the model so that the ROM has both good controllability and

good observability, which means that it takes little input to control the system and the

state of the system is easily observable from the output. In essence, this means that we

discard the components of the system that are hard to control and/or hard to observe.

This enables us to find good control using the ROM, which can be then applied to the

original system.

LQG-BT [3] is a modification to the standard BT. Standard BT balances the open-

loop system. However, if we would like to find a feedback controller, we are constructing

a closed-loop system, and LQG-BT produces ROMs that are suitable for closed-loop

systems, as shown in [19, 20, 21, 26]. The reason behind this is that the BT method does

not take the cost function into account, while the matrices in the quadratic cost function

are incorporated in the LQG-BT algorithm. In this study, we use the standard BT and

LQG-BT method to reduce the high-dimensional Burgers’ equation model.

1.2.3 Control of Burgers’ Equation

Burgers’ equation is a PDE model that has been used in fluid mechanics and

traffic flow modeling and is a popular numerical testbed in the design of methods for

nonlinear systems. Burgers’ equation has been given considerable attention in control

theory, as it plays a central role in the modeling of flow problems. One of the first works

to investigate the control of the Burgers’ equation is [5], which applies LQR to the linear

approximation of the system. Other works include [10] which introduces cubic Neumann

boundary feedback control to improve stability, and [12] which adapts to the problem

where viscosity is unknown. In these works, the emphasis is given on the theoretical

properties, such as stability under certain technical conditions.

In contrast, there are also works that focus more on controlling the Burgers’ equa-

tion while dealing with concrete problems under different scenarios. In [28], the authors

discuss the control of coupled, multiphysics systems by investigating coupled Burgers’

8

equation. The author in [7] proposes to model turbulence by stochastic Burgers’ equation

and devises a control approach, which, although theoretically suboptimal, results in signif-

icant cost reduction in experiments. Another work,[9], studies nonlinear control of incom-

pressible fluid flow and the application to Burgers’ equation. A comparative study is done

in [14], which compares the idea of three different approaches (SQP-primal dual method,

Primal dual-SQP method, and Semi-smooth Newton method) to control the equation,

and conducts numerical experiments comparing performances of those approaches under

various parameters.

Burgers’ equation is high-dimensional, as the semi-discretized PDE results in a

high-dimensional ODE. Therefore, to get an accurate simulation, particularly in the pres-

ence of shocks in the solution, one has to use a large number of discretized elements. This

often results in a system of order of hundreds to thousands of states. For many nonlinear

control algorithms, the system is too large to be computationally tractable. In this work,

we address this issue by incorporating model reduction techniques in combination with

the ILQR algorithm.

1.3 Contribution

We propose a novel framework to control high-dimensional nonlinear systems. The

framework uses a system-theoretic model reduction technique to obtain nonlinear ROMs,

and subsequently uses the ILQR algorithm for controller design. ILQR has not been used

in the context of high-dimensional semi-discretized PDE systems to date due to its compu-

tationally complexity, and our work accomplishes this by incorporating model reduction

to make ILQR computationally tractable. In the analysis of the ILQR algorithm, we show

that i) it converges in a single iteration when applied on LTI systems, and the control

given is identical to the LQR algorithm, which is optimal; ii) it does not converge to the

optimal control on a linear system with quadratic control, when the control is initialized

9

to zero; iii) it may take many iterations to converge on a quadratic systems with linear

control, when the control is initialized to zero. In addition, to demonstrate the applicabil-

ity of this framework to high-dimensional systems, we study a problem of controlling flow

through 1D Burgers’ equation. In this way, we devise a new way to control the nonlinear

Burgers’ equation by applying the aforementioned framework.

10

Chapter 2

Iterative Linear Quadratic Regulator

In this chapter, we first introduce the nonlinear control problem in Section 2.1.

Then, in Section 2.2 we introduce the ILQR method, first developed in [13], which extends

LQR to nonlinear systems. It iteratively computes a local linearization around a nominal

trajectory, and uses the local linearization in a modified LQR algorithm to compute a

local optimal control. This control is then used to compute the nominal trajectory in the

next iteration, and the process proceeds until convergence. We then discuss the behavior

of the algorithm when the system equation is linear in Section 2.3, and when the system

equation is quadratic in Section 2.4.

2.1 Nonlinear Control Problem

Without loss of generality, we assume that a nonlinear discrete-time dynamical

system of the form

xk+1 = f(xk, uk), k = 0, 1, . . . , N − 1, (2.1)

is given. Here, xk ∈ Rn is the system state at time step k, uk ∈ Rm is the control input

at time step k, N is the number of time steps between the initial time and the final time,

and f : Rn × Rm → Rn is a continuous function that determines the state of next time

step given the current state and control. If the original system is in continuous time,

11

time-discretization should be applied. The cost function is of the following form:

J(x, u) = (xN − x∗)>Qf (xN − x∗) +
N−1∑
k=0

(x>kQxk + u>k Ruk), (2.2)

where x = (x0, x1, . . . , xN)>, u = (u0, u1, . . . , uN−1)>, N is the total number of time steps,

which means that xN is the final state, and x∗ is the target state. The symmetric positive

semi-definite matrix Qf ∈ Rn×n defines the final state cost, and the symmetric positive

semi-definite matrix Q ∈ Rn×n defines the intermediate state cost, while the positive

definite matrix R ∈ Rm×m defines the control cost. As in the LQR algorithm, the cost

function is formulated in quadratic form. For the nonlinear control problem, the goal is

to find control u that minimizes cost J(x, u):

min
x,u

J(x, u) (2.3)

s.t. xk+1 = f(xk, uk), k = 0, 1, . . . , N − 1. (2.4)

2.2 The ILQR Algorithm

The ILQR algorithm provides a suitable solution for the nonlinear control problem

in equations (2.3)-(2.4). The algorithm is iterative, and can be set to terminate at some

stopping criteria, for example when the difference of cost between two consecutive itera-

tions is small enough comparing to the cost itself, i.e, |Jold − J |/Jold ≤ tol. We assume

that we have a nominal control sequence u0, u1, . . . , uN−1 and corresponding trajectory

x0, x1, . . . , xN at the start of each iteration. For the first iteration we can initialize the

control arbitrarily (for example set control to zero) and compute the trajectory. For the

following iterations those can be obtained from the output of previous iterations. Then,

12

we can derive a local linearization around the nominal trajectory in the form of

δxk+1 = Akδxk +Bkδxk (2.5)

where δxk and δuk denote a small deviation from the nominal trajectory, while Ak =

Dxf(xk, uk) and Bk = Duf(xk, uk) are the Jacobian of f with respect to x and u, respec-

tively.

