
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Causal Inference for Competing Risks and Semi-competing Risks Data

Permalink
https://escholarship.org/uc/item/39b9j06x

Author
Zhang, Yiran

Publication Date
2022
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/39b9j06x
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA SAN DIEGO

Causal Inference for Competing Risks and Semi-competing Risks Data

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Biostatistics

by

Yiran Zhang

Committee in charge:

Professor Ronghui Xu, Chair
Professor Ery Arias-Castro
Professor Parambir Dulai
Professor Steven D. Edland
Professor Wesley Thompson

2022



Copyright

Yiran Zhang, 2022

All rights reserved.



The Dissertation of Yiran Zhang is approved, and it is acceptable in quality and

form for publication on microfilm and electronically.

University of California San Diego

2022

iii



DEDICATION

To Mom, Dad, my two Grandfathers and two Grandmothers.

iv



EPIGRAPH

The future depends on what you do today

Mahatma Gandhi

v



TABLE OF CONTENTS

Dissertation Approval Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Epigraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Chapter 1 Introduction and Data Resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Longitudinal Study of Honolulu Heart Program and Honolulu-Asia Aging

Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Aims and Organization of this Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Chapter 2 Assess the Causal Effect of Time Varying Alcohol Exposure on Cognitive
Assessment Score at the Start of HAAS Study . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Data Resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Statistical approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Chapter 3 Assess the Causal Effect of Mid-life Alcohol Exposure on Time to Moderate
Cognitive Impairment with Death as Competing Risk . . . . . . . . . . . . . . . . . . 24

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Data Resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 Statistical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Chapter 4 Marginal Structural Illness-Death Models for Semi-Competing Risks Data 34

vi



4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Three-State Illness-Death model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.1 Definitions and assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.2 The structural models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.3 Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 The Usual Markov Structural Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.5 The General Markov Structural Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.6 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.7 Application to HAAS study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Chapter 5 Augmented IPW for Illness-Death Usual Markov Models . . . . . . . . . . . . . . . 60
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2 Marginal Structure usual Markov illness-death model . . . . . . . . . . . . . . . . . . . . . . 61

5.2.1 The Usual Markov Illness–Death Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.2 Martingale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Augmented IPW Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Appendix A HHP and HAAS Data Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Appendix B Supplementary materials for Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Appendix C Supplementary materials for Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

vii



LIST OF FIGURES

Figure 2.1. Directed acyclic graph (DAG) for the causal relations between the baseline
and time-varying confounders Z0 and Z1,Z3, time-varying exposures A,
and outcome Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 2.2. Distribution of CASI (left) and log(101-CASI) (right) across four alcohol
exposure groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 2.3. PS distribution for exam 1 (left) and exam 3 (right) . . . . . . . . . . . . . . . . . . . . 20

Figure 3.1. The causal directed acyclic graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 3.2. Propensity score distribution (left) and SMD before and after weighting . . 31

Figure 3.3. CIF for moderate impairment (left) and death (right) with 95% confidence
band . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 4.1. Three-state illness-death model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 4.2. Joint density function of T1 and T2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 4.3. Causal chain graph representation of semi-competing risks data . . . . . . . . . 39

Figure 4.4. Risk plots for HAAS data under the usual Markov model, row 1; and
conditional risk plots under the general Markov model, rows 2-6, for
b = 2σ̂(1.734), σ̂(0.867), 0,−σ̂(−0.867) and−2σ̂(−1.734), respectively.
The columns from left to right are: moderate impairment (MI), death
without MI, and death following MI by t1 = 8 years. . . . . . . . . . . . . . . . . . . 56

Figure 4.5. Individual risk difference (left) and individual risk ratio (right) at 10 years
with 95% prediction intervals, for 100 participants of the HAAS study at
every percentile of the predicted b’s. Top row: moderate impairment (MI);
middle row: death without MI; bottom row: death following MI by t1 = 8
years. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure A.1. Date distribution at each exam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure A.2. Last Age for those who died (left), Death Age(right) . . . . . . . . . . . . . . . . . . 78

Figure A.3. Last Age for those who died (left), Death Age(right) . . . . . . . . . . . . . . . . . . 79

Figure A.4. Year difference of last age for those who died and their death age . . . . . . . . 80

Figure A.5. Histogram of different transformation of CASI . . . . . . . . . . . . . . . . . . . . . . . 81

viii



Figure A.6. SMD plot before and after weighting for exam 1 (left) and exam 3 (right) . 82

Figure A.7. Spaghetti plots for randomly selected subjects that died in different exam . 83

Figure B.1. Convergence plots for the HAAS data analysis under the general Markov
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Figure B.2. Distribution of PS (top) and SMD plot (bottom) . . . . . . . . . . . . . . . . . . . . . . 99

ix



LIST OF TABLES

Table 1.1. Range for CASI visit Date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Table 1.2. Range for Death Date across each visit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Table 2.1. Demographic data between four alcohol exposure groups . . . . . . . . . . . . . . . 18

Table 2.2. MSM regression results for six pairwise comparison, where 00 represent
Light - Light group, 01 represent Light - Heavy group, 10 represent Heavy -
Light group and 11 represent Heavy - Heavy group . . . . . . . . . . . . . . . . . . . . 21

Table 2.3. Weighted mean of CASI for 4 alcohol exposure groups with 95% confidence
interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Table 3.1. Baseline demographic of two alcohol exposure groups . . . . . . . . . . . . . . . . . . 30

Table 3.2. Regression results for comparing non Light-Light vs Light-Light drinkers
for years to moderate impairment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Table 4.1. Simulation results with n = 250; β1 = β2 = 1 and β3 = 0.5. The true value
for Λ01(1) = Λ02(1) = 1.264, and Λ03(1) = 2.528. . . . . . . . . . . . . . . . . . . . . . . 50

Table 4.2. Simulation results with n = 500; β1 = β2 = 1 and β3 = 0.5. The true value
for Λ01(1) = Λ02(1) = 1.264, and Λ03(1) = 2.528. . . . . . . . . . . . . . . . . . . . . . . 51

Table 4.3. Event counts by heavy versus light alcohol drinking in the HAAS data . . . 53

Table 4.4. Parameter estimates of heavy (a = 1) versus light (a = 0) drinking using the
HAAS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Table 4.5. Estimated risk difference (RD) and risk ratio (RR) under the usual Markov
model for moderate impairment (MI), death, and death following MI by
t1 = 8 years. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Table 5.1. Scenarios 1 and 2 of the simulation to generate confounders and treatment
assignment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Table 5.2. Scenario 1, Treatments are generated from logistic regression without inter-
action. The margin of error for 95% CI with 500 runs is: 0.019, which the
range of coverage probability (CP) should be within 93.1% to 96.9% . . . . . 74

Table 5.3. Scenario 2, Treatments are generated from binary indicator functions that
correlated with Z. The margin of error for 95% CI with 500 runs is: 0.019,
which the range of coverage probability (CP) should be within 93.1% to
96.9% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

x



Table A.1. Number of participant for each exam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

xi



ACKNOWLEDGEMENTS

First of all, I would like to thank my advisor Ronghui (Lily) Xu. It’s my great honor

to work with a Professor with such explicit and comprehensive understanding for statistical

methodology, yet so focused and perceptive. You showed me the world to combine the beautiful

mathematical statistics and impactful biomedical research. As an advisor, you taught me step

by step when facing a scientific research project, from first principle. You also taught me to

explore multiple areas in novel statistics and to be curious by reading papers. You managed to

make me to explore beyond my comfort zone and think critically, while still being encouraging

and considerate. I have no doubt that I learn and grow from your instruction, education and

intelligence in the past few years, and you inspired me to become a good women researcher. I

feel very fortunate to have the opportunity to be one of your student.

I would like to thank Wesley Thompson for being the best scientific research advisor

and collaborator. You taught me how to overcome the difficulties when it comes to applying

the novel statistical model to the complicated data structure, and also how to be cautious yet

flexible as a scientific researcher. You showed me how much you dedicate to your work, and how

passionate you are for biomedical research. I want to show my appreciation for your patience

and hard-working for our collaborate works, and hopefully our work can show the importance

for developing flexible statistical modeling.

I would also like to thank the other members of my PhD committee: Dulai Parambir

for being a great principle investigator, generously helping me understand the background of

medical research and encouraging me when I performed the statistical analysis, it’s an amazing

experience collaborate with you; Steve Edland for being a great advisor when it comes to

Alzheimer’s research, and providing insightful suggestion when I use the HAAS data; and Ery

Arias-Castro for being a fantastic educator for my fundamental statistical theory learning and

always try to make the explanation easier when I have questions.

I also want to show my thanks to many others from the University of California, San

Diego that helped me over the past few years. I want to thank Florin Vaida for the extraordinary

xii



mentorship on EM related theories. You gave me great advise on how to proceed with my

problem and help me think broadly for extending the existing theory. I would like to thank Karen

Messer as my faculty advisor and give me some valuable suggestion for both my research and

career path. Thanks Loki Natarajan for being an amazing department advisor, you helped me to

understand the complicated administrative process of getting a PhD, and encourage me every

time when I achieved something during this process. I also want to thank CTRI for giving an

opportunity working as a statistician, and provide me opportunities to work with some great

principle investigator and researchers.

Finally, I would like to thank all the people that I love and love me in my life. My mom,

you always stand by my side even if we are thousands of miles apart. You always cheer me up

and listen to me when I need you. You are my biggest fan and always encourage me to pursue

what I love. And you are a such great role model to me as an independent and successful women.

My dad, who also unconditionally support every decision I made and be proud of me every

moment. I’m truly grateful for everything you give in my life, especially your love and care.

My beloved grandfathers and grandmothers, I want to thank you for teaching me be a person

with kind heart, and be grateful to everyone in my life. You always care about my mental and

physical health, my diet and my safety, and think about me every seconds when I’m studying

abroad. I want to thank my husband for your enormous support and help. You always make me

laugh when I’m down and have faith in everything I do. Thank you for leading me to the right

direction when it comes to life as well as the research, life is not always easy, but it’s great to

have you by my side. Last but not the least, I want to thank my two important friends Guandong

(Elliot) Yang and Tianyu Gao (TG), who brough me endless love, support, and laugh. Thanks

Elliot for traveling across the country to attend my wedding and always be there for me when I

need someone to talk. Thanks TG for endlessly sharing funny stories and be on the phone for me

to cheer me up. I could not ask for more to have two such best friends.

Chapter 3, in full, has been submitted for publication as ”Zhang, Yiran; Ronghui Xu.

cmprskcoxmsm: Use IPW to Estimate Treatment Effect under Competing Risks, submitted to

xiii



CRAN Package”. The dissertation author was the primary author on this paper.

Chapter 4, in full, has been submitted for publication as ”Zhang, Yiran; Ronghui Xu.

Marginal Structural Illness-Death Models for Semi-Competing Risks Data, submitted to Statistics

in Medicine”. The dissertation author was the primary author on this paper.

Data collection and analysis for all projects were obtained from the Honolulu Heart

Program (HHP) and Honolulu-Asia Aging Study (HAAS), funded by the National Institutes of

Health grant NIH R03 AG062432.

xiv



VITA

2016 Bachelor of Science in Applied Mathematics.
South China University of Technology, Guangzhou, Guangdong, China

2018 Master of Science in Public Health in Biostatistics.
Emory University, Atlanta, GA, USA

2022 Doctor of Philosophy in Biostatistics.
University of California San Diego, San Diego, CA, USA

PUBLICATIONS

• Zhang, Y. and Xu, R. Marginal Structural Illness-Death Models for Semi-Competing
Risks Data. 2022, arXiv:2204.10426.

• Zhang, Y. and Xu, R. semicmprskcoxmsm: Use inverse probability weighting to estimate
treatment effect for semi competing risks data. 2022, R package version 0.1.0.

• Lukin, D., Faleck, D., Xu, R., Zhang, Y., Weiss, A., Aniwan, S., ... and Dulai, P. S.
Comparative safety and effectiveness of vedolizumab to tumor necrosis factor antagonist
therapy for ulcerative colitis. Clinical Gastroenterology and Hepatology, 20(1), 126-135,
2022.

• Zhang, Y. and R. Xu. cmprskcoxmsm: Use IPW to Estimate Treatment Effect under
Competing Risks. 2021, R package version 0.2.1.

• Infante, M. A., Zhang, Y., Brumback, T., Brown, S. A., Colrain, I. M., Baker, F. C., ... and
Thompson, W. K. Adolescent Binge Drinking Is Associated With Accelerated Decline of
Gray Matter Volume. Cerebral Cortex, bhab368, 2021.

• Cederquist, L., LaBuzetta, J. N., Cachay, E., Friedman, L., Yi, C., Dibsie, L., and Zhang, Y.
Identifying disincentives to ethics consultation requests among physicians, advance prac-
tice providers, and nurses: a quality improvement all staff survey at a tertiary academic
medical center. BMC Medical Ethics, 22(1), 1-8, 2021.

• Bohm, M., Xu, R., Zhang, Y, Varma, S., Fischer, M., Kochhar, G., ... and Chablaney, S.
Comparative safety and effectiveness of vedolizumab to tumour necrosis factor antagonist
therapy for Crohn’s disease. Alimentary pharmacology & therapeutics, 52(4), 669-681,
2020.

• Zhang, Y., Hedo, R., Rivera, A., Rull, R., Richardson, S., and Tu, X. M. Post hoc power
analysis: is it an informative and meaningful analysis?. General psychiatry, 32(4), 2019.

xv



• Li, X., Zhang, Y., Meisel, J., Jiang, R., Behera, M., and Peng, L. Validation of the newly
proposed American Joint Committee on Cancer (AJCC) breast cancer prognostic staging
group and proposing a new staging system using the National Cancer Database. Breast
Cancer Research and Treatment. 171(2), 303-313, 2018.

• Colasanti, J., Sumitani, J., Mehta, C. C., Zhang, Y., Nguyen, M. L., Del Rio, C., and Arm-
strong, W. S. Implementation of a rapid entry program decreases time to viral suppression
among vulnerable persons living with HIV in the Southern United States. In Open forum
infectious diseases (Vol. 5, No. 6, p. ofy104). US: Oxford University Press 2018.

xvi



ABSTRACT OF THE DISSERTATION

Causal Inference for Competing Risks and Semi-competing Risks Data

by

Yiran Zhang

Doctor of Philosophy in Biostatistics

University of California San Diego, 2022

Professor Ronghui Xu, Chair

In this dissertation, we utilize the novel statistical methods for obtaining causal effect

under competing risks and semi-competing risks data in survival analysis. This dissertation

is comprised of three main settings. In the first setting, we aim to assess the causal effect of

mid-life alcohol exposure to the late life cognitive score which is related to Alzheimer’s disease

(AD) using a large scale longitudinal data. We applied the marginal structural model (MSM)

with inverse probability weighted (IPW) to adjust for time-varying confounding. We found that

there is a significant decline in cognitive scores among heavy drinkers compared always light

drinker. However, since the cognitive scores also changes over time, learning the relationship of

alcohol exposure and time to cognitive impairment is also worth to explore.

xvii



In the second setting, we are interested in mid-life alcohol exposure to late life time

to cognitive impairment which is also related to AD. Under this setting, as people are in their

late-life stage, death prevents us from observing cognitive impairment. In survival analysis,

death is considering as competing event. To estimate the causal effect of point treatment to

time to event with the existence of competing event, we applied the MSM Cox proportional

hazards model with IPW. Since hazard ratio is hard to interpret in medical research, we proposed

predicted risk contrasts formula under the MSM Cox model.

Observing the trend that people die quickly after experiencing cognitive impairment,

in the third settings, we proposed a MSM illness-death to assess the causal effect for alcohol

exposure to time to cognitive impairment, death and death after cognitive impairment. We

considered two specific such models, the usual Markov illness-death structural model and the

general Markov illness-death structural model which incorporates a frailty term. For interpre-

tation purposes, risk contrasts under the structural models are defined. To accommodate the

possibility of misspecification of propensity score model, we also derived the augmented IPW

estimator under MSM illness-death usual Markov model.
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Chapter 1

Introduction and Data Resource

1.1 Introduction

More than 25 million people worldwide are affected by dementia, most suffering from

Alzheimer’s disease (AD) or Alzheimer’s disease related disease (ADRD). According to NIH,

the number of affected people is expected to increase three-fold by 2050, from the currently

approximate 5 million (10% of persons aged 65 and older). The risk factors, including many

exposures or lifestyle, other than age or AD-related genotype, are not well understood. Without

further understanding, effective prevention strategies remain a challenge.

Compared with abstinence, moderate alcohol intake is often considered to be associated

with health benefits ([30]; [21]). Such benefits have also been reported to extend to cognitive

health in late life in several studies ([44]; [36]), while other studies found the opposite ([27]).

As It is now generally accepted that the pathogeneses of AD probably begin decades earlier

and involve a progressive accumulation of tissue injury and cellular loss with disruptions of

physiologic or metabolic systems accruing over decades. Therefore, it is crucial to have available

reliable longitudinal measures for alcohol consumption and many other relevant variables, as well

as to carefully examine the myriad associated factors that may confound or otherwise interfere

with a confident assessment of the independent contributions of alcohol. Many events and factors

from early in life including genetic and environmental exposures may contribute to dementia

later in life. For this paper, We will focus on mid-life, represent important candidate determinants
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of disease processes leading to late-life Alzheimer’s or an allied dementing condition.

This dissertation contains both applying contemporary causal inference methods and

developing the novel statistical methods for investigating highly complex relationships between

mid-life exposures and late-life cognitive outcomes related to Alzheimer’s disease. Our projects

focus on using the rich data resources of the Honolulu Heart Program (HHP) and the Honolulu-

Asia Aging Study (HAAS), linked epidemiologic projects that collected longitudinal alcohol,

physical and cognitive measures from mid-to late life. Our projects also reflect an urgent need

for more effective analytic methods to disentangle causal factors from allied confounders that

have likely contributed to previous inconsistencies using traditional statistical approaches.

Our first project focus on adapting the novel causal inference methods in survival analysis

to analyze the HAAS data and estimate the causal effect of mid-life alcohol exposure to the late

life cognitive impairment with existence of death as competing event. Estimating the causal effect

of a treatment or exposure is not straightforward for an observational study. In the observational

study, the assumption of no confounders for the exposure or treatment of interest is violated. We

considered the marginal structural model (MSM) with inverse probability weighting (IPW) ([46]).

For survival outcomes, [16] proposed the marginal structural Cox proportional hazards model to

estimate the averaged treatment effect. In failure-time settings, a competing event is any event

that makes it impossible for the event of interest to occur. In our case, some participant dead

before the cognitive impairment occur. The main contribution of the first project is, we expanded

estimating the averaged treatment effect (ATE) that was defined as hazard ratio by modeling the

marginal structural cause-specific hazards models to estimate the cumulative incidence functions

(i.e. risks) as ATE, and we also provided inference on the risk difference or risk ratio at any

given time. We adapted our model to the HHP and HAAS study data, details were shown in

chapter one.

The second project is the extension from the first project. In competing risk setting,

not only we considered time to moderate impairment or time to death as event of interest, but

also were interested in time to death following moderate impairment. We referred this situation
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as semi-competing risk where a subject can experience both non-terminal event (moderate

impairment) and terminal event (death). To modeled the semi-competing risk data, [67] proposed

an illness–death compartment model with a shared gamma frailty. In the illness–death model,

a subject can either transit directly to the terminal event or first to the nonterminal event and

then to the terminal event. For the frailty model, [59] proposed a general proportional hazards

model with normal frailty. We extended the above two models in the causal inference setting, we

developed a marginal structural illness-death proportional hazard mixed model (PHMM) with

IPW, and used nonparametric maximum likelihood estimation (NPMLE) for estimating the ATE,

variance components was estimated by bayesian bootstrap.

In the longitudinal data analysis, we usually have two strategies analyzing the clustered

data. The first is using the conditional model, i.e.: mixed effect model. The other is using

the marginal model, i.e.: generalized estimating equation (GEE). Our third project is inspired

from the nature of analyzing longitudinal data, and extends it to causal survival analysis. Also,

variance estimation using bootstrap for the second project was time-consuming. We proposed to

fit the illness–death model by modeling marginal distributions ([62]) where no specific structure

of dependence among the distinct failure times on each subject is imposed, which is called

usual Markov model in the illness-death model setting. Each marginal distribution of the failure

times is formulated by a MSM Cox proportional hazards model with IPW, and we estimated the

regression parameters in the Cox models by maximizing the failure-specific partial likelihoods.

Under this setting, variance can be estimated by using robust sandwich estimator.

Since the IPW estimator is biased if the propensity score model is misspecified, an

augmented IPW (AIPW) estimator with doubly robust properties can protect against such model

misspecification. It would also allow us to apply machine learning or nonparametric methods to

the propensity score model. [43] and [55] have already developed the AIPW estimator for the

marginal structural Cox model, and it is nature to extend their work for the illness-death model

setting.
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1.2 The Longitudinal Study of Honolulu Heart Program
and Honolulu-Asia Aging Study

Data Resource The Honolulu Heart Program (HHP) was established in 1965 with

an NHLBI, NIH research contract as a longitudinal epidemiologic study of rates and risk

factors for heart disease and stroke in men of Japanese ancestry living on Oahu and born 1900

through 1919. Of the approximately 12,000 Japanese-American men then living on Oahu, 8,006

participated in the initial examination and interview (1965, then aged 45-65 years). Subsequent

HHP examinations/interviews occurred in 1968- 71 (exam 2, n=7,498), and 1971-74 (exam 3,

n=6,860). A follow-up HHP questionnaire/telephone interview (mailout, 1986-89, n=4,655) was

focused on diet, use of supplemental vitamins, and general health. Survival, vital status, and

cardiovascular illnesses were continuously monitored by community surveillance and repeated

contracts with participants and family members.

The Honolulu-Asia Aging Study (HAAS) was established in 1991 (HHP exam 4, n=3,734)

as a continuation of the HHP with a shift in focus to brain aging, AD, vascular dementia, other

causes of cognitive and motor impairment, stroke, and the common chronic conditions of late-life.

