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1. Introduction
Our recent coalescent estimate for the time of colonization of Devil’s Hole by

Cyprinodon pupfish challenged deeply held and widespread assumptions

about this species based only on a poor fossil record and a geological calibration

from the Middle East [1,2]. Our genome-wide analyses estimated a recent age

for the Devil’s Hole pupfish (DHP), Cyprinodon diabolis, within the past

105–830 years and frequent gene flow among Death Valley populations [1].

This estimate depends, in turn, on a good estimate of the pupfish mutation

rate. We estimated this indirectly from the Cyprinodon substitution rate, and ver-

tebrate mutation rates are known to vary over at least an order of magnitude

[3,4]. However, our initial approach using a time-calibrated phylogenetic conca-

tenated analysis cannot overestimate the rate by more than twofold relative to a

gene tree analysis [5]. Furthermore, the unique natural history of DHP—including

its miniscule population size, short lifespan, small adult size, high metabolic

rate, high environmental temperature and high environmental stressors—all

predict a higher mutation rate in this species. Except for their larger effective

population sizes [6], this likely applies to Cyprinodon pupfishes in general

[3–5,7]. We argue that DHP is a prime candidate for exhibiting one of the high-

est vertebrate mutation rates known [5] and should be further investigated

using the gold standard of pedigree sequencing [8,9]. We further argue that

a young age for this species does not decrease its conservation value but

enhances it due to the evolution of such a unique life history and phenotype

in a remarkably short time period.

Knott et al. (KEA) [10] do not dispute this young age for DHP, but rather the

resulting divergence time estimates for Cyprinodon as a whole and its dispersal

across North America in the past 25 thousand years (kya) [1]. These ages were

based on our internal calibration of the stem age of the Laguna Chichancanab

pupfish adaptive radiation to 8 kya, based on fossil evidence and isotopic ana-

lyses of multiple cores that indicated that the lake basin was dry prior to that

time point [11]. One concern is that this very recent calibration is only appropri-

ate for estimating recent divergent events on the same timescale [12]. Owing to

the long-term effects of purifying selection and potentially other forces, the sub-

stitution rate over longer time periods (tens to hundreds of thousands of years)

is almost certainly slower than the spontaneous mutation rate in each gener-

ation [13,14]. Thus, the age of Cyprinodon as a whole is almost certainly older

than estimated by our time-calibrated phylogenetic analysis based on a recent

geological event. This relationship should scale with effective population size

as well as other demographic factors (e.g. population bottlenecks [6]) through

time, so it is difficult to say exactly how much older Cyprinodon may be [15].

We also cannot rule out the possibility that the Chichancanab stem lineage is

much older than the endemic basin in which it occurs. However, we originally

argued that this is unlikely given the inability of these trophic specialist species

to coexist with widespread native Yucatan species such as Astyanax fasciatus
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Figure 1. Global Biological Information Facility data for Cyprinodon species occurrences within each grid throughout the North American southwest, from the Gulf of
Mexico to Death Valley. Note the current widespread occurrences from the Rio Grande to the Gila River and Death Valley drainage basins.
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[1,16]. There are also no other isolated brackish lakes known

from this region to provide a suitable habitat.

Instead of discussing these legitimate concerns, KEA take

the position that all fish require a waterway to disperse, no

matter the timescale. They assert that pupfish required a

waterway in the last 25 kya connecting the Gulf of Mexico

with the Great Basin of California to disperse this far

inland. This was specifically questioned by Echelle [17]

based on available phylogenetic evidence consistent with

our recent study; geological hypotheses that no connections

existed between these basins should also be examined (see

Discussion below). The broader position that fish dispersal

over land is impossible has been refuted countless times,

beginning with Darwin, who conducted famous experiments

on the ability of aquatic organisms (snails, seeds and plants)

to be transported over land by bird vectors. For example, his

most famous experiment involved dipping dried duck’s feet

into an aquarium containing aquatic snails and documenting

that they survived out of water for up to 20 h. In the Origin,

he concluded that ‘a duck or heron might fly at least 600 or

700 miles, and would be sure to alight on a pool or rivulet’

[18,19]. He did not personally conduct experiments with

fish eggs, but corresponded with Sir Humphry Davy who

experimented with how long fertilized salmon eggs remained

viable after exposure to air, and reported that even a small

fish (char) could survive for 72 h barely covered with water

[18]. Darwin considered this so important that he made

sure it was published by the Royal Society [18,20]. He also

collected observations of aquatic animals found on bird’s

feet in nature throughout his later career, resulting in his

final publication [21]. Indeed, given the effort he and col-

leagues obviously expended on these studies, Darwin

certainly would have been quite surprised by KEA’s claim

that Darwin ‘concluded’ that aquatic organisms never

dispersed long distances over land.