Since we want to change the nominal trajectory to make the cost smaller, we can

solve the problem with the following cost function

J(δx, δu) = (xN + δxN − x∗)>Qf (xN + δxN − x∗)

+
N−1∑
k=0

(
(xk + δxk)

>Q(xk + δxk) + (uk + δuk)
>R(uk + δuk)

)
. (2.6)

At time step k, the Hamiltonian of the cost function is:

Hk(δxk, δuk, δλk+1) = (xk + δxk)
>Q(xk + δxk) + (uk + δuk)

>R(uk + δuk)

+ δλ>k+1(Akδxk +Bkδuk), (2.7)

where δλ>k+1 is the Lagrange multiplier. Therefore, the costate equation is

δλk = A>k δλk+1 +Q(δxk + xk), (2.8)

and the stationary condition is

0 = R(uk + δuk) +B>k δλk+1, (2.9)

13

while the boundary condition is

δλN = Qf (xN + δxN − x∗). (2.10)

The optimal control improvement δuk can be obtained by solving the state equation

(2.5) and the costate equation (2.7), together with the stationary condition (2.9) and the

boundary condition (2.10). We combine these equations and conditions by first solving

(2.9), which gives

δuk = −R−1B>k δλk+1 − uk, (2.11)

substituting this equation into (2.5), and combining it with (2.7), we get the following

system: δxk+1

δλk

 =

Ak −BkR
−1B>k

Q A>k

 δxk

δλk+1

+

−Bkuk

Qxk

 . (2.12)

Then, we assume based on the boundary condition that

δλk = Skδxk + vk, (2.13)

for some unknown sequences Sk and vk. Substituting it into (2.5) yields

δxk+1 = (I +BkR
−1B>k Sk+1)

−1(Akδxk −BkR
−1B>k vk+1 −Bkuk), (2.14)

which is then plugged into (2.7) to yield

Skδxk + vk = Qδxk + A>k Sk+1(I +BkR
−1B>k Sk+1)

−1

(Akδxk −BkR
−1B>k vk+1 −Bkuk) + A>k vk+1 +Qxk. (2.15)

Applying the matrix inversion lemma (A + BCD)−1 = A−1 − A−1B(DA−1B +

14

C−1)−1DA−1, we obtain the equation for Sk and vk:

K = (B>k Sk+1Bk +R)−1B>k Sk+1Ak (2.16)

Sk = A>k Sk+1(Ak −BkK) +Q (2.17)

vk = (Ak −BkK)>vk+1 −K>Ruk +Qxk. (2.18)

Observe that we can compute Sk and vk if we know Sk+1 and vk+1. In addition, based

on the original boundary condition (2.10), we can deduce that SN = Qf , vN = Qf (xN −

x∗). Therefore, we can compute the auxiliary variables Sk and vk backward in time.

Furthermore, we can combine (2.11), (2.13), and (2.14) to compute δuk:

δuk = −Kδxk −Kvvk+1 −Kuuk, (2.19)

where K is defined as the same way previously, and Kv = (B>k Sk+1Bk + R)−1B>k , while

Ku = (B>k Sk+1Bk + R)−1R. We can then march the control increment δuk and the

new trajectory xk forward in time. In particular, we first set δx0 = 0, since the initial

state remains the same regardless of input. Then we use it to compute δu0 by equation

(2.19). We can then use the new state and control in the original system equation to

compute the state variable of the next time step, which can then be used to compute the

control increment of the next step. This process continues until we reaches the final step,

producing the ”optimal” control and trajectory based on the local linearizations Ak, Bk.

This new trajectory can then be used to derive the next set of local linearizations in

the next iteration. As mentioned previously, the algorithm continues until the trajectory

converges. Algorithm 1 summarizes the complete ILQR algorithm.

15

Algorithm 1: The ILQR Algorithm

1 Input: System f(xk, uk), initial state x0, initial control sequence
u0, u1, . . . , uN−1, number of steps N , matrices in cost function Q, Qf , R,
convergence threshold tol;

2 Output: Control u, number of ILQR iterations l;
3 l = 0;
4 SN = Qf ;
5 δx0 = 0;
6 xk+1 = f(xk, uk), ∀k = 0, 1, . . . , N − 1;
7 Jold =∞;
8 while |Jold − J |/Jold > tol do
9 Jold = J ;

10 vN = Qf (xN − x∗);
11 xold = x;
12 Ak = Dxf(xk, uk), Bk = Duf(xk, uk), ∀k = 0, 1, . . . , N − 1;
13 for i← N − 1 to 0 do
14 K = (B>k Sk+1Bk +R)−1B>k Sk+1Ak;
15 Kv = (B>k Sk+1Bk +R)−1B>k ;
16 Ku = (B>k Sk+1Bk +R)−1R;
17 Sk = A>k Sk+1(Ak −BkK) +Q;
18 vk = (Ak −BkK)>vk+1 −K>Ruk +Qxk;

19 end
20 for i← 0 to N − 1 do
21 δuk = −Kδxk −Kvvk+1 −Kuuk;
22 uk = uk + δuk;
23 xk+1 = f(xk, uk);
24 δxk+1 = xoldk+1 − xk+1;

25 end
26 l = l + 1;
27 J = x>NQfxN ;
28 for i← 0 to N − 1 do
29 J = J + x>i Qxi + u>i Rui;
30 end

31 end

16

2.2.1 Computational Cost of ILQR

We provide an analysis of the time complexity of the ILQR algorithm. In each

iteration, Algorithm 1 completes three passes, the first for obtaining the linearizations,

the second for computing K,Kv, Ku, S, and v, and the third one for computing the control

increment δu and the new trajectory.

The cost of computing the local linearization in step 12 depends on how the prob-

lem is formulated. If the analytical form of the Jacobians is known, we can compute

the Jacobian directly, resulting in N calls of the Jacobian functions in the whole pass.

However, if the system is given as a black box and we can only compute the Jacobian

numerically, then we have to march the system equation once for each dimension of state

and control. In this case, we have to compute the system equation for N(n+m) times in

total.

In the second portion (step 13 to step 19) and third portion (step 20 to step 25) of

the algorithm, the time complexity depends on the algorithm for matrix multiplication and

inversion. State of art algorithms of those operations have complexities around O(n2.4)[4],

so the complexity of the second and third pass is about O(N(n2.4 +m2.4)).

The number of iterations of the ILQR algorithm l varies greatly. As shown in

Section 2.3 and 2.4, l can be either 1 if the system is linear, or O(N).

Therefore, we can conclude that the time complexity ILQR is about O(N(n2.4 +

m2.4)) with respect to the number of dimensions. Therefore, in the case of very high-

dimensional problems, ILQR becomes computationally intractable, which motivates the

application of model reduction techniques.

2.3 Linear Case

In this section, we present an analysis of the behavior of ILQR on an LTI system.