Eight further HAAS exams were done at 2-3 year intervals until 2012, except for exam 8 and

9 (See Appendix A Figure A.1 for the date distribution at each exam), when only about 500

of the original 8,006 were still alive. Neuropsychologic screening was done at all 9 HAAS

examinations, with persons suspected of cognitive or motor impairment receiving full neurologic

and neuropsychologic diagnostic evaluations. Blood testing for Apolipoprotein E genotype

(APOE), hormone levels, hematologic levels, HDL and LDL cholesterol, C reactive protein,

fibrinogen, fasting glucose and insulin levels, and other factors were done at the baseline HAAS

examination. Subjective and objective assessments of physical function (grip strength, chair

stands, timed walk, balance), were done at 5 HAAS examinations. Comprehensive research-

protocol brain autopsies were completed for 852 HAAS decedents between 1992 - 2011. Below

is the date distribution for each visit:
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Table 1.1. Range for CASI visit Date

First Visit Date for exam Last Visit Date for exam
Exam 4 1991-02-22 1993-10-22
Exam 5 1994-03-31 1996-04-30
Exam 6 1997-10-09 1999-02-12
Exam 7 1999-07-06 2000-10-16
Exam 8 2001-12-03 2004-02-20
Exam 9 2003-11-17 2005-09-13
Exam 10 2007-04-04 2009-03-03
Exam 11 2009-04-09 2010-09-30
Exam 12 2011-01-17 2011-08-29

Mid-life alcohol exposure: Estimates of the total ethanol intake from reported alcohol

exposure patterns were calculated as ounces of ethanol per month for beer, liquor, wine and

sake using algorithms based on average unit sizes and usual percentages of alcohol. Consistent

interview and recording methods were employed at exam 1 & 3 of HHP. Alcohol intake was

not considered for exam 2, considering exam 2 (1968-71) occurred right after exam 1 (1965).

We also excluded the alcohol consumption for exam 4 (1986-89) to avoid unreliable recall at

the time of the HAAS examination, especially for those with impaired cognition. The local

culture of these men reflects an unusual honesty because alcohol exposure is neither admired nor

discouraged.

For statistical analysis, binary or categorical exposures usually have better epidemiology

interpretation, we thus dichotomized the alcohol exposure by more than 14 drinks per week as

heavy drinker and less equal than 14 drinks per week as light drinker. Here, we defined 0.5 oz

pure alcohol as one drink, and 14 drinks per week would be 7 oz a week, thus 30.1 oz per month.

For alcohol exposure history, participants were classified into four alcohol exposure categories,

based on intake estimations at both exam 1 & 3: men who were (1) both light drinkers at exam 1

& 3 (light - light), (2) light drinkers at exam 1 then moderate drinkers at exam 3 (light - heavy),

(2) heavy drinkers at exam 1 then light drinkers at exam 3 (heavy - light) and (4) both moderate

drinkers at exam 1 & 3 (heavy - heavy). It has been showed ([4]) that light to moderate alcohol

drinkers or non-drinkers in the mid-life have reduced risk of dementia. Thus, for the survival
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analysis, we will focus on comparing light-light (both light drinkers at exam 1 & 3) versus the

rest three groups. For the data analysis in Chapter 3 and Chapter 4, we define the exposed group

as heavy drinker: who at least be a heavy drinker once at exam 1 & 3, i.e: light - heavy, heavy

- light, heavy - heavy drinkers, and define the control group as light drinker who is both light

drinkers at exam 1 & 3.

Cognitive outcomes: The central purpose of the HAAS was to employ precise, stan-

dardized, consistent methods to estimate rates and risk factors for AD, vascular dementia, and

related conditions. For our analyses, cognitive impairment will be based on sequential scores on

the Cognitive Assessment and Screening Instrument (CASI), which was first assessed at HHP

exam 4. The CASI includes tests of attention, concentration, orientation, short- and long-term

memory, language, visual construction, list generating, fluency, abstraction, and judgment; it

has a score range of 0 to 100. The distribution of CASI was highly left-skewed, with most of

the scores on the high end. Despite the CASI scores, we are also interested in years (days) to

moderate cognitive impairment. A CASI score below 74 is considered as moderate cognitive

impairment, and below 60 is considered severe cognitive impairment. Numerous data plots

show that CASI scores below 60 rarely stabilize or improve thereafter, we thus focus on time to

moderate impairment as out time-to-event outcome.

Competing event and censoring: Since HAAS is a longitudinal observational study, it

is very hard to follow up all the participants until the end of the study or the death (distribution

of number of participant across each visit is showed in Appendix A: Table A.1). Meanwhile, we

identified that some participants dead long after they dropped from the study, and the death dates

were extracted from the death certificant: see Appendix A Figure A.2 for last visit age and death

age distribution across each visit. Under this data structure, for participants who have death date

in record, we need to identify whether death is the event that happened in HAAS study.

In HAAS study, exam visits were conducted in every 3-4 year. We can then assign each

event: moderate cognitive impairment, death and loss to follow up to the proper exam visits,

based on the dates that those events happened. For each event, we assign the exam visit based on

6



visit date distribution Table 1.1, and claim that if the participant died after the first visit date and

before the last visit date of an exam, then that exam number will be assigned as the death exam

visit number. Following are some special occasions in the data and solutions to it:

• The last visit date and death date are in the same exam: the death will be assigned to the

next exam visit.

• The death occurs between two visits: then death will be assigned to the later exam visit.

• The exam visit that is assigned to death date is greater than last visit number plus one (i.e.

participant died more than two years after the last visit), then it will be considered as loss

to follow up (i.e. censoring in our case).

• The death occurs after first date of exam 9 and before last date of exam 8: if the participant’s

last visit is exam 7, then death will be assigned to exam 8; if the participant’s last visit

is exam 8, then death will be assigned to exam 9 (all of the participants in this case are

whose event happened before death or loss to follow up).

After assigned the death exam number to each participant, Table 1.2 shows the range of

the death date for each visit:

Table 1.2. Range for Death Date across each visit

First Death Date for exam Last Death Date for exam
Exam 4
Exam 5 1991-09-04 1996-04-09
Exam 6 1994-09-13 1999-02-11
Exam 7 1998-03-07 2000-09-26
Exam 8 2000-01-27 2004-02-16
Exam 9 2002-06-19 2005-08-21
Exam 10 2004-03-31 2009-01-02
Exam 11 2007-09-30 2010-05-04
Exam 12 2009-10-14 2011-08-02
Exam 13 2011-09-22 2012-07-19

Confounders: According to [65], systolic blood pressure and heart rate were associated

with cognitive impairment, and [53] show that regular drinking users tend to have high blood
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pressure. Meanwhile, [34] showed that Apolipoprotein E genotype (APOE) is strongly associated

with Alzheimer’s disease. In epidemiology study, education years and baseline age are considered

as important baseline demographic data to represent the social economics status, we thus also

included baseline age and education years as confounder. Based on all the information, for all

the analysis, we considered systolic blood pressure, heart rate, baseline age, education years,

APOE, as confounders.

1.3 Aims and Organization of this Dissertation

This dissertation contains both applying contemporary causal inference methods and

developing the novel statistical methods for investigating highly complex relationships between

mid-life exposures and late-life cognitive outcomes related to Alzheimer’s disease. Our projects

focus on using the rich data resources of the Honolulu Heart Program (HHP) and the Honolulu-

Asia Aging Study (HAAS), linked epidemiologic projects that collected longitudinal alcohol,

physical and cognitive measures from mid-to late life. Our projects also reflect an urgent need

for more effective analytic methods to disentangle causal factors from allied confounders that

have likely contributed to previous inconsistencies using traditional statistical approaches.

For the chapter one, we first gave a literature review on scientific background of the

dissertation as well as the introduction of the study that inspired for the later work. Because of

the complexity of the data structure, we also introduced the detailed steps for cleaning the data.

For the chapter two, we first gave a literature review on existing statistical methods in

causal inference for longitudinal data with continuous outcome. We then set up the potential

outcome framework and applied the novel MSM model with IPW for the scientific question

that inspired from the HHP and HAAS study. Details analysis step and theoretical background

were provided, and we perform the analysis on accessing the causal effect of mid-life alcohol

exposure to late-life cognitive functions.

For the chapter three, we first gave a literature review on existing statistical methods in
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survival analysis with competing risks data, and then we set up the potential outcome framework

in causal survival analysis. To estimate the causal effect of mid-life alcohol exposure to time

to moderate cognitive impairment with death as competing event, we adapted the MSM cause-

specific Cox proportional hazards model with IPW. We also provided the formula for cumulative

incidence functions (i.e. risks) from predicted MSM model. An R package cmprskcoxmsm was

developed for estimating point treatment causal effect for time to event data with the existence of

competing events.

For the chapter four, we inspired from the previous chapter and treated death as semi-

competing event, as we are also interested in how the mid-life alcohol exposure affects the time to

moderate cognitive impairment, time to death as well as time to death after cognitive impairment.

We applied the three-state illness-death model to observational data using the potential outcomes

framework. Inverse probability of treatment weighting is used to fit these structural models.

Under the Cox model formulation, typical software used to fit the Cox regression model can

be used to fit the usual Markov model in the absence of frailty. With the frailty term under the

general Markov model, a weighted EM algorithm is developed and its convergence property

studied. The intense simulation studies showed the good performance of our proposed methods.

For the chapter five, since the IPW estimator is biased if the propensity score model is

misspecified, an augmented IPW (AIPW) estimator with doubly robust properties can protect

against such model misspecification. Three AIPW estimators under MSM usual Markov model

were derived, and It would also allow us to apply machine learning or nonparametric methods to

the propensity score model. This work is still under investigation.
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Chapter 2

Assess the Causal Effect of Time Varying
Alcohol Exposure on Cognitive Assess-
ment Score at the Start of HAAS Study

2.1 Abstract

Objectives: To assess the causal effect of mid-life alcohol exposure on late-life cognitive

score that relates to Alzheimer’s disease (AD) in a 2628 Japanese-American men from the

population-based Honolulu Heart Program (HHP) and The Honolulu-Asia Aging Study (HAAS).

Methods: Three on-site exams were taken since 1965, while drinking consumption was

assessed at Exam 1 and 3 before the Cognitive Abilities Screening Instrument (CASI) was

examed(exam 4). All the exams were conducted at Kuakini Medical Center, Honolulu, Hawaii.

Based on whether they consume greater 30.1 ounces per month, we stratified those participants

in heavy and light drinker at each exam. The Marginal structure model with inverse propensity

score weighting (IPW) was used to assess the causal effect of drinking status to CASI controlling

for time-varying confounders: Systolic blood press and Heart rate, and baseline confounders:

baseline age, education, APOE genotype.

Main Results: The difference of mean CASI was compared between 4 different alcohol

exposure groups. We found that participants who are heavy drinker at both two exam visits have

1.02 (p = 0.582) lower CASI score than light drinker at two exam visits. There is no significant
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difference in CASI score for any pairwise comparisons.

Conclusions: Mid-life alcohol exposure does not have causal effect on decreasing or

increasing for late-life cognitive functions. More research is needed, and we should limit the

recommendation of heavy alcohol consumption for all older people.
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2.2 Introduction

More than 25 million people worldwide are affected by dementia, most suffering from

Alzheimer’s disease (AD). According to NIH, the number of affected people is expected to

increase three-fold by 2050, from the currently approximate 5 million (10% of persons aged 65

and older). The risk factors, including many exposures or lifestyle, other than age or AD-related

genotype, are not well understood. Without further understanding, effective prevention strategies

remain a challenge.

Compared with abstinence, light alcohol intake is often considered to be associated with

health benefits ([28, 30, 21]). Such benefits have also been reported to extend to cognitive health

in late life in several studies ( [42, 44] ), while other studies found the opposite ([27]). It is

now generally accepted that the pathogeneses of AD probably begin decades earlier and involve

a progressive accumulation of tissue injury and cellular loss with disruptions of physiologic

or metabolic systems accruing over decades. Therefore, it is crucial to have available reliable

longitudinal measures for alcohol consumption and many other relevant variables, as well as to

carefully examine the myriad associated factors that may confound or otherwise interfere with a

confident assessment of the independent contributions of alcohol.

The alcohol consumption is easy to regulate or interfere, such as, The Center for Dis-

ease Control and Health Promotion (CDC) has many suggestions and regulations on alcohol

consumption. Therefore, to investigate the causal effect of alcohol use on AD or ADRD will

be necessary such that we can interfere with one’s alcohol usage or make recommendations on

alcohol consumption.

In randomized clinical trial (RCT), explaining the causal effect of an exposure or a

treatment is simple, because randomization ensures that there are no confounding factors for

the exposure or treatment of interest. However, sometimes RCT is unfeasible or unethical,

and a well-designed observational study is also useful for medical research, policy study etc.

The biggest problem of observational studies is that the assumption of no confounders for the
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exposure or treatment of interest is violated (which prevented by randomization and blinding

in RCT), but many advanced statistical methods are developed to control over confounders.

Donald Rubin ([50]) first proposed a Neyman–Rubin causal model to estimate causal effect

on the framework of potential outcomes and th tink about causation in both observational and

experimental studies. [46] then proposed the Marginal structural model (MSM) with inverse

probability weighting (IPW) methods for epidemiology studies, where ”structural” means

modeling the probabilities of counterfactual outcome, and ”marginal” means it models the

marginal distribution of the counterfactual outcome rather than the joint distribution. MSM is a

powerful tool for confounding control in observational studies especially for longitudinal study

with the existence of time-varying exposure, outcome and confounders. For longitudinal data

analysis, time-varying confounders is an inevitable feature. Also, in some longitudinal studies,

time-varying confounders affect and can be affected by time-varying treatment assignment, for

example: In HIV study, CD4 count will affect the initialization of zidovudine (AZT) treatment,

and meanwhile AZT will decrease the CD4 count. In this case, stratified analysis or standard

parametric regression will cause the bias estimation of causal effect. While MSM is a widely use

methodology for handling time-varying confounders, parametric g-formula is also a widely use

methods. Parametric g-formula use the standardization techniques to decompose the averaged

treatment effect (ATE) and assign the parametric model for each identifiable term in the formula.

[64] explained how to use parametric g-formula in the regression analysis, while [63] extended it

to the survival outcome.

For this paper, we will focus on mid-life alcohol consumption, represent important candi-

date determinants of disease processes leading to AD or ADRD. Our paper will be accomplished

using the rich data resources of the HHP and the HAAS, linked epidemiologic projects that

collected longitudinal alcohol, physical and cognitive measures from mid-to late life. We will

develop and implement novel causal inference approaches and statistical models to examine

the relationship between time-varying moderate alcohol consumption and cognitive impairment

while adjusting the time-varying exposures. Our main interest is on studying the causal relation-
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ship between mid-life alcohol exposure and the late life cognitive functions. For the HHP study,

we observed the time-varying alcohol exposure, as well as time-varying confounders: blood

pressure (BP) and heart rate (HR). We first plan to study the causal effect of time-varying mid-life

alcohol exposure on late-life cognitive outcomes. Figure 2.1 shows the directed acyclic graph

(DAG) depicting the causal relations between the baseline confounders Z0, the time-varying

mid-life alcohol exposures A1 & A3, the time-varying confounders Z1 and Z3: BP and HR, and

the outcome Y (CASI score). The time invariant confounder Z0 will be: education years, baseline

age and APOE positive.

Z0,BP1,HR1 A1 BP3,HR3 A3 CASI

Figure 2.1. Directed acyclic graph (DAG) for the causal relations between the baseline and
time-varying confounders Z0 and Z1,Z3, time-varying exposures A, and outcome Y
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2.3 Methods

2.3.1 Data Resource

Data: Here we consider the data from the Honolulu Hearth Program project (HHP,

1965 -1974), in order to study the effects of mid-life alcohol exposure collected during HHP on

early-late-life cognitive function scores (CASI), full description of the data are shown in Chapter

1. HHP followed a cohort of Japanese men born between 1900 - 1920 and lived in Hawaii, and

demographic data, vital data and life-style questionnaire are obtained in all four exam visits in

HHP.

Cognitive outcomes: We are interested in CASI score (detailed introduction of CASI

can be find in Chapter 1 Section 1.2) at exam 4. The CASI score has a range of 0 to 100.15,

and the distribution of CASI was highly left-skewed, with most of the scores on the high end.

We, therefore, used the log(101-CASI) transformation for all the analyses, which resulted in an

approximately normal distribution.

Time-varying confounders and time-invariant confounders: Time-invariant confounders

are discussed in Chapter 1 Section 1.2). From Figure 2.1, we can tell that the systolic blood pres-

sure and ventricular hear rate at exam 3 will affected by the the alcohol exposure at exam 1, thus

the systolic blood pressure and ventricular hear rate were treated as time-varying confounders

that change over each exam visit, and were affected by the previous exam’s exposure data.

Sample Attrition and Exclusions: Until exam 3 of HHP, a total of 6860 men partici-

pated. Of this total, 3674 (54%) continue participating in the HAAS examination, while 2530

(37%) had died by the time of the HAAS examination and 603 (9%) were alive but did not par-

ticipate. Of those 3674 participants, 2654 were included in the analysis. 1020 participants were

excluded because of incomplete alcohol intake data and insufficient information on covariates.
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2.3.2 Statistical approaches

Due to the non-random nature of this observational longitudinal study, and also the

existence of time-varying confounders, we used inverse probability weighting (IPW) of PS to

estimate the mean treatment effect (ATE) of heavy drinking versus light drinking among the study

population. PS provides an estimate of an individual’s probability of receiving an intervention at

each visit, based on information available to the individual’s historical data, and PS can help to

account for selection bias inherent in routine observational data. .

Following [46], let Y a1a3 be the value of Y that would have been observed had all subjects

received dose history (a1,a3) rather than their observed alcohol exposure history (A1,A3). Note

that Ak,k = 1,3 is dichotomous on each exam visit, we will have 22 = 4 possible counterfactuals.

We also make the following assumptions that are commonly used in causal inference:

(I) Sequential exchangeability: Y a1a3 ⊥ Ak | Ak−1,Z0,Zk,k = 1,2

(II) Sequential positivity: P(Ak = ak | ak−1,z0,zk−1)> 0,k = 1,2

(III) Consistency: If A1 = a1,A3 = a3, then Y a1a3 = Y

The sequential exchangeability means that the probability of being exposed at each time

depends on exposed and confounders history and, conditional on this history, does not depend on

any unmeasured causes of the outcome. The sequential positivity means that the probability of

being exposed at each time k will never be 0 or 1, no matter the past confounders and exposure

history. Consistency means that if A = a for a given individual, then Y a = Y for that individual.

Meanwhile, the distribution of CASI was highly left-skewed, with most of the scores on the high

end. We, therefore, used the log(101-CASI) transformation for all the analyses, which resulted

in an approximately normal distribution, see Appendix A.
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Under the identifiability condition, the mean of potential outcome E(Y a1a3) can be fit

with a saturated linear MSM ([46]):

E(Y a1a3) = β0 +β1 ∗a01 +β2 ∗a10 +β3 ∗a11 (2.1)

where a01 = 0,1,k = 1,2 represent whether the subject is in Light - Heavy drinker group. Similar

interpretation can also be used for a00,a01,a10.

Since Y a1a3 is counterfactual outcome and cannot be fully observed, we thus use time-

varying IPW to create a pseudo population, where in the pseudo population, the counterfactual

mean E(Y a1a3) is the E(Y |A1 = a1,A3 = a3). We define the IPW as following:

W a1a3 =
1

Pr(A1 = 1|Z0,Z1)
∗ 1

Pr(A3 = 1|Z3,A1,Z0,Z1)

and the stabilized inverse probability weights are:

SW a1a3 =
Pr(A1 = 1)

Pr(A1 = 1|Z0,Z1)
∗ Pr(A3 = 1|A1)

Pr(A3 = 1|Z3,A1,Z0,Z1)

For the weights at exam 3, we have unstabilized and stabilized weights. For stabilized weights:

SW =
Pr(A3 = 1|A1)

Pr(A3 = 1|Z3,A1,Z0,Z1)

Where we estimate the Pr(A3 = 1|A1) by the marginal proportion of 4 different alcohol exposure

class.

PS were calculated using R package ”twang” (Toolkit for Weighting and Analysis of

Nonequivalent Groups). Instead of using parametric logistic regression model, ”twang” use the

nonparametric boosted regression as the predicted probability of heavy drinking vs light drinking,

conditioned on the measured historical variables thought to be confounders or predictors for the

outcome of interest, as well as the alcohol exposure. Notice that PS model for exam 3 should
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include baseline confounders, the alcohol exposure status, systolic blood pressure and ventricular

hear rate at exam 1, and systolic blood pressure and ventricular hear rate at exam 3.

2.4 Results

The demographic characteristics of the participants at baseline (N=2654) are presented

in Table 2.1. The baseline mean of length of education was slightly shorter in Heavy + Heavy

groups (9.87 years), and the Light + Light group tends to have a smaller proportion of E4Positive

(17.8%).

Table 2.1. Demographic data between four alcohol exposure groups

Light - Light
(n = 1908)

Light - Heavy
(n = 300)

Heavy- Light
(n = 134)

Heavy - Heavy
(n = 312)

Age 52.85 (4.55) 53.69 (4.78) 52.00 (3.99) 52.58 (4.41)
Education (Years) 10.85 (3.25) 9.92 (3.16) 10.27 (2.58) 9.87 (2.97)
APOE Positive (Yes) 343 (17.8%) 63 (21.2%) 31 (23.1%) 60 (18.7%)
Baseline BP 128.75 (17.84) 131.18 (18.43) 135.14 (18.38) 134.76 (19.33)
Baseline HR 76.27 (11.91) 75.35 (11.25) 78.98 (11.10) 78.44 (12.27)

The distribution of CASI and log(101-CASI) for four alcohol exposure schemes is shown

in Figure 2.2, and more distribution transformation plots are shown in the Appendix A. We can

tell we have most of the participants (N=1474) who are heavy drinkers at both exam 1 and 3, and

the participants tend to have a lower CASI, which means impairment cognitive performance.
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Figure 2.2. Distribution of CASI (left) and log(101-CASI) (right) across four alcohol exposure
groups

The distribution of propensity score (probability of being heavy drinker) at exam1 & 3

are shown in in the Figure 2.3, where we found that the sequential positivity is not violated. The

standardized mean difference plots and more PS distribution plots across the two exams visit are

shown in the Appendix A.
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Figure 2.3. PS distribution for exam 1 (left) and exam 3 (right)

For the regression results, we provide three methods to estimate the standard error. The

first one SE.r is the output generated by r summary table, and they use the formula:

SE.r =
√

(X ′WX)−1 ∗Var(ε)

The second one SE.WLS is using sandwich formula for weighted least square:

SE.WLS =
√

[(X ′WX)−1X ′W ]∗ [(X ′WX)−1X ′W ]′ ∗Var(Y )

were we estimate the variance of Y by the sample variance of CASI at time 4.