KEA’s emphasis on the 3000 km distance from the Gulf

of Mexico to Death Valley is misleading. The relevant dis-

tance is between drainage basins; it should be obvious that

fish can swim up rivers because pupfishes have done this

throughout their range (figure 1) [22]. For example, the dis-

tance between tributaries for one of the proposed routes

from the Rio Grande to the Gila River basin is less than
130 km. These mountain passes lie within the flyways of

numerous aquatic birds and well within Darwin’s proposed

range of 600 miles. Furthermore, pupfish eggs are 1–2 mm in

diameter and are repeatedly deposited by the female in

aquatic plants, algae mats or fine sand/silt [23–25]. They

adhere to these plants or fine mud and are desiccation resist-

ant, like those of most cyprinodontiform fishes, a group in

which drought-resistant embryonic diapause has repeatedly

evolved [26]. 25 kya is a long time; it is wondrous, though

not difficult, for us to imagine rare millennial events such

as a duck transporting a few eggs stuck to its webbed feet,

which maintain a humid environment when tucked into its

body during flight [18].

The geological record of ancient inter-basin connections

cannot completely account for the observed phylogenetic

relationships among Western pupfishes. This is not a novel

conclusion of our paper, but has been evident for some

time. For example, in a detailed reanalysis of mtDNA

sequence divergences, Echelle (pg. 28) noted that ‘there is a

general paucity of geological support for the inter-basin con-

nections inferred from this study. This indicates that dispersal
across basin divides might have played a greater role than antici-
pated for the historical biogeography of the group’ (emphasis

added). The discrepancy is important because pupfishes ‘pri-

marily occupy springs and low-gradient streams on valley

floors,’ habitats that ‘are more likely to reflect geological his-

tory than are [those] of most other fish groups in the region’

[17]. Thus, ‘either our knowledge of (Neogene surface-water

connections) is incomplete or pupfish dispersal across basin

divides via small, relatively transient, surface-water con-

nections have been more common than expected based

on. . .habitats generally occupied by this group’ [17]. ‘Disper-

sal could have been facilitated by headwater stream captures

or transient flow across basin divides during extreme rainfall

episodes’ [17, p. 34]. While Echelle did not consider overland

dispersal, the potential explanation we propose, nothing in

his analysis precludes this possibility. In any case, KEA to

the contrary, there appears to be little argument that non-

hydrographic factors likely have been involved in shaping

the historical distribution of Western pupfishes.

There are, in fact, numerous examples of isolated water

bodies colonized by fishes through long-distance dispersal
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rspb.royalsocietypublishing.org
Proc.R.Soc.B

285

3

 on November 7, 2018http://rspb.royalsocietypublishing.org/Downloaded from 
over land, including nearly a hundred volcanic crater lake fish

species flocks [27–34], all bolide craters [35] and thousands of

endorheic lake basins (e.g. [22,36,37]). For example, 18% of the

world’s landmass drains into endorheic lake basins [38,39].

The most relevant of these is Devil’s Hole itself, which was

apparently never connected to the surrounding Amargosa

River basin in its entire 60 kya history [40]. Similarly, Laguna

Chichancanab is an endorheic basin which was never connected

to other water bodies; this is also the case for the habitats of

several other desert pupfish species [36,41]. We have also

personally searched over 30 hypersaline endorheic lake basins

across eight islands in the Bahamian archipelago and found

pupfish in nearly every lake with salinities below 50 ppt

(CH Martin, personal observations 2011, 2013, 2018; [42]).

There is also strong circumstantial evidence of trans-oceanic dis-

persal by cichlid and cyprinodontiform fishes [42–46], which is

perhaps more remarkable than over land dispersal across
kilometres of desert. Finally, several alternative mechanisms

of fish dispersal have been directly documented, including

human introductions, stream capture events and water spouts

[47]. Indeed, just a few months ago it rained fishes in Mexico

[48]. We agree that fish primarily colonize lakes and rivers via

waterways; our point is that there are rare exceptions to this rule.

Finally, we disagree with KEA’s claim that a process must

be directly observed by humans to be invoked as a potential

explanation. Instead, we argue that long-distance disper-

sal of fishes and their eggs over land is plausible and has

repeatedly occurred all over the world.
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