First, we present a well-known result for the form of the LQR controller for discrete-time

17

LTI systems. This serves as the basis of comparison in our analysis.

Theorem 2.3.1. [1] Consider an LTI system

xk+1 = Axk +Buk. (2.20)

The standard discrete-time LQR algorithm yields the following solution for k =

0, 1, . . . , N − 1:

uk = −Fkxk (2.21)

Fk = (B>(Q+ Pk+1)B +R)−1B>(Q+ Pk+1)A (2.22)

Pk = AT (Q+ Pk+1)(A−BFk) (2.23)

PN = Qf (2.24)

We next consider the ILQR Algorithm 1 when applied to a discrete-time LTI

systems.

Proposition 1. When applied on an LTI system of the form (2.20), the ILQR algorithm

converges in a single iteration, and the resulting control is the same as the output of

standard LQR as given in Theorem 2.3.1.

Proof. It is sufficient to prove that the second iteration yields the same output as the first

iteration, which implies that it converges in a single iteration. Observe that the Jacobian

is constant: Dx(Axk + Buk) = A, Du(Axk + Buk) = B. This means that the matrices

Ak, Bk in the local linearization is always A and B, regardless of k and the trajectory. We

can then deduce that the linearization used in any iterations remains the same.

Let x′k = xk + δxk and u′k = uk + δuk, where xk, uk represent the input trajectory

in each iteration, δxk, δuk represents the state and control increment computed in each

iteration, and x′k, u
′
k is the output trajectory in each iteration. Substitute this into the

18

state equation (2.5), costate equation (2.7), stationary condition (2.9) and boundary con-

dition (2.10), we can transform those equations to equations of x′k, u
′
k. Observe that those

equations are uniquely defined by the linearization Ak = A and Bk = B. Therefore, since

the linearization of linear system always remain the same, the algorithm is solving the

same set of four equations (2.5)(2.7)(2.9) (2.10) for all iterations, which means the output

trajectories are also always the same. Therefore the algorithm converges in one iteration.

Furthermore, since the trajectory satisfies the stationary condition, it is locally

optimal. Since the system is linear, the problem of finding the trajectory of minimal cost

is a convex programming problem, with quadratic cost function and linear constraints.

Therefore a locally optimal solution is also the globally optimal solution. Since the stan-

dard LQR algorithm also yields the globally optimal solution, we conclude that the ILQR

algorithm yields the same output as the standard LQR algorithm on linear systems.

2.4 Quadratic Case

In this section, we provide analysis of the behavior of the ILQR algorithm applied

to two particular quadratic systems. We show that i) ILQR is not guaranteed to converge

to the globally optimal solution and ii) ILQR is not guaranteed to converge in a few

iterations: the number of iterations can be linear in terms of time discretization steps.

Therefore we suggest that i) it is important to select a good initial trajectory, or try

multiple initializations and pick the best result, and ii) it may be useful to use coarse

discretization in the first few iterations, followed by fine-grained discretization later, to

accelerate convergence.

2.4.1 Linear System with Quadratic Control

The first system of interest is a system that is quadratic in control:

xk+1 = Axk + u>k Buk. (2.25)

19

Suppose that we initialize the trajectory with no control (uk = 0∀k). In the local lin-

earization Bk = Du(Axk +u>k Buk) = (B+B>)u. Since uk = 0∀k, Bk = 0∀k. This means

that K = Kv = 0∀k, and together with the fact that uk = 0∀k, we can deduce that

δuk = 0∀k. Therefore, the output trajectory is exactly the same as the input trajectory,

which means that the algorithm converges. However, it is clear that this trajectory is not

the optimal one for most x∗.

We have shown that ILQR is not guaranteed to converge to the optimal trajectory

for certain initializations. We suggest that it is often better to pick a random initial

control than a particular one. Initialize with no control (uk = 0∀k) is especially likely to

be problematic since it may result in Bk = 0 for many systems as the system analyzed

above. Alternatively, if computation time is not a concern, we can run ILQR multiple

times, on different random initializations, and select the output trajectory with the lowest

cost.

2.4.2 Quadratic System with Linear Control

The second system we analyze is a system that is quadratic in state:

xk+1 = x>k Axk +Buk. (2.26)

Suppose that Q = 0 in the cost equation (2.2), which is common in many problems when

we only care about the final state. Suppose the initial state is x0 = 0, and the initial

control is given by uk = 0∀k.

Proposition 2. ILQR algorithm takes at least N iterations to converge, where N is the

number of time steps.

Proof. It is easy to observe that for the initial trajectory the system is stationary: xk =

0∀0. In the local linearization Ak = Dx(x
>
k Axk + Buk) = (A+ A>)x, Bk = Du(x

>
k Axk +

Buk) = B. Therefore, Ak = 0 in all local linearizations.

20

We first analyze the behavior of ILQR algorithm in the first iterations. First,

notice that except SN , all of Sk is 0, since Ak = Q = 0. Therefore, with the exception

of step N − 1, which is the step before final step, K = 0, Kv = R−1B> and Ku = I.

Therefore (Ak−BkK) = 0∀k, which means that all vk is 0 except vN . Therefore, δuk = 0

except δuN−1. In particular, δuN−1 = (B>QfB +R)−1B>Qfx
∗. As the result, only uN−1

is updated in the first iteration.

Similarly, we can find out that only uN−2 and uN−1 are updated in the second

iteration, and so on. It takes N iterations before u0 starts to get updated. Therefore, it

takes at least N iterations for ILQR algorithm to converge.

The findings of the previous theorem can be problematic since in each iteration the

time complexity is O(N) regarding the number of time steps. If it takes O(N) iterations

to converge, the total time complexity is O(N2), which is unacceptable when the nature

of the problem requires fine-grained time discretization for precision. To address this

problem, we suggest that it may be helpful to use coarse discretization on the first few

iterations, and then use fine-grained discretization, to speed up convergence. For the

system shown above, if N initially 10, then all uk can be updated in 10 iterations, and we

can then switch to N = 1000, for example. It can also be thought of as using the output

from coarse ILQR to initialize fine-grain ILQR. We can also use ROMs to speed up the

algorithm since the time need for each iteration is reduced significantly.

21

Chapter 3

System-Theoretic Model Reduction

We present two model reduction techniques that are based on systems theory, and

therefore suitable for control problems. The BT algorithm is introduced in Section 3.1,

while the LQG-BT algorithm is detailed in Section 3.2. These algorithms are designed to

be applied on continuous-time systems, but we can apply them to discrete-time systems

by first transforming the system from discrete-time to continous-time, using for example a

Tustin transformation. While BT [2] is the gold standard for open-loop model reduction,

LQG balancing [3] balances the closed-loop system. Despite the fact that both methods

are designed for LTI systems, in the setting of controlled systems, we keep the system

around the equilibrium/linearization point. Therefore, using these methods to obtain the

projection subspaces and subsequently compute the nonlinear ROM makes more sense

than in the open-loop nonlinear setting. Both methods will subsequently be used to

enable ILQR for nonlinear systems.