The third one SE.Boot is using bootstrap, where we generated 1000 bootstrap samples,

each formed by resampling pairs (xi,yi,wi with replacement from the original data. Then, we run

a weighted linear regression on each of the bootstrap samples of size n and extract the coefficient
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of interest. We can estimated the variance-covariance matrix by taking variance and covariance

for our bootstrap samples. The p-value based on different standard errors are also provided.

There are 4 possible combinations for the alcohol exposure class, then we will have

6 pairwise comparisons for estimated CASI in total. The results for the 6 comparisons are

presented below, 3 possible standard error estimates are also provided for each comparison:

Table 2.2. MSM regression results for six pairwise comparison, where 00 represent Light -
Light group, 01 represent Light - Heavy group, 10 represent Heavy - Light group and 11

represent Heavy - Heavy group

Estimate SE.r SE.WLS SE.Boot
01 vs. 00 0.069 0.045 (p=0.127) 0.046 (p=0.135) 0.045 (p=0.131)
10 vs. 00 -0.022 0.069 (p=0.750) 0.068 (p=0.748) 0.058 (p=0.739)
11 vs. 00 0.073 0.044 (p=0.095) 0.047 (p=0.118) 0.045 (p=0.111)
10 vs. 01 -0.091 0.085 (p=0.287) 0.086 (p=0.288) 0.077 (p=0.286)
11 vs. 01 -0.004 0.067 (p=0.952) 0.070 (p=0.954) 0.067 (p=0.954)
11 vs. 10 0.094 0.085 (p=0.262) 0.086 (p=0.269) 0.078 (p=0.272)

The results of MSM with IPW were presented at Table 2.2. The estimation what were

obtained by fitting the model (1) were β1=0.069 (standard errors se=0.046), β2=-0.022 (se=0.069),

β3=0.073 (se=0.044) which can be interpreted as the difference of mean log(101-CASI) between

the Light + Heavy, Heavy + Light, Heavy+ Heavy and Light + Light (Table 2.2). As can be

seen from the standard errors, all coefficients were not statistically significantly different from 0.

The other 3 pairwise differences were shown in the Table 2.2, there were also no statistically

significant differences.

We also provided the weighted mean of CASI for 4 alcohol exposure groups with 95%

confidence interval:

Table 2.3. Weighted mean of CASI for 4 alcohol exposure groups with 95% confidence
interval

Estimate SE.r SE.WLS SE.Boot
Light - Light 87.29 (86.86, 87.71) (86.85, 87.72) (86.88, 87.75)
Light - Heavy 86.31 (85.04, 87.48) (85.01, 87.50) (85.00, 87.51)
Heavt - Light 87.59 (85.70, 89.24) (85.72, 89.26) (85.75, 89.22)
Heavy - Heavy 86.25 (85.02, 87.38) (84.93, 87.46) (84.90, 87.43)
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2.5 Discussion

Alcohol intake is frequent among elder people living in the United States. The results of

the present study suggest the non-significant causal relationship between moderate alcohol intake

and late-age cognitive functions among these Japanese-American men. The non-significant

causal relationship suggested moderate alcohol intake may not have side effects on the late-life

cognitive functions. While these results may increase the attention for the benefit of moderate

alcohol consumption on the cognitive outcomes, our study still has evidence showed that the

men who are both moderate drinkers at both exam 1 and 3 have poor cognitive performance than

other groups. More research is needed, and we should limit the recommendation of moderated

drinking of alcohol for all older people.

Our study is the first study to apply the novel causal inference model to examine the

causation of moderate alcohol consumption on cognitively functions in the sizeable mid-age

sample. Prior investigations used alternative approaches to study associations with healthy

longevity in women. Results from the Nurses’ Health Study, showed an association between

moderate, regular alcohol consumption at midlife and successful ageing defined as living to age

70 without physical or cognitive impairment2. Although our outcome differs from this previous

studies, we all in agreement concerning the potential benefits of alcohol consumption for healthy

brain function. Our study extends the findings to men and to a large population longitudinal

study.

There are several limitations to this study. We examined the cognitive function at only

one time point, so there is no comparison between the baseline cognitive function to the end

of follow-up. Meanwhile, the assumption of MSM is that there is no unmeasured confounders

over time other than blood pressure and heart rate, which is implausible for the medical research,

sensitivity analysis should be performed to test the existence of unmeasured confounders. There

were several strengths to our study. The extensive data collected on this cohort allowed for control

of many potential confounders such as education, gene related to AD. Further, by using the

22



marginal structural model, we can control the time-varying confounders such as blood pressure

and heart rate, to assess the unbiased estimator for the drinking effect.

For the future direction: there is abundant evidence showing that blood pressure may be

associated with cognitive impairment. In the meantime, plenty of medication was designed to

control blood pressure, and it is easy for us to control the blood pressure on the population. Thus,

developing and applying novel causal inference methods to detect the role of blood pressure

on cognitive outcomes is necessary. At the same time, we do not make full use of the HAAS

longitudinal study, where CASI score changes over each visit. From this data structure, instead

of comparing CASI score directly between alcohol exposure group, learning the relationship of

alcohol exposure and time to moderate impairment is also an interesting area to explore.
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Chapter 3

Assess the Causal Effect of Mid-life Alco-
hol Exposure on Time to Moderate Cogni-
tive Impairment with Death as Competing
Risk

3.1 Introduction

MSM has been proved as a useful tool for estimating causal effect in longitudinal study,

and [16] later extended the MSM to the survival setting, specifically to the Cox proportional

hazard model by modeling the counterfactual event time. Based on the idea proposed by [16],

later, MSM has been extended for many different settings in survival analysis. For example: [38]

proposed a MSM that permits estimation of cause-specific hazards in situations where more than

one cause of death is of interest, also [6] extended MSM for survival analysis while handling the

informative censoring. [49] also proposed a Bayesian MSM for survival outcomes. In particular,

they take a Bayesian nonparametric approach, using a combination of a dependent Dirichlet

process and Gaussian process to model the observed data. While MSM is a popular methods in

causal survival analysis, other statistical models are also developed for survival analysis. For

example: [2] talked about comparing G-formula and IPW in survival analysis and proposed a

new pseudo-observations method for estimating the survival probability, and [7] presented a

one-step Targeted Maximum Likelihood Estimator (TMLE) for estimating the counterfactual
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average survival curve. Instrumental variable analysis [56] and mediation analysis [61] are also

been widely discussed nowadays. Some scholar also focused on developing the the doubly

robust efficient estimator for the causal effect, for example: [10] derived the doubly robust

efficient estimator for semi-parametric additive hazards models, and [19] established the efficient

and doubly robust estimator for learning treatment effects under additive hazards models with

high-dimensional confounding.

In general, for survival analysis, we assumed that there is only one event of interest

which means only one survival endpoint. However, in many contexts such as drug study, one

can experience difference types of event, for example: disease relapse, death, or serious adverse

event etc, which are all the event of interest for us. Meanwhile, the occurrence of one type

of event may prevent us from observing other events, and those events are called competing

risk in survival analysis. In survival analysis literatures, two types of model are widely use for

compering risk analysis. The first one is called cause-specific cox model, which we model the

cause-specific hazard for each event type, and the overall hazard for all the event is the the sum of

cause-specific hazard over the all the event types. The second one is called sub-distribution model

proposed by [11], it is a semi-parametric proportional hazards model for the sub-distribution,

and we can use the model to estimate the cumulative incidence function (CIF) which is defined

as the probability of an event in the setting where other competing risks are acknowledged to

exist. Competing risk data is a very common data in survival analysis, thus extending the causal

inference methods to the competing risk data setting is essential. In the recent years, there are

tremendous literatures discussing causal inference in competing risk setting. Some literatures

focused on using the parametric g-formula methods to estimate the ATE. For example: [70]

claimed that counterfactual hazard contrasts cannot generally be interpreted as causal effects,

and proposed two parametric g-formula methods for competing risk which competing events

are depicted as time-varying covariates. Followed by Young’s setting, [54] proposed the idea of

separable effects to study the causal effect of a treatment on an event of interest, and defined

the separable direct effect as treatment effect on the event of interest not mediated by its effect
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on the competing event while the indirect effect as treatment effect on the event of interest only

through its effect on the competing event.

The objective of this first project is to adapt the MSM with IPW to the cause-specific

hazard model to the HAAS study data, and proposed a new predicted counterfactual risk based

on the results of cause-specific hazard model. For the HAAS study data, we first studied the data

distribution, make the definition of the event, competing event and censoring.

3.2 Methods

3.2.1 Data Resource

Data: Here we consider the data from the the Honolulu Heart Program (HHP) and the

Honolulu-Asia Aging Study (HAAS), in order to study the effects of mid-life alcohol exposure

collected during HHP on late life time to moderate cognitive impairment as well as time to

death, with considering the other as competing event, full description of two studies are shown

in Chapter 1. Mid-life alcohol exposure and baseline confounders are obtained from HHP study,

while the time to event data are obtained from HHP study. Both studies followed a cohort of

Japanese men born between 1900 - 1920 and lived in Hawaii. Here we take the first exam visit at

HAAS study, also the exam 4 at HHP study as the well-defined time zero.

Outcomes: Moderate cognitive impairment was defined based on CASI score less or

equal than 74 (more description of CASI see in Chapter 1 Section 1.2). Since HAAS was

conducted during the late-life of the participants, death were observed during the study and

prevented us observing the moderate cognitive impairment. More details about defining the

competing events in HAAS data can be also found in Chapter 1 Section 1.2.

Exposure: The mid-life alcohol exposure was collected during the HHP study between

1965-73. The Heavy Drinking group consisted of individuals who had heavy drinking at one point

during mid-life, and the Light Drinking those who never had heavy drinking during mid-life.

Confounders: The confounders were decided by literature review and clinical experi-
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ences, as well as availability of the data. Demographic data such as baseline age, APOE are

considered as confounders by recent clinical papers. Systolic blood pressure and ventricular

heart rate at exam 4 (baseline of HAAS study) are also considered as the confounders that is

related to the outcomes. Since CASI score are different among participants, we also considered

baseline CASI score (CASI score at exam 4) as the baseline confounder.

Sample Attrition and Exclusions: Until exam 4 of HHP, a total of 2654 men partici-

pated. Of this total, we only include participants with normal cognitive function (CASI ≥ 74)

at baseline, and after excluding missing values for exposure and confounders, we have 1881

participants in total. Of those participants, 1390 (74%) participants have been considered as

Light Drinking and 491 (26%) are considered as Heavy drinking.

3.2.2 Statistical Methods

Following by survival notation with presence of possible right censoring and competing

event, we define T as time to event, and and J as the event type indicator (more specifically,

J = 1 is the event I, J = 2 is event II). We define A as the exposure indicator. Let T a be the

potential time to event, and Ja be the analogous potential event-type indicator. It is potential

because not all the subjects are exposed to A = a, then we only observe part of the variables from

population. We defined Z as the baseline confounders. The causal relationship can be shown

from the below DAG:

A T,J

Z

Figure 3.1. The causal directed acyclic graph

We make the following assumptions that are commonly used in causal inference:

(I) Exchangeability: (T a,Ja)⊥ A | Z
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(II) Positivity: P(A = a | Z)> 0

(III) Consistency: If A=a, then T a = T , Ja = J

The exchangeability means that within levels of Z, all other predictors of the outcome

are equally distributed between the every treated groups. We can also say that the conditional

probability of receiving every value of treatment, though not decided by the investigators,

depends only on measured covariates Z. In observational study, it also called ignobility, meaning

that there is no unmeasured confounders in the study. The positivity assumption means that

the probability of receiving every value of treatment conditional on Z is greater than zero, i.e.,

positive. Meaning, in the study, each subject could be assigned to either one of treatment. The

consistency assumption means that the values of treatment under comparison correspond to

well-defined interventions that, in turn, correspond to the versions of treatment in the data, it also

means we observe one of the potential outcomes at a time.

Followed by Hernan (2001), we also make the assumption on noninformative censoring:

(IV) Noninformative censoring: (T a,Ja)⊥Ca | Z

We then focus on defining average treatment effect (ATE). The ATE is the average effect

in the population level, it projects to the entire population. In the continuous outcome setting,

ATE is defined as E(Y A=a1 −Y A=a0), where Y is an arbitrary continuous outcome. For the

survival analysis setting, we first specify the marginal structural cause-specific cox proportional

hazards model for event j = 1,2:

λT a,Ja= j(t) = λ0 j(t)eβ j∗a (3.1)

which is the cause-specific hazard of T a at t under treatment a, λ0 j(t) is the unspecified baseline
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cause-specific hazards for event j. Then exp(β j) is the ATE, which is the causal hazard ratio for

event j.

The potential outcome, by definition, is not fully observed. Following [46] and [16], to

estimate the parameters in model (3.1), we use the inverse probability weights (IPW) to create a

pseudo population, where in the pseudo population, the confounder Z get controlled. The inverse

probability weights for treatment A = a can be defined as:

W (a) =
1

P(A = a | Z)

and the stabilized inverse probability weights for treatment A = a will be:

SW (a) =
P(A = a)

P(A = a | Z)
(3.2)

After we estimating the cause specific hazard: λa
j using IPW, we could estimate the corresponding

CIF. Following [18], we could use :

P̂(T a < t,Ja = j) =
∫ t

0
Ŝa(u)dΛ̂

a
j(u),

where Ŝa(u) is the estimated over all survival function for T a, Ŝa(u) = e−Λ̂a
1(u)−Λ̂a

2(u), Λ̂a
j(u) =

Λ̂0 j(u)eβ̂ j∗a, and Λ̂0 j(u) is a Breslow-type estimator of the baseline cumulative hazard (for

j=1,2).

For this analysis, we fit the saturated MSM cause-specific Cox proportional hazards

model 3.1. Where a = 0,1 represent whether the subject is in light drinker group, or in rest of

three groups (called heavy drinker group). The propensity score: probability of being heavy

drinker was calculated for each subjects based on selected confounders (Chapter 1 Section

1.2). We also calculated the predicted CIF for time to moderate impairment and time to death,

confidence band is provided by using bootstrap. All the analysis were conducted using R package

cmprskcoxmsm that was developed based on this project. For the package, we used the twang

29



package to generate the propensity score which is based on generalized boosted tree (GBM).

3.3 Results

The demographic characteristics of the participants at baseline (N=1881) are presented

in Table 3.1, 29 participants are removed from analysis because of missing baseline confounders.

The baseline mean of length of education was slightly higher in Light-Light groups (11.22 years),

and the Non Light-Light group tends to have a higher proportion of APOE Positive (21.4%),

higher systolic blood pressure (151.40) and lower baseline CASI score (87.38).

Table 3.1. Baseline demographic of two alcohol exposure groups

Light Drinking
(n = 1390)

Heavy Drinking
(n = 491)

Systolic BP 148.76 (21.26) 151.40 (21.95)
Baseline Age 77.05 (3.80) 77.12 (3.75)
Education (Years) 11.22 (3.12) 10.42 (2.97)
APOE Positive (Yes) 254 (18.3%) 105 (21.4%)
Heart Rate 31.22 (4.62) 31.88 (4.83)
Baseline CASI 88.53 (6.00) 87.38 (6.13)

We first need to generate the IPW weights for the data, below is the distribution of

propensity score (check positivity assumption) and the standard mean difference (SMD) plot

before and after weighting, we can tell that the positivity assumption is not violated under this

case, and by weighting, the confounders are controlled well.

After having the IPW, the next step is to fit the marginal structural cause-specific Cox

proportional hazard model for estimating alcohol exposure effects: we fit the model using the

stabilized weight:

Table 3.2. Regression results for comparing non Light-Light vs Light-Light drinkers for years
to moderate impairment

Estimate Robust SE z-value p-value Hazard Ratio 95% CI
Heavy Drinking 0.202 0.08 2.518 0.012∗ 1.224 (1.046, 1.432)

From the results, we can see that the estimated hazard ratio is 1.224 with 95% CI (1.046,

1.432), so there is significant mid-life alcohol exposure effect on time to late life moderate
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Figure 3.2. Propensity score distribution (left) and SMD before and after weighting

cognitive impairment.

We can also estimate the CIF from the data for the different event types, the 95%

confidence interval of the CIF is calculated by bootstrap. We estimate the CIF for the moderate

impairment (left) and death (right), we can tell that even though the risk of moderate impairment

and risk of death are higher in the Heavy drinking group, but the confidence band are overlapped,

so the difference is not statistically significant.
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Figure 3.3. CIF for moderate impairment (left) and death (right) with 95% confidence band

3.4 Discussion

Alcohol intake is frequent among elder people living in the United States. The results of

the present study suggest the significant causal relationship between alcohol intake and late-age
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cognitive functions among these Japanese-American men wgucg suggested having heavy alcohol

intake during mid-life may have side effects on the late-life cognitive functions. More research is

needed, and we should limit the recommendation of moderated drinking of alcohol for all older

people.

Our study is the first study to apply the novel causal inference model to examine the

causation of alcohol consumption on cognitively functions in the sizable mid-age sample. Prior

investigations used alternative approaches to study associations with healthy longevity in women.

Results from the Nurses’ Health Study, showed an association between heavy, irregular alcohol

consumption at midlife and successful aging defined as living to age 75 without physical or

cognitive impairment ([42]). Although our outcome differs from this previous studies, we all in

agreement concerning the potential harm of alcohol consumption for unhealthy brain function.

Our study extends the findings to men and to a large population longitudinal study.

There are several limitations to this study. We examined all the confounders at only one

time point, and we did not consider time varying confounders in our analysis because of large

percentage of missing value. Meanwhile, the assumption of MSM is that there is no unmeasured

confounders over time other than blood pressure and heart rate, which is implausible for the

medical research, sensitivity analysis should be performed to test the existence of unmeasured

confounders. Meanwhile, there were several strengths to our study. The extensive data collected

on this cohort allowed for control of many potential confounders such as education, gene related

to Alzheimer’s disease. Further, by using the marginal structural model, we can control the

existing confounders such as blood pressure and heart rate, to assess the unbiased estimator for

the alcohol exposure effect.
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Chapter 4

Marginal Structural Illness-Death Models
for Semi-Competing Risks Data

4.1 Abstract

The three-state illness–death model has been established as a general approach for

regression analysis of semi-competing risks data. In this paper we apply it to a class of marginal

structural models for observational data. We consider two specific such models, the usual

Markov illness–death structural model and the general Markov illness–death structural model

which incorporates a frailty term. For interpretation purposes, risk contrasts under the structural

models are defined. Inference under the usual Markov model can be carried out using estimating

equations with inverse probability weighting, while inference under the general Markov model

requires a weighted EM algorithm. We study the inference procedures under both models using

extensive simulations, and apply them to the analysis of mid-life alcohol exposure on late life

cognitive impairment as well as mortality using the Honolulu-Asia Aging Study data set. The R

codes developed in this work have been implemented in the R package semicmprskcoxmsm that

is publicly available on CRAN.
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4.2 Introduction

Our work was motivated by the longitudinal epidemiologic Honolulu-Asia Aging Study

(HAAS). The HAAS cohort is comprised of the surviving participants from the Honolulu Heart

Program (HHP), a prospective, community-based cohort study of heart disease and stroke

established in 1965 with about 8,000 men of Japanese ancestry living on the island of Oahu, who

were born between 1900-1919. HAAS was established in 1991 and was brought to closure in

2012 with the goal of determining the prevalence, incidence, and risk factors for Alzheimer’s

disease (AD) and brain aging. Demographic data, vital status and diet data were collected every

2-3 years during the HHP period, and neuropsychologic assessment were performed every 2-3

years during the HAAS. Our goal is to assess the causal effect of mid-life alcohol exposure

captured during HHP on late life outcomes collected in HAAS. In particular, a subject may

develop cognitive impairment, then die, or die without cognitive impairment. These are referred

to as semi-competing risks where there are non-terminal events (cognitive impairment) and

terminal events (death). As outcomes we are interested in time to non-terminal event and time to

terminal event, as well as time to the terminal event following the non-terminal event.

The above semi-competing risks setting is the same as the three-states illness-death model

depicted in Figure 4.1,[67] which was first introduced by [13]. We assume that a subject starts in

the “healthy” state (state 0), then transition into the cognitive impairment (state 1) or death state

(state 2), which are also referred to as the intermediate or non-terminal, and the terminal state,

respectively. The corresponding transition events are then the non-terminal event and the terminal

event, respectively. [67] discussed extensively the illness-death model for semi-competing risks

data, and also incorporated a shared frailty term in the illness-death model that encompasses

previous works such as the copula model of [12]. The illness-death model with shared frailty

has been extended to different situations including in the presence of left truncation,[29] or

for a nested case-control study.[22] [31] extended this model to the Bayesian paradigm. [1]

developed an R package to analyze semi-competing risks data under the illness-death model
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using parametric models and the Bayesian method, but not for the semiparametric Cox model

formulation.

Healthy
(State 0)

Death
(State 2)

Cognitive
impair-
ment

(State 1)

Figure 4.1. Three-state illness-death model

For observational data, marginal structural models (MSM) have been established as

a valuable tool for identifying causal effects, which can be consistently estimated using the

inverse-probability-of-treatment weighting (IPTW).[46, 16] In this paper we consider a class of

marginal structural illness–death models, with and without a shared frailty term. For the former

an EM type iterative algorithm is needed in order to estimate the parameters. The structural

models give rise to interpretable causal quantities such as different types of risk contrasts in the

multi-state setting.[37] The remainder of this article is organized as follows. In the next section

we introduce the structural models and assumptions. In Section 3 we discuss inference under

the usual Markov illness-death structural model and Section 4 the general Markov illness-death

structural model, where a weighted EM algorithm is developed and studied. In Section 5 we

carry out extensive simulation studies to assess the performance under the two models including

when either one of the model is valid while the other is not. We apply the approaches to the

HAAS data set described above in Section 6 and conclude with more discussion in the last

section.
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4.3 Three-State Illness-Death model

4.3.1 Definitions and assumptions

For our setup, assume a well-defined time zero, and let random variables T1 and T2 denote

time to the non-terminal and the terminal event since time zero, respectively. If a subject does

not experience the non-terminal event before the terminal event, we define T1 = +∞.[67, 12]

Denote the joint density of T1 and T2 as f (t1, t2) in the upper wedge 0 < t1 ≤ t2, and the density

of T2 along the line t1 =+∞ as f∞(t2) for t2 > 0. Note that for semi-competing risks data, we do

not observe any data in the lower wedge 0 < t2 < t1 <+∞; see Figure 4.2. We also denote the

bivariate survival function of T1 and T2 in the upper wedge as S(t1, t2).