22

3.1 Balanced Truncation

We introduce BT, one of the classical model reduction techniques. Consider a

continuous-time LTI system

ẋ = Ax+Bu (3.1)

y = Cx (3.2)

where x ∈ Rn is the system state, u ∈ Rm is the control input, and y ∈ Rp is the output

for observation. The system matrices are A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n. Our goal

is to have a ROM of (3.1)–(3.2) that has both good controllability and good observability

properties (states that are uncontrollable or unobservable are not deemed important in

a ROM). The controllability is characterized by its controllability Gramian P , while the

observability is characterized by its observability Gramian Q, which is given as

P =

∫ ∞
0

eAτBB>eA
>τdτ (3.3)

Q =

∫ ∞
0

eA
>τC>CeAτdτ. (3.4)

We want to transform the system so that the controllability aspect and the observability

aspect are balanced, which means that P = Q in the transformed system. We can do this

by applying a state transformation x = T x̃, the transformed system becomes

˙̃x = Ãx̃+ B̃u (3.5)

y = C̃x̃ (3.6)

where Ã = T−1AT , B̃ = T−1B and C̃ = CT . Meanwhile, the Gramians of the trans-

formed system become P̃ = T−1PT−> and Q̃ = T>QT . First, we would like to find

23

T such that P̃ = Q̃. In this way, this transformation can make the controllability and

observability of the transformed system to be equal. Suppose that P̃ = Q̃ = Σ. Therefore,

Σ2 = P̃ Q̃ = T−1PT−>T>QT = T−1PQT, (3.7)

which means

(PQ)T = TΣ2. (3.8)

We can observe that T consists of the eigenvector of PQ, while Σ2 is the the matrix of

eigenvalues. Therefore, T can be obtained by computing the eigenvectors of PQ. However,

recall that any eigenvector can be scaled and remain an eigenvector, which means there

are infinite number of possible T . If we pick a random T out of them, then we are only

guaranteeing P̃ Q̃ = Σ2, but not P̃ = Q̃. Hence, we want to first find any eigenvector

matrix T̂ , and then scale it so that P̃ = Q̃. To do so, we compute T by

T = T̂ (T̂−1PT̂−>)
1
4 (T̂>QT̂)

1
4 . (3.9)

Hence we obtain a balanced transformation T , which can be rearranged to sort the eigen-

values of PQ in descending order. To get a BT, we divide T into left and right blocks,

and discard the right block, as well as the corresponding state vector components, which

correspond to small eigenvalues, implying that they are difficult to control and observe.

In this way, we reduce the dimension of the model, while keeping the components that

can be easily controlled and observed. Let

T =

[
Ψ Tt

]
(3.10)

S = T−1 =

 Φ

St

 , (3.11)

24

The transformed system equation is given by

ż = ΦAΨz + ΦBu (3.12)

y = CΨz (3.13)

where z is the state of the reduced model.

However, the algorithm discussed above still has some issues when put into use.

First, the computation of the Gramians requires the integration of infinite time, which is

hard to do numerically. Instead, the Gramians can be obtained by solving continous-time

Lyapunov Equations, which is implemented in many toolboxes like Matlab and Scipy.

Second, in the algorithm we first compute a square matrix T , and then discard part of it.

This leads to huge waste of time, since we spend much computational power on entries

that will eventually be discarded anyway. For example, if we want to reduce a model of

1000 dimensions to 10 dimensions in this way, 99% of the entries in T will be discarded

and need not to be computed. Instead, we can compute balancing and reducing order

transformation T directly. The modified algorithm, which is actually used in the following

numerical studies, is provided in Algorithm 2.

Algorithm 2: The BT Algorithm, efficient implementation

1 Input: Matrices in system equation A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n,
number of dimensions in reduced model `;

2 Output: Transformation matrices T, T−1;
3 P = Solution of Lyapunov equation AP + PA> +BB> = 0;
4 Q = Solution of Lyapunov equation QA+ A>Q+ C>C = 0;
5 R = Solve (Cholesky factorization) P = RR>;
6 L = Solve Q = LL>;
7 ` = min(`, rank(L), rank(R));
8 U,Σ, V = SVD(L>R);

9 T = R[:, 1 : `]V [:, 1 : `](Σ[:, 1 : `])−
1
2 ;

10 T−1 = (Σ[:, 1 : `])−
1
2U [:, 1 : `]>L[:, 1 : `]>;

25

3.2 LQG-Balanced Truncation

LQG-BT [3] is a variant of the BT algorithm, and it is particularly useful when

the system is unstable and a stabilizing feedback controller is desired. The problems it

deals with consist of systems of the same form of standard BT algorithm, as shown in

(3.1), and are infinite-horizon. While the standard BT method does not specify or use a

cost function, LQG-BT requires the cost function to have the following form

J(x, u) =

∫ ∞
t=0

(x>Qfx+ u>Ru)dt,

where x = x(t) is the system state at time t, u = u(t) is the control input at time t, Qf is

the state cost matrix and R is the input cost matrix. By incorporating the cost function

into the algorithm, LQG-BT can use the information to transform the system to compute

a better control law for the closed-loop system.

The majority of steps in the LQG-BT algorithm are the same, except the com-

putation of the matrices P and Q. Instead of computing as step 3 and 4 in Algorithm

2, where P and Q are obtained by solving Lyapunov equations, we solve the algebraic

Riccati equations

AP + PA> − PC>CP +BB> = 0 (3.14)

A>Q+QA−QBR−1B>Q+ C>C = 0. (3.15)

The full LQG-BT algorithm is provided in Algorithm 3.

26

Algorithm 3: The LQG-BT Algorithm

1 Input: Matrices in system equation A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n,
number of dimensions in reduced model `;

2 Output: Transformation matrices T, T−1;
3 P = Solution of AP + PA> − PC>CP +BB> = 0;
4 Q = Solution of A>Q+QA−QBR−1B>Q+ C>C = 0;
5 R = Solution of P = RR> (Cholesky factorization);
6 L = Solution of Q = LL>;
7 ` = min(`, rank(L), rank(R));
8 U,Σ, V = SVD(L>R);

9 T = R[:, 1 : `]V [:, 1 : `](Σ[:, 1 : `])−
1
2 ;

10 T−1 = (Σ[:, 1 : `])−
1
2U [:, 1 : `]>L[:, 1 : `]>;

27

Chapter 4

Numerical Experiments

In this chapter, we provide three numerical experiments to demonstrate the capa-

bility of the ILQR algorithm and model reduction. First, in Section 4.1 and 4.2, we apply

the ILQR algorithm to two nonlinear systems that are low-dimensional, where model

reductions are not needed. These are also two of the models used as examples in [13].

Then, we apply a combined approach of model reduction and the ILQR algorithm to

control a system of Burgers equation in Section 4.3.

4.1 Inverted Pendulum

The inverted Pendulum is one of the classical nonlinear systems studied in control

theory. It consists of a simple pendulum, on which forces can be applied either clockwise

or counter-clockwise, and the goal is to drive the pendulum from the initial position to the

unstable state of pointing upward and stop there. The state of the system is defined by its

angular position and the angular velocity. The control is defined by the one-dimensional

torque applied to the pendulum. Therefore, the system can be formulated as

ẋ1 = x2 (4.1)

ẋ2 =
g

l
sinx1 −

µ

ml2
x2 +

1

ml2
u (4.2)

28

0 0.2 0.4 0.6 0.8 1
0

1

2

3

Time [sec]

S
ta
te

(a) Controlled state x1

0 0.2 0.4 0.6 0.8 1

−25

0

25

Time [sec]

C
on

tr
ol

(b) Control u

Figure 4.1. Controlled state x1 and control u given by ILQR on inverted pendulum

where (x1, x2) is the state of the system, u is the control, m is the mass of the bob, l

is the length of the rod, g is the gravity coefficient and µ is the friction coefficient. The

angular position x1 is measured by the angle between the straight upward orientation and

the orientation of the rod, going clockwise, so x∗ = 0. The cost function associated can

be formulated as a first-order system of the form

J(x, u) =
1

2
(x1(T)2 + x2(T)2) +

1

2

∫ T

0

ru2dt (4.3)

where T is the final time and r is the weight of the input cost relative to final state cost.

For the following experiment, we use the parameters T = 1, m = 1, l = 1, g = 9.8,

µ = 0.01 and r = 10−5, which is the same parameters chosen in [13].

The result of the experiment is plotted in Figure 4.1. We can observe in the

trajectory that the state is properly controlled to zero at time T . As r is very small,

the control cost is not of much concern, therefore the algorithm opts for relatively large

control. Notice that the control in the second half of the simulation is in the opposite

direction of the control in the first half. Since the pendulum is required to stop at the

final time, control must be given to decelerate it.

29

4.2 2-Link Arm

In this section, we study a system of human arm moving in the horizontal plane.

The arm is modeled by 2 joints representing the shoulder and the elbow. The state of the

system is defined by the angular positions and angular velocities of the joints, and the

control is the torque applied on either of the joints. The system can be formulated as

θ̈ = M(θ)−1(u− C(θ, θ̇)−Bθ̇), (4.4)

where the terms of the model are

M(θ) =

d1 + 2d2 cos θ2 d3 + d2 cos θ2

d3 + d2 cos θ2 d3

 (4.5)

C(θ, θ̇) =

−θ′2(2θ̇1 + θ̇2)

θ̇21

 d2 sin θ2 (4.6)

B =

b11 b12

b21 b22

 (4.7)

where x = (θ1, θ2, θ̇1, θ̇2) is the system state, u = (u1, u2) is the control input, and

(d1, d2, d3) = (I1 + I2 + m2l
2
1,m2l1s2, I2). The parameters are the mass of link m1 =

1.4,m2 = 1.1, the length of the link l1 = 0.3, l2 = 0.33, distance from the joint center to

the link center of mass s1 = 0.11, s2 = 0.16, moment of inertia of the link I1 = 0.025, I2 =

0.045, and the joint friction matrix B defined by b11 = b22 = 0.05, b12 = b21 = 0.025.

The corresponding cost function is formulated as

J(x, u) =
1

2
((θ1(T)− θ∗1)2 + (θ2(T)− θ∗2)2) +

1

2

∫ T

0

ru>udt (4.8)

where T = 1 is the final time and r = 10−5 is the weight of the input cost relative to final

30

0 0.2 0.4 0.6 0.8 1

1

1.1

1.2

1.3

1.4

1.5

Time [sec]

S
ta
te

(a) Controlled x1

0 0.2 0.4 0.6 0.8 1
−0.3

−0.2

−0.1

0

Time [sec]

C
on

tr
ol

(b) Control u1

Figure 4.2. Controlled state x1 and control u1 given by ILQR on 2-link arm

state cost. These parameters are the same parameters chosen in [13]. Note that θ′ is not

part of the cost function, which means unlike the inverted pendulum case, the arm is not

required to stop at the final time.

The result of the experiment is plotted in Figure 4.2. We can observe in the

trajectory that the state is properly controlled to target state at time T . Notice that

unlike the inverted pendulum simulation, the control given does not have a deceleration

stage. This is the expected behavior since in the 2-link arm case the arm is not required

to stop at the final time, therefore no deceleration is needed.

4.3 Burgers’ Equation

As described in the introduction, Burgers’ equation is a PDE that is used in mod-

eling of fluids and traffic flows. Here we study a 1D Burgers equation with the setup as

in [39]. The mathematical description of the problem is

ż(ξ, t) = εzξξ(ξ, t)−
1

2
(z2(ξ, t))ξ +

m∑
k=1

χ[(k−1)/m,k/m](ξ)uk(t) (4.9)

31

for t > 0 and z(·, 0) = z0(·) ∈ H1
per(0, 1), which means that the system has periodic

boundary conditions. Here ξ is the spatial variable, uk(t) is the distributed control, and

m is the dimension of control. The function χ[a,b](x) is the characteristic function over

[a, b]. This means that the 1D space is divided into m intervals of equal length, and each

control is applied on one corresponding interval.

When discretized with linear finite elements, and after an inversion with the mass

matrix, the system has the form

ẋ = Ax+G(x⊗ x) +Bu x(0) = x0 (4.10)

y = Cx. (4.11)

The operator ⊗ is the Kronecker product operator, and

x⊗ x =

x(1)x

...

x(n)x

 ,

where x ∈ Rn, and x(k) is the kth component of vector x. Therefore, the term x ⊗ x is

quadratic in x. The output matrix C in equation (4.11) produces an observation of the

system. We can observe the system through output y, which is related to system state x

by y = Cx. The semi-discretized system is a nonlinear problem which is quadratic in the

state, and linear in the control.

We experiment on a system with n = 101 states and m = 5 controls. The viscosity

of the system, as defined in (4.9), is set to ε = 5× 10−4 to make the nonlinear quadratic

term dominant. The system is simulated for T = 5 seconds, and the time interval is

divided into N = 500 time steps. The trajectory is computed using the backward Euler

method, which is implemented using the Levenberg-Marquardt algorithm. The output

32

matrix is C = In, the state cost matrices are Q = Qf = C>C, and the input cost matrix

is R = 103 × Im, where In is the n × n identity matrix and Im is the m × m identity

matrix.