Figure 4.2. Joint density function of T1 and T2

The multi-state model quantifies event rates and event risks based on the history of events,

and is completely specified by the three transition intensities below, also referred to as transition

rates in the literature. Let λ1(t1) and λ2(t2) be the transition rates from the initial healthy state to

the non-terminal, and the terminal state, respectively, and λ12(t2 | t1) the transition rate from the
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non-terminal state to the terminal state. That is,

λ1(t1) = lim
∆→0+

P(T1 ∈ [t1, t1 +∆) | T1 ≥ t1,T2 ≥ t1)
∆

, (4.1)

λ2(t2) = lim
∆→0+

P(T2 ∈ [t2, t2 +∆) | T1 ≥ t2,T2 ≥ t2)
∆

, (4.2)

λ12(t2 | t1) = lim
∆→0+

P(T2 ∈ [t2, t2 +∆) | T1 = t1,T2 ≥ t2)
∆

. (4.3)

Note that (4.1) and (4.2) are in fact the cause-specific hazards in the usual competing risks

setting, for time to the non-terminal event and time to the terminal event without non-terminal

event, respectively. In general, λ12 (t2 | t1) can depend on both t1 and t2. In the following we

consider the commonly used Markov assumption: λ12(t2 | t1) = λ12(t2), i.e. the transition rate

from non-terminal to terminal state does not depend on what value T1 takes.

While the transition rates in (4.1) - (4.3) completely specifies the three-state illness-death

model, for interpretation purposes various risk type quantities can be of interest in practice.

Cumulative incidence function (CIF) are commonly used for competing risks,[24] that is, for the

non-terminal event, denoted by F1(t1) below, and for the terminal event without the non-terminal

event, denoted by F2(t2) below. In addition, we may also consider a third CIF, denoted by

F12(t1, t2), for the terminal event following the non-terminal event.[37] We have

F1(t1) = P(T1 ≤ t1,δ1 = 1) =
∫ t1

0
S(u)λ1(u)du, (4.4)

F2(t2) = P(T2 ≤ t2,δ2 = 1,δ1 = 0) =
∫ t2

0
S(u)λ2(u)du, (4.5)

F12(t1, t2) = P(T2 ≤ t2 | T1 ≤ t1,T2 ≥ t1) = 1− exp
{
−
∫ t2

t1
λ12(u)du

}
, (4.6)

where S(t) = exp
[
−
∫ t

0 {λ1(u)+λ2(u)}du
]
.

In the presence of right censoring, such as lost to follow-up or administrative censoring,

let C be the time to right censoring since time zero. Denote X1 = min(T1,T2,C), X2 = min(T2,C),

and the event indicators δ1 = I {X1 = T1}, δ2 = I {X2 = T2}, where I(·) is the indicator function.
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Let A = {0,1} be a binary treatment assignment, possibly not randomized. Following

[40] and [51] framework of potential outcomes, we denote T a
1 ,T

a
2 ,C

a as potential time to the

non-terminal event, terminal event and censoring under treatment a = 0,1. And Xa
1 , Xa

2 , δa
1 and δa

2

are similarly defined. Let Z be a p-dimensional vector of covariates. Denote π(Z) = P(A = 1 | Z),

often referred to as the propensity score. The causal relationship of the variables defined above

can be depicted in a graphical display called a chain graph as in Figure 4.3,[57] where the

undirected line indicates correlation. A chain graph without undirected edges is known as a

causal directed acyclic graphs (DAG).

A T1 T2

Z

Figure 4.3. Causal chain graph representation of semi-competing risks data

We assume the following, which are commonly used in order to identify the causal

estimands to be specified later:

(I) Stable unit treatment value assumption (SUTVA): there is only one version of the

treatment and that there is no interference between subjects.

(II) Exchangeability: (T a
1 ,T

a
2 )⊥ A | Z.

(III) Positivity: π(Z)> 0.

(IV) Consistency: If A = a, then T a
1 = T1, T a

2 = T2, Ca =C.

Exchangeability implies that within levels of the variable Z, the potential event times (T a
1 ,T

a
2 )

and the treatment assignment A are independent. It is also called (conditional) ignobility, and that

there are no unmeasured confounders. The positivity assumption requires that the probability of

receiving either treatment (A = 1) or control (A = 0) is positive for any given value of Z. The

consistency assumption here links the potential outcomes with the observed outcomes. For more

discussion on these assumptions, please see [17].
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We also assume:

(IV) Non-informative censoring: (T a
1 ,T

a
2 )⊥Ca | Z.

4.3.2 The structural models

Let λ1(t1;a), λ2(t2;a) and λ12(t2|t1;a) be the transition rates corresponding to the counter-

factual states under the three-state model, a = 0,1. [3] discussed about modeling each transition

intensity by a Cox type proportional intensities regression model. Following the same idea, we

can postulate the semi-parametric Cox models for these transition rates, which are also hazard

functions.[67, 3] In particular, we consider the following usual Markov illness-death structural

model:[67]

λ1(t1;a) = λ01(t1)eβ1a, t1 > 0; (4.7)

λ2(t2;a) = λ02(t2)eβ2a, t2 > 0; (4.8)

λ12(t2|t1;a) = λ03(t2)eβ3a, 0 < t1 < t2. (4.9)

The joint distribution of T1 and T2 under model (5.4) - (5.6) will be given as a special case below.

The usual Markov illness-death model can be extended by incorporating a frailty term, to

the general Markov illness-death structural model. The frailty term induces further correlation

between T1 and T2, beyond what is already contained in the joint distribution of T1 and T2 above.

It also models unobserved heterogeneity among individuals.[26, 41] Following [59] we consider

the log-normal distribution for the frailty, and we have

λ1 (t1|b;a) = λ01(t1)eβ1a+b, t1 > 0; (4.10)

λ2 (t2|b;a) = λ02(t2)eβ2a+b, t2 > 0; (4.11)

λ12 (t2|t1,b;a) = λ03(t2)eβ3a+b, 0 < t1 < t2, (4.12)

where b∼ N(0,σ2). Obviously model (5.4) - (5.6) is a special case of (4.10) - (4.12) by setting
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b = 0.

Recall the joint density f (t1, t2) and the bivariate survival function S(t1, t2) previously

defined in the upper wedge t1 ≤ t2, and the density function f∞(t2) along the line t1 = +∞.

In the Supplementary Materials we show that these quantities can be derived as functions of

the transition rates (4.1) - (4.3). With the models specified in (4.10) - (4.12) we then have the

following quantities that will be used later:

f (t1, t2;a) = λ01(t1)λ03(t2)eβ1a+b+β3a+b exp
(
−Λ01(t1)eβ1a+b−Λ02(t1)eβ1a+b

)
× exp

(
−Λ03(t1, t2)eβ3a+b

)
, (4.13)

f∞(t2;a) = λ02(t2)eβ2a+b exp
(
−Λ01(t2)eβ1a+b−Λ02(t2)eβ2a+b

)
, (4.14)

S(t, t;a) = exp
(
−Λ01(t)eβ1a+b−Λ02(t)eβ2a+b

)
, (4.15)

where Λ0 j(t) =
∫ t

0 λ0 j(u)du for j = 1,2, and Λ03(t1, t2) = Λ03(t2)−Λ03(t1) with Λ03(t) =∫ t
0 λ03(u)du.

4.3.3 Likelihood

In this subsection we assume that the treatment A is randomized so that we can write

down the relevant probabilities for the four scenarios below. We will then use inverse probability

weighting (IPW) to create a pseudo-randomized sample. Denote Oi = (X1i,X2i,δ1i,δ2i,Ai) the

observed data for subject i, and Lc the likelihood conditional on the random effect b. We have

the following four different scenarios:

(i) Non-terminal event then censored prior to terminal event: X1i = T1i,X2i =Ci,δ1i =
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1,δ2i = 0,

Lc(Oi | bi) =
∫ +∞

X2i

f (X1i, t2)dt2

= λ01(X1i)eβ1Ai+bi

× exp
{
−Λ01(X1i)eβ1Ai+bi−Λ02(X1i)eβ2Ai+bi−Λ03(X1i,X2i)eβ3Ai+bi

}
;

(ii) Non-terminal event and then terminal event: X1i = T1i,X2i = T2i,δ1i = 1,δ2i = 1,

Lc(Oi | bi) = f (X1i,X2i)

= λ01(X1i)λ03(X2i)eβ1Ai+bi+β3Ai+bi

× exp
{
−Λ01(X1i)eβ1Ai+bi−Λ02(X1i)eβ1Ai+bi−Λ03(X1i,X2i)eβ3Ai+bi

}
;

(iii) Terminal event without non-terminal event: X1i = T2i,X2i = T2i,δ1i = 0,δ2i = 1,

Lc(Oi | bi) = f∞(X2i)

= λ02(X2i)eβ2Ai+bi exp
{
−Λ01(X2i)eβ1Ai+bi−Λ02(X2i)eβ2Ai+bi

}
;

(iv) Censored before any event: X1i = X2i =Ci,δ1i = 0,δ2i = 0,

Lc(Oi | bi) = S(X1i,X2i) = exp
{
−Λ01(X1i)eβ1Ai+bi−Λ02(X2i)eβ2Ai+bi

}
.

Combining the above four scenarios, we have

Lc(Oi | bi) =
{

λ01(X1i)eβ1Ai+bi
}δ1i exp{−Λ01(X1i)eβ1Ai+bi}

·
{

λ02(X2i)eβ2Ai+bi
}δ2i(1−δ1i) exp{−Λ02(X1i)eβ2Ai+bi}

·
{

λ03(X2i)eβ3Ai+bi
}δ2iδ1i exp

{
−Λ03(X1i,X2i)eβ3Ai+bi

}
. (4.16)
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4.4 The Usual Markov Structural Model

In the absence of randomization, denote wi = Ai/π̂(Z)+(1−Ai)/{1− π̂(Z)} as the IP

weight for subject i. In practice, π(·) is unknown and can be estimated from the data by either

specifying a parametric model such as the logistic regression,[46] or use nonparametric methods

such as boosted trees.[35]

For the usual Markov illness-death model, with bi = 0 in (4.16), we have the weighted

log-likelihood

logLw =∑
i

wi

[
δ1i
{

β1Ai + log(λ01(X1i))
}
−Λ01(X1i)eβ1Ai

]
+∑

i
wi

[
δ2i(1−δ1i)

{
β2Ai + log(λ02(X2i))

}
−Λ02(X1i)eβ2Ai

]
+∑

i
wi

[
δ2iδ1i

{
β3Ai + log(λ03(X2i))

}
−Λ03(X1i,X2i)eβ3Ai

]
. (4.17)

It can be seen that the parameters for the three transition rates (β j,Λ0 j), j = 1,2,3, are variation-

ally independent in the above likelihood and therefore can be estimated separately. Note that the

semiparametric approach under the Cox type models discretizes the baselines hazards λ0 j(·) into

point masses at the observed event times and estimates the cumulative Λ0 j(·) as step functions. It

can be verified that maximizing (4.17) is equivalent to maximizing the following three weighted

Cox regression model likelihoods: 1) treating the non-terminal event as the event of interest, and

terminal event without non-terminal or originally censored as ‘censored’; 2) treating the terminal

event without non-terminal as the event of interest, and non-terminal event or originally censored

as ‘censored’; 3) treating the terminal event following the non-terminal as the event of interest,

left truncated at the time of the non-terminal event (so only those who had the non-terminal event

are included), and originally censored as ‘censored’. Then the standard software (e.g. coxph() in

R package ‘survival’) can be used to obtain the estimates (β̂ j, Λ̂0 j), j = 1,2,3.

In order to obtain the variance of the estimates, if we assume the estimated weights
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in (4.17) as known, then the robust sandwich variance estimator in standard software such as

coxph() can be used to obtain the estimated variance for β̂ j, j = 1,2,3. In the Supplementary

Materials we provide the formulas for estimating the covariances between β j, j = 1,2,3. In

addition, we may also use the bootstrap variance estimator which accounts for the uncertainty in

estimating the weights.

For causal interpretation, we may define the risk contrasts as the difference or the ratio

between the CIF’s under the structural models with a = 1 and a = 0. In particular,

F1(t1;a) = exp(β1a)
∫ t1

0
S(u;a)λ01(u)du, (4.18)

F2(t2;a) = exp(β2a)
∫ t2

0
S(u;a)λ02(u)du, (4.19)

F12(t1, t2;a) = 1− exp
{
−eβ3a

∫ t2

t1
λ03(u)du

}
, (4.20)

where S(t;a) = exp
[
−
∫ t

0

{
λ01(u)eβ1a +λ02(u)eβ2a

}
du
]
. We estimate the contrasts by plugging

in the parameter estimates, and obtain their 95% confidence intervals (CI) using bootstrap. We

note that for simple competing risk data under the marginal structural Cox model, such risk

contrasts are available in the R package ‘cmprskcoxmsm’.[72]

4.5 The General Markov Structural Model

Under the general Markov illness-death model (4.10) - (4.12) where b ∼ N(0,σ2), let

θ = (β1,β2,β3,Λ01,Λ02,Λ03,σ
2). Denote O = {Oi}n

i=1. The weighted observed data likelihood

is:

Lw(θ;O) = ∏
i

{∫
L(θ;Oi | bi) · f (θ;bi)dbi

}wi, (4.21)

where f (θ;bi) is the normal density function. Then the estimate θ̂ can be obtained by maximizing

(4.21).
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We introduce below an EM type algorithm in order to maximize (4.21). Denote Q(θ, θ̃)

the expectation of the weighted log-likelihood of the augmented data (yi,bi), i = 1, ...,n, condi-

tional on the observed data and the current parameter value θ̃:

Q(θ, θ̃) = ∑
i
E
[
wi · l (θi;Oi|bi) | O, θ̃

]
+∑

i
E
[
wi · log f (θ;bi) | O, θ̃

]
, (4.22)

where

l (θ;O | b) =
[

δ1 {b+β1A+ log(λ01(X1))}

+δ2(1−δ1){b+β2A+ log(λ02(X2))}

+δ2δ1 {b+β3A+ log(λ03(X2))}

−Λ01(X1)eβ1A+b−Λ02(X1)eβ2A+b−Λ03(X1,X2)eβ3A+b
]
. (4.23)

Then Q = Q1 +Q2 +Q3 +Q4, where

Q1(β1,λ01) = ∑
i

wi

[
δ1i
{
E(bi)+β1Ai + log(λ01(X1i))

}
−Λ01(X1i)exp{β1Ai + logE(ebi)}

]
, (4.24)

Q2(β2,λ02) = ∑
i

wi

[
δ2i(1−δ1i)

{
E(bi)+β2Ai + log(λ02(X2i))

}
−Λ02(X1i)exp{β2Ai + logE(ebi)}

]
, (4.25)

Q3(β3,λ03) = ∑
i

wi

[
δ2iδ1i

{
E(bi)+β3Ai + log(λ03(X2i))

}
−Λ03(X1i,X2i)exp{β3Ai + logE(ebi)}

]
, (4.26)

Q4(σ
2) = ∑

i
wi

{
− 1

2
(

log2π+ logσ
2)− 1

2σ2 E(b
2
i )

}
, (4.27)

where E{h(bi)}= E{h(bi) | Oi, θ̃} is shorthand for a function h(·) of bi. Analogous to the EM
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algorithm, we iterate between the E-steps and the M-steps described below until convergence.

E-step

The conditional expectations in (4.24) - (4.27) are all in form of E{h(bi) | Oi, θ̃} =∫
h(bi) f (bi | Oi, θ̃)dbi, where h(bi) = ebi in (4.24) - (4.26) and h(bi) = b2

i in (4.27). These two

expectations are not in closed form; however, we can approximate these integrals by numerical

methods, specifically by (adaptive) Gaussian quadrature.[14, 45] Details of computation are

shown in the Supplement Materials.

M-step

The M-step conveniently separates the update of β j and Λ0 j for j = 1,2,3 from that of

the variance component σ2. For Q1 - Q3, similar to Section 4.4, (4.24) - (4.26) are equivalent

to the weighted log-likelihood functions in a Cox regression with additional known offsets

µi = logE(ebi | O, θ̃). In order to maximize Q4, we set

∂Q4

∂σ2 = ∑
i

wi

{
− 1

2σ2 +
E(b2

i | O, θ̃)

2σ4

}
= 0,

leading to

σ̂
2 =

∑
n
i=1 wiE(b2

i | O, θ̃)

∑
n
i=1 wi

, (4.28)

In the lemma below, we establish the following property of the above weighted EM

algorithm, which is similar to that of the EM algorithm.

lemma 1. Suppose Lw(θ;O) is the weighted observed data likelihood. At step k of the algorithm

denote θ(k) the current value, and θ(k+1) the value that maximizes Q(θ,θ(k)). Then:

Lw(θ
(k+1);O)≥ Lw(θ

(k);O). (4.29)
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The proof of the lemma is given in the Supplement Materials. Following [66] or Theorem

4.12 in [32], since Q(θ; θ̃) is continuous in both θ and θ̃, then all limit points of the weighted

EM sequence {θ(k)} are stationary points of Lw(θ;O), and Lw(θ
(k);O) converges monotonically

to Lw(θ
∗;O) for some stationary point θ∗. In addition, for existence of such limit point(s) [58]

proposed a condition for the usual unweighted EM algorithm: as long as the maximizer in

the M-step is unique. We can show that this result extends immediately to our weighted EM

algorithm. And finally, our M-step satisfies this condition, i.e. the maximizer in the M-step is

unique.

As initial values we use for β j and Λ0 j, j = 1,2,3, the estimates from weighted Cox

regression without the offsets, i.e. from the usual Markov model of the previous section; and

σ2 = 1. The stop criteria we use in this paper are convergence in the log-likelihood as well

as in parameters of interest: | logLw(θ
(k+1);y)− logLw(θ

(k);y)| ≤ 10−5, |β(k+1)
j −β

(k)
j | ≤ 10−3,

j = 1,2,3 and |σ2(k+1)−σ2(k)| ≤ 10−3.

Variance estimate

The variance of the parameter estimates following a typical EM algorithm can be esti-

mated by the inverse of a (discrete) observed information matrix calculated using Louis’ formula,

including for the nonparametric maximum likelihood estimator (NPMLE) under, for example, the

semiparametric proportional hazards mixed models.[59] For observational data, however, infer-

ence using the weighted NPMLE under semiparametric models requires the derivation of efficient

influence functions,[5] and is generally non-trivial under the normal frailty construct.[39, 33] In

the following we use bootstrap to obtain the variance estimator for θ̂.

Risk contrasts

Similar to what we proposed under the usual Markov model, we also can define the risk

contrasts under the general Markov model. Since the general Markov models are conditional on
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the random effect b, we have the following conditional risk:

F1(t1 | b;a) = exp(β1a+b)
∫ t1

0
S(u | b;a)λ01(u)du, (4.30)

F2(t2 | b;a) = exp(β2a+b)
∫ t2

0
S(u | b;a)λ02(u)du, (4.31)

F12(t1, t2 | b;a) = 1− exp
{
−eβ3a+b

∫ t2

t1
λ03(u)du

}
, (4.32)

where

S(t | b;a) = exp
[
−
∫ t

0

{
λ01(u)eβ1a+b +λ02(u)eβ2a+b

}
du
]

(4.33)

= exp
{
−eβ1a+b

Λ01(t)− eβ2a+b
Λ02(t)

}
. (4.34)

As discussed earlier the frailty term, or equivalently, the random effect b represents the

unobserved heterogeneity among the individuals. As such, the above conditional risk represents

individual risk, and the risk contrasts the individual risk contrasts. We therefore have the

individual risk difference (IRD) and the individual risk ratio (IRR). Under the random effects

model, for i = 1,2, ...,n, the predicted random effect is b̂i = E(bi |Oi, θ̂).[59] We then obtain the

predicted IRD and the predicted IRR. For inference on these individual risk contrasts, Bayesian

bootstrap[25] may be used which, unlike the usual resampling with replacement, preserves

each individual i in the original data set. Details of the Bayesian bootstrap are provided in

the Supplementary Materials. Note that because b is random, the common terminology in the

literature is ‘predicted’ instead of ‘estimated’, and ‘prediction interval (PI)’ instead of CI.

4.6 Simulation

We carry out extensive Monte Carlo simulation studies in order to assess the performance

of the estimation procedure described above. We use the idea from [15] to simulate data under

the marginal structural model (4.10) - (4.12). We also adapt the method from [23], originally
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designed for simulating semi-competing risk data with gamma frailty. Very briefly the following

steps are used to to generate the data; more details are provided in the Supplementary Materials.

• Generate U1 ∼U(0,1) and U2 ∼U(0,1);

• Generate confounder Z = (Z1,Z2,Z3)
ᵀ, with Z j = U1 +U2 + ε j, j = 1,2,3, where ε1 ∼

N(0,1), ε2 ∼ N(0,1.5) and ε3 ∼ N(0,1.8);

• Generate A∼ Bernoulli(pA), where pA = logit−1(α0 +α1Z1 +α2Z2 +α3Z3), with α0 =

0.5,α1 = 0.1,α2 =−0.1,α3 =−0.2;

• Let λ01 (t) = λ02 (t) = 2e−tI(0≤ t ≤ 3)+2e−3I(t > 3) and λ03 (t) = 2λ01 (t). Then with

probability P(T1 = ∞) given in the Supplementary Materials,

T2 = Λ
−1
01

(
− log(U1)

exp(β1A+b)+ exp(β2A+b)

)
;

and with probability 1−P(T1 = ∞),

T1 = Λ
−1
01

(
− log(U1)

exp(β1A+b)+ exp(β2A+b)

)
,

T2 = Λ
−1
01

(
− log(U2)

2exp(β3A+b)
+Λ01(t1)

)
.