4.3.1 Reduced-Order Models

We first perform BT on the system. Since this is a nonlinear problem, we ignore

the quadratic part and use matrices A,B,C to compute the balancing transformation T

by Algorithm 2. Then, the reduced model of the system is

ẋr = Arxr +Gr(xr ⊗ xr) +Brur xr(0) = T−1x0. (4.12)

yr = Crxr (4.13)

where Ar = T−1AT , Br = T−1B, Cr = CT and Nr = T−1N(T ⊗ T). The ROM cost

is represented by J(xr, ur), while J(x, ur) is the FOM cost with ROM controller. The

Jacobians of (4.12), which are used to obtain the local linearization of the system in the

ILQR algorithm, are Dxr ẋr = Ar + Gr(xr ⊗ Inr + Inr ⊗ xr) and Dur ẋr = Br, where nr

is the number of dimensions of the state xr in the ROM, and Inr is the nr × nr identity

matrix. The availability of the Jacobians in explicit form significantly speeds up the

computational routine, and should be used whenever available.

We first plot normalized singular values of the matrix L>R in the balancing proce-

dure (see step 8 in Algorithm 2 and Algorithm 3), which represents the relative importance

of each dimension. For the standard BT algorithm, those are also known as the Hankel

singular values, shown in Figure 4.3(a). We can observe that the first 20 Hankel singular

values decay fast, and all Hankel singular values except the first one come in pairs. The

normalized singular values in the LQG-BT algorithm are plotted in Figure 4.3(b). We can

observe that these singular values decay much more slowly than in the model transformed

by BT. Similar to the Hankel singular values, these singular values except the first one

33

0 20 40 60 80 100
10−15

10−12

10−9

10−6

10−3

100

Singular value index

N
or
m
al
iz
ed

si
n
gu

la
r
va
lu
e

(a) Standard BT

0 20 40 60 80 100
10−15

10−12

10−9

10−6

10−3

100

Singular value index

N
or
m
al
iz
ed

si
n
gu

la
r
va
lu
e

(b) LQG-BT

Figure 4.3. Normalized singular values of L>R

come in pairs. The fact that the singular values in the BT algorithm decay much faster

indicates that it is likely that BT outperforms LQG-BT in open-loop simulation accuracy,

as when we truncate the transform matrix we are discarding dimensions that have lower

associated singular values.

4.3.2 Comparison of ROMs in Open-Loop Setting

We present open-loop simulations, plotted in Figure 4.4. The open-loop controls

chosen for this experiment are sine functions in time, with different periods for each

dimension of control: u
(i)
k = 0.1 sin(itk), where u

(i)
k is the ith component of control at

time step k, and tk is the time at time step k. Recall, that we are using m = 5 controls.

The orders of the ROMs are set to odd numbers between 1 and 25 so that each pair of

singular values are either kept together or truncated together. We can observe that in

the case of BT, the normalized difference of the outputs decreases as the order of ROM

increases, but the gain is not very significant beyond 7. In contrast, the difference of

the outputs in the case of LQG-BT is much larger, especially in ROMs with an order of

less than 19. In addition, we plot the full state of the FOM and the ROM of order 5,

with the ROM states projected back to FOM space, in Figure 4.5 and 4.6. These states

34

are visually indistinguishable. We can conclude that the BT algorithm outperforms the

LQG-BT algorithm based on their accuracies in open-loop simulations. However, it is

worth noting that high open-loop simulation accuracy does not necessarily lead to good

controller design in closed-loop simulation, as we will see next.

0 5 10 15 20 25
0.00

0.01

0.02

0.03

0.04

Dimension of ROM

N
or

m
al

iz
ed

d
iff

er
en

ce
of

th
e

F
O

M
an

d
R

O
M

(a) Standard BT

0 5 10 15 20 25
10−2

10−1

100

101

102

103

Dimension of ROM

N
or

m
al

iz
ed

d
iff

er
en

ce
of

th
e

F
O

M
an

d
R

O
M

(b) LQG-BT

Figure 4.4. Normalized difference between the outputs of FOM and ROMs ‖y−yr‖2‖y‖2 . Note
that only odd number between 1 and 25 are used as dimensions of ROMs.

4.3.3 Comparison of ROMs When Used for Closed-Loop
Systems

We use the ILQR algorithm to obtain controllers based on ROMs constructed by

BT or LQG-BT, denoted via uBT
r and uLQGBT

r , and apply these controllers on the FOM

to evaluate the performances. We set the ROM dimension in both cases to r = 5. The

convergence tolerance of ILQR algorithm is set to 3× 10−5.

The cost of ROM J(xr, u
BT
r) computed by BT is 77.3, while the cost of FOM

J(x,u
BT
r) is 165.7. The cost of ROM J(xr, u

LQGBT
r) computed by LQG-BT is 48.5, while

the cost computed of FOM J(x,u
LQGBT
r) is 130.9. ILQR takes 168 iterations to converge

35

Dimensions of the state

0
20

40
60

80
100

Tim
e [

sec
]

0
1

2
3

4
5

1
0
1
2
3
4
5
6

0.6
1.2
1.8
2.4
3.0
3.6
4.2
4.8

Figure 4.5. Open-loop simulation of FOM for Burgers equation with input u
(i)
k =

0.1 sin(itk)

on the ROM computed by BT, and 278 iterations on the ROM computed by LQG-BT.

The ROM costs of the intermediate controllers given after each iteration in ILQR are

plotted in Figure 4.7, which shows that the costs consistently decrease after each iteration.

Figure 4.8 shows the norm of outputs ‖y‖2 in the closed-loop system of FOM, with the

controller given by ILQR computed using the two nonlinear ROMs. We can observe that

both controllers successfully control the outputs to near zero. Despite this, we notice

that in both cases, the FOM costs are between 2 to 3 times the ROM cost. These can

be explained by the part of dynamics that is lost in the model reduction process. As

discussed in Section 3.1, in BT and by extension, LQG-BT, we truncate the part of

the dynamics that is hard to control and hard to observe, which is exactly the part of

unaddressed dynamics in the ROM controller that leads to the discrepancy between the

ROM cost and FOM cost. In addition, we can find out that despite BT outperforms

LQG-BT in open-loop simulations, in the closed-loop system LQG-BT provides better

control compared to the standard BT algorithm under the same setting, both in terms

of ROM cost and FOM cost. This matches our discussion in Section 3.2 that LQG-BT

is expected to provide a better controller in closed-loop simulation than BT, despite its

36

Dimensions of the state

0
20

40
60

80
100

Tim
e [

sec
]

0
1

2
3

4
5

1
0
1
2
3
4
5
6

0.6
1.2
1.8
2.4
3.0
3.6
4.2
4.8

(a) Standard BT

Dimensions of the state

0
20

40
60

80
100

Tim
e [

sec
]

0
1

2
3

4
5

1
0
1
2
3
4
5
6

0.6
1.2
1.8
2.4
3.0
3.6
4.2
4.8

(b) LQG-BT

Figure 4.6. Open-loop simulation of ROM with input u
(i)
k = 0.1 sin(itk), with state

projected back to FOM space

apparent inaccuracy in open-loop simulation.