• Generate Censoring time C∼U(0.4,0.5), which leads to an average censoring rate around

20%.

We set β1 = β2 = 1, β3 = 0.5. Weights are calculated by fitting the logistic regression

with Z1,Z2,Z3 as covariates. We run 500 simulations for each case. Table 4.1 and 4.2 report, for

sample size n=250 and n=500, respectively, the estimate, the empirical standard deviation (SD),

the mean of estimated standard errors (SE), and the coverage probability (CP) of the nominal

95% confidence intervals. Under the usual Markov model, we estimate the asymptotical variance
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of β j, j = 1,2,3 using both the model-based formulas, which ignores the uncertainty in the

estimation of the weights, and bootstrap.

Table 4.1. Simulation results with n = 250; β1 = β2 = 1 and β3 = 0.5. The true value for
Λ01(1) = Λ02(1) = 1.264, and Λ03(1) = 2.528.

Usual Markov Model General Markov Model
σ2 Par Estimate SD model/boot SE model/boot CP Par Estimate SD SE CP
0 β1 0.995 0.211 0.214 / 0.219 95.6% / 95.4% β1 1.063 0.197 0.201 94.8%

β2 1.005 0.206 0.203 / 0.210 94.8% / 95.1% β2 1.042 0.201 0.203 94.8%
β3 0.503 0.268 0.263 / 0.260 94.6% / 94.8% β3 0.497 0.213 0.211 95.3%
Λ01(1) 1.219 0.264 0.259 94.8% Λ01(1) 1.323 0.275 0.280 94.6%
Λ02(1) 1.206 0.285 0.281 94.8% Λ02(1) 1.315 0.293 0.289 95.3%
Λ03(1) 2.470 0.484 0.491 96.1% Λ03(1) 2.472 0.367 0.365 95.6%

σ2 0.038 0.018 0.030 98.0%
0.5 β1 0.778 0.198 0.196 / 0.199 80.9% / 81.3% β1 1.011 0.258 0.267 96.1%

β2 0.782 0.204 0.209 / 0.204 82.4% / 81.8% β2 1.005 0.261 0.267 96.1%
β3 0.215 0.218 0.218 / 0.213 79.6% / 78.9% β3 0.509 0.269 0.275 94.9%
Λ01(1) 1.096 0.168 0.166 77.7% Λ01(1) 1.292 0.367 0.364 94.9%
Λ02(1) 1.036 0.193 0.200 78.3% Λ02(1) 1.315 0.362 0.368 95.1%
Λ03(1) 2.749 0.406 0.403 83.5% Λ03(1) 2.460 0.518 0.521 95.6%

σ2 0.572 0.199 0.193 92.9%
1 β1 0.670 0.210 0.202 / 0.205 66.2% / 65.9% β1 0.993 0.258 0.270 95.5%

β2 0.679 0.198 0.201 / 0.195 68.6% / 69.1% β2 0.992 0.272 0.262 94.9%
β3 0.104 0.243 0.239 / 0.240 60.0% / 60.4% β3 0.492 0.316 0.309 93.8%
Λ01(1) 0.984 0.172 0.177 69.1% Λ01(1) 1.290 0.395 0.394 94.5%
Λ02(1) 0.987 0.147 0.145 67.5% Λ02(1) 1.295 0.396 0.402 94.1%
Λ03(1) 3.010 0.548 0.549 71.8% Λ03(1) 2.459 0.603 0.595 95.7%

σ2 1.089 0.270 0.275 93.6%
2 β1 0.561 0.201 0.205 / 0.202 41.8% / 41.7% β1 0.985 0.301 0.291 95.9%

β2 0.555 0.209 0.202 / 0.211 40.4% / 39.6% β2 0.989 0.303 0.295 95.7%
β3 0.003 0.233 0.226 / 0.229 33.2% / 34.0% β3 0.488 0.368 0.359 94.8%
Λ01(1) 0.920 0.134 0.128 19.4% Λ01(1) 1.233 0.330 0.333 94.3%
Λ02(1) 0.923 0.146 0.151 21.8% Λ02(1) 1.246 0.329 0.335 93.8%
Λ03(1) 3.785 0.615 0.610 11.5% Λ03(1) 2.513 0.583 0.590 96.6%

σ2 1.912 0.318 0.326 93.1%
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Table 4.2. Simulation results with n = 500; β1 = β2 = 1 and β3 = 0.5. The true value for
Λ01(1) = Λ02(1) = 1.264, and Λ03(1) = 2.528.

Usual Markov Model General Markov Model
σ2 Par Estimate SD model/boot SE model/boot CP Par Estimate SD SE CP
0 β1 1.003 0.147 0.147 / 0.146 95.0% / 96.0% β1 1.031 0.147 0.146 94.2%

β2 1.000 0.141 0.137 / 0.145 94.8% / 95.5% β2 1.040 0.145 0.147 95.5%
β3 0.499 0.149 0.153 / 0.151 94.6% / 95.2% β3 0.542 0.157 0.161 95.5%
Λ01(1) 1.233 0.210 0.202 95.4% Λ01(1) 1.226 0.200 0.194 94.1%
Λ02(1) 1.254 0.204 0.198 94.8% Λ02(1) 1.214 0.232 0.202 93.9%
Λ03(1) 2.465 0.344 0.336 94.5% Λ03(1) 2.544 0.331 0.339 94.4%

σ2 0.029 0.011 0.023 98.6%
0.5 β1 0.762 0.141 0.143 / 0.141 71.2% / 70.0% β1 1.006 0.227 0.230 95.8%

β2 0.775 0.151 0.148 / 0.146 75.4% / 73.9% β2 0.997 0.229 0.233 96.1%
β3 0.219 0.158 0.160 / 0.158 68.0% / 66.8% β3 0.496 0.211 0.202 94.4%
Λ01(1) 1.183 0.138 0.130 69.4% Λ01(1) 1.252 0.302 0.293 94.6%
Λ02(1) 1.178 0.146 0.139 68.6% Λ02(1) 1.249 0.295 0.292 94.8%
Λ03(1) 2.734 0.361 0.356 72.1% Λ03(1) 2.485 0.501 0.489 95.2%

σ2 0.566 0.179 0.186 93.3%
1 β1 0.667 0.146 0.137 / 0.143 55.2% / 56.4% β1 1.000 0.209 0.202 94.4%

β2 0.661 0.142 0.150 / 0.143 59.4% / 56.3% β2 0.998 0.211 0.202 95.2%
β3 0.105 0.153 0.154 / 0.153 47.2% / 49.4% β3 0.498 0.223 0.216 94.8%
Λ01(1) 1.018 0.124 0.123 56.7% Λ01(1) 1.283 0.273 0.278 96.1%
Λ02(1) 1.035 0.126 0.125 52.8% Λ02(1) 1.289 0.269 0.275 95.5%
Λ03(1) 2.868 0.441 0.435 62.8% Λ03(1) 2.475 0.511 0.499 94.7%

σ2 1.063 0.189 0.184 93.9%
2 β1 0.563 0.149 0.142 / 0.144 33.8% / 35.2% β1 1.009 0.268 0.273 95.6%

β2 0.550 0.149 0.147 / 0.144 34.2% / 34.4% β2 1.007 0.271 0.276 95.6%
β3 0.005 0.165 0.167 / 0.159 14.6% / 13.8% β3 0.492 0.291 0.303 94.4%
Λ01(1) 0.920 0.104 0.099 10.8% Λ01(1) 1.244 0.302 0.300 94.6%
Λ02(1) 0.933 0.111 0.108 12.4% Λ02(1) 1.250 0.306 0.301 95.2%
Λ03(1) 3.721 0.557 0.551 9.3% Λ03(1) 2.479 0.499 0.506 94.9%

σ2 1.924 0.255 0.252 93.0%
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When σ2 = 0, we see that the estimation under the usual Markov model is nearly unbiased,

in particular for the larger sample size n = 500, and the coverage of the confidence intervals (CI)

based on the normal approximation is very close to the nominal level. We note that the margin

of error using 500 simulation runs to estimate the coverage of 95% CI’s is 0.019, so that the

range of coverage probability (CP) should be mostly within 93.1% to 96.9%. We also see that

when σ2 = 0, the estimation under the general Markov mode performed well for β j and Λ0 j(01),

j = 1,2,3. However, the mean of the estimated standard error of σ2 is much higher than the

empirical standard deviation, and the CI overcovers. We note that this is the boundary cases

considered in [68], where the asymptotical distribution is no longer normal.

When σ2 > 0, we see that our estimator under the general Markov model is quite accurate

for even the smaller sample size n = 250, the SEs are close to the sample SD and the coverage

probabilities are good. The estimates under the usual Markov model is obviously biased with

poor coverage of the CI’s when σ2 > 0.

Finally, we note that the variances of the estimators are generally larger under the general

Markov, as more parameter is estimated.

4.7 Application to HAAS study

For this analysis, we are interested in the effect of mid-life alcohol exposure on cogni-

tive impairment as well as death, which are semi-competing risks. In the HHP-HAAS study,

alcohol consumption was assessed by self-report and translated into units of drinks per month.

Estimates of the total ethanol intake from reported drinking patterns were calculated as ounces

per month for beer, liquor, wine, and sake using algorithms based on average unit sizes and

usual alcohol percentages. The alcohol consumption was then dichotomized into light drinking

(≤30.1 oz/month) vs heavy drinking (>30.1 oz/month). The “mid-life” alcohol exposure was

collected during the HHP study between 1965-73. The Heavy Drinking group consisted of

individuals who had heavy drinking at one point during mid-life, and the Light Drinking those
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who never had heavy drinking during mid-life. Cognitive impairment was based on scores

from the Cognitive Assessment and Screening Instrument (CASI), where a score below 74 was

considered a moderate impairment (MI).

The confounders were decided by literature review and clinical experiences, as well as

availability of the data. Literatures show that vital data such as blood pressure and heart rate are

associated with drinking habits, as well as the cognitive health. Meanwhile, demographic data

such as age, years of education, are also related to cognitive impairment and drinking habits. The

Apolipoprotein E is the first identified genetic susceptibility factor for sporadic AD. Towards

understanding determinants of cognitive impairment and factors associated with drinking habits,

the final set of baseline confounders are baseline CASI score, systolic blood pressure, heart

rate, Apolipoprotein E genotype positive, years of education and baseline age. We only include

participants with normal cognitive function (CASI ≥ 74) at baseline, and after excluding missing

values for exposure and confounders, we have 1881 participants in total.

Table 4.3. Event counts by heavy versus light alcohol drinking in the HAAS data

Heavy Drinking
(n = 491)

Light Drinking
(n = 1390)

Overall
(n = 1881)

Event
censor 84 (17.1%) 273 (20.9%) 357 (19.0%)
death without moderate impairment 163 (33.2%) 474 (34.1%) 637 (33.9%)
moderate impairment then censor 57 (11.6%) 204 (14.7%) 261 (13.9%)
moderate impairment then death 187 (38.1%) 439 (31.6%) 626 (33.3%)

Since HAAS is a long-term epidemiology study, lost to follow-up occurs at every exam

visit. On the other hand, death certificates were obtained for many participants, even after lost to

follow-up. For this reason, we needed to properly define the death for the semi-competing risks

data. If the death date is after the participant’s recorded last visit date from the study, we consider

this participant lost to follow-up. More details of data pre-processing can be found in [71].

Propensity scores (PS) were calculated using R package twang (Toolkit for Weighting

and Analysis of Nonequivalent Groups), which estimates the PS using boosted regression as
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the predicted probability of being heavy versus light drinking, conditional on the measured

baseline confounders. Before applying the IPW approach to the multi-state model, we obtained

stabilized weights and trimmed them within (0.1, 10). In Supplementary Materials we show the

PS histograms in the heavy and light drinking groups as a check of the positivity assumption,

where the PS distributions are seen to be bounded away from zero and one. We also plot the

standardized mean difference (SMD) to check the balance of each confounder before and after

weighting, where the SMD’s of all the confounders are within the interval [-0.1, 0.1] after

weighting.

We apply our proposed methods to the HAAS data. We first fit the usual Markov structural

model and the results are in the top half of Table 4.4. We see that the transition rates to moderate

impairment or death without moderate impairment are significantly higher in the heavy drinking

group compared to the light drinking group. But we don’t see a significant difference in the

transition rates to death after moderate impairment.

We then fit the general Markov structural model and the results are in the bottom half of

Table 4.4. The convergence plot of the parameters and the likelihood during the weighted EM

algorithm are provided in the Supplement Materials, where we stopped at 168 EM steps for the

final results. Compared to the results under the usual Markov model, the magnitude of all three

estimated effects are further away from the null, and all three transition rates are significantly

higher in the heavy drinking group than the light drinking group. The phenomenon of more

significant and away-from-the-null regression effects after accounting for the frailty is known in

the literature under the Cox model.[8]

Finally, we estimate the causal risk contrasts under the structural models. For illustration

purposes we fix t1 = 8 years in F12(t1, t2;a) and F12(t1, t2|b;a); that is, the cumulative incidence

rate of death following MI by 8 years. We show the estimated risk curves in Figure 4.4 first

row under the usual Markov model, and the risk contrasts in Table 4.5 for heavy versus light

drinking. It is seen that the risk contrasts for the two competing events, MI and death without

MI, are significantly different from the null at 5 and 10 years, but not so at 15 and 20 years. The
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Table 4.4. Parameter estimates of heavy (a = 1) versus light (a = 0) drinking using the HAAS
data

Estimate SE Hazard Ratio (HR) 95% CI of HR
The usual Markov model
moderate impairment 0.202 0.079 1.224 [1.047, 1.431]*
death without moderate impairment 0.285 0.094 1.331 [1.105, 1.603]*
death after moderate impairment 0.152 0.089 1.164 [0.975, 1.388]
The general Markov model
moderate impairment 0.264 0.072 1.302 [1.131, 1.499]*
death without moderate impairment 0.359 0.103 1.431 [1.170, 1.752]*
death after moderate impairment 0.274 0.109 1.315 [1.062, 1.628]*
σ2 0.752 0.107 - [0.542, 0.962]

* indicates statistical significance at α = 0.05 two-sided

risk contrasts for death following MI by 8 years are not significantly different from the null at 10,

15 or 20 years under the usual Markov model.

We also show the predicted conditional risk curves at different b values (0,±σ̂,±2σ̂) in

Figure 4.4, rows 2-6. In Figure 4.5 we plot the IRD and IRR at 10 years with 95% PI’s of 100

participants from every percentile of the predicted b values. We note the different significance

results for IRD and IRR: the IRD tends to be significantly different from the null for b values

closer to zero, while the IRR tends to be significantly different from the null for negative b values.

This appears to be generally the case for all three outcomes: MI, death without MI, and death

following MI by 8 years. More discussion will follow in the next section.

Table 4.5. Estimated risk difference (RD) and risk ratio (RR) under the usual Markov model
for moderate impairment (MI), death, and death following MI by t1 = 8 years.

Time RD (95% CI) RR (95% CI)
MI 5 0.026 (0.009, 0.043)* 1.203 (1.073, 1.364)*

10 0.044 (0.010, 0.080)* 1.142 (1.031, 1.265)*
15 0.036 (−0.003, 0.078) 1.085 (0.991, 1.189)
20 −0.006 (−0.053, 0.047) 0.989 (0.909, 1.086)

Death 5 0.014 (0.004, 0.026)* 1.280 (1.071, 1.522)*
10 0.042 (0.008, 0.077)* 1.203 (1.033, 1.396)*
15 0.042 (−0.005, 0.084) 1.130 (0.986, 1.279)
20 0.024 (−0.028, 0.073) 1.061 (0.931, 1.189)

Death after MI 10 0.036 (−0.007, 0.081) 1.136 (0.973, 1.304)
15 0.052 (−0.011, 0.107) 1.071 (0.985, 1.151)
20 0.014 (−0.002, 0.030) 1.014 (0.998, 1.032)

* indicates statistical significance at α = 0.05 two-sided.
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Figure 4.4. Risk plots for HAAS data under the usual Markov model, row 1; and conditional
risk plots under the general Markov model, rows 2-6, for b = 2σ̂(1.734), σ̂(0.867), 0,

−σ̂(−0.867) and −2σ̂(−1.734), respectively. The columns from left to right are: moderate
impairment (MI), death without MI, and death following MI by t1 = 8 years.

56



−2 0 2 4

−
0.

10
0.

00
0.

10

(a)

Predicted b

In
di

vi
du

al
 R

D

−2 0 2 4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

(b)

Predicted b

In
di

vi
du

al
 R

R

−2 0 2 4

−
0.

10
0.

00
0.

10

(c)

Predicted b

In
di

vi
du

al
 R

D

−2 0 2 4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

(d)

Predicted b

In
di

vi
du

al
 R

R

−2 0 2 4

−
0.

10
0.

00
0.

10

(e)

Predicted b

In
di

vi
du

al
 R

D

−2 0 2 4

0.
4

0.
8

1.
2

1.
6

(f)

Predicted b

In
di

vi
du

al
 R

R

Figure 4.5. Individual risk difference (left) and individual risk ratio (right) at 10 years with
95% prediction intervals, for 100 participants of the HAAS study at every percentile of the

predicted b’s. Top row: moderate impairment (MI); middle row: death without MI; bottom row:
death following MI by t1 = 8 years.
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4.8 Discussion

In this paper we applied the three-state illness-death model to observational data using

the potential outcomes framework. Inverse probability of treatment weighting is used to fit

these structural models. Under the Cox model formulation, typical software used to fit the Cox

regression model can be used to fit the usual Markov model in the absence of frailty. With

the frailty term under the general Markov model, a weighted EM algorithm is developed and

its convergence property studied. The simulation studies showed the good performance of our

proposed methods.

For applications in practice, we have defined cumulative risk based causal contrasts and

illustrated their use. Under the general Markov model with frailty, these give rise to individual

risk contrasts IRD and IRR. This is consistent with the random effects modeling formulation,

where individual trajectories, for example, from longitudinal data can be estimated and predicted.

We have extended this feature to the causal inference setting, when the individual heterogeneity

is modeled using random effects. It might also be of some interest to compare the IRD and

IRR to the RD and RR under the usual Markov model without frailty, and note some similarity

between the first and the fourth row of Figure 4.4, where the random effect b is set to its mean

value of zero. We note that these two sets of contrasts are not the same, especially since the Cox

model is not collapsible; and the interpretations are different for these two sets of contrasts.

Semi-competing risks data have recently been considered under the mediation setup with

the non-terminal event as a mediator. [20, 69] Our multi-state structural models instead consider

the total effect of the exposure on all three outcomes: non-terminal event, and terminal event

with and without non-terminal event.

For future work, since the IPW estimator is biased if the propensity score model is

misspecified, an augmented IPW (AIPW) estimator with doubly robust properties can protect

against such model misspecification. It would also allow us to apply machine learning or

nonparametric methods to the propensity score model. [43] and [55] have already developed
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the AIPW estimator for the marginal structural Cox model, and it is nature to extend their work

for the models in this paper. This is currently under investigation. Another future direction

is to develop sensitivity analysis approaches for various assumptions including unmeasured

confounding as well as modeling assumptions that are used.

The R codes developed in this work have been implemented in the R package semicm-

prskcoxmsm that is publicly available on CRAN.
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Chapter 5

Augmented IPW for Illness-Death Usual
Markov Models

5.1 Introduction

MSM with IPW has been proved as a useful tool for estimating causal effect in causal

inference for survival data [16]. However, the effect will be biased if the propensity scores (PS)

are not correctly specified. In the observational studies, the relationship between confounders

are complicated, and involves with lots of interactions. Under this circumstances, simply put

the parametric model such as logistic regression model on PS will cause bias for estimating

causal effect. To protect the possibility of misspecification of PS mode, the augmented IPW

estimator were developed. Nowadays, as IPW estimator are widely used under different setting,

AIPW estimator are also derived. For example, [47] proposed an AIPW estimator under the

setting for point exposure and continuous outcome, they formed the problem for estimating

causal effect using potential outcome framework as the missing data problem, and propose the

locally and globally adaptive semiparametric efficient estimators. [48] further extended to the

survival analysis with informative censoring, and proposed the augmented inverse probability of

censoring weighted (AIPCW) estimator. [43] and [55] also derived the AIPW estimator under

Cox MSM proportional hazards model, and used machine learning models for both PS model

and outcome model. The AIPW estimators come with the IPW part and augmentation part,

which generally need us to put the model on both the PS model and the conditional outcome
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regression model. It has the doubly robust property that the ATE is unbiased estimated if either

the propensity score model is correctly specified or the outcome regression is correctly specified,

or both are correctly specified. Many papers have conducted intensive simulation studies to show

the plausible properties of AIPW estimators. Moreover, as recent developing of machine learning

models, and we can put the machine learning model to both parts of AIPW estimator, then the

high-dimensional confounder space in some large-scale observational study can be handled.

From previous project, we have derived the IPW estimator under MSM for competing

risks and semi-competing risks setting. However, because of the complexity of semi-competing

risks data structure, few studies extends to the AIPW estimator. However, semi-competing

risk data becomes more and more common in survival analysis, especially in Alzheimer’s or

HIV study, thus extending current causal inference methodology to semi-competing risks data

is important, and will benefit for epidemiologists or clinical researchers. We have discussed

literatures for causal analysis with semi-competing risks data in the previous Chapter, most of

them focus on principle stratification or mediation analysis. For this paper, we extended the easy

to understand illness-model, and derive the AIPW estimators under the MSM illness-death usual

Markov setting. We gave the detailed derivation by starting from IPW estimating equation, and

show how to derive the augmentation based on IPW scores. We discussed the possibilities and

difficulties of putting the conditional model on outcome, and the next step.

5.2 Marginal Structure usual Markov illness-death model

Following [73], let A be the binary treatment assignment, i.e. A ∈ 0,1. Let Ca, T a
1

and T a
2 be the counterfactural censoring, non-terminal event time, and terminal event time

under treatment a. If the subject fails before the non-terminal event occurs, then we define

T a
1 = ∞. Let Z be the p-dimensional vector of covariates. We also let: Xa

2 = min(T a
2 ,C

a),

Xa
1 = min(T a

1 ,min(T a
2 ,C

a)) and the event indicator δa
1 = I

{
Xa

1 = T a
1
}

, δa
2 = I

{
Xa

2 = T a
2
}

. We

also denote π(Z) = P(A = 1|Z), often referred to as the propensity score.
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5.2.1 The Usual Markov Illness–Death Model

Let λ1(t1;a), λ2(t2;a) and λ12(t2|t1;a) be the transition rates corresponding to the coun-

terfactual states under the three-state model, a = 0,1. That is,

λ1(t1) = lim
∆→0+

P
(
T a

1 ∈ [t1, t1 +∆) | T a
1 ≥ t1,T a

2 ≥ t1
)

∆
, (5.1)

λ2(t2) = lim
∆→0+

P
(
T a

2 ∈ [t2, t2 +∆) | T a
1 ≥ t2,T a

2 ≥ t2
)

∆
, (5.2)

λ12(t2 | t1) = lim
∆→0+

P
(
T a

2 ∈ [t2, t2 +∆) | T a
1 = t1,T a

2 ≥ t2
)

∆
. (5.3)

[3] discussed about modeling each transition intensity by a Cox type proportional inten-

sities regression model. Following the same idea, we can postulate the semi-parametric Cox

models for these transition rates, which are also hazard functions [67, 3]. In particular, we

consider the following usual Markov illness-death structural model from [67].

λ1(t1;a) = λ01(t1)eβ1a, t1 > 0; (5.4)

λ2(t2;a) = λ02(t2)eβ2a, t2 > 0; (5.5)

λ12(t2|t1;a) = λ03(t2)eβ3a, 0 < t1 < t2. (5.6)

subsectionAssumptions

We assume the following, which are commonly used assumptions in order to identify the

causal estimands to be defined later:

(I) Stable unit treatment value assumption (SUTVA): there is only one version of the

potential outcomes and that there is no interference between subjects.

(II) Exchangeability: (T a
1 ,T

a
2 )⊥ A|Z .

(III) Positivity: π(Z)> 0 .

(IV) Consistency: If A = a, then T a
1 = T1, T a

2 = T2, Ca =C.

(V) Non-informative censoring: (T a
1 ,T

a
2 ,Z)⊥Ca, Ca ⊥ Z.
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5.2.2 Martingale

Following [52], we define the counterfactual counting process: Na
k`(t): counting from

state k to state ` and Y a
j (t): counterfactual at-risk process in state j under treatment a,

Na
01(t) = 1(Xa

1 ≤ t,δa
1 = 1) , (5.7)

Na
02(t) = 1(Xa

2 ≤ t,δa
1 = 0,δa

2 = 1) , (5.8)

Na
12(t) = 1(Xa

2 ≤ t,δa
1 = 1,δa

2 = 1) . (5.9)

We also have counterfactual at risk process in state 0 and state 1,

Y a
0 (t) = 1(Xa

1 ≥ t) , (5.10)

Y a
1 (t) = 1(Xa

2 ≥ t ≥ Xa
1 ) . (5.11)

Based on standard counting process theory, under non-informative censoring assumption,

the counterfactual martingales are defined as following,

Ma
01(t) = Na

01(t)−
∫ t

0
Y a

0 (u)λ01(u)eβ1adu, (5.12)

Ma
02(t) = Na

02(t)−
∫ t

0
Y a

0 (u)λ02(u)eβ2adu, (5.13)

Ma
12(t) = Na

12(t)−
∫ t

0
Y a

1 (u)λ03(u)eβ3adu, (5.14)

where Mk`(t) are orthogonal local square integrable martingales with predictable variation

processed given by < Mk` > (t) =
∫ t

0 Y a
k (u)λ0` (u)eβ`adu, for k`= {01,02,12}.

For the observed data, assume a well-defined time zero, we let random variables T1 and T2

denote observed time to the non-terminal and the terminal event since time zero, respectively. If a

subject does not experience the non-terminal event before the terminal event, we define T1 =+∞,

[67, 12, 73]. If we denote C as observed censoring time, we then have the observed time
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X2 = min(T2,C), X1 = min(T1,min(T2,C)) and the observed event indicator δ1 = I {X1 = T1},

δ2 = I {X2 = T2}. We also denote the joint density of T1 and T2 as f (t1, t2) in the upper wedge

0 < t1 ≤ t2, and the density of T2 along the line t1 =+∞ as f∞(t2) for t2 > 0. We also denote the

bivariate survival function of T1 and T2 in the upper wedge as S̃(t1, t2). Based on the observed

data, we further define the observed counting process,

N01(t) = 1(X1 ≤ t,δ1 = 1) , (5.15)

N02(t) = 1(X2 ≤ t,δ1 = 0,δ2 = 1) , (5.16)

N12(t) = 1(X2 ≤ t,δ1 = 1,δ2 = 1) , (5.17)

and

Y0(t) = 1(X1 ≥ t) , (5.18)

Y1(t) = 1(X2 ≥ t ≥ X1) . (5.19)

5.3 Augmented IPW Scores

We proved from [73] that β j, j = 1,2,3 are variationally independent, and can be

estimated separately by fitting three Cox models. Following [9], and motivating by the fact that

Mk`(t) is a zero-mean martingale process, we then obtain the full data scores,

UF
k`1 = ∑

a=0,1
dMa

k`(u), (5.20)

UF
k`2 = ∑

a=0,1

∫
τ

0
adMa

k`(u), (5.21)

where k`= {01,02,12}.

To estimate β j, j = 1,2,3, we use the Inverse Probability Weighting (IPW) approach to
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create a pseudo-randomized sample. We denote w = A/P(A = 1|Z)+(1−A)/{1−P(A = 1|Z)}

as the IP weight, and obtain the IP weighted full-data scores:

U IPW
k`1 = wdMk`(t), (5.22)

U IPW
k`2 =

∫
τ

0
wAdMk`(t), (5.23)

where Mk`(t) = AM1
k`(t)+(1−A)M0

k`(t), k`= {01,02,12}. Noticed that because of consistency,

we have

M01(t) = N01(t)−
∫ t

0
Y0 (u)λ01 (u)eβ1Adu, (5.24)

M02(t) = N02(t)−
∫ t

0
Y0 (u)λ02 (u)eβ2Adu, (5.25)

M12(t) = N12(t)−
∫ t

0
Y1 (u)λ03 (u)eβ3Adu. (5.26)

In [73], we studied the performance of IPW illness-death usual Markov models for

estimating β j, j = 1,2,3 when the weights w are known or consistently estimated. However, the

propensity score model might be misspecified, and the IPW approach will be biased. To protect

against possible misspecification of the propensity score model, we now augment the IPW scores

to obtain a doubly robust score Uk`s, s = 1,2. Following [60] and [43] we obtain the following

augmented IPW score:

U =U IPW −Π
(
U IPW |Γ2

)
, (5.27)

where Γ2 is the propensity score tangent space (also is called as augmentation space), and we

denote Π(q(·)|Γ2) as the projection of a function q(·) onto Γ2 in the Hilbert space equipped with
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covariance inner product. We have the following equations to describe Π
(
U IPW

k` |Γ2
)
:

Π
(
U IPW

k`1 |Γ2
)
= wdMk`(t)−wdE{Mk`(t)|A,Z}

+dE{Mk`(t)|A = 1,Z}+dE{Mk`(t)|A = 0,Z}, (5.28)

Π
(
U IPW

k`2 |Γ2
)
=

∫
τ

0
[wAdE{Mk`(t)|A,Z}−dE{Mk`(t)|A = 1,Z}] . (5.29)

We further plug (5.28) and (5.29) into (5.27), we obtain the AIPW scores:

Uk`1 = wdMk`(t)−wdE{Mk`(t)|A,Z}

+dE{Mk`(t)|A = 1,Z}+dE{Mk`(t)|A = 0,Z}, (5.30)

Uk`2 =
∫

τ

0
[wAdMk`(t)−wAdE{Mk`(t)|A,Z}+dE{Mk`(t)|A = 1,Z}] , (5.31)

where k`= 01,02,12.

Let λ1(t1|A,Z), λ12(t2|A,Z), λ2(t2|A,Z) be the conditional transition hazards, conditional

on A and Z, for non-terminal event, terminal event without non-terminal and terminal event fol-

lowing non-terminal event respectively. We then can define Λ1(t1|A,Z), Λ2(t2|A,Z), Λ12(t2|A,Z)

as the conditional transition cumulative hazards. We further denote G(t|A,Z) as the conditional

survivorship for censoring C, S(t|A,Z) as the conditional overall survival function for T1,T2,

and S(t|A,Z) = exp{−Λ1(t|A,Z)−Λ2(t|A,Z)}. We also recall that Λ0 j(t), j = 1,2,3 is the

cumulative baseline hazard function from structural model (5.4) - (5.6). After the derivation as
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given in the Appendix, we obtain

E{M01(t)|A,Z}=
∫ t

0
G(u|A)S(u|A,Z)dΛ1(u|A,Z)

−
∫ t

0
G(u|A)S(u|A,Z)eβ1AdΛ01(u), (5.32)

E{M02(t)|A,Z}=
∫ t

0
G(u|A)S(u|A,Z)dΛ2(u|A,Z)

−
∫ t

0
G(u|A)S(u|A,Z)eβ2AdΛ02(u), (5.33)

E{M03(t)|A,Z}=
∫ t

0
G(u|A)dF12(u|A,Z)

−
∫ t

0
G(u|A)

{
S̃(0,u|A,Z)−S(u|A,Z)

}
eβ3AdΛ03(u). (5.34)

Recall we defined the propensity score π(Z). We also denote

U01 =U01(β1,Λ01;π,Λ1,Λ2,G),

U02 =U02(β2,Λ02;π,Λ1,Λ2,G),

U12 =U12(β3,Λ03;π,Λ1,Λ2,Λ12,G),

where π,Λ1,Λ2,Λ12,G are the nuisance parameters in the model.

We also denote πo,Λo
1,Λ

o
2,Λ

o
12,G

o as the true value of those quantities, we then have the

following doubly robust property for score functions Uk` = [Uk`1,Uk`2]
ᵀ, k` ∈ {01,02,12} with

respect to π and Λ1,Λ2,Λ12.

Theorem 1. Doubly robust property: Under Assumption (I) - (V):

(1) E{U01(β
o
1,Λ

o
01;π,Λ1,Λ2,Go)}= 0, if π = πo or Λ1 = Λo

1,Λ2 = Λo
2;

(2) E{U02(β
o
2,Λ

o
02;π,Λ1,Λ2,Go)}= 0, if π = πo or Λ1 = Λo

1,Λ2 = Λo
2;

(3) E{U12(β
o
3,Λ

o
03;π,Λ1,Λ2,Λ12,Go)}= 0, if π = πo or

Λ1 = Λo
1,Λ2 = Λo

2,Λ12 = Λo
12.

Details of proof are shown in the Appendix.
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Given the i.i.d observed data (X1i,X2i,δ1i,δ2i,Ai,Zi), i = 1,2, ...,n, we solve

1
n

n

∑
i=1

Ukl1,i = 0, (5.35)

1
n

n

∑
i=1

Ukl2,i = 0, (5.36)

where k`= 01,02,12, to estimate β j and Λ0 j, j = 1,2,3, respectively.

Following [43], we denote h(·|A = a,Zi) = hi(·,a) for any function with the form h(·|A =

a,Z). For example, we have: Si(t,a) = S(t|A = a,Zi). We also denote R0i(t,S,G) = Y0i(t)−

Gi(t,Ai)Si(t,Ai) and R1i(t,S,G)=Y1i(t)−Gi(t,Ai){Si(0, t,Ai)−Si(t,Ai)}. Then plugging (5.32)

- (5.34) into (5.30) and (5.31), we have the following AIPW scores

U011,i = w{dN01(u)−G(u,A)S(u,A)dΛ1(u,A)}+ ∑
a=0,1

G(u,a)S(u,a)dΛ1(u,a)

−d

{
weβ1AY0(u)−wG(u,A)S(u,A)eβ1A + ∑

a=0,1
G(u,a)S(u,a)eβ1a

}
Λ01(t), (5.37)

U012,i =
∫ t

0

[
wA{dN01(u)−G(u,A)S(u,A)dΛ1(u,A)}+G(u,1)S(u,1)dΛ1(u,1)

−d
{

wAeβ1AY0(u)−wAG(u,A)S(u,A)eβ1A +G(u,1)S(u,1)eβ1
}

Λ01(t)

]
(5.38)

to estimate β1 and Λ01;

U021,i = w{dN02(u)−G(u,A)S(u,A)dΛ2(u,A)}+ ∑
a=0,1

G(u,a)S(u,a)dΛ2(u,a)

−d

{
weβ2AY0(u)−wG(u,A)S(u,A)eβ2A + ∑

a=0,1
G(u,a)S(u,a)eβ2a

}
Λ02(t), (5.39)

U022,i =
∫ t

0

[
wA{dN02(u)−G(u,A)S(u,A)dΛ2(u,A)}+G(u,1)S(u,1)dΛ2(u,1)

−d
{

wAeβ2AY0(u)−wAG(u,A)S(u,A)eβ2A +G(u,1)S(u,1)eβ2
}

Λ02(t)

]
(5.40)
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to estimate β2 and Λ02; and

U121,i = w{dN12(u)−G(u,A)dS12(u,A)}+ ∑
a=0,1

G(u,a)dS12(u,a)

−d
[

weβ3AY1(u)−wG(u,A)
{

S̃(0,u,A)−S(u,A)
}

eβ3A

+ ∑
a=0,1

G(u,a)
{

S̃(0,u,A)−S(u,A)
}

eβ2a
]

Λ02(t), (5.41)

U122,i =
∫ t

0

(
wA{dN12(u)−G(u,A)dS12(u,A)}+G(u,1)dS12(u,A)

−d
[

wAeβ3AY1(u)−wAG(u,A)
{

S̃(0,u,A)−S(u,A)
}

eβ3A

+G(u,1)
{

S̃(0,u,1)−S(u,1)
}

eβ3

]
Λ03(t)

)
(5.42)

to estimate β3 and Λ03.

For `= 0,1, let

S (`)
01 (t;β1,π,Λ1,Λ2,G) =

1
n

n

∑
i=1
{ wi exp(β1Ai)A`

i R0i(t,S,G)

+ ∑
a=0,1

a` exp(β1a)Gi(t,a)Si(t,a) } , (5.43)

S (`)
02 (t;β2,π,Λ1,Λ2,G) =

1
n

n

∑
i=1
{ wi exp(β2Ai)A`

i R0i(t,S,G)

+ ∑
a=0,1

a` exp(β2a)Gi(t,a)Si(t,a) } , (5.44)

S (`)
12 (t;β3,π,Λ1,Λ2,Λ12,G) =

1
n

n

∑
i=1

[
wi exp(β3Ai)A`

i R1i(t,S,G)

+ ∑
a=0,1

a` exp(β3a)Gi(t,a)
{

S̃i(0, t,a)−Si(t,a)
}]

. (5.45)
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We first solve (5.35) to obtain Λ0 j, j = 1,2,3. For any t ∈ [0,τ], we have the following:

Λ01(t;β1,π,Λ1,Λ2,G) =
∫ t

0

n

∑
i=1

[ wi {dN01i(u)−Gi(u,Ai)Si(u,Ai)dΛ1i(u,Ai)}

− ∑
a=0,1

G(u,a)Si(u,a)dΛ1i(u,a) ]

× 1

n ·S (0)
01 (u;β1,π,Λ1,Λ2,G)

, (5.46)

Λ02(t;β2,π,Λ1,Λ2,G) =
∫ t

0

n

∑
i=1

[ wi {dN02i(u)−Gi(u,Ai)Si(u,Ai)dΛ2i(u,Ai)}

− ∑
a=0,1

G(u,a)Si(u,a)dΛ2i(u,a) ]

× 1

n ·S (0)
02 (u;β1,π,Λ1,Λ2,G)

, (5.47)

Λ03(t;β3,π,Λ1,Λ2,Λ12,G) =
∫ t

0

n

∑
i=1

[ wi {dN12i(u)−Gi(u,Ai)dS12i(u,Ai)}

− ∑
a=0,1

G(u,a)dS12i(u,a) ]

×× 1

n ·S (0)
12 (t;β3,π,Λ1,Λ2,Λ12,G)

. (5.48)

Plugging Λ0 j, j = 1,2,3, back into (5.36), we obtain the following AIPW scores for
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estimating β j, j = 1,2,3:

U (n)
012(β1;π,Λ1,Λ2,G) =

1
n

n

∑
i=1

[∫
τ

0
wi
{

Ai− Ā01(t;β1,π,Λ1,Λ2,G)
}

×{dN01i(t)−Gi(u,Ai)Si(u,Ai)dΛ1i(u,Ai)}

+
∫

τ

0
∑

a=0,1

{
a− Ā01(t;β1,π,Λ1,Λ2,G)

}
×Gi(u,a)Si(u,a)dΛ1i(u,a)

]
, (5.49)

U (n)
022(β2;π,Λ1,Λ2,G) =

1
n

n

∑
i=1

[∫
τ

0
wi
{

Ai− Ā02(t;β2,π,Λ1,Λ2,G)
}

×{dN02i(t)−Gi(u,Ai)Si(u,Ai)dΛ2i(u,Ai)}

+
∫

τ

0
∑

a=0,1

{
a− Ā02(t;β1,π,Λ1,Λ2,G)

}
×Gi(u,a)Si(u,a)dΛ2i(u,a)

]
, (5.50)

U (n)
122(β3;π,Λ1,Λ2,Λ12,G) =

1
n

n

∑
i=1

[∫
τ

0
wi
{

Ai− Ā12(t;β3,π,Λ1,Λ2,Λ12,G)
}

{dN12i(t)−Gi(u,Ai)dS12i(u,Ai)}

+
∫

τ

0
∑

a=0,1

{
a− Ā12(t;β3,π,Λ1,Λ2,Λ12,G)

}
×Gi(u,a)dS12i(u,a)

]
, (5.51)

where Ākl = S (1)
kl /S (0)

kl , for kl ∈ {01,02,12}. Details of the derivation are shown in Appendix.

To estimate β j, j = 1,2,3 using (5.49) - (5.51) respectively, we first need to estimate

π, Λ1, Λ2, Λ12, and G in above equations. We can estimate G using nonparametric Kaplan-

Meier estimator. In practice, the propensity score π(·) can be estimated from the data by either

specifying a parametric model such as the logistic regression or using nonparametric methods

such as boosted trees. For estimating Λ1(t|A,Z), Λ2(t|A,Z) and Λ12(t|A,Z), a model compatible
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with the MSM (5.4) - (5.6) need to be used. For Λ1(t|A,Z) and Λ2(t|A,Z), [67] and [73]

discussed that those are cause-specific cumulative hazard functions, nonparametric methods

for cause-specific function under competing risks setting can be applied. [18] discussed using

the LASSO under the cause-specific Cox proportional hazards model, and [18] discussed using

random forest to estimate the cumulative incidence function (CIF), which can be used to estimate

cause-specific cumulative hazard functions.

5.4 Simulation

We followed the simulation steps from [73] to generate confounding under a MSM usual

Markov model:

• Generate U1 ∼U(0,1) and U2 ∼U(0,1);

• Generate confounder Z = (Z1, ...,Zk)
ᵀ using U1 and U2;

• Generate A∼ Bernoulli(pA), where pA are generated using Z;

• Let λ01 (t) = λ02 (t) = 2e−tI(0≤ t ≤ 3)+2e−3I(t > 3) and λ03 (t) = 2λ01 (t). Then with

probability P(T1 = ∞)

T2 = Λ
−1
01

{
− log(U1)

exp(β1A)+ exp(β2A)

}
;

and with probability 1−P(T1 = ∞),

T1 = Λ
−1
01

{
− log(U1)

exp(β1A)+ exp(β2A)

}
, T2 = Λ

−1
01

{
− log(U2)

2exp(β3A)
+Λ01(t1)

}
.

• Generate Censoring time C(a)∼ 0.3exp(0.2a+0.2), which leads to an average censoring

rate around 15%.
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We consider the following two scenarios:

Table 5.1. Scenarios 1 and 2 of the simulation to generate confounders and treatment
assignment.

Scenario Confounders and Treatment generating mechanism

1 PS: Logistic
Z j =U1 +U2 + ε j, where ε j ∼ N(0,1), for j = 1,2,3
pA = logit−1(0.5+0.1Z1−0.1Z2−0.2Z3)

2 PS: Soft Partition Z j = (U1 +U2 + ε j)/
√

2, where ε j ∼ N(0,1), for j = 1,2, ..,6
pA = 0.8∗ I(∑6

i=1 Z2
i < χ0.5,6)+0.2∗ I(∑6

i=1 Z2
i ≥ χ0.5,6)

We fix β1 = β2 = 1, β3 = 0.5. In the simulation, the propensity score is estimated using

logistic regression and generalized boosted model (R package twang). Conditional hazard

Λ1(t|A,Z), Λ2(t|A,Z) and Λ12(t|A,Z) are estimated using semi-parametric Cox proportional

hazards model with confounders Z and treatment A as covariates, without interaction terms,

as well as using LASSO Cox proportional hazards model (R package glmnet) with covariates

that are generate from Z with quadratic and cubic terms, as well as two-way and three-way

interactions, and the treatment A. We used the nonparametric Kaplan-Meier estimator for the

censoring distribution G(t|A). To solve the equation (5.49) and (5.50), we use grid search and

search between (0.8,1.3) with every 0.001. To solve equation (5.51), we use grid search to

search between (0.3,0.8) with every 0.001. Standard error are estimated by sandwich formula

for IPW estimator and bootstraps for AIPW estimators.
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We run 500 simulations with a sample size of 500 each, and compared the IPW with

AIPW methods.