37

0 50 100 150 200 250 300
0

200

400

600

800

Number of iterations

C
os
t

ROM cost J(xr, u
BT
r)

FOM cost J(x, uBT
r)

(a) standard BT

0 50 100 150 200 250 300
0

200

400

600

800

Number of iterations

C
os
t

ROM cost J(xr, u
LQGBT
r)

FOM cost J(x, uLQGBT
r)

(b) LQG-BT

Figure 4.7. ROM cost vs number of iterations in the ILQR algorithm. FOM cost on
the final control included as reference

0 1 2 3 4 5
0

0.5

1

1.5

2

Time [sec]

N
or
m

of
ou

tp
u
t

(a) standard BT

0 1 2 3 4 5
0

0.5

1

1.5

2

Time [sec]

N
or
m

of
ou

tp
u
t

(b) LQG-BT

Figure 4.8. Norm of outputs ‖y‖2 in the closed-loop system of FOM, with the controller
given by ILQR computed using the two nonlinear ROMs

38

0 1 2 3 4 5
0.00

0.02

0.04

0.06

0.08

Time [sec]

N
or
m

of
co
n
tr
ol

(a) standard BT

0 1 2 3 4 5
0.00

0.02

0.04

0.06

0.08

Time [sec]

N
or
m

of
co
n
tr
ol

(b) LQG-BT

Figure 4.9. Norm of controls ‖u‖2 given by ILQR computed using the two nonlinear
ROMs

39

Chapter 5

Conclusion

High-dimensional nonlinear problems are ubiquitous in science and engineering,

often resulting from semi-discretization of PDEs. They are among the most challenging

problems in control theory. On one hand, using linear controllers like the LQR algorithm

leads to suboptimal result on highly nonlinear systems. On the other hand, while non-

linear controllers can produce better control, on high-dimensional problems they become

computationally intractable. Therefore there is the false dichotomy between choosing a

controller based on linearized dynamics that is fast to compute but results in high cost

and choosing a nonlinear controller that takes much computational power.

We presented a framework of combining ILQR and system-theoretic model reduc-

tion techniques to derive a controller for high-dimensional nonlinear problems. As shown

in the numerical experiments in Section 4.3, both standard BT and LQG-BT result in

promising controllers. Meanwhile, the order of the ROMs is only about 5% of the order of

the FOM, making the algorithm computationally tractable. In addition, the framework

put few constraints on the problem, as it only requires the cost function to be quadratic,

making a large range of applications possible.

Further work may be done by using model reduction techniques other than BT and

LQG-BT. For example, nonlinear system-theoretic model reduction, such as [35, 36, 37],

can be used to obtain more accurate ROMs on nonlinear systems. In addition, trajectory-

40

based model reduction techniques [38] can also be incorporated to improve the accuracy

of ROM using trajectory data if available.

Further work may also be done by improving the ILQR algorithm. As we have

shown in Section 2.4, the ILQR algorithm is not guaranteed to converge to the optimal

control, and it may take a lot of iterations to converge in extreme cases. Moreover, the

scope of this framework is limited by the ILQR’s assumption that the cost function is

quadratic, so further works can be done to extend the ILQR algorithm to systems with

more complex cost functions, in order to make the range of applications even larger.

41

Bibliography

[1] H. Kwakernaak and R. Sivan. Linear Optimal Control Systems. USA: John Wiley

& Sons, Inc., 1972. isbn: 0471511102.

[2] B. Moore. “Principal component analysis in linear systems: Controllability, observ-

ability, and model reduction”. In: IEEE Transactions on Automatic Control 26.1

(1981), pp. 17–32.

[3] E. Jonckheere and L. Silverman. “A new set of invariants for linear systems–

Application to reduced order compensator design”. In: IEEE Transactions on Auto-

matic Control 28.10 (1983), pp. 953–964.

[4] D. Coppersmith and S. Winograd. “Matrix multiplication via arithmetic progres-

sions”. In: Journal of Symbolic Computation 9.3 (1990). Computational algebraic

complexity editorial, pp. 251 –280. issn: 0747-7171.

[5] J. A. Burns and S. Kang. “A control problem for Burgers’ equation with bounded

input/output”. In: Nonlinear Dynamics 2.4 (1991), pp. 235–262.

[6] G. Berkooz, P. Holmes, and J. L. Lumley. “The proper orthogonal decomposition in

the analysis of turbulent flows”. In: Annual Review of Fluid Mechanics 25.1 (1993),

pp. 539–575.

[7] H. Choi, R. Temam, P. Moin, and J. Kim. “Feedback control for unsteady flow and

its application to the stochastic Burgers equation”. In: Journal of Fluid Mechanics

253 (1993), pp. 509–543.

42

BIBLIOGRAPHY

[8] K. Karl and V. S. “Control of the Burgers equation by a reduced-order approach

using proper orthogonal decomposition”. In: Journal of Optimization Theory and

Applications 102 (1999), 345–371.

[9] J. Baker, A. Armaou, and P. D. Christofides. “Nonlinear control of incompressible

fluid flow: Application to Burgers’ equation and 2D channel flow”. In: Journal of

Mathematical Analysis and Applications 252.1 (2000), pp. 230–255.

[10] A. Balogh and M. Krstić. “Burgers’ equation with nonlinear boundary feedback: H1

stability, well-posedness and simulation”. In: Mathematical Problems in Engineering

6.2-3 (2000), pp. 189–200.

[11] J. A. Atwell, J. T. Borggaard, and B. B. King. “Reduced order controllers for

Burgers’ equation with a nonlinear observer”. In: International Journal of Applied

Mathematics and Computer Science 11 (2001), pp. 1311–1330.

[12] W.-J. Liu and M. Krstić. “Adaptive control of Burgers’ equation with unknown

viscosity”. In: International Journal of Adaptive Control and Signal Processing 15.7

(2001), pp. 745–766.

[13] W. Li and E. Todorov. “Iterative linear quadratic regulator design for nonlinear bio-

logical movement systems.” In: International Conference on Informatics in Control,

Automation and Robotics. 2004, pp. 222–229.

[14] J. C. de los Reyes and K. Kunisch. “A comparison of algorithms for control con-

strained optimal control of the Burgers equation”. In: Calcolo 41.4 (2004), pp. 203–

225.