Table 5.2. Scenario 1, Treatments are generated from logistic regression without interaction.
The margin of error for 95% CI with 500 runs is: 0.019, which the range of coverage

probability (CP) should be within 93.1% to 96.9%

IPW AIPW
Estimate SD SE CP Estimate SD SE CP

PS Parameter Outcome

Logistic

β1 1.003 0.154 0.152 95.4% Cox 0.998 0.135 0.131 95.8%
Cox Lasso 1.002 0.142 0.149 95.7%

β2 1.000 0.145 0.139 94.8% Cox 0.994 0.128 0.130 95.8%
Cox Lasso 0.995 0.133 0.137 94.9%

β3 0.499 0.151 0.149 95.2% Cox 0.502 0.145 0.139 94.7%

twang

β1 0.998 0.148 0.150 95.6% Cox 0.996 0.141 0.147 94.8%
Cox Lasso 0.993 0.153 0.150 95.5%

β2 0.998 0.139 0.136 94.6% Cox 1.000 0.135 0.140 95.6%
Cox Lasso 1.004 0.138 0.147 94.9%

β3 0.503 0.150 0.153 95.4% Cox 0.495 0.156 0.162 96.2%

Table 5.3. Scenario 2, Treatments are generated from binary indicator functions that correlated
with Z. The margin of error for 95% CI with 500 runs is: 0.019, which the range of coverage

probability (CP) should be within 93.1% to 96.9%

IPW AIPW
Estimate SD SE CP Estimate SD SE CP

PS Parameter Outcome

Logistic

β1 1.093 0.160 0.167 95.8% Cox 0.988 0.124 0.119 94.1%
Cox Lasso 0.991 0.133 0.129 94.5%

β2 1.087 0.153 0.167 96.2% Cox 0.979 0.129 0.124 94.1%
Cox Lasso 0.983 0.136 0.133 94.5%

β3 0.483 0.180 0.188 96.9% Cox 0.511 0.137 0.141 93.9%
Cox Lasso 0.512 0.151 0.148 93.4%

twang

β1 0.788 0.149 0.148 34.8% Cox 0.958 0.146 0.147 94.8%
Cox Lasso 0.885 0.158 0.150 91.5%

β2 0.785 0.150 0.148 34.1% Cox 0.969 0.142 0.140 95.6%
Cox Lasso 0.871 0.154 0.147 92.1%

β3 0.265 0.183 0.186 38.3% Cox 0.477 0.188 0.182 95.4%
Cox Lasso 0.411 0.191 0.186 90.3%

Results from Scenario 1 show that when propensity score model are correctly specified,

both IPW and AIPW estimators are performed well. On the other hand, results from Scenario 2

show that when PS model is not correctly specified, the IPW estimators still perform relatively

good when using logistic regression for PS model and the performance further get improved in

AIPW estimators. The performance of using twang for PS model generally is bad. However, when

using semi-parametric Cox proportional hazards model for conditional hazards, the performance
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of AIPW estimators get improved compare to IPW estimators. Simulation studies for using

twang as well as LASSO Cox are still under investigation, and more simulation studies will be

performed in the future.

Meanwhile, [18] discussed using random forest to estimate the cumulative incidence

function (CIF). By definition of CIF, we have,

F1(t|A,Z) =
∫ t

0
S(u|A,Z)dΛ1(u|A,Z), (5.52)

F2(t|A,Z) =
∫ t

0
S(u|A,Z)dΛ2(u|A,Z). (5.53)

Then

S(t|A,Z) = 1−F1(t|A,Z)−F2(t|A,Z),

and

Λ1(t|A,Z) =
∫ t

0

1
S(u|A,Z)

dF1(u|A,Z),

Λ2(t|A,Z) =
∫ t

0

1
S(u|A,Z)

dF2(u|A,Z),

where F1(t|A,Z) and F2(t|A,Z) can be estimated non-parametrically through random forest. This

model is also under investigation in simulation studies.
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Appendix A

HHP and HAAS Data Distribution

Date distribution at each exam
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Figure A.1. Date distribution at each exam
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Number of participant for each exam

Table A.1. Number of participant for each exam

Number of participant
Exam 4 1910
Exam 5 1826
Exam 6 1791
Exam 7 1359
Exam 8 1168
Exam 9 853
Exam 10 688
Exam 11 411
Exam 12 278
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Comparison for the last visit age for those have death date and their age of death
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Figure A.2. Last Age for those who died (left), Death Age(right)
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Figure A.3. Last Age for those who died (left), Death Age(right)
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Figure A.4. Year difference of last age for those who died and their death age
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Spaghetti plots for semi-competing risk data
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Figure A.7. Spaghetti plots for randomly selected subjects that died in different exam
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Appendix B

Supplementary materials for Chapter 4

Derivation of f (t1, t2), f∞(t2) and S(t, t)

f∞(t2) = lim
∆→0

P(T1 ≥ t2,T2 ∈ [t2, t2 +∆))

∆

= lim
∆→0

P(T1 ≥ t2,T2 ∈ [t2, t2 +∆))

P(T1 ≥ t2,T2 ≥ t2)∆
×P(T1 ≥ t2,T2 ≥ t2)

= λ2(t2)S(t2, t2)
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We also have:

f (t1, t2) = lim
∆→0

lim
δ→0

P(T1 ∈ [t1, t1 +δ),T2 ∈ [t2, t2 +∆))

∆δ

= lim
∆→0

lim
δ→0

P(T1 ≥ t1,T2 ≥ t1)×
P(T1 ∈ [t1, t1 +δ),T2 ≥ t1)

P(T1 ≥ t1,T2 ≥ t1)δ

× P(T2 ∈ [t2, t2 +∆) | T1 ∈ [t1, t1 +δ),T2 ≥ t1)
∆

= lim
∆→0

lim
δ→0

P(T1 ≥ t1,T2 ≥ t1)×
P(T1 ∈ [t1, t1 +δ),T2 ≥ t1)

P(T1 ≥ t1,T2 ≥ t1)δ

× P(T2 ∈ [t2, t2 +∆),T2 ≥ t1 | T1 ∈ [t1, t1 +δ))

P(T2 ≥ t1 | T1 ∈ [t1, t1 +δ))∆

= lim
∆→0

lim
δ→0

P(T1 ≥ t1,T2 ≥ t1)×
P(T1 ∈ [t1, t1 +δ),T2 ≥ t1)

P(T1 ≥ t1,T2 ≥ t1)δ

× P(T2 ∈ [t2, t2 +∆) | T1 ∈ [t1, t1 +δ))

P(T2 ≥ t2 | T1 ∈ [t1, t1 +δ))∆
× P(T2 ≥ t2 | T1 ∈ [t1, t1 +δ))

P(T2 ≥ t1 | T1 ∈ [t1, t1 +δ))

= S(t1, t1)λ1(t1)λ12(t2 | t1)exp
{
−
∫ t2

t1
λ12(u|t1)du

}

We further have:

λ1(t1) = lim
∆→0+

P(T1 ∈ [t1, t1 +∆) | T1 ≥ t1,T2 ≥ t1)
∆

=
lim∆→0+ P(T1 ∈ [t1, t1 +∆),T1 ≥ t1,T2 ≥ t1)/∆

P(T1 ≥ t1,T2 ≥ t1)

=
lim∆→0+ P(T1 ∈ [t1, t1 +∆),T2 ≥ t1)/∆

P(T1 ≥ t1,T2 ≥ t1)

=

∫ +∞

t1 f (t1,u)du
P(T1 ≥ t1,T2 ≥ t1)

=
− ∂

∂t1
S(t1, t2)|t2=t1

S(t1, t1)

=− ∂

∂t1
logS(t1, t2)|t2=t1 (B.1)

Similar derivation can be applied to obtain

λ2(t2) = lim
∆→0+

P(T2 ∈ [t2, t2 +∆) | T1 ≥ t2,T2 ≥ t2)/∆ =−∂ logS(t1, t2)/∂t2|t1=t2.
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By solving the partial derivative equations with the initial condition S(0,0) = 1, we have

S(t, t) = e−(Λ1(t)+Λ2(t)).

We then have (4.13) - (4.15) in the main text.

Variance-covariance under the usual Markov model

For the ith individual, let the at-risk process for non-terminal event, terminal event without

non-terminal event, and terminal event following non-terminal event as Y1i(t) = I(X1i ≥ t),

Y2i(t) = I(X2i ≥ t,X1i ≥ t), and Y3i(t) = I(X2i ≥ t ≥ X1i). It is also convenient to introduce the

following notation:

S(1)1w (β̂1; t) =
n

∑
`=1

w`Y1`(t)A` exp(β̂1A`), S(0)1w (β̂1; t) =
n

∑
`=1

w`Y1`(t)exp(β̂1A`);

S(1)2w (β̂2; t) =
n

∑
`=1

w`Y2`(t)A` exp(β̂2A`), S(0)2w (β̂2; t) =
n

∑
`=1

w`Y2`(t)exp(β̂2A`);

S(1)3w (β̂3; t) =
n

∑
`=1

w`Y3`(t)A` exp(β̂3A`), S(0)3w (β̂3; t) =
n

∑
`=1

w`Y3`(t)exp(β̂3A`).

Then the robust sandwich variance estimator is given by V (β̂) = B(β̂)M(β̂)B(β̂), where B(β̂) =

−∂2 logLw(β)/∂β2|
β=β̂

/n = [b j j] j=1,2,3 is a diagonal matrix,

b11 =−
1
n

n

∑
i=1

wiδi1

{
Ai−

S(1)1w (β̂1;X1i)

S(0)1w (β̂1;X1i)

}
,

b22 =−
1
n

n

∑
i=1

wi(1−δi1)δi2

{
Ai−

S(1)2w (β̂2;X1i)

S(0)2w (β̂2;X1i)

}
,

b33 =−
1
n

n

∑
i=1

wiδi1δi2

{
Ai−

S(1)3w (β̂3;X2i)

S(0)3w (β̂3;X2i)

}
;
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and M(β̂) = ∑
n
i=1Û (i)(β̂)Û (i)(β̂)

′
/n with

U (i)
1 (β̂1) =wiδ1i

{
Ai−

S(1)1w (β̂1;X1i)

S(0)1w (β̂1;X1i)

}

−wi ·
n

∑
`=1

w`δ1`
Y1i(X1`)exp(β1Ai)

S(0)1w (β̂1;X1`)

{
Ai−

S(1)1w (β̂1;X1`)

S(0)1w (β̂1;X1`)

}
,

U (i)
2 (β̂2) =wi(1−δ1i)δ2i

{
Ai−

S(1)2w (β̂2;X1i)

S(0)2w (β̂2;X1i)

}

−wi ·
n

∑
`=1

w`(1−δ1`)δ2`
Y2i(X1`)exp(β2Ai)

S(0)2w (β̂2;X1`)

{
Ai−

S(1)2w (β̂2;X1`)

S(0)2w (β̂2;X1`)

}
,

U (i)
3 (β̂3) =wiδ1iδ2i

{
Ai−

S(1)3w (β̂3;X2i)

S(0)3w (β̂3;X2i)

}

−wi ·
n

∑
`=1

w`δ1`δ2`
Y3i(X2`)exp(β3Ai)

S(0)3w (β̂3;X2`)

{
Ai−

S(1)3w (β̂3;X2`)

S(0)3w (β̂3;X2`)

}
.
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Proof of Lemma 1

Proof. From (4.21) in the main text, we have:

lw(θ;O) = logLw(θ;O)

= log
{

∏
i

(∫
L(θ;Oi | bi) · f (θ;bi)dbi

)wi

}
=∑

i
wi log

∫ L(θ;Oi | bi) · f (θ;bi)

f (bi|θ(k),Oi)
f (bi|θ(k),Oi)dbi

=∑
i

wi logE
[

L(θ;Oi | bi) · f (θ;bi)

f (bi|θ(k),0i)

∣∣∣∣θ(k),Oi

]
(B.2)

≥∑
i

wiE
[

log
(L(θ;Oi | bi) · f (θ;bi)

f (bi|θ(k),Oi)

)
| θ(k),Oi

]
(B.3)

=∑
i
E

θ(k)

[
wi · l(θ;Oi | bi) | Oi

]
+E

[
wi · log f (bi;θ)) | θ(k),Oi

]
−E

[
wi · log f (bi | θ(k),Oi) | θ(k),Oi

]
=Q(θ;θ

(k))−∑
i

wiE
[

log f (bi | θ(k),Oi) | θ(k),Oi
]
,

where the inequality above comes from Jensen’s inequality. If θ = θ(k), (B.2) becomes

∑
i

wi logE
[

L(θ(k);Oi | bi) · f (θ(k);bi)

f (bi|θ(k),Oi)
| θ(k),Oi

]
=∑

i
wi logE

[
f (Oi | θ(k)) | θ(k),Oi

]
=∑

i
wi log f (Oi | θ(k))

=∑
i

wiE
[

log f (Oi | θ(k)) | θ(k),Oi

]
,

which equals (B.3).

Then we have lw(θ(k);O) = Q(θ(k);θ(k))−∑i wiE
[

log f (bi | θ(k),Oi) | θ(k),Oi
]
.
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Therefore,

lw(θ(k+1);O)− lw(θ(k);O)

≥Q(θ(k+1);θ
(k))−Q(θ(k);θ

(k))−
(

∑
i

wiE
[

log f (bi | θ(k),Oi) | θ(k),Oi
]

−∑
i

wiE
[

log f (bi | θ(k),Oi) | θ(k),Oi
])

=Q(θ(k+1);θ
(k))−Q(θ(k);θ

(k)).

Since θ(k+1) maximizes Q(θ,θ(k)), Q(θ(k+1);θ(k))−Q(θ(k);θ(k))≥ 0.

Therefore lw(θ(k+1);O)≥ lw(θ(k);O), and Lw(θ
(k+1);O)≥ Lw(θ

(k);O).
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Detailed calculation of E(h(bi)|Oi, θ̃)

We have

E(h(bi)|Oi; θ̃) =
∫

h(bi) · f (bi | Oi; θ̃)dbi

=
∫

h(bi) ·
f (Oi,bi; θ̃)

f (Oi; θ̃)
dbi

=
∫

h(bi) ·
f (Oi | bi; θ̃) f (bi; θ̃)

f (Oi; θ̃)
dbi,

where

f (Oi; θ̃) =
∫

f (Oi,bi; θ̃)dbi

=
∫

f (Oi | bi; θ̃) · f (bi; θ̃)dbi.

After plugging in model based quantities, we have

f (Oi; θ̃) =
∫ [{

λ̃01 (X1i)

exp(β̃1Ai +bi)
}δ1i exp{−Λ̃01(X1i)exp(β̃1Ai +bi)}

·
{

λ̃02 (X2i)

exp(β̃2Ai +bi)
}δ2i(1−δ1i) exp{−Λ̃02(X1i)exp(β̃2Ai +bi)}

·
{

λ̃03 (X2i)

exp(β̃3Ai +bi)
}δ2iδ1i exp

{
− Λ̃03(X1i,X2i)exp(β̃3Ai +bi)

}]

·
[exp(− b2

i
2σ̃2 )√

2πσ̃2

]
dbi.
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Then we have

E(h(bi)|Oi; θ̃) =
∫ h(bi)

f (Oi; θ̃)

·
[{

λ̃01 (X1i)

· exp(β̃1Ai +bi)
}δ1i exp{−Λ̃01(X1i)exp(β̃1Ai +bi)}

·
{

λ̃02 (X2i)

exp(β̃2Ai +bi)
}δ2i(1−δ1i) exp{−Λ̃02(X1i)exp(β̃2Ai +bi)}

·
{

λ̃03 (X2i)

exp(β̃3Ai +bi)
}δ2iδ1i exp

{
− Λ̃03(X1i,X2i)exp(β̃3Ai +bi)

}]

·
[exp(− b2

i
2σ̃2 )√

2πσ̃2

]
dbi.

Numerical methods such as adaptive Gaussian quadrature can be used to calculate the integral,

which is what we use in this paper.
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Details for M-step

To maximize the Q1, we apply the profile likelihood method where we fix β1 first. If we

denote the entry time for i as Vi, then the formula (4.24) can be written as:

Q1(β1,λ01) = ∑
i

wi

{
δ1i logλ01(X1i)+δ1iβ1Ai +δ1iE(bi)− eβ1Ai+µi

∫ X1i

Vi

λ01(s)ds
}

= ∑
i

wi

{
δ1i logλ01(X1i)+δ1iβ1Ai +δ1iE(bi)− eβ1Ai+µi ∑

k:Vi≤t1k≤X1i

λ01(t1k)

}

the second equality is because of the nonparametric likelihood discretizes λ01 to mass points at

the observed non-terminal event times 0 < t11 < ... < t1k1 . For the given β1, we want to maximize

the Q1 over λ01 = (λ11, ...,λ1k1), then for k, we have:

∂Q1(β1,λ01)

∂λ1k
=

wk

λ1k
− ∑

i:Vi≤t1k≤X1i

wieβ1Ai+µi

and:

λ̂1k =
wk

∑i:Vi≤t1k≤X1i wieβ1Ai+µi
(B.4)
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for k = 1,2, ...,k1. Substituting (B.4) into Q1, we will have:

Q1 = ∑
i

wi

{
δ1i log

wi

∑
j∈Ri

w jeβ1A j+µ j
+δ1iβ1Ai +δ1iE(bi)

− ∑
k:Vi≤t1k≤X1i

wkδ1keβ1Ak+µk

∑
j∈Rk

w jeβ1A j+µ j

}

= ∑
i

wi

{
δ1i log

eβ1Ai

∑
j∈Ri

w jeβ1A j+µ j

}

−∑
i

∑
k:Vi≤t1k≤X1i

wi ·
wkeβ1Ai+µi

∑
j∈Rk

w jeβ1A j+µ j
+ s1 + s2

= ∑
i

wi

{
δ1i log

eβ1Ai

∑
j∈Ri

w jeβ1A j+µ j

}
−

k1

∑
k=1

∑
i:X1i≥t1k

wk ·
wieβ1Ai+µi

∑
j∈Rk

w jeβ1A j+µ j
+ s1 + s2

= ∑
i

wi

{
δ1i log

eβ1Ai

∑
j∈Ri

w jeβ1A j+µ j

}
−

k1

∑
k=1

wk
∑i:X1i≥t1k

wieβ1Ai+µi

∑
j∈Rk

w jeβ1A j+µ j
+ s1 + s2

= ∑
i

wi

{
δ1i
(
β1Ai− log ∑

j∈Ri

w jeβ1A j+µ j
)}

+
k1

∑
k=1

wk + s1 + s2 (B.5)

To maximize Q2 and Q3, we cannot use the profile likelihood approach. Let 0 < t21 <

... < t2k2 be the distinct terminal event times without non-terminal event, and 0 < t31 < ... < t3k3

be the distinct terminal event times following non-terminal event. We also let λ02 = (λ21, ...,λ2k2)

and λ03 = (λ31, ...,λ3k3). Same as the Q1, we can write Q2,Q3 as:

Q2(β2,λ02) = ∑
i

wi

{
δ2i(1−δ1i) logλ02(X2i)+δ2i(1−δ1i)β2Ai +δ2i(1−δ1i)E(bi)

− eβ2Ai+µi ∑
j:0≤t2 j≤X1i

λ2 j

}
Q3(β3,λ03) = ∑

i
wi

{
δ2iδ1i logλ03(X2i)

+δ2iδ1iβ3Ai +δ2iδ1iE(bi)− eβ3Ai+µi ∑
j:X1i<t3 j≤X2i

λ3 j

}
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We denote the score:

U2 =
∂Q2

∂β2
= ∑

i
wiAi

{
δ2i(1−δ1i)−Λ02(X1i)eβ2Ai+µi

}
= 0 (B.6)

U3 =
∂Q3

∂β3
= ∑

i
wiAi

{
δ2iδ1i−Λ03(X1i,X2i)eβ3Ai+µi

}
= 0 (B.7)

U4 j =
∂Q2

∂λ2 j
=

w j

λ2 j
−∑

i
1(t2 j ≤ X1i)wi · eβ2Ai+µi = 0 (B.8)

U5 j =
∂Q3

∂λ3 j
=

w j

λ3 j
−∑

i
1(X1i < t3 j ≤ X2i)wi · eβ3Ai+µi = 0 (B.9)

Assuming no ties, from (B.6) and (B.8), we will get:

β̂2 = log
( ∑

i:Ai=1
wiδ2i(1−δ1i)

∑
i:Ai=1

wiΛ02(X1i)eµi

)
, (B.10)

λ̂2 j =
w j

∑
i
1(t2 j ≤ X1i)wi · eβ2Ai+µi

; (B.11)

and from (B.7) and (B.9), we will get:

β̂3 = log
( ∑

i:Ai=1
wiδ2iδ1i

∑
i:Ai=1

wiΛ03(X1i,X2i)eµi

)
, (B.12)

λ̂3 j =
w j

∑
i
1(X1i < t3 j ≤ X2i)wi · eβ3Ai+µi

. (B.13)
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Bayesian bootstrap

For each bootstrap sample:

• Generate n standard exponential (mean and variance 1) random variates : u1,u2, ...,un;

• The weights for the Bayesian bootstrap are: wboot
i = ui/ū, i = 1,2, ...,n, where ū =

n−1
∑

n
i=1 ui;

• Calculate the propensity score and IP weights wIPW
i based on Bayesian bootstrap weighted

data, and assigned the weights for fitting the MSM general Markov model as wi = wboot
i ∗

wIPW
i .

• After obtaining θ̂ and b̂i, for each individual i, calculate the IRR and IRD by plugging

θ̂, b̂i and a = 0,a = 1 separately into (4.30) - (4.32) from main text at time t: F̂1i(t |

bi;1)− F̂1i(t | bi;0), F̂2i(t | bi;1)− F̂2i(t | bi;0) and F̂12i(t1, t | bi;1)− F̂12i(t1, t | bi;0), etc..

The 95% prediction intervals (PI) are obtained by the normal approximation using bootstrap

standard error.

Details for the simulation steps

Following [23], from (4.14) in the main text and λ01 (t) = λ02 (t) = 2exp(−t)I(0≤ t ≤

3)+2exp(−3)I(t ≥ 3) and λ03(t) = 2λ01(t), we have

P(T1 = ∞) =
∫ +∞

0
f∞(t | b)dt

=
∫ +∞

0
eβ2z+b

λ02(t)exp
{
− eβ1z+b

Λ01(t)− eβ2z+b
Λ02(t)

}
dt

=
eβ2z

eβ1z + eβ2z
. (B.14)
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We can also derive the conditional marginal density of T1 when T1 < ∞ from f (t1, t2 | b) as:

f (t1 | b) =
∫ +∞

t1
f (t1, t | b)dt

=
∫ +∞

t1
eβ1z+β3z+2b

λ01(t1)λ03(t)

· exp
{
− eβ1z+b

Λ01(t1)− eβ2z+b
Λ02(t1)− eβ3z+b

Λ03(t1, t)
}

dt

= eβ1z+b
λ01(t1)exp

{
− eβ1z+b

Λ01(t1)− eβ2z+b
Λ02(t1)

}
·
∫

∞

t1
exp
(
− eβ3z+b

Λ03(t1, t)
)
d
{

eβ3z+b
Λ03(t)

}
= eβ1z+b

λ01(t1)exp
{
− eβ1z+b

Λ01(t1)− eβ2z+b
Λ02(t1)

}
= eβ1z+b

λ01(t1)exp
{
− eβ1z+b

Λ01(t1)− eβ2z+b
Λ01(t1)

}
. (B.15)

Therefore the conditional survival functions of T1 conditional on b are

S1(t1 | b) = P(t1 ≤ T1 < ∞)+P(T1 = ∞)

=
∫ +∞

t1
f (t | b)dt +Pr(T1 = ∞)

=
eβ1z

eβ1z + eβ2z
exp
{
− (eβ1z+b + eβ2z+b)Λ01(t1)

}
+

eβ2z

eβ1z + eβ2z
, (B.16)

and

S1(t1 | T1 < ∞,b) =
S1(t1,T1 < ∞ | b)
1−Pr(T1 = ∞)

= exp
{
− (eβ1z+b + eβ2z+b)Λ01(t1)

}
. (B.17)
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We also need the conditional joint probability P(T2 > t2,T1 ∈ [t1, t1 +∆t] | b), t1 < t2 < ∞:

P(T2 > t2,T1 ∈ [t1, t1 +∆t] | b) =
∫ +∞

t2
f (t1, t | b)dt

=eβ1z+b
λ01(t1) · exp

[
− eβ1z+b

Λ01(t1)− eβ2z+b
Λ02(t1)− eβ3z+b(Λ03(t2)−Λ03(t1))

]
=eβ1z+b

λ01(t1) · exp
[
− eβ1z+b

Λ01(t1)− eβ2z+b
Λ01(t1)−2eβ3z+b(Λ01(t2)−Λ01(t1))

]
. (B.18)

Therefore, the conditional survival function for T2 given T1 = t1 < ∞ and b is:

S21(t2 | t1,b) = P(T2 > t2 | T1 = t1,b) =
P(T2 > t2,T1 ∈ [t1, t1 +∆t] | b)

f (t1 | b)

= exp
(
−2eβ3z+b{Λ01(t2)−Λ01(t1)}

)
, (B.19)

and the conditional survival function for T2 given T1 = ∞ and b is

S21(t2 | T1 = ∞,b) = P(T2 > t2 | T1 = ∞,b) =
P(T2 > t2,T1 = ∞ | b)

Pr(T1 = ∞)

=

∫ +∞

t2 f∞(t | b)dt
Pr(T1 = ∞)

= exp
{
−(eβ1z+b + eβ2z+b)Λ01(t2)

}
. (B.20)

Based on the above, we can generate the event time T1,T2: with probability P(T1 = ∞),

we can generate T2 from S21(t2 | T1 = ∞,b), and with probability 1−P(T1 = ∞), we can generate

T1 from S1(t1 | T1 < ∞,b), then generate T2 from S21(t2 | t1,b) conditioning on the observed value

of T1 = t1.
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HAAS data analysis
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Figure B.1. Convergence plots for the HAAS data analysis under the general Markov model
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Appendix C

Supplementary materials for Chapter 5

Relationships between transitional hazards and joint density
of T1,T2

Following the supplementary materials from [73], we obtain the relationship between

three transitional hazards and joint density of T1,T2. We have,

λ1(t1) = lim
δ→0+

P(T1 ∈ [t1, t1 +δ),T2 ≥ t1)
P(T1 ≥ t1,T2 ≥ t1)δ

(C.1)

=

∫ +∞

t1 f (t1,s)ds
S(t1, t1)

, (C.2)

λ2(t2) = lim
δ→0+

P(T2 ∈ [t2, t2 +δ),T1 ≥ t2)
P(T1 ≥ t2,T2 ≥ t2)δ

(C.3)

=
f∞(t2)

S(t2, t2)
, (C.4)
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and,

λ12(t2) = lim
∆→0+

P(T2 ∈ [t2, t2 +∆) | T1 = t1,T2 ≥ t2)
∆

(C.5)

= lim
δ→0+,∆→0+

P(T2 ∈ [t2, t2 +∆),T1 ∈ [t1, t1 +δ))

P(T2 ≥ t2,T1 ∈ [t1, t1 +δ))δ∆
(C.6)

=
f (t1, t2)∫ +∞

t2 f (t1,s)ds
. (C.7)

101



Details for calculating E{Mkl(t) | A,Z}

Since E{Mk`(t)|A,Z} = E{Nk`(t)|A,Z} −
∫ t

0 E{Yk(u)|A,Z}exp(β`A)dΛ0`(u|A,Z), we

first show the detail calculations for E{Nk`(t)|A,Z}, k`= 01,02,12.

From [73], we have

f (t1, t2|A,Z) = S(t1|A,Z)λ1(t1|A,Z)λ12(t2|A,Z)e−{Λ12(t2|A,Z)−Λ12(t1|A,Z)}, (C.8)

f∞(t2|A,Z) = S(t2|A,Z)λ2(t2|A,Z), (C.9)

where S(t|A,Z) = exp{−Λ1(t|A,Z)−Λ2(t|A,Z)} is called conditional overall survival function.

We also note that S(t|A,Z) = S̃(t, t|A,Z), where S̃(t, t|A,Z) is the conditional joint survival for

T1 and T2 as we discussed in Section 1.1 and in [73].

We then have,

E{N01(t)|A,Z}= E {I(X1 ≤ t,δ1 = 1)|A,Z} (C.10)

= P(T1 ≤ t,T1 ≤ T2,T1 ≤C|A,Z) (C.11)

=
∫ t

0

∫ +∞

t1

∫ +∞

t1
fc(c|A) f (t1, t2|A,Z)dcdt2dt1 (C.12)

=
∫ t

0
G(t1|A)

∫ +∞

t1
f (t1, t2|A,Z)dt2dt1 (C.13)

=
∫ t

0
G(t1|A)S(t1|A,Z)λ1(t1|A,Z)

×
∫ +∞

t1
λ12(t2|A,Z)e−{Λ12(t2|A,Z)−Λ12(t1|A,Z)}dt2dt1 (C.14)

=
∫ t

0
G(t1|A)S(t1|A,Z)dΛ1(t1|A,Z), (C.15)

because
∫ +∞

t1 λ12(t2|A,Z)e−{Λ12(t2|A,Z)−Λ12(t1|A,Z)}dt2 = 1. Note also that if we denote F1(t|A,Z)=∫ t
0 S(t1|A,Z)dΛ1(t1|A,Z) as the CIF or subdistribution function of the non-terminal event, then

the above can be more directly derived as
∫ t

0 G(t1|A)dF1(t1|A,Z).
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E{N02(t)|A,Z}= E {I(X2 ≤ t,δ1 = 0,δ2 = 1)|A,Z} (C.16)

= P(T2 ≤ t,T1 ≥ T2,T2 ≤C|A,Z) (C.17)

=
∫ t

0

∫ +∞

t2
fc(c|A,Z) f∞(t2|A,Z)dcdt2 (C.18)

=
∫ t

0
G(t2|A) f∞(t2|A,Z)dt2 (C.19)

=
∫ t

0
G(t2|A)S(t2|A,Z)dΛ2(t2|A,Z). (C.20)

The above can also be more directly derived as
∫ t

0 G(t2|A)dF2(t2|A,Z), where F2(t|A,Z)=∫ t
0 S(t2|A,Z)dΛ2(t2|A,Z) is the CIF or subdistribution function of the terminal event without the

non-terminal event.

Recall that S(t|A,Z) = exp{−Λ1(t|A,Z)−Λ2(t|A,Z)}, so it is a function of Λ1(t|A,Z)

and Λ2(t|A,Z).

We also have,

E{N12(t)|A,Z}= E {I(X2 ≤ t,δ1 = 1,δ2 = 1)|A,Z} (C.21)

= P(T2 ≤ t,T1 ≤ T2,T2 ≤C|A,Z) (C.22)

=
∫ t

0

∫ t2

0

∫ +∞

t2
fc(c|A,Z) f (t1, t2|A,Z)dcdt1dt2 (C.23)

=
∫ t

0
G(t2|A)

∫ t2

0
f (t1, t2|A,Z)dt1dt2 (C.24)

=
∫ t

0
G(t2|A) f12(t2|A,Z)dt2 =

∫ t

0
G(t2|A)dF12(t2|A,Z), (C.25)

if we denote f12(t2|A,Z) =
∫ t2

0 f (t1, t2|A,Z)dt1, and F12(t2|A,Z) =
∫ t2

0 f12(u|A,Z)du.
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For implementation of the above, from (C.24) we need to calculate:

∫ t

0
G(t2|A)

×
∫ t2

0
S(t1|A,Z)λ1(t1|A,Z)λ12(t2|A,Z)e−{Λ12(t2|A,Z)−Λ12(t1|A,Z)}dt1dt2 (C.26)

=
∫ t

0
G(t2|A)e−Λ12(t2|A,Z)

{∫ t2

0
S(t1|A,Z)eΛ12(t1|A,Z)dΛ1(t1|A,Z)

}
dΛ12(t2|A,Z)

=
∫ t

0
−G(t2|A)

{∫ t2

0
S(t1|A,Z)eΛ12(t1|A,Z)dΛ1(t1|A,Z)

}
d{e−Λ12(t2|A,Z)}

=
∫ t

0
G(t2|A)K(t2|A,Z)d{e−Λ12(t2|A,Z)},

where we denote K(t2|A,Z) = −
∫ t2

0 S(t1|A,Z)eΛ12(t1|A,Z)dΛ1(t1|A,Z). The actual coding with

estimators involves two summations.

We can similarly derive E{Yk(u)|A,Z}, k = 1,2, and obtain

E{Y0(t)|A,Z}= E {I(X1 ≥ t)|A,Z} (C.27)

= P(T1 ≥ t,T2 ≥ t,C ≥ t|A,Z) (C.28)

=
∫ +∞

t
fc(c|A,Z)dc ·

∫ +∞

t

∫ +∞

t
f (t1, t2|A,Z)dt2dt1 (C.29)

= G(t|A)S(t|A,Z), (C.30)

and

E{Y1(t)|A,Z}= E {I(X2 ≥ t > X1)|A,Z} (C.31)

= P(T1 < t,T2 ≥ t,C ≥ t|A,Z) (C.32)

= G(t|A)
{

S̃(0, t|A,Z)−S(t|A,Z)
}

(C.33)

= G(t|A)
∫ t

0

∫ +∞

t
f (t1, t2|A,Z)dt2dt1, (C.34)

where S̃(0, t|A,Z) = P(T1 ≥ 0,T2 ≥ t) and S(t|A,Z) = P(T1 ≥ t,T2 ≥ t).
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For the implementation of the above, we have

∫ t

0

∫ +∞

t
f (t1, t2|A,Z)dt2dt1

=
∫ t

0
S(t1|A,Z)λ1(t1|A,Z)eΛ12(t1|A,Z)dt1 ·

∫ +∞

t
λ12(t2|A,Z)e−Λ12(t2|A,Z)dt2

= e−Λ12(t|A,Z)
∫ t

0
S(t1|A,Z)eΛ12(t1|A,Z)dΛ1(t1|A,Z).
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Proof for Theorem 1

We only take U01 as the example, the rest two can follow the proof. To prove

E{U01(β
∗
1,Λ
∗
01;π,Λ1,Λ2,G∗)}= 0,

we need to prove

E{U011(β
∗
1,Λ
∗
01;π,Λ1,Λ2,G∗)}= 0

and

E{U012(β
∗
1,Λ
∗
01;π,Λ1,Λ2,G∗)}= 0,

if π = π∗ or Λ1 = Λ∗1,Λ1 = Λ∗1.

(i) When π = π∗, E{UAIPW
01 (β∗1,Λ

∗
01;π∗,Λ1,Λ2,G∗)}= 0:

E{U012(β
∗
1,Λ
∗
01;π

∗,Λ1,Λ2,G∗)}=

= E
[∫

τ

0
wAdM01(t)

−
∫

τ

0
wA
{

G∗(t | A)S(t | A,Z)dΛ1(t | A,Z)−G∗(t | A)S(t | A,Z)eβ∗2AdΛ
∗
01(t)

}
+

∫
τ

0

{
G∗(t | 1)S(t | 1,Z)dΛ1(t | 1,Z)−G∗(t | 1)S(t | 1,Z)eβ∗2dΛ

∗
01(t)

}]
. (C.35)

By conditional expectation and π = π∗, let DR1 = E{U012(β
∗
1,Λ
∗
01;π∗,Λ1,Λ2,G∗)}, we have,

DR1 =
∫

τ

0
E
[

E{AdM01(t) | Z}
π∗

]
−

∫
τ

0
E
[

1
π∗

E {A(G∗(t | A)S(t | A,Z)dΛ1(t | A,Z)) | Z}
]

+
∫

τ

0
E
[

1
π∗

E
{

G∗(t | A)S(t | A,Z)eβ∗2AdΛ
∗
01(t) | Z

}]
+

∫
τ

0

{
G∗(t | 1)S(t | 1,Z)dΛ1(t | 1,Z)−G∗(t | 1)S(t | 1,Z)eβ∗2dΛ

∗
01(t)

}
(C.36)
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Since A only takes value in 0 or 1, then based on the definition of propensity score, we have:

DR1 =
∫

τ

0
E
{

dM1
01(t)

}
−

∫
τ

0
E
{

G∗(t | 1)S(t | A,Z)dΛ1(t | A,Z)−G∗(t | 1)S(t | 1,Z)eβ∗2dΛ
∗
01(t)

}
+

∫
τ

0
E
{

G∗(t | 1)S(t | 1,Z)dΛ1(t | 1,Z)−G∗(t | 1)S(t | 1,Z)eβ∗2dΛ
∗
01(t)

}
=
∫

τ

0
E
{

dM1
01(t)

}
= 0 (C.37)

Same algebra, for t ∈ [0,τ], we can have:

E{U011(β
∗
1,Λ
∗
01;π

∗,Λ1,Λ2,G∗)}

=E [wE {dM01(t) | Z}]

−E
[
wE
{

G∗(t | A)S(t | A,Z)dΛ1(t | A,Z)−G∗(t | A)S(t | A,Z)eβ∗1AdΛ
∗
01(t) | Z

}]
+
{

G∗(t | 1)S(t | 1,Z)dΛ1(t | 1,Z)−G∗(t | 1)S(t | 1,Z)eβ∗1dΛ
∗
01(t)

}
+
{

G∗(t | 0)S(t | 0,Z)dΛ1(t | 0,Z)−G∗(t | 0)S(t | 0,Z)eβ∗2dΛ
∗
01(t)

}
(C.38)

Let DR2 = E{U011(β
∗
1,Λ
∗
01;π∗,Λ1,Λ2,G∗)}, since w = A/π+(1−A)/(1−π), and π =

E(A|Z) plug in and we have,

DR2 =E
{

E(A | Z)
π∗

dM1
01(t)

}
+E

{
E(1−A | Z)

1−π∗
dM0

01(t)
}

−
{

G∗(t | 1)S(t | 1,Z)dΛ1(t | 1,Z)−G∗(t | 1)S(t | 1,Z)eβ∗1dΛ
∗
01(t)

}
−
{

G∗(t | 0)S(t | 0,Z)dΛ1(t | 0,Z)−G∗(t | 0)S(t | 0,Z)eβ∗1dΛ
∗
01(t)

}
+
{

G∗(t | 1)S(t | 1,Z)dΛ1(t | 1,Z)−G∗(t | 1)S(t | 1,Z)eβ∗1dΛ
∗
01(t)

}
+
{

G∗(t | 0)S(t | 0,Z)dΛ1(t | 0,Z)−G∗(t | 0)S(t | 0,Z)eβ∗1dΛ
∗
01(t)

}
=E
{

dM1
01(t)

}
+E

{
dM0

01(t)
}
= 0 (C.39)
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(ii) When Λ1 = Λ∗1,Λ2 = Λ∗2, E{UAIPW
01 (β∗1,Λ

∗
01;π,Λ∗1,Λ

∗
2,G

∗)}= 0.

We first know that, when Λ1 = Λ∗1 and Λ2 = Λ∗2, then S(t | A,Z) = S∗(t | A,Z). Plug in

the true value of Λ∗1 and Λ∗2 to (5.32), we can have:

E{M01(t) | A,Z}=
∫ t

0
G∗(u | A)S∗(t | 1,Z)dΛ

∗
1(t | 1,Z)

−
∫ t

0
G∗(u | A)S∗(u | A,Z)eβ1∗AdΛ

∗
01(u)

= E{M∗01(t) | A,Z} (C.40)

then,

E{U012(β
∗
1,Λ
∗
01;π,Λ∗1,Λ

∗
2,G

∗)}=
∫

τ

0
E
[

E{AdM∗01(t) | A,Z}
π

]
−

∫
τ

0
E
[

E{AdM∗01(t) | A,Z}
π

]
+

∫
τ

0
E [E{dM∗01(t) | A = 1,Z}]

=
∫

τ

0
E
[
dM1∗

01(t)
]
= 0 (C.41)

Same idea, we can have:

E{U011(β
∗
1,Λ
∗
01;π,Λ∗1,Λ

∗
2,G

∗)}

=E [E {wdM∗01(t) | A,Z}−E {wdM∗01(t) | A,Z}+E {dM∗01(t) | 1,Z}+E {dM∗01(t) | 0,Z}]

=E
{

dM1∗
01(t) | Z

}
+E

{
dM0∗

01(t) | Z
}
= 0 (C.42)
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Derive the estimating equation for λ01 and β1

We only take U01 as the example, the rest two can follow the derivation. We first have,

U011(t) =
∫ t

0

[
wdN01(u)−wdeβ1AY0(u)Λ01(u)

−wG(u,A)S(u,A)dΛ1(u,A)+wdG(u,A)S(u,A)eβ1A
Λ01(u)

+G(u,1)S(u,1)dΛ1(u,1)−dG(u,1)S(u,1)eβ1Λ01(u)

+G(u,0)S(u,0)dΛ1(u,0)−dG(u,0)S(u,0)Λ01(u)
]

=
∫ t

0

[
w{dN01(u)−G(u,A)S(u,A)dΛ1(u,A)}+ ∑

a=0,1
G(u,a)S(u,a)dΛ1(u,a)

−d

{
weβ1AY0(u)−wG(u,A)S(u,A)eβ1A + ∑

a=0,1
G(u,a)S(u,a)eβ1a

}
Λ01(t)

]
(C.43)

Solving

1
n

n

∑
i=1

U011,i(t) =
1
n

n

∑
i=1

[∫ t

0
wi {dN01i(u)−Gi(u,Ai)Si(u,Ai)dΛ1i(u,Ai)}

+ ∑
a=0,1

Gi(u,a)Si(u,a)dΛ1i(u,a)

−d { wieβ1AY0i(u)−wiGi(u,Ai)Si(u,Ai)eβ1Ai

+ ∑
a=0,1

Gi(u,a)Si(u,a)eβ1a }Λ01(t)

]
= 0 (C.44)

We then plug (5.43) to (C.44), we have,

dΛ01(t) =
n

∑
i=1

[ wi {dN01i(u)−Gi(u,Ai)Si(u,Ai)dΛ1i(u,Ai)}

− ∑
a=0,1

G(u,a)Si(u,a)dΛ1i(u,a) ]×
1

n ·S (0)
01 (u;β1,π,Λ1,Λ2,G)

, (C.45)

109



then,

Λ01(t) =
∫ t

0
dΛ01(t)

=
∫ t

0

n

∑
i=1

[ wi {dN01i(u)−Gi(u,Ai)Si(u,Ai)dΛ1i(u,Ai)}

− ∑
a=0,1

G(u,a)Si(u,a)dΛ1i(u,a) ]×
1

n ·S (0)
01 (u;β1,π,Λ1,Λ2,G)

(C.46)

We further have,

U012(t) =
∫

τ

0

[
wAdN01(u)−wAdeβ1AY0(u)Λ01(u)

−wAG(u,A)S(u,A)dΛ1(u,A)+wAdG(u,A)S(u,A)eβ1A
Λ01(u)

+G(u,1)S(u,1)dΛ1(u,1)−dG(u,1)S(u,1)eβ1Λ01(u)
]

=
∫ t

0

[
wA{dN01(u)−G(u,A)S(u,A)dΛ1(u,A)}

+G(u,1)S(u,1)dΛ1(u,1)

−d { wAeβ1AY0(u)−wAG(u,A)S(u,A)eβ1A

+G(u,1)S(u,1)eβ1 }Λ01(t)

]
(C.47)
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Solving the estimating equation and plug in (C.45), we have,

1
n

n

∑
i=1

UAIPW
012,i (t) =

1
n

n

∑
i=1

[∫ t

0
wiAi {dN01i(u)−Gi(u,Ai)Si(u,Ai)dΛ1i(u,Ai)}

+Gi(u,1)Si(u,1)dΛ1i(u,1)
]

− 1
n

n

∑
i=1

(
d { wiAieβ1AiY0i(u)−wiAiGi(u,Ai)Si(u,Ai)eβ1Ai

+Gi(u,1)Si(u,a)eβ1a }

×
n

∑
i=1

[ wi {dN01i(u)−Gi(u,Ai)Si(u,Ai)dΛ1i(u,Ai)}

− ∑
a=0,1

G(u,a)Si(u,a)dΛ1i(u,a) ]

× 1

n ·S (0)
01 (u;β1,π,Λ1,Λ2,G)

)
(C.48)

Noticed that,

S (1)
01 (t;β1,π,Λ1,Λ2,G)

=
1
n

n

∑
i=1

{
wi exp(β1Ai)A`

i R0i(t,S,G)+ exp(β1)Gi(t,1)Si(t,1)
}

(C.49)

then we have the estimating equation for β1,

U012,n(β1;π,Λ1,Λ2,G) =
1
n

n

∑
i=1

[∫
τ

0
wi
{

Ai− Ā01(t;β1,π,Λ1,Λ2,G)
}

×{dN01i(t)−Gi(u,Ai)Si(u,Ai)dΛ1i(u,Ai)}

+
∫

τ

0
∑

a=0,1

{
a− Ā01(t;β1,π,Λ1,Λ2,G)

}
×Gi(u,a)Si(u,a)dΛ1i(u,a)

]
(C.50)
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