[15] A. C. Antoulas. Approximation of Large-Scale Dynamical Systems. SIAM, 2005.

isbn: 9780898715293.

BIBLIOGRAPHY 43

BIBLIOGRAPHY

[16] G. Kerschen, J.-c. Golinval, A. F. Vakakis, and L. A. Bergman. “The method of

proper orthogonal decomposition for dynamical characterization and order reduc-

tion of mechanical systems: an overview”. In: Nonlinear Dynamics 41.1-3 (2005),

pp. 147–169.

[17] K. Kunisch and L. Xie. “POD-based feedback control of the Burgers equation by

solving the evolutionary HJB equation”. In: Computers & Mathematics with Appli-

cations 49.7-8 (2005), pp. 1113–1126.

[18] E. Todorov and W. Li. “A generalized iterative LQG method for locally-optimal

feedback control of constrained nonlinear stochastic systems”. In: Proceedings of

the 2005, American Control Conference, 2005. IEEE. 2005, pp. 300–306.

[19] B. B. King, N. Hovakimyan, K. A. Evans, and M. Buhl. “Reduced order con-

trollers for distributed parameter systems: LQG balanced truncation and an adap-

tive approach”. In: Mathematical and computer modelling 43.9-10 (2006), pp. 1136–

1149.

[20] J. R. Singler and B. A. Batten. “A comparison of balanced truncation methods for

closed loop systems”. In: 2009 American Control Conference. IEEE. 2009, pp. 820–

825.

[21] B. A. Batten and K. A. Evans. “Reduced-order compensators via balancing and

central control design for a structural control problem”. In: International Journal

of Control 83.3 (2010), pp. 563–574.

[22] M. M. Baumann. “Nonlinear model order reduction using POD/DEIM for optimal

control of Burgers equation”. MA thesis. Delft University of Technology, Nether-

lands, 2013.

BIBLIOGRAPHY 44

BIBLIOGRAPHY

[23] J. van den Berg. “Iterated LQR smoothing for locally-optimal feedback control

of systems with non-linear dynamics and non-quadratic cost”. In: 2014 American

Control Conference. IEEE. 2014, pp. 1912–1918.

[24] B. Kramer. “Solving algebraic Riccati equations via proper orthogonal decomposi-

tion”. In: IFAC Proceedings Volumes 47.3 (2014), pp. 7767–7772.

[25] A. Quarteroni and G. Rozza. Reduced order methods for modeling and computational

reduction. Springer, 2014. isbn: 9783319020914.

[26] T. Breiten and K. Kunisch. “Feedback stabilization of the Schlögl model by LQG-

balanced truncation”. In: 2015 European Control Conference (ECC). IEEE. 2015,

pp. 1171–1176.

[27] Y. Alothman and D. Gu. “Quadrotor transporting cable-suspended load using iter-

ative linear quadratic regulator (ILQR) optimal control”. In: 2016 8th Computer

Science and Electronic Engineering (CEEC). IEEE. 2016, pp. 168–173.

[28] B. Kramer. “Model reduction for control of a multiphysics system: Coupled Burgers’

equation”. In: 2016 American Control Conference (ACC). IEEE. 2016, pp. 6146–

6151.

[29] B. Kramer and J. R. Singler. “A POD projection method for large-scale alge-

braic Riccati equations”. In: Numerical Algebra, Control & Optimization 6 (2016),

pp. 413–435.

[30] J. Sergey, S. Sergei, and Y. Andrey. “Comparative analysis of iterative LQR and

adaptive PD controllers for a lower limb exoskeleton”. In: 2016 IEEE International

Conference on Cyber Technology in Automation, Control, and Intelligent Systems

(CYBER). IEEE. 2016, pp. 239–244.

BIBLIOGRAPHY 45

BIBLIOGRAPHY

[31] Y. Alothman, M. Guo, and D. Gu. “Using iterative LQR to control two quadro-

tors transporting a cable-suspended load”. In: IFAC-PapersOnLine 50.1 (2017),

pp. 4324–4329.

[32] P. Benner, M. Ohlberger, A. Cohen, and K. Willcox. Model Reduction and Approxi-

mation. Society for Industrial and Applied Mathematics, 2017. isbn: 9781611974812.

[33] J. Chen, W. Zhan, and M. Tomizuka. “Constrained iterative LQR for on-road

autonomous driving motion planning”. In: 2017 IEEE 20th International Confer-

ence on Intelligent Transportation Systems (ITSC). IEEE. 2017, pp. 1–7.

[34] E. Banijamali, R. Shu, H. Bui, A. Ghodsi, et al. “Robust locally-linear controllable

embedding”. In: International Conference on Artificial Intelligence and Statistics.

2018, pp. 1751–1759.

[35] P. Benner, P. Goyal, and S. Gugercin. “H2-quasi-optimal model order reduction

for quadratic-bilinear control systems”. In: SIAM Journal on Matrix Analysis and

Applications 39.2 (2018), pp. 983–1032.

[36] A. C. Antoulas, I. V. Gosea, and M. Heinkenschloss. “On the Loewner framework

for model reduction of Burgers equation”. In: Active Flow and Combustion Control

2018. Springer, 2019, pp. 255–270.

[37] B. Kramer and K. Willcox. “Balanced truncation model reduction for lifted nonlin-

ear systems”. In: AIAA Journal 57.6 (2019), pp. 2297–2307.

[38] B. Kramer and K. Willcox. “Nonlinear Model Order Reduction via Lifting Trans-

formations and Proper Orthogonal Decomposition”. In: AIAA Journal 57.6 (2019),

pp. 2297–2307.

[39] J. Borggaard and L. Zietsman. “The quadratic-quadratic regulator problem: approx-

imating feedback controls for quadratic-in-state nonlinear systems”. In: 2020 Amer-

ican Control Conference (ACC). IEEE. 2020, pp. 818–823.

BIBLIOGRAPHY 46

	Signature Page
	Table of Contents
	List of Figures
	Abstract of the Thesis
	Introduction
	Motivation
	Related Work
	ILQR
	Model Reduction
	Control of Burgers' Equation

	Contribution

	Iterative Linear Quadratic Regulator
	Nonlinear Control Problem
	The ILQR Algorithm
	Computational Cost of ILQR

	Linear Case
	Quadratic Case
	Linear System with Quadratic Control
	Quadratic System with Linear Control

	System-Theoretic Model Reduction
	Balanced Truncation
	LQG-Balanced Truncation

	Numerical Experiments
	Inverted Pendulum
	2-Link Arm
	Burgers' Equation
	Reduced-Order Models
	Comparison of ROMs in Open-Loop Setting
	Comparison of ROMs When Used for Closed-Loop Systems

	Conclusion
	Bibliography

